October 2025 Monthly Compliance Report

Solid Waste Permit No. 588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-44 | **November 10, 2025**

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sec	tion			Page				
	Intro	duction		4				
1.0	Gas	Gas Collection						
	1.1	Surface and Leachate Collection Emissions						
		1.1.1	Surface Emissions	4				
		1.1.2	Monitoring of Leachate Collection Components	6				
	1.2	Existing	Existing Gas Extraction System Performance					
	1.3	e Monitoring System	7					
		1.3.1	Automated Wellhead Temperature Measurements	7				
		1.3.2	Comparison with Manual Temperature Measurements	9				
		1.3.3	Monthly Regulatory Wellhead Temperature Measurements	10				
		1.3.4	LFG Sampling	10				
2.0	Sidewall Odor Mitigation							
	2.1	Perimeter Gas Collection System						
	2.2	Sidewall Odor Mitigation System						
	2.3	Pilot System Construction						
	2.4	Full Sys	ull System Construction					
3.0	Waste Temperature Monitoring							
	3.1	Summa	ary of Waste Temperature Monitoring	12				
		3.1.1	Operational Challenges	14				
		3.1.2	Temperature Profiles	14				
4.0	Lead	hate Ext	raction and Monitoring	20				
	4.1	Dewate	ering Pump Operations and Maintenance	20				
		4.1.1	Total LFG Liquids Removal	20				
		4.1.2	LFG Liquids Pump Operations and Maintenance	21				
	4.2	Sampli	ng and Analysis Plan	23				
		4.2.1	Sample Collection	23				
		4.2.2	Quality Assurance and Quality Control	24				
		4.2.3	Data Validation	25				
		4.2.4	Laboratory Analytical Results	26				
5.0	Settlement Monitoring and Management							
	5.1 Settlement Monitoring and Management Plan							
	5.2	Monthl	y Surveys	28				
		5.2.1	Topographic Data Collection	28				

Table of Contents

Sect	ion		Page				
		5.2.2 Settlement Plate Surveys	33				
6.0	Inter	mediate Cover and EVOH Cover System	36				
	6.1	L Intermediate Cover Installation					
	6.2	EVOH Cover System Design	36				
	6.3	EVOH Cover System Procurement					
	6.4	EVOH Cover System Installation	37				
7.0	Storr	nwater Management					
8.0	Misc	ellaneous	37				
	8.1	Cease Waste Acceptance	37				
	8.2	Long-Term Plan	37				
	8.3	Monthly Compliance Reports	37				
	8.4	Community Outreach Program					
		Stroke Counter Data Analysis	2				
		Figures					
Figur	e 1.	Monthly Average Automated Wellhead Temperatures	8				
Figur		Automated vs. Manual Temperature Measurements	9				
Figur		CO vs H ₂ Concentration from gas wells in October 2025 with historical trend					
Figur		Temperature Monitoring Probe Locations					
Figur	e 5.	TP-1 Average Temperatures for the Months of March 2023, March 2024, March 2 September 2025, and October 2025					
Figur	e 6.	TP-5 Average Temperatures for the Months of March 2023, April 2024, March 20	25,				
Figur	·o 7	September 2025, and October 2025TP-6 Average Temperatures for the Months of March 2023, March 2024, March 2					
ı ıguı	C 1.	September 2025, and October 2025					
Figur	e 8.	TP-7 Average Temperatures for the Months of March 2023, March 2024, March 2					
Figur	ъ Q	September 2025, and October 2025TP-8 Average Temperatures for the Months of March 2023, March 2024, March 2					
i igui	c J .	September 2025, and October 2025	18				
Figur	e 10.	TP-9 Average Temperatures for the Months of March 2023, March 2024, March 2					
Eigur	·^ 11	September 2025, and October 2025 Total Dewatering Liquid Removal					
_	e 11. e 12.	Clogged Forcemain Identified During Construction					
_	e 13.	Aerial Photo of the SWP No. 588 Landfill					
_	e 14.	1-Month Elevation Change Map					
_	e 15.	3-Month Elevation Change Map					
	e 16.	1-Year Elevation Change Map					
_	e 17.	Settlement Plate Locations					
_	e 18.	Elevation Change of Select Settlement Plates Over Time					

Table of Contents

Section		Page
	Tables	
Table 1.	Summary of October Surface Emissions Monitoring	
Table 2.	Leachate Cleanout Pipe Monitoring Results	6
Table 3.	October Temperature Exceedance Summary	10
Table 4.	LFG Wellhead Sampling Summary	
Table 5.	Average SOMS Gas Composition	
Table 6.	Summary Wells Unable to be Sampled for Leachate	
Table 7.	Quality Control Blank Detection Summary	
Table 8.	Monthly LFG-EW Leachate Monitoring Event Summary	
Table 9.	Elevation and Strain Data at Settlement Plate Locations	35
Appendic	ces	
Appendix A	Surface Emissions Monitoring Summary	
Appendix B	In-Waste Temperatures on Select Days in October	
Appendix C	Daily Wellhead Temperature Averages	
Appendix D	Solid Waste Permit 588 Daily Borehole Temperature Averages	
Appendix E	Monthly Topography Analysis	
Appendix F	Field Logs	
Appendix G	LFG Dewatering Pump Stroke Data Analysis	

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with Item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report provides updates regarding the progress towards completion of the items outlined in Appendix A of the Consent Decree between the City and VDEQ. The following sections outline progress during the month of October 2025 related to Solid Waste Permit (SWP) No. 588.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

SCS performed surface emissions monitoring on October 2, 2025; October 10, 2025; October 14, 2025; October 23, 2025; and October 30, 2025. These weekly surface emissions monitoring (SEM) events were performed in accordance with Item 1.i in Appendix A of the Consent Decree between the City and VDEQ. SCS also performs quarterly SEM at the landfill in accordance with regulatory requirements.

The details and results of the SEM are included in Appendix A. A summary of the outcomes is provided in Table 1.

Table 1. Summary of October Surface Emissions Monitoring

Description	October 2, 2025	October 10, 2025	October 14, 2025	October 23, 2025	October 30, 2025
Number of Points Sampled	166	166	166	166	166
Number of Points in Serpentine Route	100	100	100	100	100
Number of Points at Surface Cover Penetrations	66	66	66	66	66
Number of Exceedances	2	2	1	6	5
Number of Serpentine Exceedances	0	0	0	0	0
Number of Pipe Penetration Exceedances	2	2	1	6	5

In response to the SEM results, the City and the City's operations, monitoring, and maintenance contractor, SCS Field Services O&M (SCS-FS or SCS-FS) took the following actions or noted the following observations:

- An initial pipe penetration exceedance was recorded at EW-86. Monitoring of this well during a follow-up event did not result in an exceedance.
- An initial pipe penetration exceedance was recorded at EW-55. Monitoring of this well during a follow-up event did not result in an exceedance.
- An initial pipe penetration exceedance was recorded at EW-99. Monitoring of this well during a follow-up event did not result in an exceedance.
- A pipe penetration exceedance was recorded at TP-7, which was undergoing corrective actions when the month began. Monitoring of this well during a follow-up event did not result in an exceedance.
- A pipe penetration exceedance was recorded at EW-60, which was undergoing corrective actions when the month began. Monitoring of this well during a follow-up event did not result in an exceedance.
- A pipe penetration exceedance was recorded at EW-67, which was undergoing corrective
 actions when the month began. Monitoring of this well during a follow-up event did not
 result in an exceedance.
- In response to an initial pipe penetration exceedance at EW-84, SCS-FS performed field investigations and identified low available vacuum at EW-84. SCS-FS plans to address the low available vacuum in this vicinity during the week of November 3, 2025.
- In response to an initial pipe penetration exceedance at EW-85, SCS-FS performed field investigations and identified low available vacuum at EW-85. SCS-FS plans to address the low available vacuum in this vicinity during the week of November 3, 2025.
- In response to an initial pipe penetration exceedance at EW-87, SCS-FS performed field investigations and identified low available vacuum at EW-87. SCS-FS plans to address the low available vacuum in this vicinity during the week of November 3, 2025.
- In response to an ongoing pipe penetration exceedance at EW-49, SCS-FS installed a new lateral to increase available vacuum.
- In response to an ongoing pipe penetration exceedance at EW-95, SCS-FS performed field investigations and identified low available vacuum at EW-95. SCS-FS plans to address the low available vacuum in this vicinity in the coming weeks.
- A pipe penetration exceedances was previously recorded at EW-52. Monitoring of this well during a follow-up event did not result in an exceedance.

1.1.2 Monitoring of Leachate Collection Components

SCS Field Services (SCS-FS) visited the Bristol Landfill on October 8, 2025, and performed monitoring of the leachate, witness zone, northern cleanouts, and gradient control clean-outs at the southern end of the landfill. The results of that monitoring are included in Table 2.

Table 2. Leachate Cleanout Pipe Monitoring Results

Description	ID#	Record Date	CH4 (% by Vol)	CO2 (% by Vol)	O2 (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H2O)	Adj Static Pressure (in H2O)	System Pressure (in H2O)
Southern Cleanouts Gradient West	LC01	10/8/2025 1:21:56 PM	47.9	46.6	0.0	5.5	63.9	64.0	-13.13	-13.13	-14.02
Southern Cleanouts Gradient East	LC02	10/8/2025 1:25:40 PM	43.9	52.3	0.0	3.8	70.0	70.4	-13.13	-12.94	-13.78
Southern Cleanouts Leachate Center	LC03	10/8/2025 1:28:19 PM	7.3	6.6	18.0	68.1	76.8	77.3	-12.18	-12.19	-13.57
Southern Cleanouts Witness East	LC04	10/8/2025 1:30:41 PM	4.8	1.5	19.6	74.1	79.5	79.6	-9.46	-9.36	-13.87
Southern Cleanouts Leachate West	LC05	10/8/2025 1:39:18 PM	44.8	51.9	0.0	3.3	65.3	65.2	-13.22	-13.12	-13.63
Southern Cleanouts Gradient Center West	LC06	10/8/2025 1:36:41 PM	24.5	23.6	11.4	40.6	78.1	78.5	-13.65	-13.44	-13.74
Southern Cleanouts Leachate East	LC08	10/8/2025 1:33:16 PM	47.4	50.7	0.0	1.9	66.1	65.8	-13.27	-13.10	-13.74
Southern Cleanouts Gradient Center East	LC09	10/8/2025 1:42:32 PM	37.0	36.7	4.7	21.7	79.6	80.9	-13.53	-13.49	-13.53
Southern Cleanouts Leachate West	LC10	10/8/2025 1:44:12 PM	3.1	2.4	20.0	74.6	79.6	79.7	-11.20	-11.15	-13.82
Northern Cleanouts Leachate East	NC01	10/9/2025 11:19:35 AM	0.5	0.2	20.6	78.7	61.4	61.3	-0.49	-0.39	0.00
Northern Cleanouts Leachate Center	NC02	10/9/2025 11:18:28 AM	0.7	0.2	20.4	78.6	61.6	61.6	-0.14	-0.03	-0.01
Northern Cleanouts Leachate West	NC03	10/9/2025 11:17:27 AM	0.3	0.1	20.7	78.9	62.0	62.0	-0.23	-0.16	-0.02
Northern Cleanouts Witness East	NC04	10/9/2025 11:20:36 AM	0.2	0.0	20.8	79.0	61.2	61.3	-10.14	-10.14	0.00
Northern Cleanouts Witness Center	NC05	10/9/2025 11:24:04 AM	0.1	0.0	20.8	79.1	61.2	61.1	-10.14	-9.97	-0.01
Northern Cleanouts Witness West	NC06	10/9/2025 11:22:45 AM	0.1	0.0	20.8	79.1	61.1	61.1	-10.09	-10.00	0.00
Northern Cleanouts Gradient East	NC07	10/9/2025 11:27:43 AM	0.2	0.0	20.7	79.1	61.3	61.3	-12.84	-12.84	0.00
Northern Cleanouts Gradient Center East	NC08	10/9/2025 11:26:32 AM	0.1	0.0	20.7	79.1	61.2	61.3	-12.84	-12.84	-0.01
Northern Cleanouts Gradient Center West	NC09	10/9/2025 11:25:17 AM	0.1	0.0	20.8	79.1	61.2	61.2	-12.87	-12.84	-0.01
Northern Cleanouts Gradient West	NC10	10/9/2025 11:15:13 AM	0.0	0.0	20.8	79.1	63.8	63.7	-11.22	-11.15	-0.02

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in the following sections of this report.

Additional actions taken by SCS-FS include the following:

- Adjustments to LFGCCS
- Maintenance of air lines and pressurized air infrastructure
- Maintenance of wellhead and other gas collection infrastructure
- Removal of liquids from landfill gas headers
- Replacement of a section of blocked forcemain
- Temporary relocation of header pipes to facilitate placement of additional soil.

1.3 REMOTE MONITORING SYSTEM

In the Fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas wellheads. The purpose of the sensors is to record and transmit wellhead gas temperatures via cellular connection to a database managed by SCS-RMC. Since the initial installation, some sensors have been relocated and additional sensors have been added to the network. There are currently 59 wellhead temperature sensors operating within the wellfield.

The City is providing the minimum, maximum, and average daily temperature recorded by each sensor to VDEQ on a daily basis via email. Minimum, maximum, and average daily temperatures recorded by the remote monitoring system during the month of October are included in Appendix C. In addition, SCS previously prepared semi-monthly status updates to satisfy the conditions of compliance provision no. 2 of the Environmental Protection Agency (EPA) Region III letter, Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility, dated August 23, 2021. On August 2, 2023, VDEQ requested that such updates be included in the monthly compliance reports. Accordingly, this section is a summary of temperature monitoring activities during the monthly monitoring period of October 2025.

1.3.1 Automated Wellhead Temperature Measurements

SCS reviewed the automated hourly temperature measurements from October 2025, and observed the following:

- The average temperature in August was above the regulatory threshold of 145°F at 17 wells (see Figure 1).
- The highest average temperature was 198.3°F at EW-89. Temperatures at EW-89 are being monitored closely, and SCS-FS has prioritized pump maintenance at this well to remove liquids (and associated heat) at this well.

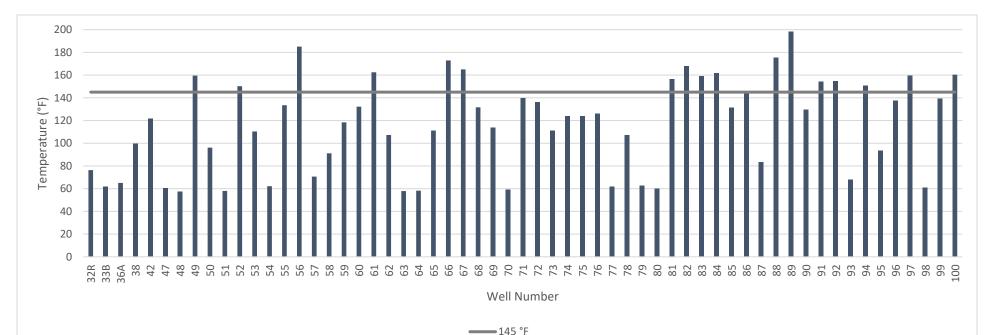


Figure 1. Monthly Average Automated Wellhead Temperatures¹

¹ 145°F is the NESHAP AAAA compliance threshold for well temperature, included here for reference.

1.3.2 Comparison with Manual Temperature Measurements

Per the approval issued by VDEQ on August 2, 2023, the Facility ceased dedicated daily manual temperature measurements in the Permit No. 588 Landfill. In lieu of these measurements, the City compares instantaneous hourly automated temperature measurements with temperatures measured at each wellhead using a handheld sensor during monthly compliance monitoring. These comparisons are shown in Figure 2, with the $\pm 8\,^{\circ}$ F deviation thresholds as prescribed in the VDEQ approval.

Temperatures outside the $\pm 8\,^{\circ}$ F deviation threshold were observed at four wells during this reporting period: EW-54, EW-57, EW-82, and EW-95. EW-57 and EW-82 were also outside of the $\pm 8\,^{\circ}$ F deviation threshold in September.

At EW-54, EW-57, and EW-95, the recorded manual temperature was higher than the automated temperature.

At EW-82, the recorded automated temperature was higher than the manual temperature. Low gas flow is one potential cause of higher automated temperature than manual temperature, but gas flow could not be recorded during the measurement of EW-82 due to the configuration of the stainless-steel wellhead.

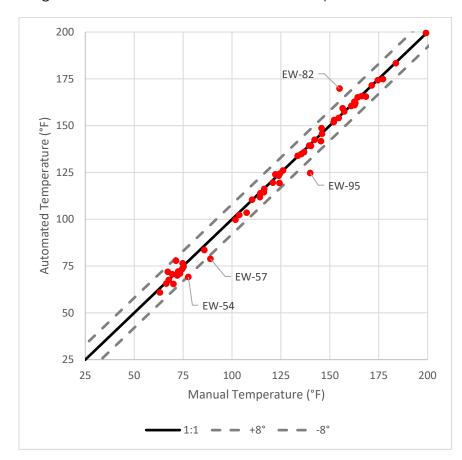


Figure 2. Automated vs. Manual Temperature Measurements

1.3.3 Monthly Regulatory Wellhead Temperature Measurements

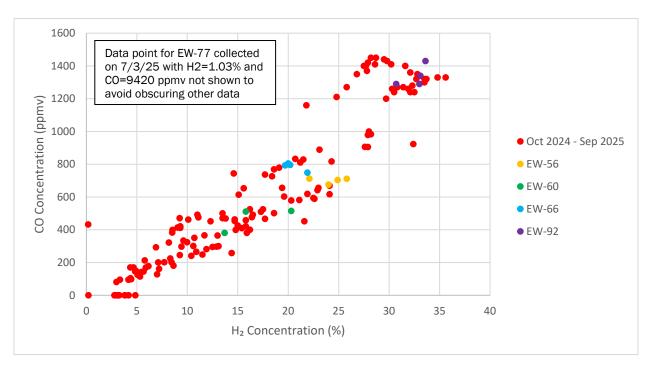
Routine monthly temperature monitoring was conducted on October 7 and October 20, 2025 to comply with 40 CFR 60.36f(a)(5). Table 3 provides the status of exceedances recorded during this monitoring period.

Table 3. October Temperature Exceedance Summary

Well ID	Initial Exceedance Date	Compliant Reading	Most Recent Reading	Duration of Exceedance	Status as of 11/1/2025
EW-49	10/20/25	10/23/25 162.6°F	10/23/25 162.6°F	4 days	Resolved within 15- day timeline
EW-56	5/29/25	N/A	10/31/25 189.6°F	157 days	Ongoing, beyond 120- day timeline
EW-60	9/22/25	10/15/25	10/31/25 129.6°F	24 days	Resolved within 60- day timeline
EW-60	10/20/25	10/23/25 138.4°F	10/31/25 129.6°F	4 days	Resolved within 15- day timeline
EW-66	7/28/25	N/A	10/31/25 173.0°F	97 days	Ongoing, within 120- day timeline
EW-81	10/21/25	10/23/25 174.6°F	10/31/25 138.1°F	3 days	Resolved within 15- day timeline
EW-92	6/3/25	10/20/25 140.1°F	10/20/25 140.1°F	140 days	Resolved beyond 120- day timeline
EW-96	10/20/25	10/23/25 86.6°F	10/31/25 149.5°F	4 days	Resolved within 15- day timeline
EW-96	10/31/25	N/A	10/31/25 149.5°F	2 days	Ongoing, within 15-day timeline
EW-97	10/20/25	10/23/25 86.6°F	10/31/25 171.7°F	4 days	Resolved within 15- day timeline

1.3.4 LFG Sampling

SCS collected weekly LFG samples from wells with temperature exceedances lasting more than seven days using 1.5-L summa canisters. The samples were sent to Enthalpy Analytical for laboratory analysis of carbon monoxide (CO) and hydrogen (H_2) content. As of November 1, 2025, the City has received lab results for sampling on September 25, October 2, October 9, and October 15, 2025 to fulfill the requirement in 40 CFR 63.1961(a)(5). The lab data are summarized in Table 4.


Table 4. LFG Wellhead Sampling Summary

Sample Date		9/25/25	10/2/25	10/9/25	10/15/25
EW-56	CO (ppmv)	712	676	704	711
EW-36	H2 (Vol. %)	22.1	24.0	24.9	25.8
EW 60	CO (ppmv)	511	515	381	
EW-60	H2 (Vol. %)	15.8	20.3	13.7	
EW-66	CO (ppmv)	805	793	749	796
EVV-00	H2 (Vol. %)	20.0	19.7	21.9	20.2

Sample Da	te	9/25/25	10/2/25	10/9/25	10/15/25
EW-92	CO (ppmv)	1290	1340	1290	1430
EVV-92	H2 (Vol. %)	30.7	33.1	33.0	33.6

As shown in Figure 3, the carbon monoxide and hydrogen data collected during this period appear to be generally consistent with the data collected previously in 2024 and 2025.

Figure 3. CO vs H₂ Concentration from gas wells in October 2025 with historical trend

2.0 SIDEWALL ODOR MITIGATION

On the City's behalf, SCS designed and constructed a system to control fugitive emissions emanating from the quarry sidewalls.

2.1 PERIMETER GAS COLLECTION SYSTEM

Refer to the April 2023 Monthly Compliance Report for the SWP No. 588 Landfill, for information about the perimeter gas extraction wells.

2.2 SIDEWALL ODOR MITIGATION SYSTEM

Refer to the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill, for information about the design of the sidewall odor mitigation system.

2.3 PILOT SYSTEM CONSTRUCTION

Refer to the February 2023 Monthly Compliance Report for the SWP No. 588 Landfill, for information about the design of the construction of the pilot sidewall odor mitigation system.

2.4 FULL SYSTEM CONSTRUCTION

Operation of the sidewall odor mitigation system is monitored on a monthly basis. SCS-FS collected monitoring data at each wellhead under vacuum in October. A summary of system averages during the month is shown in Table 5.

Table 5. Average SOMS Gas Composition

Record Dates	Average CH4 [%]	Average CO ₂ [%]	Average O ₂ [%]	Average Bal Gas [%]
10/13/2025	5.5	8.7	16.5	69.3

The sidewall system average gas composition indicates lower methane content and higher oxygen and balance gases than other components in the LFGCCS. These gas composition measurements indicate that the SOMS is collecting a mixture of LFG escaping the sidewall and air. Adjustments to vacuum at each wellhead are made on a regular basis to address changes in sidewall emissions and facilitate placement of additional soil.

3.0 WASTE TEMPERATURE MONITORING

SCS designed a monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

3.1 SUMMARY OF WASTE TEMPERATURE MONITORING

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP No. 588 Landfill. The locations of the temperature probes are shown in Figure 4.

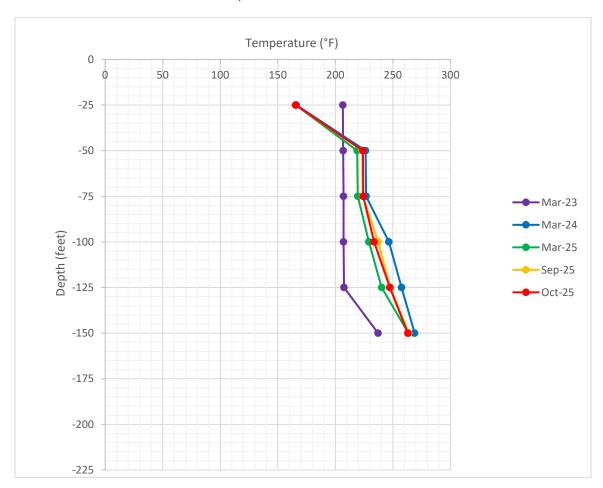
Figure 4. Temperature Monitoring Probe Locations

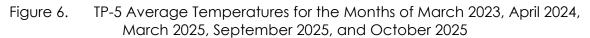
SCS began collecting temperature data daily on February 15, 2023.

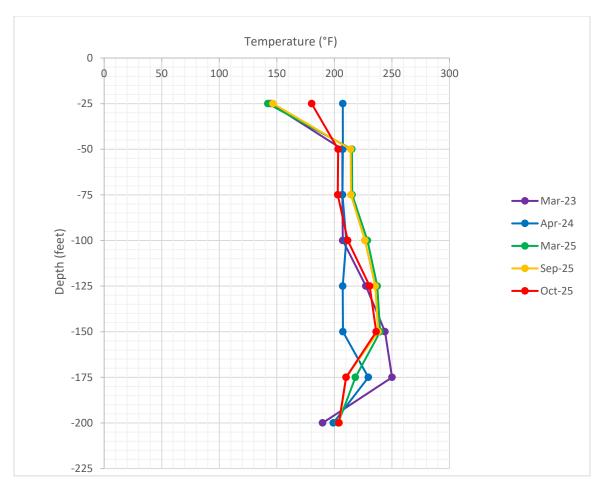
Average daily temperatures recorded by the sensors for the month of October are included in Appendix D. Each week the average temperatures from a select day of that week are downloaded and compared to temperatures recorded during the previous week. Average daily temperatures recorded on select days during the month of October are shown in Appendix B. The average temperatures recorded for March 2023, March 2024, March 2025, September 2025, and October 2025 are shown in Figures 5 through 10 on the following pages.

Overall, these data indicate that temperatures within the landfill are generally stable and are typical of those observed at elevated temperature landfills (ETLFs). The temperatures recorded are substantially lower than those associated with landfill fires or other combustion processes, which can exceed 1000°F, which is further evidence that the elevated temperatures are due to sources other than combustion.

3.1.1 Operational Challenges


Multiple thermocouples in TP-2 and TP-3 started to fault in late 2024/early 2025. SCS coordinated with the City in March to pull the string of thermocouples from TP-2 and TP-3 but were unable to remove the strings in either probe due to suspected pinching of the casings. TP-2 and TP-3 have been abandoned and a replacement plan is being developed.


3.1.2 Temperature Profiles


Temperature profiles for the operational thermocouple strings are shown in Figures 5-10. Temperatures profiles have been consistent throughout 2025, with peak temperatures between 200 and 275°F in TP-1, TP-5, TP-7, and TP-8 and 150°F in TP-9.

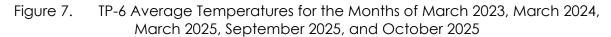
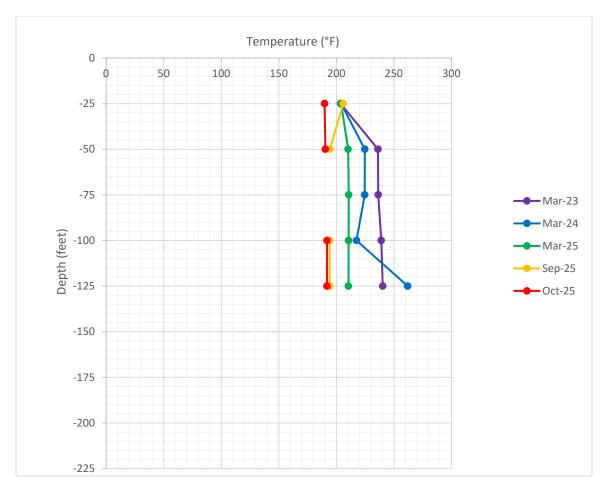
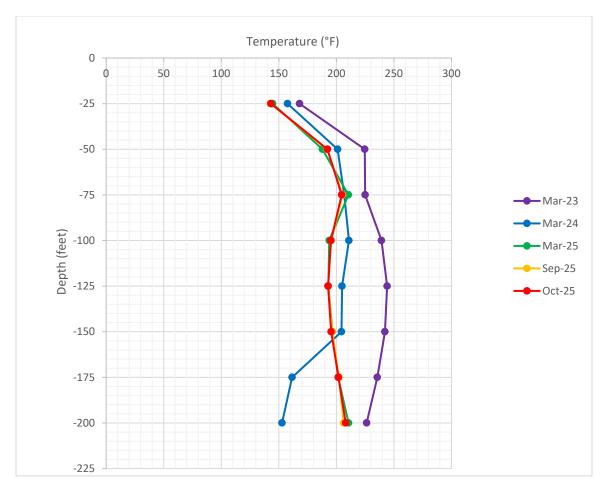
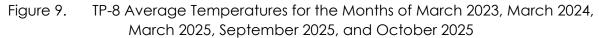
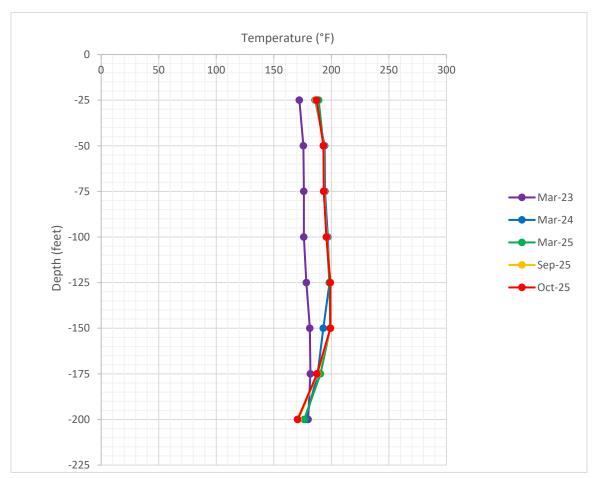
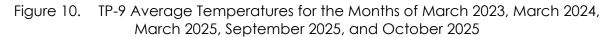
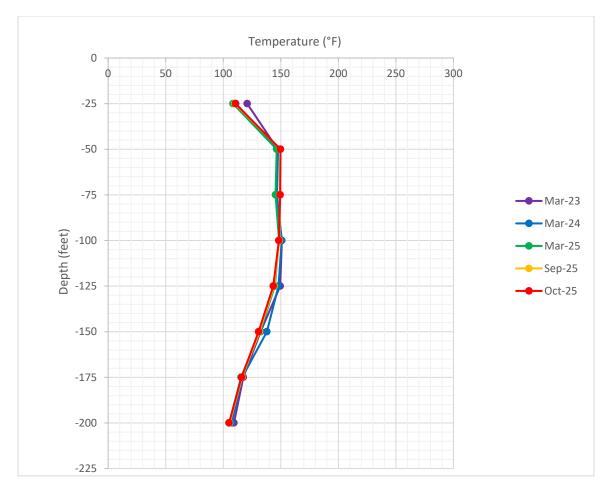

The profile at TP-6 is an exception, where temperatures have declined below 200°F in 2025 and outlying temperature measurements have been recorded at 75 ft. Troubleshooting by field staff indicated that the sensor at the 75-foot level is malfunctioning. Given that the majority of the sensors within this casing are still functioning properly, the sensor at 75 ft will not be retrieved to avoid damaging the other sensors within the casing. Data from the 75-foot level of TP-6 has been excluded from this report.

Figure 5. TP-1 Average Temperatures for the Months of March 2023, March 2024, March 2025, September 2025, and October 2025


Figure 8. TP-7 Average Temperatures for the Months of March 2023, March 2024, March 2025, September 2025, and October 2025

4.0 LEACHATE EXTRACTION AND MONITORING

The City is continuously taking steps to maintain and improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals. Refer to Appendix G for narrative sections without updates.

4.1 DEWATERING PUMP OPERATIONS AND MAINTENANCE

4.1.1 Total LFG Liquids Removal

Figure 11 illustrates monthly landfill gas liquids removal over the past year. The volume was estimated from stroke counter data for November 2024 through April 2025, and June 2025 through October 2025 (blue bars in Figure 11). A flow meter was used to record the volume in the other months. Over the past 6 months, the estimated monthly leachate pumped has ranged from 74,800 to 237,800 gallons per month, and has averaged 127,800 gallons per month.

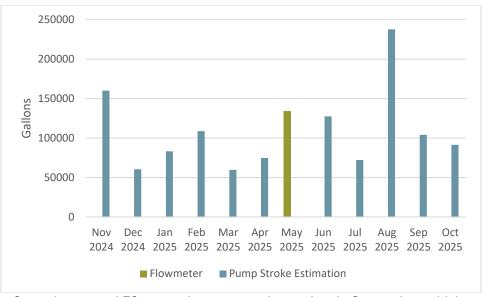


Figure 11. Total Dewatering Liquid Removal

The Harnden Group began an LFG expansion construction project in September, which necessitated pauses in the operation of dewatering pump infrastructure in October. During construction of the expansion, the Harnden Group identified forcemain piping that was nearly completely blocked with solids. The City is working with the Harnden Group to replace the blocked forcemain piping as part of the expansion project. An example of a blocked forcemain pipe is shown in Figure 12.

Figure 12. Clogged Forcemain Identified During Construction

4.1.2 LFG Liquids Pump Operations and Maintenance

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations. Daily pump checks and maintenance of spare pumps will continue indefinitely, along with pump replacements as needed.

Estimated volumes of liquids removed at each pump are presented in **Table G-1**, **Appendix G**. SCS has prepared the summary below regarding operating conditions and specific challenges associated with each pump in October 2025.

Pump Maintenance Activities

- The pump in EW-49 was built and installed, and the check valve was replaced.
- The pumps were swapped in EW-59 and EW-85.
- The pump in EW-61 was swapped, and the check valve and tri-tubing were replaced.
- The pump in EW-65 was swapped, and the tri-tubing was replaced.

- The pump was swapped in EW-78, and the cycle counter was repaired. The regulator was also replaced.
- The Blackhawk pump was removed from EW-82.
- The pump in EW-89 was swapped, and the flex hose was replaced.
- The pump tri-tubing was replaced at EW-98.
- The flex hose was reinstalled at EW-99.
- The pump head and flex hose were reconnected at TP-4.
- General cleaning and maintenance was performed.

Wells with Inactive Pumps

- The pumps in EW-33B and EW-76 are stuck in the well casing and have been disconnected. SCS-FS plans to remove the existing pumps and replace them with new QED pumps in November, weather permitting.
- The casing at EW-49 has been lowered to allow access to the pump.
- SCS-FS intends to replace the Blackhawk pump with a QED in EW-36A, which has been scheduled for November.
- The pumps in EW-52, EW-53, EW-55, EW-66, and EW-68 are inactive due to excessive pressure buildup in the forcemain line. The LFG construction project currently underway includes modifications to the piping system to alleviate pressure buildup in the forcemain.
- The pump in EW-62 is offline due to a damaged air line. SCS-FS will evaluate the extent of damage and will coordinate with the City to procure materials needed for the repair.
- All pump types deployed in EW-74 and EW-75 have experienced buildup on the intake screens preventing effective pump operation. To conserve resources for pumping in other wells, no additional pumps are being deployed to these wells.
- The pumps in EW-51, EW-57, EW-90, and EW-100 are permanently stuck in their wells even after attempts to remove them with heavy equipment. They cannot be cleaned or repaired.
- The casings of EW-81, EW-83, EW-91, and EW-96 extend too high above the existing
 ground level for a pump to be safely accessed. These are stainless steel wells that
 cannot be lowered through conventional means. SCS-FS and the City are coordinating
 placement of additional soil around the wells to provide safe access.

In addition to the challenges associated with the individual pumps, SCS-FS has generally observed high forcemain pressures and significant build-up of solids within the forcemain. This results in SCS-

FS dedicating substantial amounts of time to relieving air pressure on the system. As discussed in Section 4.1.1, sections of the forcemain with this solids build-up are being replaced in the ongoing LFG system construction project.

4.2 SAMPLING AND ANALYSIS PLAN

4.2.1 Sample Collection

On October 28, 2025, SCS collected a leachate sample from Dual Phase LFG extraction wells (EW-50 and EW-65). Field measurements for dissolved oxygen, oxidation-reduction potential, pH, specific conductance, temperature, and turbidity were taken and recorded at the time of sample collection. The associated field logs are included in **Appendix F**. In October 2025, SCS field staff could not collect samples from the wells listed in **Table 6**. Additional details about the condition of these wells and planned maintenance activities are included in Section 4.1.2.

Table 6. Summary Wells Unable to be Sampled for Leachate

Wells With Pumps Wells Without Pumps Pump was not running/cycling at the There was no pump at the time of the time of monitoring for the following monitoring for the following wells: wells: EW-36A, EW-49, EW-52, EW-53, EW-33B, EW-54, EW-56, EW-63, EW-64, EW-55, EW-59, EW-61, EW-62, EW-66, EW-67, EW-69, EW-70, EW-73, EW-76, EW-78, EW-81, EW-85, EW-87, EW-88, EW-77, EW-79, EW-80, EW-82, EW-84, EW-89, EW-94, EW-96, and EW-98. EW-86, EW-91, EW-92, EW-93, EW-95, EW-97, and EW-99. Without a pump, a Pump was disconnected or off at the leachate sample is not collected. time of monitoring for EW-60, EW-68, and EW-83. Additional information: Additional information: EW-33B, EW-63, EW-64, EW-77, EW-79, and EW-93 had the vacuum shut EW-96 was too tall to safely measure down and were unable to be the liquid level. approached during the time of monitoring. Liquid depth was not measured at the time of monitoring for EW-36A, EW-81, The well was too tall to safely measure EW-89, and EW-94 as aquaina the liquid level for EW-92 and EW-97. equipment has historically become Liquid depth was not measured at the stuck in the well. time of monitoring for EW-56, EW-67, The liquid depth was not measured at EW-86, and EW-91 as unsafe gas the time of monitoring for EW-52, concentrations were detected as the EW-53, EW-55, EW-62, EW-66, and well was approached or when the EW-87 as the pump is slotted for well was opened.

maintenance or replacement.

Liquid depth was not measured at the

time of monitoring for EW-49, EW-50,

EW-88 as unsafe gas concentrations were detected as the well was

EW-59, EW-60, EW-61, EW-65, and

The liquid depth was not measured at

the time of monitoring for EW-76 as the

pump is slotted for maintenance or

replacement.

Table 6. Summary Wells Unable to be Sampled for Leachate

Wells With Pumps	Wells Without Pumps
approached or when the well was opened.	

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia for analysis. The samples were analyzed for the parameters utilizing the analytical methods described in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan, December 1, 2022, prepared by SCS Engineers. At the time of preparation of this report, laboratory analytical results were not available for the October 2025 monitoring event. The October 2025 analytical results will be provided in the November 2025 Monthly Compliance Report.

4.2.2 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for VOC analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analysis. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A summary of each of these is presented below:

- Method Blank The method blank is deionized water subjected to the same reagents and manipulations to which site samples are subjected. Positive results in the method blanks may indicate either contamination of the chemical reagents or the glassware and implements used to store or prepare the sample and resulting solutions.
- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis. MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.

LCS – These samples consist of distilled/deionized water injected with the parameters of
interest for single parameter methods and selected parameters for multi-parameter
methods according to the appropriate analytical method. LCS samples are prepared and
analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to
monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are like the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

This report provides the September 2025 analytical results, which became available in October 2025. The October 2025 analytical results will be reported in November 2025. The QC blank detection identified for the September 2025 monitoring event is shown on **Table 7**. The laboratory analysis report for the September 2025 monitoring event trip blank is included in **Appendix F**. The laboratory QA/QC report for the September 2025 monitoring event, including the method blank results, is included in the certificate of analysis (COA) in **Appendix F**.

Table 7. Quality Control Blank Detection Summary

Location ID	Parameter	September Concentration (mg/L)
Method Blank	Chromium	0.0004

mg/L = milligrams per liter

4.2.3 Data Validation

Data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection Agency (EPA) guidance². Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with concentrations less than five times that of the trip blank, field blank, and/or method blank concentration, but greater than the laboratory's LOD are flagged with a "B" qualifier. Samples with common laboratory concentrations less than 10 times that of the trip blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not valid as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis.

No leachate results were flagged with a "B" qualifier for the September 2025 monitoring event as as the chromium detections identified in the leachate samples were greater than five time the

² United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. November 2020. United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. November 2020.

concentration detected in the method blank. The September 2025 detections flagged with a "J" qualifier are shown on **Table 8**.

4.2.4 Laboratory Analytical Results

The analytical results for the September 2025 leachate samples collected from extraction wells EW-50 and EW-60 are summarized in **Table 8**. The associated COA is included in **Appendix F**. Concentrations from September 2025 and previous monitoring events (November 2022 – August 2025) are presented in the Historical LFG-EW Leachate Monitoring Results Summary in **Appendix F**. Time-series plots of each VOC for EW-50 and EW-60 and the wells that have historically been sampled are included in **Appendix F**.

Table 8. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-50	EW-60	LOD	LOQ
Parameter	September 2025	September 2025 Concentration		
Ammonia as N (ma/l)	1190		60	100
Ammonia as N (mg/L)		1210	120	200
Biological Oxygen Demand (mg/L)	8200	33700	0.2	2
Chemical Oxygen Demand (mg/L)	9670		1260	2000
Chemical Oxygen Demana (mg/L)		55500	6300	10000
Nitrate as N (mg/L)	ND	ND	0.102	0.4
Nitrite as N (mg/L)	0.32 J	0.4	0.1	0.4
Phenolics, Total Recoverable (mg/L)	9.78	2.38	0.309	0.5
Total Kjeldahl Nitrogen (mg/L)	1660	2200	45.9	50
SEMI-VOLATILE ORGANIC COMPOUND	(ug/L)			
Anthracene	ND		100	200
Ammacene		ND	400	800
TOTAL METALS (mg/L)				
Arsenic	0.289	0.166	0.002	0.02
Barium	1.1	2.36	0.001	0.01
Cadmium	0.0009 J	0.0302	0.0002	0.004
Chromium	0.24	0.222	0.0004	0.01
Copper	0.0089 J	ND	0.002	0.01
Lead	0.0179	0.0184	0.002	0.01
Mercury	0.00108		0.00014	0.001
Mercury		0.00665	0.00027	0.002
Nickel	0.0731	0.0224	0.001	0.01
Selenium	ND	ND	0.007	0.05
Silver	0.001 J	ND	0.0004	0.01
Zinc	0.0267		0.003	0.01
ZIIIC		0.322	0.009	0.03

Table 8. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-50	EW-60	LOD	LOQ			
Parameter	September 202						
VOLATILE FATTY ACIDS (mg/L)							
Acetic Acid	2360	5870	71.4	500			
Butyric Acid	281		3.5	25			
		1750	70.3	500			
Lactic Acid	ND		2.8	25			
		864	5.6	50			
Propionic Acid	597		5.7	50			
		2030	57.3	500			
Pyruvic Acid	33.1		4.4	25			
		73.4	8.9	50			

VOLATILE ORGANIC COMPOUNDS (ug/L)							
2-Butanone	8450	12500	300	1000			
Acetone	17400		700	1000			
		52800	3500	5000			
Benzene	747	406	40	100			
Ethylbenzene	64 J	ND	40	100			
Tetrahydrofuran	2560	3050	1000	1000			
Toluene	150	ND	50	100			
Xylenes	163 J	ND	100	300			

^{--- =} not applicable

J = Constituent was detected at a concentration above the laboratory's LOD but below the laboratory's LOQ. Concentration is estimated and not validated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below. Refer to Appendix G for narrative sections without updates.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

Information about the Settlement Monitoring and Management Plan for the SWP No. 588 Landfill and a copy of the plan can be found in the November 2022 Compliance Report for the SWP No. 588 Landfill.

5.2 MONTHLY SURVEYS

5.2.1 Topographic Data Collection

SCS collected topographic data of the Solid Waste Permit No. 588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone) on October 15, 2025. Aerial imagery collected on October 15, 2025, is depicted in Figure 13. The topographic data collected is shown on Sheet 4 in Appendix E.

Figure 13. Aerial Photo of the SWP No. 588 Landfill

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on September 11, 2025. A drawing depicting the September 11, 2025 topography is included as Sheet 3 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, the data shows a fill of 7,100 cubic yards across the site. Fill may have been placed and spread on the site to address differential settlement, surface emissions, and to provide access to LFG collection vertical wells. Additionally, a substantial increase in vegetation at the site can influence the topographic data recorded by the drone, which contributes to the fill volume. During that same time period, calculations indicate a "cut" volume of approximately 1,300 cubic yards. Cut volumes are typically attributed to settlement. This resulted in a net increase in the volume within the waste footprint of 5,700 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 14. Areas in yellow and orange indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 5 in Appendix E.

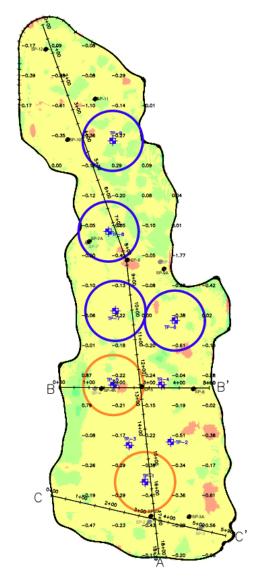


Figure 14. 1-Month Elevation Change Map

The locations of in-waste temperature monitoring probes are also shown on Figure 14, Figure 15, and Figure 16. The circles around the probes in each of these figures are indicative of the average borehole temperature. The circles shown are offset from the probes for clarity only and do not necessarily indicate temperatures measured at locations away from the probe. Probes with a blue circle around them typically have an average temperature less than 200°F across the full depth of the probe. Probes with an orange circle around them typically have an average temperature greater than 200°F and less than 250°F across the full depth of the probe. Probes with no circle around them represent no temperature readings for this month due to sensor malfunctions. There were no probes measuring average temperatures greater than 250°F during the month of October 2025.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation increase between the flyover dates was 0.2 feet.

SCS also compared the topographic data collected in October to the topographic data collected on July 29, 2025. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 8,600 cubic yards. During that same time period calculations indicate approximately 2,700 cubic yards of fill were placed on the landfill, for a net decrease in waste volume of 5,900 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 15. Areas in orange/yellow indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 6 in Appendix E.

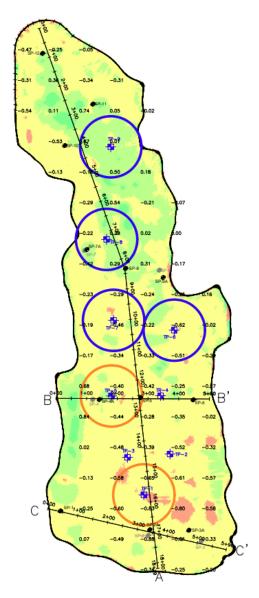


Figure 15. 3-Month Elevation Change Map

Based on the area of the landfill and the net volume change, the average elevation decrease was approximately 0.2 feet.

SCS also compared the topographic data collected in October 2025 to the drone topographic data collected on October 16, 2024. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 33,500 cubic yards. During that same time period approximately 1,400 cubic yards of construction-related fill were placed on the landfill. This resulted in a net volume decrease of approximately 32,100 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 16. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 7 in Appendix E.

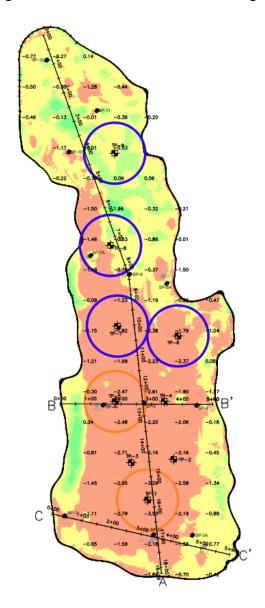


Figure 16. 1-Year Elevation Change Map

The largest settlement occurred primarily at the southern end of the landfill where the waste settled by 3 feet or more in some areas. Significant settlements are typical of elevated temperature landfill conditions. The landfill perimeter exhibited an increase in elevation, likely due to soil placement associated with construction and/or ongoing maintenance of the Sidewall Odor Mitigation System. There were variations in elevation associated with soil stockpiling operations.

Based on the landfill area and the net volume change, the average elevation decrease was approximately 1.1 feet.

SCS will collect topographic data covering the landfill surface again in November using photogrammetric methods via UAV. This data will be compared to the data collected in November 2024, August 2025, and October 2025.

5.2.2 Settlement Plate Surveys

On November 7, 2022, SCS field services installed 12 settlement plates on the Solid Waste Permit No. 588 landfill. Five new settlement plates (SP-2A, SP-3A, SP-4A, SP-7A, and SP-9A) installed during June 2024 are intended to replace non-operational settlement plates. The settlement plate locations are depicted in Figure 17 and on Sheet 1 in Appendix E. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan.

Figure 17. Settlement Plate Locations

The locations of the settlement plates were initially surveyed on November 14, 2022, and have been surveyed monthly thereafter. The survey coordinates and elevation changes of the settlement plates are shown in Table 9.

Table 9. Elevation and Strain Data at Settlement Plate Locations

Settlement Plate	Northing	Easting	Elevation on October 2, 2025 (ft)	Elevation Change Since September 9, 2025 (ft)	Strain ³ Since September 9, 2024	Elevation Change Since Installation (ft)
SP-1	3397887.7	10,412,081.1	1,828.5	0.0	0.1%	-5.9
SP-2A	3397823.4	10,412,370.7	1,792.1	-0.1	-0.1%	-3.7
SP-3A	3,397,820.3	10,412,498.2	1,778.9	-0.1	-0.1%	-1.4
SP-4A	3,398,247.0	10,412,207.7	1,802.0	0.0	0.0%	-3.1
SP-5	3,398,255.9	10,412,339.8	1,787.7	-0.2	-0.1%	-13.3
SP-6	3,398,248.8	10,412,510.1	1,772.6	-0.1	-0.1%	-5.2
SP-7A	3,398,731.4	10,412,158.4	1,821.9	-0.1	-0.0%	-1.6
SP-8	3,398,678.1	10,412,291.0	1,799.4	-0.0	-0.0%	-8.1
SP-9A ⁴	3,398,644.2	10,412,416.2	1,787.9	0.3	0.2%	-0.7
SP-10	3,399,079.6	10,412,095.4	1,836.0	-0.2	-0.1%	-3.7
SP-11	3,399,216.4	10,412,183.9	1,814.3	0.0	0.0%	-2.0
SP-12	3,399,381.7	10,412,019.8	1,809.8	-0.0	-0.0%	-0.9

Prior to April 2024, the City's in-house surveyor read the settlement plate elevations. Starting April 2024 through June 2025, the settlement plate elevations were measured by FEI Civil Engineers and Land Surveyors. As of July 2025, the settlement plate elevations are measured by Miller Land Surveying LLC. Some variations in elevation measurements may be the result of changes in personnel and equipment.

Elevation measurements of Settlement Plate 9A indicated a significant increase in elevation, which is likely the result of the settlement plate being disturbed.

The strains at the other settlement plates were lower during this monthly measurement period compared to Settlement Plate 9A. The calculated strain at the other settlement plate locations was not substantially different from previous observations when considering the changes on a monthly basis.

Figure 18 shows the changes in elevation of select settlement plates over time. The data in Figure 18 are reported in days since the landfill was required to stop accepting waste.

³ Strain is defined as the change in elevation divided by the estimated waste depth.

⁴ The measured elevation for SP-9A is not consistent with previous measurements indicating potential disturbance of the settlement plate.

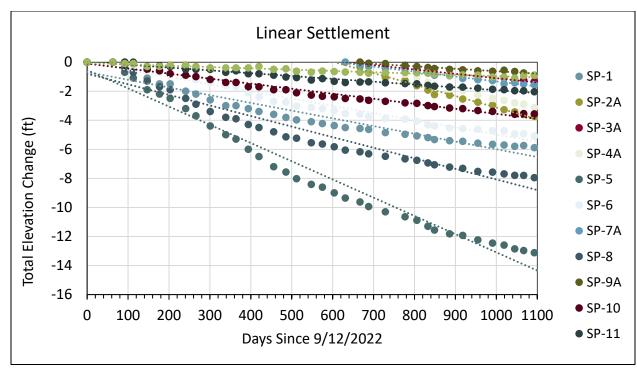


Figure 18. Elevation Change of Select Settlement Plates Over Time

The settlement plates will be surveyed again during November 2025. The elevations surveyed will be compared to the elevations surveyed the previous months.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City has taken steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below describe the steps taken by the City and future plans related to cover.

6.1 INTERMEDIATE COVER INSTALLATION

A summary of the intermediate cover installation can be found in the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill.

6.2 EVOH COVER SYSTEM DESIGN

An amendment to the Consent Decree was issued on March 21, 2024 which requires an ethylene vinyl alcohol (EVOH) deployment no later than December 1, 2026. The amended Consent Decree also requires regular settlement assessments, and the EVOH deployment may occur earlier if settlement rates appear acceptable. The first of these assessments was submitted to VDEQ on April 11, 2024. The most recent assessment was submitted on October 7, 2025. The next assessment will be submitted on or before January 8, 2026.

6.3 EVOH COVER SYSTEM PROCUREMENT

Information about the procurement of materials for the EVOH cover system can be found in the January 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

6.4 EVOH COVER SYSTEM INSTALLATION

As outlined in the amendment to the Consent Decree dated March 21, 2024, the deadline for EVOH Cover System installation has been extended. The City is conducting the assessments described in Section 6.2 to determine the appropriate time for installation.

7.0 STORMWATER MANAGEMENT

Information about the most recent stormwater management plans, basin location, plan implementation, long-term control, and stormwater monitoring for the SWP No. 588 Landfill can be found in the December 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit No. 588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

Refer to the December 2022 and March 2023 Monthly Compliance Reports for the SWP No. 588 Landfill for additional information about the development and implementation of the Monitoring, Maintenance, and Repair Plan.

8.3 MONTHLY COMPLIANCE REPORTS

As described in the introduction, this report is intended to provide comprehensive updates regarding progress towards completion of each item described in Appendix A of the Consent Decree between the City and VDEQ.

8.4 COMMUNITY OUTREACH PROGRAM

The City's consultant leading community outreach, McGuireWoods Consulting, prepared a summary of the actions taken as part of their community outreach efforts. For the month of October 2025, those actions include:

- Ongoing basis: Five (5) posts on each the BristolVALandfill.org site and the existing City of Bristol Landfill Notifications and Information page covering important updates including:
 - Progress updates related to remediation efforts and normal maintenance activities at the Quarry Landfill.
 - Updates at the Quarry Landfill included installation of a new permanent gas header; cleaning and repairing well heads in the gas extraction system; installation of a new

pump in a dual phase extraction well; cleaning, repairing, and replacing several pumps in the leachate extraction system; replaced old valve stations and added cleanouts to the force main piping to enhance the flow of leachate and condensate through the system and making routine maintenance easier; adding soil to areas affected by settlement; and the Virginia Department of Environmental Quality (DEQ) conducted a periodic inspection of the Bristol Integrated Solid Waste Management Facility, including the Quarry Landfill, and found no discrepancies.

- Weekly updates on landing page on Bristolvalandfill.org titled "Air Sampling and Air Monitoring" that includes a summary of the air sampling and monitoring being conducted by Bristol, VA around the quarry landfill.
 - Website now includes weekly air monitoring reports starting from May 15, 2023, and running through August 3, 2025. The site is experiencing issues with the air monitoring equipment that was previously in place and switching out various sensors along the property to ensure it is providing accurate readings. Once the new sensors are fully installed, additional reports will be posted as the they are received.
- E-mail communication sent to the list of members of the public signed up through the Bristol,
 VA website, the BristolVALandfill.org website, or at subsequent Open Houses to receive information via e-mail
 - E-mails sent included weekly remediation progress update and links to website updates and latest news articles.

Appendix A

Surface Emissions Monitoring Summary

Quarterly SEM

SCS performed the Third Quarter 2025 surface emissions monitoring event on August 28, 2025. The results of the Quarterly SEM were summarized in the August 2025 Compliance Report for the SWP No. 588 Landfill. A report outlining the results and exceedance locations will be included in the Semi-Annual report to be submitted to VDEO prior to March 1, 2026.

The Fourth Quarter 2025 SEM Event is scheduled to be completed by December 31, 2025.

Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, the monitoring in August generally conformed to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The SEM route included the waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at applicable surface cover penetrations within the waste footprint.

The Facility submitted letters to VDEQ describing the results of the October monitoring events on October 8, 2025; October 15, 2025; October 22, 2025; October 29, 2025; and, November 5, 2025. Copies of those letters are included in this Appendix.

The Facility continues to take proactive steps to limit fugitive surface emissions including dewatering activities, additional cover soil placement, and LFG system maintenance and tuning to increase gas extraction.

SCS ENGINEERS

October 8, 2025 File No. 02218208.04

Ms. Susan "Tracey" Blalock Air Compliance Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – October 2, 2025

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Ms. Blalock:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Management Facility located in Bristol, Virginia on October 2, 2025. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	166
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	66
Number of Exceedances	2
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	2

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	10/2/25 Event	10/2/25 Event Result	Comments
EW-76	7/15/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	7/23/25	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-49	8/7/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-60	8/11/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	8/11/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
TP-7	9/5/25	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-52	9/5/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-86	9/5/25	1-Month Retest	Passed	Exceedance Resolved
EW-87	9/5/25	1-Month Retest	Passed	Exceedance Resolved
EW-91	9/5/25	1-Month Retest	Passed	Exceedance Resolved
EW-57	9/12/25	N/A	Passed	Requires 1-Month Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

William J. Fabrie **Project Professional**

SCS Engineers

LSN/WJF

Randall Eads, City of Bristol cc: Jonathan Hayes, City of Bristol Laura Socia, City of Bristol

Encl. **Surface Emissions Monitoring Results**

Bristol SEM Route Drawing

Lucas S. Nachman Senior Project Professional SCS Engineers

Lucus D. Nachman

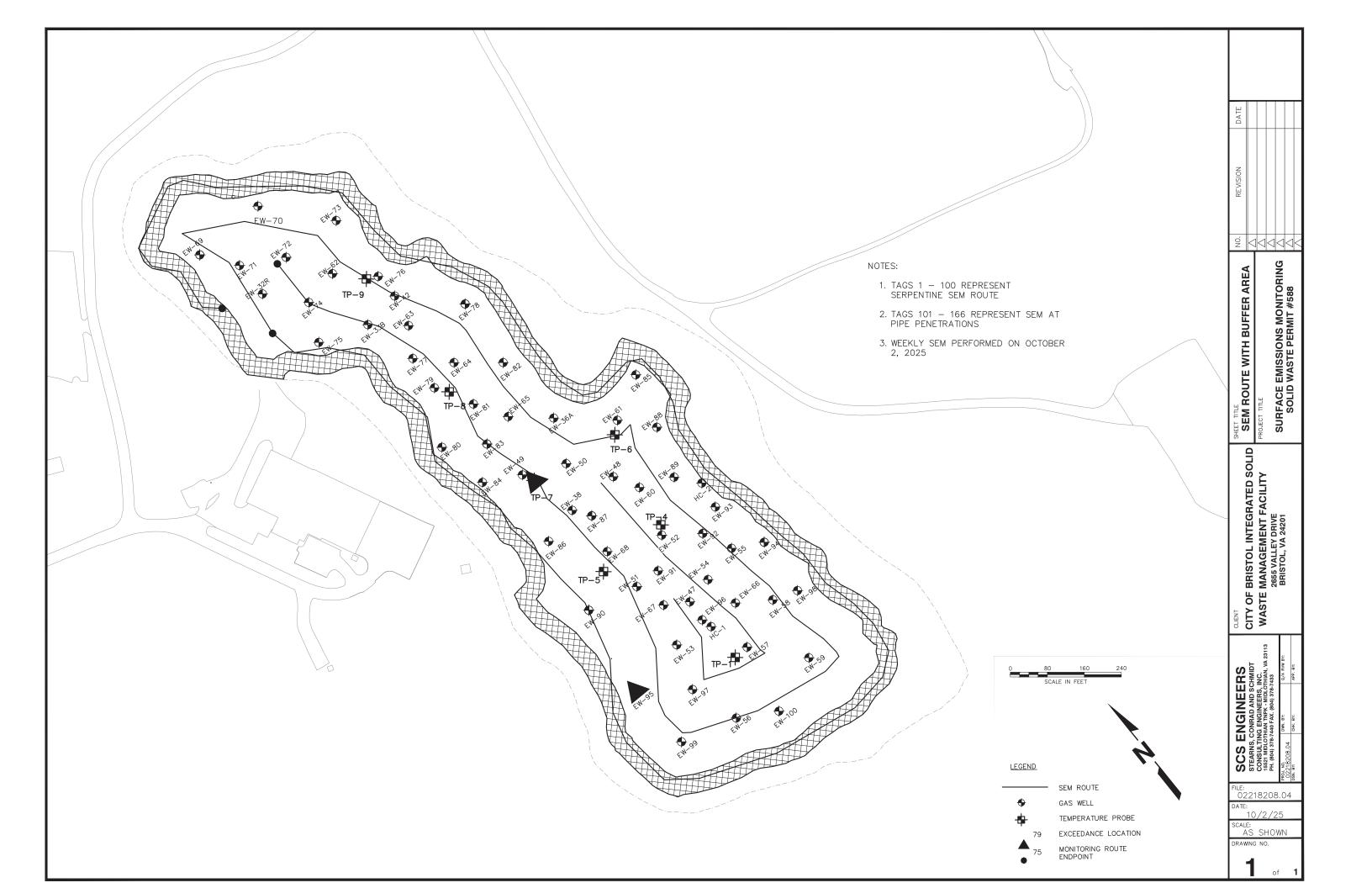
	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	1.7 PPM	OK			Start Serpentine Route
2	3.9 PPM	OK			
3	2.1 PPM	OK			
4	2.6 PPM	OK			
5	1.7 PPM	OK			
6	1.8 PPM	OK			
7	1.8 PPM	OK			
8	1.7 PPM	OK			
9	1.9 PPM	OK			
10	1.9 PPM	OK			
11	2.6 PPM	OK			
12	1.7 PPM	OK			
13	1.8 PPM	OK			
14	1.5 PPM	OK			
15	1.7 PPM	OK			
16	1.5 PPM	OK			
1 <i>7</i>	2.2 PPM	OK OK			
18		OK OK			
	3.0 PPM				
19	7.2 PPM	OK			
20	3.9 PPM	OK			
21	40.7 PPM	OK			
22	4.1 PPM	OK			
23	4.6 PPM	OK			
24	2.1 PPM	OK			
25	1.3 PPM	OK			
26	5.0 PPM	OK			
27	15.5 PPM	OK			
28	3.2 PPM	OK			
29	3.3 PPM	OK			
30	1.3 PPM	OK			
31	1.3 PPM	OK			
32	27.4 PPM	OK			
33	1.5 PPM	OK			
34	21.9 PPM	OK			
35	1.2 PPM	OK			
36	1.2 PPM	OK			
37	1.2 PPM	OK			
38	1.1 PPM	OK			
39	1.2 PPM	OK			
40	1.3 PPM	OK			
41	1.2 PPM	OK			
42	1.4 PPM	OK			
43	1.5 PPM	OK			
44	2.0 PPM	OK			
45	1.4 PPM	OK			
46	1.7 PPM	OK			
47	1.0 PPM	OK OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
48	1.3 PPM	OK			
49	2.0 PPM	OK			
50	4.8 PPM	OK			
51	1.9 PPM	OK			
52	1.8 PPM	OK			
53	1.3 PPM	OK			
54	0.9 PPM	OK			
55	89.0 PPM	OK			
56	1.4 PPM	OK			
57	1.0 PPM	OK			
58	1.0 PPM	OK			
59	1.1 PPM	OK			
60	1.3 PPM	OK			
61	1.9 PPM	OK			
62	4.4 PPM	OK			
63	9.8 PPM	OK			
64	1.4 PPM	OK			
65	1.5 PPM	OK			
66	1.2 PPM	OK			
67	1.8 PPM	OK			
68	2.9 PPM	OK			
69	3.5 PPM	OK			
70	12.4 PPM	OK			
<i>7</i> 1	1.9 PPM	OK			
72	1.2 PPM	OK			
73	1.5 PPM	OK			
74	5.2 PPM	OK			
75	77.0 PPM	OK			
76	5.2 PPM	OK			
<i>77</i>	2.0 PPM	OK			
78	1.3 PPM	OK			
79	1.2 PPM	OK			
80	2.9 PPM	OK			
81	4.7 PPM	OK			
82	4.8 PPM	OK			
83	1.7 PPM	OK			
84	2.2 PPM	OK			
85	3.0 PPM	OK			
86	2.6 PPM	OK			
87	1.7 PPM	OK			
88	1.7 PPM	OK			
89	2.1 PPM	OK			
90	1.4 PPM	OK			
91	9.3 PPM	OK			
92	1.2 PPM	OK			
93	5.2 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
94	34.7 PPM	OK			
95	45.0 PPM	OK			
96	1.4 PPM	OK			
97	2.0 PPM	OK			
98	1.5 PPM	OK			
99	1.1 PPM	OK			
100	1.1 PPM	OK			End Serpentine Route
101	208.0 PPM	OK			EW-52
102	12.1 PPM	OK			TP-4
103	89.8 PPM	OK			EW-60
104	10.8 PPM	OK			EW-48
105	6.9 PPM	OK			TP-6
106	2.3 PPM	OK			EW-61
107	0.8 PPM	OK			EW-50
108	13.4 PPM	OK			EW-67
109	1.7 PPM	OK			EW-47
110	1.0 PPM	OK			EW-54
111	1.4 PPM	OK			EW-55
112	10.0 PPM	OK			EW-92
113	2.2 PPM	OK			EW-91
114	0.8 PPM	OK			EW-96
115	0.9 PPM	OK			EW-66
116	5.4 PPM	OK			EW-58
11 <i>7</i>	3.2 PPM	OK			EW-57
118	0.8 PPM	OK			TP-1
119	48.7 PPM	OK			EW-59
120	1.3 PPM	OK			EW-100
121	3.2 PPM	OK			EW-56
122	0.9 PPM	OK			EW-97
123	0.9 PPM	OK			EW-53
124	1.4 PPM	OK			EW-51
125	1.0 PPM	OK			TP-5
126	1.3 PPM	OK			EW-68
127	17.5 PPM	OK			EW-87
128	1.4 PPM	OK			EW-38
129	644.0 PPM	HIGH_ALRM	36.59982	-82.14800	TP-7
130	1.0 PPM	OK			EW-49
131	0.9 PPM	OK			EW-83
132	1.7 PPM	OK			EW-65
133	1.0 PPM	OK			EW-81
134	1.4 PPM	OK			TP-8
135	1.5 PPM	OK			EW-64
136	1.4 PPM	OK			EW-63
1 <i>37</i>	1.9 PPM	OK			EW-42
138	8.3 PPM	OK			EW-76
139	6.2 PPM	OK			TP-9

	Methane	GPS Co	GPS Coordinates		
ID#	Concentration	Compliance	Lat.	Long.	Comments
140	0.9 PPM	ОК			EW-62
141	1.5 PPM	OK			EW-74
142	0.8 PPM	OK			EW-32R
143	0.9 PPM	OK			EW-69
144	2.0 PPM	OK			EW-71
145	1.2 PPM	OK			EW-72
146	0.8 PPM	OK			EW-70
147	1.0 PPM	OK			EW-73
148	8.8 PPM	OK			EW-78
149	1.0 PPM	OK			EW-82
150	2.7 PPM	OK			EW-36A
151	0.8 PPM	OK			EW-85
152	2.6 PPM	OK			EW-88
153	3.0 PPM	OK			EW-89
154	0.9 PPM	OK			EW-93
155	0.9 PPM	OK			EW-94
156	1.1 PPM	OK			EW-98
1 <i>57</i>	0.9 PPM	OK			EW-99
158	1455.0 PPM	HIGH_ALRM	36.59825	-82.14828	EW-95
159	77.5 PPM	OK			EW-90
160	8.0 PPM	OK			EW-86
161	0.8 PPM	OK			EW-84
162	0.9 PPM	OK			EW-80
163	1.2 PPM	OK			EW-79
164	1.0 PPM	OK			EW-77
165	1.8 PPM	OK			EW-33B
166	3.7 PPM	ОК			EW-75

Number of locations sampled: 166
Number of exceedance locations: 2


NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 166 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, 74°F Wind: 11 mph NE

Sampling Calib	ration: Meth	ane - 500 ppm	, Zero Air - 0.0) ppm
10/2/2025	10:59	ZERO	0.1	PPM
10/2/2025	11:04	SPAN	502.0	PPM
, ,				
Background Red	ading:			
10/2/2025	11:07	Upwind	1.1	PPM
10/2/2025	11:09	Downwind	2.1	PPM

SCS ENGINEERS

October 15, 2025 File No. 02218208.04

Ms. Susan "Tracey" Blalock Air Compliance Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – October 10, 2025

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Ms. Blalock:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Management Facility located in Bristol, Virginia on October 10, 2025. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	166
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	66
Number of Exceedances	2
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	2

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	10/10/25 Event	10/10/25 Event Result	Comments
EW-76	7/15/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	7/23/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-49	8/7/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-60	8/11/25	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	8/11/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
TP-7	9/5/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-52	9/5/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-57	9/12/25	1-Month Retest	Passed	Exceedance Resolved

If you have questions or require additional information, please contact either of the undersigned.

Lucus D. Nachman

Lucas S. Nachman

Sincerely,

William J. Fabrie **Project Professional SCS** Engineers

Senior Project Professional SCS Engineers

LSN/WJF

Randall Eads, City of Bristol cc: Jonathan Hayes, City of Bristol Laura Socia, City of Bristol

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	2.9 PPM	OK			Start Serpentine Route
2	2.3 PPM	OK			
3	5.0 PPM	OK			
4	2.0 PPM	OK			
5	2.4 PPM	OK			
6	2.8 PPM	OK			
7	2.8 PPM	OK			
8	3.1 PPM	OK			
9	2.8 PPM	OK			
10	2.7 PPM	OK			
11	2.6 PPM	OK			
12	2.7 PPM	OK			
13	3.1 PPM	OK			
14	3.0 PPM	OK			
15	2.8 PPM	OK			
16	2.8 PPM	OK			
17	2.5 PPM	OK			
18	2.5 PPM	OK			
19	2.3 PPM	OK			
20	4.7 PPM	OK			
21	10.6 PPM	OK			
22	4.2 PPM	OK			
23		OK OK			
23	3.1 PPM 4.9 PPM	OK OK			
25		OK OK			
26	5.7 PPM 4.0 PPM	OK OK			
27	111.0 PPM	OK			
28	7.3 PPM	OK			
29	5.3 PPM	OK			
30	8.0 PPM	OK			
31	5.1 PPM	OK			
32	7.5 PPM	OK			
33	49.3 PPM	OK			
34	160.0 PPM	OK			
35	221.0 PPM	OK			
36	14.8 PPM	OK			
37	2.2 PPM	OK			
38	18.9 PPM	OK			
39	195.0 PPM	OK			
40	54.6 PPM	OK			
41	9.3 PPM	OK			
42	6.8 PPM	OK			
43	6.7 PPM	OK			
44	4.5 PPM	OK			
45	2.0 PPM	OK			
46	1.8 PPM	OK			
47	1.6 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
48	1.6 PPM	OK			
49	11.7 PPM	OK			
50	6.3 PPM	OK			
51	3.6 PPM	OK			
52	5.6 PPM	OK			
53	2.0 PPM	OK			
54	2.0 PPM	OK			
55	2.2 PPM	OK			
56	4.5 PPM	OK			
57	4.1 PPM	OK			
58	4.0 PPM	OK			
59	103.0 PPM	OK			
60	161.0 PPM	OK			
61	3.4 PPM	OK			
62	1.8 PPM	OK			
63	2.7 PPM	OK			
64	2.9 PPM	OK			
65	2.1 PPM	OK			
66	2.4 PPM	OK			
67	5.9 PPM	OK			
68	5.3 PPM	OK			
69	9.1 PPM	OK			
70	27.1 PPM	OK			
<i>7</i> 1	13.1 PPM	OK			
72	11.0 PPM	OK			
73	4.3 PPM	OK			
74	18.6 PPM	OK			
75	37.0 PPM	OK			
76	17.6 PPM	OK			
77	123.0 PPM	OK			
78	5.1 PPM	OK			
79	5.9 PPM	OK			
80	2.6 PPM	OK			
81	37.5 PPM	OK			
82	4.8 PPM	OK			
83	6.5 PPM	OK			
84	3.7 PPM	OK			
85	2.0 PPM	OK			
86	1.6 PPM	OK			
87	1.5 PPM	OK			
88	1.9 PPM	OK			
89	4.4 PPM	OK			
90	3.2 PPM	OK			
91	11.8 PPM	OK			
92	2.9 PPM	OK			
93	13.8 PPM	OK			

	Methane	ane GPS Coordinates					
ID#	Concentration	Compliance	Lat.	Long.	Comments		
94	39.8 PPM	OK					
95	10.6 PPM	OK					
96	3.3 PPM	OK					
97	2.7 PPM	OK					
98	12.3 PPM	OK					
99	2.0 PPM	OK					
100	6.2 PPM	OK			End Serpentine Route		
101	57.1 PPM	OK			EW-52		
102	66.0 PPM	OK			TP-4		
103	771.0 PPM	HIGH_ALRM	36.59926	-82.14744	EW-60		
104	13.7 PPM	OK			EW-48		
105	21.1 PPM	OK			TP-6		
106	7.5 PPM	OK			EW-61		
107	9.8 PPM	OK			EW-50		
108	2.9 PPM	OK			EW-67		
109	1.4 PPM	OK			EW-47		
110	3.5 PPM	OK			EW-54		
111	7.8 PPM	OK			EW-55		
112	37.9 PPM	OK			EW-92		
113	82.1 PPM	OK			EW-91		
114	2.8 PPM	OK			EW-96		
115	4.1 PPM	OK			EW-66		
116	202.0 PPM	OK			EW-58		
117	13.6 PPM	OK			EW-57		
118	1.9 PPM	OK			TP-1		
119	6.1 PPM	OK			EW-59		
120	22.6 PPM	OK			EW-100		
121	10.0 PPM	OK			EW-56		
122	3.6 PPM	OK			EW-97		
123	247.0 PPM	OK			EW-53		
124	1.5 PPM	OK			EW-51		
125	2.4 PPM	OK			TP-5		
126	0.9 PPM	OK			EW-68		
127	5.0 PPM	OK			EW-87		
128	1.1 PPM	OK			EW-38		
129	129.0 PPM	OK			TP-7		
130	1.1 PPM	OK			EW-49		
131	1.0 PPM	OK OK			EW-83		
132	36.7 PPM	OK OK			EW-65		
133	234.0 PPM	OK OK			EW-81		
134	1.0 PPM	OK OK			TP-8		
135	88.2 PPM	OK OK			EW-64		
136	1.8 PPM	OK OK			EW-63		
137	3.8 PPM	OK OK			EW-42		
138	4.8 PPM	OK OK			EW-76		
139	1.6 PPM	OK OK			TP-9		

140 141 142 143 144	1.4 PPM 1.7 PPM	Compliance	Lat.	Long.	Comments
141 142 143 144	1.7 PPM				
142 143 144					EW-62
143 144	1.0.0044	OK			EW-74
144	1.0 PPM	OK			EW-32R
	0.9 PPM	OK			EW-69
2.45	0.8 PPM	OK			EW-71
145	0.8 PPM	OK			EW-72
146	0.7 PPM	OK			EW-70
147	1.7 PPM	OK			EW-73
148	1.7 PPM	OK			EW-78
149	1.3 PPM	OK			EW-82
150	3.4 PPM	OK			EW-36A
151	2.8 PPM	OK			EW-85
152	22.5 PPM	OK			EW-88
153	6.5 PPM	OK			EW-89
154	1.5 PPM	OK			EW-93
155	15.3 PPM	OK			EW-94
156	238.0 PPM	OK			EW-98
1 <i>57</i>	173.0 PPM	OK			EW-99
158	63.8 PPM	OK			EW-95
159	11.0 PPM	OK			EW-90
160	560.0 PPM	HIGH_ALRM	36.59926	-82.14824	EW-86
161	20.6 PPM	OK			EW-84
162	1.7 PPM	OK			EW-80
163	1.5 PPM	OK			EW-79
164	1.5 PPM	OK			EW-77
165	1.6 PPM	OK			EW-33B
166	10.3 PPM	OK			EW-75

NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 166 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, 72°F Wind: 8 mph NE

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm						
10/10/2025	10:44	ZERO	0.2	PPM		
10/10/2025	10:45	SPAN	503.0	PPM		

Background Reading:

10/10/2025	10:50	Upwind	1.9	PPM
10/10/2025	10:53	Downwind	2.1	PPM

SCS ENGINEERS

October 22, 2025 File No. 02218208.04

Ms. Susan "Tracey" Blalock Air Compliance Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – October 14, 2025

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Ms. Blalock:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Management Facility located in Bristol, Virginia on October 14, 2025. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	166
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	66
Number of Exceedances	1
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	1

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	10/14/25 Event	10/14/25 Event Result	Comments
EW-76	7/15/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	7/23/25	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-49	8/7/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-60	8/11/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	8/11/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
TP-7	9/5/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-52	9/5/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-86	10/10/25	10-Day Retest	Passed	Requires 1-Month Retest

If you have questions or require additional information, please contact either of the undersigned.

Lucus D. Nachman

Lucas S. Nachman

SCS Engineers

Senior Project Professional

Sincerely,

William J. Fabrie Project Professional SCS Engineers

LSN/WJF

cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol

Encl. Surface Emissions Monitoring Results

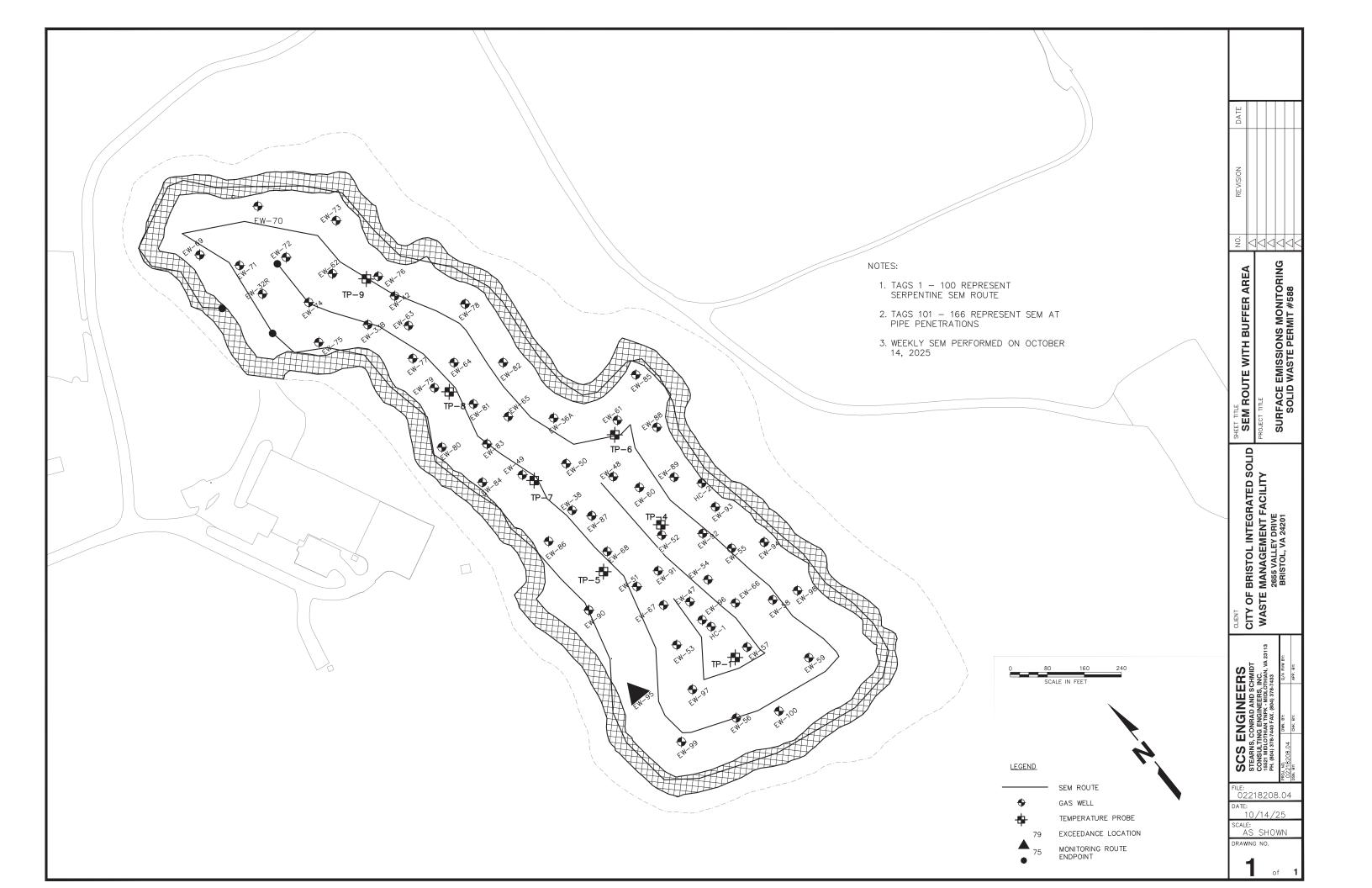
Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	1.9 PPM	OK			Start Serpentine Route
2	2.1 PPM	OK			
3	1.6 PPM	OK			
4	2.4 PPM	OK			
5	1.5 PPM	OK			
6	1.4 PPM	OK			
7	1.5 PPM	OK			
8	1.4 PPM	OK			
9	1.4 PPM	OK			
10	1.5 PPM	OK			
11	1.4 PPM	OK			
12	1.3 PPM	OK			
13	1.3 PPM	OK			
14	1.7 PPM	OK			
15	1.7 PPM	OK			
16	1.5 PPM	OK			
17	16.4 PPM	OK			
18	8.6 PPM	OK			
19	1.7 PPM	OK			
20	1.3 PPM	OK OK			
21	1.2 PPM	OK OK			
22					
	6.7 PPM	OK			
23	3.3 PPM	OK			
24	1.1 PPM	OK			
25	1.5 PPM	OK			
26	20.4 PPM	OK			
27	2.1 PPM	OK			
28	1.7 PPM	OK			
29	8.3 PPM	OK			
30	2.0 PPM	OK			
31	1.1 PPM	OK			
32	2.7 PPM	OK			
33	7.1 PPM	OK			
34	18.8 PPM	OK			
35	46.0 PPM	OK			
36	6.9 PPM	OK			
37	6.8 PPM	OK			
38	9.3 PPM	OK			
39	5.9 PPM	OK			
40	13.3 PPM	OK			
41	11.8 PPM	OK			
42	1.7 PPM	OK			
43	1.7 PPM	OK			
44	1.2 PPM	OK			
45	1.4 PPM	OK			
46	1.0 PPM	OK			
47	0.9 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
48	1.5 PPM	OK			
49	3.5 PPM	OK			
50	0.9 PPM	OK			
51	0.8 PPM	OK			
52	0.8 PPM	OK			
53	1.4 PPM	OK			
54	0.7 PPM	OK			
55	0.7 PPM	OK			
56	1.5 PPM	OK			
57	31.4 PPM	OK			
58	0.8 PPM	OK			
59	0.8 PPM	OK			
60	1.2 PPM	OK			
61	0.9 PPM	OK			
62	10.7 PPM	OK			
63	2.3 PPM	OK			
64	1.9 PPM	OK			
65	0.7 PPM	OK			
66	1.5 PPM	OK			
67	1.6 PPM	OK			
68	1.3 PPM	OK			
69	10.6 PPM	OK			
70	1.1 PPM	OK			
<i>7</i> 1	2.3 PPM	OK			
72	1.0 PPM	OK			
73	3.8 PPM	OK			
74	4.7 PPM	OK			
75	12.0 PPM	OK			
<i>7</i> 6	23.6 PPM	OK			
77	4.5 PPM	OK			
78	1.0 PPM	OK			
79	0.9 PPM	OK			
80	3.3 PPM	OK			
81	1.1 PPM	OK			
82	2.3 PPM	OK			
83	6.5 PPM	OK			
84	2.6 PPM	OK			
85	1.4 PPM	OK			
86	1.2 PPM	OK			
87	1.2 PPM	OK			
88	0.8 PPM	OK			
89	0.6 PPM	OK			
90	1.6 PPM	OK			
91	51.2 PPM	OK			
92	1.3 PPM	OK			
93	5.1 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
94	17.3 PPM	OK			
95	6.4 PPM	OK			
96	0.8 PPM	OK			
97	3.9 PPM	OK			
98	16.8 PPM	OK			
99	1.3 PPM	OK			
100	1.5 PPM	OK			End Serpentine Route
101	62.3 PPM	OK			EW-52
102	12.8 PPM	OK			TP-4
103	58.8 PPM	OK			EW-60
104	10.5 PPM	OK			EW-48
105	12.0 PPM	OK			TP-6
106	1.3 PPM	OK			EW-61
107	1.6 PPM	OK			EW-50
108	276.0 PPM	OK			EW-67
109	0.6 PPM	OK			EW-47
110	0.5 PPM	OK			EW-54
111	1.0 PPM	OK			EW-55
112	20.6 PPM	OK			EW-92
113	103.0 PPM	OK			EW-91
114	1.7 PPM	OK			EW-96
115	6.3 PPM	OK			EW-66
116	36.5 PPM	OK			EW-58
117	12.7 PPM	OK			EW-57
118	2.1 PPM	OK			TP-1
119	1.6 PPM	OK			EW-59
120	25.3 PPM	OK			EW-100
121	7.0 PPM	OK			EW-56
122	0.8 PPM	OK			EW-97
123	2.5 PPM	OK			EW-53
124	3.3 PPM	OK			EW-51
125	0.6 PPM	OK			TP-5
126	0.9 PPM	OK			EW-68
127	0.8 PPM	OK			EW-87
128	1.3 PPM	OK			EW-38
129	23.0 PPM	OK			TP-7
130	0.3 PPM	OK OK			EW-49
					EW-83
131 132	1.5 PPM 0.4 PPM	OK OK			EW-65
133	0.1 PPM	OK OK			EW-81
134	0.1 PPM 0.1 PPM	OK OK			TP-8
135		OK OK			EW-64
136	0.6 PPM 0.1 PPM	OK OK			EW-63
137	0.1 PPM 0.2 PPM	OK OK			EW-42
138	32.2 PPM	OK OK			EW-76
139	110.0 PPM	OK OK			TP-9

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
140	0.1 PPM	ОК			EW-62
141	0.1 PPM	OK			EW-74
142	0.1 PPM	OK			EW-32R
143	0.1 PPM	OK			EW-69
144	0.1 PPM	OK			EW-71
145	0.1 PPM	OK			EW-72
146	0.2 PPM	OK			EW-70
147	0.2 PPM	OK			EW-73
148	0.2 PPM	OK			EW-78
149	100.0 PPM	OK			EW-82
150	0.3 PPM	OK			EW-36A
151	1.7 PPM	OK			EW-85
152	1.0 PPM	OK			EW-88
153	6.0 PPM	OK			EW-89
154	0.8 PPM	OK			EW-93
155	3.9 PPM	OK			EW-94
156	0.5 PPM	OK			EW-98
1 <i>57</i>	0.0 PPM	OK			EW-99
158	635.0 PPM	HIGH_ALRM	36.59801	-82.14821	EW-95
159	22.4 PPM	OK			EW-90
160	86.8 PPM	OK			EW-86
161	0.4 PPM	OK			EW-84
162	0.0 PPM	OK			EW-80
163	0.1 PPM	OK			EW-79
164	0.0 PPM	OK			EW-77
165	43.5 PPM	OK			EW-33B
166	30.9 PPM	OK			EW-75
	N. 1		144		
	Number of loc	ations sampled:	166 1		


NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 166 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, $64^{\circ}F$ Wind: 4mph N

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm							
10/14/2025	10:39	ZERO	0.1	PPM			
10/14/2025	10:40	SPAN	503.0	PPM			
Background Reading:							
10/10/2025	10:48	Upwind	1 <i>.7</i>	PPM			
10/10/2025	10:54	Downwind	2.4	PPM			

SCS ENGINEERS

October 29, 2025 File No. 02218208.04

Ms. Susan "Tracey" Blalock Air Compliance Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – October 23, 2025

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Ms. Blalock:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Management Facility located in Bristol, Virginia on October 23, 2025. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	166
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	66
Number of Exceedances	6
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	6

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	10/23/25 Event	10/23/25 Event Result	Comments
EW-76	7/15/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	7/23/25	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-49	8/7/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-60	8/11/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	8/11/25	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
TP-7	9/5/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-52	9/5/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-86	10/10/25	N/A	Failed	Requires Second 10-Day Retest

If you have questions or require additional information, please contact either of the undersigned.

Lucus D. Nachman

Lucas S. Nachman

SCS Engineers

Senior Project Professional

Sincerely,

William J. Fabrie Project Professional SCS Engineers

LSN/WJF

cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol

Encl. Surface Emissions Monitoring Results

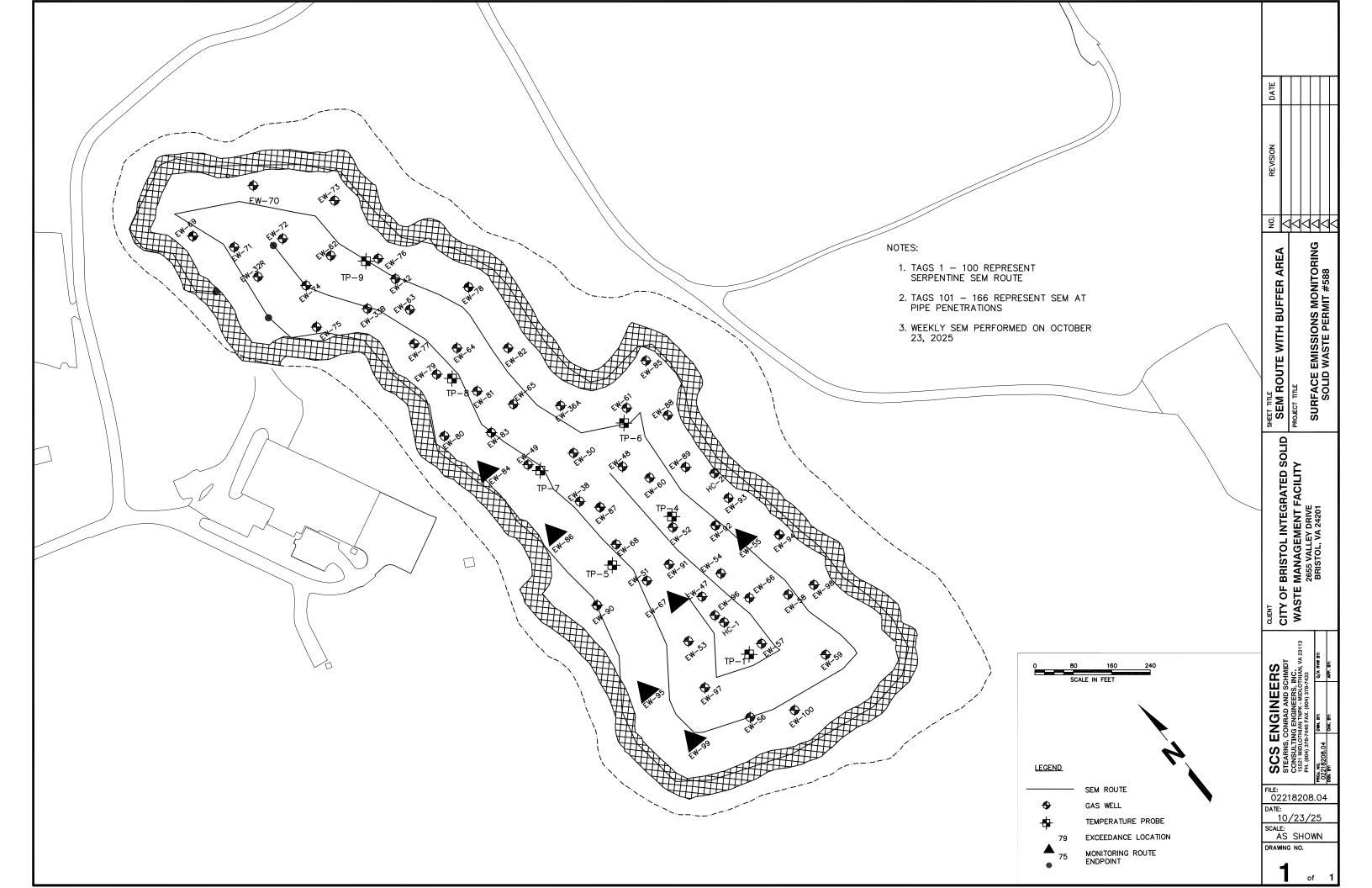
Bristol SEM Route Drawing

	Methane		GPS Coordinates		
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	2.2 PPM	OK			Start Serpentine Route
2	2.1 PPM	OK			
3	2.2 PPM	OK			
4	2.1 PPM	OK			
5	2.2 PPM	OK			
6	2.1 PPM	OK			
7	2.1 PPM	OK			
8	2.2 PPM	OK			
9	2.2 PPM	OK			
10	2.1 PPM	OK			
11	2.2 PPM	OK			
12	2.2 PPM	OK			
13	2.1 PPM	OK			
14	2.6 PPM	OK			
15	2.1 PPM	OK			
16	2.2 PPM	OK			
1 <i>7</i>	2.6 PPM	OK			
18	2.2 PPM	OK			
19	3.1 PPM	OK			
20	3.9 PPM	OK			
21	4.2 PPM	OK			
22	3.2 PPM	OK			
23	3.6 PPM	OK			
24	3.8 PPM	OK			
25	9.9 PPM	OK			
26	41.9 PPM	OK			
27	4.8 PPM	OK			
28	28.4 PPM	OK			
29	21.2 PPM	OK			
30	25.1 PPM	OK			
31	3.0 PPM	OK			
32	8.7 PPM	OK			
33	7.3 PPM	OK			
34	9.2 PPM	OK			
35	59.0 PPM	OK			
36	131.0 PPM	OK			
37	417.0 PPM	OK			
38	51.6 PPM	OK			
39	238.0 PPM	OK			
40	22.4 PPM	OK			
41	31.8 PPM	OK			
42	23.6 PPM	OK			
43	4.6 PPM	OK			
44	5.3 PPM	OK			
45	4.9 PPM	OK			
46	4.4 PPM	OK			

	Methane GPS Coordinates				
ID#	Concentration	Compliance	Lat.	Long.	Comments
48	3.4 PPM	OK			
49	2.8 PPM	OK			
50	4.2 PPM	OK			
51	3.2 PPM	OK			
52	3.0 PPM	OK			
53	2.5 PPM	OK			
54	2.0 PPM	OK			
55	2.0 PPM	OK			
56	2.0 PPM	OK			
57	1.9 PPM	OK			
58	1.9 PPM	OK			
59	2.0 PPM	OK			
60	2.0 PPM	OK			
61	2.6 PPM	OK			
62	81.6 PPM	OK			
63	10.7 PPM	OK			
64	3.1 PPM	OK			
65	2.1 PPM	OK			
66	2.1 PPM	OK			
67	2.0 PPM	OK			
68	2.1 PPM	OK			
69	2.2 PPM	OK			
70	15.0 PPM	OK			
<i>7</i> 1	11.5 PPM	OK			
72	137.0 PPM	OK			
73	5.3 PPM	OK			
74	5.3 PPM	OK			
75	95.1 PPM	OK			
76	7.3 PPM	OK			
77	21.8 PPM	OK			
<i>7</i> 8	59.7 PPM	OK			
79	18.4 PPM	OK			
80	42.2 PPM	OK			
81	217.0 PPM	OK			
82	12.8 PPM	OK			
83	10.1 PPM	OK			
84	12.1 PPM	OK			
85	18.7 PPM	OK			
86	5.9 PPM	OK			
87	4.0 PPM	OK			
88	2.4 PPM	OK			
89	7.3 PPM	OK			
90	2.1 PPM	OK			
91	4.0 PPM	OK			
92	5.1 PPM	OK			
93	11.2 PPM	OK			

	M	ethane		GPS Coordinates		
ID#	Cond	entration	Compliance	Lat.	Long.	Comments
94	17.	0 PPM	OK			
95		O PPM	OK			
96		8 PPM	OK			
97	56.	4 PPM	OK			
98	154.	O PPM	OK			
99	10.	1 PPM	OK			
100	9.	1 PPM	OK			End Serpentine Route
101	67.	6 PPM	OK			EW-52
102	35.	O PPM	OK			TP-4
103	350.	O PPM	OK			EW-60
104		6 PPM	OK			EW-48
105		5 PPM	OK			TP-6
106		9 PPM	OK			EW-61
107		9 PPM	OK			EW-50
108	1012.	O PPM	HIGH_ALRM	36.59908	-82.14747	EW-67
109	18.	5 PPM	OK			EW-47
110	47.	6 PPM	OK			EW-54
111	1314.	O PPM	HIGH_ALRM	36.59869	-82.14725	EW-55
112		1 PPM	OK			EW-92
113		O PPM	OK			EW-91
114		O PPM	OK			EW-96
115	40.	1 PPM	OK			EW-66
116		O PPM	OK			EW-58
11 <i>7</i>		1 PPM	OK			EW-57
118	6.	5 PPM	OK			TP-1
119	4.	5 PPM	OK			EW-59
120		3 PPM	OK			EW-100
121		O PPM	OK			EW-56
122	63.	O PPM	OK			EW-97
123	97.	9 PPM	OK			EW-53
124		3 PPM	OK			EW-51
125		8 PPM	OK			TP-5
126		3 PPM	OK			EW-68
127		O PPM	OK			EW-87
128		O PPM	OK			EW-38
129		O PPM	OK			TP-7
130		5 PPM	OK			EW-49
131		9 PPM	OK			EW-83
132		O PPM	OK			EW-65
133		5 PPM	OK			EW-81
134		7 PPM	OK			TP-8
135		O PPM	OK			EW-64
136		1 PPM	OK			EW-63
137		5 PPM	OK			EW-42
138		5 PPM	OK			EW-76
139		6 PPM	OK			TP-9

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comment
140	2.8 PPM	ОК			EW-62
141	1.5 PPM	OK			EW-74
142	1.4 PPM	OK			EW-32R
143	1.5 PPM	OK			EW-69
144	1.4 PPM	OK			EW-71
145	1.4 PPM	OK			EW-72
146	1.5 PPM	OK			EW-70
147	1.4 PPM	OK			EW-73
148	1.6 PPM	OK			EW-78
149	71.2 PPM	OK			EW-82
150	2.8 PPM	OK			EW-36A
151	5.2 PPM	OK			EW-85
152	2.4 PPM	OK			EW-88
153	14.3 PPM	OK			EW-89
154	3.3 PPM	OK			EW-93
155	8.8 PPM	OK			EW-94
156	2.4 PPM	OK			EW-98
1 <i>57</i>	1038.0 PPM	HIGH_ALRM	36.59796	-82.14821	EW-99
158	1150.0 PPM	HIGH_ALRM	36.59801	-82.14821	EW-95
159	3.5 PPM	OK			EW-90
160	1305.0 PPM	HIGH_ALRM	36.59926	-82.14815	EW-86
161	975.0 PPM	HIGH_ALRM	36.59995	-82.14832	EW-84
162	2.3 PPM	OK			EW-80
163	348.0 PPM	OK			EW-79
164	2.4 PPM	OK			EW-77
165	29.8 PPM	OK			EW-33B
166	1.4 PPM	OK			EW-75
			1//		
	Number of locations sampled:		166		
	Number of exceed	dance locations:	6		


NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 166 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, 57°F Wind: 10mph SW

Sampling Calibr	ation: Meth	nane - 500 ppm	, Zero Air - 0.0) ppm				
10/23/2025	11:08	ZERO	0.4	PPM				
10/23/2025	11:11	SPAN	502.0	PPM				
Background Reading:								
10/23/2025	11:16	Upwind	2.3	PPM				
10/23/2025	11:22	Downwind	2.2	PPM				

SCS ENGINEERS

November 5, 2025 File No. 02218208.04

Ms. Susan "Tracey" Blalock Air Compliance Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – October 30, 2025

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Ms. Blalock:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Management Facility located in Bristol, Virginia on October 30, 2025. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	166
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	66
Number of Exceedances	5
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	5

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	10/30/25 Event	10/30/25 Event Result	Comments
EW-76	7/15/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	7/23/25	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-49	8/7/25	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-60	8/11/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	8/11/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
TP-7	9/5/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-52	9/5/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-86	10/10/25	2 nd 10-Day Retest	Passed	Requires 1-Month Retest
EW-55	10/23/25	10-Day Retest	Passed	Requires 1-Month Retest
EW-84	10/23/25	10-Day Retest	Failed	Requires 2 nd 10-Day Retest
EW-99	10/23/25	10-Day Retest	Passed	Requires 1-Month Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

William J. Fabrie **Project Professional**

SCS Engineers

Lucas S. Nachman Senior Project Professional SCS Engineers

Lucus D. Nachman

LSN/WJF

Randall Eads, City of Bristol cc:

> Jonathan Hayes, City of Bristol Laura Socia, City of Bristol

Encl. **Surface Emissions Monitoring Results**

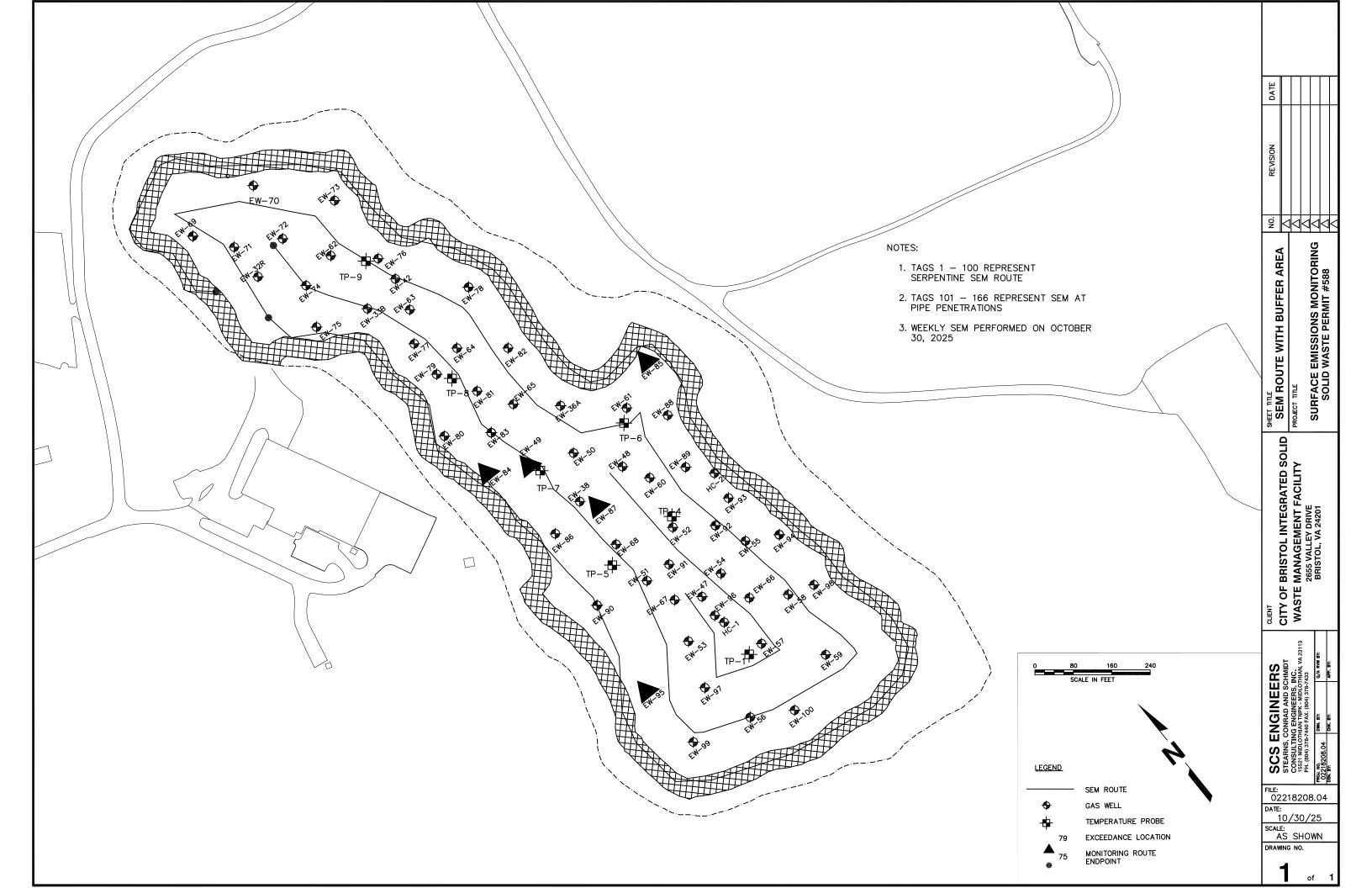
Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	1.8 PPM	OK			Start Serpentine Route
2	1.8 PPM	OK			
3	2.1 PPM	OK			
4	2.3 PPM	OK			
5	2.1 PPM	OK			
6	2.1 PPM	OK			
7	2.3 PPM	OK			
8	2.3 PPM	OK			
9	2.1 PPM	OK			
10	2.1 PPM	OK			
11	2.4 PPM	OK			
12	2.1 PPM	OK			
13	1.9 PPM	OK			
14	1.9 PPM	OK			
15	1.9 PPM	OK			
16	1.8 PPM	OK			
17	1.8 PPM	OK OK			
18	1.8 PPM	OK			
19	1.8 PPM	OK OK			
20	3.7 PPM	OK OK			
21	3.5 PPM	OK OK			
22		OK OK			
23	5.0 PPM				
	4.5 PPM	OK			
24	5.4 PPM	OK			
25	7.3 PPM	OK			
26	10.3 PPM	OK			
27	4.8 PPM	OK			
28	10.9 PPM	OK			
29	9.8 PPM	OK			
30	2.7 PPM	OK			
31	6.5 PPM	OK			
32	3.2 PPM	OK			
33	3.6 PPM	OK			
34	5.5 PPM	OK			
35	37.7 PPM	OK			
36	8.4 PPM	OK			
37	7.7 PPM	OK			
38	13.2 PPM	OK			
39	13.0 PPM	OK			
40	13.9 PPM	OK			
41	194.0 PPM	OK			
42	28.0 PPM	OK			
43	42.5 PPM	OK			
44	18.1 PPM	OK			
45	30.3 PPM	OK			
46	7.6 PPM	OK			
47	31.2 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
48	217.0 PPM	OK			
49	174.0 PPM	OK			
50	7.2 PPM	OK			
51	5.7 PPM	OK			
52	4.9 PPM	OK			
53	4.6 PPM	OK			
54	5.3 PPM	OK			
55	3.2 PPM	OK			
56	2.9 PPM	OK			
57	2.2 PPM	OK			
58	3.0 PPM	OK			
59	2.6 PPM	OK			
60	2.7 PPM	OK			
61	4.8 PPM	OK			
62	3.9 PPM	OK			
63	4.5 PPM	OK			
64	5.8 PPM	OK			
65	2.9 PPM	OK			
66	2.6 PPM	OK			
67	2.5 PPM	OK			
68	2.2 PPM	OK			
69	2.2 PPM	OK			
70	2.5 PPM	OK			
<i>7</i> 1	1.9 PPM	OK			
72	20.3 PPM	OK			
73	57.6 PPM	OK			
74	21.5 PPM	OK			
75	3.1 PPM	OK			
76	2.8 PPM	OK			
77	2.2 PPM	OK			
78	2.5 PPM	OK			
79	2.4 PPM	OK			
80	6.3 PPM	OK			
81	19.5 PPM	OK			
82	6.4 PPM	OK			
83	3.7 PPM	OK			
84	3.2 PPM	OK			
85	23.3 PPM	OK			
86	21.9 PPM	OK			
87	3.5 PPM	OK			
88	4.2 PPM	OK			
89	61.1 PPM	OK			
90	29.9 PPM	OK			
91	5.0 PPM	OK			
92	5.0 PPM	OK			
93	5.7 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
94	4.7 PPM	OK			
95	28.7 PPM	OK			
96	4.2 PPM	OK			
97	149.0 PPM	OK			
98	5.7 PPM	OK			
99	7.4 PPM	OK			
100	24.6 PPM	OK			End Serpentine Route
101	112.0 PPM	OK			EW-52
102	10.3 PPM	OK			TP-4
103	106.0 PPM	OK			EW-60
104	52.0 PPM	OK			EW-48
105	5.8 PPM	OK			TP-6
106	108.0 PPM	OK			EW-61
107	5.0 PPM	OK			EW-50
108	393.0 PPM	OK			EW-67
109	5.6 PPM	OK			EW-47
110	74.4 PPM	OK			EW-54
111	26.3 PPM	OK			EW-55
112	35.3 PPM	OK			EW-92
113	22.0 PPM	OK			EW-91
114	11.4 PPM	OK			EW-96
115	20.1 PPM	OK			EW-66
116	51.1 PPM	OK			EW-58
11 <i>7</i>	129.0 PPM	OK			EW-57
118	60.7 PPM	OK			TP-1
119	4.7 PPM	OK			EW-59
120	9.7 PPM	OK			EW-100
121	3.6 PPM	OK			EW-56
122	5.5 PPM	OK			EW-97
123	89.7 PPM	OK			EW-53
124	5.5 PPM	OK			EW-51
125	271.0 PPM	OK			TP-5
126	113.0 PPM	OK			EW-68
127	602.0 PPM	HIGH_ALRM	36.59981	-82.14767	EW-87
128	8.2 PPM	OK			EW-38
129	106.0 PPM	OK			TP-7
130	646.0 PPM	HIGH_ALRM	36.59979	-82.14803	EW-49
131	175.0 PPM	OK			EW-83
132	36.7 PPM	OK			EW-65
133	7.3 PPM	OK			EW-81
134	175.0 PPM	OK			TP-8
135	3.0 PPM	OK			EW-64
136	1.6 PPM	OK			EW-63
137	1.4 PPM	OK			EW-42
138	3.4 PPM	OK			EW-76
139	1.7 PPM	OK			TP-9

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
140	5.5 PPM	OK			EW-62
141	2.1 PPM	OK			EW-74
142	1.9 PPM	OK			EW-32R
143	1.3 PPM	OK			EW-69
144	1.7 PPM	OK			EW-71
145	1.8 PPM	OK			EW-72
146	2.1 PPM	OK			EW-70
147	1.8 PPM	OK			EW-73
148	1.8 PPM	OK			EW-78
149	101.0 PPM	OK			EW-82
150	4.7 PPM	OK			EW-36A
151	3211.0 PPM	HIGH_ALRM	36.59997	-82.1472	EW-85
152	249.0 PPM	OK			EW-88
153	7.4 PPM	OK			EW-89
154	5.7 PPM	OK			EW-93
155	3.0 PPM	OK			EW-94
156	4.3 PPM	OK			EW-98
1 <i>57</i>	102.0 PPM	OK			EW-99
158	3549.0 PPM	HIGH_ALRM	36.59801	-82.14821	EW-95
159	8.7 PPM	OK			EW-90
160	70.5 PPM	OK			EW-86
161	1534.0 PPM	HIGH_ALRM	36.59995	-82.14832	EW-84
162	71.7 PPM	OK			EW-80
163	6.6 PPM	OK			EW-79
164	4.8 PPM	OK			EW-77
165	3.1 PPM	OK			EW-33B
166	4.9 PPM	OK			EW-75
	Number of loc	ations sampled:	166 5		


NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 166 represent SEM at Pipe Penetrations

Weather Conditions: Overcast, 49°F Wind: 11mph SW

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm						
10/30/2025	10:43	ZERO	0.1	PPM		
10/30/2025	10:45	SPAN	503.0	PPM		
Background Reading:						
10/30/2025	10:46	Upwind	2.4	PPM		
10/30/2025	10:49	Downwind	1.9	PPM		

Appendix B

In-Waste Temperatures on Select Days in October

Appendix B Figures

Figure B - 1 Average Temperatures Recorded by TP-1 on October 1, 2025	B-3
Figure B - 2 Average Temperatures Recorded by TP-1 on October 8, 2025	B-3
Figure B - 3 Average Temperatures Recorded by TP-1 on October 15, 2025	B-4
Figure B - 4 Average Temperatures Recorded by TP-1 on October 22, 2025	B-4
Figure B - 5 Average Temperatures Recorded by TP-1 on October 29, 2025	B-5
Figure B - 6 Average Temperatures Recorded by TP-5 on October 1, 2025	B-6
Figure B - 7 Average Temperatures Recorded by TP-5 on October 8, 2025	B-6
Figure B - 8 Average Temperatures Recorded by TP-5 on October 15, 2025	B-7
Figure B - 9 Average Temperatures Recorded by TP-5 on October 22, 2025	B-7
Figure B - 10 Average Temperatures Recorded by TP-5 on October 29, 2025	B-8
Figure B - 11 Average Temperatures Recorded by TP-6 on October 1, 2025	B-9
Figure B - 12 Average Temperatures Recorded by TP-6 on October 8, 2025	B-9
Figure B - 13 Average Temperatures Recorded by TP-6 on October 15, 2025	B-10
Figure B - 14 Average Temperatures Recorded by TP-6 on October 22, 2025	B-10
Figure B - 15 Average Temperatures Recorded by TP-6 on October 29, 2025	B-11
Figure B - 16 Average Temperatures Recorded by TP-7 on October 1, 2025	B-12
Figure B - 17 Average Temperatures Recorded by TP-7 on October 8, 2025	
Figure B - 18 Average Temperatures Recorded by TP-7 on October 15, 2025	
Figure B - 19 Average Temperatures Recorded by TP-7 on October 22, 2025	B-13
Figure B - 20 Average Temperatures Recorded by TP-7 on October 29, 2025	B-14
Figure B - 21 Average Temperatures Recorded by TP-8 on October 1, 2025	B-15
Figure B - 22 Average Temperatures Recorded by TP-8 on October 8, 2025	
Figure B - 23 Average Temperatures Recorded by TP-8 on October 15, 2025	B-16
Figure B - 24 Average Temperatures Recorded by TP-8 on October 22, 2025	
Figure B - 25 Average Temperatures Recorded by TP-8 on October 29, 2025	
Figure B - 26 Average Temperatures Recorded by TP-9 on October 1, 2025	B-18
Figure B - 27 Average Temperatures Recorded by TP-9 on October 8, 2025	B-18
Figure B - 28 Average Temperatures Recorded by TP-9 on October 15, 2025	B-19
Figure B - 29 Average Temperatures Recorded by TP-9 on October 22, 2025	B-19
Figure B - 30 Average Temperatures Recorded by TP-9 on October 29, 2025	B-20

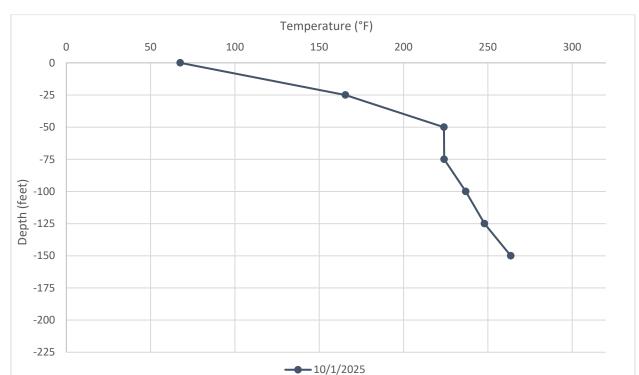
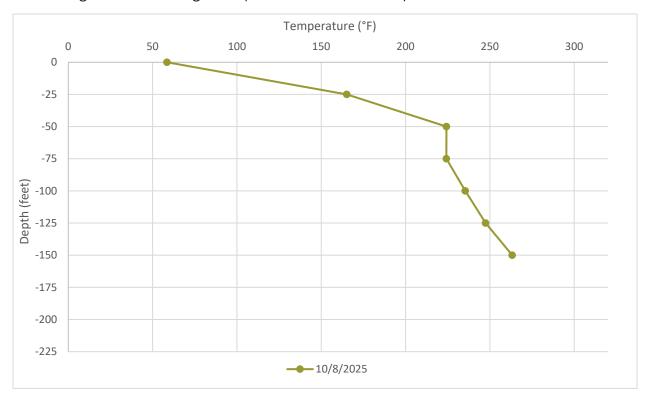



Figure B - 1 Average Temperatures Recorded by TP-1 on October 1, 2025

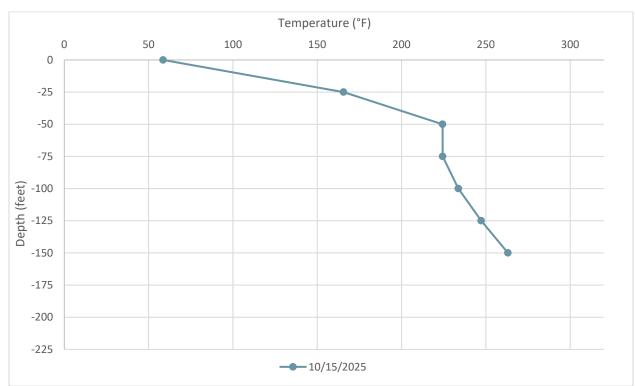
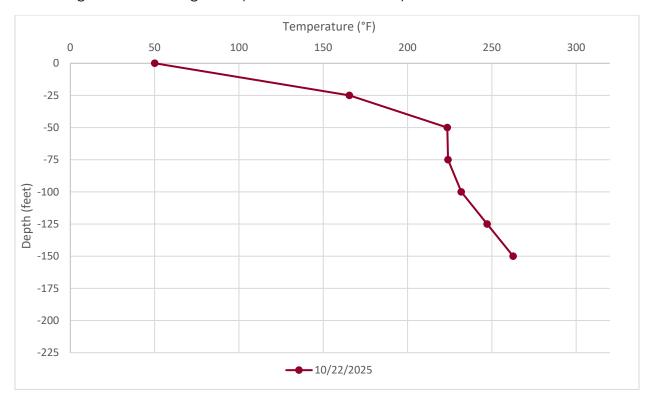



Figure B - 3 Average Temperatures Recorded by TP-1 on October 15, 2025

Figure B - 4 Average Temperatures Recorded by TP-1 on October 22, 2025

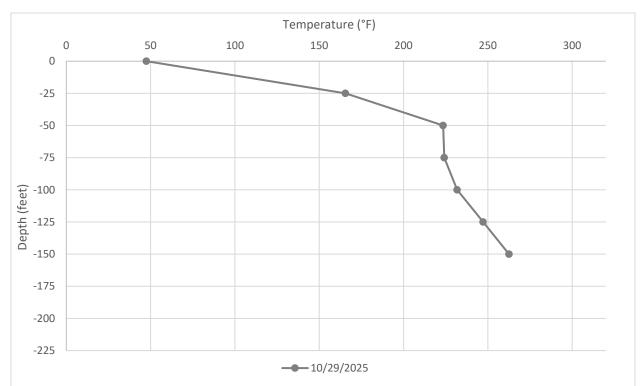
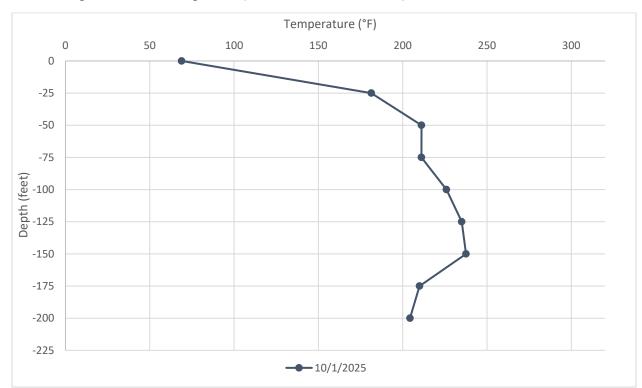


Figure B - 5 Average Temperatures Recorded by TP-1 on October 29, 2025



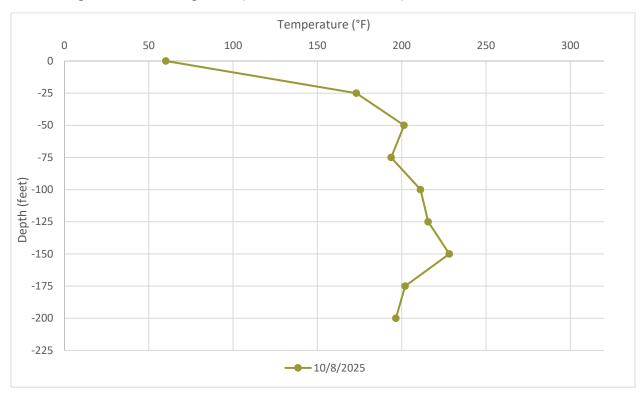


Figure B - 6 Average Temperatures Recorded by TP-5 on October 1, 2025

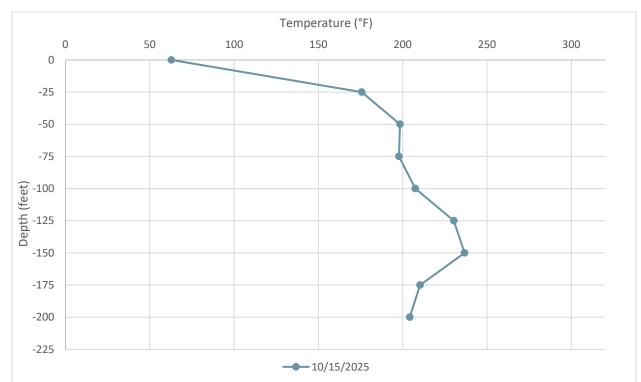
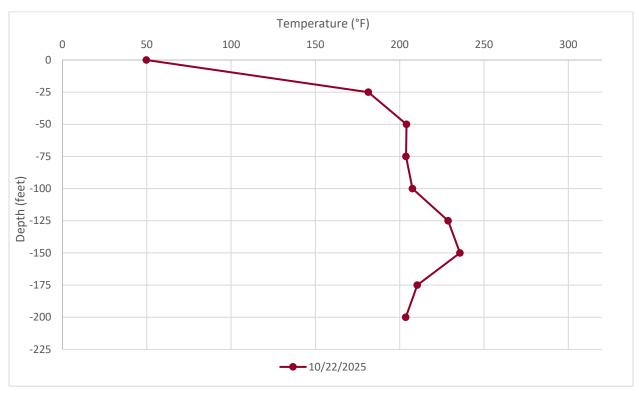



Figure B - 8 Average Temperatures Recorded by TP-5 on October 15, 2025

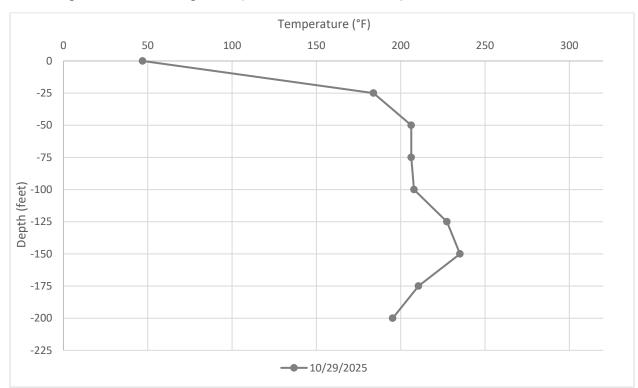


Figure B - 10 Average Temperatures Recorded by TP-5 on October 29, 2025

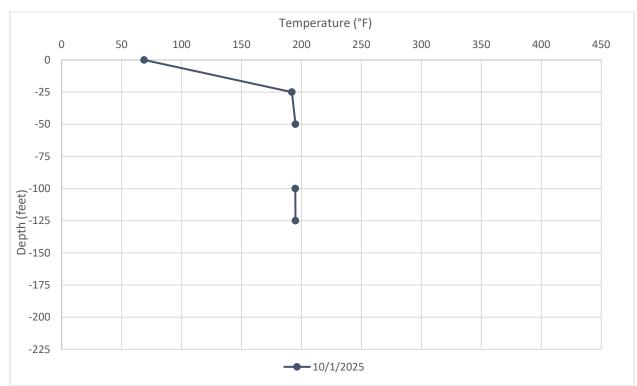
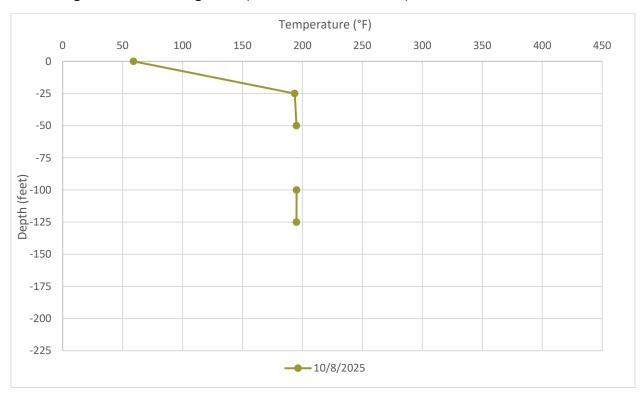



Figure B - 11 Average Temperatures Recorded by TP-6 on October 1, 2025

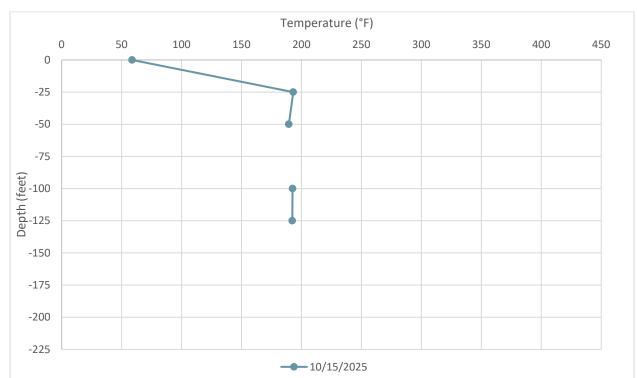
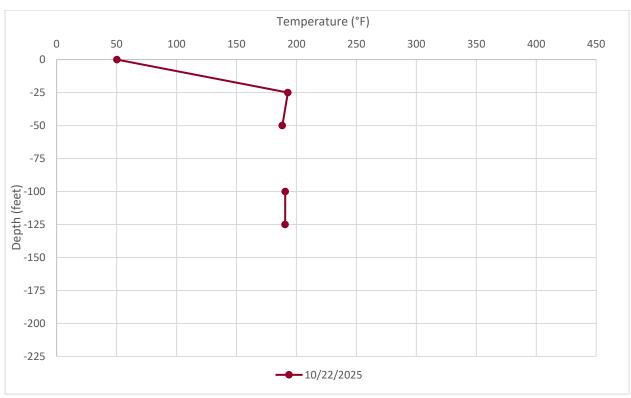



Figure B - 13 Average Temperatures Recorded by TP-6 on October 15, 2025

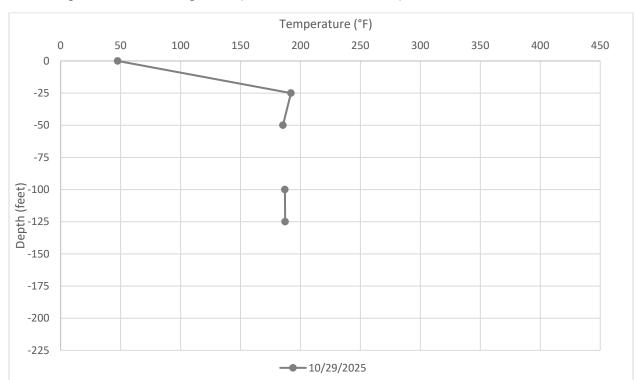


Figure B - 15 Average Temperatures Recorded by TP-6 on October 29, 2025

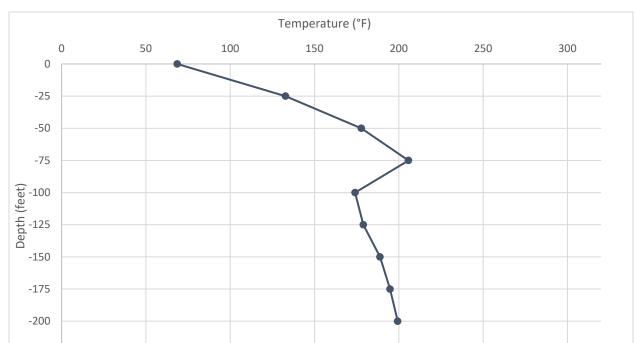
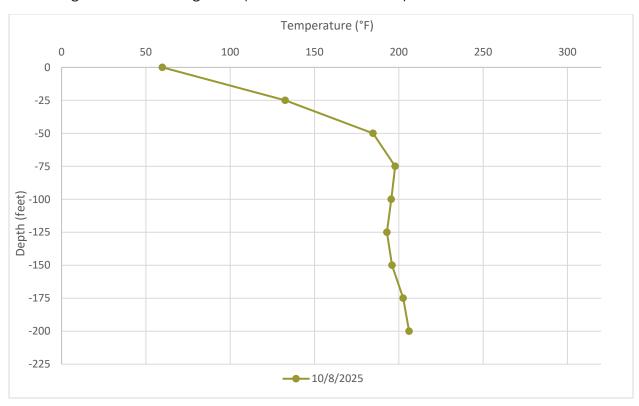



Figure B - 16 Average Temperatures Recorded by TP-7 on October 1, 2025

Figure B - 17 Average Temperatures Recorded by TP-7 on October 8, 2025

10/1/2025

-225

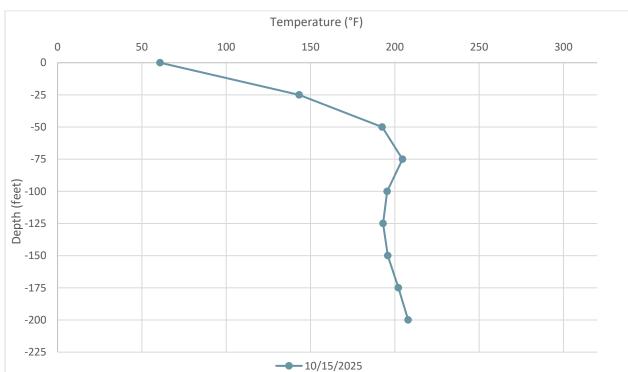
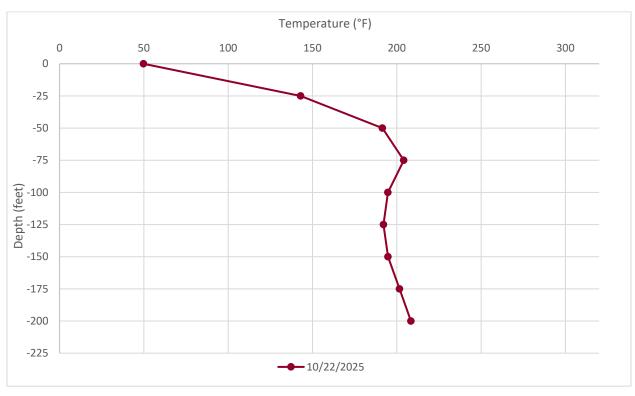



Figure B - 18 Average Temperatures Recorded by TP-7 on October 15, 2025



Figure B - 20 Average Temperatures Recorded by TP-7 on October 29, 2025

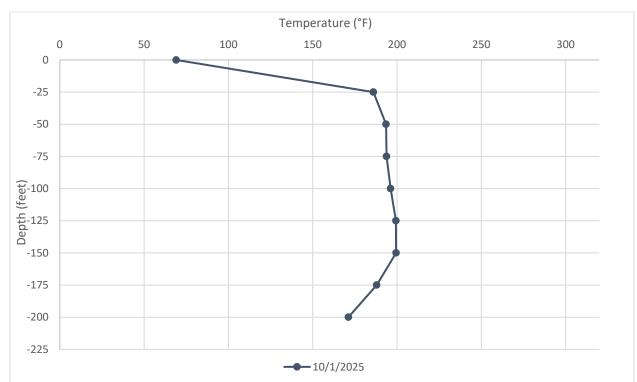
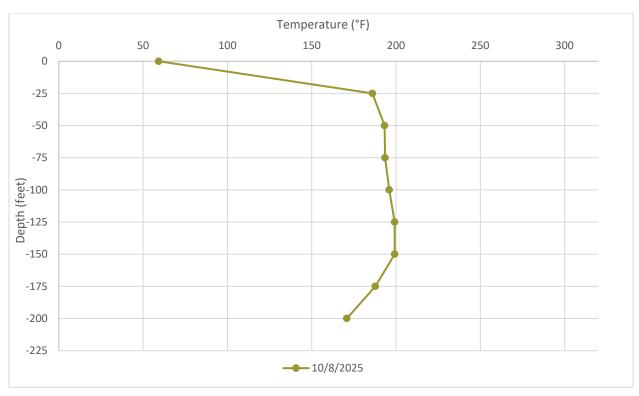



Figure B - 21 Average Temperatures Recorded by TP-8 on October 1, 2025

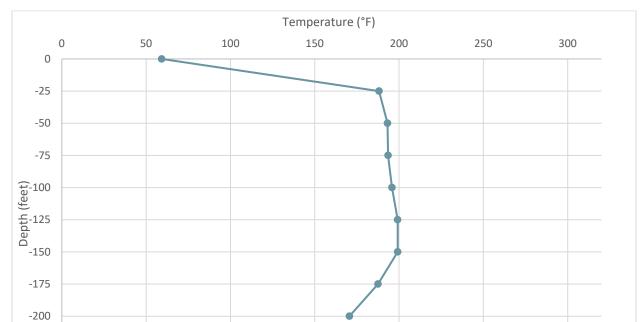
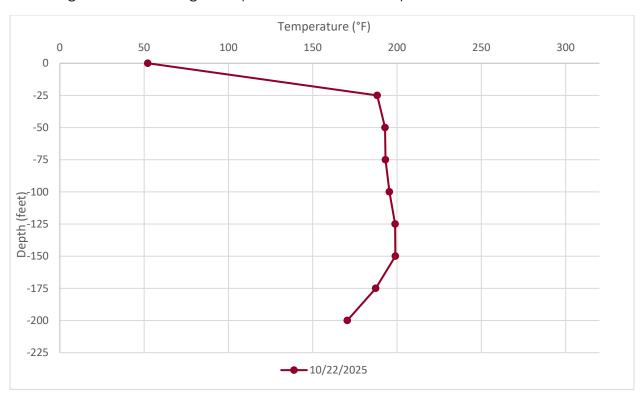



Figure B - 23 Average Temperatures Recorded by TP-8 on October 15, 2025

Figure B - 24 Average Temperatures Recorded by TP-8 on October 22, 2025

10/15/2025

-225

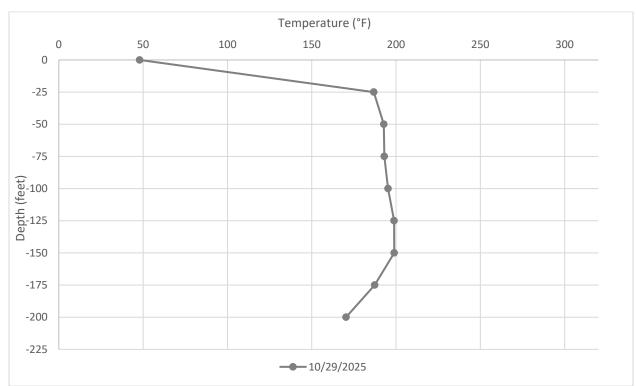


Figure B - 25 Average Temperatures Recorded by TP-8 on October 29, 2025

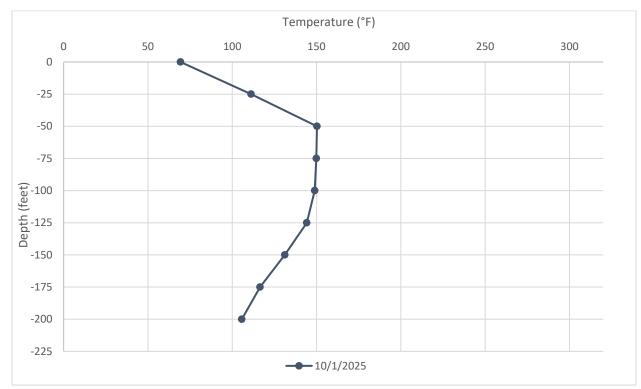
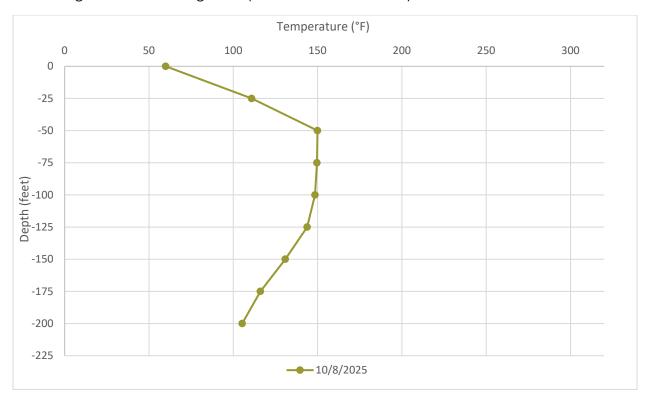



Figure B - 26 Average Temperatures Recorded by TP-9 on October 1, 2025

Figure B - 27 Average Temperatures Recorded by TP-9 on October 8, 2025

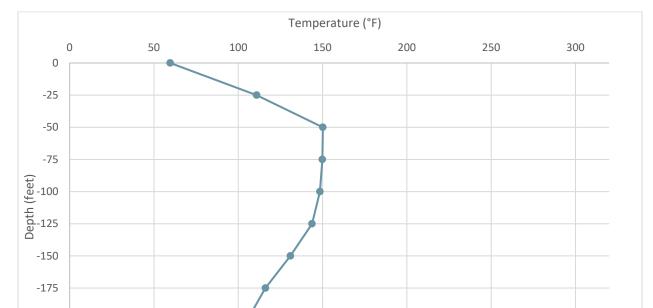
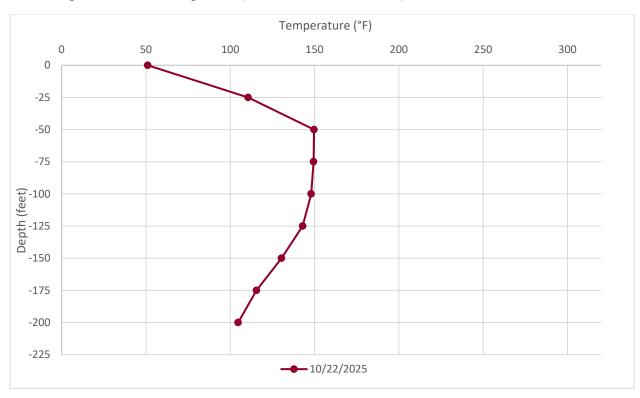



Figure B - 28 Average Temperatures Recorded by TP-9 on October 15, 2025

10/15/2025

-200

-225

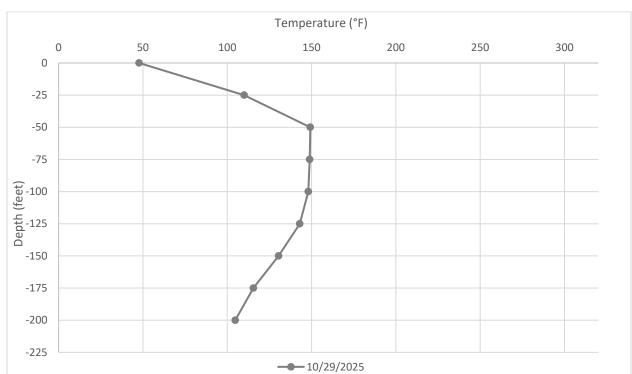


Figure B - 30 Average Temperatures Recorded by TP-9 on October 29, 2025

Appendix C

Daily Wellhead Temperature Averages

Solid Waste Permit 588 Daily Wellhead Temperature Averages

The data provided in this report represent initial readings provided by field instrumentation without Validation, analysis, quality assurance review, or context based on operating conditions. This report is subject to revision following quality assurance review and an analysis of operating conditions. SCS will continue to provide a supplemental report with additional information and further analysis on a monthly basis at a minimum.

SCS ENGINEERS

07222143.00 | November 4, 2025

274 Granite Run Drive Lancaster, PA 17601 717-550-6330

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Well 32R

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	84.4	74.3	95.5
Oct 2	81.4	71.6	93.8
Oct 3	79.7	68.6	94.7
Oct 4	82.6	72.0	96.4
Oct 5	82.1	72.0	94.8
Oct 6	84.4	75.8	97.7
Oct 7	83.4	78.1	92.2
Oct 8	81.0	70.8	90.1
Oct 9	75.9	65.5	89.7
Oct 10	75.2	62.8	93.2
Oct 11	74.4	63.8	87.6
Oct 12	76.4	65.3	88.4
Oct 13	79.7	70.8	93.3
Oct 14	76.9	65.8	93.4
Oct 15	79.3	65.8	94.4
Oct 16	82.8	77.0	91.7
Oct 17	81.7	71.1	92.8
Oct 18	85.1	76.9	94.9
Oct 19	79.3	72.1	85.6
Oct 20	73.6	63.3	84.9
Oct 21	70.7	58.7	85.9
Oct 22	73.1	65.3	82.4
Oct 23	70.5	59.2	87.0
Oct 24	69.2	58.5	82.0
Oct 25	70.7	59.3	83.2
Oct 26	68.0	63.2	77.1
Oct 27	61.9	59.5	63.8
Oct 28	71.1	61.2	81.2
Oct 29	72.0	68.3	79.8
Oct 30	70.4	67.3	73.6
Summary	76.6	61.9	85.1

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Well 33B

		, , , , ,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	75.6	60.5	97.3
Oct 2	71.1	57.4	91.0
Oct 3	69.2	51.4	93.9
Oct 4	72.0	53.7	99.4
Oct 5	70.4	54.2	92.6
Oct 6	74.3	59.9	100.5
Oct 7	69.9	62.9	84.7
Oct 8	69.5	54.0	84.5
Oct 9	63.0	49.9	83.3
Oct 10	63.0	46.3	91.0
Oct 11	62.9	48.4	84.2
Oct 12	63.7	48.9	77.5
Oct 13	69.0	57.1	87.9
Oct 14	65.7	49.6	91.0
Oct 15	65.2	48.4	91.0
Oct 16	65.0	52.1	86.5
Oct 17	63.3	45.1	92.6
Oct 18	68.2	50.3	96.0
Oct 19	60.0	46.2	71.6
Oct 20	54.5	39.7	81.9
Oct 21	55.1	39.3	72.2
Oct 22	57.5	45.5	75.5
Oct 23	54.7	38.1	80.8
Oct 24	52.5	36.9	79.0
Oct 25	54.5	39.0	83.4
Oct 26	56.5	49.4	70.2
Oct 27	48.4	45.7	50.5
Oct 28	52.4	45.9	69.2
Oct 29	51.4	46.0	63.8
Oct 30	48.0	45.4	53.2
Summary	62.2	48.0	75.6

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Well 36A

		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	77.2	65.5	97.7
Oct 2	73.8	61.9	92.3
Oct 3	71.7	58.0	93.4
Oct 4	74.5	59.6	100.9
Oct 5	73.0	60.3	91.8
Oct 6	76.7	65.2	101.1
Oct 7	73.1	67.5	86.0
Oct 8	72.1	61.4	82.8
Oct 9	68.0	57.3	85.8
Oct 10	67.6	54.2	88.0
Oct 11	67.5	56.4	84.2
Oct 12	68.3	57.3	80.0
Oct 13	72.3	63.8	88.0
Oct 14	68.9	57.2	88.6
Oct 15	68.7	56.3	87.2
Oct 16	66.2	56.8	84.1
Oct 17	65.4	50.9	87.3
Oct 18	68.7	53.9	91.9
Oct 19	58.3	46.5	71.2
Oct 20	55.6	38.4	79.4
Oct 21	59.5	44.4	74.0
Oct 22	61.2	50.9	73.2
Oct 23	59.0	45.9	74.8
Oct 24	57.4	42.7	79.0
Oct 25	59.2	44.5	79.3
Oct 26	62.3	56.3	73.4
Oct 27	55.9	53.3	57.9
Oct 28	56.9	51.2	69.9
Oct 29	56.0	51.2	66.5
Oct 30	51.7	48.7	55.1
Summary	65.6	51.7	77.2

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Well 38

		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	107.9	103.9	113.5
Oct 2	107.5	105.5	112.5
Oct 3	107.4	103.9	113.0
Oct 4	108.1	104.6	114.4
Oct 5	108.2	104.8	112.7
Oct 6	109.4	106.1	114.9
Oct 7	109.1	107.5	112.4
Oct 8	108.3	105.9	111.2
Oct 9	107.0	103.3	111.4
Oct 10	102.2	89.1	106.1
Oct 11	105.7	102.0	110.6
Oct 12	106.7	103.7	109.8
Oct 13	107.8	105.5	112.0
Oct 14	106.6	103.0	112.3
Oct 15	99.8	82.7	111.4
Oct 16	85.1	77.6	97.6
Oct 17	85.4	75.5	98.1
Oct 18	89.2	79.3	101.6
Oct 19	83.9	72.6	91.3
Oct 20	93.5	71.9	114.6
Oct 21	108.7	84.6	113.1
Oct 22	105.5	82.2	112.3
Oct 23	103.0	73.8	110.9
Oct 24	103.0	68.7	113.1
Oct 25	95.8	69.6	110.4
Oct 26	106.0	103.7	108.9
Oct 27	104.3	101.4	107.0
Oct 28	84.8	79.3	105.8
Oct 29	84.4	79.5	91.5
Oct 30	81.3	75.0	88.2
Summary	100.5	81.3	109.4

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Well 42

Division, the girms			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	119.0	117.8	120.6
Oct 2	118.8	117.8	120.5
Oct 3	118.8	117.7	120.3
Oct 4	119.2	117.8	120.9
Oct 5	119.2	117.9	121.0
Oct 6	119.6	118.5	121.2
Oct 7	119.5	119.0	120.6
Oct 8	119.0	117.3	120.2
Oct 9	118.9	117.8	120.8
Oct 10	119.3	117.7	122.4
Oct 11	118.4	117.2	120.0
Oct 12	118.7	117.7	120.3
Oct 13	118.9	118.2	121.0
Oct 14	118.9	117.9	121.0
Oct 15	120.3	118.1	122.8
Oct 16	122.3	121.6	123.2
Oct 17	123.0	122.0	124.0
Oct 18	124.2	123.1	125.2
Oct 19	124.3	123.4	124.8
Oct 20	123.8	122.1	125.4
Oct 21	122.7	121.8	124.6
Oct 22	123.5	121.9	125.1
Oct 23	124.1	122.3	126.7
Oct 24	124.5	123.1	126.1
Oct 25	124.8	123.2	126.6
Oct 26	123.6	122.8	124.5
Oct 27	123.5	122.9	124.0
Oct 28	126.9	123.8	128.4
Oct 29	127.8	126.7	128.8
Oct 30	128.0	127.7	128.4
Summary	121.8	118.4	128.0

		,g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	74.2	62.2	90.4
Oct 2	70.6	59.8	87.7
Oct 3	68.0	52.7	87.8
Oct 4	70.5	56.3	92.7
Oct 5	71.0	57.1	88.3
Oct 6	74.6	62.2	94.0
Oct 7	71.4	64.7	84.9
Oct 8	69.9	57.1	81.9
Oct 9	63.6	53.0	79.7
Oct 10	61.5	49.9	82.9
Oct 11	63.2	51.4	79.5
Oct 12	65.2	51.3	77.8
Oct 13	69.5	60.1	83.3
Oct 14	65.7	52.3	84.3
Oct 15	64.6	50.8	82.9
Oct 16	59.7	47.6	80.4
Oct 17	58.4	41.2	83.6
Oct 18	64.9	46.9	89.1
Oct 19	57.7	44.9	70.2
Oct 20	49.9	36.5	73.3
Oct 21	54.5	37.0	73.8
Oct 22	54.4	42.3	70.5
Oct 23	48.6	34.0	71.6
Oct 24	46.8	32.0	71.4
Oct 25	52.4	35.0	76.2
Oct 26	58.8	52.0	70.5
Oct 27	52.1	50.1	54.0
Oct 28	51.8	46.2	60.1
Oct 29	51.3	45.7	62.8
Oct 30	48.1	45.8	52.0
Summary	61.1	46.8	74.6

	21.000	,g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	70.6	58.3	88.9
Oct 2	65.8	54.2	84.2
Oct 3	63.1	47.8	84.6
Oct 4	65.7	50.4	91.9
Oct 5	65.9	50.9	85.7
Oct 6	70.5	56.9	91.5
Oct 7	68.0	60.1	84.0
Oct 8	66.7	52.0	79.5
Oct 9	59.1	46.1	77.6
Oct 10	57.2	42.6	78.4
Oct 11	58.6	45.4	76.7
Oct 12	60.5	45.5	75.5
Oct 13	64.9	54.6	80.6
Oct 14	61.2	46.1	81.5
Oct 15	60.8	44.8	81.3
Oct 16	60.0	47.2	78.1
Oct 17	57.2	40.8	80.6
Oct 18	62.3	46.3	85.6
Oct 19	57.7	45.3	71.9
Oct 20	48.2	36.3	68.1
Oct 21	52.3	36.2	69.1
Oct 22	52.3	40.9	67.1
Oct 23	47.5	33.2	69.2
Oct 24	45.4	31.9	66.0
Oct 25	49.6	34.6	71.7
Oct 26	55.0	46.4	68.4
Oct 27	47.4	44.8	49.9
Oct 28	50.5	44.7	63.1
Oct 29	50.0	44.3	62.6
Oct 30	46.6	44.5	51.2
Summary	58.0	45.4	70.6

		, <u></u>	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	156.3	80.4	163.4
Oct 2	162.4	161.9	163.0
Oct 3	162.4	161.7	163.1
Oct 4	162.4	161.7	163.6
Oct 5	162.1	161.6	162.9
Oct 6	162.3	161.7	163.3
Oct 7	162.4	161.9	163.0
Oct 8	161.9	160.9	162.5
Oct 9	161.4	160.6	162.1
Oct 10	161.3	153.0	164.6
Oct 11	162.4	161.8	162.8
Oct 12	162.5	162.0	162.9
Oct 13	162.3	161.6	163.1
Oct 14	161.8	160.9	162.6
Oct 15	161.2	159.7	161.8
Oct 16	149.9	110.9	166.2
Oct 17	147.8	122.2	162.3
Oct 18	148.0	123.8	162.6
Oct 19	149.1	128.7	162.8
Oct 20	164.7	144.0	176.3
Oct 21	164.1	157.6	166.0
Oct 22	156.9	131.8	168.4
Oct 23	151.5	110.4	167.8
Oct 24	153.2	96.9	164.7
Oct 25	150.8	97.4	166.8
Oct 26	166.7	165.3	168.1
Oct 27	165.6	163.7	167.7
Oct 28	150.8	116.5	173.0
Oct 29	168.3	166.4	169.6
Oct 30	168.0	163.4	174.8
Summary	159.4	147.8	168.3

_		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	112.3	110.6	115.0
Oct 2	111.5	109.9	114.5
Oct 3	111.1	108.6	114.3
Oct 4	111.4	109.1	115.1
Oct 5	111.2	109.2	114.2
Oct 6	111.9	110.2	115.0
Oct 7	111.5	110.2	113.9
Oct 8	110.7	109.3	112.6
Oct 9	109.8	108.1	112.2
Oct 10	106.1	92.9	111.1
Oct 11	110.5	108.1	112.9
Oct 12	110.6	108.7	112.1
Oct 13	111.2	109.5	113.6
Oct 14	110.4	108.3	113.8
Oct 15	102.1	86.2	109.1
Oct 16	77.5	59.0	93.0
Oct 17	64.9	54.3	83.5
Oct 18	68.1	56.0	86.4
Oct 19	61.2	49.8	71.1
Oct 20	79.0	45.8	114.4
Oct 21	105.2	80.2	109.6
Oct 22	94.0	42.5	108.0
Oct 23	93.6	52.0	105.8
Oct 24	92.8	34.4	106.9
Oct 25	83.4	37.8	105.7
Oct 26	103.8	101.0	107.1
Oct 27	103.7	94.3	108.3
Oct 28	74.3	44.8	106.3
Oct 29	80.8	60.7	93.1
Oct 30	74.8	51.6	92.4
Summary	97.0	61.2	112.3

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	71.1	58.0	91.8
Oct 2	66.2	54.0	88.5
Oct 3	64.4	47.9	87.6
Oct 4	66.9	50.4	92.5
Oct 5	66.6	51.9	87.9
Oct 6	71.4	56.8	95.4
Oct 7	67.6	60.4	83.1
Oct 8	65.8	51.6	79.9
Oct 9	59.9	46.8	81.5
Oct 10	58.0	44.2	82.4
Oct 11	60.1	46.1	78.7
Oct 12	60.0	45.0	77.1
Oct 13	65.9	54.4	84.0
Oct 14	61.4	45.7	85.5
Oct 15	62.2	44.4	85.2
Oct 16	60.4	47.2	82.9
Oct 17	58.7	40.7	84.4
Oct 18	64.7	46.3	90.3
Oct 19	57.0	44.4	71.2
Oct 20	49.9	36.0	72.8
Oct 21	52.0	35.5	72.9
Oct 22	52.7	40.5	70.1
Oct 23	48.7	33.9	69.4
Oct 24	47.1	31.9	69.5
Oct 25	50.8	35.3	77.4
Oct 26	54.8	46.9	68.9
Oct 27	47.2	44.9	48.8
Oct 28	50.1	44.5	60.1
Oct 29	49.8	44.1	61.2
Oct 30	46.8	44.2	51.5
Summary	58.6	46.8	71.4

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	159.1	158.2	160.2
Oct 2	157.5	141.7	159.5
Oct 3	157.4	148.0	159.5
Oct 4	157.9	155.9	160.0
Oct 5	157.8	155.9	159.1
Oct 6	158.3	156.8	160.6
Oct 7	158.3	157.4	159.5
Oct 8	157.3	155.7	158.1
Oct 9	156.9	155.2	158.3
Oct 10	159.9	154.9	168.7
Oct 11	158.5	156.8	159.9
Oct 12	158.3	156.9	159.3
Oct 13	158.6	157.7	159.9
Oct 14	158.0	156.9	160.0
Oct 15	159.0	110.4	168.5
Oct 16	167.6	166.0	170.0
Oct 17	167.0	165.1	168.4
Oct 18	168.0	163.2	172.4
Oct 19	150.0	79.0	168.9
Oct 20	134.3	58.5	173.7
Oct 21	165.7	160.8	169.9
Oct 22	124.6	54.3	166.1
Oct 23	56.1	37.6	123.3
Oct 24	45.6	31.9	62.7
Oct 25	118.4	34.9	178.5
Oct 26	166.7	164.2	169.6
Oct 27	161.5	159.0	164.1
Oct 28	164.6	159.4	167.9
Oct 29	166.3	164.4	167.9
Oct 30	164.8	163.5	165.9
Summary	149.8	45.6	168.0

_		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	121.6	111.5	134.5
Oct 2	119.8	111.6	132.4
Oct 3	116.8	105.5	132.9
Oct 4	118.1	107.5	134.0
Oct 5	118.1	105.5	133.6
Oct 6	121.3	111.0	137.1
Oct 7	122.0	116.9	128.7
Oct 8	119.6	110.7	128.7
Oct 9	111.4	101.3	127.8
Oct 10	109.0	95.7	131.9
Oct 11	110.8	100.2	122.2
Oct 12	111.9	100.4	120.7
Oct 13	115.1	107.2	124.6
Oct 14	106.5	94.8	121.3
Oct 15	110.8	90.6	131.2
Oct 16	118.8	108.7	135.3
Oct 17	120.3	104.5	137.3
Oct 18	127.0	113.8	142.7
Oct 19	122.9	112.0	129.2
Oct 20	121.3	109.2	137.7
Oct 21	122.3	110.5	135.5
Oct 22	126.0	118.1	135.1
Oct 23	126.4	115.2	137.4
Oct 24	125.3	114.1	140.1
Oct 25	119.2	79.9	140.7
Oct 26	77.2	68.8	89.7
Oct 27	69.5	60.9	89.0
Oct 28	74.1	64.3	89.7
Oct 29	78.2	71.1	86.9
Oct 30	79.1	72.8	81.8
Summary	111.3	69.5	127.0

		,, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	73.2	60.6	91.6
Oct 2	67.9	57.3	87.6
Oct 3	66.6	50.9	89.1
Oct 4	69.3	53.3	91.5
Oct 5	69.6	54.5	90.9
Oct 6	73.5	60.5	95.6
Oct 7	70.2	63.2	84.5
Oct 8	68.8	55.4	81.6
Oct 9	61.8	50.2	81.1
Oct 10	59.9	46.6	81.0
Oct 11	61.2	48.7	80.3
Oct 12	62.8	48.3	78.7
Oct 13	68.0	57.1	85.3
Oct 14	64.0	48.9	85.5
Oct 15	64.0	47.6	84.0
Oct 16	61.9	50.1	80.7
Oct 17	60.0	43.7	84.0
Oct 18	68.7	50.2	92.7
Oct 19	62.3	47.7	74.7
Oct 20	54.3	38.5	76.4
Oct 21	59.6	42.5	77.6
Oct 22	58.8	46.9	71.8
Oct 23	51.9	36.5	70.6
Oct 24	50.0	34.7	71.5
Oct 25	57.1	38.0	81.5
Oct 26	65.3	57.5	78.4
Oct 27	56.8	52.5	59.7
Oct 28	57.4	51.6	65.7
Oct 29	57.6	51.6	68.2
Oct 30	53.2	49.6	55.9
Summary	62.5	50.0	73.5

_		•	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	149.8	144.3	155.3
Oct 2	146.3	140.8	154.2
Oct 3	145.5	135.5	155.3
Oct 4	147.8	139.9	159.2
Oct 5	145.8	141.5	152.1
Oct 6	148.8	142.4	159.1
Oct 7	149.9	145.6	156.6
Oct 8	144.7	138.0	148.5
Oct 9	142.5	137.9	147.4
Oct 10	138.7	103.9	157.3
Oct 11	146.2	141.5	152.5
Oct 12	147.0	142.9	150.8
Oct 13	147.2	142.6	151.5
Oct 14	143.2	134.5	151.8
Oct 15	134.9	113.1	152.3
Oct 16	133.1	120.9	145.5
Oct 17	144.9	131.3	159.3
Oct 18	146.5	135.7	157.3
Oct 19	119.2	45.0	152.5
Oct 20	104.1	36.5	150.6
Oct 21	147.7	138.8	155.9
Oct 22	103.7	42.7	154.8
Oct 23	48.4	33.1	69.1
Oct 24	52.3	34.2	82.8
Oct 25	108.8	41.1	169.8
Oct 26	153.3	149.7	156.6
Oct 27	148.3	143.1	151.6
Oct 28	140.8	135.9	148.9
Oct 29	142.5	110.4	154.2
Oct 30	133.0	119.9	147.6
Summary	133.5	48.4	153.3

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	182.1	181.5	182.7
Oct 2	181.8	181.0	183.1
Oct 3	182.2	180.9	183.2
Oct 4	182.5	181.9	183.6
Oct 5	182.5	181.6	183.3
Oct 6	182.8	182.0	183.7
Oct 7	183.2	182.9	183.5
Oct 8	183.3	182.7	183.6
Oct 9	183.2	182.2	183.9
Oct 10	183.7	181.5	185.0
Oct 11	184.5	183.9	185.2
Oct 12	184.6	184.0	185.2
Oct 13	184.7	184.3	185.2
Oct 14	184.6	183.9	185.1
Oct 15	184.9	184.5	185.5
Oct 16	186.1	185.5	186.9
Oct 17	186.6	185.8	187.3
Oct 18	187.2	186.5	187.9
Oct 19	187.1	185.9	187.6
Oct 20	186.9	185.9	188.0
Oct 21	186.1	184.8	186.6
Oct 22	185.9	185.2	186.8
Oct 23	185.8	184.3	187.2
Oct 24	185.7	184.5	186.6
Oct 25	186.5	184.5	187.6
Oct 26	187.0	186.6	187.4
Oct 27	186.3	185.4	187.1
Oct 28	186.5	184.9	187.4
Oct 29	187.4	186.5	187.9
Oct 30	187.6	186.9	188.0
Summary	185.0	181.8	187.6

		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	85.9	72.7	106.3
Oct 2	81.2	69.3	101.0
Oct 3	78.4	61.5	103.5
Oct 4	82.3	65.7	106.2
Oct 5	81.9	66.7	105.3
Oct 6	86.1	73.2	110.2
Oct 7	81.1	75.9	93.1
Oct 8	78.2	65.4	92.7
Oct 9	71.0	60.3	90.5
Oct 10	67.2	52.8	94.1
Oct 11	69.7	55.4	88.1
Oct 12	69.7	54.9	84.1
Oct 13	74.4	63.3	92.8
Oct 14	70.8	55.1	97.5
Oct 15	68.9	54.0	92.2
Oct 16	64.8	51.9	90.4
Oct 17	62.8	45.3	90.7
Oct 18	68.0	49.7	94.9
Oct 19	61.2	47.0	73.7
Oct 20	52.3	37.5	77.4
Oct 21	61.1	35.8	89.0
Oct 22	76.0	61.6	93.4
Oct 23	71.3	50.4	92.7
Oct 24	67.5	44.3	94.4
Oct 25	68.5	48.4	96.8
Oct 26	74.0	68.0	84.5
Oct 27	64.4	57.9	69.2
Oct 28	64.9	59.8	77.4
Oct 29	65.9	59.5	78.5
Oct 30	61.9	57.0	66.4
Summary	71.1	52.3	86.1

_		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	106.1	104.5	108.4
Oct 2	105.7	104.3	107.9
Oct 3	105.1	94.9	108.2
Oct 4	105.8	104.0	108.7
Oct 5	105.8	104.2	108.2
Oct 6	106.3	104.9	109.0
Oct 7	106.0	105.1	107.6
Oct 8	105.6	104.3	107.3
Oct 9	104.9	103.6	107.1
Oct 10	101.3	85.4	106.7
Oct 11	104.7	103.1	107.1
Oct 12	104.9	103.0	106.7
Oct 13	105.5	104.3	107.3
Oct 14	105.0	103.4	107.9
Oct 15	97.4	76.1	107.4
Oct 16	78.6	70.7	93.9
Oct 17	87.6	70.4	104.8
Oct 18	92.1	81.5	103.6
Oct 19	79.3	45.9	92.6
Oct 20	69.0	37.5	100.0
Oct 21	100.8	88.7	109.0
Oct 22	82.9	42.2	106.8
Oct 23	49.9	34.0	76.8
Oct 24	48.0	32.6	76.3
Oct 25	74.7	34.6	107.0
Oct 26	108.1	106.8	109.4
Oct 27	108.0	107.0	108.7
Oct 28	99.7	85.9	108.5
Oct 29	83.0	48.6	105.5
Oct 30	46.7	44.6	51.0
Summary	92.6	46.7	108.1

_			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	127.4	126.3	129.1
Oct 2	127.4	126.5	128.9
Oct 3	127.9	125.8	129.8
Oct 4	128.6	127.0	130.6
Oct 5	129.3	128.0	131.0
Oct 6	126.1	119.7	130.5
Oct 7	119.3	118.6	120.8
Oct 8	118.0	116.3	119.3
Oct 9	120.9	116.1	126.2
Oct 10	121.6	101.6	128.5
Oct 11	129.6	128.1	131.2
Oct 12	125.4	119.6	131.6
Oct 13	124.7	117.8	130.0
Oct 14	128.8	120.1	131.9
Oct 15	119.9	102.0	129.6
Oct 16	101.7	95.8	113.2
Oct 17	95.8	69.5	112.4
Oct 18	98.5	87.8	115.5
Oct 19	77.6	43.6	98.1
Oct 20	92.8	42.3	128.8
Oct 21	117.5	115.0	119.5
Oct 22	114.4	103.9	117.8
Oct 23	106.0	63.9	117.8
Oct 24	109.9	37.7	118.1
Oct 25	96.0	36.6	125.5
Oct 26	128.1	126.0	129.9
Oct 27	127.6	121.7	128.9
Oct 28	129.2	111.6	132.9
Oct 29	134.6	120.2	140.7
Oct 30	135.1	133.5	136.3
Summary	118.0	77.6	135.1

		, , , , , , , , , , , , , , , , , , , ,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	172.0	169.3	176.8
Oct 2	168.4	167.2	169.7
Oct 3	160.7	143.0	168.7
Oct 4	140.7	137.0	144.8
Oct 5	137.4	134.7	141.4
Oct 6	138.5	135.0	147.0
Oct 7	153.4	134.8	165.6
Oct 8	164.0	162.3	165.5
Oct 9	155.0	140.1	165.2
Oct 10	154.3	139.0	166.8
Oct 11	158.2	143.7	166.2
Oct 12	140.6	139.0	143.8
Oct 13	152.5	138.0	167.2
Oct 14	141.1	136.7	146.6
Oct 15	130.5	103.2	142.9
Oct 16	95.5	82.7	109.1
Oct 17	89.7	75.7	105.2
Oct 18	124.0	90.4	141.1
Oct 19	113.0	89.1	129.2
Oct 20	119.0	74.2	151.1
Oct 21	143.1	138.7	147.4
Oct 22	122.8	91.7	142.6
Oct 23	86.0	58.7	140.5
Oct 24	78.2	55.8	121.4
Oct 25	111.5	62.3	146.3
Oct 26	136.5	134.2	139.0
Oct 27	135.0	131.3	139.0
Oct 28	113.1	94.6	136.6
Oct 29	125.5	103.4	134.8
Oct 30	122.1	107.0	132.4
Summary	132.7	78.2	172.0

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	158.1	151.6	163.4
Oct 2	146.1	128.2	160.7
Oct 3	132.4	115.9	141.5
Oct 4	145.4	142.0	148.8
Oct 5	147.9	146.3	150.0
Oct 6	153.8	148.1	161.5
Oct 7	161.1	160.3	162.0
Oct 8	161.4	160.7	162.3
Oct 9	161.2	160.1	162.6
Oct 10	164.7	156.7	176.5
Oct 11	164.6	163.4	165.9
Oct 12	164.8	163.9	165.6
Oct 13	164.6	163.8	166.3
Oct 14	163.5	162.7	165.1
Oct 15	167.9	159.6	176.7
Oct 16	176.9	175.9	178.0
Oct 17	177.0	174.3	179.7
Oct 18	176.9	174.6	180.2
Oct 19	176.4	173.9	177.9
Oct 20	167.3	154.9	176.1
Oct 21	153.4	149.6	154.7
Oct 22	154.5	150.6	165.7
Oct 23	153.8	140.5	170.4
Oct 24	152.3	147.7	165.3
Oct 25	159.3	146.9	167.6
Oct 26	161.5	160.7	162.8
Oct 27	160.8	159.4	162.0
Oct 28	175.2	159.7	180.9
Oct 29	178.6	176.7	184.6
Oct 30	177.4	176.0	178.3
Summary	162.0	132.4	178.6

_		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	112.5	110.4	115.6
Oct 2	111.3	108.7	115.2
Oct 3	111.0	105.6	115.5
Oct 4	112.2	109.5	116.9
Oct 5	111.9	109.6	115.7
Oct 6	112.8	110.6	116.7
Oct 7	112.8	111.5	115.1
Oct 8	109.6	103.2	113.0
Oct 9	104.0	99.0	110.3
Oct 10	104.7	98.4	114.9
Oct 11	103.3	98.0	109.9
Oct 12	104.8	100.5	110.1
Oct 13	106.1	102.7	111.1
Oct 14	104.5	99.5	112.8
Oct 15	107.3	99.8	116.3
Oct 16	110.2	106.9	113.8
Oct 17	108.8	104.3	114.2
Oct 18	110.0	105.7	115.4
Oct 19	104.4	96.5	108.7
Oct 20	99.6	92.2	104.8
Oct 21	100.7	89.0	112.7
Oct 22	109.9	106.6	113.1
Oct 23	108.8	103.5	114.5
Oct 24	107.1	102.2	111.1
Oct 25	106.8	102.7	110.6
Oct 26	104.8	101.2	108.4
Oct 27	101.6	98.9	103.7
Oct 28	109.9	103.1	115.0
Oct 29	107.9	104.2	112.7
Oct 30	104.3	100.7	108.5
Summary	107.5	99.6	112.8

		, vii gii iid	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	71.0	57.9	90.4
Oct 2	66.5	53.8	83.6
Oct 3	63.1	47.0	84.3
Oct 4	66.1	50.3	89.6
Oct 5	66.6	50.4	90.8
Oct 6	71.1	56.8	91.8
Oct 7	66.9	60.1	81.7
Oct 8	66.4	51.0	82.2
Oct 9	59.3	45.7	79.5
Oct 10	57.3	41.4	78.6
Oct 11	58.9	45.4	79.2
Oct 12	59.8	45.3	74.0
Oct 13	65.6	54.1	86.4
Oct 14	61.2	46.2	84.8
Oct 15	61.2	44.5	83.2
Oct 16	59.5	47.4	81.0
Oct 17	57.8	40.7	80.5
Oct 18	63.9	46.6	86.4
Oct 19	57.2	43.9	70.5
Oct 20	49.8	36.0	71.0
Oct 21	51.9	36.2	71.1
Oct 22	53.4	41.6	66.0
Oct 23	49.0	33.3	70.1
Oct 24	46.5	31.5	67.5
Oct 25	49.8	34.1	71.4
Oct 26	54.2	46.5	66.6
Oct 27	47.0	44.4	49.7
Oct 28	50.8	44.3	68.0
Oct 29	49.8	44.0	68.3
Oct 30	46.3	44.1	50.4
Summary	58.3	46.3	71.1

		,, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	71.7	57.9	93.2
Oct 2	66.5	54.1	88.8
Oct 3	64.1	47.3	86.4
Oct 4	67.2	50.2	94.9
Oct 5	67.2	50.6	91.1
Oct 6	71.7	57.1	95.9
Oct 7	67.5	60.3	84.6
Oct 8	66.5	50.8	80.5
Oct 9	59.9	45.9	80.9
Oct 10	58.4	42.2	84.2
Oct 11	59.1	45.6	81.1
Oct 12	60.4	45.4	76.2
Oct 13	66.2	54.3	83.5
Oct 14	61.9	45.9	84.9
Oct 15	61.6	44.2	84.8
Oct 16	59.9	47.6	79.6
Oct 17	57.9	40.8	83.7
Oct 18	64.2	46.5	87.4
Oct 19	57.8	45.0	71.0
Oct 20	50.2	35.8	71.9
Oct 21	52.0	36.2	71.2
Oct 22	53.9	41.1	68.1
Oct 23	49.5	33.7	70.0
Oct 24	47.3	31.1	70.6
Oct 25	50.5	35.0	74.7
Oct 26	54.8	46.6	68.2
Oct 27	47.1	44.5	49.9
Oct 28	51.0	44.6	66.7
Oct 29	49.6	44.2	61.8
Oct 30	46.2	44.2	50.6
Summary	58.7	46.2	71.7

_			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	120.4	102.3	130.9
Oct 2	101.9	91.7	114.5
Oct 3	105.6	93.6	120.9
Oct 4	110.0	97.9	123.4
Oct 5	108.5	100.0	118.8
Oct 6	107.8	101.2	119.0
Oct 7	106.6	102.0	114.2
Oct 8	122.8	94.6	139.2
Oct 9	125.6	93.6	144.4
Oct 10	90.6	76.1	104.0
Oct 11	91.2	87.6	95.8
Oct 12	86.7	82.7	92.2
Oct 13	96.3	78.8	111.5
Oct 14	116.9	109.0	123.5
Oct 15	112.2	90.2	127.1
Oct 16	93.0	85.4	103.9
Oct 17	92.0	84.3	103.2
Oct 18	94.6	85.3	107.3
Oct 19	84.5	67.6	95.4
Oct 20	104.0	67.1	135.1
Oct 21	130.9	112.2	134.6
Oct 22	127.7	107.1	133.6
Oct 23	124.1	93.2	134.8
Oct 24	125.6	78.5	135.5
Oct 25	120.9	83.5	140.0
Oct 26	135.3	133.4	137.4
Oct 27	136.7	134.3	138.5
Oct 28	122.4	94.5	136.5
Oct 29	121.1	93.0	129.9
Oct 30	115.4	109.7	120.1
Summary	111.0	84.5	136.7

_		,	•
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	175.4	173.6	177.2
Oct 2	174.2	172.7	176.6
Oct 3	174.0	169.7	176.6
Oct 4	174.2	171.8	177.5
Oct 5	174.4	173.1	176.1
Oct 6	175.2	173.3	177.5
Oct 7	175.4	174.0	176.8
Oct 8	173.9	171.3	175.8
Oct 9	173.0	170.6	174.8
Oct 10	172.3	162.9	177.1
Oct 11	174.9	172.6	176.6
Oct 12	175.4	173.5	177.1
Oct 13	175.6	173.2	177.4
Oct 14	174.2	171.6	176.2
Oct 15	172.5	168.8	176.4
Oct 16	172.2	168.1	175.7
Oct 17	173.6	170.5	177.1
Oct 18	174.4	169.6	177.6
Oct 19	172.5	158.6	177.3
Oct 20	170.8	164.9	175.7
Oct 21	172.8	167.5	177.0
Oct 22	171.0	166.3	176.4
Oct 23	171.1	168.7	174.9
Oct 24	171.0	166.8	175.3
Oct 25	174.1	168.0	181.3
Oct 26	174.2	172.8	175.8
Oct 27	172.3	169.2	174.6
Oct 28	167.9	164.2	174.2
Oct 29	170.3	168.1	174.3
Oct 30	167.7	162.3	173.6
Summary	173.0	167.7	175.6

_		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	169.6	166.9	172.9
Oct 2	167.1	164.4	171.3
Oct 3	167.2	160.4	172.0
Oct 4	168.9	165.4	174.1
Oct 5	168.2	163.6	171.6
Oct 6	169.6	165.6	173.8
Oct 7	170.5	168.5	172.6
Oct 8	166.6	160.4	171.0
Oct 9	164.7	157.8	169.2
Oct 10	164.9	159.2	172.5
Oct 11	168.0	163.8	171.3
Oct 12	169.4	167.1	173.4
Oct 13	169.2	165.5	172.1
Oct 14	167.0	161.6	172.1
Oct 15	166.5	160.2	172.3
Oct 16	166.0	162.9	169.7
Oct 17	166.4	158.5	171.9
Oct 18	168.4	163.6	172.9
Oct 19	164.2	148.6	171.6
Oct 20	163.7	158.7	169.8
Oct 21	165.9	159.2	172.4
Oct 22	165.5	160.7	170.7
Oct 23	165.2	162.1	169.7
Oct 24	164.1	159.6	168.5
Oct 25	165.3	157.8	173.4
Oct 26	165.3	157.9	170.7
Oct 27	159.6	152.2	163.9
Oct 28	156.0	145.3	162.9
Oct 29	156.2	132.1	163.7
Oct 30	154.1	146.7	159.4
Summary	165.4	154.1	170.5

_		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	139.4	137.7	141.3
Oct 2	137.9	119.8	140.8
Oct 3	138.2	123.4	141.0
Oct 4	139.1	137.4	141.0
Oct 5	138.8	136.8	140.9
Oct 6	139.3	137.5	141.5
Oct 7	139.8	138.8	140.5
Oct 8	138.4	135.5	140.0
Oct 9	137.9	135.9	140.4
Oct 10	136.9	131.2	139.7
Oct 11	138.7	137.1	140.4
Oct 12	139.1	138.2	140.3
Oct 13	138.9	137.1	140.5
Oct 14	138.3	135.8	140.5
Oct 15	136.3	119.2	140.5
Oct 16	136.5	133.8	141.0
Oct 17	138.1	134.1	142.0
Oct 18	138.7	135.1	145.3
Oct 19	128.4	94.2	141.8
Oct 20	124.3	95.1	143.4
Oct 21	140.3	134.2	144.7
Oct 22	120.8	87.9	141.5
Oct 23	77.9	51.5	101.6
Oct 24	53.9	38.9	80.4
Oct 25	107.5	39.5	154.8
Oct 26	145.5	142.0	148.6
Oct 27	142.0	138.0	144.6
Oct 28	137.6	133.3	140.9
Oct 29	139.6	137.4	142.4
Oct 30	137.7	131.4	141.6
Summary	131.5	53.9	145.5

_		,	•
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	112.1	110.6	114.2
Oct 2	112.2	110.9	114.3
Oct 3	112.3	110.7	114.6
Oct 4	113.0	111.7	115.3
Oct 5	113.1	111.8	115.3
Oct 6	113.7	112.3	116.1
Oct 7	113.7	112.9	114.8
Oct 8	113.1	111.2	114.6
Oct 9	112.2	110.2	114.6
Oct 10	112.5	110.7	116.1
Oct 11	112.1	110.5	114.3
Oct 12	112.5	111.2	114.7
Oct 13	113.2	111.9	115.4
Oct 14	113.1	111.4	115.7
Oct 15	114.0	111.9	116.6
Oct 16	115.4	114.6	117.0
Oct 17	115.6	114.1	117.7
Oct 18	116.1	115.0	117.8
Oct 19	115.5	114.6	116.2
Oct 20	115.3	113.9	117.2
Oct 21	114.5	112.9	116.6
Oct 22	115.1	114.0	116.3
Oct 23	115.2	113.8	117.6
Oct 24	115.3	113.5	117.2
Oct 25	115.2	113.8	116.8
Oct 26	114.0	113.2	114.7
Oct 27	112.1	111.2	112.7
Oct 28	115.2	112.7	116.8
Oct 29	115.8	115.1	117.1
Oct 30	115.9	115.6	116.4
Summary	114.0	112.1	116.1

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	73.0	62.0	90.6
Oct 2	69.7	58.8	88.5
Oct 3	66.4	53.3	87.8
Oct 4	68.0	54.8	90.4
Oct 5	67.8	53.8	90.4
Oct 6	71.3	59.0	94.2
Oct 7	67.9	62.2	79.7
Oct 8	68.7	56.5	81.4
Oct 9	61.8	50.0	81.2
Oct 10	59.4	46.0	81.9
Oct 11	59.7	48.0	79.7
Oct 12	60.9	48.4	77.1
Oct 13	65.6	55.9	84.2
Oct 14	62.3	48.8	85.1
Oct 15	62.0	47.9	83.0
Oct 16	61.0	51.5	80.0
Oct 17	58.9	44.1	82.5
Oct 18	63.8	49.6	86.4
Oct 19	58.0	48.6	68.3
Oct 20	53.7	41.3	76.8
Oct 21	52.3	38.2	72.8
Oct 22	54.3	43.7	72.0
Oct 23	49.8	35.8	70.8
Oct 24	49.3	34.9	75.9
Oct 25	52.9	36.6	83.1
Oct 26	55.4	45.0	71.6
Oct 27	47.7	45.2	50.9
Oct 28	52.1	46.3	66.7
Oct 29	51.5	46.5	63.2
Oct 30	48.5	46.2	52.4
Summary	59.8	47.7	73.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	140.4	139.9	141.2
Oct 2	140.1	139.2	141.1
Oct 3	139.5	124.6	141.4
Oct 4	140.4	139.8	141.7
Oct 5	140.2	139.5	140.9
Oct 6	140.4	139.8	141.7
Oct 7	140.4	140.0	140.9
Oct 8	139.9	138.9	140.8
Oct 9	139.4	138.4	140.2
Oct 10	139.8	138.8	141.9
Oct 11	139.3	138.6	140.0
Oct 12	139.6	138.8	140.3
Oct 13	139.8	139.2	140.3
Oct 14	139.7	138.9	140.5
Oct 15	140.5	139.4	141.8
Oct 16	141.0	140.5	141.4
Oct 17	141.0	140.6	141.5
Oct 18	141.2	140.8	141.9
Oct 19	140.6	139.9	141.2
Oct 20	139.9	138.4	140.6
Oct 21	139.4	138.9	140.1
Oct 22	139.6	138.7	141.2
Oct 23	139.9	138.8	141.3
Oct 24	139.7	138.6	141.0
Oct 25	139.6	137.2	141.2
Oct 26	138.9	138.2	139.6
Oct 27	138.0	137.2	138.9
Oct 28	140.0	138.1	140.9
Oct 29	140.2	138.7	140.9
Oct 30	140.2	139.6	140.8
Summary	139.9	138.0	141.2

		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	136.6	135.0	138.8
Oct 2	135.6	134.0	138.7
Oct 3	135.9	133.5	138.6
Oct 4	136.8	135.2	139.5
Oct 5	136.5	135.1	138.9
Oct 6	137.1	135.6	139.9
Oct 7	137.0	136.3	138.3
Oct 8	135.4	132.8	137.0
Oct 9	134.6	132.8	137.0
Oct 10	135.7	132.9	141.2
Oct 11	134.1	132.7	135.6
Oct 12	134.9	133.6	136.5
Oct 13	135.4	134.2	137.1
Oct 14	135.2	132.6	138.0
Oct 15	137.9	134.4	141.7
Oct 16	139.6	138.9	140.7
Oct 17	139.6	138.2	141.2
Oct 18	140.3	139.2	142.0
Oct 19	138.4	134.6	140.0
Oct 20	135.6	128.6	138.7
Oct 21	135.0	133.4	138.6
Oct 22	135.4	132.2	139.3
Oct 23	135.3	132.2	140.2
Oct 24	134.9	129.2	139.0
Oct 25	135.0	128.9	139.3
Oct 26	133.6	132.3	134.9
Oct 27	132.3	129.8	133.7
Oct 28	137.1	133.1	139.6
Oct 29	137.3	132.8	138.8
Oct 30	136.7	135.3	138.3
Summary	136.2	132.3	140.3

		· · · · · · · · · · · · · · · · · ·	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	110.2	109.1	111.9
Oct 2	109.9	109.0	111.2
Oct 3	109.3	100.9	111.4
Oct 4	109.9	108.9	111.5
Oct 5	109.9	108.9	111.3
Oct 6	110.2	109.2	111.8
Oct 7	109.8	109.5	110.7
Oct 8	110.3	109.1	111.8
Oct 9	110.6	109.8	111.9
Oct 10	110.6	109.4	112.6
Oct 11	110.0	109.3	111.3
Oct 12	109.9	109.2	110.8
Oct 13	110.2	109.6	111.5
Oct 14	110.1	109.3	111.5
Oct 15	110.5	109.1	112.2
Oct 16	111.2	110.7	112.0
Oct 17	111.7	111.0	112.8
Oct 18	112.5	111.8	113.4
Oct 19	112.5	112.1	112.8
Oct 20	112.3	111.7	113.1
Oct 21	111.8	111.3	112.7
Oct 22	111.8	110.8	112.8
Oct 23	112.3	111.4	113.7
Oct 24	113.0	111.9	114.0
Oct 25	113.6	112.6	114.3
Oct 26	112.5	111.6	113.0
Oct 27	111.6	111.3	111.9
Oct 28	112.9	112.1	113.4
Oct 29	113.7	113.0	114.5
Oct 30	113.9	113.5	114.2
Summary	111.3	109.3	113.9

		, <u></u>	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	126.5	124.2	129.2
Oct 2	124.1	121.7	128.3
Oct 3	125.0	120.2	129.5
Oct 4	126.9	124.4	131.0
Oct 5	125.6	124.0	128.9
Oct 6	126.5	124.9	130.7
Oct 7	127.5	125.9	129.4
Oct 8	124.3	121.2	127.2
Oct 9	122.7	118.9	126.0
Oct 10	124.1	120.3	129.6
Oct 11	125.7	122.0	129.4
Oct 12	126.9	124.2	128.6
Oct 13	126.2	122.8	128.6
Oct 14	124.5	120.7	128.1
Oct 15	126.4	123.4	130.9
Oct 16	125.0	123.4	126.3
Oct 17	124.4	121.1	126.6
Oct 18	124.3	122.6	126.2
Oct 19	122.2	117.2	124.9
Oct 20	119.7	115.9	122.6
Oct 21	122.8	120.1	126.2
Oct 22	122.5	119.1	126.3
Oct 23	122.1	119.9	125.5
Oct 24	119.8	114.6	124.6
Oct 25	121.1	112.4	125.3
Oct 26	121.1	116.8	125.0
Oct 27	118.9	116.0	121.4
Oct 28	123.4	120.7	125.4
Oct 29	123.5	118.4	126.6
Oct 30	121.8	118.7	125.7
Summary	123.9	118.9	127.5

_		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	124.1	122.7	125.8
Oct 2	123.6	122.0	125.4
Oct 3	123.7	117.9	125.9
Oct 4	124.4	123.3	126.3
Oct 5	124.1	123.0	125.4
Oct 6	124.4	123.2	126.3
Oct 7	124.4	123.6	125.2
Oct 8	123.4	122.0	124.2
Oct 9	123.0	121.0	124.6
Oct 10	123.7	121.8	126.6
Oct 11	123.4	122.0	125.0
Oct 12	123.5	122.5	124.6
Oct 13	123.6	122.4	125.0
Oct 14	123.5	121.8	125.3
Oct 15	124.4	122.8	126.7
Oct 16	125.2	124.4	126.2
Oct 17	125.4	123.7	126.6
Oct 18	125.8	124.8	126.9
Oct 19	124.5	121.5	126.0
Oct 20	123.9	122.2	124.9
Oct 21	123.1	122.0	124.8
Oct 22	123.1	121.6	125.2
Oct 23	123.5	121.6	125.6
Oct 24	123.3	122.3	124.9
Oct 25	123.5	121.1	125.0
Oct 26	122.7	121.6	123.8
Oct 27	121.0	119.4	122.5
Oct 28	123.5	120.3	124.6
Oct 29	124.0	121.6	124.9
Oct 30	123.5	122.4	124.5
Summary	123.8	121.0	125.8

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	126.5	126.2	127.1
Oct 2	126.4	126.1	126.8
Oct 3	126.4	126.0	126.8
Oct 4	126.4	126.0	127.0
Oct 5	126.4	125.9	126.9
Oct 6	126.4	126.1	127.0
Oct 7	126.3	126.1	126.5
Oct 8	126.2	125.9	126.5
Oct 9	126.1	125.8	126.7
Oct 10	126.1	125.7	126.9
Oct 11	125.9	125.6	126.3
Oct 12	126.0	125.7	126.4
Oct 13	126.1	125.8	126.6
Oct 14	126.0	125.7	126.6
Oct 15	126.1	125.7	126.9
Oct 16	126.1	125.9	126.4
Oct 17	126.2	125.9	126.6
Oct 18	126.4	126.2	126.8
Oct 19	126.6	126.4	126.8
Oct 20	126.8	126.5	127.1
Oct 21	126.4	126.2	126.8
Oct 22	126.4	126.2	126.6
Oct 23	126.4	126.0	126.9
Oct 24	126.5	126.0	127.0
Oct 25	126.5	126.1	127.0
Oct 26	126.3	126.0	126.5
Oct 27	126.1	125.9	126.2
Oct 28	126.5	126.0	126.9
Oct 29	126.5	126.2	126.7
Oct 30	126.1	126.0	126.3
Summary	126.3	125.9	126.8

		,g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	75.7	60.5	97.3
Oct 2	71.2	56.8	89.3
Oct 3	68.5	50.7	90.4
Oct 4	71.9	52.9	96.5
Oct 5	70.8	53.6	94.4
Oct 6	75.1	59.7	98.1
Oct 7	70.0	62.6	87.1
Oct 8	68.8	55.4	83.6
Oct 9	63.8	48.9	85.1
Oct 10	62.9	45.6	84.0
Oct 11	62.7	48.3	79.7
Oct 12	64.1	48.5	82.6
Oct 13	69.4	57.1	90.4
Oct 14	65.6	49.4	87.5
Oct 15	65.7	48.2	89.9
Oct 16	64.1	51.4	84.5
Oct 17	63.9	44.6	89.1
Oct 18	69.6	50.3	92.8
Oct 19	60.2	47.1	73.5
Oct 20	55.3	40.0	76.3
Oct 21	55.0	39.1	77.8
Oct 22	57.6	45.2	70.9
Oct 23	55.0	38.0	76.8
Oct 24	52.3	36.4	74.9
Oct 25	55.1	38.5	77.1
Oct 26	56.8	49.8	69.7
Oct 27	48.6	45.5	50.6
Oct 28	52.6	45.7	67.2
Oct 29	51.6	46.1	65.3
Oct 30	47.6	45.0	52.0
Summary	62.4	47.6	75.7

_		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	111.8	107.5	117.5
Oct 2	110.0	105.7	115.6
Oct 3	109.5	104.8	115.9
Oct 4	111.4	107.6	117.2
Oct 5	110.6	105.0	116.1
Oct 6	111.7	108.4	117.5
Oct 7	111.4	108.3	113.5
Oct 8	109.5	106.1	114.4
Oct 9	108.8	104.4	115.1
Oct 10	108.6	103.2	115.5
Oct 11	109.6	105.2	115.3
Oct 12	109.4	103.3	114.6
Oct 13	109.9	104.7	114.8
Oct 14	108.4	101.1	114.8
Oct 15	109.1	100.8	116.8
Oct 16	108.2	104.8	112.8
Oct 17	106.1	103.0	111.5
Oct 18	106.9	104.3	111.4
Oct 19	102.4	97.3	105.7
Oct 20	100.5	91.5	105.2
Oct 21	100.2	97.2	104.7
Oct 22	100.5	93.9	106.5
Oct 23	100.6	94.8	109.4
Oct 24	100.8	89.3	106.4
Oct 25	104.8	93.6	111.9
Oct 26	108.5	106.5	111.8
Oct 27	106.5	101.4	108.7
Oct 28	110.4	105.0	113.0
Oct 29	109.9	107.8	111.6
Oct 30	107.3	105.0	110.0
Summary	107.4	100.2	111.8

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	76.7	61.4	98.6
Oct 2	71.9	58.1	92.4
Oct 3	69.9	52.0	94.8
Oct 4	73.0	54.1	100.7
Oct 5	71.4	55.1	91.5
Oct 6	75.4	60.9	99.5
Oct 7	70.7	63.6	85.2
Oct 8	69.6	56.3	84.7
Oct 9	64.6	50.2	84.7
Oct 10	64.2	46.9	90.7
Oct 11	64.4	49.2	85.4
Oct 12	65.0	49.8	79.1
Oct 13	70.0	58.4	87.2
Oct 14	66.4	50.1	89.6
Oct 15	66.5	48.8	88.6
Oct 16	65.0	52.5	87.3
Oct 17	64.8	45.6	91.3
Oct 18	70.0	51.2	95.6
Oct 19	61.2	48.5	71.8
Oct 20	56.3	40.8	81.5
Oct 21	56.1	39.9	77.2
Oct 22	58.8	46.5	74.4
Oct 23	56.1	39.5	78.8
Oct 24	54.2	37.6	78.3
Oct 25	55.8	39.6	81.4
Oct 26	57.6	50.6	71.9
Oct 27	48.8	45.6	50.8
Oct 28	52.4	45.9	65.3
Oct 29	51.7	46.1	66.2
Oct 30	48.0	45.3	53.2
Summary	63.2	48.0	76.7

		,g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	74.0	58.5	97.1
Oct 2	68.7	54.0	89.0
Oct 3	66.4	47.6	91.1
Oct 4	68.2	50.3	96.7
Oct 5	69.2	51.5	95.9
Oct 6	71.8	57.2	98.9
Oct 7	69.1	60.5	86.0
Oct 8	67.6	51.0	84.1
Oct 9	61.9	46.5	84.3
Oct 10	60.4	43.0	85.0
Oct 11	61.2	45.9	84.4
Oct 12	62.7	45.3	81.2
Oct 13	68.0	54.2	90.8
Oct 14	64.6	46.1	89.8
Oct 15	63.8	44.7	89.1
Oct 16	61.7	46.7	85.4
Oct 17	60.6	40.6	88.4
Oct 18	66.6	46.8	90.8
Oct 19	58.4	45.2	72.6
Oct 20	52.8	36.7	75.0
Oct 21	54.6	36.1	78.6
Oct 22	54.9	41.1	71.6
Oct 23	51.0	33.2	74.4
Oct 24	48.6	31.7	74.2
Oct 25	51.3	35.5	80.1
Oct 26	55.5	47.3	69.8
Oct 27	47.4	44.7	49.7
Oct 28	51.5	44.6	67.8
Oct 29	50.2	44.3	61.6
Oct 30	47.0	44.7	51.5
Summary	60.3	47.0	74.0

		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	169.1	168.1	169.9
Oct 2	167.3	165.3	168.1
Oct 3	167.2	154.9	169.2
Oct 4	168.4	167.2	170.5
Oct 5	167.5	165.9	168.9
Oct 6	168.1	165.6	169.7
Oct 7	168.9	168.2	169.8
Oct 8	166.2	162.1	168.5
Oct 9	166.1	163.6	168.0
Oct 10	154.0	95.8	178.3
Oct 11	170.9	168.0	173.2
Oct 12	170.6	168.4	172.1
Oct 13	169.6	167.0	171.3
Oct 14	168.0	164.0	169.5
Oct 15	144.8	85.1	169.7
Oct 16	93.5	83.4	111.2
Oct 17	104.4	79.2	134.5
Oct 18	115.8	88.4	139.2
Oct 19	97.0	56.8	123.7
Oct 20	132.0	56.8	185.0
Oct 21	179.9	175.6	182.1
Oct 22	174.9	166.0	183.0
Oct 23	161.2	83.7	181.6
Oct 24	164.8	66.2	180.8
Oct 25	143.8	51.7	181.7
Oct 26	174.7	171.8	176.5
Oct 27	172.8	170.5	174.9
Oct 28	158.2	123.1	172.5
Oct 29	164.6	110.9	176.1
Oct 30	158.7	146.8	169.2
Summary	156.1	93.5	179.9

_		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	171.0	169.9	172.5
Oct 2	169.9	168.7	171.1
Oct 3	170.1	168.2	171.8
Oct 4	170.8	169.8	172.7
Oct 5	170.4	168.5	171.9
Oct 6	170.6	169.5	171.9
Oct 7	171.1	170.2	172.0
Oct 8	169.5	167.9	171.0
Oct 9	169.7	168.1	170.9
Oct 10	170.6	169.0	174.0
Oct 11	170.3	168.6	172.2
Oct 12	171.1	170.2	171.8
Oct 13	170.8	170.2	171.5
Oct 14	169.9	168.1	170.8
Oct 15	171.9	169.9	174.8
Oct 16	162.1	84.3	174.3
Oct 17	171.0	167.3	173.3
Oct 18	159.0	150.1	165.9
Oct 19	133.3	98.8	149.7
Oct 20	146.4	104.7	173.8
Oct 21	170.0	167.4	171.7
Oct 22	169.2	164.4	174.1
Oct 23	170.7	167.1	173.9
Oct 24	170.4	168.1	174.2
Oct 25	170.7	167.8	174.2
Oct 26	169.9	168.0	171.4
Oct 27	169.8	168.0	170.7
Oct 28	173.0	169.6	174.6
Oct 29	173.0	171.2	173.7
Oct 30	168.1	161.4	173.4
Summary	167.8	133.3	173.0

_		· · · · · · · · · · · · · · · · · ·	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	162.6	161.2	163.5
Oct 2	160.9	159.4	162.1
Oct 3	161.1	159.1	163.0
Oct 4	161.0	158.8	163.4
Oct 5	160.1	158.2	162.1
Oct 6	160.3	158.2	162.3
Oct 7	160.8	159.6	162.1
Oct 8	155.8	150.2	160.4
Oct 9	155.8	152.1	160.7
Oct 10	158.7	146.3	172.3
Oct 11	163.8	159.8	165.8
Oct 12	163.4	160.4	166.6
Oct 13	159.5	152.7	164.2
Oct 14	156.7	150.9	161.2
Oct 15	156.2	147.2	166.6
Oct 16	155.7	148.1	162.4
Oct 17	156.1	145.3	163.9
Oct 18	157.0	150.3	165.1
Oct 19	135.5	81.7	165.0
Oct 20	153.7	100.1	178.8
Oct 21	168.0	163.0	170.9
Oct 22	164.8	161.2	169.7
Oct 23	160.8	144.0	167.2
Oct 24	159.9	128.9	169.7
Oct 25	156.0	123.1	169.5
Oct 26	165.6	160.3	169.0
Oct 27	161.6	155.9	166.8
Oct 28	159.3	138.2	170.4
Oct 29	164.3	129.3	171.4
Oct 30	161.5	150.8	171.8
Summary	159.2	135.5	168.0

		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	161.3	160.7	161.9
Oct 2	160.8	160.2	161.4
Oct 3	157.6	91.9	161.8
Oct 4	160.7	160.2	161.6
Oct 5	160.5	160.0	161.2
Oct 6	160.6	160.0	161.5
Oct 7	160.6	160.3	161.0
Oct 8	160.1	159.7	160.6
Oct 9	159.8	159.1	160.5
Oct 10	160.7	155.4	166.3
Oct 11	160.5	159.8	160.9
Oct 12	160.5	160.2	160.9
Oct 13	160.4	160.0	161.0
Oct 14	160.1	159.7	161.0
Oct 15	161.1	159.7	164.3
Oct 16	166.5	163.6	169.7
Oct 17	168.3	165.5	170.6
Oct 18	169.6	167.6	171.8
Oct 19	168.5	154.1	171.5
Oct 20	166.2	161.4	173.0
Oct 21	160.8	158.7	161.5
Oct 22	160.6	158.4	162.2
Oct 23	159.8	147.2	165.0
Oct 24	158.5	146.9	163.5
Oct 25	158.2	147.6	163.9
Oct 26	160.0	159.5	160.5
Oct 27	159.6	159.1	159.9
Oct 28	161.5	157.9	164.3
Oct 29	164.6	160.5	168.0
Oct 30	165.2	164.0	166.1
Summary	161.8	157.6	169.6

		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	147.5	82.4	153.7
Oct 2	151.2	148.1	154.7
Oct 3	151.6	148.1	154.7
Oct 4	153.5	150.2	158.6
Oct 5	154.3	151.9	156.8
Oct 6	154.7	152.5	157.6
Oct 7	154.7	153.0	156.3
Oct 8	152.7	150.7	153.9
Oct 9	152.8	150.3	156.3
Oct 10	138.8	95.8	153.1
Oct 11	150.3	147.5	153.3
Oct 12	152.5	150.6	155.1
Oct 13	152.6	149.2	154.6
Oct 14	152.5	149.7	156.3
Oct 15	125.4	55.0	155.0
Oct 16	61.3	50.3	85.6
Oct 17	59.3	44.1	88.8
Oct 18	74.6	51.8	96.3
Oct 19	72.8	46.4	89.8
Oct 20	98.8	39.1	155.9
Oct 21	150.7	122.1	153.7
Oct 22	140.7	90.7	152.1
Oct 23	135.3	70.9	151.5
Oct 24	136.1	37.2	151.0
Oct 25	115.7	37.4	150.7
Oct 26	154.4	150.5	157.5
Oct 27	154.3	152.3	155.5
Oct 28	114.7	99.0	154.1
Oct 29	122.5	84.8	140.7
Oct 30	123.2	106.9	134.1
Summary	132.0	59.3	154.7

_		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	144.8	144.0	145.8
Oct 2	144.0	143.3	145.1
Oct 3	144.1	141.2	145.7
Oct 4	144.4	143.4	145.8
Oct 5	144.1	143.2	145.4
Oct 6	144.4	143.5	146.0
Oct 7	144.5	143.2	145.1
Oct 8	144.0	143.0	144.5
Oct 9	143.6	142.8	144.7
Oct 10	143.6	132.6	147.6
Oct 11	144.9	143.9	145.9
Oct 12	145.0	144.5	145.7
Oct 13	144.9	144.1	145.7
Oct 14	144.4	143.6	145.5
Oct 15	144.0	141.9	145.6
Oct 16	146.1	143.5	150.0
Oct 17	147.9	144.6	150.9
Oct 18	149.7	146.3	152.8
Oct 19	148.5	141.1	151.4
Oct 20	147.1	144.2	151.8
Oct 21	145.7	142.2	146.9
Oct 22	144.6	140.1	147.6
Oct 23	143.6	128.2	149.8
Oct 24	142.3	128.3	146.0
Oct 25	141.0	127.6	146.1
Oct 26	144.0	143.1	145.0
Oct 27	143.4	142.9	144.4
Oct 28	141.4	138.4	143.6
Oct 29	145.2	141.1	148.2
Oct 30	145.8	142.0	147.8
Summary	144.7	141.0	149.7

		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	91.8	81.3	107.6
Oct 2	87.6	79.0	102.9
Oct 3	85.9	71.1	103.1
Oct 4	88.9	74.5	109.1
Oct 5	86.9	74.2	103.5
Oct 6	90.9	78.5	110.6
Oct 7	89.7	83.3	102.4
Oct 8	96.8	80.8	114.4
Oct 9	96.8	86.5	105.2
Oct 10	89.9	82.6	101.9
Oct 11	88.0	77.4	96.1
Oct 12	87.8	80.9	97.6
Oct 13	90.1	81.5	104.8
Oct 14	86.6	77.5	101.9
Oct 15	85.6	75.0	102.2
Oct 16	81.0	72.6	95.8
Oct 17	80.4	63.2	98.5
Oct 18	85.1	69.3	102.1
Oct 19	75.4	60.9	84.5
Oct 20	83.9	61.2	107.9
Oct 21	89.8	69.2	105.2
Oct 22	85.4	71.9	92.5
Oct 23	85.2	65.7	92.5
Oct 24	83.4	58.8	98.9
Oct 25	80.5	57.0	99.0
Oct 26	84.3	79.1	91.4
Oct 27	71.9	65.6	78.4
Oct 28	66.2	60.2	73.8
Oct 29	66.8	58.7	76.8
Oct 30	64.2	57.1	71.2
Summary	84.2	64.2	96.8

		, vii gii iid	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	172.6	171.5	173.9
Oct 2	171.4	170.3	172.3
Oct 3	171.5	170.5	172.7
Oct 4	171.8	170.9	172.6
Oct 5	171.5	170.6	172.2
Oct 6	171.5	170.7	172.4
Oct 7	171.8	171.3	172.5
Oct 8	171.4	170.7	172.4
Oct 9	171.1	170.0	172.0
Oct 10	174.8	170.0	185.1
Oct 11	173.6	172.3	174.4
Oct 12	173.3	172.2	174.1
Oct 13	172.9	172.2	173.7
Oct 14	172.0	171.2	172.9
Oct 15	176.2	171.2	185.4
Oct 16	175.8	167.9	182.3
Oct 17	182.3	179.5	184.4
Oct 18	188.9	184.3	190.4
Oct 19	176.7	135.6	189.8
Oct 20	180.6	169.9	189.1
Oct 21	175.0	173.0	177.4
Oct 22	174.7	171.5	183.0
Oct 23	174.3	169.8	183.9
Oct 24	172.8	170.7	181.4
Oct 25	172.7	141.3	180.5
Oct 26	173.8	173.1	174.4
Oct 27	172.8	171.7	173.9
Oct 28	181.0	171.7	185.0
Oct 29	183.1	181.7	184.0
Oct 30	182.0	180.8	182.5
Summary	175.1	171.1	188.9

_		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	199.7	199.4	199.8
Oct 2	199.7	199.5	200.0
Oct 3	199.9	199.6	200.2
Oct 4	200.0	199.7	200.4
Oct 5	200.0	199.7	200.3
Oct 6	200.1	199.8	200.4
Oct 7	200.0	199.1	200.3
Oct 8	199.5	198.5	200.2
Oct 9	199.6	198.3	200.4
Oct 10	198.8	195.7	200.3
Oct 11	200.3	200.1	200.5
Oct 12	200.2	200.0	200.4
Oct 13	200.1	199.9	200.4
Oct 14	200.0	199.8	200.2
Oct 15	198.2	196.5	200.0
Oct 16	196.2	195.8	196.5
Oct 17	196.0	195.6	196.5
Oct 18	195.9	195.6	196.4
Oct 19	195.2	194.2	195.9
Oct 20	195.1	194.4	195.6
Oct 21	194.9	194.3	195.4
Oct 22	194.3	193.6	195.2
Oct 23	194.5	193.8	194.9
Oct 24	194.6	194.2	195.0
Oct 25	196.1	194.0	199.8
Oct 26	199.8	199.6	199.9
Oct 27	199.6	199.0	199.8
Oct 28	199.8	199.4	200.0
Oct 29	199.8	199.5	200.0
Oct 30	199.5	199.4	199.8
Summary	198.2	194.3	200.3

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	134.4	133.8	135.2
Oct 2	133.9	133.3	134.7
Oct 3	133.8	131.1	134.9
Oct 4	134.1	133.5	135.0
Oct 5	134.0	133.3	134.8
Oct 6	134.1	133.4	135.2
Oct 7	134.1	133.8	134.6
Oct 8	133.8	133.3	134.3
Oct 9	133.5	132.5	134.4
Oct 10	130.7	113.1	136.3
Oct 11	133.9	133.2	134.5
Oct 12	134.1	133.6	134.8
Oct 13	134.1	133.4	135.1
Oct 14	133.8	133.1	134.7
Oct 15	128.7	116.8	134.7
Oct 16	120.6	116.3	127.3
Oct 17	119.2	108.3	130.1
Oct 18	122.3	116.0	132.9
Oct 19	112.7	89.1	125.5
Oct 20	123.5	100.8	142.0
Oct 21	135.3	122.3	136.3
Oct 22	133.7	126.9	136.1
Oct 23	127.1	94.5	136.4
Oct 24	125.9	74.4	136.0
Oct 25	119.7	76.5	136.6
Oct 26	133.8	133.3	134.4
Oct 27	133.3	132.8	133.9
Oct 28	124.6	97.5	133.6
Oct 29	127.8	88.4	134.1
Oct 30	128.3	125.2	130.9
Summary	129.6	112.7	135.3

		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	159.9	158.8	160.8
Oct 2	158.9	157.5	159.8
Oct 3	158.8	147.8	160.4
Oct 4	159.5	158.1	161.6
Oct 5	159.1	157.7	160.1
Oct 6	159.5	157.5	161.1
Oct 7	160.0	158.9	161.0
Oct 8	158.4	154.8	160.0
Oct 9	157.8	155.6	159.8
Oct 10	158.4	150.1	163.9
Oct 11	159.3	157.2	160.6
Oct 12	159.5	158.2	161.2
Oct 13	159.4	156.3	160.8
Oct 14	158.7	155.8	160.5
Oct 15	159.1	156.4	162.3
Oct 16	162.9	160.8	164.8
Oct 17	163.4	161.4	166.1
Oct 18	164.1	161.6	167.1
Oct 19	160.5	140.2	166.3
Oct 20	163.3	159.6	166.4
Oct 21	161.8	159.5	163.8
Oct 22	160.4	151.5	166.4
Oct 23	112.8	51.8	166.8
Oct 24	60.4	49.0	81.3
Oct 25	125.9	50.0	180.8
Oct 26	163.9	161.3	167.1
Oct 27	158.9	155.9	161.6
Oct 28	157.3	151.8	161.2
Oct 29	160.2	157.8	161.8
Oct 30	159.3	154.5	163.9
Summary	154.0	60.4	164.1

_			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	168.3	163.8	174.6
Oct 2	161.1	148.3	170.6
Oct 3	159.6	144.1	168.5
Oct 4	164.5	154.5	175.8
Oct 5	161.4	145.0	172.1
Oct 6	166.4	161.6	175.2
Oct 7	170.5	163.6	175.9
Oct 8	154.0	125.8	168.9
Oct 9	156.3	143.2	168.2
Oct 10	157.3	140.8	169.8
Oct 11	160.1	142.6	172.6
Oct 12	165.3	146.6	172.0
Oct 13	163.9	138.0	174.2
Oct 14	159.0	130.0	172.2
Oct 15	159.6	143.7	176.9
Oct 16	160.8	144.9	168.8
Oct 17	161.1	148.6	174.4
Oct 18	162.6	148.8	176.3
Oct 19	137.5	76.4	173.5
Oct 20	143.9	120.9	162.3
Oct 21	144.8	123.7	161.1
Oct 22	147.0	113.7	167.7
Oct 23	152.9	127.5	167.4
Oct 24	157.4	145.2	163.1
Oct 25	158.4	145.6	170.0
Oct 26	154.9	139.2	166.1
Oct 27	145.9	129.6	159.6
Oct 28	145.4	131.9	155.8
Oct 29	148.5	126.3	158.5
Oct 30	123.7	90.6	156.0
Summary	155.7	123.7	170.5

_		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	81.9	66.7	111.2
Oct 2	78.0	65.7	106.4
Oct 3	77.7	60.2	109.7
Oct 4	82.5	64.6	112.7
Oct 5	80.4	65.1	108.7
Oct 6	85.7	72.8	115.8
Oct 7	82.0	76.2	94.8
Oct 8	79.5	65.3	94.4
Oct 9	73.0	58.7	99.2
Oct 10	68.9	56.8	95.2
Oct 11	72.2	57.4	98.4
Oct 12	74.4	60.5	92.4
Oct 13	79.2	69.9	99.3
Oct 14	74.2	60.7	102.5
Oct 15	72.3	58.9	98.6
Oct 16	63.2	50.1	91.7
Oct 17	61.3	43.4	94.5
Oct 18	68.8	49.2	98.8
Oct 19	59.5	45.9	72.7
Oct 20	54.1	37.6	84.5
Oct 21	60.0	39.7	88.0
Oct 22	58.2	42.5	76.2
Oct 23	49.6	33.9	76.3
Oct 24	49.7	31.8	80.1
Oct 25	60.5	35.5	100.2
Oct 26	73.6	64.3	89.0
Oct 27	71.3	64.5	78.5
Oct 28	61.1	50.0	81.7
Oct 29	56.3	49.2	74.2
Oct 30	50.6	46.8	54.8
Summary	68.7	49.6	85.7

		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Oct 1	153.7	149.9	163.2
Oct 2	151.4	148.1	155.0
Oct 3	154.1	147.1	167.9
Oct 4	152.3	149.1	156.0
Oct 5	149.3	147.3	153.4
Oct 6	154.0	146.8	171.1
Oct 7	150.8	148.2	152.7
Oct 8	151.1	144.0	164.1
Oct 9	150.4	148.3	152.4
Oct 10	148.5	142.7	153.6
Oct 11	149.0	146.8	151.2
Oct 12	148.7	147.0	149.9
Oct 13	153.6	148.5	165.2
Oct 14	152.1	147.0	156.0
Oct 15	150.6	146.8	155.4
Oct 16	150.2	146.9	153.5
Oct 17	151.3	147.2	154.9
Oct 18	153.1	149.9	157.9
Oct 19	149.6	142.7	153.2
Oct 20	151.6	145.4	155.2
Oct 21	152.5	150.1	156.1
Oct 22	150.6	147.5	155.5
Oct 23	152.4	150.1	154.5
Oct 24	74.7	34.9	153.4
Oct 25	114.4	35.6	171.8
Oct 26	168.4	163.9	171.9
Oct 27	168.4	164.6	171.2
Oct 28	167.0	165.4	168.6
Oct 29	167.6	166.1	169.3
Oct 30	166.1	164.5	167.9
Summary	150.3	74.7	168.4

Directly vin girms								
Date	Average (°F)	Minimum (°F)	Maximum (°F)					
Oct 1	119.2	102.6	141.3					
Oct 2	123.5	110.5	141.3					
Oct 3	125.9	117.9	139.5					
Oct 4	126.3	119.4	132.9					
Oct 5	124.2	115.1	131.7					
Oct 6	124.0	115.3	130.4					
Oct 7	127.7	121.9	141.3					
Oct 8	124.2	111.4	140.6					
Oct 9	125.3	117.5	141.1					
Oct 10	120.2	94.9	136.5					
Oct 11	107.6	95.7	124.2					
Oct 12	112.0	102.8	125.8					
Oct 13	116.6	100.6	140.2					
Oct 14	117.9	97.6	141.1					
Oct 15	96.9	56.4	126.8					
Oct 16	61.6	47.6	85.7					
Oct 17	60.9	42.1	91.9					
Oct 18	66.3	47.4	95.7					
Oct 19	58.5	44.5	74.0					
Oct 20	86.5	36.6	138.8					
Oct 21	116.2	66.6	140.4					
Oct 22	77.6	42.2	102.4					
Oct 23	68.9	34.6	84.5					
Oct 24	63.3	32.4	88.0					
Oct 25	52.3	37.5	79.0					
Oct 26	55.6	47.4	70.5					
Oct 27	49.2	46.3	52.9					
Oct 28	63.0	44.8	86.9					
Oct 29	95.4	70.8	112.3					
Oct 30	65.7	54.4	84.6					
Summary	94.4	49.2	127.7					

Director, the girms.								
Date	Average (°F)	Minimum (°F)	Maximum (°F)					
Oct 1	141.8	140.4	142.6					
Oct 2	140.9	139.2	143.2					
Oct 3	141.1	139.1	143.8					
Oct 4	141.3	140.0	143.7					
Oct 5	141.2	139.0	143.2					
Oct 6	141.8	139.8	143.7					
Oct 7	142.2	141.3	143.4					
Oct 8	141.1	138.5	142.5					
Oct 9	140.5	138.3	142.2					
Oct 10	143.3	129.5	155.8					
Oct 11	143.1	141.1	144.4					
Oct 12	143.0	141.3	144.5					
Oct 13	143.6	141.8	145.0					
Oct 14	142.9	140.5	144.8					
Oct 15	146.7	141.8	157.0					
Oct 16	159.7	154.5	162.8					
Oct 17	158.0	154.6	162.3					
Oct 18	158.3	153.2	161.8					
Oct 19	141.3	55.1	161.1					
Oct 20	122.6	46.1	168.0					
Oct 21	152.6	147.6	158.2					
Oct 22	113.0	55.2	152.1					
Oct 23	56.6	39.3	76.7					
Oct 24	51.7	34.7	75.1					
Oct 25	114.4	37.4	178.5					
Oct 26	157.8	152.9	163.7					
Oct 27	148.3	144.2	152.7					
Oct 28	147.4	114.7	153.1					
Oct 29	150.7	132.5	156.2					
Oct 30	151.7	148.3	154.3					
Summary	137.3	51.7	159.7					

Diription, vin girma								
Date	Average (°F)	Minimum (°F)	Maximum (°F)					
Oct 1	157.4	156.6	158.5					
Oct 2	155.9	154.6	157.5					
Oct 3	156.3	154.1	158.7					
Oct 4	156.8	155.7	158.8					
Oct 5	156.4	154.0	157.9					
Oct 6	157.1	154.7	159.1					
Oct 7	157.7	156.8	158.5					
Oct 8	156.6	154.0	157.8					
Oct 9	155.7	153.0	157.7					
Oct 10	160.6	154.0	174.7					
Oct 11	159.1	157.4	160.7					
Oct 12	159.0	157.6	160.0					
Oct 13	159.1	156.8	160.1					
Oct 14	158.5	156.4	159.7					
Oct 15	163.8	157.7	175.8					
Oct 16	178.5	176.9	180.6					
Oct 17	177.8	175.2	180.9					
Oct 18	177.9	175.8	179.8					
Oct 19	163.7	49.2	179.5					
Oct 20	134.4	37.4	188.4					
Oct 21	171.4	164.7	178.8					
Oct 22	127.8	48.0	169.6					
Oct 23	103.0	36.7	160.3					
Oct 24	170.1	149.5	176.8					
Oct 25	175.5	162.6	188.1					
Oct 26	168.1	165.0	172.9					
Oct 27	160.6	156.8	164.0					
Oct 28	165.3	158.0	172.0					
Oct 29	168.9	165.5	174.1					
Oct 30	169.4	166.5	171.3					
Summary	159.4	103.0	178.5					

	Zineten, in ginne							
Date	Average (°F)	Minimum (°F)	Maximum (°F)					
Oct 1	74.9	58.7	100.2					
Oct 2	70.0	54.5	94.3					
Oct 3	67.5	49.0	96.6					
Oct 4	68.8	51.1	99.6					
Oct 5	68.8	51.5	100.6					
Oct 6	73.8	57.2	101.9					
Oct 7	74.2	61.0	88.5					
Oct 8	81.8	71.9	95.4					
Oct 9	75.5	60.9	94.5					
Oct 10	67.1	47.5	93.3					
Oct 11	63.7	48.9	87.8					
Oct 12	60.8	46.0	79.7					
Oct 13	68.3	54.7	91.8					
Oct 14	64.2	46.6	95.4					
Oct 15	63.5	45.1	93.6					
Oct 16	62.2	48.3	89.9					
Oct 17	58.5	41.3	92.8					
Oct 18	65.7	47.1	95.1					
Oct 19	57.9	46.1	70.5					
Oct 20	52.0	36.9	82.0					
Oct 21	52.0	35.9	74.3					
Oct 22	53.5	40.8	75.0					
Oct 23	49.8	34.0	76.1					
Oct 24	49.2	32.6	79.1					
Oct 25	51.7	35.0	82.9					
Oct 26	56.3	47.0	71.8					
Oct 27	47.9	45.3	50.9					
Oct 28	52.2	45.2	68.3					
Oct 29	50.7	44.9	64.7					
Oct 30	47.4	45.0	52.0					
Summary	61.7	47.4	81.8					

Director, the girms.								
Date	Average (°F)	Minimum (°F)	Maximum (°F)					
Oct 1	146.2	145.5	147.0					
Oct 2	145.8	145.2	146.6					
Oct 3	145.8	145.1	146.8					
Oct 4	146.0	145.5	146.8					
Oct 5	145.8	145.2	146.8					
Oct 6	146.0	145.3	147.1					
Oct 7	145.9	145.5	146.3					
Oct 8	145.6	144.9	145.9					
Oct 9	145.3	144.6	146.3					
Oct 10	142.4	130.2	145.9					
Oct 11	145.1	144.4	145.8					
Oct 12	145.0	144.6	145.7					
Oct 13	145.0	144.5	145.8					
Oct 14	144.9	144.2	145.8					
Oct 15	140.1	128.5	145.7					
Oct 16	132.4	128.8	137.8					
Oct 17	131.4	123.4	137.2					
Oct 18	133.1	127.8	139.5					
Oct 19	123.0	81.9	137.3					
Oct 20	135.1	117.7	151.4					
Oct 21	145.8	141.0	146.8					
Oct 22	143.4	133.5	146.1					
Oct 23	140.0	119.2	146.1					
Oct 24	136.6	86.0	145.9					
Oct 25	119.0	96.0	144.4					
Oct 26	121.1	98.9	130.2					
Oct 27	131.8	111.8	149.2					
Oct 28	136.0	115.8	145.3					
Oct 29	137.8	108.7	142.7					
Oct 30	137.1	134.3	139.4					
Summary	139.3	119.0	146.2					

	Dribtell, Tinglinia								
Date	Average (°F)	Minimum (°F)	Maximum (°F)						
Oct 1	159.2	158.7	159.9						
Oct 2	137.9	119.8	140.8						
Oct 3	158.5	150.1	159.8						
Oct 4	139.1	137.4	141.0						
Oct 5	159.1	158.4	159.8						
Oct 6	139.3	137.5	141.5						
Oct 7	159.5	159.2	159.9						
Oct 8	138.4	135.5	140.0						
Oct 9	158.9	158.1	159.6						
Oct 10	136.9	131.2	139.7						
Oct 11	159.6	158.8	160.3						
Oct 12	139.1	138.2	140.3						
Oct 13	160.1	159.7	160.8						
Oct 14	138.3	135.8	140.5						
Oct 15	159.2	157.6	160.4						
Oct 16	136.5	133.8	141.0						
Oct 17	161.2	157.9	163.3						
Oct 18	138.7	135.1	145.3						
Oct 19	162.1	156.1	165.0						
Oct 20	124.3	95.1	143.4						
Oct 21	161.8	160.8	162.3						
Oct 22	120.8	87.9	141.5						
Oct 23	159.5	151.3	162.0						
Oct 24	53.9	38.9	80.4						
Oct 25	159.4	151.8	163.3						
Oct 26	145.5	142.0	148.6						
Oct 27	160.9	160.3	161.4						
Oct 28	137.6	133.3	140.9						
Oct 29	162.6	159.0	164.2						
Oct 30	137.7	131.4	141.6						
Summary	160.3	158.5	163.2						

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

Appendix D Table of Contents

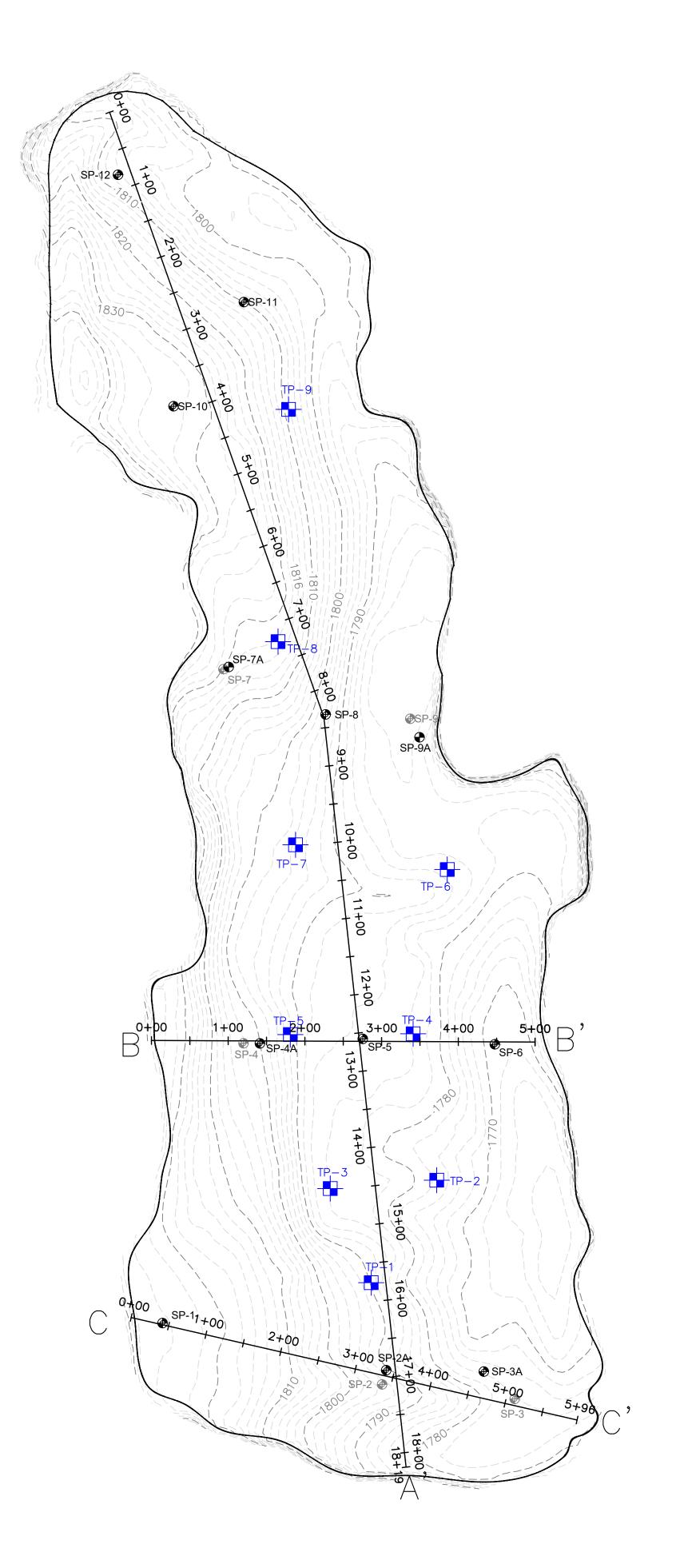
Sect	ion	Page
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 1	D-3
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 5	D-4
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 6	D-5
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 7	D-6
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 8	D-7
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 9	D-8

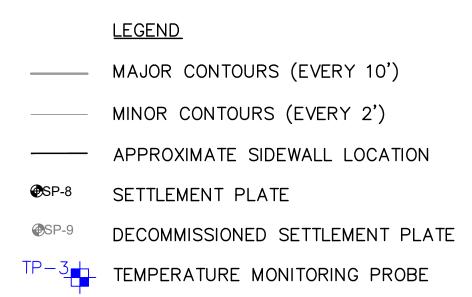
	Depth from Surface							
Date	25 ft 50 ft 75 ft 100 ft 125 ft 150 f							
1-Oct	165.8	223.9	224.1	237.1	248.1	263.6		
2-Oct	165.4	223.9	224.0	236.7	247.8	263.4		
3-Oct	165.3	223.9	224.0	236.5	247.5	263.3		
4-Oct	165.7	224.1	224.2	236.3	247.6	263.5		
5-Oct	165.5	224.2	224.3	236.2	247.6	263.5		
6-Oct	165.4	224.3	224.4	236.1	247.7	263.6		
7-Oct	165.7	224.4	224.4	236.0	247.6	263.5		
8-Oct	165.4	224.4	224.3	235.8	247.6	263.4		
9-Oct	165.0	224.2	224.2	235.2	247.4	263.2		
10-Oct	165.5	224.2	224.2	235.0	247.2	263.1		
11-Oct	165.6	224.2	224.2	234.8	247.3	263.2		
12-Oct	165.7	224.4	224.3	234.7	247.4	263.3		
13-Oct	165.5	224.6	224.5	234.8	247.5	263.4		
14-Oct	165.3	224.4	224.3	234.3	247.3	263.2		
15-Oct	165.6	224.3	224.4	233.7	247.3	263.1		
16-Oct	165.9	224.3	224.4	233.0	247.3	263.1		
17-Oct	165.6	224.0	224.2	232.4	247.2	262.9		
18-Oct	165.7	224.2	224.5	232.3	247.4	263.1		
19-Oct	165.6	223.8	224.3	232.0	247.3	262.9		
20-Oct	165.5	223.6	224.0	231.7	247.0	262.6		
21-Oct	165.5	223.6	224.1	231.9	247.2	262.8		
22-Oct	165.6	223.6	224.0	231.9	247.2	262.7		
23-Oct	165.6	223.4	223.9	231.8	247.2	262.5		
24-Oct	165.4	223.3	223.9	231.7	247.0	262.5		
25-Oct	165.7	223.6	224.2	231.8	247.2	262.8		
26-Oct	165.6	223.7	224.3	231.8	247.3	262.8		
27-Oct	165.0	223.4	224.0	231.6	247.0	262.5		
28-Oct	165.4	223.5	224.1	231.8	247.2	262.6		
29-Oct	165.5	223.5	224.1	231.8	247.2	262.5		
30-Oct	165.3	223.4	224.0	231.6	247.1	262.3		
31-Oct	165.3	223.4	223.9	231.5	247.1	262.3		
Average	165.5	223.9	224.2	233.7	247.3	263.0		

	Depth from Surface							
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Oct	181.4	211.4	211.5	226.0	235.0	237.5	209.9	204.3
2-Oct	181.0	210.9	210.5	225.8	234.8	237.4	209.8	204.2
3-Oct	180.5	208.4	207.7	225.6	234.7	237.3	209.7	204.1
4-Oct	178.6	206.6	206.1	225.2	234.9	237.4	209.9	204.3
5-Oct	176.4	203.8	203.2	223.1	234.7	237.2	209.7	204.2
6-Oct	175.0	204.7	204.1	221.0	234.6	237.4	210.0	204.4
7-Oct	174.5	203.3	202.8	219.5	234.3	237.1	209.8	204.1
8-Oct	173.4	201.3	200.8	215.9	234.0	237.1	209.8	204.2
9-Oct	172.7	200.7	200.6	208.4	232.1	236.9	209.7	204.0
10-Oct	172.9	199.2	199.0	208.2	231.7	236.9	209.7	204.0
11-Oct	174.7	199.0	198.5	207.8	231.5	236.8	209.8	204.0
12-Oct	174.6	198.3	197.6	207.6	231.0	236.7	209.8	203.9
13-Oct	175.0	198.0	197.4	207.3	231.1	236.8	210.1	204.2
14-Oct	175.5	197.8	197.1	207.5	230.6	236.7	210.2	204.3
15-Oct	175.7	198.4	197.8	207.5	230.4	236.7	210.3	204.2
16-Oct	176.2	198.3	197.8	207.4	230.1	236.6	210.5	204.1
17-Oct	176.6	198.9	198.3	207.2	229.8	236.4	210.4	204.0
18-Oct	177.5	199.0	198.4	207.5	229.8	236.6	210.7	204.2
19-Oct	177.2	199.4	198.7	207.0	229.3	236.1	210.4	203.8
20-Oct	178.6	202.5	202.2	207.7	229.1	236.1	210.4	203.8
21-Oct	180.2	203.5	203.3	207.2	228.8	235.8	210.2	203.6
22-Oct	181.4	204.1	203.8	207.5	228.7	235.8	210.4	203.6
23-Oct	182.6	204.9	204.4	208.0	228.4	235.5	210.3	203.5
24-Oct	183.4	206.1	205.6	208.0	228.2	235.6	210.4	203.6
25-Oct	185.8	206.3	205.9	208.2	228.2	235.6	210.5	203.6
26-Oct	190.1	206.8	206.6	208.3	228.1	235.6	210.6	203.6
27-Oct	191.5	206.5	206.4	208.2	227.8	235.2	210.4	203.4
28-Oct	191.9	206.6	206.6	208.4	227.7	235.4	210.6	203.6
29-Oct	191.5	206.2	206.2	207.9	227.4	235.1	210.5	203.4
30-Oct	191.4	206.1	206.2	207.7	227.3	235.1	210.6	203.4
31-Oct	191.6	206.1	206.3	207.6	226.9	234.9	210.5	203.2
Average	180.3	203.3	203.0	211.6	230.7	236.4	210.2	203.9

	Depth from Surface							
Date	25 ft	50 ft	75 ft	100 ft	125 ft			
1-Oct	202.4	194.9	*	194.6	194.8			
2-Oct	181.7	194.8	*	195.0	195.0			
3-Oct	176.5	195.1	*	196.3	196.0			
4-Oct	173.8	194.7	*	195.9	195.6			
5-Oct	169.1	196.0	*	197.0	196.7			
6-Oct	166.9	196.1	*	196.4	196.3			
7-Oct	182.4	195.1	*	195.1	195.0			
8-Oct	193.0	195.0	*	195.0	194.9			
9-Oct	193.6	196.0	*	196.1	196.0			
10-Oct	193.6	196.7	*	196.8	196.7			
11-Oct	193.3	195.5	*	195.9	195.8			
12-Oct	193.1	192.8	*	193.6	193.5			
13-Oct	193.4	192.4	*	193.8	193.7			
14-Oct	193.3	191.8	*	194.1	194.1			
15-Oct	193.2	189.6	*	192.7	192.5			
16-Oct	193.2	188.8	*	191.8	191.6			
17-Oct	193.1	188.8	*	191.6	191.4			
18-Oct	193.2	187.5	*	190.3	190.0			
19-Oct	192.9	186.0	*	188.6	188.4			
20-Oct	193.0	184.9	*	187.3	187.3			
21-Oct	192.7	187.1	*	189.5	189.5			
22-Oct	192.9	188.4	*	190.8	190.7			
23-Oct	192.9	187.4	*	189.7	189.6			
24-Oct	193.1	186.4	*	188.4	188.5			
25-Oct	193.2	187.3	*	189.2	189.3			
26-Oct	193.3	189.1	*	191.0	191.0			
27-Oct	192.7	185.3	*	187.1	187.2			
28-Oct	192.6	185.9	*	187.6	187.8			
29-Oct	192.1	185.4	*	187.1	187.2			
30-Oct	191.4	184.6	*	186.0	186.3			
31-Oct	190.9	184.7	*	185.8	186.0			
Average	189.8	190.5	N/A	191.9	191.9			

^{*} Indicates sensor reading issues

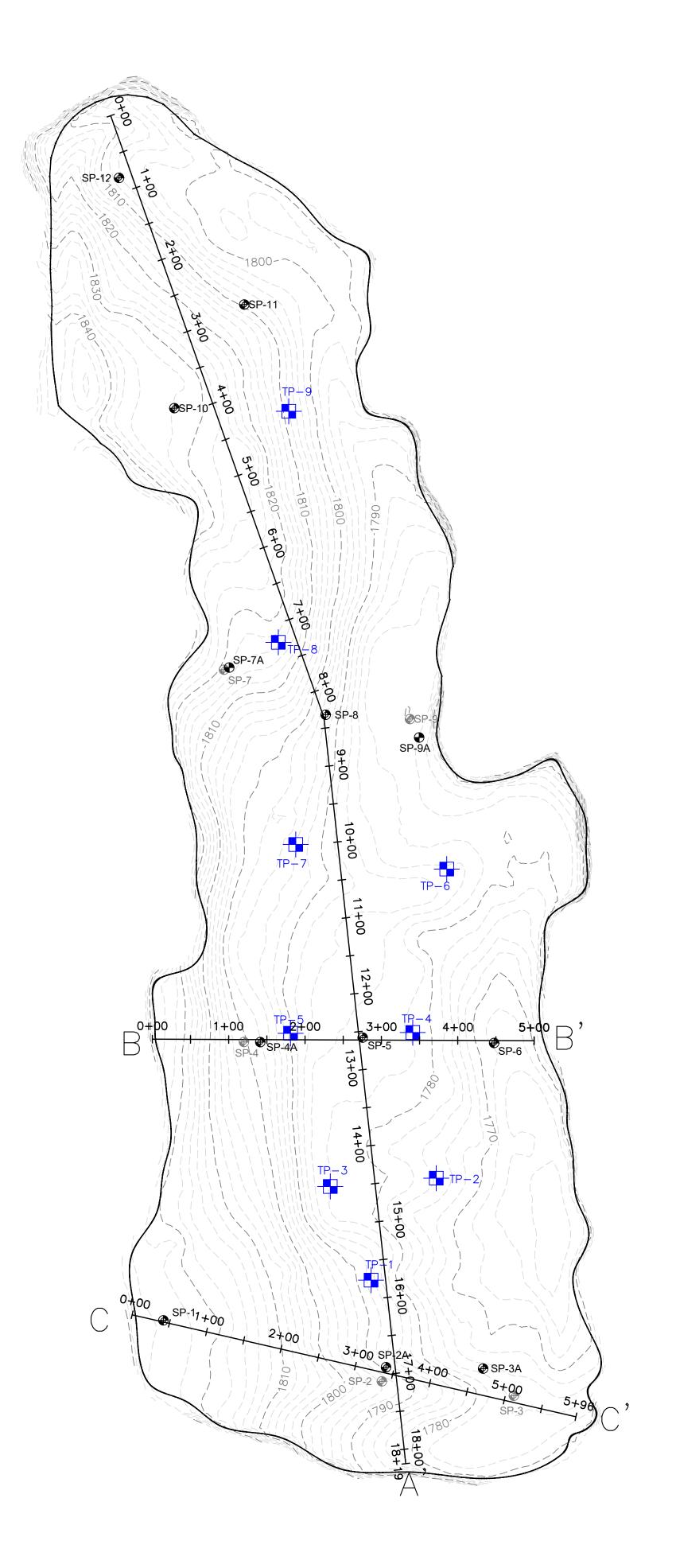

	Depth from Surface							
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Oct	143.4	191.7	205.6	195.5	192.9	195.9	202.1	207.0
2-Oct	143.3	192.1	205.4	195.9	193.3	196.2	202.1	206.0
3-Oct	143.2	192.1	205.4	195.9	193.3	196.2	201.6	205.8
4-Oct	143.2	192.1	205.1	195.8	193.4	196.3	201.2	205.6
5-Oct	143.4	192.2	205.3	195.9	193.5	196.3	201.6	205.9
6-Oct	143.4	192.3	205.5	196.0	193.5	196.3	202.0	205.9
7-Oct	143.3	192.0	205.0	195.6	193.0	196.0	202.0	205.7
8-Oct	143.4	191.9	205.3	195.6	193.0	196.0	202.6	206.2
9-Oct	143.1	192.0	205.3	195.5	193.0	196.0	202.5	205.6
10-Oct	143.2	192.2	205.3	195.6	193.0	195.9	202.3	206.8
11-Oct	143.2	192.1	204.7	195.3	192.9	195.6	202.0	206.4
12-Oct	143.2	192.2	204.6	195.0	192.7	195.3	201.5	205.3
13-Oct	143.4	193.1	204.7	195.4	193.2	195.7	201.8	205.5
14-Oct	143.3	192.9	205.0	195.6	193.2	195.8	202.2	207.9
15-Oct	143.3	192.5	204.6	195.5	193.1	195.9	202.1	208.0
16-Oct	143.2	192.4	204.4	195.2	192.7	195.6	202.0	207.0
17-Oct	143.2	192.6	204.4	195.2	192.6	195.4	202.2	208.0
18-Oct	143.3	192.7	204.6	195.2	192.7	195.6	202.1	208.8
19-Oct	143.1	192.2	204.1	194.6	192.1	194.8	201.3	210.1
20-Oct	142.9	192.4	204.4	195.0	192.4	195.0	201.9	214.1
21-Oct	143.0	191.5	204.1	194.8	192.1	194.7	201.8	214.0
22-Oct	143.0	191.5	204.2	194.8	192.2	194.8	201.7	208.5
23-Oct	142.8	191.7	204.3	195.1	192.3	195.1	201.8	213.1
24-Oct	143.0	191.6	204.5	195.3	192.6	195.4	201.9	211.3
25-Oct	143.0	192.6	204.4	195.4	192.8	195.3	202.0	211.0
26-Oct	143.1	193.4	204.3	195.4	193.2	195.4	201.6	211.9
27-Oct	142.8	193.1	203.9	195.1	192.9	195.1	201.2	210.7
28-Oct	143.1	192.3	204.2	195.0	192.5	194.9	201.9	208.6
29-Oct	143.0	192.2	203.6	194.5	192.2	194.6	201.3	207.2
30-Oct	142.9	192.2	203.4	194.4	192.0	194.7	200.9	206.6
31-Oct	142.8	192.5	203.7	194.6	192.1	194.7	201.1	206.4
Average	143.1	192.3	204.6	195.3	192.8	195.5	201.8	208.1


	Depth from Surface							
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Oct	186.7	193.5	193.8	196.2	199.3	199.5	188.0	171.2
2-Oct	185.9	193.4	193.7	196.2	199.3	199.4	187.9	171.1
3-Oct	186.1	193.4	193.6	196.1	199.3	199.3	187.8	171.0
4-Oct	186.2	193.4	193.7	196.1	199.3	199.4	188.0	171.1
5-Oct	186.0	193.4	193.7	196.1	199.4	199.3	187.9	171.0
6-Oct	186.2	193.6	193.9	196.3	199.5	199.5	188.0	171.2
7-Oct	186.4	193.4	193.7	196.1	199.4	199.4	188.0	171.1
8-Oct	186.1	193.4	193.7	196.1	199.4	199.5	188.0	171.1
9-Oct	186.1	193.2	193.5	195.9	199.2	199.2	187.6	170.7
10-Oct	187.1	193.2	193.5	195.9	199.2	199.2	187.6	170.8
11-Oct	188.0	193.1	193.4	195.8	199.1	199.2	187.6	170.7
12-Oct	187.9	193.1	193.4	195.7	199.1	199.2	187.6	170.6
13-Oct	188.1	193.3	193.6	195.9	199.2	199.4	187.8	171.0
14-Oct	188.3	193.2	193.5	195.8	199.1	199.2	187.6	170.7
15-Oct	188.1	193.2	193.5	195.8	199.2	199.2	187.6	170.6
16-Oct	188.6	193.2	193.5	195.8	199.2	199.2	187.6	170.6
17-Oct	188.2	193.1	193.4	195.7	199.0	199.1	187.5	170.4
18-Oct	188.6	193.3	193.6	195.9	199.3	199.4	187.8	170.9
19-Oct	188.0	193.0	193.3	195.5	198.9	199.1	187.5	170.5
20-Oct	188.2	192.9	193.2	195.6	198.9	199.0	187.4	170.4
21-Oct	187.8	192.8	193.1	195.4	198.8	198.9	187.3	170.3
22-Oct	188.2	192.9	193.2	195.5	198.9	199.0	187.4	170.5
23-Oct	188.0	192.8	193.1	195.5	198.8	198.8	187.2	170.4
24-Oct	186.7	192.9	193.2	195.6	198.9	198.8	187.3	170.4
25-Oct	186.9	193.0	193.3	195.7	199.0	199.0	187.5	170.5
26-Oct	185.9	193.0	193.3	195.8	199.1	199.1	187.4	170.5
27-Oct	185.1	192.8	193.1	195.4	198.9	198.8	187.2	170.2
28-Oct	186.4	192.9	193.2	195.5	199.0	199.0	187.4	170.4
29-Oct	186.8	192.7	193.1	195.3	198.8	198.9	187.3	170.3
30-Oct	186.9	192.6	192.8	195.1	198.6	198.8	187.2	170.2
31-Oct	186.9	192.6	192.9	195.1	198.5	198.7	187.1	170.1
Average	187.1	193.1	193.4	195.7	199.1	199.1	187.6	170.7

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Oct	111.1	150.2	149.8	148.9	144.2	131.2	116.5	105.6
2-Oct	110.9	150.0	149.6	148.7	144.0	131.0	116.3	105.4
3-Oct	111.0	150.0	149.7	148.5	143.8	130.9	116.2	105.3
4-Oct	111.0	150.1	149.7	148.7	144.0	131.0	116.3	105.4
5-Oct	111.0	150.1	149.8	148.6	144.0	131.0	116.3	105.4
6-Oct	111.2	150.3	149.9	148.9	144.1	131.1	116.4	105.5
7-Oct	110.7	149.9	149.6	148.7	143.9	130.9	116.2	105.3
8-Oct	111.0	150.0	149.7	148.7	144.0	131.0	116.2	105.4
9-Oct	110.7	149.8	149.5	148.3	143.6	130.7	115.9	105.1
10-Oct	110.7	149.9	149.6	148.4	143.7	130.7	116.0	105.1
11-Oct	110.6	149.7	149.4	148.3	143.6	130.6	115.9	105.0
12-Oct	110.7	149.7	149.4	148.3	143.7	130.7	116.0	105.1
13-Oct	111.1	150.2	149.9	148.6	143.9	131.0	116.2	105.3
14-Oct	111.1	150.1	149.8	148.4	143.8	130.9	116.0	105.2
15-Oct	111.0	150.2	149.9	148.4	143.8	130.9	116.2	105.3
16-Oct	110.4	149.8	149.5	148.6	143.8	130.9	116.1	105.2
17-Oct	110.4	149.6	149.3	148.4	143.6	130.7	115.9	105.0
18-Oct	110.4	149.8	149.4	148.7	143.8	130.9	116.1	105.2
19-Oct	110.0	149.3	148.9	148.3	143.4	130.7	115.7	104.8
20-Oct	110.3	149.4	149.0	148.0	143.3	130.4	115.6	104.7
21-Oct	110.5	149.5	149.3	147.9	143.1	130.4	115.6	104.7
22-Oct	110.6	149.7	149.4	148.0	142.9	130.4	115.6	104.7
23-Oct	110.4	149.6	149.3	147.9	142.8	130.3	115.4	104.6
24-Oct	110.3	149.5	149.3	147.8	142.7	130.4	115.4	104.7
25-Oct	110.4	149.7	149.4	147.8	142.9	130.3	115.5	104.8
26-Oct	110.8	149.8	149.6	147.8	143.1	130.5	115.6	104.9
27-Oct	110.4	149.4	149.2	147.5	142.6	130.1	115.3	104.5
28-Oct	110.2	149.6	149.2	148.1	143.1	130.5	115.6	104.9
29-Oct	110.0	149.3	148.9	148.1	143.0	130.5	115.5	104.8
30-Oct	109.7	149.0	148.6	147.8	142.7	130.2	115.2	104.5
31-Oct	109.7	149.0	148.6	147.6	142.7	130.2	115.2	104.4
Average	110.6	149.7	149.4	148.3	143.5	130.7	115.9	105.0

Appendix E

Monthly Topography Analysis


NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON OCTOBER 16, 2024 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

	LANDFILL IOPOGRAPHY	T TITLE	SIOV IVINA VUONOCIONO VINAI VOIC	SOLID WASTE DEBMIT #588	
SHEET TITLE		PROJECT TITLE	2	<u> </u>	
CLIENT	CITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY	2655 VALLEY DRIVE	BRISTOL, VIRGINIA 24201	
ERS	CHMIDT	, INC. OTHIAN, VA 23113	-7433	Q/A RVW BY: CJW	APP. BY:
SCS ENGINEERS	STEARNS, CONRAD AND SCHMIDT	CONSULTING ENGINEERS, INC. 15521 MIDLOTHIAN TNPK - MIDLOTHIAN, VA 23113	PH. (804) 378-7440 FAX. (804) 378-7433	DWN. BY: VMM	CHK. BY:
SCSE	STEARNS, C	CONSULTIN 15521 MIDLOT	PH. (804) 378-	PROJ. NO. 02218208.05	DSN. BY:
CADE S DATE) fi UR	LE: RF (COI	ИP	

LEGEND

MAJOR CONTOURS (EVERY 10')

MINOR CONTOURS (EVERY 2')

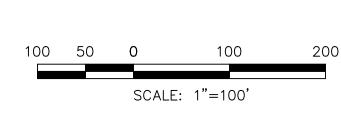
APPROXIMATE SIDEWALL LOCATION

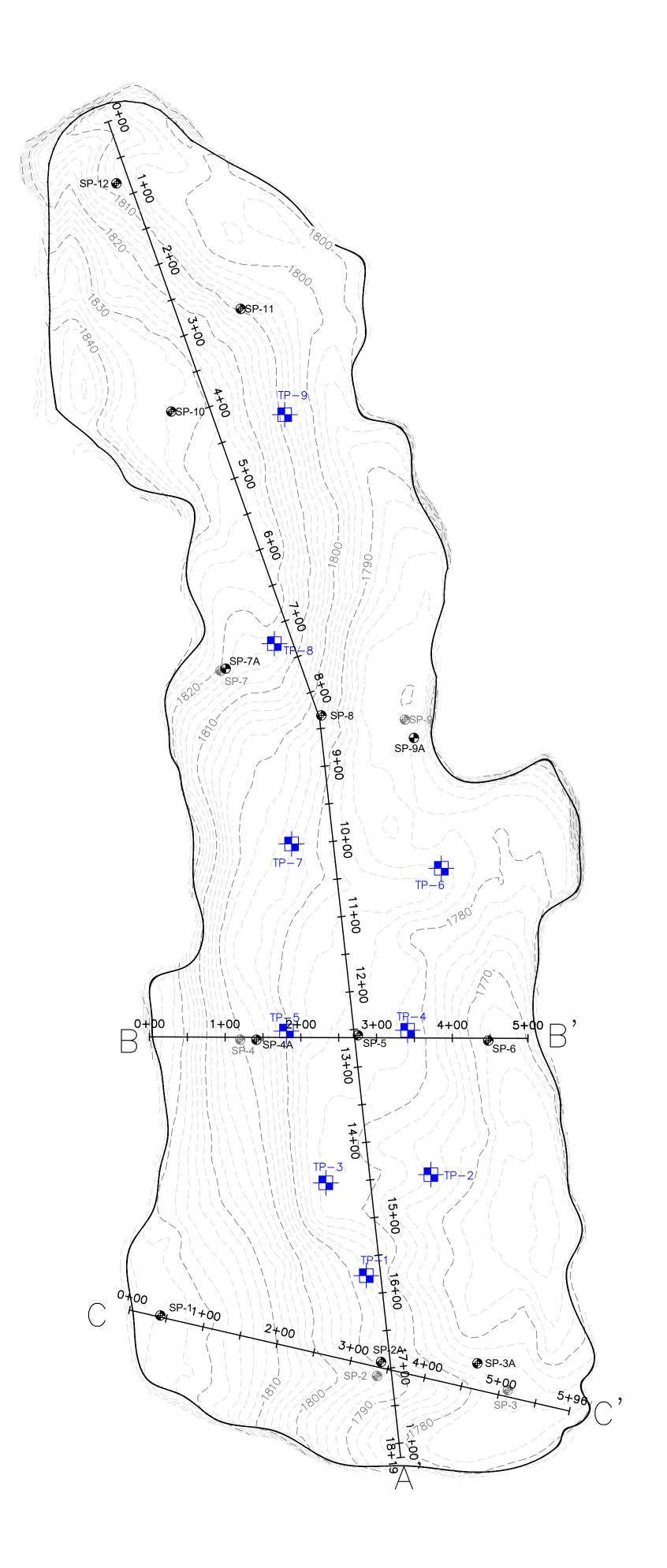
SETTLEMENT PLATE

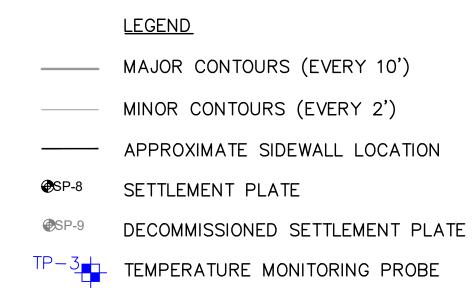
DECOMMISSIONED SETTLEMENT PLATE

TEMPERATURE MONITORING PROBE

NOTES:


- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON JULY 29, 2025 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

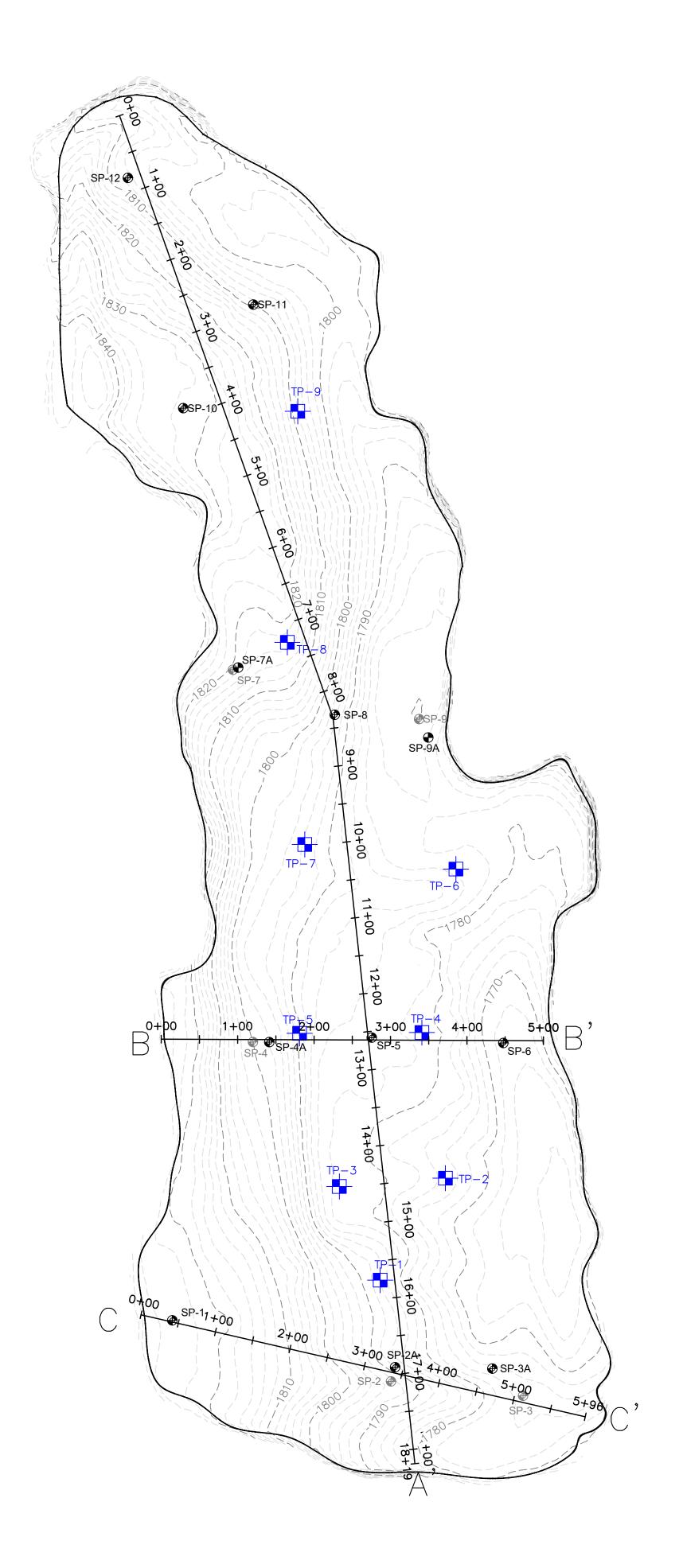



NO.						<
JULY 2025	LANDI IEE I OF OGNALIII			MONTHLY TOPOGRAPHY ANALYSIS	SOLID WASTE PERMIT #588	
SHEET TITLE		PROJECT TITLE		MONTH	108	
CLIENT	CILY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY	2655 VALLEY DRIVE	BRISTOL VIRGINIA 24201		
GINEERS	SAD AND SCHMIDT	AGINEERS, INC.	-AX. (804) 378-7433	Q/A RVW BY:	CJW	APP. 01:

cadd file: SURF COMP

11/3/2025

NOTES:


- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON SEPTEMBER 11, 2025 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

CLIENT	SHEET TITLE	SEPTEMBER 2025	NO.	REVISION	DATE	1.1
CITY OF BRISTOL INTEGRATED SOLID		LANDFILL IOPOGRAPHY	<			
WASTE MANAGEMENT FACILITY	PROJECT TITLE					
2655 VALLEY DRIVE			\triangleleft			
BRISTOL VIRGINIA 24201	MONTHE	MONTHLY TOPOGRAPHY ANALYSIS	\triangleleft			
	SOLI	SOLID WASTE PERMIT #588	\triangleleft			
			<			

RS: CHMIDT INC. THIAN, VA 23	Q/A RVW BY: CJW
SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS, INC. 15521 MIDLOTHIAN TNPK - MIDLOTHIAN, VA 28 PH. (804) 378-7440 FAX. (804) 378-7433	DWN. BY: VMM
SCS E STEARNS, C CONSULTIN 15521 MIDLOTE PH. (804) 378-7	PROJ. NO. 02218208.05
cadd file: SURF COI	MP
DATE: 11/3/202	25
SCALE:	

LEGEND

MAJOR CONTOURS (EVERY 10')

MINOR CONTOURS (EVERY 2')

APPROXIMATE SIDEWALL LOCATION

SP-8 SETTLEMENT PLATE

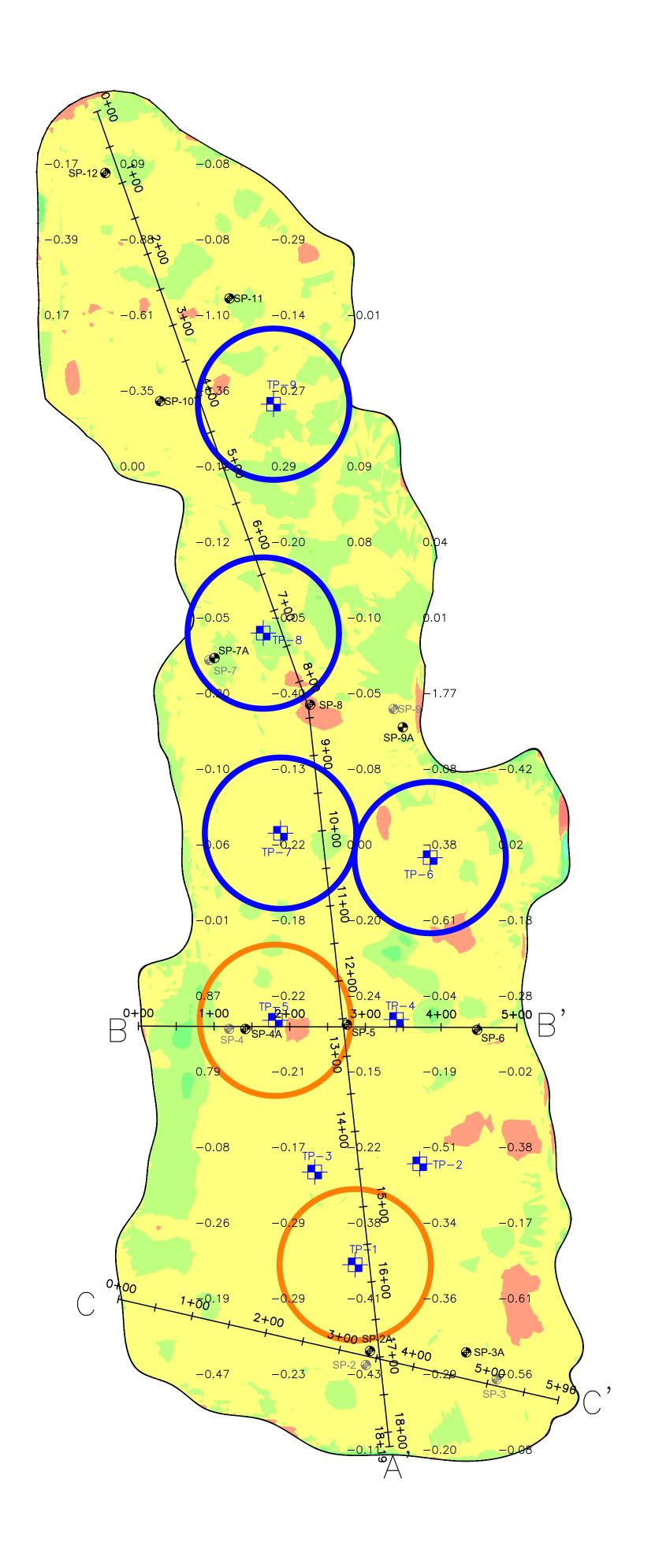
DECOMMISSIONED SETTLEMENT PLATE

TEMPERATURE MONITORING PROBE

NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON OCTOBER 15, 2025 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

NO.		\triangleleft	\triangleleft	\triangleleft	<	
SHEET TITLE OCTOBER 2025	LANDLIEE I OF OGNAFILI	PROJECT TITLE		MONTHLY TOPOGRAPHY ANALYSIS	SOLID WASTE PERMIT #588	
CLIENT	CITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY	2655 VALLEY DRIVE	BRISTOL VIRGINIA 24201		
EERS	SCHMIDT	RS, INC.	78-7433	Q/A RVW BY:	WCJW	APP. BY: CJW
ENGINE	CONRAD AND SCHMIDT	ING ENGINEERS, INC.	3-7440 FAX. (804) 3	DWN. BY:	WW>	CHK. BY: CJW


cadd file: SURF COMP

11/3/2025

DRAWING NO.

SCALE: 1"=100'

MAJOR CONTOURS (EVERY 10')

MINOR CONTOURS (EVERY 2')

---- APPROXIMATE WASTE BOUNDARY

SETTLEMENT PLATE

DECOMMISSIONED SETTLEMENT PLATE

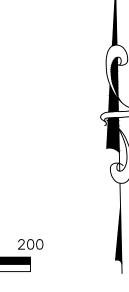
SPOT ELEVATION ON 100' GRID

TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH LESS THAN 200 °F

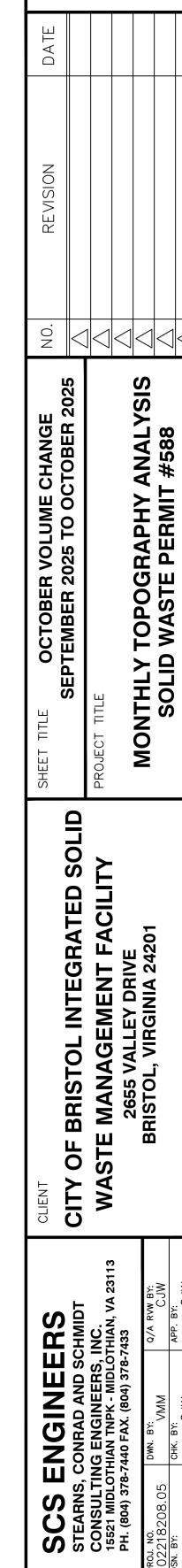
TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 200 °F AND 250 °F

TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 250 °F AND 300 °F

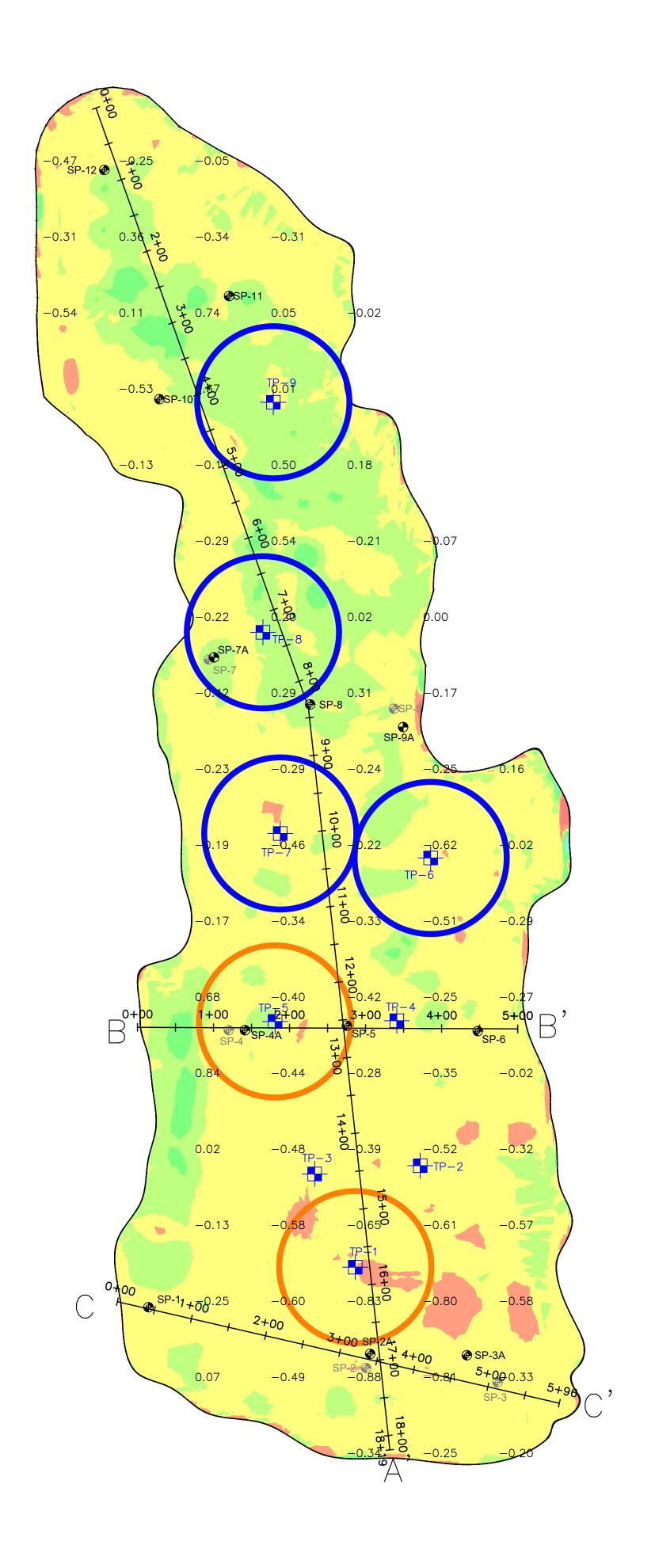
Base Surface TOPO — September 11, 2025 Comparison Surface TOPO — October 15, 2025

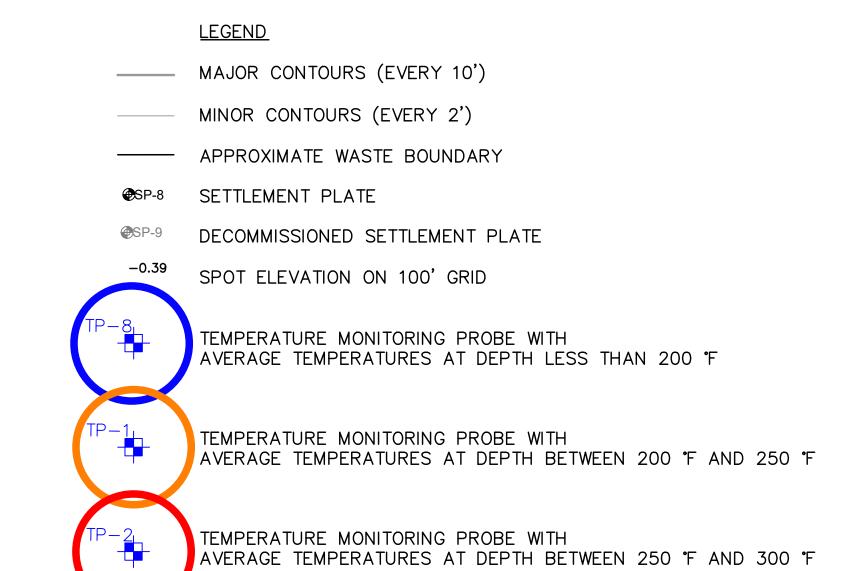

Cut Volume	7,050	Cu. Yd.
Fill Volume	1,303	Cu. Yd.
Net Cut	5,747	Cu. Yd.

Elevations Table


Number	Minimum Elevation	Maximum Elevation	Color
1	-20.000	-10.000	
2	-10.000	-5.000	
3	-5.000	-1.000	
4	-1.000	0.000	
5	0.000	1.000	
6	1.000	5.000	
7	5.000	10.000	
8	10.000	20.000	

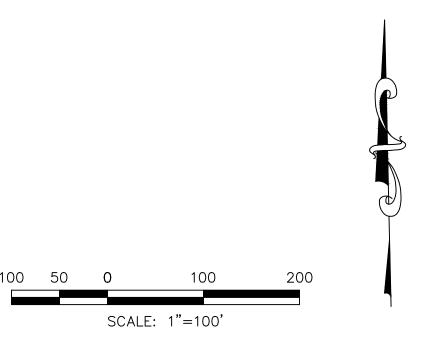
NOTES:


- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON SEPTEMBER 11, 2025 AND OCTOBER 15, 2025 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SÉTTLEMENT). VALUES ARE ROUNDED TO THE NEÁREST FOOT.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.



SCALE: 1"=100'

SURF COMP 11/3/2025 SCALE:



		— July 29, 202 — October 15,	
Cut Volume	8,602	Cu. Yd	•
Fill Volume	2,683	Cu. Yd	
Net Cut	5,919	Cu. Yd	

	Licvati		
Number	Minimum Elevation	Maximum Elevation	Color
1	-20.000	-10.000	
2	-10.000	-5.000	
3	-5.000	-1.000	
4	-1.000	0.000	
5	0.000	1.000	
6	1.000	5.000	
7	5.000	10.000	
8	10.000	20.000	

NOTES:

- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON JULY 29, 2025 AND OCTOBER 15, 2025 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

ER VOLUME CHANGE	NO.	REVISION	DATE	
23 10 001 0BEN 2023				
	\triangleleft			
	\triangleleft			
GRAPHY ANALYSIS	\triangleleft			
TE PERMIT #588	\triangleleft			

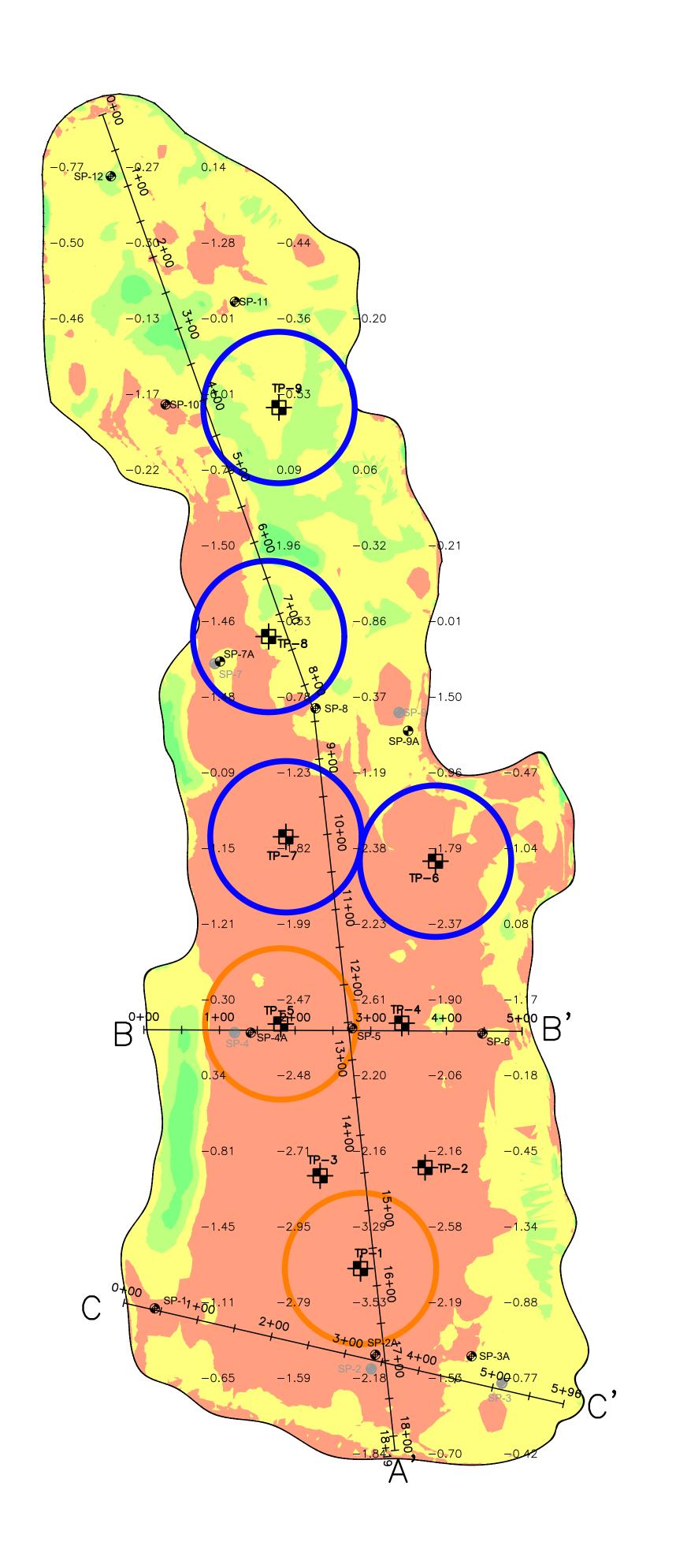
CITY OF BRISTOL INTEGRATED SOLID	JULY
WASTE MANAGEMENT FACILITY	PROJECT TITLE
2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201	MONTHLY TO

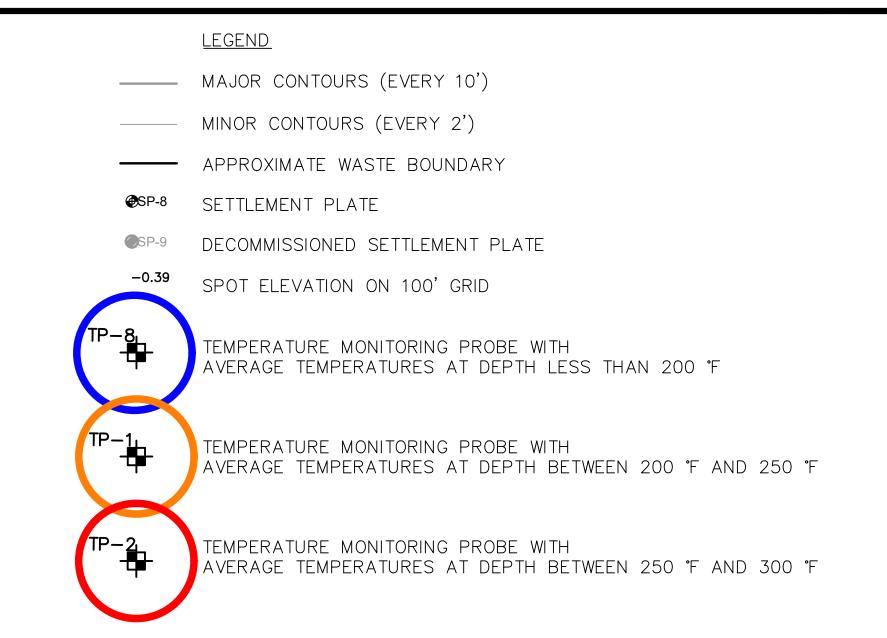
SCS ENGINEERS

STEARNS, CONRAD AND SCHMIDT

CONSULTING ENGINEERS, INC.
15521 MIDLOTHIAN TNPK - MIDLOTHIAN, VA 2;
PH. (804) 378-7440 FAX. (804) 378-7433

PROJ. NO.

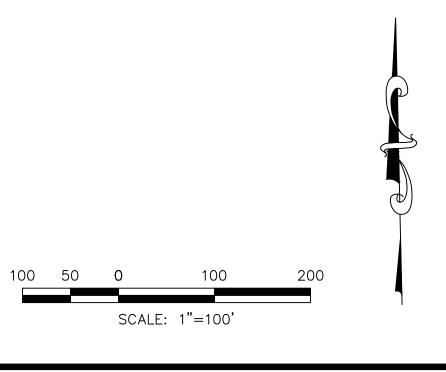

DWN. BY:


O2218208.05

OHK. BY:

DATE: 11/3/2025 SCALE:

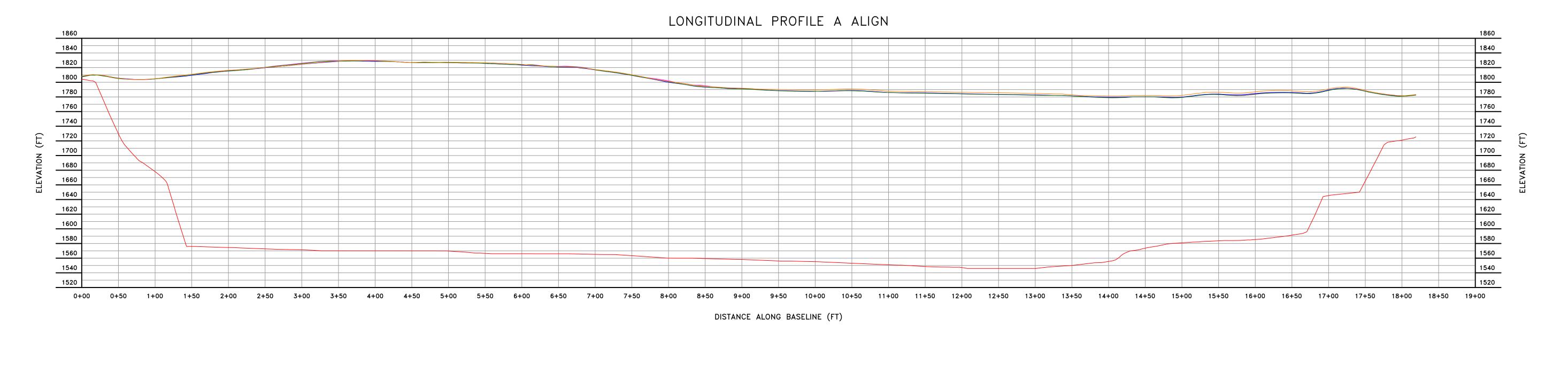
Base Surface TOPO — October 16, 2024 Comparison Surface TOPO — October 15, 2025

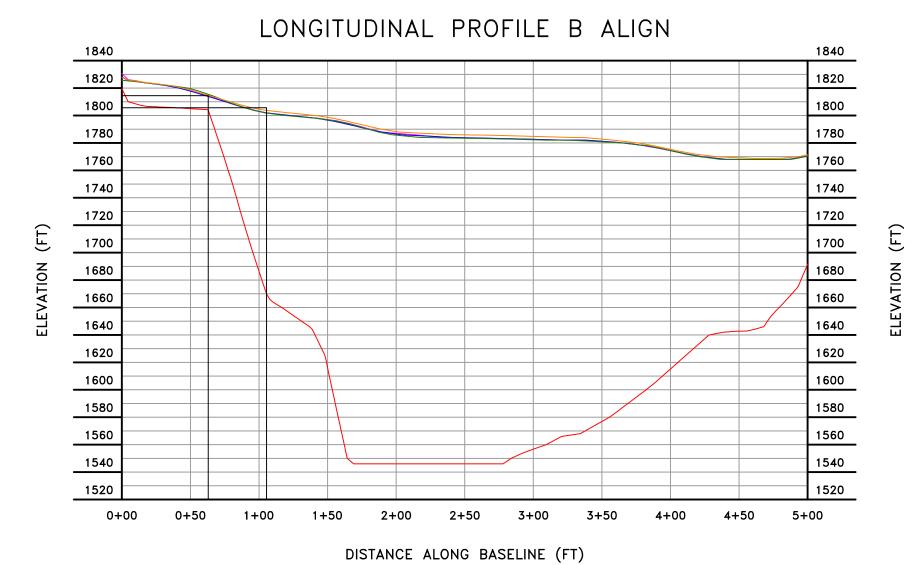

33,459 Cu. Yd. Cut Volume 1,395 Cu. Yd. Fill Volume 32,064 Cu. Yd. Net Cut

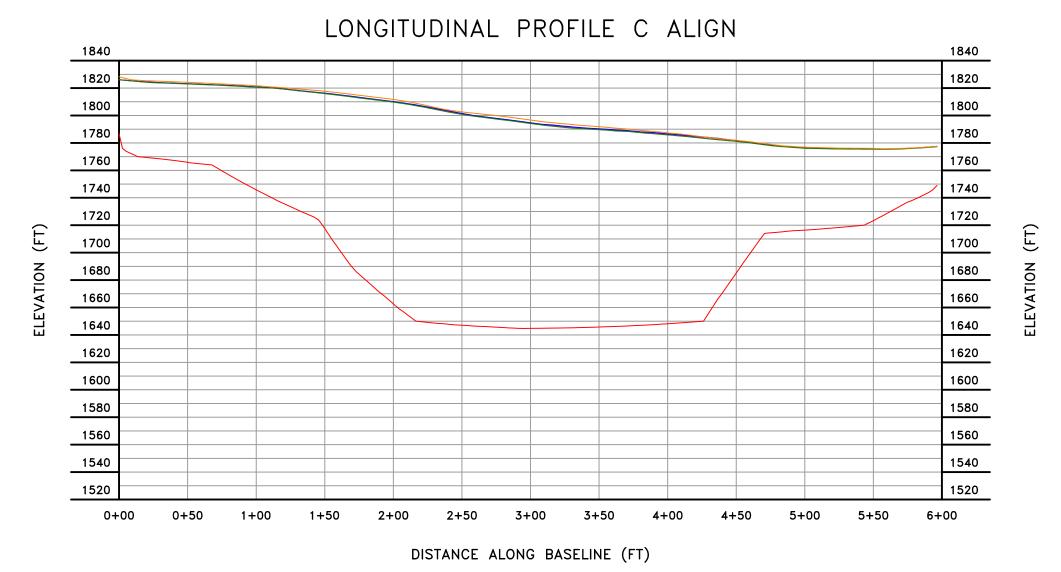
Elevations Table

		Lievati	ons rable	
	Number	Minimum Elevation	Maximum Elevation	Color
	1	-20.000	-10.000	
	2	-10.000	-5.000	
	3	-5.000	-1.000	
	4	-1.000	0.000	
	5	0.000	1.000	
	6	1.000	5.000	
	7	5.000	10.000	
•	8	10.000	20.000	

NOTES:


- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON OCTOBER 16, 2024 AND OCTOBER 15, 2025 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
- 4. THE VERTICAL DATUM(S) IS BASED UPON NAVD-88.




OCTOBER VOLUME CHANGE OCTOBER 2024 TO OCTOBER 2025 LY TOPOGRAPHY ANALYSIS LID WASTE PERMIT #588 LID WASTE PERMIT #588


00	CLIENT	SHEET TITLE 0
CHMIDT	CITY OF BRISTOL INTEGRATED SOLID	ОСТ
, INC. DTHIAN, VA 23113	WASTE MANAGEMENT FACILITY	PROJECT TITLE
-7433	2655 VALLEY DRIVE	
Q/A RVW BY: CJW	BRISTOL, VIRGINIA 24201	
APP RY:		0010

SCS ENGINEER
STEARNS, CONRAD AND SCH
CONSULTING ENGINEERS, IN
15521 MIDLOTHIAN TNPK - MIDLOTH
PH. (804) 378-7440 FAX. (804) 378-74 SURF COMP 11/3/2025 SCALE: DRAWING NO.

PROFILES OLID CITY OF BRISTOL INTEGRATED SOME WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201 SCS ENGINEERS
STEARNS, CONRAD AND SCHMIDT
CONSULTING ENGINEERS, INC.
15521 MIDLOTHIAN TNPK - MIDLOTHIAN, VA 23113
PH. (804) 378-7440 FAX. (804) 378-7433 CADD FILE: SURF COMP DATE: 11/3/2025 SCALE: DRAWING NO. 8

Appendix F

Field Logs

Lab Report

Historical LFG-EW Leachate Monitoring Results Summary

Date	Field Personnel: M. Nguyen, L. Tucker Checked By: L. Howard and J. Robb																
SCS Personnel	Field Person	inel:	M. Nguye	en, L. Tucker			Checked By:	L. How	ard and J. F	Robb							
Location ID	Date	Casing Stickup (ft)		Prior Depth to Liquid (ft)	Cycle Count	Prior Cycle Count	Well Casing Depth (ft)	Pump Depth (ft)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Sample Collected	Check/ Photo	Comments			
PUMP INSTALLED		(,	()					()									
EW-49	10/28/2025	3.65		66.92	90700		96.15	87		Y	62	N	Y	High CO alert, lots of steam coming out			
EW-50	10/28/2025	4.95		55.12	1705719	1664385	77.70	83		Υ	100	Y	Y	High VOC/CO when well was opened			
EW-59	10/29/2025	4.75		38.62	3747801	3684734	73.40	61		Y	120	N	Y	High VOC alert (5 ppm) when opened			
EW-60	10/28/2025	4.10		55.22	362372	334022	81.80	72.5		Y	0	N	Y	Air Off, High VOC (4.7 ppm)			
EW-61	10/28/2025	3.75		70.02	200959	189001	87.80	75		Υ	100	N	Y	High VOC(26 ppm)/CO(20 ppm) when opened; lots of gas coming out			
EW-65	10/28/2025	3.25		47.64	153110	148348	88.40	70		Y	120	Y	Y	High VOC (5 ppm)			
EW-68	10/29/2025	2.00	49.28	42.81	2662111	266211	73.57	60	24.29	Υ	0	N	Y	Air Off			
EW-78	10/28/2025	3.90	46.09	44.8	262085	235152	57.00	47	10.91	Y	100	N	Y				
EW-83	10/28/2025	5.60	82.82	84.22	2269	2269	167.04	145	84.22	Υ		N	Y	Air Off			
EW-85	10/28/2025	5.05	60.13	53.74	353158	351154	91.00	78	30.87	Y	110	N	Y				
EW-88	10/28/2025	3.05		58.2	470084		100.00	61		Y	100	N		High VOC (4.6 ppm) when opened, lots of steam			
EW-96	10/29/2025						164.35	145		Y		N	Y	Too Tall			
EW-98	10/29/2025	4.45	28.68	55.51	2674390	2627153	51.00	46	22.32	Y	95	N	Y				

Date	Field Personnel: M. Nguyen, L. Tucker Checked By: L. Howard and J. Robb Casing Penth to Pump Liquid															
SCS Personnel	Field Person		1	en, L. Tucker			Checked By:	L. How	ard and J. F	Robb						
Location ID	Date	Casing Stickup (ft)		Prior Depth to Liquid (ft)	Cycle Count	Prior Cycle Count	Well Casing Depth (ft)	Pump Depth (ft)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Sample Collected	Check/ Photo	Comments		
NO PUMP												1				
EW-54	10/29/2025	3.55	44.43	35.67			82.70	65	38.27	N		N	Y	Alarm went off, unknown value		
EW-56	10/29/2025	3.50		37.68			42.71			N		N	Y	High VOC (121 ppm), lots of steam when opened		
EW-67	10/29/2025	4.60		41.04			107.75	76		N		N	Y	High VOC (14.9 ppm)/CO(30 ppm), when opened		
EW-69	10/28/2025	4.65	92.5	92.5			98.00		5.50	N		N	Y			
EW-70	10/28/2025	1.95	84.05	64			71.00	58	-13.05	N		N	Y			
EW-73	10/28/2025	3.50	106.07	106.17			116.00		9.93	N		N	Y			
EW-80	10/29/2025	3.00	136.9	136.86			149.00		12.10	N		N	Y	Alarm went off, unknown value		
EW-82	10/28/2025	4.10	123.78	121.5		650289	163.26	145	39.48	N		N	Y			
EW-84	10/28/2025	3.50	78.2				130.56		52.36	N		N	Y			
EW-86	10/29/2025	3.55					153.00			N		N	Y	High VOC (90 ppm) when opened		
EW-91	10/29/2025	5.80		48.11			137.70			N		N	Y	High VOC (20 ppm) when bolts loosend		
EW-92	10/29/2025						112.99			N		N	Y	Too Tall		
EW-95	10/29/2025	3.95	58.78	58.32			68.00		9.22	N		N	Y	High VOC (5 ppm)/CO(30 ppm)		
EW-97	10/29/2025						144.50			N			Y	Too tall		
EW-99	10/29/2025	4.40	58.53	59.68			65.00		6.47	N		N	Y			

Date							10/28	- 10/29,	/2025					
SCS Personnel	Field Person	nel:	M. Nguye	n, L. Tucker			Checked By:	L. How	ard and J. R	Robb				
Location ID	Date	Casing Stickup (ft)	Depth to Liquid (ft)	Prior Depth to Liquid (ft)	Cycle Count	Prior Cycle Count	Well Casing Depth (ft)	Pump Depth (ft)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Sample Collected	Check/ Photo	Comments
MEASURE CASIN	IG STICKUP A	ND CYC	LE COUNTI	ER ONLY										
EW-36A ¹	10/28/2025	5.05			459999	459999	180.00	135		Y		N	Y	
EW-52 ²	10/28/2025	3.45			1239186	1239706	98.70	80		Y	0	N	Y	
EW-53 ²	10/28/2025	4.61		39.97	3294540	3294540	100.70	77		Y	0	N	Y	
EW-55 ²	10/28/2025	4.65		41.52	73387	73387	90.40	90		Y	0	N	Y	
EW-62 ²	10/28/2025	4.35		82.23	214599		110.60	91.5		Y	0	Ν	Y	
EW-66 ²	10/28/2025	3.47			39056	39055				Y	24	Ν	Y	
EW-76 ²	10/28/2025	3.95					127.00	108		N		Ν	Y	
EW-81 ¹	10/28/2025	5.95		106.08			151.56	125		Y		Ν	Y	
EW-87 ²	10/28/2025	5.90		47.5	340749	340749	149.57	110		Y	0	Ν	Y	
EW-89 ¹	10/28/2025	4.35		65.16	588457	471935	84.57	70		Y	105	Ν	Y	
EW-94 ¹	10/29/2025	4.70			1921429	1814445	50.00	38		Y	120	N		

Date							10/28	- 10/29/	/2025							
SCS Personnel	Field Persor	nnel:	M. Nguye	en, L. Tucker			Checked By:	L. How	ard and J. R	?obb						
Location ID	Date	Casing Stickup (ft)	Depth to Liquid (ft)	Prior Depth to Liquid (ft)	Cycle Count	Prior Cycle Count	Well Casing Depth (ft)	Pump Depth (ft)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Sample Collected	Check/ Photo	Comments		
DO NOT APPRO	ACH		l													
EW-33B														SSO Concerns - Do not approach		
EW-63														SSO Concerns - Do not approach		
EW-64														SSO Concerns - Do not approach		
EW-77														SSO Concerns - Do not approach		
EW-79														SSO Concerns - Do not approach		
EW-93														SSO Concerns - Do not approach		

--- = not applicable or available

CO = Carbon monoxide

ft = feet

LEL = Lower Explosive Limit

O2 = Oxygen

ppm = parts per million

SSO = Subsurface oxygen event

VOC = Total Volatile Organic Compounds

1 = Not Measured as gauging equipment has historically become stuck in well.

2 = Not Measured as pump is shut off and intended to be pulled for maintenance/replacement or has been removed for maintenance or replacement.

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (°C)	pH (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-50	10/28/2025	12:10	78.80	8.60	8125.00	5.44	228.20	>1100	Dark brown/green, dark sediment/particles
EW-65	10/28/2025	0.60	69.50	8.55	8842.00	1.13	178.90	>1100	Dark brown/black, dark sediment/particles
	SCS Personnel	Sampler:	M. Nguyen, L. 1		Checked By:	L. Howard	d and J. Rob	b	
Samp	les Shipped By:	Courier				Laboratory:	Enthalpy.	Analytical	

[°]C = degrees Celsius

mg/L = milligrams per liter

mV = milliVolts

NTU = Nephelometric Turbidity Unit

s.u. = Standard Unit

mS/cm = milliSiemens per centimeter

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 25I2218

Date Received:

Project Number:

Purchase Order:

Date Issued:

Client Name: SCS Engineers - Winchester

296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

aprilitied to: Jerinilei Robb

Client Site I.D.: LFG-EW Monthly Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 09/25/2025 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Keith Sprouse

Laboratory Manager

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

September 25, 2025 8:00

October 9, 2025 18:00

02218208.15 Task 15

Analysis Detects Report

SCS Engineers - Winchester Date Issued: 10/9/2025 6:00:01PM

Client Site ID: LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Name:

Laboratory Sample ID: 25|2218-01 Client Sample ID: EW-50

							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Factor	Units
Arsenic	01	SW6010D	0.289		0.0020	0.0200	1	mg/L
Barium	01	SW6010D	1.10		0.0010	0.0100	1	mg/L
Cadmium	01	SW6010D	0.0009	J	0.0002	0.0040	1	mg/L
Chromium	01	SW6010D	0.240		0.0004	0.0100	1	mg/L
Copper	01	SW6010D	0.0089	J	0.0020	0.0100	1	mg/L
Lead	01	SW6010D	0.0179		0.0020	0.0100	1	mg/L
Mercury	01RE1	SW6020B	1.08		0.135	1.00	5	ug/L
Nickel	01	SW6010D	0.0731		0.0010	0.0100	1	mg/L
Silver	01	SW6010D	0.0010	J	0.0004	0.0100	1	mg/L
Zinc	01	SW6010D	0.0267		0.0030	0.0100	1	mg/L
2-Butanone (MEK)	01	SW8260D	8450		300	1000	100	ug/L
Acetone	01	SW8260D	17400		700	1000	100	ug/L
Benzene	01	SW8260D	747		40.0	100	100	ug/L
Ethylbenzene	01	SW8260D	64.0	J	40.0	100	100	ug/L
Tetrahydrofuran	01	SW8260D	2560		1000	1000	100	ug/L
Toluene	01	SW8260D	150		50.0	100	100	ug/L
Xylenes, Total	01	SW8260D	163	J	100	300	100	ug/L
Acetic Acid	01RE2	D3705	2360		71.4	500	1000	mg/L
Butyric Acid	01	D3705	281		3.5	25.0	50	mg/L
Formic Acid	01	D3705	9.8	J	3.2	25.0	50	mg/L
i-Pentanoic Acid	01	D3705	77.5		5.1	25.0	50	mg/L
n-Hexanoic Acid	01	D3705	55.9		3.0	25.0	50	mg/L
n-Pentanoic Acid	01	D3705	43.1		2.8	25.0	50	mg/L
Propionic Acid	01RE1	D3705	597		5.7	50.0	100	mg/L
Pyruvic Acid	01	D3705	33.1		4.4	25.0	50	mg/L
Ammonia as N	01	EPA350.1 R2.0	1190		60.0	100	1000	mg/L
BOD	01	SM5210B-2016	8200		0.2	2.0	1	mg/L

10/9/2025 6:00:01PM

Date Issued:

Analysis Detects Report

Client Name: SCS Engineers - Winchester

Client Site ID: LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Laboratory Sample ID: 25|2218-01 Client Sample ID: EW-50

							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Factor	Units
COD	01	SM5220D-2011	9670		1260	2000	200	mg/L
Nitrite as N	01	SM4500-NO2B-2021	0.32	J	0.10	0.40	20	mg/L
TKN as N	01	EPA351.2 R2.0	1660		45.9	50.0	1	mg/L
Total Recoverable Phenolics	01	SW9065	9.78		0.309	0.500	1	ma/L

10/9/2025 6:00:01PM

Date Issued:

Analysis Detects Report

Client Name: SCS Engineers - Winchester

Client Site ID: LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Laboratory Sample ID: 25|2218-02 Client Sample ID: EW-60

Laboratory Sample ID: 25 2218-02	Client Sa	imple ID: EW-60						
_							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Factor	Units
Arsenic	02	SW6010D	0.166		0.0020	0.0200	1	mg/L
Barium	02	SW6010D	2.36		0.0010	0.0100	1	mg/L
Cadmium	02	SW6010D	0.0302		0.0002	0.0040	1	mg/L
Chromium	02	SW6010D	0.222		0.0004	0.0100	1	mg/L
Lead	02	SW6010D	0.0184		0.0020	0.0100	1	mg/L
Mercury	02	SW6020B	6.65		0.270	2.00	10	ug/L
Nickel	02	SW6010D	0.0224		0.0010	0.0100	1	mg/L
Zinc	02RE1	SW6010D	0.322		0.0090	0.0300	3	mg/L
2-Butanone (MEK)	02	SW8260D	12500		300	1000	100	ug/L
Acetone	02RE1	SW8260D	52800		3500	5000	500	ug/L
Benzene	02	SW8260D	406		40.0	100	100	ug/L
Tetrahydrofuran	02	SW8260D	3050		1000	1000	100	ug/L
Acetic Acid	02RE1	D3705	5870		71.4	500	1000	mg/L
Butyric Acid	02RE1	D3705	1750		70.3	500	1000	mg/L
Formic Acid	02RE1	D3705	2090		64.5	500	1000	mg/L
i-Pentanoic Acid	02	D3705	194		10.2	50.0	100	mg/L
Lactic Acid	02	D3705	864		5.6	50.0	100	mg/L
n-Hexanoic Acid	02	D3705	496		6.0	50.0	100	mg/L
n-Pentanoic Acid	02	D3705	238		5.6	50.0	100	mg/L
Propionic Acid	02RE1	D3705	2030		57.3	500	1000	mg/L
Pyruvic Acid	02	D3705	73.4		8.9	50.0	100	mg/L
Ammonia as N	02	EPA350.1 R2.0	1210		120	200	2000	mg/L
BOD	02	SM5210B-2016	33700		0.2	2.0	1	mg/L
COD	02	SM5220D-2011	55500		6300	10000	1000	mg/L
Nitrite as N	02	SM4500-NO2B-2021	0.40		0.10	0.40	20	mg/L
TKN as N	02	EPA351.2 R2.0	2200		45.9	50.0	1	mg/L
Total Recoverable Phenolics	02	SW9065	2.38		0.309	0.500	1	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.: LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-50	2512218-01	Ground Water	09/24/2025 09:30	09/25/2025 08:00
EW-60	25 2218-02	Ground Water	09/24/2025 09:00	09/25/2025 08:00
Trip Blank	2512218-03	Non-Potable Water	01/27/2025 10:10	09/25/2025 08:00

2512218

10/9/2025 6:00:01PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.:

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order:

Client Sample ID: EW-50 Laboratory Sample ID: 25I2218-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Metals (Total) by EPA 6000/7000 Series	s Methods											
Silver	01	7440-22-4	SW6010D	09/26/2025 17:00	09/29/2025 14:39	0.0010	J	0.0004	0.0100	1	mg/L	NBT
Arsenic	01	7440-38-2	SW6010D	09/26/2025 17:00	09/29/2025 14:39	0.289		0.0020	0.0200	1	mg/L	NBT
Barium	01	7440-39-3	SW6010D	09/26/2025 17:00	09/29/2025 14:39	1.10		0.0010	0.0100	1	mg/L	NBT
Cadmium	01	7440-43-9	SW6010D	09/26/2025 17:00	09/29/2025 14:39	0.0009	J	0.0002	0.0040	1	mg/L	NBT
Chromium	01	7440-47-3	SW6010D	09/26/2025 17:00	09/29/2025 14:39	0.240		0.0004	0.0100	1	mg/L	NBT
Copper	01	7440-50-8	SW6010D	09/26/2025 17:00	09/29/2025 14:39	0.0089	J	0.0020	0.0100	1	mg/L	NBT
Mercury	01RE1	7439-97-6	SW6020B	09/26/2025 17:00	09/29/2025 11:32	1.08		0.135	1.00	5	ug/L	AB
Nickel	01	7440-02-0	SW6010D	09/26/2025 17:00	09/29/2025 14:39	0.0731		0.0010	0.0100	1	mg/L	NBT
Lead	01	7439-92-1	SW6010D	09/26/2025 17:00	09/29/2025 14:39	0.0179		0.0020	0.0100	1	mg/L	NBT
Selenium	01	7782-49-2	SW6010D	09/26/2025 17:00	09/29/2025 14:39	BLOD		0.0070	0.0500	1	mg/L	NBT
Zinc	01	7440-66-6	SW6010D	09/26/2025 17:00	09/29/2025 14:39	0.0267		0.0030	0.0100	1	mg/L	NBT
Volatile Organic Compounds by GCMS	3											
2-Butanone (MEK)	01	78-93-3	SW8260D	10/01/2025 18:18	10/01/2025 18:18	8450		300	1000	100	ug/L	TLH
Acetone	01	67-64-1	SW8260D	10/01/2025 18:18	10/01/2025 18:18	17400		700	1000	100	ug/L	TLH
Benzene	01	71-43-2	SW8260D	10/01/2025 18:18	10/01/2025 18:18	747		40.0	100	100	ug/L	TLH
Ethylbenzene	01	100-41-4	SW8260D	10/01/2025 18:18	10/01/2025 18:18	64.0	J	40.0	100	100	ug/L	TLH
Toluene	01	108-88-3	SW8260D	10/01/2025 18:18	10/01/2025 18:18	150		50.0	100	100	ug/L	TLH
Xylenes, Total	01	1330-20-7	SW8260D	10/01/2025 18:18	10/01/2025 18:18	163	J	100	300	100	ug/L	TLH
Tetrahydrofuran	01	109-99-9	SW8260D	10/01/2025 18:18	10/01/2025 18:18	2560		1000	1000	100	ug/L	TLH
Surr: 1,2-Dichloroethane-d4 (Surr)	01	107	% 70-120	10/01/2025 18	3:18 10/01/2025 18:18	3						
Surr: 4-Bromofluorobenzene (Surr)	01	94.0	% 75-120	10/01/2025 18	3:18 10/01/2025 18:18	3						
Surr: Dibromofluoromethane (Surr)	01	100	% 70-130	10/01/2025 18	3:18 10/01/2025 18:18	3						
Surr: Toluene-d8 (Surr)	01	102	% 70-130	10/01/2025 18	3:18 10/01/2025 18:18	3						

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

10/9/2025 6:00:01PM

Client Site I.D.:

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

2512218

Client Sample ID: EW-50 Laboratory Sample ID: 25I2218-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Semivolatile Organic Compounds by C	GCMS											
Anthracene	01	120-12-7	SW8270E	09/25/2025 10:44	09/26/2025 19:58	BLOD		100	200	20	ug/L	BMS
Surr: 2,4,6-Tribromophenol (Surr)	01	37.6 9	% 5-136	09/25/2025 1	0:44 09/26/2025 19:	·58						
Surr: 2-Fluorobiphenyl (Surr)	01	34.2 9	% 9-117	09/25/2025 1	0:44 09/26/2025 19:	58						
Surr: 2-Fluorophenol (Surr)	01	31.8 9	% 5-60	09/25/2025 1	0:44 09/26/2025 19:	58						
Surr: Nitrobenzene-d5 (Surr)	01	64.4 9	% 5-151	09/25/2025 1	0:44 09/26/2025 19:	·58						
Surr: Phenol-d5 (Surr)	01	21.9 9	% 5-60	09/25/2025 1	0:44 09/26/2025 19:	58						
Surr: p-Terphenyl-d14 (Surr)	01	28.2 9	% 5-141	09/25/2025 1	0:44 09/26/2025 19:	58						
Ion Chromatography Analyses												
Acetic Acid	01RE2	64-19-7	D3705	10/01/2025 21:44	10/01/2025 21:44	2360		71.4	500	1000	mg/L	HLY
Butyric Acid	01	107-92-6	D3705	10/01/2025 23:51	10/01/2025 23:51	281		3.5	25.0	50	mg/L	HLY
Formic Acid	01	64-18-6	D3705	10/01/2025 23:51	10/01/2025 23:51	9.8	J	3.2	25.0	50	mg/L	HLY
n-Hexanoic Acid	01	142-62-1	D3705	10/01/2025 23:51	10/01/2025 23:51	55.9		3.0	25.0	50	mg/L	HLY
i-Hexanoic Acid	01	646-07-1	D3705	10/01/2025 23:51	10/01/2025 23:51	BLOD		2.5	25.0	50	mg/L	HLY
Lactic Acid	01	50-21-5	D3705	10/01/2025 23:51	10/01/2025 23:51	BLOD		2.8	25.0	50	mg/L	HLY
n-Pentanoic Acid	01	109-52-4	D3705	10/01/2025 23:51	10/01/2025 23:51	43.1		2.8	25.0	50	mg/L	HLY
i-Pentanoic Acid	01	503-74-2	D3705	10/01/2025 23:51	10/01/2025 23:51	77.5		5.1	25.0	50	mg/L	HLY
Propionic Acid	01RE1	79-09-4	D3705	10/01/2025 22:47	10/01/2025 22:47	597		5.7	50.0	100	mg/L	HLY
Pyruvic Acid	01	127-17-3	D3705	10/01/2025 23:51	10/01/2025 23:51	33.1		4.4	25.0	50	mg/L	HLY

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

10/9/2025 6:00:01PM

Client Site I.D.:

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

2512218

Client Sample ID: EW-50 Laboratory Sample ID: 25I2218-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Wet Chemistry Analysis												
Ammonia as N	01	7664-41-7	EPA350.1 R2.0	10/06/2025 13:00	10/06/2025 13:00	1190		60.0	100	1000	mg/L	SPH
BOD	01	E1640606	SM5210B-20 16	09/25/2025 18:00	09/25/2025 18:00	8200		0.2	2.0	1	mg/L	CET
COD	01	NA	SM5220D-20 11	10/06/2025 15:50	10/06/2025 15:51	9670		1260	2000	200	mg/L	CET
Nitrate as N	01	14797-55-8	SM4500-NO 3F-2019CAL C	10/09/2025 14:43	10/09/2025 15:46	BLOD		0.102	0.400	20	mg/L	AYT
Nitrate+Nitrite as N	01	E701177	SM4500-NO 3F-2019	10/09/2025 14:43	10/09/2025 15:46	BLOD		0.07	0.10	5	mg/L	AAL
Nitrite as N	01	14797-65-0	SM4500-NO 2B-2021	09/25/2025 12:30	09/25/2025 16:51	0.32	J	0.10	0.40	20	mg/L	AYT
Total Recoverable Phenolics	01	NA	SW9065	10/07/2025 15:30	10/07/2025 15:30	9.78		0.309	0.500	1	mg/L	SPH
TKN as N	01	E17148461	EPA351.2 R2.0	10/06/2025 16:46	10/07/2025 13:15	1660		45.9	50.0	1	mg/L	HJB

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

10/9/2025 6:00:01PM

Client Site I.D.:

Submitted To:

LFG-EW Monthly Monitoring

Jennifer Robb

Work Order:

2512218

Client Sample ID: EW-60 Laboratory Sample ID: 2512218-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Metals (Total) by EPA 6000/7000 Series	Methods											
Silver	02	7440-22-4	SW6010D	09/26/2025 17:00	09/29/2025 14:42	BLOD		0.0004	0.0100	1	mg/L	NBT
Arsenic	02	7440-38-2	SW6010D	09/26/2025 17:00	09/29/2025 14:42	0.166		0.0020	0.0200	1	mg/L	NBT
Barium	02	7440-39-3	SW6010D	09/26/2025 17:00	09/29/2025 14:42	2.36		0.0010	0.0100	1	mg/L	NBT
Cadmium	02	7440-43-9	SW6010D	09/26/2025 17:00	09/29/2025 14:42	0.0302		0.0002	0.0040	1	mg/L	NBT
Chromium	02	7440-47-3	SW6010D	09/26/2025 17:00	09/29/2025 14:42	0.222		0.0004	0.0100	1	mg/L	NBT
Copper	02	7440-50-8	SW6010D	09/26/2025 17:00	09/29/2025 14:42	BLOD		0.0020	0.0100	1	mg/L	NBT
Mercury	02	7439-97-6	SW6020B	09/26/2025 17:00	09/29/2025 11:15	6.65		0.270	2.00	10	ug/L	AB
Nickel	02	7440-02-0	SW6010D	09/26/2025 17:00	09/29/2025 14:42	0.0224		0.0010	0.0100	1	mg/L	NBT
Lead	02	7439-92-1	SW6010D	09/26/2025 17:00	09/29/2025 14:42	0.0184		0.0020	0.0100	1	mg/L	NBT
Selenium	02	7782-49-2	SW6010D	09/26/2025 17:00	09/29/2025 14:42	BLOD		0.0070	0.0500	1	mg/L	NBT
Zinc	02RE1	7440-66-6	SW6010D	09/26/2025 17:00	09/29/2025 15:26	0.322		0.0090	0.0300	3	mg/L	NBT
Volatile Organic Compounds by GCMS	1											
2-Butanone (MEK)	02	78-93-3	SW8260D	10/01/2025 18:40	10/01/2025 18:40	12500		300	1000	100	ug/L	TLH
Acetone	02RE1	67-64-1	SW8260D	10/02/2025 18:09	10/02/2025 18:09	52800		3500	5000	500	ug/L	JWR
Benzene	02	71-43-2	SW8260D	10/01/2025 18:40	10/01/2025 18:40	406		40.0	100	100	ug/L	TLH
Ethylbenzene	02	100-41-4	SW8260D	10/01/2025 18:40	10/01/2025 18:40	BLOD		40.0	100	100	ug/L	TLH
Toluene	02	108-88-3	SW8260D	10/01/2025 18:40	10/01/2025 18:40	BLOD		50.0	100	100	ug/L	TLH
Xylenes, Total	02	1330-20-7	SW8260D	10/01/2025 18:40	10/01/2025 18:40	BLOD		100	300	100	ug/L	TLH
Tetrahydrofuran	02	109-99-9	SW8260D	10/01/2025 18:40	10/01/2025 18:40	3050		1000	1000	100	ug/L	TLH
Surr: 1,2-Dichloroethane-d4 (Surr)	02	104	% 70-120	10/01/2025 18	3:40 10/01/2025 18:40)						
Surr: 4-Bromofluorobenzene (Surr)	02	94.2	% 75-120	10/01/2025 18	3:40 10/01/2025 18:40)						
Surr: Dibromofluoromethane (Surr)	02	101		10/01/2025 18								
Surr: Toluene-d8 (Surr)	02	99.3		10/01/2025 18								
Surr: 1,2-Dichloroethane-d4 (Surr)	02RE1	105	% 70-120	10/02/2025 18	3:09 10/02/2025 18:09	9						

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Jennifer Robb

Date Issued:

10/9/2025 6:00:01PM

Client Site I.D.:

Submitted To:

LFG-EW Monthly Monitoring

Work Order:

2512218

Client Sample ID: EW-60 Laboratory Sample ID: 2512218-02

Volatile Organic Compounds by GCMS Surr: 4-Bromofluorobenzene (Surr) 02RE1 92.7 % 75-120 10/02/2025 18:09 10/02/2025 18:09 Surr: Dibromofluoromethane (Surr) 02RE1 100 % 70-130 10/02/2025 18:09 10/02/2025 18:09 Surr: Toluene-d8 (Surr) 02RE1 102 % 70-130 10/02/2025 18:09 10/02/2025 18:09 Semivolatile Organic Compounds by GCMS	nits Analy g/L BM: DS
Surr: 4-Bromofluorobenzene (Surr) 02RE1 92.7 % 75-120 10/02/2025 18:09 10/02/2025 18:09 10/02/2025 18:09 Surr: Dibromofluoromethane (Surr) 02RE1 100 % 70-130 10/02/2025 18:09 10/02/2025 18:09 Surr: Toluene-d8 (Surr) 02RE1 102 % 70-130 10/02/2025 18:09 10/02/2025 18:09 Semivolatile Organic Compounds by GCMS Anthracene 02 120-12-7 SW8270E 09/25/2025 10:44 09/26/2025 21:01 BLOD 400 800 20 up Surr: 2,4,6-Tribromophenol (Surr) 02 % 5-136 09/25/2025 10:44 09/26/2025 21:01 BLOD 400 800 20 up Surr: 2-Fluorobiphenyl (Surr) 02 40.0 % 9-117 09/25/2025 10:44 09/26/2025 21:01 09/26/2025 21:01 Surr: 2-Fluorophenol (Surr) 02 23.6 % 5-60 09/25/2025 10:44 09/26/2025 21:01 09/26/2025 21:01 Surr: Phenol-d5 (Surr) 02 33.2 % 5-60 09/25/2025 10:44 09/26/2025 21:01 09/26/2025 21:01 <td< th=""><th>,</th></td<>	,
Surr: Dibromofluoromethane (Surr) 02RE1 100 % 70-130 10/02/2025 18:09 10/02/2025 18:09 Surr: Toluene-d8 (Surr) 02RE1 102 % 70-130 10/02/2025 18:09 10/02/2025 18:09 Semivolatile Organic Compounds by GCMS Anthracene 02 120-12-7 SW8270E 09/25/2025 10:44 09/26/2025 21:01 BLOD 400 800 20 up Surr: 2,4,6-Tribromophenol (Surr) 02 % 5-136 09/25/2025 10:44 09/26/2025 21:01 Surr: 2-Fluorobiphenyl (Surr) 02 40.0 % 9-117 09/25/2025 10:44 09/26/2025 21:01 Surr: 2-Fluorophenol (Surr) 02 23.6 % 5-60 09/25/2025 10:44 09/26/2025 21:01 Surr: Nitrobenzene-d5 (Surr) 02 502 % 5-151 09/25/2025 10:44 09/26/2025 21:01 Surr: Phenol-d5 (Surr) 02 33.2 % 5-60 09/25/2025 10:44 09/26/2025 21:01 Surr: p-Terphenyl-d14 (Surr) 02 44.8 % 5-141 09/25/2025 10:44 09/26/2025 21:01	,
Surr: Toluene-d8 (Surr) 02RE1 102 % 70-130 10/02/2025 18:09 10/02/2025 18:09 Semivolatile Organic Compounds by GCMS Anthracene 02 120-12-7 SW8270E 09/25/2025 10:44 09/26/2025 21:01 BLOD 400 800 20 up Surr: 2,4,6-Tribromophenol (Surr) 02 % 5-136 09/25/2025 10:44 09/26/2025 21:01 09/26/2025 21:01 Surr: 2-Fluorobiphenyl (Surr) 02 40.0 % 9-117 09/25/2025 10:44 09/26/2025 21:01 Surr: 2-Fluorophenol (Surr) 02 23.6 % 5-60 09/25/2025 10:44 09/26/2025 21:01 Surr: Nitrobenzene-d5 (Surr) 02 502 % 5-151 09/25/2025 10:44 09/26/2025 21:01 Surr: Phenol-d5 (Surr) 02 33.2 % 5-60 09/25/2025 10:44 09/26/2025 21:01 Surr: p-Terphenyl-d14 (Surr) 02 44.8 % 5-141 09/25/2025 10:44 09/26/2025 21:01	,
Semivolatile Organic Compounds by GCMS Anthracene 02 120-12-7 SW8270E 09/25/2025 10:44 09/26/2025 21:01 BLOD 400 800 20 Up	,
Anthracene 02 120-12-7 SW8270E 09/25/2025 10:44 09/26/2025 21:01 BLOD 400 800 20 up Surr: 2,4,6-Tribromophenol (Surr) 02 % 5-136 09/25/2025 10:44 09/26/2025 21:01 Surr: 2-Fluorobiphenyl (Surr) 02 40.0 % 9-117 09/25/2025 10:44 09/26/2025 21:01 Surr: 2-Fluorophenol (Surr) 02 23.6 % 5-60 09/25/2025 10:44 09/26/2025 21:01 Surr: Nitrobenzene-d5 (Surr) 02 502 % 5-151 09/25/2025 10:44 09/26/2025 21:01 Surr: Phenol-d5 (Surr) 02 33.2 % 5-60 09/25/2025 10:44 09/26/2025 21:01 Surr: p-Terphenyl-d14 (Surr) 02 44.8 % 5-141 09/25/2025 10:44 09/26/2025 21:01	,
Surr: 2,4,6-Tribromophenol (Surr) 02 % 5-136 09/25/2025 10:44 09/26/2025 21:01 Surr: 2-Fluorobiphenyl (Surr) 02 40.0 % 9-117 09/25/2025 10:44 09/26/2025 21:01 Surr: 2-Fluorophenol (Surr) 02 23.6 % 5-60 09/25/2025 10:44 09/26/2025 21:01 Surr: Nitrobenzene-d5 (Surr) 02 502 % 5-151 09/25/2025 10:44 09/26/2025 21:01 Surr: Phenol-d5 (Surr) 02 33.2 % 5-60 09/25/2025 10:44 09/26/2025 21:01 Surr: p-Terphenyl-d14 (Surr) 02 44.8 % 5-141 09/25/2025 10:44 09/26/2025 21:01	,
Surr: 2-Fluorobiphenyl (Surr) 02 40.0 % 9-117 09/25/2025 10:44 09/26/2025 21:01 Surr: 2-Fluorophenol (Surr) 02 23.6 % 5-60 09/25/2025 10:44 09/26/2025 21:01 Surr: Nitrobenzene-d5 (Surr) 02 502 % 5-151 09/25/2025 10:44 09/26/2025 21:01 Surr: Phenol-d5 (Surr) 02 33.2 % 5-60 09/25/2025 10:44 09/26/2025 21:01 Surr: p-Terphenyl-d14 (Surr) 02 44.8 % 5-141 09/25/2025 10:44 09/26/2025 21:01	DS
Surr: 2-Fluorophenol (Surr) 02 23.6 % 5-60 09/25/2025 10:44 09/26/2025 21:01 Surr: Nitrobenzene-d5 (Surr) 02 502 % 5-151 09/25/2025 10:44 09/26/2025 21:01 Surr: Phenol-d5 (Surr) 02 33.2 % 5-60 09/25/2025 10:44 09/26/2025 21:01 Surr: p-Terphenyl-d14 (Surr) 02 44.8 % 5-141 09/25/2025 10:44 09/26/2025 21:01	
Surr: Nitrobenzene-d5 (Surr) 02 502 % 5-151 09/25/2025 10:44 09/26/2025 21:01 Surr: Phenol-d5 (Surr) 02 33.2 % 5-60 09/25/2025 10:44 09/26/2025 21:01 Surr: p-Terphenyl-d14 (Surr) 02 44.8 % 5-141 09/25/2025 10:44 09/26/2025 21:01	
Surr: Phenol-d5 (Surr) 02 33.2 % 5-60 09/25/2025 10:44 09/26/2025 21:01 Surr: p-Terphenyl-d14 (Surr) 02 44.8 % 5-141 09/25/2025 10:44 09/26/2025 21:01	
Surr: p-Terphenyl-d14 (Surr) 02 44.8 % 5-141 09/25/2025 10:44 09/26/2025 21:01	DS
Ion Chromatography Analyses	
Ton om om one of the property	
Acetic Acid 02RE1 64-19-7 D3705 10/01/2025 22:16 10/01/2025 22:16 5870 71.4 500 1000 m	g/L HL\
Butyric Acid 02RE1 107-92-6 D3705 10/01/2025 22:16 10/01/2025 22:16 1750 70.3 500 1000 m	g/L HL\
Formic Acid 02RE1 64-18-6 D3705 10/01/2025 22:16 10/01/2025 22:16 2090 64.5 500 1000 m	g/L HL\
n-Hexanoic Acid 02 142-62-1 D3705 10/01/2025 23:19 10/01/2025 23:19 496 6.0 50.0 100 m	g/L HL
i-Hexanoic Acid 02 646-07-1 D3705 10/01/2025 23:19 10/01/2025 23:19 BLOD 5.1 50.0 100 m	g/L HL
Lactic Acid 02 50-21-5 D3705 10/01/2025 23:19 10/01/2025 23:19 864 5.6 50.0 100 m	g/L HL\
n-Pentanoic Acid 02 109-52-4 D3705 10/01/2025 23:19 10/01/2025 23:19 238 5.6 50.0 100 m	g/L HL\
	g/L HL\
	g/L HL\
	g/L HL\

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

10/9/2025 6:00:01PM

Client Site I.D.:

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

2512218

Client Sample ID: EW-60 Laboratory Sample ID: 2512218-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Wet Chemistry Analysis												
Ammonia as N	02	7664-41-7	EPA350.1 R2.0	10/06/2025 13:00	10/06/2025 13:00	1210		120	200	2000	mg/L	SPH
BOD	02	E1640606	SM5210B-20 16	09/25/2025 18:00	09/25/2025 18:00	33700		0.2	2.0	1	mg/L	CET
COD	02	NA	SM5220D-20 11	10/06/2025 15:50	10/06/2025 15:50	55500		6300	10000	1000	mg/L	CET
Nitrate as N	02	14797-55-8	SM4500-NO 3F-2019CAL C	10/09/2025 14:43	10/09/2025 15:47	BLOD		0.102	0.400	20	mg/L	AYT
Nitrate+Nitrite as N	02	E701177	SM4500-NO 3F-2019	10/09/2025 14:43	10/09/2025 15:47	BLOD		0.07	0.10	5	mg/L	AAL
Nitrite as N	02	14797-65-0	SM4500-NO 2B-2021	09/25/2025 12:30	09/25/2025 16:51	0.40		0.10	0.40	20	mg/L	AYT
Total Recoverable Phenolics	02	NA	SW9065	10/07/2025 15:30	10/07/2025 15:30	2.38		0.309	0.500	1	mg/L	SPH
TKN as N	02	E17148461	EPA351.2 R2.0	10/06/2025 16:46	10/07/2025 13:15	2200		45.9	50.0	1	mg/L	HJB

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

10/9/2025 6:00:01PM

Client Site I.D.:
Submitted To:

LFG-EW Monthly Monitoring

Jennifer Robb

Work Order:

2512218

Client Sample ID: Trip Blank Laboratory Sample ID: 25I2218-03

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Compounds by GCM	S											
2-Butanone (MEK)	03	78-93-3	SW8260D	10/01/2025 13:22	10/01/2025 13:22	BLOD		3.00	10.0	1	ug/L	TLH
Acetone	03	67-64-1	SW8260D	10/01/2025 13:22	10/01/2025 13:22	BLOD		7.00	10.0	1	ug/L	TLH
Benzene	03	71-43-2	SW8260D	10/01/2025 13:22	10/01/2025 13:22	BLOD		0.40	1.00	1	ug/L	TLH
Ethylbenzene	03	100-41-4	SW8260D	10/01/2025 13:22	10/01/2025 13:22	BLOD		0.40	1.00	1	ug/L	TLH
Toluene	03	108-88-3	SW8260D	10/01/2025 13:22	10/01/2025 13:22	BLOD		0.50	1.00	1	ug/L	TLH
Xylenes, Total	03	1330-20-7	SW8260D	10/01/2025 13:22	10/01/2025 13:22	BLOD		1.00	3.00	1	ug/L	TLH
Tetrahydrofuran	03	109-99-9	SW8260D	10/01/2025 13:22	10/01/2025 13:22	BLOD		10.0	10.0	1	ug/L	TLH
Surr: 1,2-Dichloroethane-d4 (Surr)	03	105	% 70-120	10/01/2025 13:	22 10/01/2025 13:22	2						
Surr: 4-Bromofluorobenzene (Surr)	03	97.0	% 75-120	10/01/2025 13:	22 10/01/2025 13:22	2						
Surr: Dibromofluoromethane (Surr)	03	98.2	% 70-130	10/01/2025 13:	22 10/01/2025 13:22	2						
Surr: Toluene-d8 (Surr)	03	99.8	% 70-130	10/01/2025 13:	22 10/01/2025 13:22	2						

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Ba	tch Bll1534 - SW3005	5A-ICP								
Blank (BlI1534-BLK1)				Prepared: 09/26/	2025 Analyzed: (09/29/2025				
Arsenic	ND	0.0200	mg/L							
Barium	ND	0.0100	mg/L							
Cadmium	ND	0.0040	mg/L							
Chromium	0.0004	0.0100	mg/L							В
Copper	ND	0.0100	mg/L							
Lead	ND	0.0100	mg/L							
Nickel	ND	0.0100	mg/L							
Selenium	ND	0.0500	mg/L							
Silver	ND	0.0100	mg/L							
Zinc	ND	0.0100	mg/L							
LCS (BII1534-BS1)				Prepared: 09/26/	2025 Analyzed: (09/29/2025				
Arsenic	0.514	0.0200	mg/L	0.500		103	80-120			
Barium	0.507	0.0100	mg/L	0.500		101	80-120			
Cadmium	0.498	0.0040	mg/L	0.500		99.5	80-120			
Chromium	0.508	0.0100	mg/L	0.500		102	80-120			
Copper	0.483	0.0100	mg/L	0.500		96.6	80-120			
Lead	0.498	0.0100	mg/L	0.500		99.7	80-120			
Nickel	0.4977	0.0100	mg/L	0.500		99.5	80-120			
Selenium	0.527	0.0500	mg/L	0.500		105	80-120			
Silver	0.0957	0.0100	mg/L	0.100		95.7	80-120			
Zinc	0.501	0.0100	mg/L	0.500		100	80-120			
Matrix Spike (BII1534-MS1)	Sour	ce: 25l2087-02		Prepared: 09/26/	2025 Analyzed: (09/29/2025				
Arsenic	0.500	0.0200	mg/L	0.500	BLOD	100	75-125			
Barium	0.558	0.0100	mg/L	0.500	0.0585	100	75-125			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BII1534 - SW3005	5A-ICP								
Matrix Spike (BII1534-MS1)	Sour	ce: 25l2087-02	!	Prepared: 09/26/	/2025 Analyzed: (09/29/2025				
Cadmium	0.479	0.0040	mg/L	0.500	BLOD	95.9	75-125			
Chromium	0.498	0.0100	mg/L	0.500	BLOD	99.7	75-125			
Copper	0.477	0.0100	mg/L	0.500	BLOD	95.4	75-125			
Lead	0.481	0.0100	mg/L	0.500	BLOD	96.2	75-125			
Nickel	0.4842	0.0100	mg/L	0.500	BLOD	96.8	75-125			
Selenium	0.497	0.0500	mg/L	0.500	BLOD	99.3	75-125			
Silver	0.0942	0.0100	mg/L	0.100	BLOD	94.2	75-125			
Zinc	0.498	0.0100	mg/L	0.500	0.0041	98.8	75-125			
Matrix Spike Dup (BII1534-MSD1)	Sour	ce: 25l2087-02	!	Prepared: 09/26/	/2025 Analyzed: 0	09/29/2025				
Arsenic	0.503	0.0200	mg/L	0.500	BLOD	101	75-125	0.621	20	
Barium	0.558	0.0100	mg/L	0.500	0.0585	99.8	75-125	0.112	20	
Cadmium	0.484	0.0040	mg/L	0.500	BLOD	96.8	75-125	0.953	20	
Chromium	0.502	0.0100	mg/L	0.500	BLOD	100	75-125	0.801	20	
Copper	0.479	0.0100	mg/L	0.500	BLOD	95.9	75-125	0.459	20	
Lead	0.486	0.0100	mg/L	0.500	BLOD	97.1	75-125	0.956	20	
Nickel	0.4885	0.0100	mg/L	0.500	BLOD	97.7	75-125	0.873	20	
Selenium	0.504	0.0500	mg/L	0.500	BLOD	101	75-125	1.56	20	
Silver	0.0936	0.0100	mg/L	0.100	BLOD	93.6	75-125	0.560	20	
Zinc	0.494	0.0100	mg/L	0.500	0.0041	97.9	75-125	0.859	20	
Batch	BII1535 - SW3005	SA-ICPMS								
Blank (BII1535-BLK1)				Prepared: 09/26/	/2025 Analyzed: (09/29/2025				
Mercury	ND	0.200	ug/L							
LCS (BII1535-BS1)				Prepared: 09/26/	/2025 Analyzed: (09/29/2025				

10/9/2025 6:00:01PM

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Work Order:

Date Issued:

2512218

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BII1535 - SW3005	A-ICPMS								
LCS (BII1535-BS1)				Prepared: 09/26/	/2025 Analyzed: (09/29/2025				
Mercury	0.995	0.200	ug/L	1.00		99.5	80-120			
Matrix Spike (BII1535-MS1)	Source	ce: 25l2081-02		Prepared: 09/26/	/2025 Analyzed: (09/29/2025				
Mercury	1.89	0.200	ug/L	1.00	0.861	103	80-120			
Matrix Spike Dup (BII1535-MSD1)	Source	ce: 25l2081-02		Prepared: 09/26/	/2025 Analyzed: (09/29/2025				
Mercury	1.88	0.200	ug/L	1.00	0.861	102	80-120	0.507	20	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl	J0048 - SW5030	B-MS								
Blank (BIJ0048-BLK1)			F	Prepared & Analy	/zed: 10/01/2025					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Tetrahydrofuran	ND	10.0	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	49.5		ug/L	50.0		99.0	70-120			
Surr: 4-Bromofluorobenzene (Surr)	47.0		ug/L	50.0		94.0	75-120			
Surr: Dibromofluoromethane (Surr)	49.1		ug/L	50.0		98.1	70-130			
Surr: Toluene-d8 (Surr)	51.0		ug/L	50.0		102	70-130			
.CS (BIJ0048-BS1)			F	Prepared & Analy	/zed: 10/01/2025					
1,1,1,2-Tetrachloroethane	48.7		ug/L	50.0		97.4	80-130			
1,1,1-Trichloroethane	47.4		ug/L	50.0		94.8	65-130			
1,1,2,2-Tetrachloroethane	57.7		ug/L	50.0		115	65-130			
1,1,2-Trichloroethane	53.9		ug/L	50.0		108	75-125			
1,1-Dichloroethane	55.0		ug/L	50.0		110	70-135			
1,1-Dichloroethylene	47.5		ug/L	50.0		95.0	70-130			
1,1-Dichloropropene	50.0		ug/L	50.0		100	75-135			
1,2,3-Trichlorobenzene	43.6		ug/L	50.0		87.2	55-140			
1,2,3-Trichloropropane	55.0		ug/L	50.0		110	75-125			
1,2,4-Trichlorobenzene	46.0		ug/L	50.0		92.1	65-135			
1,2,4-Trimethylbenzene	49.9		ug/L	50.0		99.9	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	39.6		ug/L	50.0		79.3	50-130			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batcl	h BIJ0048 - SW5030	B-MS							
_CS (BIJ0048-BS1)			Prepared & Anal	lyzed: 10/01/2025					
1,2-Dibromoethane (EDB)	47.0	ug/L	50.0		94.0	80-120			
1,2-Dichlorobenzene	50.1	ug/L	50.0		100	70-120			
1,2-Dichloroethane	52.2	ug/L	50.0		104	70-130			
1,2-Dichloropropane	52.1	ug/L	50.0		104	75-125			
1,3,5-Trimethylbenzene	48.2	ug/L	50.0		96.5	75-125			
1,3-Dichlorobenzene	51.4	ug/L	50.0		103	75-125			
1,3-Dichloropropane	52.0	ug/L	50.0		104	75-125			
1,4-Dichlorobenzene	50.8	ug/L	50.0		102	75-125			
2,2-Dichloropropane	54.2	ug/L	50.0		108	70-135			
2-Butanone (MEK)	49.3	ug/L	50.0		98.6	30-150			
2-Chlorotoluene	46.9	ug/L	50.0		93.8	75-125			
2-Hexanone (MBK)	47.6	ug/L	50.0		95.1	55-130			
4-Chlorotoluene	48.4	ug/L	50.0		96.7	75-130			
4-Isopropyltoluene	50.7	ug/L	50.0		101	75-130			
4-Methyl-2-pentanone (MIBK)	47.1	ug/L	50.0		94.2	60-135			
Acetone	56.4	ug/L	50.0		113	40-140			
Benzene	50.5	ug/L	50.0		101	80-120			
Bromobenzene	54.6	ug/L	50.0		109	75-125			
Bromochloromethane	53.1	ug/L	50.0		106	65-130			
Bromodichloromethane	51.4	ug/L	50.0		103	75-120			
Bromoform	50.0	ug/L	50.0		100	70-130			
Bromomethane	48.5	ug/L	50.0		97.0	30-145			
Carbon disulfide	31.9	ug/L	50.0		63.9	35-160			
Carbon tetrachloride	45.9	ug/L	50.0		91.8	65-140			
Chlorobenzene	49.7	ug/L	50.0		99.4	80-120			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BIJ0048 - SW5030	B-MS							
LCS (BIJ0048-BS1)		ſ	Prepared & Anal	yzed: 10/01/2025	;				
Chloroethane	51.3	ug/L	50.0		103	60-135			
Chloroform	51.1	ug/L	50.0		102	65-135			
Chloromethane	43.5	ug/L	50.0		87.0	40-125			
cis-1,2-Dichloroethylene	53.1	ug/L	50.0		106	70-125			
cis-1,3-Dichloropropene	54.1	ug/L	50.0		108	70-130			
Dibromochloromethane	51.2	ug/L	50.0		102	60-135			
Dibromomethane	48.6	ug/L	50.0		97.1	75-125			
Dichlorodifluoromethane	36.1	ug/L	50.0		72.2	30-155			
Ethylbenzene	49.3	ug/L	50.0		98.5	75-125			
Hexachlorobutadiene	41.4	ug/L	50.0		82.7	50-140			
Isopropylbenzene	54.0	ug/L	50.0		108	75-125			
m+p-Xylenes	102	ug/L	100		102	75-130			
Methylene chloride	52.1	ug/L	50.0		104	55-140			
Methyl-t-butyl ether (MTBE)	55.4	ug/L	50.0		111	65-125			
Naphthalene	41.9	ug/L	50.0		83.8	55-140			
n-Butylbenzene	52.9	ug/L	50.0		106	70-135			
n-Propylbenzene	38.0	ug/L	50.0		76.1	70-130			
o-Xylene	52.9	ug/L	50.0		106	80-120			
sec-Butylbenzene	49.5	ug/L	50.0		99.1	70-125			
Styrene	55.2	ug/L	50.0		110	65-135			
tert-Butylbenzene	48.6	ug/L	50.0		97.1	70-130			
Tetrachloroethylene (PCE)	43.1	ug/L	50.0		86.3	45-150			
Toluene	48.3	ug/L	50.0		96.6	75-120			
trans-1,2-Dichloroethylene	49.3	ug/L	50.0		98.5	60-140			
trans-1,3-Dichloropropene	54.1	ug/L	50.0		108	55-140			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl.	J0048 - SW5030E	B-MS							
LCS (BIJ0048-BS1)			Prepared & Ana	lyzed: 10/01/2025					
Trichloroethylene	48.0	ug/L	50.0		96.0	70-125			
Trichlorofluoromethane	47.4	ug/L	50.0		94.9	60-145			
Vinyl chloride	62.0	ug/L	50.0		124	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	52.8	ug/L	50.0		106	70-120			
Surr: 4-Bromofluorobenzene (Surr)	53.7	ug/L	50.0		107	75-120			
Surr: Dibromofluoromethane (Surr)	54.7	ug/L	50.0		109	70-130			
Surr: Toluene-d8 (Surr)	50.2	ug/L	50.0		100	70-130			
Matrix Spike (BIJ0048-MS1)	Source	: 2512423-15	Prepared & Ana	lyzed: 10/01/2025					
1,1,1,2-Tetrachloroethane	48.5	ug/L	50.0	BLOD	97.0	80-130			
1,1,1-Trichloroethane	46.8	ug/L	50.0	BLOD	93.5	65-130			
1,1,2,2-Tetrachloroethane	60.1	ug/L	50.0	BLOD	120	65-130			
1,1,2-Trichloroethane	57.3	ug/L	50.0	BLOD	115	75-125			
1,1-Dichloroethane	54.0	ug/L	50.0	BLOD	108	70-135			
1,1-Dichloroethylene	46.2	ug/L	50.0	BLOD	92.4	50-145			
1,1-Dichloropropene	48.6	ug/L	50.0	BLOD	97.3	75-135			
1,2,3-Trichlorobenzene	45.3	ug/L	50.0	BLOD	90.6	55-140			
1,2,3-Trichloropropane	57.9	ug/L	50.0	BLOD	116	75-125			
1,2,4-Trichlorobenzene	46.5	ug/L	50.0	BLOD	93.1	65-135			
1,2,4-Trimethylbenzene	49.2	ug/L	50.0	BLOD	98.4	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	43.1	ug/L	50.0	BLOD	86.2	50-130			
1,2-Dibromoethane (EDB)	49.7	ug/L	50.0	BLOD	99.3	80-120			
1,2-Dichlorobenzene	51.3	ug/L	50.0	BLOD	103	70-120			
1,2-Dichloroethane	52.9	ug/L	50.0	BLOD	106	70-130			
1,2-Dichloropropane	53.1	ug/L	50.0	BLOD	106	75-125			

2512218

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Jennifer Robb

Date Issued:

10/9/2025 6:00:01PM

Client Site I.D.:

Submitted To:

LFG-EW Monthly Monitoring

Work Order:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batcl	n BIJ0048 - SW5030	B-MS							
Matrix Spike (BIJ0048-MS1)	Source	ce: 25l2423-15	Prepared & Ana	lyzed: 10/01/2025	5				
1,3,5-Trimethylbenzene	47.8	ug/	50.0	BLOD	95.5	75-124			
1,3-Dichlorobenzene	51.4	ug/	50.0	BLOD	103	75-125			
1,3-Dichloropropane	54.2	ug/	50.0	BLOD	108	75-125			
1,4-Dichlorobenzene	49.7	ug/	50.0	BLOD	99.4	75-125			
2,2-Dichloropropane	54.1	ug/	50.0	BLOD	108	70-135			
2-Butanone (MEK)	54.8	ug/	50.0	BLOD	110	30-150			
2-Chlorotoluene	45.6	ug/	50.0	BLOD	91.3	75-125			
2-Hexanone (MBK)	54.8	ug/	50.0	BLOD	110	55-130			
4-Chlorotoluene	47.6	ug/	50.0	BLOD	95.3	75-130			
4-Isopropyltoluene	49.3	ug/	50.0	BLOD	98.6	75-130			
4-Methyl-2-pentanone (MIBK)	52.6	ug/	50.0	BLOD	105	60-135			
Acetone	61.6	ug/	50.0	28.2	66.7	40-140			
Benzene	49.5	ug/	50.0	BLOD	99.0	80-120			
Bromobenzene	54.7	ug/	50.0	BLOD	109	75-125			
Bromochloromethane	53.5	ug/	50.0	BLOD	107	65-130			
Bromodichloromethane	51.9	ug/	50.0	BLOD	104	75-136			
Bromoform	51.3	ug/	50.0	BLOD	103	70-130			
Bromomethane	48.5	ug/	50.0	BLOD	97.1	30-145			
Carbon disulfide	30.8	ug/	50.0	BLOD	56.4	35-160			
Carbon tetrachloride	45.7	ug/	50.0	BLOD	91.4	65-140			
Chlorobenzene	49.5	ug/	_ 50.0	BLOD	99.0	80-120			
Chloroethane	48.0	ug/	_ 50.0	BLOD	96.1	60-135			
Chloroform	50.8	ug/	_ 50.0	3.20	95.3	65-135			
Chloromethane	42.0	ug/	50.0	BLOD	84.0	40-125			
cis-1,2-Dichloroethylene	51.2	ug/	50.0	BLOD	102	70-125			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Jennifer Robb

Date Issued:

10/9/2025 6:00:01PM

Client Site I.D.: LFG-EW Monthly Monitoring

Submitted To:

Work Order:

2512218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	h BIJ0048 - SW5030	B-MS							
Matrix Spike (BIJ0048-MS1)	Source	ce: 25l2423-15	Prepared & Ana	lyzed: 10/01/2025	i				
cis-1,3-Dichloropropene	54.5	นดู	/L 50.0	BLOD	109	47-136			
Dibromochloromethane	52.6	นดู	/L 50.0	BLOD	105	60-135			
Dibromomethane	49.9	นดู	/L 50.0	BLOD	99.8	75-125			
Dichlorodifluoromethane	33.8	นดู	/L 50.0	BLOD	67.5	30-155			
Ethylbenzene	48.8	นดู	/L 50.0	BLOD	97.6	75-125			
Hexachlorobutadiene	40.8	นดู	/L 50.0	BLOD	81.6	50-140			
Isopropylbenzene	52.3	uç	/L 50.0	BLOD	105	75-125			
m+p-Xylenes	100	นดู	/L 100	BLOD	100	75-130			
Methylene chloride	50.0	นดู	/L 50.0	BLOD	100	55-140			
Methyl-t-butyl ether (MTBE)	57.8	uç	/L 50.0	BLOD	116	65-125			
Naphthalene	44.9	นดู	/L 50.0	BLOD	89.9	55-140			
n-Butylbenzene	51.3	uç	/L 50.0	BLOD	103	70-135			
n-Propylbenzene	37.8	uç	/L 50.0	BLOD	75.5	70-130			
o-Xylene	52.0	uç	/L 50.0	BLOD	104	80-120			
sec-Butylbenzene	49.1	uç	/L 50.0	BLOD	98.3	70-125			
Styrene	54.8	uç	/L 50.0	BLOD	110	65-135			
tert-Butylbenzene	47.4	uç	/L 50.0	BLOD	94.8	70-130			
Tetrachloroethylene (PCE)	42.2	uç	/L 50.0	BLOD	84.3	51-231			
Toluene	48.8	uç	/L 50.0	2.40	92.8	75-120			
trans-1,2-Dichloroethylene	48.8	uç	/L 50.0	BLOD	97.5	60-140			
trans-1,3-Dichloropropene	56.3	uç	/L 50.0	BLOD	113	55-140			
Trichloroethylene	48.0	uç	/L 50.0	BLOD	95.9	70-125			
Trichlorofluoromethane	45.2	uç	/L 50.0	BLOD	90.5	60-145			
Vinyl chloride	59.7	uç	/L 50.0	BLOD	119	50-145			

10/9/2025 6:00:01PM

Certificate of Analysis

Client Name: SCS Engineers - Winchester

neers - Winchester Date Issued:

Client Site I.D.: LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25I2218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Unit	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl.	J0048 - SW5030)B-MS							
Matrix Spike (BIJ0048-MS1)	Source	ce: 25l2423-15	Prepared & An	alyzed: 10/01/2025					
Surr: 1,2-Dichloroethane-d4 (Surr)	55.2	u	/L 50.0		110	70-120			
Surr: 4-Bromofluorobenzene (Surr)	52.9	u	/L 50.0		106	75-120			
Surr: Dibromofluoromethane (Surr)	53.3	u	/L 50.0		107	70-130			
Surr: Toluene-d8 (Surr)	50.9	u	/L 50.0		102	70-130			
Matrix Spike Dup (BIJ0048-MSD1)	Source	ce: 25l2423-15	Prepared & Ana	alyzed: 10/01/2025					
1,1,1,2-Tetrachloroethane	48.3	u	/L 50.0	BLOD	96.6	80-130	0.413	30	
1,1,1-Trichloroethane	46.9	u	/L 50.0	BLOD	93.7	65-130	0.192	30	
1,1,2,2-Tetrachloroethane	58.7	u	/L 50.0	BLOD	117	65-130	2.29	30	
1,1,2-Trichloroethane	55.3	u	/L 50.0	BLOD	111	75-125	3.68	30	
1,1-Dichloroethane	54.2	u	/L 50.0	BLOD	108	70-135	0.240	30	
1,1-Dichloroethylene	45.5	u	/L 50.0	BLOD	91.1	50-145	1.42	30	
1,1-Dichloropropene	48.7	u	/L 50.0	BLOD	97.4	75-135	0.164	30	
1,2,3-Trichlorobenzene	45.1	u	/L 50.0	BLOD	90.1	55-140	0.487	30	
1,2,3-Trichloropropane	59.0	u	/L 50.0	BLOD	118	75-125	1.86	30	
1,2,4-Trichlorobenzene	46.8	u	/L 50.0	BLOD	93.7	65-135	0.685	30	
1,2,4-Trimethylbenzene	50.4	u	/L 50.0	BLOD	101	75-130	2.35	30	
1,2-Dibromo-3-chloropropane (DBCP)	43.8	u	/L 50.0	BLOD	87.6	50-130	1.59	30	
1,2-Dibromoethane (EDB)	49.3	u	/L 50.0	BLOD	98.5	80-120	0.788	30	
1,2-Dichlorobenzene	50.8	u	/L 50.0	BLOD	102	70-120	1.10	30	
1,2-Dichloroethane	52.3	u	/L 50.0	BLOD	105	70-130	1.10	30	
1,2-Dichloropropane	53.4	u	/L 50.0	BLOD	107	75-125	0.620	30	
1,3,5-Trimethylbenzene	48.8	u	/L 50.0	BLOD	97.6	75-124	2.09	30	
1,3-Dichlorobenzene	52.3	u	/L 50.0	BLOD	105	75-125	1.79	30	
1,3-Dichloropropane	52.3	u	/L 50.0	BLOD	105	75-125	3.55	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIJ0048 - SW5030	B-MS							
Matrix Spike Dup (BIJ0048-MSD1)	Source	ce: 25l2423-15	Prepared & Ana	lyzed: 10/01/2025	5				
1,4-Dichlorobenzene	49.6	ug/l	50.0	BLOD	99.3	75-125	0.101	30	
2,2-Dichloropropane	53.0	ug/l	50.0	BLOD	106	70-135	1.90	30	
2-Butanone (MEK)	54.2	ug/l	50.0	BLOD	108	30-150		30	
2-Chlorotoluene	47.3	ug/l	50.0	BLOD	94.6	75-125	3.59	30	
2-Hexanone (MBK)	55.8	ug/l	50.0	BLOD	112	55-130	1.77	30	
4-Chlorotoluene	47.7	ug/l	50.0	BLOD	95.4	75-130	0.105	30	
4-Isopropyltoluene	50.7	ug/l	50.0	BLOD	101	75-130	2.88	30	
4-Methyl-2-pentanone (MIBK)	53.9	ug/l	50.0	BLOD	108	60-135	2.42	30	
Acetone	59.3	ug/l	50.0	28.2	62.2	40-140		30	
Benzene	50.5	ug/l	50.0	BLOD	101	80-120	2.02	30	
Bromobenzene	54.0	ug/l	50.0	BLOD	108	75-125	1.23	30	
Bromochloromethane	53.2	ug/l	50.0	BLOD	106	65-130	0.675	30	
Bromodichloromethane	51.6	ug/l	50.0	BLOD	103	75-136	0.579	30	
Bromoform	51.3	ug/l	50.0	BLOD	103	70-130	0.117	30	
Bromomethane	47.8	ug/l	50.0	BLOD	95.6	30-145	1.52	30	
Carbon disulfide	32.8	ug/l	50.0	BLOD	60.3	35-160		30	
Carbon tetrachloride	45.8	ug/l	50.0	BLOD	91.7	65-140	0.306	30	
Chlorobenzene	49.2	ug/l	50.0	BLOD	98.3	80-120	0.709	30	
Chloroethane	48.0	ug/l	50.0	BLOD	95.9	60-135	0.188	30	
Chloroform	50.6	ug/l	50.0	3.20	94.8	65-135	0.434	30	
Chloromethane	41.1	ug/l	50.0	BLOD	82.2	40-125	2.24	30	
cis-1,2-Dichloroethylene	51.2	ug/l	50.0	BLOD	102	70-125	0.0977	30	
cis-1,3-Dichloropropene	53.8	ug/l	50.0	BLOD	108	47-136	1.16	30	
Dibromochloromethane	51.0	ug/l	50.0	BLOD	102	60-135	3.05	30	
Dibromomethane	48.7	ug/l	50.0	BLOD	97.5	75-125	2.37	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	IJ0048 - SW5030	B-MS								
Matrix Spike Dup (BIJ0048-MSD1)	Source	ce: 25l2423-15		Prepared & Analy	zed: 10/01/2025					
Dichlorodifluoromethane	34.2		ug/L	50.0	BLOD	68.5	30-155	1.41	30	
Ethylbenzene	50.2		ug/L	50.0	BLOD	100	75-125	2.71	30	
Hexachlorobutadiene	42.7		ug/L	50.0	BLOD	85.3	50-140	4.51	30	
Isopropylbenzene	53.4		ug/L	50.0	BLOD	107	75-125	2.21	30	
m+p-Xylenes	102		ug/L	100	BLOD	102	75-130	1.87	30	
Methylene chloride	49.2		ug/L	50.0	BLOD	98.3	55-140		30	
Methyl-t-butyl ether (MTBE)	54.8		ug/L	50.0	BLOD	110	65-125	5.31	30	
Naphthalene	44.6		ug/L	50.0	BLOD	89.1	55-140	0.804	30	
n-Butylbenzene	52.6		ug/L	50.0	BLOD	105	70-135	2.52	30	
n-Propylbenzene	38.2		ug/L	50.0	BLOD	76.3	70-130	1.11	30	
o-Xylene	52.9		ug/L	50.0	BLOD	106	80-120	1.83	30	
sec-Butylbenzene	50.6		ug/L	50.0	BLOD	101	70-125	3.03	30	
Styrene	54.2		ug/L	50.0	BLOD	108	65-135	1.12	30	
tert-Butylbenzene	49.6		ug/L	50.0	BLOD	99.1	70-130	4.41	30	
Tetrachloroethylene (PCE)	44.1		ug/L	50.0	BLOD	88.1	51-231	4.38	30	
Toluene	49.9		ug/L	50.0	2.40	94.9	75-120	2.17	30	
trans-1,2-Dichloroethylene	49.3		ug/L	50.0	BLOD	98.7	60-140	1.16	30	
trans-1,3-Dichloropropene	54.7		ug/L	50.0	BLOD	109	55-140	2.74	30	
Trichloroethylene	48.3		ug/L	50.0	BLOD	96.6	70-125	0.686	30	
Trichlorofluoromethane	46.2		ug/L	50.0	BLOD	92.5	60-145	2.21	30	
Vinyl chloride	59.9		ug/L	50.0	BLOD	120	50-145	0.351	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	54.2		ug/L	50.0		108	70-120			
Surr: 4-Bromofluorobenzene (Surr)	51.9		ug/L	50.0		104	75-120			
Surr: Dibromofluoromethane (Surr)	53.4		ug/L	50.0		107	70-130			

10/9/2025 6:00:01PM

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

Client Site I.D.: LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25I2218

Volatile Organic Compounds by GCMS - Quality Control

					•					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	BIJ0048 - SW5030	B-MS								
Matrix Spike Dup (BIJ0048-MSD1)	Sourc	e: 25l2423-1	5	Prepared & Anal	yzed: 10/01/2025					
Surr: Toluene-d8 (Surr)	50.2		ug/L	50.0		100	70-130			
Batch E	BIJ0151 - SW5030	B-MS								
Blank (BIJ0151-BLK1)				Prepared & Analy	yzed: 10/02/2025					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Tetrahydrofuran	ND	10.0	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	49.3		ug/L	50.0		98.6	70-120			
Surr: 4-Bromofluorobenzene (Surr)	47.0		ug/L	50.0		94.1	75-120			
Surr: Dibromofluoromethane (Surr)	48.6		ug/L	50.0		97.2	70-130			
Surr: Toluene-d8 (Surr)	50.6		ug/L	50.0		101	70-130			
LCS (BIJ0151-BS1)				Prepared & Analy	yzed: 10/02/2025					
1,1,1,2-Tetrachloroethane	47.2		ug/L	50.0		94.5	80-130			
1,1,1-Trichloroethane	47.0		ug/L	50.0		93.9	65-130			
1,1,2,2-Tetrachloroethane	54.3		ug/L	50.0		109	65-130			
1,1,2-Trichloroethane	52.1		ug/L	50.0		104	75-125			
1,1-Dichloroethane	54.3		ug/L	50.0		109	70-135			
1,1-Dichloroethylene	49.5		ug/L	50.0		98.9	70-130			
1,1-Dichloropropene	51.0		ug/L	50.0		102	75-135			
1,2,3-Trichlorobenzene	42.8		ug/L	50.0		85.6	55-140			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl	J0151 - SW5030	B-MS							
LCS (BIJ0151-BS1)			Prepared & Anal	yzed: 10/02/2025	;				
1,2,3-Trichloropropane	52.8	ug/L	50.0		106	75-125			
1,2,4-Trichlorobenzene	44.5	ug/L	50.0		89.0	65-135			
1,2,4-Trimethylbenzene	48.3	ug/L	50.0		96.5	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	38.2	ug/L	50.0		76.3	50-130			
1,2-Dibromoethane (EDB)	47.9	ug/L	50.0		95.7	80-120			
1,2-Dichlorobenzene	48.9	ug/L	50.0		97.8	70-120			
1,2-Dichloroethane	52.5	ug/L	50.0		105	70-130			
1,2-Dichloropropane	53.6	ug/L	50.0		107	75-125			
1,3,5-Trimethylbenzene	46.7	ug/L	50.0		93.4	75-125			
1,3-Dichlorobenzene	49.4	ug/L	50.0		98.8	75-125			
1,3-Dichloropropane	51.9	ug/L	50.0		104	75-125			
1,4-Dichlorobenzene	48.8	ug/L	50.0		97.7	75-125			
2,2-Dichloropropane	53.8	ug/L	50.0		108	70-135			
2-Butanone (MEK)	45.2	ug/L	50.0		90.3	30-150			
2-Chlorotoluene	45.0	ug/L	50.0		89.9	75-125			
2-Hexanone (MBK)	46.5	ug/L	50.0		93.1	55-130			
4-Chlorotoluene	47.0	ug/L	50.0		94.1	75-130			
4-Isopropyltoluene	49.0	ug/L	50.0		98.0	75-130			
4-Methyl-2-pentanone (MIBK)	46.3	ug/L	50.0		92.6	60-135			
Acetone	51.3	ug/L	50.0		103	40-140			
Benzene	51.5	ug/L	50.0		103	80-120			
Bromobenzene	54.0	ug/L	50.0		108	75-125			
Bromochloromethane	53.2	ug/L	50.0		106	65-130			
Bromodichloromethane	51.6	ug/L	50.0		103	75-120			
Bromoform	47.7	ug/L	50.0		95.3	70-130			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BIJ0151 - SW5030	B-MS							
LCS (BIJ0151-BS1)			Prepared & Ana	lyzed: 10/02/2025					
Bromomethane	55.5	ug/L	50.0		111	30-145			
Carbon disulfide	35.3	ug/L	50.0		70.7	35-160			
Carbon tetrachloride	46.9	ug/L	50.0		93.9	65-140			
Chlorobenzene	48.4	ug/L	50.0		96.9	80-120			
Chloroethane	56.0	ug/L	50.0		112	60-135			
Chloroform	50.4	ug/L	50.0		101	65-135			
Chloromethane	50.7	ug/L	50.0		101	40-125			
cis-1,2-Dichloroethylene	52.0	ug/L	50.0		104	70-125			
cis-1,3-Dichloropropene	54.4	ug/L	50.0		109	70-130			
Dibromochloromethane	49.8	ug/L	50.0		99.6	60-135			
Dibromomethane	49.1	ug/L	50.0		98.2	75-125			
Dichlorodifluoromethane	37.8	ug/L	50.0		75.7	30-155			
Ethylbenzene	49.4	ug/L	50.0		98.8	75-125			
Hexachlorobutadiene	38.8	ug/L	50.0		77.5	50-140			
Isopropylbenzene	53.2	ug/L	50.0		106	75-125			
m+p-Xylenes	101	ug/L	100		101	75-130			
Methylene chloride	52.3	ug/L	50.0		105	55-140			
Methyl-t-butyl ether (MTBE)	55.0	ug/L	50.0		110	65-125			
Naphthalene	39.5	ug/L	50.0		79.1	55-140			
n-Butylbenzene	50.5	ug/L	50.0		101	70-135			
n-Propylbenzene	36.4	ug/L	50.0		72.8	70-130			
o-Xylene	53.2	ug/L	50.0		106	80-120			
sec-Butylbenzene	47.9	ug/L	50.0		95.8	70-125			
Styrene	54.5	ug/L	50.0		109	65-135			
tert-Butylbenzene	46.8	ug/L	50.0		93.6	70-130			

2512218

Certificate of Analysis

Volatile Organic Compounds by GCMS - Quality Control

Client Name: SCS Engineers - Winchester

Jennifer Robb

Date Issued:

10/9/2025 6:00:01PM

Client Site I.D.:
Submitted To:

LFG-EW Monthly Monitoring

Work Order:

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl	J0151 - SW5030	B-MS							
LCS (BIJ0151-BS1)			Prepared & Ana	lyzed: 10/02/2025	;				
Tetrachloroethylene (PCE)	44.9	ug/L	50.0		89.7	45-150			
Toluene	49.6	ug/L	50.0		99.2	75-120			
trans-1,2-Dichloroethylene	52.6	ug/L	50.0		105	60-140			
trans-1,3-Dichloropropene	54.7	ug/L	50.0		109	55-140			
Trichloroethylene	49.0	ug/L	50.0		98.0	70-125			
Trichlorofluoromethane	48.8	ug/L	50.0		97.6	60-145			
Vinyl chloride	65.8	ug/L	50.0		132	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	51.6	ug/L	50.0		103	70-120			
Surr: 4-Bromofluorobenzene (Surr)	54.0	ug/L	50.0		108	75-120			
Surr: Dibromofluoromethane (Surr)	53.6	ug/L	50.0		107	70-130			
Surr: Toluene-d8 (Surr)	50.0	ug/L	50.0		99.9	70-130			
Matrix Spike (BIJ0151-MS1)	Sourc	e: 25l2612-04	Prepared & Ana	lyzed: 10/02/2025	;				
1,1,1,2-Tetrachloroethane	45.3	ug/L	50.0	BLOD	90.5	80-130			
1,1,1-Trichloroethane	44.2	ug/L	50.0	BLOD	88.4	65-130			
1,1,2,2-Tetrachloroethane	54.4	ug/L	50.0	BLOD	109	65-130			
1,1,2-Trichloroethane	50.9	ug/L	50.0	BLOD	102	75-125			
1,1-Dichloroethane	54.4	ug/L	50.0	BLOD	109	70-135			
1,1-Dichloroethylene	48.9	ug/L	50.0	BLOD	97.8	50-145			
1,1-Dichloropropene	48.6	ug/L	50.0	BLOD	97.1	75-135			
1,2,3-Trichlorobenzene	40.7	ug/L	50.0	BLOD	81.5	55-140			
1,2,3-Trichloropropane	53.6	ug/L	50.0	BLOD	107	75-125			
1,2,4-Trichlorobenzene	42.8	ug/L	50.0	BLOD	85.6	65-135			
1,2,4-Trimethylbenzene	45.6	ug/L	50.0	BLOD	91.2	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	40.9	ug/L	50.0	BLOD	81.9	50-130			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BIJ0151 - SW5030	B-MS							
Matrix Spike (BIJ0151-MS1)	Sourc	e: 25l2612-04	Prepared & Ana	lyzed: 10/02/2025	5				
1,2-Dibromoethane (EDB)	46.9	ug	L 50.0	BLOD	93.9	80-120			
1,2-Dichlorobenzene	46.7	ug	L 50.0	BLOD	93.5	70-120			
1,2-Dichloroethane	50.7	ug	L 50.0	BLOD	101	70-130			
1,2-Dichloropropane	50.1	ug	L 50.0	BLOD	100	75-125			
1,3,5-Trimethylbenzene	45.0	ug	L 50.0	BLOD	90.0	75-124			
1,3-Dichlorobenzene	47.6	ug	L 50.0	BLOD	95.2	75-125			
1,3-Dichloropropane	50.7	ug	L 50.0	BLOD	101	75-125			
1,4-Dichlorobenzene	47.2	ug	L 50.0	BLOD	93.8	75-125			
2,2-Dichloropropane	52.3	ug	L 50.0	BLOD	105	70-135			
2-Butanone (MEK)	52.7	ug	L 50.0	BLOD	105	30-150			
2-Chlorotoluene	43.6	ug	L 50.0	BLOD	87.2	75-125			
2-Hexanone (MBK)	52.7	ug	L 50.0	BLOD	105	55-130			
4-Chlorotoluene	44.0	ug	L 50.0	BLOD	88.1	75-130			
4-Isopropyltoluene	46.0	ug	L 50.0	BLOD	92.1	75-130			
4-Methyl-2-pentanone (MIBK)	53.8	ug	L 50.0	BLOD	108	60-135			
Acetone	51.8	ug	L 50.0	BLOD	96.5	40-140			
Benzene	50.4	ug	L 50.0	BLOD	100	80-120			
Bromobenzene	50.5	ug	L 50.0	BLOD	101	75-125			
Bromochloromethane	53.4	ug	L 50.0	BLOD	107	65-130			
Bromodichloromethane	49.2	ug	′L 50.0	BLOD	98.4	75-136			
Bromoform	48.6	ug	′L 50.0	BLOD	97.3	70-130			
Bromomethane	54.6	ug	′L 50.0	BLOD	109	30-145			
Carbon disulfide	41.5	ug	′L 50.0	BLOD	82.8	35-160			
Carbon tetrachloride	44.8	ug	L 50.0	BLOD	89.6	65-140			
Chlorobenzene	46.7	ug	L 50.0	BLOD	93.5	80-120			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batc	ch BIJ0151 - SW5030E	B-MS							
Matrix Spike (BIJ0151-MS1)	Source	e: 25l2612-04	Prepared & Ana	alyzed: 10/02/2025	5				
Chloroethane	53.5	นดู	/L 50.0	BLOD	107	60-135			
Chloroform	48.9	นดู	/L 50.0	BLOD	97.0	65-135			
Chloromethane	53.4	นดู	/L 50.0	BLOD	106	40-125			
cis-1,2-Dichloroethylene	52.1	นดู	/L 50.0	1.76	101	70-125			
cis-1,3-Dichloropropene	52.0	นดู	/L 50.0	BLOD	104	47-136			
Dibromochloromethane	47.5	นดู	/L 50.0	BLOD	95.0	60-135			
Dibromomethane	48.4	นดู	/L 50.0	BLOD	96.8	75-125			
Dichlorodifluoromethane	39.3	นดู	/L 50.0	BLOD	78.2	30-155			
Ethylbenzene	47.1	uç	/L 50.0	BLOD	94.3	75-125			
Hexachlorobutadiene	38.6	uç	/L 50.0	BLOD	77.2	50-140			
Isopropylbenzene	50.2	uç	/L 50.0	BLOD	100	75-125			
m+p-Xylenes	96.9	uç	/L 100	BLOD	96.9	75-130			
Methylene chloride	52.0	นดู	/L 50.0	BLOD	104	55-140			
Methyl-t-butyl ether (MTBE)	55.4	นดู	/L 50.0	BLOD	110	65-125			
Naphthalene	40.0	นดู	/L 50.0	BLOD	79.6	55-140			
n-Butylbenzene	47.8	นดู	/L 50.0	BLOD	95.6	70-135			
n-Propylbenzene	35.0	นดู	/L 50.0	BLOD	70.1	70-130			
o-Xylene	49.6	uç	/L 50.0	BLOD	99.2	80-120			
sec-Butylbenzene	45.4	นดู	/L 50.0	BLOD	90.7	70-125			
Styrene	48.9	uç	/L 50.0	BLOD	97.7	65-135			
tert-Butylbenzene	44.3	uç	/L 50.0	BLOD	88.6	70-130			
Tetrachloroethylene (PCE)	42.5	uç	/L 50.0	BLOD	85.0	51-231			
Toluene	46.7	uç	/L 50.0	BLOD	93.4	75-120			
trans-1,2-Dichloroethylene	51.9	uç	/L 50.0	BLOD	104	60-140			
trans-1,3-Dichloropropene	52.2	uç	/L 50.0	BLOD	104	55-140			

2512218

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Jennifer Robb

Date Issued:

Work Order:

10/9/2025 6:00:01PM

Client Site I.D.: LFG

Submitted To:

LFG-EW Monthly Monitoring

Volatile Organic Compounds by GCMS - Quality Control

Entha	alpy A	∖naly	/tica
-------	--------	-------	-------

Analyte	Result	LOQ Unit	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl.	J0151 - SW5030	B-MS							
Matrix Spike (BIJ0151-MS1)	Sourc	e: 25l2612-04	Prepared & Ana	lyzed: 10/02/2025	5				
Trichloroethylene	49.0	uç	/L 50.0	BLOD	98.0	70-125			
Trichlorofluoromethane	48.2	uç	/L 50.0	BLOD	96.5	60-145			
Vinyl chloride	71.3	uç	/L 50.0	BLOD	143	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	53.3	uç	/L 50.0		107	70-120			
Surr: 4-Bromofluorobenzene (Surr)	52.9	uç	/L 50.0		106	75-120			
Surr: Dibromofluoromethane (Surr)	52.7	uç	/L 50.0		105	70-130			
Surr: Toluene-d8 (Surr)	49.4	uç	/L 50.0		98.7	70-130			
Matrix Spike Dup (BIJ0151-MSD1)	Sourc	e: 25l2612-04	Prepared & Ana	lyzed: 10/02/2025	5				
1,1,1,2-Tetrachloroethane	43.6	uç	/L 50.0	BLOD	87.2	80-130	3.74	30	
1,1,1-Trichloroethane	43.0	uç	/L 50.0	BLOD	86.0	65-130	2.73	30	
1,1,2,2-Tetrachloroethane	56.7	uç	/L 50.0	BLOD	113	65-130	4.09	30	
1,1,2-Trichloroethane	52.6	uç	/L 50.0	BLOD	105	75-125	3.25	30	
1,1-Dichloroethane	49.5	uç	/L 50.0	BLOD	98.9	70-135	9.60	30	
1,1-Dichloroethylene	46.2	uç	/L 50.0	BLOD	92.3	50-145	5.76	30	
1,1-Dichloropropene	46.2	uç	/L 50.0	BLOD	92.3	75-135	5.03	30	
1,2,3-Trichlorobenzene	41.8	uç	/L 50.0	BLOD	83.5	55-140	2.47	30	
1,2,3-Trichloropropane	54.8	uç	/L 50.0	BLOD	110	75-125	2.21	30	
1,2,4-Trichlorobenzene	44.3	uç	/L 50.0	BLOD	88.6	65-135	3.42	30	
1,2,4-Trimethylbenzene	46.2	uç	/L 50.0	BLOD	92.3	75-130	1.20	30	
1,2-Dibromo-3-chloropropane (DBCP)	44.1	uç	/L 50.0	BLOD	88.3	50-130	7.52	30	
1,2-Dibromoethane (EDB)	47.5	uç	/L 50.0	BLOD	95.0	80-120	1.23	30	
1,2-Dichlorobenzene	47.4	uç	/L 50.0	BLOD	94.8	70-120	1.42	30	
1,2-Dichloroethane	49.4	uç	/L 50.0	BLOD	98.8	70-130	2.62	30	
1,2-Dichloropropane	49.4	uç	/L 50.0	BLOD	98.8	75-125	1.47	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIJ0151 - SW5030	B-MS							
Matrix Spike Dup (BIJ0151-MSD1)	Source	ce: 25l2612-04	Prepared & Ana	lyzed: 10/02/2025	;				
1,3,5-Trimethylbenzene	44.6	ug	L 50.0	BLOD	89.1	75-124	1.00	30	
1,3-Dichlorobenzene	47.3	ug	L 50.0	BLOD	94.6	75-125	0.590	30	
1,3-Dichloropropane	52.4	ug	L 50.0	BLOD	105	75-125	3.16	30	
1,4-Dichlorobenzene	46.7	ug	L 50.0	BLOD	92.9	75-125	0.980	30	
2,2-Dichloropropane	48.6	ug	L 50.0	BLOD	97.3	70-135	7.18	30	
2-Butanone (MEK)	54.2	ug	L 50.0	BLOD	108	30-150	2.68	30	
2-Chlorotoluene	42.4	ug	L 50.0	BLOD	84.8	75-125	2.77	30	
2-Hexanone (MBK)	57.8	ug	L 50.0	BLOD	116	55-130	9.24	30	
4-Chlorotoluene	44.3	ug	L 50.0	BLOD	88.6	75-130	0.589	30	
4-Isopropyltoluene	46.0	ug	L 50.0	BLOD	91.9	75-130	0.217	30	
4-Methyl-2-pentanone (MIBK)	57.9	ug	L 50.0	BLOD	116	60-135	7.48	30	
Acetone	52.8	ug	L 50.0	BLOD	98.5	40-140	1.91	30	
Benzene	49.1	ug	L 50.0	BLOD	97.6	80-120	2.77	30	
Bromobenzene	50.5	ug	L 50.0	BLOD	101	75-125	0.139	30	
Bromochloromethane	50.2	ug	L 50.0	BLOD	100	65-130	6.02	30	
Bromodichloromethane	48.7	ug	L 50.0	BLOD	97.4	75-136	1.00	30	
Bromoform	49.2	ug	L 50.0	BLOD	98.4	70-130	1.14	30	
Bromomethane	49.8	ug	L 50.0	BLOD	99.4	30-145	9.25	30	
Carbon disulfide	39.1	ug	L 50.0	BLOD	77.9	35-160	6.00	30	
Carbon tetrachloride	43.7	ug	L 50.0	BLOD	87.5	65-140	2.42	30	
Chlorobenzene	46.6	ug	L 50.0	BLOD	93.2	80-120	0.300	30	
Chloroethane	47.2	ug	L 50.0	BLOD	94.5	60-135	12.4	30	
Chloroform	46.0	ug	L 50.0	BLOD	91.0	65-135	6.24	30	
Chloromethane	44.4	ug	L 50.0	BLOD	88.4	40-125	18.4	30	
cis-1,2-Dichloroethylene	48.8	ug	L 50.0	1.76	94.1	70-125	6.42	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIJ0151 - SW5030	B-MS							
Matrix Spike Dup (BIJ0151-MSD1)	Sourc	e: 25l2612-04	Prepared & Anal	yzed: 10/02/2025					
cis-1,3-Dichloropropene	51.2	ug/L	50.0	BLOD	102	47-136	1.57	30	
Dibromochloromethane	48.4	ug/L	50.0	BLOD	96.9	60-135	1.92	30	
Dibromomethane	48.6	ug/L	50.0	BLOD	97.2	75-125	0.330	30	
Dichlorodifluoromethane	34.4	ug/L	50.0	BLOD	68.4	30-155	13.4	30	
Ethylbenzene	46.3	ug/L	50.0	BLOD	92.7	75-125	1.71	30	
Hexachlorobutadiene	38.9	ug/L	50.0	BLOD	77.8	50-140	0.800	30	
Isopropylbenzene	49.1	ug/L	50.0	BLOD	98.1	75-125	2.30	30	
m+p-Xylenes	94.5	ug/L	100	BLOD	94.5	75-130	2.57	30	
Methylene chloride	47.5	ug/L	50.0	BLOD	95.0	55-140	8.95	30	
Methyl-t-butyl ether (MTBE)	53.1	ug/L	50.0	BLOD	105	65-125	4.17	30	
Naphthalene	42.4	ug/L	50.0	BLOD	84.6	55-140	5.97	30	
n-Butylbenzene	47.9	ug/L	50.0	BLOD	95.9	70-135	0.251	30	
n-Propylbenzene	35.6	ug/L	50.0	BLOD	71.3	70-130	1.70	30	
o-Xylene	48.5	ug/L	50.0	BLOD	97.0	80-120	2.26	30	
sec-Butylbenzene	45.7	ug/L	50.0	BLOD	91.3	70-125	0.703	30	
Styrene	47.7	ug/L	50.0	BLOD	95.3	65-135	2.49	30	
tert-Butylbenzene	44.3	ug/L	50.0	BLOD	88.7	70-130	0.135	30	
Tetrachloroethylene (PCE)	42.3	ug/L	50.0	BLOD	84.7	51-231	0.354	30	
Toluene	47.7	ug/L	50.0	BLOD	95.4	75-120	2.14	30	
trans-1,2-Dichloroethylene	47.3	ug/L	50.0	BLOD	94.6	60-140	9.29	30	
trans-1,3-Dichloropropene	53.2	ug/L	50.0	BLOD	106	55-140	1.99	30	
Trichloroethylene	46.8	ug/L	50.0	BLOD	93.6	70-125	4.57	30	
Trichlorofluoromethane	42.4	ug/L	50.0	BLOD	84.7	60-145	13.0	30	
Vinyl chloride	66.8	ug/L	50.0	BLOD	134	50-145	6.56	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
В	atch BIJ0151 - SW5030B	-MS								
Matrix Spika Dup (BLI0151 MSD1)	Saura	0510640 04		Dropared & Apolyzo	A. 10/02/2025					

Matrix Spike Dup (BIJ0151-MSD1)	Source: 25l26 ²	12-04	Prepared & Analyzed: 10/0	02/2025	
Surr: 1,2-Dichloroethane-d4 (Surr)	53.2	ug/L	50.0	106	70-120
Surr: 4-Bromofluorobenzene (Surr)	53.4	ug/L	50.0	107	75-120
Surr: Dibromofluoromethane (Surr)	52.3	ug/L	50.0	105	70-130
Surr: Toluene-d8 (Surr)	50.6	ug/L	50.0	101	70-130

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BII1447 - SW3510	C/EPA600-N	IS							
Blank (BII1447-BLK1)			F	Prepared & Analy	yzed: 09/25/2025					
Anthracene	ND	10.0	ug/L							
Surr: 2,4,6-Tribromophenol (Surr)	81.4		ug/L	100		81.4	5-136			
Surr: 2-Fluorobiphenyl (Surr)	33.4		ug/L	50.0		66.7	9-117			
Surr: 2-Fluorophenol (Surr)	48.9		ug/L	100		48.9	5-60			
Surr: Nitrobenzene-d5 (Surr)	41.2		ug/L	50.0		82.3	5-151			
Surr: Phenol-d5 (Surr)	34.2		ug/L	100		34.2	5-60			
Surr: p-Terphenyl-d14 (Surr)	39.2		ug/L	50.0		78.3	5-141			
LCS (BII1447-BS1)			F	Prepared & Analy	yzed: 09/25/2025					
1,2,4-Trichlorobenzene	34.0	10.0	ug/L	50.0		68.0	57-130			
1,2-Dichlorobenzene	35.9	10.0	ug/L	50.0		71.8	22-115			
1,3-Dichlorobenzene	34.7	10.0	ug/L	50.0		69.4	22-112			
1,4-Dichlorobenzene	34.0	10.0	ug/L	50.0		68.0	13-112			
2,4,6-Trichlorophenol	41.9	10.0	ug/L	50.0		83.9	52-129			
2,4-Dichlorophenol	38.2	10.0	ug/L	50.0		76.4	53-122			
2,4-Dimethylphenol	36.6	5.00	ug/L	50.0		73.1	42-120			
2,4-Dinitrophenol	44.5	50.0	ug/L	50.0		88.9	48-127			
2,4-Dinitrotoluene	43.3	10.0	ug/L	50.0		86.6	10-173			
2,6-Dinitrotoluene	41.8	10.0	ug/L	50.0		83.5	68-137			
2-Chloronaphthalene	35.9	10.0	ug/L	50.0		71.8	65-120			
2-Chlorophenol	36.3	10.0	ug/L	50.0		72.6	36-120			
2-Nitrophenol	40.0	10.0	ug/L	50.0		80.0	45-167			
3,3'-Dichlorobenzidine	52.5	10.0	ug/L	50.0		105	10-213			
4,6-Dinitro-2-methylphenol	53.7	50.0	ug/L	50.0		107	53-130			
4-Bromophenyl phenyl ether	41.5	10.0	ug/L	50.0		83.1	65-120			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BII1447 - SW3510	C/EPA600-N	IS							
LCS (BII1447-BS1)			F	Prepared & Anal	yzed: 09/25/2025					
4-Chlorophenyl phenyl ether	38.6	10.0	ug/L	50.0		77.2	38-145			
4-Nitrophenol	16.8	50.0	ug/L	50.0		33.6	13-129			
Acenaphthene	36.7	10.0	ug/L	50.0		73.4	60-132			
Acenaphthylene	36.8	10.0	ug/L	50.0		73.6	54-126			
Acetophenone	33.8	20.0	ug/L	50.0		67.6	0-200			
Anthracene	38.5	10.0	ug/L	50.0		77.0	43-120			
Benzo (a) anthracene	45.3	10.0	ug/L	50.0		90.6	42-133			
Benzo (a) pyrene	42.5	10.0	ug/L	50.0		85.1	32-148			
Benzo (b) fluoranthene	45.9	10.0	ug/L	50.0		91.7	42-140			
Benzo (g,h,i) perylene	39.1	10.0	ug/L	50.0		78.3	10-195			
Benzo (k) fluoranthene	40.3	10.0	ug/L	50.0		80.6	25-146			
bis (2-Chloroethoxy) methane	36.0	10.0	ug/L	50.0		72.0	49-165			
bis (2-Chloroethyl) ether	37.6	10.0	ug/L	50.0		75.2	43-126			
2,2'-Oxybis (1-chloropropane)	37.4	10.0	ug/L	50.0		74.7	63-139			
bis (2-Ethylhexyl) phthalate	41.2	10.0	ug/L	50.0		82.5	29-137			
Butyl benzyl phthalate	50.1	10.0	ug/L	50.0		100	10-140			
Chrysene	41.9	10.0	ug/L	50.0		83.8	44-140			
Dibenz (a,h) anthracene	42.3	10.0	ug/L	50.0		84.6	10-200			
Diethyl phthalate	42.2	10.0	ug/L	50.0		84.3	10-120			
Dimethyl phthalate	40.8	10.0	ug/L	50.0		81.6	10-120			
Di-n-butyl phthalate	43.3	10.0	ug/L	50.0		86.5	10-120			
Di-n-octyl phthalate	44.9	10.0	ug/L	50.0		89.8	19-132			
Fluoranthene	41.7	10.0	ug/L	50.0		83.5	43-121			
Fluorene	37.4	10.0	ug/L	50.0		74.8	70-120			
Hexachlorobenzene	42.8	2.50	ug/L	50.0		85.7	10-142			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BII1447 - SW35100	C/EPA600-M	IS							
LCS (BII1447-BS1)				Prepared & Anal	yzed: 09/25/2025	5				
Hexachlorobutadiene	41.0	10.0	ug/L	50.0		81.9	38-120			
Hexachlorocyclopentadiene	27.6	10.0	ug/L	50.0		55.2	10-76			
Hexachloroethane	35.0	10.0	ug/L	50.0		70.0	55-120			
Indeno (1,2,3-cd) pyrene	38.7	10.0	ug/L	50.0		77.3	10-151			
Isophorone	35.3	10.0	ug/L	50.0		70.6	47-180			
Naphthalene	33.5	5.00	ug/L	50.0		67.0	36-120			
Nitrobenzene	40.0	10.0	ug/L	50.0		79.9	54-158			
n-Nitrosodimethylamine	16.1	10.0	ug/L	50.0		32.2	10-85			
n-Nitrosodi-n-propylamine	39.2	10.0	ug/L	50.0		78.5	14-198			
n-Nitrosodiphenylamine	33.0	10.0	ug/L	50.0		65.9	12-97			
p-Chloro-m-cresol	39.8	10.0	ug/L	50.0		79.6	10-142			
Pentachlorophenol	33.6	20.0	ug/L	50.0		67.3	38-152			
Phenanthrene	42.1	10.0	ug/L	50.0		84.1	65-120			
Phenol	16.3	10.0	ug/L	50.5		32.4	17-120			
Pyrene	43.2	10.0	ug/L	50.0		86.4	70-120			
Pyridine	15.8	10.0	ug/L	50.0		31.6	10-103			
Surr: 2,4,6-Tribromophenol (Surr)	86.7		ug/L	100		86.7	5-136			
Surr: 2-Fluorobiphenyl (Surr)	35.1		ug/L	50.0		70.2	9-117			
Surr: 2-Fluorophenol (Surr)	29.0		ug/L	100		29.0	5-60			
Surr: Nitrobenzene-d5 (Surr)	41.6		ug/L	50.0		83.1	5-151			
Surr: Phenol-d5 (Surr)	33.8		ug/L	100		33.8	5-60			
Surr: p-Terphenyl-d14 (Surr)	47.6		ug/L	50.0		95.2	5-141			
latrix Spike (BII1447-MS1)	Sourc	e: 25l2081-02	2	Prepared: 09/25	/2025 Analyzed: 0	09/26/2025				
1,2,4-Trichlorobenzene	30.7	10.3	ug/L	51.5	BLOD	59.6	44-142			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batc	h BII1447 - SW3510	C/EPA600-N	IS							
Matrix Spike (BII1447-MS1)	Sourc	e: 25l2081-02	2	Prepared: 09/25	/2025 Analyzed: 0	9/26/2025				
1,2-Dichlorobenzene	32.8	10.3	ug/L	51.5	BLOD	63.6	22-115			
1,3-Dichlorobenzene	31.7	10.3	ug/L	51.5	BLOD	61.5	22-112			
1,4-Dichlorobenzene	31.2	10.3	ug/L	51.5	BLOD	60.6	13-112			
2,4,6-Trichlorophenol	38.8	10.3	ug/L	51.5	BLOD	75.2	37-144			
2,4-Dichlorophenol	35.1	10.3	ug/L	51.5	BLOD	68.1	39-135			
2,4-Dimethylphenol	29.0	5.15	ug/L	51.5	BLOD	56.3	32-120			
2,4-Dinitrophenol	45.1	51.5	ug/L	51.5	BLOD	87.5	39-139			
2,4-Dinitrotoluene	41.5	10.3	ug/L	51.5	BLOD	80.5	10-191			
2,6-Dinitrotoluene	39.8	10.3	ug/L	51.5	BLOD	77.2	50-158			
2-Chloronaphthalene	32.1	10.3	ug/L	51.5	BLOD	62.2	60-120			
2-Chlorophenol	32.3	10.3	ug/L	51.5	BLOD	62.7	23-134			
2-Nitrophenol	36.4	10.3	ug/L	51.5	BLOD	70.7	29-182			
3,3'-Dichlorobenzidine	42.1	10.3	ug/L	51.5	BLOD	81.7	10-262			
4,6-Dinitro-2-methylphenol	51.8	51.5	ug/L	51.5	BLOD	101	10-181			
4-Bromophenyl phenyl ether	37.9	10.3	ug/L	51.5	BLOD	73.5	53-127			
4-Chlorophenyl phenyl ether	35.0	10.3	ug/L	51.5	BLOD	67.9	25-158			
4-Nitrophenol	18.3	51.5	ug/L	51.5	BLOD	35.6	10-132			
Acenaphthene	33.1	10.3	ug/L	51.5	BLOD	64.3	47-145			
Acenaphthylene	33.4	10.3	ug/L	51.5	BLOD	64.8	33-145			
Acetophenone	32.0	20.6	ug/L	51.5	BLOD	62.1	0-200			
Anthracene	35.0	10.3	ug/L	51.5	BLOD	68.0	27-133			
Benzo (a) anthracene	39.2	10.3	ug/L	51.5	BLOD	76.1	33-143			
Benzo (a) pyrene	36.6	10.3	ug/L	51.5	BLOD	71.0	17-163			
Benzo (b) fluoranthene	39.6	10.3	ug/L	51.5	BLOD	76.8	24-159			
Benzo (g,h,i) perylene	34.4	10.3	ug/L	51.5	BLOD	66.7	10-219			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BII1447 - SW3510	C/EPA600-M	s							
Matrix Spike (BII1447-MS1)	Sourc	e: 25l2081-02	2	Prepared: 09/25	/2025 Analyzed: (09/26/2025				
Benzo (k) fluoranthene	36.4	10.3	ug/L	51.5	BLOD	70.6	11-162			
bis (2-Chloroethoxy) methane	34.0	10.3	ug/L	51.5	BLOD	65.9	33-184			
bis (2-Chloroethyl) ether	34.1	10.3	ug/L	51.5	BLOD	66.2	12-158			
2,2'-Oxybis (1-chloropropane)	34.7	10.3	ug/L	51.5	BLOD	67.3	36-166			
bis (2-Ethylhexyl) phthalate	37.8	10.3	ug/L	51.5	BLOD	73.4	10-158			
Butyl benzyl phthalate	45.2	10.3	ug/L	51.5	BLOD	87.8	10-152			
Chrysene	36.0	10.3	ug/L	51.5	BLOD	69.9	17-169			
Dibenz (a,h) anthracene	37.2	10.3	ug/L	51.5	BLOD	72.2	10-227			
Diethyl phthalate	40.8	10.3	ug/L	51.5	BLOD	79.1	10-120			
Dimethyl phthalate	38.5	10.3	ug/L	51.5	BLOD	74.6	10-120			
Di-n-butyl phthalate	40.2	10.3	ug/L	51.5	BLOD	78.0	10-120			
Di-n-octyl phthalate	41.1	10.3	ug/L	51.5	BLOD	79.7	10-146			
Fluoranthene	37.8	10.3	ug/L	51.5	BLOD	73.3	26-137			
Fluorene	34.4	10.3	ug/L	51.5	BLOD	66.7	59-121			
Hexachlorobenzene	37.7	2.58	ug/L	51.5	BLOD	73.2	10-152			
Hexachlorobutadiene	36.5	10.3	ug/L	51.5	BLOD	70.8	24-120			
Hexachlorocyclopentadiene	22.1	10.3	ug/L	51.5	BLOD	42.8	10-90			
Hexachloroethane	32.6	10.3	ug/L	51.5	BLOD	63.3	40-120			
Indeno (1,2,3-cd) pyrene	34.1	10.3	ug/L	51.5	BLOD	66.1	10-171			
Isophorone	32.3	10.3	ug/L	51.5	BLOD	62.6	21-196			
Naphthalene	30.8	5.15	ug/L	51.5	BLOD	59.8	21-133			
Nitrobenzene	37.4	10.3	ug/L	51.5	BLOD	72.6	35-180			
n-Nitrosodimethylamine	16.3	10.3	ug/L	51.5	BLOD	31.7	10-85			
n-Nitrosodi-n-propylamine	36.7	10.3	ug/L	51.5	BLOD	71.2	10-230			
n-Nitrosodiphenylamine	29.7	10.3	ug/L	51.5	BLOD	57.5	12-111			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BII1447 - SW3510	C/EPA600-M	S							
Matrix Spike (BII1447-MS1)	Source	e: 25l2081-02		Prepared: 09/25	/2025 Analyzed: (09/26/2025				
p-Chloro-m-cresol	37.3	10.3	ug/L	51.5	BLOD	72.3	10-127			
Pentachlorophenol	39.5	20.6	ug/L	51.5	BLOD	76.6	14-176			
Phenanthrene	38.7	10.3	ug/L	51.5	BLOD	75.2	54-120			
Phenol	14.0	10.3	ug/L	52.1	BLOD	26.8	10-120			
Pyrene	38.4	10.3	ug/L	51.5	BLOD	74.5	52-120			
Pyridine	13.0	10.3	ug/L	51.5	BLOD	25.2	10-110			
Surr: 2,4,6-Tribromophenol (Surr)	85.4		ug/L	103		82.8	5-136			
Surr: 2-Fluorobiphenyl (Surr)	31.3		ug/L	51.5		60.8	9-117			
Surr: 2-Fluorophenol (Surr)	26.1		ug/L	103		25.3	5-60			
Surr: Nitrobenzene-d5 (Surr)	39.7		ug/L	51.5		77.1	5-151			
Surr: Phenol-d5 (Surr)	29.5		ug/L	103		28.6	5-60			
Surr: p-Terphenyl-d14 (Surr)	37.0		ug/L	51.5		71.7	5-141			
Matrix Spike Dup (BII1447-MSD1)	Sourc	e: 25l2081-02		Prepared: 09/25	/2025 Analyzed: (09/26/2025				
1,2,4-Trichlorobenzene	32.2	10.5	ug/L	52.6	BLOD	61.1	44-142	4.57	20	
1,2-Dichlorobenzene	33.0	10.5	ug/L	52.6	BLOD	62.6	22-115	0.562	20	
1,3-Dichlorobenzene	32.8	10.5	ug/L	52.6	BLOD	62.4	22-112	3.41	20	
1,4-Dichlorobenzene	32.1	10.5	ug/L	52.6	BLOD	60.9	13-112	2.64	20	
2,4,6-Trichlorophenol	41.8	10.5	ug/L	52.6	BLOD	79.3	37-144	7.39	20	
2,4-Dichlorophenol	36.7	10.5	ug/L	52.6	BLOD	69.6	39-135	4.38	20	
2,4-Dimethylphenol	31.3	5.26	ug/L	52.6	BLOD	59.4	32-120	7.40	20	
2,4-Dinitrophenol	57.5	52.6	ug/L	52.6	BLOD	109	39-139	24.1	20	P
2,4-Dinitrotoluene	42.5	10.5	ug/L	52.6	BLOD	80.8	10-191	2.38	20	
2,6-Dinitrotoluene	39.8	10.5	ug/L	52.6	BLOD	75.6	50-158	0.0150	20	
2-Chloronaphthalene	34.1	10.5	ug/L	52.6	BLOD	64.8	60-120	6.15	20	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BII1447 - SW3510	C/EPA600-M	s							
Matrix Spike Dup (BII1447-MSD1)	Sourc	e: 25l2081-02	!	Prepared: 09/25	/2025 Analyzed: (09/26/2025				
2-Chlorophenol	33.1	10.5	ug/L	52.6	BLOD	62.8	23-134	2.24	20	
2-Nitrophenol	38.8	10.5	ug/L	52.6	BLOD	73.7	29-182	6.18	20	
3,3'-Dichlorobenzidine	39.5	10.5	ug/L	52.6	BLOD	75.0	10-262	6.44	20	
4,6-Dinitro-2-methylphenol	55.1	52.6	ug/L	52.6	BLOD	105	10-181	6.14	20	
4-Bromophenyl phenyl ether	38.3	10.5	ug/L	52.6	BLOD	72.8	53-127	1.10	20	
4-Chlorophenyl phenyl ether	36.8	10.5	ug/L	52.6	BLOD	69.9	25-158	4.98	20	
4-Nitrophenol	20.3	52.6	ug/L	52.6	BLOD	38.6	10-132	10.2	20	
Acenaphthene	34.5	10.5	ug/L	52.6	BLOD	65.5	47-145	3.90	20	
Acenaphthylene	34.2	10.5	ug/L	52.6	BLOD	64.9	33-145	2.33	20	
Acetophenone	32.7	21.1	ug/L	52.6	BLOD	62.1	0-200	2.02	20	
Anthracene	35.0	10.5	ug/L	52.6	BLOD	66.5	27-133	0.148	20	
Benzo (a) anthracene	36.3	10.5	ug/L	52.6	BLOD	69.0	33-143	7.63	20	
Benzo (a) pyrene	36.4	10.5	ug/L	52.6	BLOD	69.1	17-163	0.658	20	
Benzo (b) fluoranthene	45.0	10.5	ug/L	52.6	BLOD	85.5	24-159	12.8	20	
Benzo (g,h,i) perylene	19.5	10.5	ug/L	52.6	BLOD	37.0	10-219	55.4	20	P
Benzo (k) fluoranthene	34.2	10.5	ug/L	52.6	BLOD	65.0	11-162	6.12	20	
bis (2-Chloroethoxy) methane	34.8	10.5	ug/L	52.6	BLOD	66.2	33-184	2.51	20	
bis (2-Chloroethyl) ether	33.9	10.5	ug/L	52.6	BLOD	64.4	12-158	0.582	20	
2,2'-Oxybis (1-chloropropane)	35.1	10.5	ug/L	52.6	BLOD	66.7	36-166	1.16	20	
bis (2-Ethylhexyl) phthalate	38.3	10.5	ug/L	52.6	BLOD	72.8	10-158	1.18	20	
Butyl benzyl phthalate	43.5	10.5	ug/L	52.6	BLOD	82.6	10-152	4.00	20	
Chrysene	34.3	10.5	ug/L	52.6	BLOD	65.1	17-169	5.06	20	
Dibenz (a,h) anthracene	23.6	10.5	ug/L	52.6	BLOD	44.9	10-227	44.7	20	P
Diethyl phthalate	41.3	10.5	ug/L	52.6	BLOD	78.5	10-120	1.32	20	
Dimethyl phthalate	37.8	10.5	ug/L	52.6	BLOD	71.8	10-120	1.80	20	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BII1447 - SW3510	C/EPA600-M	IS							
Matrix Spike Dup (BII1447-MSD1)	Sourc	e: 25l2081-02	2	Prepared: 09/25	/2025 Analyzed: (09/26/2025				
Di-n-butyl phthalate	38.2	10.5	ug/L	52.6	BLOD	72.7	10-120	4.96	20	
Di-n-octyl phthalate	46.0	10.5	ug/L	52.6	BLOD	87.4	10-146	11.2	20	
Fluoranthene	32.7	10.5	ug/L	52.6	BLOD	62.2	26-137	14.3	20	
Fluorene	36.1	10.5	ug/L	52.6	BLOD	68.7	59-121	5.04	20	
Hexachlorobenzene	37.9	2.63	ug/L	52.6	BLOD	72.0	10-152	0.403	20	
Hexachlorobutadiene	38.2	10.5	ug/L	52.6	BLOD	72.6	24-120	4.59	20	
Hexachlorocyclopentadiene	26.7	10.5	ug/L	52.6	BLOD	50.7	10-90	18.9	20	
Hexachloroethane	34.2	10.5	ug/L	52.6	BLOD	65.1	40-120	4.82	20	
Indeno (1,2,3-cd) pyrene	21.7	10.5	ug/L	52.6	BLOD	41.3	10-171	44.3	20	P
Isophorone	32.9	10.5	ug/L	52.6	BLOD	62.6	21-196	2.05	20	
Naphthalene	31.7	5.26	ug/L	52.6	BLOD	60.2	21-133	2.75	20	
Nitrobenzene	38.5	10.5	ug/L	52.6	BLOD	73.1	35-180	2.77	20	
n-Nitrosodimethylamine	22.5	10.5	ug/L	52.6	BLOD	42.7	10-85	31.7	20	P
n-Nitrosodi-n-propylamine	37.6	10.5	ug/L	52.6	BLOD	71.5	10-230	2.45	20	
n-Nitrosodiphenylamine	30.8	10.5	ug/L	52.6	BLOD	58.5	12-111	3.77	20	
p-Chloro-m-cresol	39.4	10.5	ug/L	52.6	BLOD	74.9	10-127	5.64	20	
Pentachlorophenol	39.4	21.1	ug/L	52.6	BLOD	74.9	14-176	0.134	20	
Phenanthrene	38.2	10.5	ug/L	52.6	BLOD	72.6	54-120	1.44	20	
Phenol	14.7	10.5	ug/L	53.2	BLOD	27.7	10-120	5.21	20	
Pyrene	38.6	10.5	ug/L	52.6	BLOD	73.3	52-120	0.459	20	
Pyridine	15.4	10.5	ug/L	52.6	BLOD	29.2	10-110	17.1	20	
Surr: 2,4,6-Tribromophenol (Surr)	85.3		ug/L	105		81.1	5-136			
Surr: 2-Fluorobiphenyl (Surr)	32.6		ug/L	52.6		61.9	9-117			
Surr: 2-Fluorophenol (Surr)	31.4		ug/L	105		29.9	5-60			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch Bll1447 - SW3510C	/EPA600-N	IS							

Matrix Spike Dup (BII1447-MSD1)	Source: 25l2081-02		Prepared: 09/25/2025	Analyzed: 09/26/2025	
Surr: Nitrobenzene-d5 (Surr)	40.4	ug/L	52.6	76.8	5-151
Surr: Phenol-d5 (Surr)	29.9	ug/L	105	28.4	5-60
Surr: p-Terphenyl-d14 (Surr)	38.7	ug/L	52.6	73.5	5-141

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Ion Chromatography Analyses - Quality Control

Analyte	Result L	_OQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bat	ch BIJ0052 - No Prep IC									
Blank (BIJ0052-BLK1)				Prepared & Analy	/zed: 10/01/2025					
Acetic Acid	ND	0.5	mg/L							
Butyric Acid	ND	0.5	mg/L							
Formic Acid	ND	0.5	mg/L							
n-Hexanoic Acid	ND	0.5	mg/L							
i-Hexanoic Acid	ND	0.5	mg/L							
Lactic Acid	ND	0.5	mg/L							
n-Pentanoic Acid	ND	0.5	mg/L							
i-Pentanoic Acid	ND	0.5	mg/L							
Propionic Acid	ND	0.5	mg/L							
Pyruvic Acid	ND	0.5	mg/L							
LCS (BIJ0052-BS1)				Prepared & Analy	/zed: 10/01/2025					
Acetic Acid	4.9		mg/L	5.00		98.7	70-130			
Butyric Acid	4.3		mg/L	5.00		85.5	70-130			
Formic Acid	4.8		mg/L	4.99		96.1	70-130			
n-Hexanoic Acid	4.4		mg/L	5.00		87.8	70-130			
i-Hexanoic Acid	4.7		mg/L	5.00		94.8	70-130			
Lactic Acid	4.8		mg/L	5.00		96.1	70-130			
n-Pentanoic Acid	4.5		mg/L	5.00		89.2	70-130			
i-Pentanoic Acid	3.8		mg/L	5.00		76.8	70-130			
Propionic Acid	4.2		mg/L	5.00		83.8	70-130			
Pyruvic Acid	4.6		mg/L	5.00		92.4	70-130			
Matrix Spike (BIJ0052-MS1)	Source: 2512	2087-02		Prepared & Analy	/zed: 10/01/2025					
Acetic Acid	4.8	0.5	mg/L	5.00	BLOD	95.2	70-130			
Butyric Acid	4.2	0.5	mg/L	5.00	BLOD	83.6	70-130			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Ion Chromatography Analyses - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIJ0052 - No Prep	ıc								
Matrix Spike (BIJ0052-MS1)	Source	: 2512087-02		Prepared & Analy	zed: 10/01/2025					
Formic Acid	4.7	0.5	mg/L	5.00	BLOD	94.4	70-130			
n-Hexanoic Acid	4.3	0.5	mg/L	5.00	BLOD	85.9	70-130			
i-Hexanoic Acid	4.4	0.5	mg/L	5.00	BLOD	88.8	70-130			
Lactic Acid	4.4	0.5	mg/L	5.00	BLOD	88.8	70-130			
n-Pentanoic Acid	4.6	0.5	mg/L	5.00	BLOD	92.5	70-130			
i-Pentanoic Acid	3.9	0.5	mg/L	5.00	BLOD	78.7	70-130			
Propionic Acid	4.5	0.5	mg/L	5.00	BLOD	89.2	70-130			
Pyruvic Acid	4.3	0.5	mg/L	5.00	BLOD	85.7	70-130			
Matrix Spike Dup (BIJ0052-MSD1)	Source	: 2512087-02		Prepared & Analy	zed: 10/01/2025					
Acetic Acid	4.6	0.5	mg/L	5.00	BLOD	91.3	70-130	4.21	20	
Butyric Acid	3.9	0.5	mg/L	5.00	BLOD	78.8	70-130	5.92	20	
Formic Acid	4.4	0.5	mg/L	5.00	BLOD	88.2	70-130	6.81	20	
n-Hexanoic Acid	4.1	0.5	mg/L	5.00	BLOD	82.8	70-130	3.67	20	
i-Hexanoic Acid	4.2	0.5	mg/L	5.00	BLOD	83.8	70-130	5.77	20	
Lactic Acid	4.0	0.5	mg/L	5.00	BLOD	80.4	70-130	9.93	20	
n-Pentanoic Acid	4.3	0.5	mg/L	5.00	BLOD	86.4	70-130	6.81	20	
i-Pentanoic Acid	3.8	0.5	mg/L	5.00	BLOD	75.3	70-130	4.50	20	
Propionic Acid	4.2	0.5	mg/L	5.00	BLOD	84.7	70-130	5.10	20	
Pyruvic Acid	4.1	0.5	mg/L	5.00	BLOD	81.8	70-130	4.55	20	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	BII1440 - No Prep V	Wet Chem								
Blank (BII1440-BLK1)				Prepared & Analy	/zed: 09/25/2025					
BOD	ND	2.0	mg/L							
LCS (BII1440-BS1)				Prepared & Analy	zed: 09/25/2025					
BOD	190		mg/L	198		95.9	84.6-115.4			
Duplicate (BII1440-DUP1)	Source	e: 25l2096-01		Prepared & Analy	zed: 09/25/2025					
BOD	ND	2.0	mg/L		BLOD			NA	20	
Batch	BII1477 - No Prep V	Wet Chem								
Blank (BII1477-BLK1)				Prepared & Analy	zed: 09/25/2025					
Nitrite as N	ND	0.05	mg/L							
LCS (BII1477-BS1)				Prepared & Analy	zed: 09/25/2025					
Nitrite as N	0.11	0.05	mg/L	0.100		106	80-120			
Matrix Spike (BII1477-MS1)	Source	e: 25l2210-02		Prepared & Analy	zed: 09/25/2025					
Nitrite as N	0.16	0.05	mg/L	0.100	0.07	92.0	80-120			
Matrix Spike Dup (BII1477-MSD1)	Source	e: 25l2210-02		Prepared & Analy	zed: 09/25/2025					
Nitrite as N	0.16	0.05	mg/L	0.100	0.07	92.0	80-120	0.00	20	
Batch	BIJ0276 - No Prep \	Wet Chem								
Blank (BIJ0276-BLK1)				Prepared & Analy	zed: 10/06/2025					
Ammonia as N	ND	0.10	mg/L							

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Wet Chemistry Analysis - Quality Control

				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch I	BIJ0276 - No Prep	Wet Chem								
LCS (BIJ0276-BS1)				Prepared & Analy	/zed: 10/06/2025					
Ammonia as N	1.02		mg/L	1.00		102	90-110			
Matrix Spike (BIJ0276-MS1)	Source	e: 25J0017-02	2	Prepared & Analy	zed: 10/06/2025					
Ammonia as N	1.13	0.10	mg/L	1.00	0.12	102	89.3-131			
Matrix Spike (BIJ0276-MS2)	Source	e: 25J0103-01		Prepared & Analy	/zed: 10/06/2025					
Ammonia as N	0.99	0.10	mg/L	1.00	BLOD	98.6	89.3-131			
Matrix Spike Dup (BIJ0276-MSD1)	Source	e: 25J0017-02	2	Prepared & Analy	/zed: 10/06/2025					
Ammonia as N	1.14	0.10	mg/L	1.00	0.12	102	89.3-131	0.0881	20	
Matrix Spike Dup (BIJ0276-MSD2)	Source	e: 25J0103-01		Prepared & Analy	/zed: 10/06/2025					
Ammonia as N	1.00	0.10	mg/L	1.00	BLOD	100	89.3-131	1.61	20	
Batch I	BIJ0305 - No Prep	Wet Chem								
Blank (BIJ0305-BLK1)				Prepared & Analy	/zed: 10/06/2025					
COD	ND	10.0	mg/L							
LCS (BIJ0305-BS1)				Prepared & Analy	/zed: 10/06/2025					
COD	49.0	10.0	mg/L	50.0		98.0	88-119			
Matrix Spike (BIJ0305-MS1)	Source	e: 25l2489-02		Prepared & Analy	/zed: 10/06/2025					
COD	57.1	10.0	mg/L	50.0	16.7	80.9	72.4-130			
Matrix Spike Dup (BIJ0305-MSD1)	Source	e: 25l2489-02		Prepared & Analy	/zed: 10/06/2025					
COD	59.8	10.0	mg/L	50.0	16.7	86.2	72.4-130	4.47	20	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BIJ0321 - No Prep	Wet Chem								
Blank (BIJ0321-BLK1)				Prepared: 10/06	/2025 Analyzed:	10/07/2025				
TKN as N	ND	0.50	mg/L							
LCS (BIJ0321-BS1)				Prepared: 10/06	/2025 Analyzed:	10/07/2025				
TKN as N	4.98		mg/L	5.00		99.5	90-110			
Matrix Spike (BIJ0321-MS1)	Source	e: 25J0110-01		Prepared: 10/06	/2025 Analyzed:	10/07/2025				
TKN as N	6.04	0.50	mg/L	5.00	1.07	99.4	90-110			
Matrix Spike (BIJ0321-MS2)	Sourc	e: 25J0110-02	2	Prepared: 10/06	/2025 Analyzed:	10/07/2025				
TKN as N	6.01	0.50	mg/L	5.00	1.03	99.6	90-110			
Matrix Spike Dup (BIJ0321-MSD1)	Sourc	e: 25J0110-01		Prepared: 10/06	/2025 Analyzed:	10/07/2025				
TKN as N	6.00	0.50	mg/L	5.00	1.07	98.5	90-110	0.747	20	
Matrix Spike Dup (BIJ0321-MSD2)	Sourc	e: 25J0110-02	2	Prepared: 10/06	/2025 Analyzed:	10/07/2025				
TKN as N	5.73	0.50	mg/L	5.00	1.03	93.9	90-110	4.79	20	
Batch I	BIJ0363 - No Prep	Wet Chem								
Blank (BIJ0363-BLK1)				Prepared & Anal	yzed: 10/07/2025	5				
Total Recoverable Phenolics	ND	0.050	mg/L							
LCS (BIJ0363-BS1)				Prepared & Anal	yzed: 10/07/2025	5				
Total Recoverable Phenolics	0.54	0.050	mg/L	0.505		106	80-120			
Matrix Spike (BIJ0363-MS1)	Sourc	e: 25J0182-01	ļ	Prepared & Anal	yzed: 10/07/2025	5				
Total Recoverable Phenolics	0.54	0.050	mg/L	0.500	0.08	92.8	70-130			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BIJ0363 - No Prep	Wet Chem								
Matrix Spike Dup (BIJ0363-MSD1)	Sourc	e: 25J0182-01		Prepared & Analy	zed: 10/07/2025					
Total Recoverable Phenolics	0.53	0.050	mg/L	0.500	0.08	91.2	70-130	1.49	20	
Batch I	BIJ0529 - No Prep	Wet Chem								
Blank (BIJ0529-BLK1)				Prepared & Analy	zed: 10/09/2025					
Nitrate+Nitrite as N	ND	0.10	mg/L							
LCS (BIJ0529-BS1)				Prepared & Analy	zed: 10/09/2025					
Nitrate+Nitrite as N	0.98		mg/L	1.00		97.9	90-110			
Matrix Spike (BIJ0529-MS1)	Sourc	e: 25J0184-01		Prepared & Analy	zed: 10/09/2025					
Nitrate+Nitrite as N	71.2	1.00	mg/L	50.0	23.0	96.4	90-120			
Matrix Spike Dup (BIJ0529-MSD1)	Sourc	e: 25J0184-01		Prepared & Analy	zed: 10/09/2025					
Nitrate+Nitrite as N	66.9	1.00	mg/L	50.0	23.0	87.8	90-120	6.23	20	М

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order: 25l2218

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
lon Chromatography	/ Analyses		Preparation Method:	No Prep IC	
2512218-01	1.00 mL / 1.00 mL	D3705	BIJ0052	SIJ0092	AI50160
25I2218-01RE1	1.00 mL / 1.00 mL	D3705	BIJ0052	SIJ0092	AI50160
25I2218-01RE2	1.00 mL / 1.00 mL	D3705	BIJ0052	SIJ0092	AI50160
2512218-02	1.00 mL / 1.00 mL	D3705	BIJ0052	SIJ0092	AI50160
25I2218-02RE1	1.00 mL / 1.00 mL	D3705	BIJ0052	SIJ0092	Al50160
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	ysis		Preparation Method:	No Prep Wet Chem	
2512218-01	300 mL / 300 mL	SM5210B-2016	BII1440	SII1388	
2512218-02	300 mL / 300 mL	SM5210B-2016	BII1440	SII1388	
2512218-01	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BII1477	SII1164	AI50227
2512218-02	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BII1477	SII1164	AI50227
2512218-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIJ0276	SIJ0228	AJ50205
2512218-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIJ0276	SIJ0228	AJ50205
2512218-01	2.00 mL / 2.00 mL	SM5220D-2011	BIJ0305	SIJ0245	AG50211
2512218-02	2.00 mL / 2.00 mL	SM5220D-2011	BIJ0305	SIJ0245	AG50211
2512218-01	0.0500 mL / 25.0 mL	EPA351.2 R2.0	BIJ0321	SIJ0284	AJ50211
2512218-02	0.0500 mL / 25.0 mL	EPA351.2 R2.0	BIJ0321	SIJ0284	AJ50211
2512218-01	0.500 mL / 10.0 mL	SW9065	BIJ0363	SIJ0295	AJ50215
2512218-02	0.500 mL / 10.0 mL	SW9065	BIJ0363	SIJ0295	AJ50215
2512218-01	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BIJ0529	SIJ0443	AJ50243
2512218-02	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BIJ0529	SIJ0443	AJ50243

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Jennifer Robb

Date Issued:

10/9/2025 6:00:01PM

Client Site I.D.:

Submitted To:

LFG-EW Monthly Monitoring

Work Order:

2512218

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EP	A 6000/7000 Series Methods		Preparation Method:	SW3005A-ICP	
2512218-01	50.0 mL / 50.0 mL	SW6010D	BII1534	SII1274	AI50336
2512218-02	50.0 mL / 50.0 mL	SW6010D	BII1534	SII1274	AI50336
25I2218-02RE1	50.0 mL / 50.0 mL	SW6010D	BII1534	SII1274	AI50336
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EP	A 6000/7000 Series Methods		Preparation Method:	SW3005A-ICPMS	
2512218-01	50.0 mL / 50.0 mL	SW6020B	BII1535	SII1288	AI50335
25I2218-01RE1	50.0 mL / 50.0 mL	SW6020B	BII1535	SII1288	AI50335
2512218-02	50.0 mL / 50.0 mL	SW6020B	BII1535	SII1288	AI50335
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organi	c Compounds by GCMS		Preparation Method:	SW3510C/EPA600-	MS
2512218-01	500 mL / 0.500 mL	SW8270E	BII1447	SII1278	AC50298
2512218-02	500 mL / 2.00 mL	SW8270E	BII1447	SII1278	AC50298
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Cor	npounds by GCMS		Preparation Method:	SW5030B-MS	
2512218-01	5.00 mL / 5.00 mL	SW8260D	BIJ0048	SIJ0048	AI50267
2512218-02	5.00 mL / 5.00 mL	SW8260D	BIJ0048	SIJ0048	AI50267
2512218-03	5.00 mL / 5.00 mL	SW8260D	BIJ0048	SIJ0048	Al50267
25I2218-02RE1	5.00 mL / 5.00 mL	SW8260D	BIJ0151	SIJ0126	AI50267

10/9/2025 6:00:01PM

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.:

Date Issued: LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 2512218

QC Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Ion Chromatography	y Analyses		Preparation Method:	No Prep IC	
BIJ0052-BLK1	1.00 mL / 1.00 mL	D3705	BIJ0052	SIJ0092	AI50160
BIJ0052-BS1	1.00 mL / 1.00 mL	D3705	BIJ0052	SIJ0092	Al50160
BIJ0052-MS1	5.00 mL / 5.00 mL	D3705	BIJ0052	SIJ0092	Al50160
BIJ0052-MSD1	5.00 mL / 5.00 mL	D3705	BIJ0052	SIJ0092	AI50160
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Anal	ysis		Preparation Method:	No Prep Wet Chem	
BII1440-BLK1	300 mL / 300 mL	SM5210B-2016	BII1440	SII1388	
BII1440-BS1	300 mL / 300 mL	SM5210B-2016	BII1440	SII1388	
BII1440-DUP1	300 mL / 300 mL	SM5210B-2016	BII1440	SII1388	
BII1477-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BII1477	SII1164	AI50227
BII1477-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BII1477	SII1164	AI50227
BII1477-MS1	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BII1477	SII1164	AI50227
BII1477-MSD1	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BII1477	SII1164	AI50227
BIJ0276-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIJ0276	SIJ0228	AJ50205
BIJ0276-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIJ0276	SIJ0228	AJ50205
BIJ0276-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIJ0276	SIJ0228	AJ50205
BIJ0276-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIJ0276	SIJ0228	AJ50205
BIJ0276-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIJ0276	SIJ0228	AJ50205
BIJ0276-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIJ0276	SIJ0228	AJ50205
BIJ0305-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BIJ0305	SIJ0245	AG50211
BIJ0305-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BIJ0305	SIJ0245	AG50211
BIJ0305-MRL1	2.00 mL / 2.00 mL	SM5220D-2011	BIJ0305	SIJ0245	AG50211
BIJ0305-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BIJ0305	SIJ0245	AG50211
BIJ0305-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BIJ0305	SIJ0245	AG50211

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order: 25l2218

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Anal	ysis		Preparation Method:	No Prep Wet Chem	
BIJ0321-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BIJ0321	SIJ0284	AJ50211
BIJ0321-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BIJ0321	SIJ0284	AJ50211
BIJ0321-MRL1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BIJ0321	SIJ0284	AJ50211
BIJ0321-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BIJ0321	SIJ0284	AJ50211
BIJ0321-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BIJ0321	SIJ0284	AJ50211
BIJ0321-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BIJ0321	SIJ0284	AJ50211
BIJ0321-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BIJ0321	SIJ0284	AJ50211
BIJ0363-BLK1	5.00 mL / 10.0 mL	SW9065	BIJ0363	SIJ0295	AJ50215
BIJ0363-BS1	5.00 mL / 10.0 mL	SW9065	BIJ0363	SIJ0295	AJ50215
BIJ0363-MRL1	5.00 mL / 10.0 mL	SW9065	BIJ0363	SIJ0295	AJ50215
BIJ0363-MS1	5.00 mL / 10.0 mL	SW9065	BIJ0363	SIJ0295	AJ50215
BIJ0363-MSD1	5.00 mL / 10.0 mL	SW9065	BIJ0363	SIJ0295	AJ50215
BIJ0529-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BIJ0529	SIJ0443	AJ50243
BIJ0529-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BIJ0529	SIJ0443	AJ50243
BIJ0529-MRL1	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BIJ0529	SIJ0443	AJ50243
BIJ0529-MS1	0.500 mL / 25.0 mL	SM4500-NO3F-2019	BIJ0529	SIJ0443	AJ50243
BIJ0529-MSD1	0.500 mL / 25.0 mL	SM4500-NO3F-2019	BIJ0529	SIJ0443	AJ50243
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EP	A 6000/7000 Series Methods		Preparation Method:	SW3005A-ICP	
BII1534-BLK1	50.0 mL / 50.0 mL	SW6010D	BII1534	SII1274	AI50336
BII1534-BS1	50.0 mL / 50.0 mL	SW6010D	BII1534	SII1274	AI50336
BII1534-MS1	50.0 mL / 50.0 mL	SW6010D	BII1534	SII1274	AI50336
BII1534-MSD1	50.0 mL / 50.0 mL	SW6010D	BII1534	SII1274	AI50336
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EP	A 6000/7000 Series Methods		Preparation Method:	SW3005A-ICPMS	

Page 54 of 65

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued: 10/9/2025 6:00:01PM

Work Order: 25l2218

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EP	A 6000/7000 Series Methods		Preparation Method	SW3005A-ICPMS	
BII1535-BLK1	50.0 mL / 50.0 mL	SW6020B	BII1535	SII1288	AI50335
BII1535-BS1	50.0 mL / 50.0 mL	SW6020B	BII1535	SII1288	AI50335
BII1535-MS1	50.0 mL / 50.0 mL	SW6020B	BII1535	SII1288	AI50335
BII1535-MSD1	50.0 mL / 50.0 mL	SW6020B	BII1535	SII1288	Al50335
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organi	c Compounds by GCMS		Preparation Method	SW3510C/EPA600-	-MS
BII1447-BLK1	1000 mL / 1.00 mL	SW8270E	BII1447	SII1216	AG50329
BII1447-BLK2		SW8270E	BII1447	SII1276	AC50309
BII1447-BLK3		SW8270E	BII1447	SII1277	AC50301
BII1447-BS1	1000 mL / 1.00 mL	SW8270E	BII1447	SII1216	AG50329
BII1447-BS2		SW8270E	BII1447	SII1276	AC50309
BII1447-MS1	970 mL / 1.00 mL	SW8270E	BII1447	SII1289	AG50329
BII1447-MSD1	950 mL / 1.00 mL	SW8270E	BII1447	SII1289	AG50329
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Co	mpounds by GCMS		Preparation Method	SW5030B-MS	
BIJ0048-BLK1	5.00 mL / 5.00 mL	SW8260D	BIJ0048	SIJ0048	AI50267
BIJ0048-BLK2	5.00 mL / 5.00 mL	SW8260D	BIJ0048	SIJ0048	AI50267
BIJ0048-BS1	5.00 mL / 5.00 mL	SW8260D	BIJ0048	SIJ0048	AI50267
BIJ0048-BS2	5.00 mL / 5.00 mL	SW8260D	BIJ0048	SIJ0048	AI50267
BIJ0048-MS1	5.00 mL / 5.00 mL	SW8260D	BIJ0048	SIJ0048	AI50267
BIJ0048-MSD1	5.00 mL / 5.00 mL	SW8260D	BIJ0048	SIJ0048	AI50267
BIJ0151-BLK1	5.00 mL / 5.00 mL	SW8260D	BIJ0151	SIJ0126	AI50267
BIJ0151-BS1	5.00 mL / 5.00 mL	SW8260D	BIJ0151	SIJ0126	AI50267
BIJ0151-MS1	5.00 mL / 5.00 mL	SW8260D	BIJ0151	SIJ0126	AI50267
BIJ0151-MSD1	5.00 mL / 5.00 mL	SW8260D	BIJ0151	SIJ0126	AI50267

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order: 25l2218

Certified Analyses included in this Report

Analyte	Certifications
EPA350.1 R2.0 in Non-Potable Water	
Ammonia as N	VELAP,NCDEQ,PADEP,WVDEP,SCDES,TXCEQ
EPA351.2 R2.0 in Non-Potable Water	
TKN as N	VELAP,NCDEQ,WVDEP,SCDES,PADEP
SM4500-NO2B-2021 in Non-Potable Water	
Nitrite as N	VELAP,WVDEP,NCDEQ,SCDES,PADEP
SM4500-NO3F-2019 in Non-Potable Water	
Nitrate+Nitrite as N	VELAP,WVDEP,NCDEQ,SCDES,PADEP
SM5210B-2016 in Non-Potable Water	
BOD	VELAP,NCDEQ,WVDEP,PADEP
SM5220D-2011 in Non-Potable Water	
COD	VELAP,NCDEQ,PADEP,WVDEP,SCDES,TXCEQ
SW6010D in Non-Potable Water	
Arsenic	VELAP,WVDEP,NCDEQ,SCDES,PADEP
Barium	VELAP,WVDEP,PADEP,NCDEQ,SCDES
Cadmium	VELAP,WVDEP,PADEP,NCDEQ,SCDES
Chromium	VELAP,WVDEP,NCDEQ,SCDES,TXCEQ,PADEP
Copper	VELAP,WVDEP,NCDEQ,SCDES,PADEP
Lead	VELAP,WVDEP,SCDES,NCDEQ,PADEP
Nickel	VELAP,WVDEP,SCDES,NCDEQ,PADEP
Selenium	VELAP,WVDEP,SCDES,NCDEQ,PADEP
Silver	VELAP,WVDEP,PADEP,SCDES,NCDEQ
Zinc	VELAP,WVDEP,SCDES,NCDEQ,PADEP
SW6020B in Non-Potable Water	
Mercury	VELAP,NCDEQ,PADEP,WVDEP

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order: 25l2218

Certified Analyses included in this Report

Analyte	Certifications
SW8260D in Non-Potable Water	
2-Butanone (MEK)	NCDEQ,PADEP,VELAP,WVDEP,TXCEQ
Acetone	NCDEQ,PADEP,VELAP,WVDEP,TXCEQ
Benzene	NCDEQ,PADEP,VELAP,WVDEP,TXCEQ
Ethylbenzene	NCDEQ,PADEP,VELAP,WVDEP,TXCEQ
Toluene	NCDEQ,PADEP,VELAP,WVDEP,TXCEQ
Xylenes, Total	NCDEQ,PADEP,VELAP,WVDEP,TXCEQ
Tetrahydrofuran	VELAP
SW8270E in Non-Potable Water	
Anthracene	NCDEQ,VELAP,PADEP,WVDEP,TXCEQ
SW9065 in Non-Potable Water	
Total Recoverable Phenolics	VELAP,WVDEP,PADEP

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order: 25l2218

Code	Description	Laboratory ID	Expires
DURSC-NCDEQ	NCDEQ Durham Service Center	703	12/31/2025
DURSC-NCDHHS	NCDHHS Durham Service Center	37918	07/31/2026
MdDOE	Maryland DE Drinking Water	341	12/31/2025
NCDEQ	North Carolina DEQ	495	12/31/2025
NCDHHS	North Carolina Department of Health and Human Services	51714	07/31/2026
PADEP	NELAP-Pennsylvania Certificate #011	68-03503	10/31/2026
SCDES	South Carolina Dept of Environmental Services Certificate 93016001	93016	06/14/2026
TXCEQ	Texas Comm on Environmental Quality #TX-C25-00143	T104704576	05/31/2026
VELAP	NELAP-Virginia Certificate #13599	460021	06/14/2026
WVDEP	West Virginia DEP Cert ID: WV-C25-00166	350	11/30/2026

2512218

10/9/2025 6:00:01PM

Date Issued:

Work Order:

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Qualifiers and Definitions

B Blank contamination. The recorded result is associated with a contaminated blank.

DS Surrogate concentration reflects a dilution factor.

J The reported result is an estimated value.

M Matrix spike recovery is outside established acceptance limits

P Duplicate analysis does not meet the acceptance criteria for precision

RPD Relative Percent Difference

Qual Qualifers

Client Site I.D.:

-RE Denotes sample was re-analyzed

LOD Limit of Detection, same as Method Detection Limit (MDL) as defined by 40 CFR 136 Appendix B

BLOD Below Limit of Detection, same as Below Method Detection Limit (MDL) as defined by 40 CFR 136 Appendix B

LOQ Limit of Quantitation
DF Dilution Factor

DL Detection Limit, same as MDL as defined by 40 CFR 136 Appendix B

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral

library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations

are estimated and are calculated using an internal standard response factor of 1.

PCBs, Total Total PCBs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.

1941 REYMET ROAD **RICHMOND, VIRGINIA 23237** (804) 358-8295 PHONE (804)358-8297 FAX

CHAIN OF CUSTODY

						CHA	N OF	CUS	TO	DY									PAGE 1 OF 1
COMPANY NAME: SCS E	ngine	ers		IN	VOICE TO):		City of	Bris	stol, VA		PROJ	ECT	NAM	E/Quo	te #:		Cit	y of Bristol Landfill #588
CONTACT: Jennifer Rob	b			IN	VOICE CC	NTAC	T: Jo	n Haye	es			SITE	NAM	E:	LFG-	EW I	Moi		Monitoring
ADDRESS: 296 Victory Roa	d. Win	chest	er, VA	IN	VOICE AD	DRES	S: 265	5 Valley	Drive	, Bristol, VA, 24	201	PROJ	ECT	NUM					5 Task /-S
PHONE #: 703-471-6150				IN	VOICE PH	IONE#	: 27	6-645-	378	3		P.O. #	ŧ;						
EMAIL: jrobb@scsengineers.c	om			EN	лать: jor	n.hayes	@brist	olva.or	g			Pretre	atme	ent Pr	ogram	:			
s sample for compliance repor	rting?	YE	SNO RE	gulato	ry State:	V A	Is san	nple fro	m a	chlorinated	supp	oly?	YE	s (N	0	PW	VS I	.D. #:	
SAMPLER NAME (PRINT): C	Krt	4	. Nel	520	SA	MPLE	R SIGN	NATUR	E:	Cothe	, /	1/2	1	J.	25	ırn A	١rou	nd Ti	me: 10 Day(s)
Matrix Codes: WW=Waste Water/Storm V	Vater G			Drinking	Water S=Soil	/Solids O	R=Organ	ic A=Air	WP=	Wipe OT=Othe	_		_	July.					COMMENTS
		als)				۵				A	NAL	YSIS /	(PRI	ESER	VATIV	/E)			Preservative Codes: N=Nitric Acid C=Hydrochloric Acid S=Sulfuric Acid
CLIENT SAMPLE I.D.		issolved Metals)	Date	Time	Date	or Composite Stop		es)	ainers	, Benzene, Toluene, List	6020	, As, Ba, b, Se, Zn)		I), Nitrite	ene only)				H=Sodium Hydroxide A=Ascorbic Acid Z=Zinc Acetate T=Sodium Thiosulfate M=Methanol
CLIENT SAMPLE I.D.	Grab	Composite Field Filtered (Dissolved	Composite Start Date	Composite Start Time	Grab Date or Composite Stop	Grab Time or Co Time	Time Preserved	Matrix (See Codes)	Number of Containers	VOCs (Acetone, Benz EB, MEK, THF, Tolue Xylene) Custom List	Mercury Method 6020	Metals 6010 (Ag, A Cd, Cr, Cu, Ni, Pb,	Phenolics	TKN, Nitrate (Cd), Nitrite	SVOC (Anthracene only)	COD, Ammonia	вор	VFA5	Note VOC 8260 no HCI PLEASE NOTE PRESERVATIVE(S INTERFERENCE CHECKS or PUM RATE (L/min)
1) EW-50	X				092425	930		GW	10	X	X	X	X	X	X	×	30	X	KATE (Emili)
2) EW- (01)	X				092425			GW	10	X	X	×	E	X	x	x	X	X	
3)								GW											
4)								GW											
5)					-			GW	_										-
5)								GW	-			-				-	_	- 7	in,
7)	-							GW								-		-0.0	served Temp °C:
9)	_							GW					\vdash			+			rrection Factor °C: 0
0) Trip Blank	×				012725	MA		DI	2	×			H			+		- Co	rrected Temp °C: 1.
ELINQUISHED:	09/2	E / TIME	200 (cn	/ #	also	DATE /	TIME	QC	Data Packag		B USE C			rm ID: _ act? (Y /	N)	_		L Seal Received on ice? (Y/N)
ELINQUISHED:		E / TIME	oh	ud	Jen 9	125/	DATE /	0800)	el IV	Br	CS-W istol I	FG				y N		or
Unless otherwise agreed in writing, any	and all pr	roducts an	d/or services p	rovided by	y Enthalpy are p	ursuant to t	he terms	and condi	tions c	s set forth at https		cd: 09	0/25	/2025	5 Du	ie: 1	0/0)9/20 v13032	Dogo 61 of 6

Sample Preservation Log

Order ID	<u>Z:</u>	51	<u>, Z</u>	<u> 218</u>	<u></u>	-	_								Date	Perf	orme	ed: _	9	• 2	25	• Z	<u>5</u>		_				Ana	alyst f	Perfo	ming C	heck:			<u> </u>	<u>3_</u>		_			
٩	۵	l	Meta	is		yanic	te	ı	Sulfid	е		nmo			TKN			hos, '	Tot	1	O3+N	102		DRO)	(80 PC	estic 81/608 B DW	3/508)	(52	SVO 25/8270		CrV	ı • ••	SI	est/P0 (508) /OC(5	,	-	01))		erol:	:25
Sample ID	Container ID	Rec	d as elved Other	Final pH	Reco	as elved Other	Final pH		as eived Other	Final pH	PH Rece	as lved Other	Finel pH	Rec	l as elved Other	Final pH	Rec	l as elved Other	Final pH	Rec	H as selved Other	퍨	Rec	H as elved Other	1 2		s. CI	final -	Rec Re	selved s. Cl	final 4 or -	Received	Final pH	Rec	d as cived Other	Final pH	pH Rece	ived	Final pH	Rece	elved Other	
	A		8	42																														\prod								
1 -	13										_	6	12		6	22					6	42												П				6	42			
1	E																																	П							6	22
2	A		6	42																																						
2	B											6	12		6	い					6	42																6	42			
2	E																																								6	62
																																		П								
																				П														П								
		П																																П						Г		
		П																		П																						
		П									П																				ĺ			П								1
														П																				П								
		П																		П														П								
		П																																П								
NaOH II	D:								HNO:	3 ID:		51	04	69	0			CrVI											_	Ana	ılyst lı	nitials:										
H ₂ SO ₄ I	D:	5H	02	34	1_			-	Na ₂ S:	2O3	D:							* <i>pH n</i> Amm		-				.3 - 9.7																		
HCL ID:								_	Na ₂ S	O3 ID):						_	5N N	аОН	ID:									_													

Metals were received with a pH =6, 8. HNO3 was added at 1200 on September 25, 2025 by CSB in Log-In to bring the pH= <2.

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

10/9/2025 6:00:01PM

Work Order:

2512218

10/9/2025 6:00:01PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.:

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25I2218

Laboratory Order ID: 25I2218

Sample Conditions Checklist

Logistics Courier
Yes
Yes
Yes
Yes
Yes
No

Work Order Comments

The lab was unable to test for chlorinating and oxidizing agents, due to the dark color of the sample.

The lab received two P500mLHNO3 containers, for metals, with a pH of 8 and 9. They were adjusted in the lab to bring them to the required pH of <2. This is a

Date Issued:

Work Order:

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.: LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

deviation for Mercury 6020.

The lab received two P500mLH2SO4 containers, for ammonia, TKN, and total phosphorous, with a pH of 6. They were adjusted in the lab to bring them to the

required pH of <2.

The lab received two GA250mLH2SO4 containers, for phenolics, with a pH of 6. They

were adjusted in the lab to bring them to the required pH of <2.

Confirmation requested from Jennifer Robb via email. 09/29/25 0700 DLJ

Jennifer Robb, via email, confirmed analysis. 09/29/25 1016 DLJ

25|2218

10/9/2025 6:00:01PM

NA/	uun l	F14/ 0 / 4	F)4/ 50	F147 F3	514/ 50	F14/ F0	F)4/ F 4	F144 F.F	F147 F7	FW 50	FW 50	F14/ 40	F147 44	F144 4 6	F144 4 4	F144 4 F		FW 40	F144 70	F14/ 00	FW 05	FW 07	F14/ 00	F14/ 00	F14/ 0.4	F144 0.0		
	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62 Concentration	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event				I						15/0					1200											Γ0	
	November-2022										1560		1400	 		1380											50	50
	December-2022		1700		2280				2110		1410	1310					1150	1780									100	100
	January-2023		1520							936						1330											50	50
	·										2440																100	100
	February-2023																	1490									100	100
	March-2023									667	1480																73.1	100
	April-2023									1410		1220															73.1	100
	May-2023		1390							1860	2380																146	200
	June-2023										2740		2370		2170												146	200
	July-2023																		1180								73.1	100
	JUIY-2023		1570						2260																2350	310	146	200
	August-2023						1600		1890																2140	222	146	200
	September-2023																		1720								73.1	100
					1250																						146	200
	October-2023							1980											1730			2890					146	200
			1260		2490	1830		2070											1800			2590					146	200
	November-2023													1170												2080	183	250
											2440																366	500
	December-2023													 	 				1540								73.1	100
	Louis Louis (2024			01/0	2900						2400							2200								1/10	146	200
	January-2024 February-2024			2160 1900		2600					2400										1780		2380			1610	146 146	200
	March-2024																						2280			968	146	200
Ammonia as N	April-2024				2290									928				2140	1800								146	200
(mg/L)																										898	73.1	100
	May-2024										2550								1620		1950	2660					146	200
	June-2024																		1990		2170					1850	146	200
											1860																73.1	100
	July-2024											1950															146	200
							1110																				73.1	100
	August-2024																				2130				2550		146	200
	Loop to plan of 2004						1440																				73.1	100
	September-2024				2210													2290									146	200
	October-2024	343																		1490							73.1	100
			1370		2180																						146	200
	November-2024	934	1370																								146	200
	December-2024				1510																					1560	146	200
	January-2025																				0.68						0.005	0.01
	February-2025		1300																		1400						73.1	100
													1160														199	199
	March-2025		1240									1480						2110									146	200
	April-2025											2440		 				2580									146	200
	May-2025																		2140				2030	2360			146	200
	June-2025																		2160							1210	120	200
	July-2025																							1//0		1210	120	200
	August-2025		1100											 				 						1660		778	120	200
	September-2025		1190									1010															60	100
												1210															120	200

Historical LFG-EW Leachate Monitoring Results Summary

W	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												C	Concentration	ı												LOD	LOQ
	November-2022										15700		5860			5140											0.2	2
	December-2022		6440		12500				11400		9240	3330					8360	6770									0.2	2
	January-2023		9920							999	28100					7060											0.2	2
	February-2023																	7230									0.2	2
	March-2023									1570	9190																0.2	2
	April-2023									8430		2860															0.2	2
	May-2023		7350							11900	35300																0.2	2
	June-2023										20000		27400		23100												0.2	2
	July-2023		6820						32900										330						31800	937	0.2	2
	August-2023						>33045		>33225																>32805	506	0.2	2
	September-2023				40185.5														659								0.2	2
	October-2023							34600											690			37000					0.2	2
	November-2023		1910		30400	27500		32015			29600			3640					480			32135				21500	0.2	2
	December-2023				>44105													13700	681								0.2	2
	January-2024			26000							17100															14000	0.2	2
	February-2024			23200		26200															21400		34300				0.2	2
Biological	March-2024																						40600			7680	0.2	2
Oxygen Demand	April-2024				41142									1210				19600	386								0.2	2
(mg/L)	May-2024										25600								448		22200	33400				7750	0.2	2
	June-2024																		421		24400					16200	0.2	2
	July-2024										25800	4750															0.2	2
	August-2024						31000														20800				33400		0.2	2
	September-2024				ND		36100											27400									0.2	2
	October-2024	180	6680																	36100							0.2	2
	November-2024	4760	7360																								0.2	2
	December-2024				42600																					20300	0.2	2
	January-2025																				22900						0.2	2
	February-2025		4420										43418.4								16200						0.2	2
	March-2025		3490									20400						22000									0.2	2
	April-2025											33900						24600									0.2	2
	May-2025																						42196.44	42316.44			0.2	2
	June-2025																		230								0.2	2
	July-2025																									12000	0.2	2
	August-2025																							38599.6		5650	0.2	2
	September-2025		8200									33700															0.2	2

	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60		7-62 EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	
arameter	Monitoring Event												Concer	ntration													47
	November-2022	2											9790 -		10800											1000	
											23500															2000	+
			7440																							1000	+
	December-2022	2									13200	8000	 			20300	14100									2000	
					0/000				22400			 	 													5000	+
					86800					2/20			 													10000	
	January 2022		14000							3630					0.420											500	+
	January-2023		14900								47/00		 		8430											2000	+
	F - I 0000										47600		 													5000	+
	February-2023									1,00			 				9210									1000	+
	March-2023									1690	10/00		 													500	+
											10600	7070	 													2000	+
	April-2023									1/000		7370														1000	+
			7500							16800			 													2000	+
	May-2023		7590							18700	44700		 				_ 									2000	+
											44700															4000	+
	June-2023										41200		1.000													5000	+
											41300	 	 	55000											2100	10000	+
			4400										 					2440							2180	500	+
	July-2023		6480										 					2460						41000		1000	+
									50100				 											41000		5000	+
									50100																1750	10000 500	+
	August-2023	3					59000		58600															60600		5000	+
	Court 1 2222																	6260								1000	+
	September-2023	3			87400																					10000	
																		5320								500	1
	October-2023	3						51000																		5000	1
																					63600					10000	+
																		4710								1000	+
	November-2023	3	6200			48100		57900			43700			20											37600	2000 5000	+
					77100	46100					43/00		 								63900					10000	+
																		4870								10000	+
	December-2023																19900									5000	+
					94200																					10000	\top
ıl	January-2024	4		48600							59800														38200	5000	\perp
Demand	February-2024	4		42700		51200														48900						5000	\perp
	10010017 2021																					68400				10000	+
	March-2024																					75500			14400	2000	+
														10				4200				75500				10000	+
	April-2024	4															32400	4200								5000	+
	7.0111 2024				79700								 													10000	+
													 					4930								1000	+
	May-2024												 												17700	5000	+
	1VIGY-2024										48500		 							43100	70700					10000	+
																		4520								1000	+
	June-2024	4											 							51400					31300	5000	\dagger
	1										42400															5000	\top
	July-2024	4										98500														10000	丁
	August-2024	4																		48100				59500		5000	\bot
	, 109031-2024						56600																			10000	4
	Combonel - 2000 (4															26800									4000	\dashv
	September-2024				78300		55900																			5000 10000	+
		951			78300								 													500	+
	October-2024		10700										 													2000	+
					83300														62000							10000	
	November-2024	9540																								1000	
	140 4 61110 61-2024		8840																							2000	\bot
	December-2024	4																							36600	5000	4
					81500															2/200						10000	+
	1000110017007		2/20																	36800						5000	+
	January-2025		3630																	23400						1000	+
	,												4.47000							23400						5000 100000	+
	February-2025	5																								10000	+
	,		8700														51500									5000	+
	February-2025	5	8700				 					74600	 													10000	$_{\perp}$
	,	5	8700					1									24100								-	6300	丁
	February-2025	5 5 	8700 									47900															
	February-2025 March-2025 April-2025 May-2025	5 5 5	8700 									47900										60700	67900			6300	\perp
	February-2025 March-2025 April-2025 May-2025 June-2025	5 5 5 5 5	8700 															3500								630	\pm
	February-2025 March-2025 April-2025 May-2025 June-2025 July-2025	5 5 5 5 5 5 5	8700 																			60700	67900 		 19900	630 3150	\pm
	February-2025 March-2025 April-2025 May-2025 June-2025	5 5 5 5 5 5 5	8700 	 														3500				60700	67900		 19900	630 3150 630-6300) 10
	February-2025 March-2025 April-2025 May-2025 June-2025 July-2025	5 5 5 5 5 5 5	8700 	 				 	 					 				3500				60700	67900 		 19900	630 3150	

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61 EW-	-62 EW	54 EW-6	55 EW-6	57 EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	100	100
Parameter	Monitoring Event			'									Concen	tration	'		'		'							LOD	LOQ
																ND										0.2	0.2
	December-2022											ND														0.2	0.6
	-		ND		ND				ND		ND															1.1	5.1
										ND							1.12									1.5 0.35	5.5 1.35
															\10											1.1	1.1
	January-2023		3.9																							2.1	2.1
											ND															2.2	2.2
	February-2023																ND									0.35	1.35
	March-2023									ND	ND															1.04	5.1
	April-2023									ND		ND														0.6	2.6
	May-2023		ND																							1.1	5.1
										ND	ND															1.2	5.2
	June-2023										ND 		ND													1.1	5.1
																		0.355								0.15	0.35
	1.1.0000																								ND	0.55	0.75
	July-2023		ND																							1	3
									ND															ND		1.5	5.5
	August-2023																								ND	0.15	0.35
	-						ND		ND 									ND						ND		0.3	3.5
	September-2023				ND																					0.7	1.5
																		ND								0.35	1.35
	October-2023							ND																		1	3
			 ND															 ND			ND					1.5 0.15	3.5 0.35
													NI													0.13	1.35
	November-2023							ND																		0.75	1.75
					ND																					1.1	5.1
						ND					ND							 ND			ND				ND	1.5	5.5 5.1
	December-2023				ND												710									1.5	5.5
Nitrate as N	January-2024			2.01							ND														ND	1.5	5.5
(mg/L)	February-2024			9.1																ND		ND				1.5	5.5
	March-2024					ND																ND				3.5 0.75	7.5 1.75
	March-2024												NI					ND							ND 	0.75	0.35
	April-2024				ND																					1.5	5.5
																	ND									2.5	10.5
																		ND								0.15	0.35
																									ND	0.35	1.35
	May-2024																			ND						0.6	2.6
	-										ND										1.9					1 1	5.1
											ND 							0.692								0.6	2.6
	June-2024																			ND					ND	1.5	3.5
	July-2024											ND														0.5	2.5
	August-2024						1.57				6.66									 ND				 ND		0.25	25 1.25
					ND		2.42																			0.25	1.25
	September-2024																ND									5	25
	Optob 5 # 000 t	ND																								0.1	0.5
	October-2024		ND 		ND														ND							10	50
	November 2004	ND																								0.25	1.25
	November-2024		ND																							0.5	2.5
	December-2024				ND																				ND	0.5	2.5
	January-2025		 ND																	ND ND						0.5	1.25
	February-2025												ND													10	50
	March-2025		ND									ND					NID.									2	10
	April-2025											ND														0.5	1.25
																	.,					4210	4700			500	500
	May-2025 June-2025																	0.28				4210	4/00			0.03	0.1
	July-2025																								ND	0.51	5
	August-2025																						ND		ND	0.255-1.45	
	September-2025		ND									ND														0.102	0.4

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event	EW-30A	EW-30	EW-31	EVV-32	EW-33	EVV-34	EW-33	EW-5/	EW-36	EVV-57	EW-60		oncentration	EVV-04	EW-03	EVV-07	EAA-00	EW-70	EVV-02	E44-03	EVV-07	E44-00	EVV-07	EVV-74	EW-70	LOD	LOQ
rarameter	Monitoring Event				ı					I		0.10.1															0.1	0.5
	December-2022										ND	0.12 J					ND										0.1	0.5
			ND		ND				ND		ND						ND	ND									0.05	5
	1									ND																	0.25	1.25
	January-2023															ND											2	
			ND								ND																Z	2
	February-2023																	0.48 J									0.25	1.25
	March-2023									ND	ND																	5
	April-2023									ND		ND															0.5	2.5
	May-2023		ND							ND	ND																	5
	June-2023										2 J		ND		ND													5
																			ND							ND	0.05	0.25
	July-2023		ND																								0.5	2.5
									1.2 J																ND		1	5
	August-2023								 ND																	ND	0.05	0.25 2.5
	September-2023				ND		ND 												 ND						ND 		0.5	1
																			ND								0.25	1.25
	October-2023							ND														ND					0.5	2.5
			0.06 J																ND								0.05	0.25
	November-2023							ND						ND													0.25	1.25
					ND	ND					ND											ND				ND	1	5
	December-2023				ND													ND	ND								1	5
	January-2024			1.7 J							ND															ND	1	5
	February-2024			ND		ND															ND		ND				1	5
	March-2024																						ND			0.25 J	0.25	1.25
	A pril 2024				ND									ND					ND								0.25	0.25
Nitrite as N (mg/L)	April-2024				ND																							5
																		ND									2	10
	-																		ND								0.05	0.25
	May-2024																									ND	0.25	1.25
	-																				ND	ND					0.5	2.5
	L										ND																	5
	June-2024																		ND		ND					ND	0.5	2.5
	July-2024										ND	ND 															0.5	2.5 25
	August-2024						ND														ND				ND		0.25	1.25
					ND		ND																				0.25	1.25
	September-2024																	ND									5	25
		ND																									0.1	0.5
	October-2024		ND																	ND							1	5
					ND																						10	50
	November-2024	ND	1.05.1																								0.25	1.25
	Do o o mala o r 0004		1.35 J																								0.5	2.5
	December-2024 January-2025				ND																 ND					ND	0.5	2.5 1.25
	i i		 ND																		ND						0.25	5
	February-2025		ND										ND														10	50
	March-2025		ND									ND						ND									2	10
												ND															0.25	1.25
	April-2025																	7.6									1	5
	May-2025																						ND	ND			1	5
	June-2025																		ND								0.1	0.5
	July-2025																									ND	0.51	5
	August-2025																							ND		ND	0.13-0.26	0.5-1
	September-2025		0.32 J									0.4															0.1	0.4

Transfer Marke Series 1. The s																													
Part			EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Note	Parameter	Monitoring Event													Concentration														
Poster P		November-2022												1290			1470												
Martin M		D 1 0000																											
Martine Mart		December-2022				35/0							1490																
1950-1962		January-2023																											
Mage		Falari 1919 / 2002																											
MATISTIC NAME NAME NAME NAME NAME NAME NAME NAME																													
May 200																													
Fig. 1		·																											
Marie Mari		1VIGY-2023																											
Algoring		June-2023																											
May		July-2023																											
Part																													
Septemony No. 1		August-2023																											
Minoring 101 1		September-2023				3340														2680									
November 2022		October-2023							1050														1320					40	
Marcine Marc		OCTOBOL 2020																		4630									
December 2015		November-2023																											
Second Process Seco						i e									i e														
Profession Professio		December-2023																											
Figure F		January-2024																											
TOTAL GREAT AND TOTAL AND							2890															2470		2970					
Total Sciedary (mgs). April 2224 April 2224 April 2225 April 2		March-2024																									1030	50	125
April 2024 Apr		March 2024																						2980					
May 2024 May 2024 June 2024 June 2024 May	Total Kieldahl														1030					1730									
May-2224		April-2024																	2320										
May 2024						3260																							
June 2024		May-2024																									1140		
100-2024																													
August 2024		June-2024																											
August 2024		July-2024																											
September 2024								1980														1460				3150			
Colober-2024 130																													
October-2024 1360		September-2024																	2650										
November 2024 1070 1610						3320																							
November-2024 1070 1610		October-2024																											
December-2024 2790		November-2024																											
January-2025																													
February-2025																													
March-2025																													
March-2025 1230		February-2025		1190																		1520							
April-2025		March-2025		1230																								40	
April-2025		Widi C11-2023											1920																
May-2025		April-2025																											
Mdy-2025		· ·																											
June-2025 45.9 250 45.9 250		May-2025																											
July-2025 1290 45.9 250 August-2025 1090 45.9 50		June-2025																											
August-2025																													
																									2740				
				1660									2200															45.9	50

We	II ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	100
Parameter	Monitoring Event												Co	ncentration													LOD	LOQ
	November-2022												5.68			3											0.3	0.5
	NOVEITIBEI ZOZZ										28.8																0.75	1.25
	December-2022											8.94															0.3	0.5
			24.9		54.6				28.3		32						20.2	36									1.5	2.5
	January-2023		27.2							1.3						20.2											0.75	1.25
	, , , , , , , , , , , , , , , , , , ,										56.5																1.5	2.5
-	February-2023																	22.4									1.5	2.5
	March-2023									0.4	12.0																0.03	0.05
-	April-2023									10.7	13.9	 E 1															0.3	0.5
-	May-2023		18.6							18.7 20	50	5.1															1.5	2.5
	June-2023										39.1		45.6		80.6												1.5	2.5
	30110 2020																		0.7								0.15	0.25
	July-2023																									2.92	0.3	0.5
	33., 2323		11.6						47.9																37.3		1.5	2.5
	A 1 0002																									1.46	0.15	0.25
	August-2023						28.6		31.4																40.4		1.5	2.5
	September-2023																		4.58								0.3	0.5
	30p.030. 2020				38.2																						3	5
	October-2023							27											4.13			20.7					0.15	0.25
-								37											3.65			38.7					0.6 0.15	0.25
			7.88			36.4								4.76													0.6	1
	November-2023				38.8			47.4														47.1					0.75	1.25
											46.9															29.1	1.5	2.5
																			3.72								0.06	0.1
	December-2023																	23									0.75	1.25
-				38	34.2																					22.7	1.5	2.5 2.5
	January-2024										30.2																3	5
	February-2024			37.3		42.9															50.2		43.1				1.5	2.5
Total Posovorable	March-2024																						46.6			12.8	3	5
Recoverable Phenolics (mg/L)	April-2024													1.68					1.16								0.3	0.5
Thonones (mg/z/	7 (DIII 2024				38.4													28.6									1.5	2.5
	_																		1.06								0.3	0.5
	May-2024																									13.6	1.5	2.5
											36.6										33.6	51					3	5
	June-2024																		0.82								0.3	0.5
	JUH C -2024																				44.8					23.2	1.5	2.5 5
	1.1.000.4											28.8															0.75	1.25
	July-2024										37.8																3	5
	August-2024						29.2														44.2				39.2		3	5
	September-2024				39.6		31.6											31.6									3	5
	-	0.376	8.4																								0.03	0.05
	October-2024																			45.1							1.5	0.5 2.5
					37.6																						3	5
	November-2024	5.22																									0.3	0.5
	NOVEITIDEI-2024		10.1																								1.5	2.5
	December-2024																									26.4	1.5	2.5
-					37.2																24.4						3	5
-	January-2025		8.15																		34.4						0.75	1.25
	February-2025																				20.8						1.5	2.5
	,												516														495	495
	March-2025		3.88																								0.3	0.5
	Warch-2025											21.4						25.9									0.75	1.25
	April-2025																	35									0.75	1.25
	<u> </u>											43											 56	67.4			1.5	2.5
	May-2025 June-2025																		0.508				56				0.031	0.05
	July-2025																									37.4	1.54	2.5
	August-2025																							71.6			1.54	
	September-2025		9.78									2.38															0.309	0.5

	ell ID Monitoring Event	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62 Concentration	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
	RGANIC COMPOUND) (ug/L)																										
	November-2022												ND			ND											46.7	93.5
	NOVEITIBEI 2022										ND																93.5	187
											ND	ND						ND									9.35	9.35
	December-2022				ND				ND 								ND										11.7 23.4	23.4
			ND																								485	971
										ND																	243	485
	January-2023															ND											253	505
	Sarroary 2020		ND																								490	980
	Fobruary 2022										ND																500	1000
	February-2023										ND							ND 									187 51	374 102
	March-2023									ND																	117	234
	April-2023									ND																	37.4	74.8
	Aprii-2023											ND															38.8	77.7
	May-2023		ND								ND																93.5	187
	,									ND																	467 485	935 971
	June-2023										ND		ND		ND												490	980
																										ND	46.7	93.5
	July-2023		ND																								100	200
	JUIY-2023																		ND								250	500
									ND																ND		1000	2000
	August-2023						ND		ND																ND	ND 	19.6 1000	39.2 2000
	September-2023				ND														ND								40	80
																						ND					40	80
	October-2023							ND											ND								50 500	100
			 ND											ND													20	40
																			ND								50	100
	November-2023																									ND	100	200
					ND	ND		ND 			ND											ND 					400 1000	800 2000
																			ND								50	100
	December-2023																	ND									100	200
Anthracene				ND	ND 																						200 100	400 200
	January-2024																									ND	250	500
											ND																1000	2000
	February-2024			ND		ND																					200 250	400 500
	. 5.5.55 / 252 .																				ND		ND				400000	800000
	March-2024																									ND	20	40
														 ND									ND				80 5	160
																			ND								20	40
	April-2024																	ND									100	200
					ND																						400	800
	May-2024										ND								ND		ND					ND	10	10
																			 ND			ND					80	160
	June-2024																				ND					ND	100	200
	July-2024										ND																40	80
	301, 2024											ND															80	160
	August-2024						ND														ND						400 500	800 1000
	1,520. 202.1																								ND		1000	2000
	September-2024																	ND									100	200
		ND	 ND		ND 		ND																				200 50	400 100
	October-2024				ND															ND							200	400
	November-2024	ND	ND																								50	100
	December-2024																									ND	200	400
	January-2025				ND 																ND						100	800 200
	JULIUULY-2023		 ND																								100	200
	February-2025																				ND						200	400
													ND														4160	4160
	March-2025		ND 									 ND						ND 									100	200 400
I																		ND									100	200
	A .=!! 000.5						_			1		T	1			T	1						T					
	April-2025											ND															200	400
	April-2025 May-2025 June-2025											ND 							 ND				ND	ND			400 50	800

W	Vell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												С	oncentration													LOD	LOQ
	July-2025																									ND	200	400
Anthracene	August-2025																							ND		ND	100-400	200-800
(continued)	Santambar 2025		ND																								100	200
	September-2025											ND															400	800

W	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	IOD	100
Parameter	Monitoring Event												С	oncentration													LOD	LOQ
TOTAL METALS (m																												
	November-2022										0.863		0.464			1.3											0.02	0.04
	December-2022		1.02		0.406				0.174		1.69	0.49					0.159	0.574									0.02	0.04
	January-2023		0.285							0.596	0.225					0.846											0.01	0.02
	February-2023																	0.29									0.005	0.01
	March-2023									1.07	1																0.01	0.02
	7VIGIC11-2023											0.11															0.0005	0.02
	April-2023									0.24																		
	M === 0000									0.36	0.07																0.005	0.01
	May-2023		0.26							0.3	0.27																0.0025	0.005
	June-2023										0.26		0.5		0.14												0.0025	0.005
	July-2023		0.23																0.24						0.19	0.06	0.0005	0.001
	, , ,								0.7																		0.0025	0.005
	August-2023																									0.15	0.0025	0.005
							0.32		0.43																0.29		0.005	0.01
	September-2023				0.42														0.25								0.005	0.01
	October-2023																		0.24			0.31					0.0005	0.001
	N				0.22	0.52		0.36						0.70					0.24								0.001	0.002
	November-2023		0.23		0.33	0.53		0.43			0.35			0.78				0.24	0.34			0.27				0.2	0.003	0.003
	December-2023				0.4													0.26	0.24								0.0025	0.005
	January-2024			0.47							0.23															0.18	0.001	0.002
	February-2024			0.68		0.42															0.33		0.23				0.0023	0.003
Arsenic																										0.12	0.002	0.002
	March-2024																						0.23				0.0025	0.005
														0.49					0.18								0.0005	0.001
	April-2024				0.31													0.33									0.004	0.004
	May-2024										0.33								0.2		0.73	0.22				0.22	0.005	0.01
	June-2024																		0.19		0.49					0.14	0.005	0.01
	July-2024										300	0.095															0.0025	0.005
	August-2024						0.18														0.49				0.13		0.005	0.01
	September-2024				0.27		0.15											0.19									0.005	0.01
	October-2024		0.26		0.24															0.18							0.005	0.01
	November-2024		0.15																								0.005	0.01
	December-2024				0.28																					0.09	0.005	0.01
	January-2025																				1.88						0.01	0.05
			0.17																		0.73						0.005	0.01
	February-2025												0.774 J														0.465	1
	March-2025		0.158									0.344						0.254									0.01	0.02
	April-2025											0.246						0.217									0.01	0.02
	May-2025																						0.15	0.2			0.0025	0.005
	June-2025																		0.322								0.003	0.02
	July-2025																									0.19	0.0018	0.02
	August-2025																							0.206		0.178	0.0018	0.02
	September-2025		0.289									0.166															0.002	0.02

V	Well ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												(Concentration	1												LOD	LOQ
	November-2022										0.871		0.485			0.36											0.01	0.02
	December-2022		0.566		0.803				0.978		0.438	0.214					0.856	0.793									0.01	0.02
	January-2023		0.643							0.683	1.92					0.554											0.005	0.01
	February-2023																	1.04									0.01	0.05
	March-2023									0.406	0.683																0.005	0.01
	April-2023									1.21		0.326															0.01	0.05
			0.636																								0.005	0.025
	May-2023									1.2	1.83																0.01	0.05
											1.69				1.65												0.005	0.025
	June-2023												3.01														0.01	0.05
																										0.217	0.001	0.005
	July-2023																		0.558	1							0.001	0.003
	JUIY-2023		0.540						2.20									 							1.00			
			0.542						2.28									 							1.02	0.010	0.005	0.025
	August-2023						1.61		1.58																1.48	0.218	0.005	0.025
	September-2023				0.72				1.36										0.649						1.40		0.01	0.05
																			0.664								0.002	0.03
	October-2023							2.56														1.93					0.002	0.025
	November-2023		0.572		0.81	2.28		2.51			1.96			0.418					0.67			2.06				2.84	0.01	0.05
					0.68													1.36									0.005	0.025
	December-2023																		0.672								0.002	0.01
	Janes 1 200 2 4										1.92															1.91	0.005	0.025
Barium	January-2024			3.27																							0.01	0.05
	February-2024			3.03		4.41															2.65		0.925				0.005	0.025
	March-2024																									1.03	0.002	0.01
	Widicii 2024																						1.54				0.005	0.025
	April-2024													0.4					0.634								0.001	0.005
	7 (DIII 2024				1.02													2.15									0.01	0.05
	May-2024										1.79								0.619		2.8	2.06				0.872	0.01	0.05
	June-2024																		0.6		3.44					1.51	0.01	0.05
	July-2024										1.28	2.75															0.005	0.025
	August-2024						1.27														2.39				0.862		0.01	0.05
	September-2024				1.34		1.33											3.65									0.01	0.05
	October-2024	0.26	0.568		1.17															3.33							0.01	0.05
	November-2024	0.262	0.69																								0.01	0.05
	December-2024				2.4																					1.21	0.01	0.05
	January-2025																				1.88						0.01	0.05
	February-2025		0.633																		1.48						0.01	0.05
													ND														0.465	0.5
	March-2025		0.516									1.05						2.93									0.005	0.01
	April-2025								 			1.96						2.95					0.1	1.7/			0.005	0.01
	May-2025								 										0.514				2.1	1.76			0.005	0.025
	June-2025																		0.514							0.040	0.001	0.01
	July-2025								 																	0.842	0.0005	0.01
	August-2025																							3.07		0.444	0.0005	0.01
	September-2025		1.1									2.36															0.001	0.01

Wa	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
		EW-30A	EW-30	EW-31	EW-52	E44-22	EVV-34	EW-35	EW-57	EW-36	EW-57	EW-60		Concentration	EVV-04	E44-02	LVV-07	EAA-00	LVV-70	EW-02	EW-03	LW-07	E44-99	EVV-07	EVV-74	EVV-76	LOD	LOQ
Parameter	Monitoring Event				1						ND					ND											0.004	0.000
	November-2022										ND		ND			ND											0.004	0.008
	December-2022		ND		0.0104				ND		ND	ND					ND	ND									0.004	0.008
	January-2023		ND							ND	ND					ND											0.002	0.004
	February-2023																	0.000297 J									0.0001	0.001
	March-2023									ND	ND																0.002	0.004
	April-2023									0.000158 J		0.000333 J															0.0001	0.001
	May-2023		ND							ND	ND																0.0005	0.005
	June-2023										ND		ND		ND												0.0005	0.005
	July-2023		0.000219 J						0.000156 J										0.000186 J						ND	ND	0.0001	0.001
	August-2023																									ND	0.0005	0.005
	A09031-2023						ND		ND																ND		0.001	0.01
	September-2023				ND														ND								0.001	0.01
	October-2023																		0.000171 J			ND					0.0001	0.001
								ND																			0.0002	0.002
	November-2023		ND		ND	ND		ND			ND			ND					ND			ND				ND	0.001	0.003
	December-2023				ND													0.000604 J									0.0005	0.0015
																			ND								0.0002	0.002
	January-2024			ND							ND															ND	0.0005	0.005
	February-2024			ND		ND															0.0175		ND				0.0005	0.005
Cadmium	March-2024																									ND	0.0002	0.002
Caariiom																							ND				0.0005	0.005
	April-2024													0.000204 J					0.000195 J								0.0001	0.001
					ND													ND									0.001	0.004
	May-2024										ND								ND		0.0483	ND				ND	0.001	0.01
	June-2024																		ND		0.0175					ND	0.001	0.01
	July-2024										ND	ND													0.00047.1		0.0005	0.005
	August-2024 September-2024				ND		ND														0.00508 J				0.00247 J		0.001	0.01
	October-2024	0.00117.1	ND		ND ND		ND 											ND		 ND							0.001	0.01
	November-2024	ND	ND																								0.001	0.01
	December-2024				0.00661 J																					0.00304 J	0.001	0.01
	January-2025																				0.198						0.004	0.01
	Jul 1001 y-2023		ND																		0.178						0.004	0.01
	February-2025												ND														0.186	0.01
	March-2025		ND									0.0119						ND									0.188	0.004
	April-2025											0.0284						ND									0.002	0.004
	May-2025																						ND	ND			0.0005	0.005
	June-2025																		ND								0.0004	0.004
	July-2025																									0.0019 J	0.0002	0.004
	August-2025																							0.0183		0.001 J	0.0002	0.004
	September-2025		0.0009 J									0.0302															0.0002	0.004
	15,575501 2020		. 0.00073							1		J.0002	1							1							0.0002	

W	Vell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	100
Parameter	Monitoring Event													Concentration	1												LOD	LOQ
	November-2022										0.208		0.112			0.354											0.016	0.02
	December-2022		0.503		1.08				1.76		0.274	0.319					0.499	0.822									0.016	0.02
	January-2023		0.31							0.488	0.178					0.155											0.008	0.01
	February-2023																	0.277									0.004	0.01
	March-2023									0.213	0.188																0.004	0.01
	WidiCi 1-2023																											
	April-2023						_ 					0.142													_ 		0.0004	0.001
	14 0000									0.306																	0.004	0.01
	May-2023		0.422							0.281	0.237																0.002	0.005
	June-2023										0.251		0.191		0.272												0.002	0.005
	July-2023		0.308						0.535										0.231						0.215	0.0265	0.0004	0.001
	August-2023																									0.0276	0.002	0.005
	_						0.606		0.449																0.259		0.004	0.01
	September-2023				1.17														0.234								0.004	0.01
	October-2023																		0.144			0.194					0.0004	0.001
								0.273																			0.0008	0.002
	November 2022		0.391			0.51													0.051			0.402					0	0.003
	November-2023				1.04	0.51		0.400			0.047			0.242					0.251			0.403				0.000	0.003	0.003
					1.04			0.402			0.246			0.343				0.259								0.222	0.004	0.01
	December-2023				1.34														0.219								0.002	0.003
	January-2024			0.17							0.193								0.217							0.128	0.0008	0.002
	February-2024			0.17		0.272															0.203		0.336				0.002	0.005
Chromium																										0.0759	0.002	0.002
	March-2024																						0.414				0.002	0.005
														0.36					0.245								0.0004	0.001
	April-2024				0.836													0.228									0.004	0.01
	May-2024										0.268								0.226		0.183	0.352				0.11	0.004	0.01
	June-2024																		0.226		0.188					0.11	0.004	0.01
	July-2024										0.252	0.246							0.226		0.100						0.004	0.005
	August-2024						0.549														0.185				0.233		0.002	0.003
	September-2024				0.948		0.541											0.228									0.004	0.01
		0.0873	0.246		0.929															0.349							0.004	0.01
		0.0797	0.237																								0.004	0.01
	December-2024				0.773																					0.184	0.004	0.01
	January-2025																				0.00941						0.003	0.01
			0.21																		0.196						0.004	0.01
	February-2025												0.0992														0.0465	0.05
	March-2025		0.248									0.199						0.155									0.008	0.01
	April-2025											0.248						0.143									0.008	0.01
	May-2025																						0.371	0.342			0.002	0.005
	June-2025																		0.178								0.001	0.01
	July-2025																									0.0899	0.0004	0.01
	August-2025																							0.303		0.0578	0.0004	0.01
	September-2025		0.24									0.222															0.0004	0.01
	33,5.77,507, 2320		U.27	1			1			1		V.222							1								0.0007	

W	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
		EW-SOA	E44-20	EW-31	EVV-32	EW-53	EW-54	EW-33	EW-5/	EW-30	EW-37	EW-00		oncentration		EW-05	EVV-0/	EAA-00	EVV-/O	EVV-02	EW-03	EVV-0/	E WY - 00	EVV-07	EVV-74	EVV-76	LOD	LOQ
Parameter	Monitoring Event	I		l	I				I					oncentration		. 15											0.01.4	
	November-2022										ND		ND			ND											0.016	0.02
	December-2022		ND		ND				ND		ND	ND					ND	ND									0.016	0.02
	January-2023		ND							0.0127	0.0256					ND											0.008	0.01
	February-2023																	0.00365									0.0003	0.001
	March-2023									ND	ND																0.008	0.01
	April-2023									0.00664		0.00767															0.0003	0.001
	May-2023		ND							ND	ND																0.0015	0.005
	June-2023										0.00154 J		0.00362 J		0.00269 J												0.0015	0.005
	July-2023		0.00124						0.00163										0.00811						ND	0.0027	0.0003	0.001
	August 2022																									ND	0.0015	0.005
	August-2023						0.00343 J		0.0176																ND		0.003	0.01
	September-2023				ND														0.00407 J								0.003	0.01
	October-2023																		0.00361			0.000609 J					0.0003	0.001
								0.00806																			0.0006	0.002
	November-2023		0.00607		0.00352	0.0212		0.00756			ND			0.00341					0.00387			ND				ND	0.003	0.003
	December-2023				0.00184													ND									0.0015	0.0015
																			0.0034								0.0006	0.002
	January-2024			ND							0.019															ND	0.0015	0.005
	February-2024			ND		0.00201									 						ND		ND				0.0015	0.002
Copper	March-2024																						0.00104.1			0.00115 J	0.0006	0.002
Соррсі														0.00442					0.004				0.00184 J				0.0015	0.005
	April-2024				NID.									0.00443					0.004								0.0003	0.001
	1.4 000.4				ND													ND									0.003	0.004
	May-2024										ND								0.00486 J		0.00688 J	ND				ND	0.003	0.01
	June-2024														 				0.00409 J		ND					ND	0.003	0.01
	July-2024										0.398	ND															0.0015	0.005
	August-2024 September-2024				ND		ND														ND				ND		0.003	0.01
	October-2024	0.00412.1	 ND		ND ND		ND 											ND		0.00306 J							0.003	0.01
	November-2024		ND																								0.003	0.01
	December-2024				ND																					ND	0.003	0.01
	January-2025																				0.035 J						0.01	0.01
			ND																		0.00381 J						0.003	0.01
	February-2025												ND														0.0465	0.05
	March-2025		0.0087 J									ND						0.0142									0.0403	0.01
	April-2025											ND						0.009 J									0.008	0.01
	May-2025																						ND	0.0123			0.0015	0.005
	June-2025																		0.0082 J								0.002	0.01
	July-2025																									0.0076 J	0.0017	0.01
	August-2025																							ND		0.0049 J	0.0017	0.01
	September-2025		0.0089 J									ND															0.002	0.01

V	Well ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	100	100
Parameter	Monitoring Event													Concentration													LOD	LOQ
	November-2022										ND		ND			0.017 J											0.012	0.02
	December-2022		ND		0.0381				ND		ND	ND					ND	ND									0.012	0.02
	January-2023		ND							ND	ND					ND											0.006	0.01
	February-2023																	0.006									0.001	0.001
	March-2023									ND	ND																0.006	0.01
	April-2023									0.0022		0.0067															0.001	0.001
	May-2023		ND							ND	ND																0.005	0.005
	June-2023										ND		ND		0.0069												0.005	0.005
	July-2023		0.0014						0.019										0.0092						ND	0.0017		
	JUIY-2023																								ND	0.0017	0.001	0.001
	August-2023						0.014		ND																0.013	ND 	0.005	0.005
	September-2023				0.12														ND								0.01	0.01
																			0.0036			0.0034					0.001	0.001
	October-2023							0.0077																			0.002	0.002
	November-2023		ND		0.13	0.0046		0.014			ND			ND					0.0032			0.0043				ND	0.003	0.003
																			0.0043								0.002	0.002
	December-2023				0.16													0.002									0.0015	0.0015
	January-2024			ND							0.0081															ND	0.005	0.005
	February-2024			0.0065		0.01															0.051		0.012				0.001	0.002
	March-2024																									ND	0.002	0.002
Lead	March 2024																						0.02				0.005	0.005
	April-2024													0.0013					0.0025								0.001	0.001
	7 (DIII 2024				0.13													ND									0.004	0.004
	May-2024										ND								ND		0.11	ND				ND	0.01	0.01
	June-2024																		ND		0.024					ND	0.01	0.01
	July-2024										ND	ND															0.005	0.005
	August-2024						0.031														0.027				ND		0.01	0.01
	September-2024				0.098		0.057											ND									0.01	0.01
	October-2024	ND	ND		0.12															ND							0.01	0.01
	November-2024	ND	ND																								0.01	0.01
	December-2024				0.18																					ND	0.01	0.01
	January-2025																				ND						0.002	0.002
	February-2025		ND																		0.02						0.01	0.01
													0.0561														0.0465	0.05
	March-2025		0.0113									0.0816						0.0229									0.006	0.01
	April-2025											0.132						0.0207									0.006	0.01
	May-2025																						0.016	0.049			0.005	0.005
	June-2025																		0.0079 J							0.0022	0.003	0.01
	July-2025																									0.0233	0.0018	0.01
	August-2025																							0.087		0.0142	0.0018	0.01
	September-2025		0.0179									0.0184															0.002	0.01

W	-II ID	FW 2/A	FW 50	FW 51	FW 50	F)4/ F2	F\4/ F.4	F\4/ F.F	F\4/ F7	FW 50	FW 50	FW /0	F\A/ / 1	FW 40	FW / 4	F)A/ / F	F\4/ / 7	FW 40	FW 70	FW 00	FW 0.5	FW 07	FW 00	FW 00	F)4/ 0.4	FW 00		
	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62 oncentration	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event				l											0.00053											0.0004	0.0004
	November-2022												0.00169			0.00053											0.0004	0.0004
											ND																0.0008	0.0008
	D 00000		0.00051																								0.0004	0.0004
	December-2022								0.00118		ND	0.00588					0.0048	ND									0.0008	0.0008
					ND																						0.004	0.004
	January-2023		ND							ND						ND											0.0004	0.0004
											ND																0.004	0.004
	February-2023																	ND									0.0004	0.0004
	March-2023									ND																	0.0002	0.0002
	TVIGITOTI ZOZO										ND																0.0004	0.0004
	April-2023											0.00128															0.0002	0.0002
	7 (DIII 2020									ND																	0.0004	0.0004
	May-2023		ND							ND	ND																0.0002	0.0002
	June-2023										ND		ND		ND												0.004	0.004
	Luly 2002		0.000306																ND							ND	0.0002	0.0002
	July-2023								0.0107																ND		0.001	0.001
	August 2022																									ND	0.001	0.001
	August-2023						0.00312		0.00397																ND		0.002	0.002
	September-2023				0.00503														ND								0.002	0.002
	October-2023							0.00165											ND			0.00055					0.0004	0.0004
			ND											ND													0.0000002	0.0000002
	November-2023																		ND								0.0000004	0.0000004
					0.00576	0.00606		0.00578			ND											0.00954				ND	0.000004	0.000004
	December-2023				0.00484													ND									0.001	0.001
Mercury																			ND								0.0004	0.0004
	January-2024			ND							ND															ND	0.001	0.001
	February-2024			0.00376		0.0115															0.00238		0.00284				0.001	0.001
	March-2024																									0.00124	0.0004	0.0004
																							ND				0.001	0.001
	April-2024													0.000201					ND								0.0002	0.0002
					0.00382													0.00151									0.0008	0.0008
	May-2024										ND								ND		ND	ND				ND	0.002	0.002
	June-2024																		ND		0.0119					ND	0.002	0.002
	July-2024										ND	0.00104															0.001	0.001
	August-2024						ND														0.00671				ND		0.002	0.002
	September-2024				0.00244		ND											ND									0.002	0.002
	October-2024	ND	ND		ND															0.00254							0.002	0.002
	November-2024	ND	ND																								0.002	0.002
	December-2024				0.00213																					ND	0.002	0.002
	January-2025																				0.1047						0.01	0.01
	February-2025												0.00011														0.000009	0.000009
	ŕ		ND																		ND						0.002	0.002
	March-2025		ND															ND									0.001	0.001
	A! 000 F											0.0146															0.002	0.002
	April-2025											0.00169						ND						0.0100			0.001	0.001
	May-2025																		0.00227				ND	0.0128			0.001	0.001
	June-2025																		0.00237							0.000/41	0.0002	0.0002
	July-2025																										0.0000144	0.0002
	August-2025																							0.00234		0.00139 J	0.000271	0.002
	September-2025		0.00108																								0.000135	0.001
												0.00665															0.00027	0.002

144	W.D.	T										=111.14		=147.46	=>4.4					T 11/ 00			= W 00		- 111			
	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event			T										oncentration										1				
	November-2022										0.0866		0.1344			0.173											0.014	0.02
	December-2022		0.1722		0.5025				0.2989		0.1299	0.287					0.1853	0.346									0.014	0.02
	January-2023		0.1074							0.1442	0.0407					0.0769											0.007	0.01
	February-2023																	0.1726									0.001	0.001
	March-2023									0.1254	0.1033																0.007	0.01
	April-2023									0.1143		0.1732															0.001	0.001
	May-2023		0.113							0.09726	0.05657																0.005	0.005
	June-2023										0.05978		0.05892		0.07161												0.005	0.005
	July-2023		0.09872						0.08332										0.1576						0.03074	0.01403	0.001	0.001
	August 2022																									0.02029	0.005	0.005
	August-2023						0.1457		0.09673																0.0513		0.01	0.01
	September-2023				0.5152														0.2387								0.01	0.01
	October-2023																		0.2019			0.09206					0.001	0.001
	OC10001-2020							0.104																			0.002	0.002
	November-2023		0.1178		0.4227	0.1242		0.07791			0.05944			0.1493					0.2492			0.1332				0.05277	0.01	0.01
	December-2023				0.6091													0.1447									0.005	0.005
																			0.2127								0.002	0.002
	January-2024			0.06308							0.04911															0.0326	0.005	0.005
	February-2024			0.07945		0.07013															0.09174		0.06183				0.005	0.005
Nickel	March-2024																									0.02232	0.002	0.002
NICKOI																							0.08678				0.005	0.005
	April-2024													0.1319					0.196								0.001	0.001
					0.3136													0.1139									0.01	0.01
	May-2024										0.0538								0.2065		0.07835	0.09235				0.02884	0.01	0.01
	June-2024																		0.211		0.07664					0.03166	0.01	0.01
	July-2024										0.1917	0.03634															0.005	0.005
	August-2024						0.1008														0.0822				0.02104		0.01	0.01
	September-2024 October-2024	0.07251	0.115		0.396 0.3536		0.1138											0.08772		0.05751							0.01	0.01
	November-2024	0.07251	0.115		U.3336 																						0.01	0.01
	December-2024				0.2964																					0.03528	0.01	0.01
																											0.0085	
	January-2025		0.00275																		ND 0.1021							0.01
	February-2025		0.09275																		0.1021						0.01 0.0465	0.01
	March-2025		0.0933									0.0375	ND 					0.0818									0.0463	0.03
	April-2025											0.0373						0.0713									0.007	0.01
	May-2025																						0.07897	0.03695			0.007	0.005
	June-2025																		0.1796								0.003	0.003
	July-2025																									0.0145	0.0005	0.01
	August-2025																							0.0925		0.0393	0.0005	0.01
	September-2025		0.0731									0.0224															0.000	0.01
	, , , , , , , , ,																										2.001	3.01

V	Well ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	100	100
Parameter	Monitoring Event													Concentration													LOD	LOQ
	November-2022										ND		ND			ND											0.08	0.1
	December-2022		ND		ND				ND		ND	ND					ND	ND									0.08	0.1
	January-2023		ND							ND	ND					ND											0.04	0.05
	February-2023																	0.00199									0.00085	0.001
	March-2023									ND	ND																0.04	0.05
	April-2023									0.00189		0.00185															0.00085	0.001
	May-2023		ND							ND	0.00569																0.00005	0.005
	June-2023										ND		ND		ND												0.00425	0.005
	July-2023		0.00101						0.00331										0.00116						0.00251			
	JUIY-2023																								0.00251	ND	0.00085	0.001
	August-2023						ND		ND																ND	ND 	0.00425	0.003
	September-2023				ND														ND								0.0085	0.01
																			0.00186			0.0044					0.00085	0.001
	October-2023							0.00332																			0.0000	0.002
	November-2023		ND		0.00425	0.00314		0.00315			ND			ND					ND			0.0032				ND	0.003	0.003
					0.00785													0.00253									0.0015	0.0015
	December-2023																		0.00215								0.0017	0.002
	January-2024			ND							ND															ND	0.00425	0.005
	February-2024			ND		ND															0.00571		0.00651				0.00425	0.005
	March-2024																									ND	0.0017	0.002
Selenium	Widicii 2024																						0.00627				0.00425	0.005
	April-2024													ND					0.000929 J								0.00085	0.001
	7 (0111 202 1				ND													ND									0.0085	0.01
	May-2024										ND								ND		ND	ND				ND	0.0085	0.01
	June-2024																		ND		ND					ND	0.0085	0.01
	July-2024										ND	ND															0.00425	0.005
	August-2024						ND														ND				ND		0.0085	0.01
	September-2024				ND		ND											ND									0.0085	0.01
	October-2024	ND	ND		ND															ND							0.0085	0.01
	November-2024	ND	ND																								0.0085	0.01
	December-2024				ND																					ND	0.0085	0.01
	January-2025																				ND						0.0006	0.01
	February-2025		ND																		ND						0.0085	0.01
													ND														2.32	2.5
	March-2025		ND									ND						ND									0.04	0.05
	April-2025											ND						ND					ND	ND			0.04	0.05
	May-2025 June-2025																		ND				ND	ND			0.00425	0.005
	July-2025																		ND							 ND	0.0069	0.05
	-																											
	August-2025											ND.												ND		ND	0.0069	0.05
	September-2025		ND									ND															0.007	0.05

V	Well ID EW	-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												C	Concentration													LOD	LOQ
	November-2022										ND		ND			ND											0.01	0.02
	December-2022		ND		0.0187 J				ND		ND	ND					ND	ND									0.01	0.02
	January-2023		ND							ND	ND					ND											0.005	0.01
	F - I 0000																	ND									0.00006	0.001
	1.4 1.0000									ND	ND																0.005	0.01
	4 1 0000									ND		0.00011 J															0.00006	0.001
			ND							ND	ND																0.0003	0.005
	1 0000										ND		ND		ND												0.0003	0.005
	1.1.0000		ND						ND										ND						ND	ND	0.00006	0.001
																										ND	0.0003	0.005
	August-2023						ND		ND																ND		0.0006	0.003
	September-2023				ND														ND								0.0006	0.01
																			ND			ND					0.00006	0.001
	October-2023							ND																			0.00012	0.002
	November-2023		ND		ND	ND		ND			ND			ND					ND			ND				ND	0.0006	0.01
	December-2023				ND													ND									0.00025	0.001
	·																		ND								0.00012	0.002
	5411541 J 202 1			ND							ND															ND	0.0003	0.005
	February-2024			ND		ND															ND		ND				0.0003	0.005
Cilver	March-2024																									ND	0.00012	0.002
Silver																							ND				0.0003	0.005
	April-2024													ND					ND								0.00006	0.001
					ND													ND									0.0004	0.001
	1116.7 2021										ND								ND		ND	ND				ND	0.0006	0.01
	00.10 2021																		ND		ND					ND	0.0006	0.01
	3017 2021										ND	ND															0.0003	0.0005
	7 (0 9 0 0 1 2 0 2 1						ND														ND				ND		0.0006	0.01
	00p10111001 202 1	1D			ND		ND											ND									0.0006	0.01
		1D	ND ND		ND 															ND 							0.0006	0.01
	5 1 2224				ND																					ND	0.0006	0.01
	1 0005																				0.789						0.0000	0.05
																											0.0006	0.03
	February-2025		ND 										ND								ND 						0.0008	0.0025
	1.4 1.0005		ND									ND						ND									0.00252	0.0023
	4 1 0005											0.007 J						ND ND									0.005	0.01
	14 0005																						ND	ND			0.0003	0.005
	1 0005																		ND								0.002	0.01
	1.1.0005																									0.0009 J	0.0004	0.01
	1,0005																							ND		0.0008 J	0.0004	0.01
	2000 0000		0.001 J									ND															0.0004	0.01

					I													ı										
We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event		ı		1									oncentration				ı										
	November-2022										ND		0.032			0.694											0.02	0.02
	December-2022		0.208		29.7				0.162		0.0686	0.75					0.364	0.286									0.02	0.02
	January-2023		0.133							0.15	0.074					0.0752											0.01	0.01
	February-2023																	0.0851									0.0025	0.005
	March-2023									0.0689	0.0538																0.01	0.01
	A 1 0000									0.0539																	0.0025	0.005
	April-2023 -											0.414															0.025	0.05
	May-2023		0.079							0.0635	0.0519																0.0125	0.025
	June-2023										0.0538		0.0253		0.945												0.0125	0.025
			0.0488																0.0714						0.354	0.0782	0.0025	0.005
	July-2023								2.03																		0.0125	0.025
																										0.112	0.0125	0.025
	August-2023								1.71																0.914		0.025	0.05
							5.92																				0.05	0.1
	C I I 0000																		0.0788								0.025	0.05
	September-2023				45																						0.25	0.5
	October 2002																		0.0622								0.0025	0.005
	October-2023							0.203														633					0.005	0.01
	November-2023		0.0471 J			0.0534		0.74			0.053			0.0618					0.0722			0.845				0.0313 J	0.025	0.05
	NOVEITIDEI-2023				30.4																						0.25	0.5
					52.7																						0.25	0.5
	December-2023																		0.061								0.005	0.01
																		0.0462									0.025	0.025
	January-2024			0.117							0.0974															0.0261	0.0125	0.025
	February-2024			0.0879		0.0554															0.475		0.809				0.0125	0.025
7in o	March-2024																									0.0342	0.005	0.01
Zinc																							2.09				0.0125	0.025
														0.0565					0.0539								0.0025	0.005
	April-2024																	0.0394									0.02	0.02
					24.7																						0.25	0.5
	May-2024										0.165								0.0568		1.3	1.43				0.0812	0.025	0.05
	June-2024																		0.0505		0.498					ND	0.025	0.05
	July-2024										0.104	0.0451															0.0125	0.025
	August-2024						3.49														0.512				0.417		0.025	0.05
	September-2024				0.212																						0.0025	0.005
	·						3.68											0.111		0.240							0.025	0.05
	October-2024	0.266	0.077		20.2															0.342							0.025	0.05
	November-2024	0.0335.1	0.0367 J		20.2																						0.25 0.025	0.5
	11076111061-2024																									0.0696		
	December-2024				14.2																						0.025	0.05
	1 0005				14.3																						0.25	0.5
	January-2025																				ND						0.002	0.002
	February-2025		0.0405 J																		0.527						0.025	0.05
	Marab 2005		0.0415									0.155	0.136					0.0077									0.0465	0.05
	March-2025		0.0415									0.155						0.0277 0.0297									0.01	0.01
	April-2025											0.344															0.01	0.01
	May-2025											0.366											1.1	1.55			0.03	0.03
	June-2025																		0.0455								0.0123	0.023
	July-2025																									0.0246	0.007	0.01
	August-2025																							2.92		0.0248).0064-0.009(
			0.0247																									0.02-0.03
	September-2025		0.0267									0.322															0.003	0.01
												0.322															0.007	0.03

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event													oncentration													LOD	LOQ
VOLATILE FATTY AC																												
													1600														25	100
	November-2022										3500					150 J											62	250
	December-2022		1800																								62	250
	January-2023									 ND	4400					ND												500
	· ·		ND							ND	4400					ND												
	February-2023																	ND										500
	March-2023									ND	640																	500
	April-2023									1200		520															370	500
	May-2023		990							1800	3000																370	500
	June-2023										5900		4100		5000												750	1000
																										ND	150	200
	July-2023		ND																ND								370	500
									6100																750		750	1000
	August-2023						3300		5300																4200	ND		500
	September-2023				7400														ND								370	500
	October-2023							3200											720			4100					370	500
			ND											ND					ND							4160	250	500
	November-2023					4950		6650			5350											7300					500	1000
					9900																						1000	2000
																		660										100
	December-2023																		ND									250
	1 0001				11200																							1000
	January-2024			4410							5290															3080		250
	February-2024			3130		3530															3530		6770					250 500
																										2700		200
A 1: - A -: -!	March-2024																						46000					1000
Acetic Acid														ND					ND									1000
	April-2024																	1670										250
					9170																							1250
																			ND		4370					221		250
	May-2024										4950																	500
	', '																					6530						1250
																			ND									100
	June-2024																				3890					4450		500
	July-2024										6280	6180																1250
	August-2024						5210														3500				5540			500
																		2950										250
	September-2024						5970																					500
					10400																							1250
		ND																										50
	October-2024		260																									100
	3 3 3 3 3 3 2 3 2 3																			4780								250
) 1 200				9410																							1250
	November-2024	960	230																									200
	December-2024																									10000		200
					17000																							400
	January-2025																				3500							100
	May-2025																						6640	6530			71.4	500
	June-2025																		29.9								0.7	5
	July-2025																									3890	71.4	500
1	August-2025																							8500		678	71.4	500
t contract to the contract to	_		2360									5870	-		1												71.4	500

W	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event	EW-30A	EW-30	EW-31	EW-32	E44-33	EW-34	EW-33	EVV-57	EW-30	EW-37	EW-00		cw-62 Concentration		EW-03	EVV-07	EAA-00	EW-70	EW-02	EW-03	EVV-07	E 44 - 00	EW-07	CVV-74	EW-70	LOD	LOQ
raidillelei	Monitoring Eveni												430														12	100
	November-2022										830																29	250
	December-2022		 ND													ND											29	250
	January-2023										1900					ND												
	February-2023		ND							ND	1800					ND		 ND										500
										ND	ND																	
	March-2023									ND	ND	ND.															220	500
	April-2023									ND	1000	ND															330	500
	May-2023		ND							ND	1200		1500														330	500
	June-2023										2500		1500		2900												650	1000
	1.1.0000																									ND	130	200
	July-2023		ND																ND								330	500
									2800																650		650	1000
	August-2023						1400		1700																1600	ND		500
	September-2023				3100														ND								330	500
	October-2023							1200			1070								ND			2000					330	500
	November-2023		ND		2420	1670		1760			1370			ND					ND			2730				740	250	500
					3420													336									500	1000
	December-2023																		 ND									250
	DOCOMBOI 2020				3390																							1000
	January-2024			813							1230															594		250
				583		1170																						250
Butyric Acid	February-2024																				1180		2980					500
201711071010	Manuala 0004																									500		20
	March-2024																						2100					200
	April 2024													ND					ND									100
	April-2024				3120													444										250
	May-2024										1190								ND		984	2370				448		250
	June-2024																		ND		1190					1030		100
	July-2024										2400	2360																250
	August-2024						1630														1180				1930			500
	September-2024				3550		2060											670										250
		ND																										50
	October-2024		ND																	1/20								100
					3070															1630								250 1250
	November-2024	480	 ND																									200
																										2200		200
	December-2024				4600																							400
	January-2025																				1100							100
	May-2025																						2220	2160			70.3	500
	June-2025																		ND								0.7	500
																										 575	7	50
	July-2025																							2200		575	7 70 2	50
	August-2025		201																					2200		338	7-70.3	50-500
	September-2025		281									1750															3.5 70.3	25 500
												1/50															/0.3	300

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event													oncentration									<u> </u>				LOD	LOQ
													ND														11	100
	November-2022										ND					ND											27	250
	December-2022		90 J																								27	250
	November-2023		ND			968		1800			969			ND					ND			1170				324	250	500
	November-2025				6030																						500	1000
																		ND										100
	December-2023																		ND									250
					9050																							1000
	January-2024			629							979															256		250
	February-2024			334		180				 													1.450					250
	·																				756		1650					500
	March-2024																									ND		20
																							ND					200
														ND					ND									100
	April-2024									 								ND										250
	14 0004				5120					 												1700						1250
	May-2024										1160								ND		1170	1730				ND		250
	June-2024									 	1000	1010							ND		706					246		100
Lactic Acid	July-2024										1220	1210																250
	August-2024						2270											ND			593				959			500
	September-2024				5510		2550											ND										250 1250
		ND																										50
			ND																									100
	October-2024																			2590								250
					5630																							1250
	November-2024	ND	ND																									200
																										730		200
	December-2024				5300																							400
	January-2025																				480							100
	May-2025																						963	783			55.7	500
	June-2025																		ND								0.6	5
	July-2025																									74.7	5.6	50
																										ND	0.6	5
	August-2025																							1100			55.7	500
			ND																								2.8	25
	September-2025											864															5.6	50
	-																										5.5	

VAC-	ell ID	E\M 2/A	EW 50	EW 51	EW 50	EW E2	EW EA	EW EE	E\W	EW FO	EW FO	EW 40	EVAL 4.1	EW 40	EW 44	EW (E	E\A/ 47	EW 40	E\M 70	EW 02	EW OF	EW 07	EW 00	EW OO	EW 04	EW 00		
Parameter	Monitoring Event	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62 Concentration	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
raidillelei	Monitoring Eveni												620							I							11	100
	November-2022										1400					72												
	December 2022										1600					73 J											27	250
	December-2022		640							ND.	2000					ND											27	250
	January-2023		ND							ND	2000					ND												500
	February-2023																	ND										500
	March-2023									ND	ND																240	500
	April-2023									600		ND															340	500
	May-2023		520							800	1400																340	500
	June-2023										2900		2000		2900												680	1000
																										ND	140	200
	July-2023		ND																ND								340	500
									3100																680		680	1000
	August-2023						1200		2000																1900	ND		500
	September-2023				1800														ND								340	500
	October-2023							1300											ND			2000					340	500
	November-2023		ND		0500	2170		2310			2080			387					ND			3350				1420	250	500
					2580																						500	1000
	December-2023																	996	ND									100 250
	December 2020				2280																							1000
	January-2024			1680							1970															1030		250
				1210		1510																						250
Propionic Acid	February-2024																				1980		2900					500
	Marrala 2004																									570		20
	March-2024																						2100					200
	April-2024													ND					ND									100
	Αρπ-2024				2300													1150										250
	May-2024										1730								ND		1640	2770				647		250
	June-2024																		ND		1870					1400		100
	July-2024										2500	2470																250
	August-2024						1320														1920				2040			500
	September-2024				2640		1690											1300										250
		ND																										50
	October-2024		275 																	1470								100 250
					2240																							1250
	November-2024		310																									200
																										3300		200
	December-2024				4200																							400
	January-2025																				1800							100
	May-2025																						2570	2560			57.3	500
	June-2025																		ND								0.6	5
	July-2025																									1210	57.3	500
	August-2025																							3140		696	57.3	
			 597																								5.7	500
	September-2025											2030															57.3	500
										_ 		2000																300

W	/ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event													oncentration													LOD	LOQ
- Grannerer													46 J														12	100
	November-2022										98 J					ND											30	250
	December-2022		ND																								30	250
			ND			ND		ND			ND			ND					ND			ND				ND	250	500
	November-2023				ND																						500	1000
																		ND										100
	December-2023																		ND									250
					ND																							1000
	January-2024			ND							ND															ND		250
	February-2024			ND		ND																						250
																					ND		ND					500
	March-2024																									130		20
																							460					200
	April-2024				ND									ND 				 ND	ND									100 250
	May-2024										ND							ND	ND		ND	ND				ND		250
	June-2024																		ND		113					ND		100
Pyruvic Acid	July-2024										ND	ND																250
	August-2024						ND														ND				ND			500
	September-2024				ND		ND											ND										250
		ND																										50
	October-2024		ND																									100
	OC10061-2024																			ND								250
					ND																							1250
	November-2024	ND	ND																									200
	December-2024																									410		200
					460																							400
	January-2025																				ND							100
	May-2025																						132 J	124 J			44.4	250
	June-2025																		ND								0.9	5
	July-2025																									68	8.9	50
	August-2025																							93.9 J		61.3	0.9-17.8	5-100
	September-2025		33.1																								4.4	25
	30010111001 2020											73.4															8.9	50

Wel	II ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
	Monitoring Event	EW-30A	E44-20	E44-21	EVV-32	EW-33	EVV-54	E44-22	EW-5/	E44-20	EVV-37	EW-00		oncentration	EW-04	E44-02	EVV-07	EAA-00	EW-70	EVV-02	E44-03	EVV-O/	EAA-00	EVV-07	EVV-74	EW-70	LOD	LOQ
VOLATILE ORGANIC		/L)																										
	November-2022										3510					1140											30	100
	NOVEITIDEI-2022												15600														300	1000
	December-2022		3140									3390															30	100
-					26800				27700		5670						21700	7150									300	1000
	January-2023		3480							632	7840					5470											30 300	100
	February-2023										7040							14400									600	2000
	March-2023									257	2770																30	100
	April-2023									3420		5530															750	2500
	May-2023		5360							5970																	150	500
											13600																750	2500
	June-2023										13800																750	2500
-			5860										20100		22600				 ND								1500	5000
	July-2023																									13500	60 750	200 2500
	301, 2020								38400																31600		3000	10000
																										5950	60	200
	August-2023																								7350		150	500
	G						25600		3000																		750 1500	2500 5000
-	0 1 1 0000																		439								60	200
	September-2023				17500																						750	2500
	October-2023																		211								15	50
-								17800											78.8 J			33400					1500 30	5000 100
								17700			10600																150	500
	November-2023		3990																								300	1000
					25700									17/00													750	2500
-	December-2023				13700	22300								17600				7060	 ND			26700				31200	1500 150	5000 500
											10800																150	500
	January-2024			34700																						28900	1500	5000
	February-2024			20500		28900															12700		17400				150	500 5000
2-Butanone (MEK)				30500		20700																	11700				1500 150	500
2-bordrione (MEK)	March-2024																									25200	1500	5000
																			ND								30	100
	April-2024													14600													750	2500
-					37200													28700									1500	5000
	May-2024																		ND 		7340					18600	60 150	200 500
	May 2024										25700											32700					1500	5000
																			ND								60	200
	June-2024																				13800						150	500
-											15600															33200	15000 150	25000 500
	July-2024											25400															1500	5000
	August-2024						17700														7260				17900		150	500
	September-2024				19000		16600											20000									150	500
-		28.2																32200									1500	5000 10
	October-2024		2770																								60	200
					13000															10800							150	500
	November-2024	28800	4140																								60 750	200 2500
					658																						750 150	500
	December-2024																									41800	600	2000
	January-2025																				17000						1500	5000
			6930																								60	200
	February-2025												ND								23900						150 24500	500 24500
			2540										ND														150	500
	March-2025											30600						33700									1500	5000
	April-2025											20800						28100									150	500
	May-2025																						12500	16700			150 1500	500 5000
	June-2025																		ND								60	200
	July-2025																									20300	150	500
	August-2025																							6680		47400	150-1500	500-5000
	September-2025		8450									12500															300	1000

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event													ncentration	<u> </u>							U					LOD	LOQ
																4420											70	100
	November-2022										16100		38300														700	1000
											15600	5170						9800									700	1000
	December-2022		8500																								1750	2500
					53100				49900								45600										3500	5000
										1530																	70	100
	January-2023										22200					14000											700	1000
			8130																								1750	2500
	February-2023																	23900									1400	2000
	March-2023									375																	70	100
											6810																700	1000
	April-2023									8290		7560															1750	2500
	May-2023		10700							11700																	350	500
	·										29600																1750	2500
	June-2023										29600																1750	2500
													61800		50800												3500	5000
																			1180								140	200
	July-2023		9780																							11/00	700	1000
	-								77000																 /0700	11600	1750	2500
									77200																69700	20900	7000 700	10000
	August-2023								18700																		1750	2500
	7 (0 g 0 3) 2 0 2 0 1						72500																		87700		3500	5000
	Contambar 2002																		188 J								140	200
	September-2023				40100																						1750	2500
	October-2023																		79								35	50
	0 010001 2020							66900														92900					3500	5000
	-																		104								70	100
	November-2023		5560		64700																						700 1750	1000 2500
						43100		61100			36800			32800								53900				67800	3500	5000
																		ND									140	200
Acetone	December-2023																		ND								350	500
					44300																						1750	2500
	January-2024			96600							22800															47300	3500	5000
	February-2024			81600		70200															45600		63100			 F7/00	3500	5000
	March-2024																						50800			57600	3500	5000 100
	April-2024													24300					ND								70 1750	2500
	Aprii-2024				95300													55200									3500	5000
																			ND								140	200
	May-2024										63200										39000	91300				33300	3500	5000
																			ND								140	200
	June-2024																				94400					84400	35000	50000
	July-2024										32200	52600															3500	5000
	August-2024						57700														36000				81500		3500	5000
	September-2024				59800		44500											69300									3500	5000
	October-2024	30.1	5230																								1.40	10 200
	OC10061-2024		5230		49800															40700							140 3500	5000
			8680		47000																						350	500
	November-2024	44400																									1750	2500
	December-2024				51700																					69700	1400	2000
	January-2025																				65300						3500	5000
			9820																								700	1000
	February-2025																				46400						3500	5000
			4440										ND														49000	98000
	March-2025		4460									72600						86400									350 3500	500 5000
	April-2025											61200						78000									3500	5000
	May-2025																						57300	58600			3500	5000
	June-2025																		ND								140	200
	July-2025																									31100	1400	2000
	August-2025																							36000 B		89600	3500	5000
	September-2025		17400																								700	1000
	30p101110 0 1-2023											52800															3500	5000

14/	ell ID	F\M 2 / A	FW 50	FW 51	FW 50	FW 52	F\W F.4	F\W 55	F\M = 7	FW 50	FW 50	FW /0	FW /1	FW / 2	FW / 4	F\A/ / F	FW /7	FW / 0	FW 70	FW 00	FW OF	FW 07	FW 00	FW 00	FW 04	FW 00		
		EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62 Concentration	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event			l I							741		T			FO 4			1	1							4	10
	November-2022		201		2040						7.4 J	422	2860			50.4	1750	170									4	10
	December-2022		301		2960				6550		6.3 J	622					1750	179									40	10
	January-2023		240							20.7	1420					147											40	100
	February-2023		240							28.7	1620					167		1370									4	10
	March-2023									1540	727																4	10
	April-2023									3740		320															4	10
	May-2023		814							4890	3370																20	50
	1VIQY-2023										2630																Ω Ω	20
	June-2023												1400		1590												20	50
			824																80.8								8	20
	July-2023								4050																1420		20	50
	J01y-2025																									11800	100	250
																										379	8	20
	August-2023						2320		168																ND		20	50
	0.000																		193								8	20
	September-2023				468																						100	250
	October-2023																		399								2	5
	OCIODOI 2020							576														3100					20	50
			80.8											31.3													2	5
	November-2023					1070													323								4	10
	-				870	1070		654			982											1960				1190	20	50
																		932									100	250 20
	December-2023				1330														463								20	50
	January-2024			1410							662															2900	20	50
Benzene	February-2024			906		884															346		484				20	50
	March-2024																						226			8910	20	50
	April-2024													52.1					13.8								4	10
	Αριιι-2024				2040													3420									20	50
	May-2024																		276								8	20
	7VIGY-2024										3080										144	818				2990	20	50
	June-2024																		173								8	20
																					210					2740	20	50
	July-2024										1410	1820															20	50
	August-2024 September-2024				040		828 727											2710			162				384		20	50 50
	September-2024	306			960																						0.4	1
	October-2024		429																								2	5
					1200															828							20	50
	November-2024	119	512																								8	20
	December-2024				675																					3280	20	50
	January-2025																				588						20	50
			739																								8	20
	February-2025																				443						20	50
													559000														24500	24500
	March-2025		157									1260						2350									20	50
	April-2025											938						1540					 255	222			20	50
	May-2025 June-2025																		97.4				255	222			20 8	50 20
	July-2025																									1930	20	50
	August-2025																							112		1300	20	50
	September-2025		747									406															40	100
	30010111001-2023		/4/									400															40	100

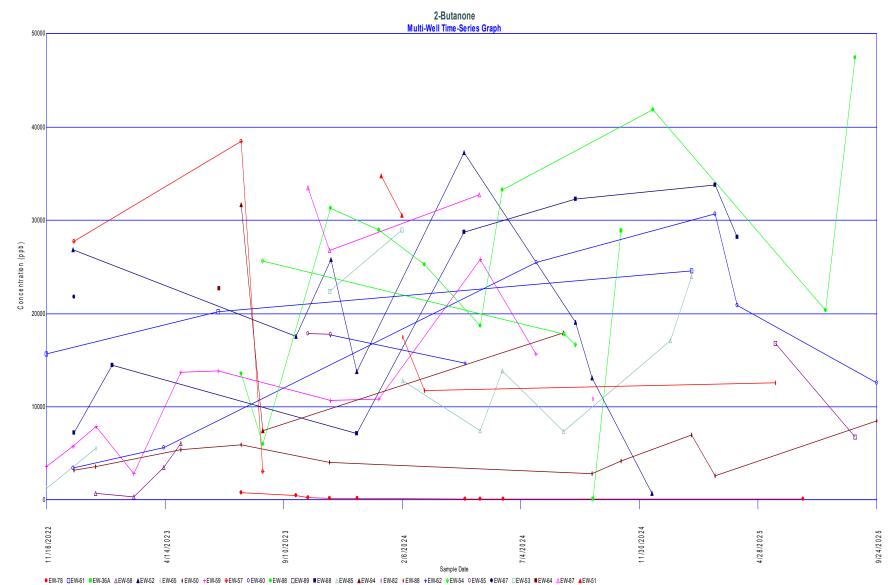
Part	W	II ID	F\4/ 2/ A	FW 50	F\M F1	FW 50	F\4/ F2	F)A/ F.4	F\4/ FF	F\A/ F7	FW 50	FW 50	FW 70	F14/ / 1	FW 40	FM / A	FM / F	F\4/ / 7	FW / 0	FW 70	FW 00	FW 0.5	FW 07	FW 00	F)4/ 00	FW 04	FW 00		
Property 2016 19			EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Horsepara	Parameter					4=4						\ \ID	40 =		oncentration				A= 4		1		1						10
Provided 1968 1969 196				67.3		172				287			48.5					108	27.4									4	
Figure 2007														194														4	
*** Proof-tile *** *** *** *** *** *** *** *** *** *				65.1							ND	93.9					20.8											4	
Act																			151									4	
Mys-200												71.5																4	
Birth Control Birth Contro													43.4															4	
Figure 1967 1968 1969 1969 1969 1969 1969 1969 1969		May-2023		124							276	144																20	
1		lune-2023										104																8	
## Applications 198		30110 2020												98		116												20	
A C C C C C C C C C																											666	4	
## Agold 2272 1		July-2023		128																82								8	20
Application										224																87.5		20	50
Sep write-2022		August-2023																									16.8 J	8	
March Marc		7109031 2020						80		ND																ND		20	
Colore York		September-2023																		22.8								8	
Control of the cont		33,013.11.21.22.2				ND																							
Tryster/enter 1		October-2023																		34.8								Z	
However 202									42.5 J														247						50
First Here Fig. 1																												2	5
Ethide representations of the complex of the comple		November-2023																										4	
December 2022																													
Ethylberzene September 2004 Septembe																												100	
Employable		December-2023																										0	
Particular Par		Lanuary 2004																											
Month																													
April 2022	Ethylbenzene																												
April 20.4		7VIGICI 1-2024																										20	
May-2024 June 2024 June 2025 June 2026 June 2025 June 2025 June 2025 June 2025 June 2025 June 2026 June 2025 J		April-2024																										20	
Moy 2024																	-											20	
100 200		May-2024																		35.4								8	
1019-2024												146										ND	59				225	20	
August 2024		June-2024																		23.6								8	
August-2024																													
September-2024																													
Colber-2022 1.4.1 1.35																													
October-2024 112		September-2024																											50
November-2024 1.4 J 1.35		October 2024																											I
November-2024 14.4 J 135		OCIODEI-2024																											50
December-2024		November 2024																										2U Q	
January-2025 20 50																												30	
February-2025																													
February-2025		January-2025																										20	
March-2025 61.5		Fabruary 2005																										8	
March-2025		rebludly-2025																											
April-2025		March 2005																	-										
May-2025 29 38 J 20 50 June-2025 8 20 July-2025 8 20 August-2025 8 20																													
June-2025 8 20 July-2025 8 20 August-2025 8 20 August-2025 8 20 August-2025 <td></td>																													
July-2025																													
August-2025 ND 230 20 50																												-	
september-2025 64 J ND ND 40 100																													
		september-2025		64 J									ND															40	100

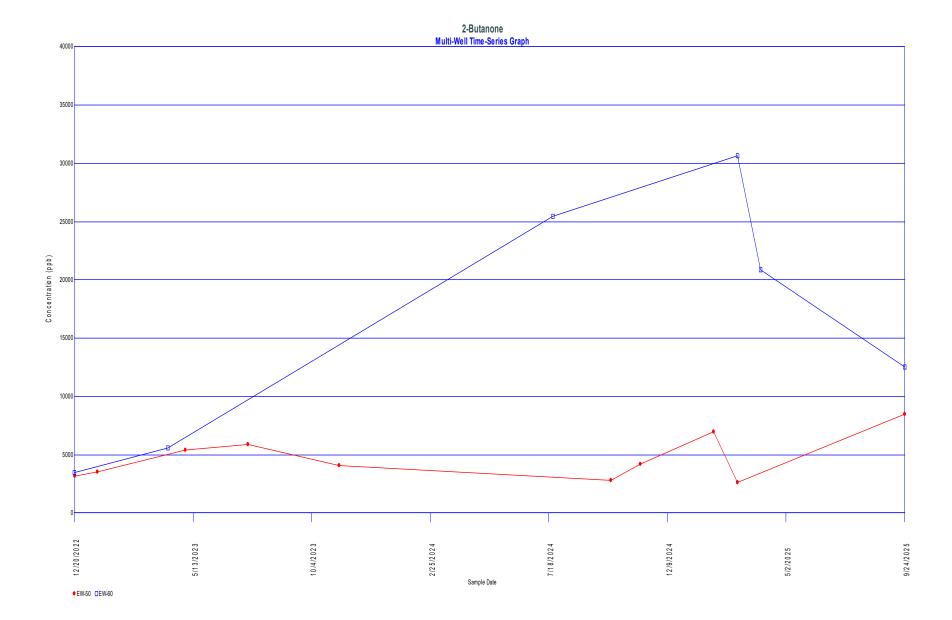
Note Note		531(2960 2880 0	100 1000 1000 1000 1000 1000 1000 1000	100 1000 1000 1000 1000 1000 2000 100 10
November 2022 151		5310 1200	2960 0 2880 0	1000 100 100 100 2000 100 100 500 200 500 100 200 500 200 500 200 500 200 500 200	100 1000 1000 1000 1000 2000 100 1
November 2022 151		5310 1200	2960 0 2880 0	1000 100 100 100 2000 100 100 500 200 500 100 200 500 200 500 200 500 200 500 200	1000 100 1000 1000 2000 100 100 500 200 500 100 200 500 200 500 200 500 200 500 200 500
December 9777 151		 531(120(2960 0 2880 0	100 1000 100 2000 100 100 500 200 500 200 500 200 500 200 500 200 500 200 500	100 1000 1000 100 2000 100 100 500 200 500 100 200 500 200 500 200 500 200 500
1880 1890	5310 1200	 5310 1200	2960 0 2880	1000 100 2000 100 100 500 200 500 100 200 500 200 500 200 500 200 500	1000 100 2000 100 100 500 200 500 100 200 500 200 500 200 500 200 500
Jonuary 2023	5310 1200	5310 5310 	2960 2880 0	100 2000 100 100 500 200 500 100 200 500 200 500 200 200	100 2000 100 100 500 200 500 100 200 500 200 500 200 500 200 500
February-2023	5310 1200	5310 5310 	2960 0 2880 0	2000 100 100 500 200 500 100 200 500 200 500 200 500 200 500	2000 100 100 500 200 500 100 200 500 200 500 200 500 200 500
March-2022	5310 1200	5310 5310 1200	2960 0 2880 0	100 100 500 200 500 100 200 500 200 500 200 2500	100 100 500 200 500 100 200 500 200 500 200 200 200
April 2023	5310 1200	5310 5310 1200	2960 0 2880 0	100 500 200 500 100 200 500 200 500 200 200 200	100 500 200 500 100 200 500 200 500 200 200 200 2
May 2023 - ND	5310 5310 1200 	5310 1200 	0 2880 0	500 200 500 100 200 500 200 500 200 2500	500 200 500 100 200 500 200 500 200 2500
June-2023	 5310 1200 	5310 1200 	2960 0 2880 0 	200 500 100 200 500 200 500 200 200 2500	200 500 100 200 500 200 500 200 2500
July-2023	5310 1200 	531(120(2960 0 2880 0 	500 100 200 500 200 500 200 200 2500	500 100 200 500 200 500 200 2500
July-2023	5310 1200 	5310 1200 	2960 0 2880 0 	100 200 500 200 500 200 200 2500	100 200 500 200 500 200 200 2500
August-2023 411	5310 1200 	5310 1200 	0 2880 0	200 500 200 500 200 2500	200 500 200 500 200 2500
August-2023	5310 1200 	5310 1200 	0 2880 0 	500 200 500 200 2500	500 200 500 200 2500
August-2023	1200	 1200 	2880 0 	200 500 200 2500	200 500 200 2500
August-2023	1200 	1200 	O 	500 200 2500	500 200 2500
September-2023	 	 		200 2500	200 2500
September-2023 ND		 		2500	2500
October-2023					
November-2023				1 50	
November-2023					50
November-2023				500	500
Tetrahydrofuran November-2023				100	50 100
Tetrahydrofuran December-2023			4/00	500	500
Tetrahydrofuran				2500	2500
Tetrahydrofuran December-2023				200	200
February-2024 3500 4580				500	500
March-2024			10900		500
April-2024				500	500
April-2024 7290			8710	500	500
May-2024 555				100	100
MOV-7074				500	500
1VIQY-2024				200	200
1880 5860			7640	500	500
June-2024				200	200
3830			13000		500
July-2024 1900 4020				500	500
August-2024 3220	4610	4610		500	500
September-2024 2950 2730 6640				500	500
October-2024 318				10	10 50
October-2024 318				50 500	500
November-2024 6620 452				200	200
December-2024 5660			17000		500
January-2025				500	500
1020				200	200
February-2025				500	500
				24500	24500
March-2025 ND 4890 10000				500	500
April-2025				500	500
May-2025 4080 5700				500	500
June-2025				200	200
July-2025					2000
August-2025			1/000	500	500
September-2025 2560 3050			16800	1000	1000

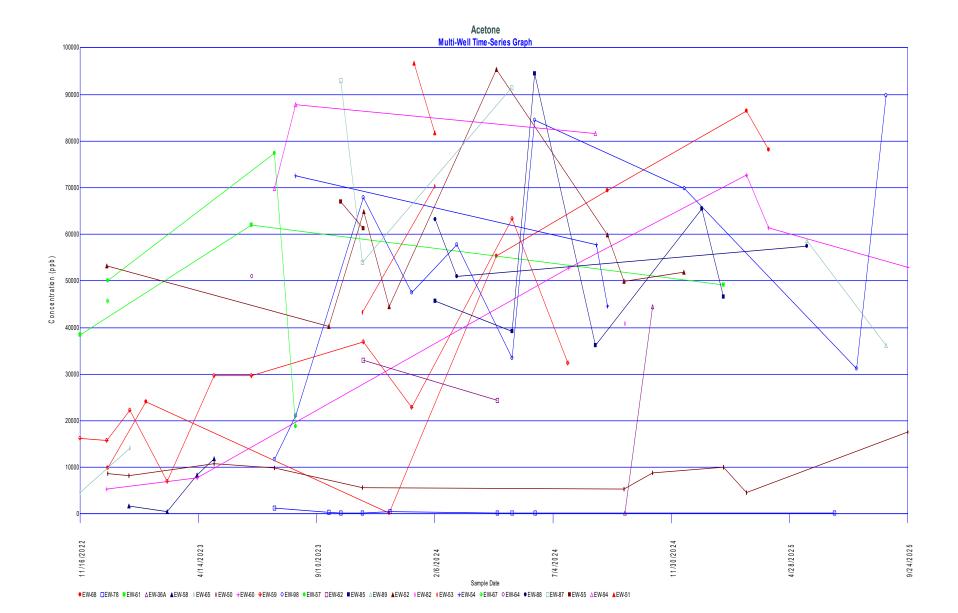
	II ID	F147 O 7 A	F147 F0	F14/ F3	FW 50	FW 50	F14/ F.4	F147 F.F	F14/ F7	5147 EQ	F14/ F0	F14/ 40	F14/ / 5	F14/ 40	F14/ / 4	F14/ 4 F	F144 4 7	F14/ 40	F14/ 70	FW 00	FW 05	5W 07	F14/ 00	FW 00	FW 04	F14/ 00		
	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event			1										Concentration	<u>1</u>												_	
	November-2022										ND		214			32.8											5	10
	December-2022		122		175				195		ND	113					113	48.3									5	10
	January-2023		122							8 J	139					35.3											5	10
	February-2023																	224									5	10
	March-2023									182	98.1																5	10
	April-2023									303		94.4															5	10
	May-2023		258							371	239																25	50
											165																10	20
	June-2023												67		212												25	50
																										965	5	10
	July-2023		248																107								10	20
	301, 2020								218																118		25	50
																										36.6	10	20
	August-2023						105		ND																ND		25	50
																			40.6								10	20
	September-2023				ND																						125	250
	0 1 1 0000																		59.2								2.5	5
	October-2023							37 J														235					25	50
			47.3											50.4													2.5	5
	November 2022																		48.7								5	10
	November-2023					62.5		51.5			114											167				114	25	50
					ND																						125	250
	December-2023																	73.2									10	20
					83.5														74.5								25	50
	January-2024			95.5							60															310	25	50
Toluene	February-2024			49 J		37 J															ND		30.5 J				25	50
	March-2024																						73			916	25	50
	April-2024													90.1					ND								5	10
	, ,				104													263									25	50
	May-2024																		53.8								10	20
	1VIGY 2024										180										ND	62.5				284	25	50
	June-2024																		34.6								10	20
																					ND					228	25	50
	July-2024										97	125															25	50
	August-2024						35 J														ND				25 J		25	50
	September-2024				80		63.5											226									25	50
	Optobor 2004	55.7	170																								0.5	<u> </u>
	October-2024		173																	70							2.5	5
	November-2024	44.6	245		65.5															72							25 10	50 20
	December-2024				42 J																					288	25	50
																					2/ 1							
	January-2025																				36 J						25	50
	February-2025		271																		 EA E						10	20
	1 6DIOGIY-2023												537000								54.5						25 24500	50 24500
	March-2025		90.5									150						166									25	50
	April-2025		70.5									51						114									25	50
	May-2025																						ND	ND			25	50
	June-2025																		40.2								10	20
	July-2025																									118	25	50
	August-2025																							ND		131	25	50
	September-2025		150									ND															50	100
	00p10111001 2020		130									עאו															50	100

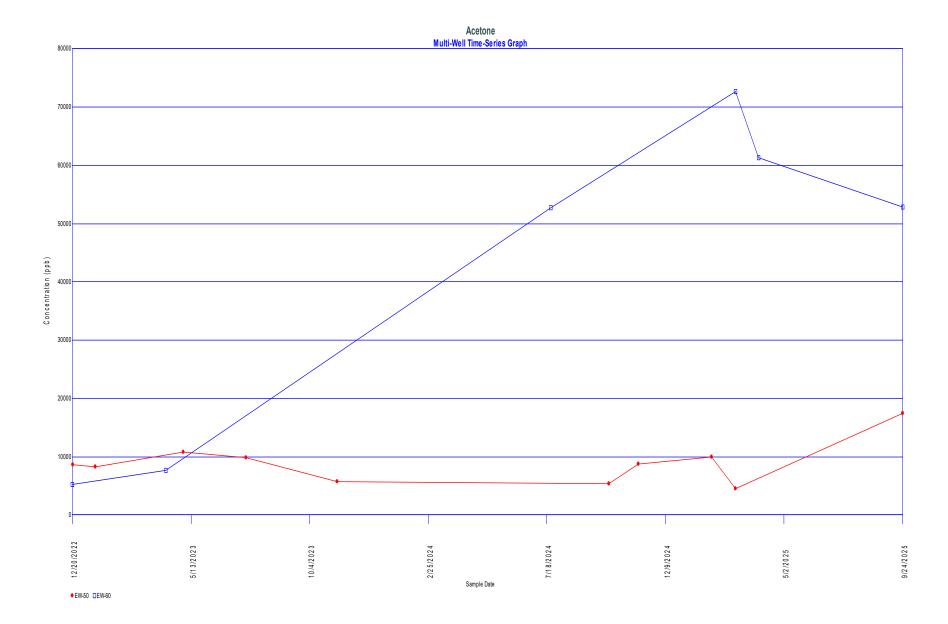
Part	W	-II ID	FM 2/4	FW 50	F\W 51	FW 50	FW 52	F\4/ F.4	F\4/ F.F	F\4/ F7	FW 50	FW 50	FW 40	FM / 1	FW 40	FW / 4	F)4/ / F	F14/ / 7	F)4/ / O	FW 70	FW 00	FW 05	FW 07	FW 00	F)4/ 00	FW 04	F)4/ 00		
March Marc			EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Processes 19	Parameter				1			1							oncentration	1			I		1	1	I						
March 1986														185			37.8												
March Marc						222				186			112					197	59.9										
West-Field				138							ND	134					38.1												
Marchine Service Servi																			240										
May		March-2023									240	111																10	30
Markey Barkey Ba		April-2023									329		97.4															10	30
A		May-2023		274							441	230																50	150
		l 2002										177																20	60
Application		June-2023												92 J		136 J												50	150
Application																											1130	10	30
May		July-2023		257																74.4								20	
Agentical part of the control of the		, i								230																174			
Selection 27.23																											48.4 J		
September 2023 10		August-2023						180		ND																ND			
September 1968 September 1969 Sept		Comtomobar 2002																		ND									
Colonia 202		September-2023				ND																						250	
Niens: ictal		Octobor 2023																		30.6								5	
No ember 2025		OCTODET-2023							134 J														328					50	150
Note: left				56											48													5	15
No.		November-2023																		25.3 J									
December 2023		110101111111111111111111111111111111111					116 J		104 J			132 J											306				138 J		
Note						ND																							
Agency A		December-2023																	167										
February 2024 -																				ND									
Moder 2024					-																								
April 2004 May 2012 May 2012 May 2014 May 2015 May 2014 May	Xylenes, Total																												
May-2004		March-2024																											
Moy 2024		April-2024																											
Moy-7074																													
August 20024 .		May-2024																		31.6 J								20	
Superstand Sup												223										ND	105 J				400		_
July 2024		June-2024																											
August-2024		1, 1, 2004																											
September-2024							+														 								
S4.3								1																					
Cotober-2024 Coto		3CP1C111DC1-2024																										1	3
November 2024 ND 223		October-2024																										5	15
November-2024 ND 223		0 010001 202 1																										50	
December-2024		November-2024	ND	223																									
January-2025 50 150						98.5 J																					487		
February-2025																						82 J							
February-2025		00.100.17 2020					+																						
March-2025 108 J -		February-2025																				354							
March-2025 108 J		'												4260000															
April-2025 50 150 May-2025 50 150 June-2025 50 150 July-2025 50 150 August-2025 50 150 August-2025 20 60 August-2025 <th< td=""><td></td><td>March-2025</td><td></td><td>108 J</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>386</td><td></td><td></td><td></td><td></td><td></td><td>200</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		March-2025		108 J									386						200										
June-2025 29.6 J 20 60 July-2025 20 60 July-2025 20 60 August-2025																			 										
July-2025																								ND	ND			50	150
August-2025 ND 458 50 150		June-2025																		29.6 J								20	60
		July-2025																									280	50	150
September-2025 163 J ND		August-2025																							ND		458	50	150
		September-2025		163 J									ND															100	300

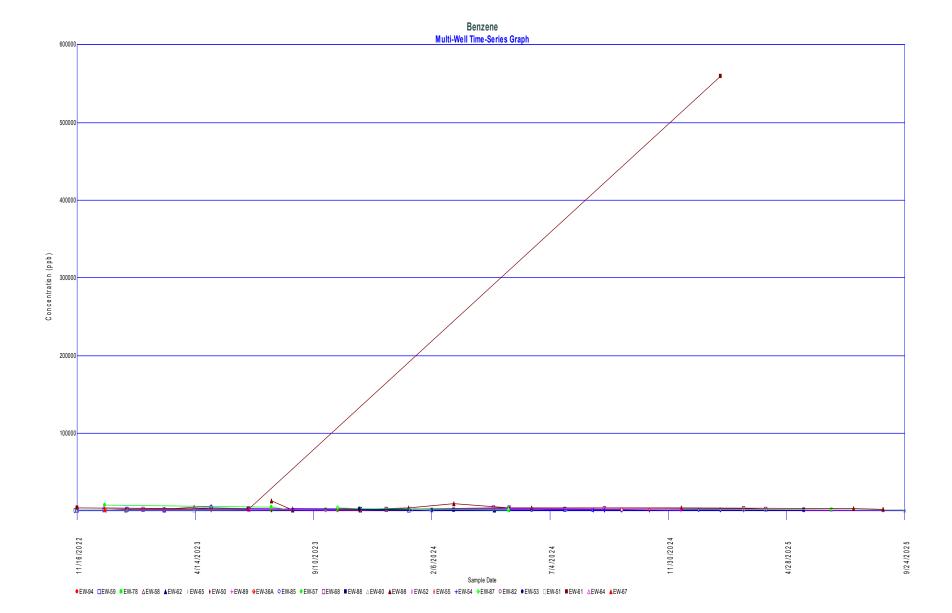
--- = not applicable/available

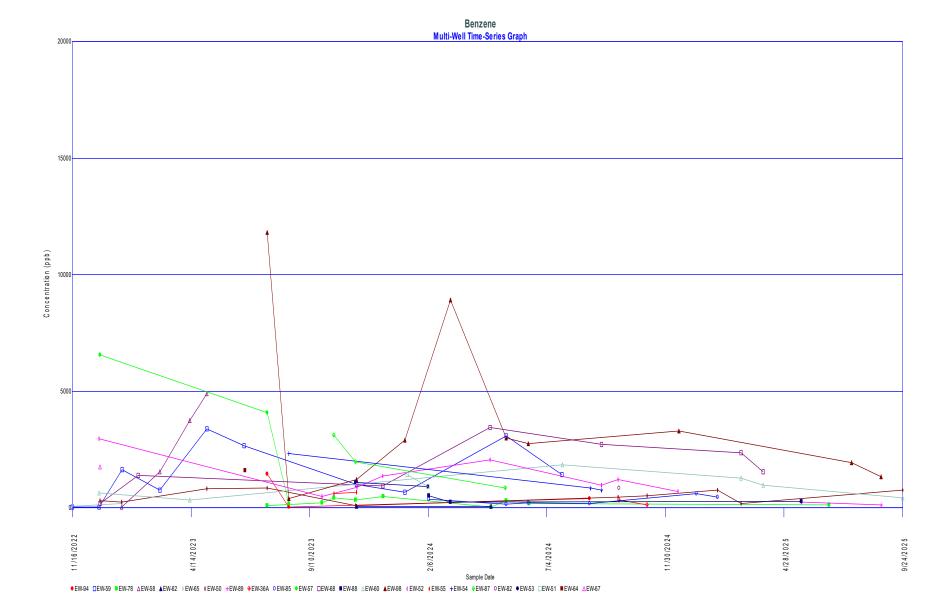

J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.

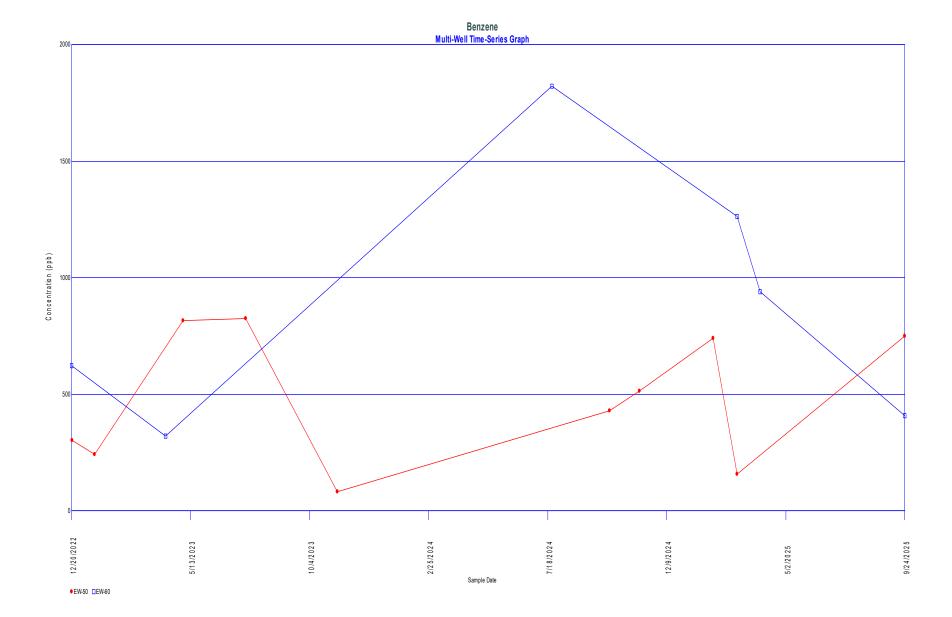

LOD = laboratory's Limit of Detection

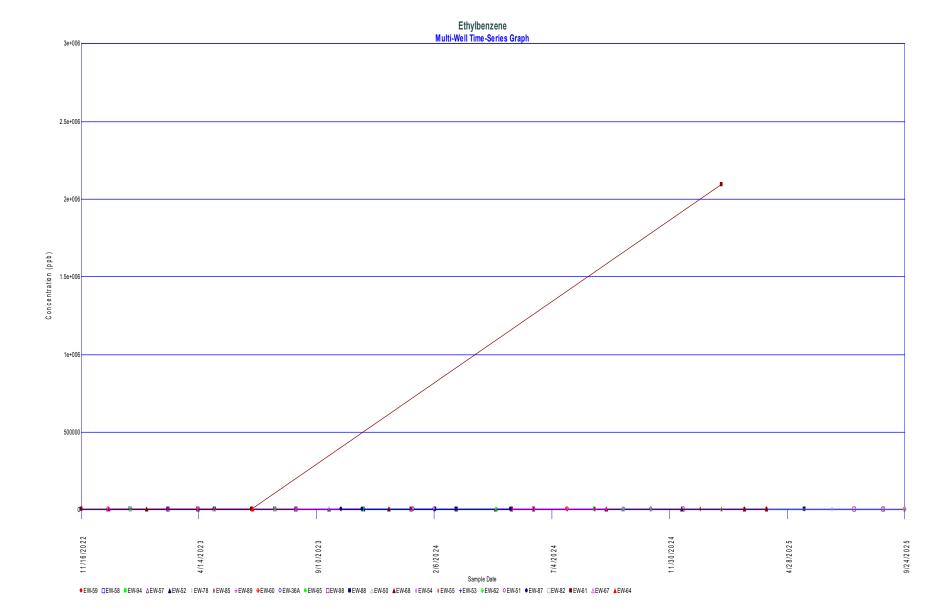

LOQ = laboratory's Limit of Quantitation

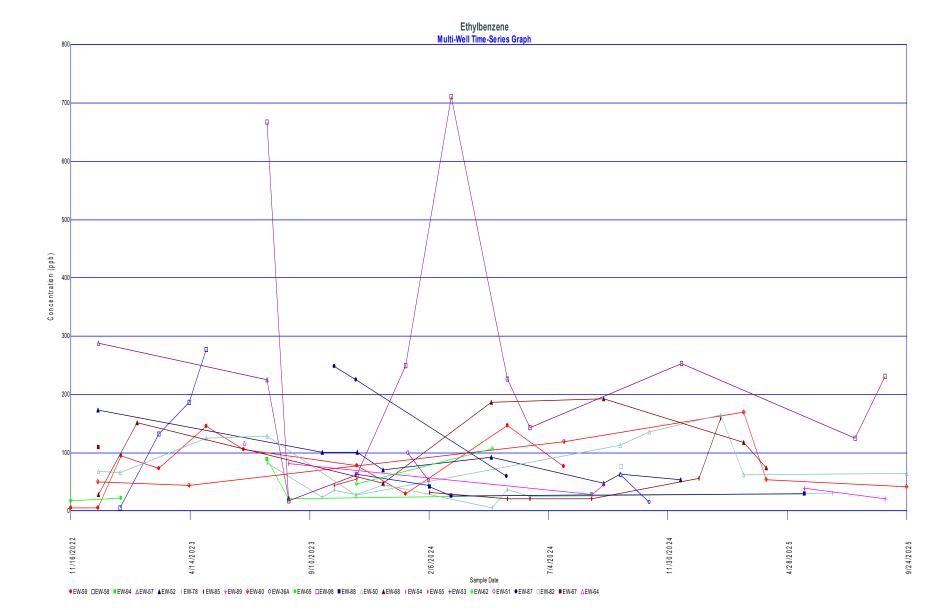

mg/L = milligrams per liter ND = Not Detected

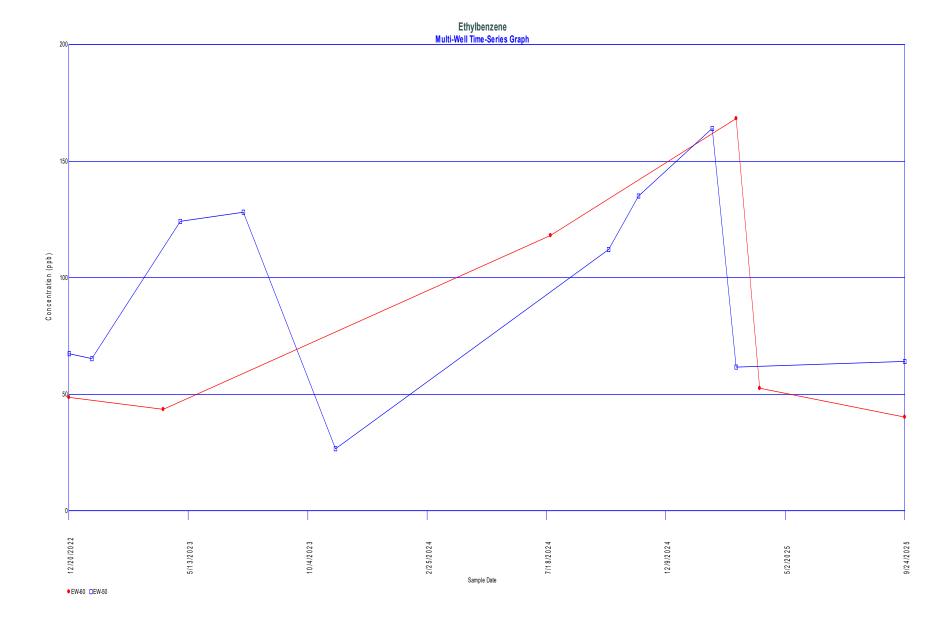

ug/L = micrograms per liter

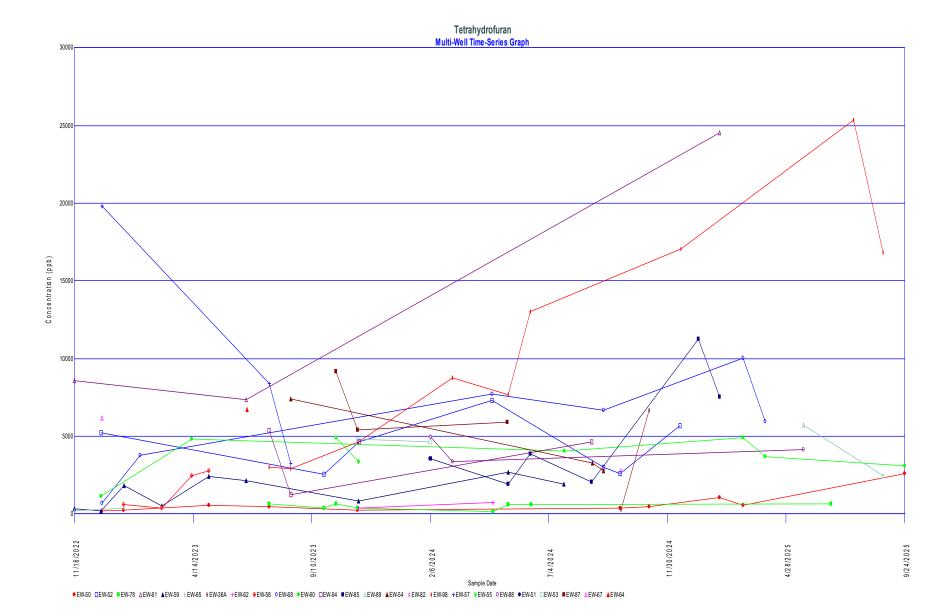


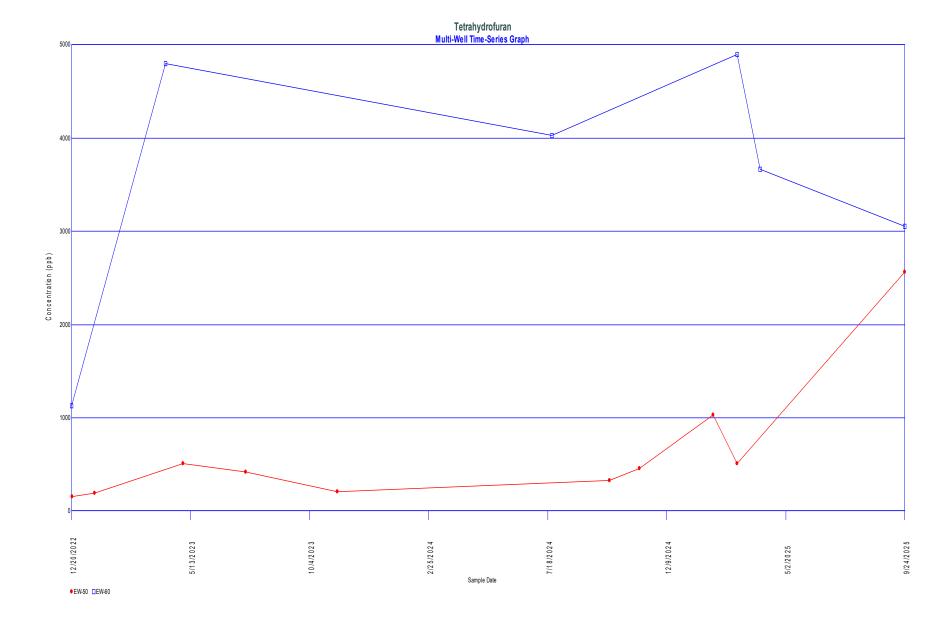


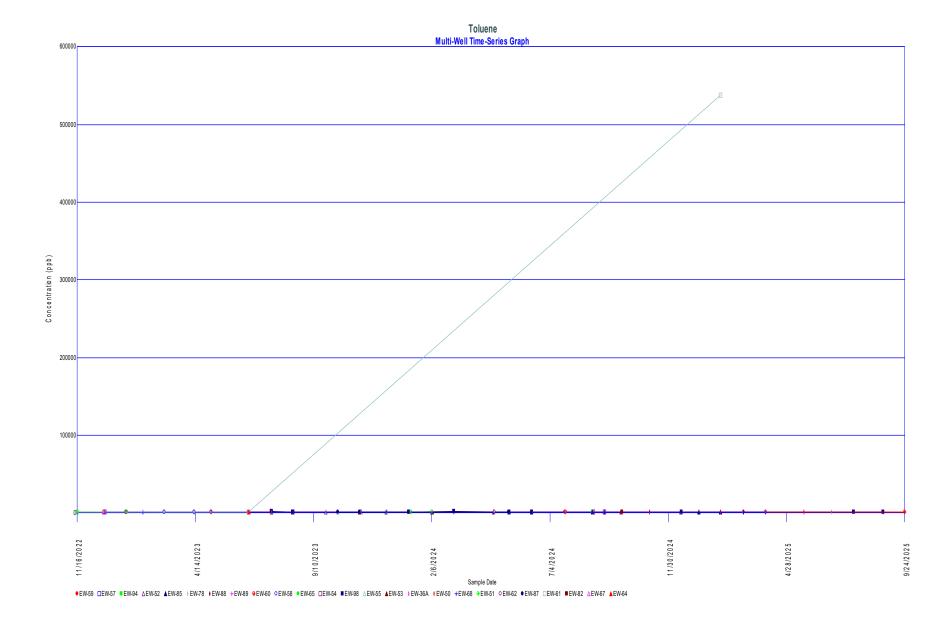


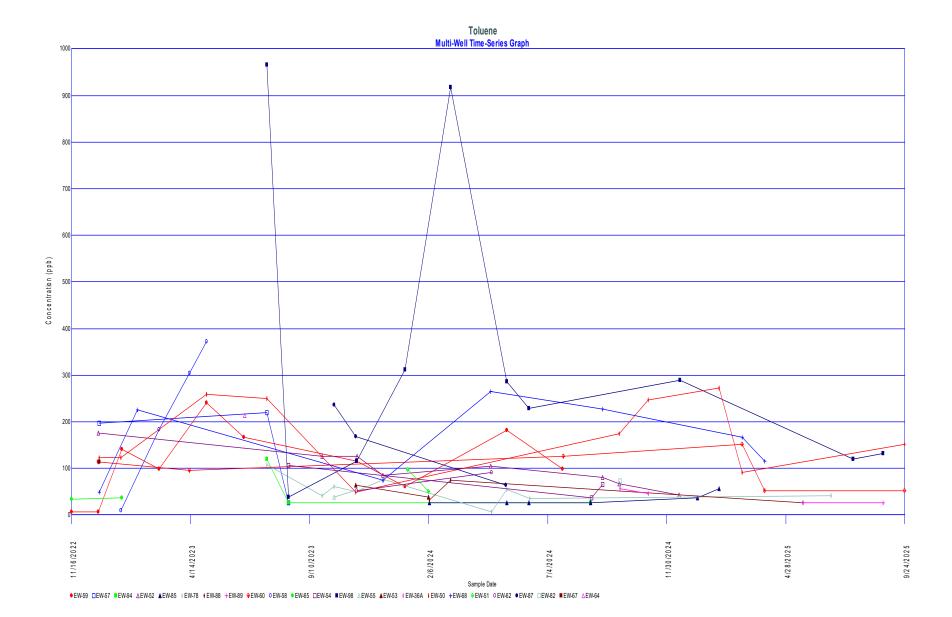


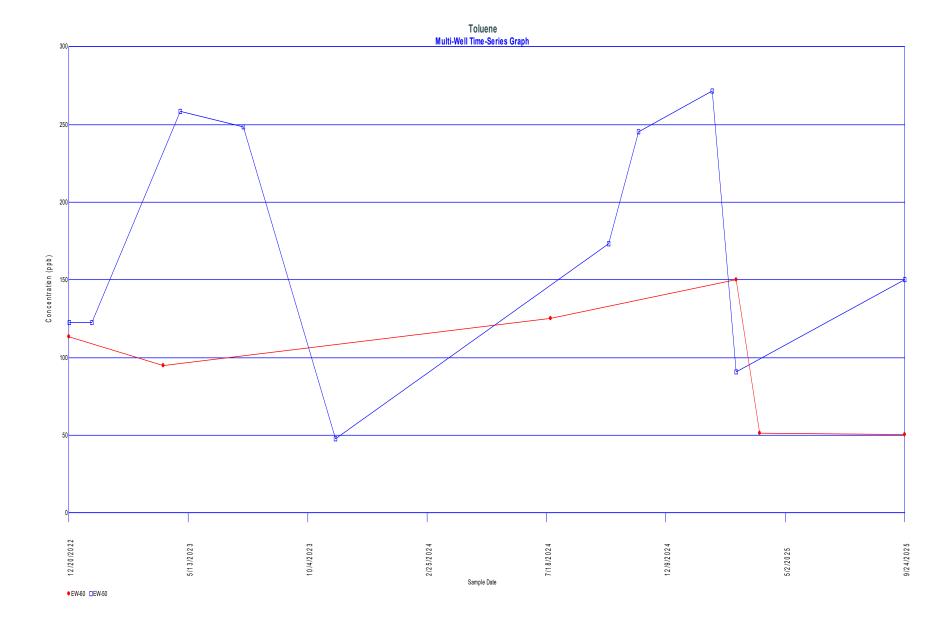


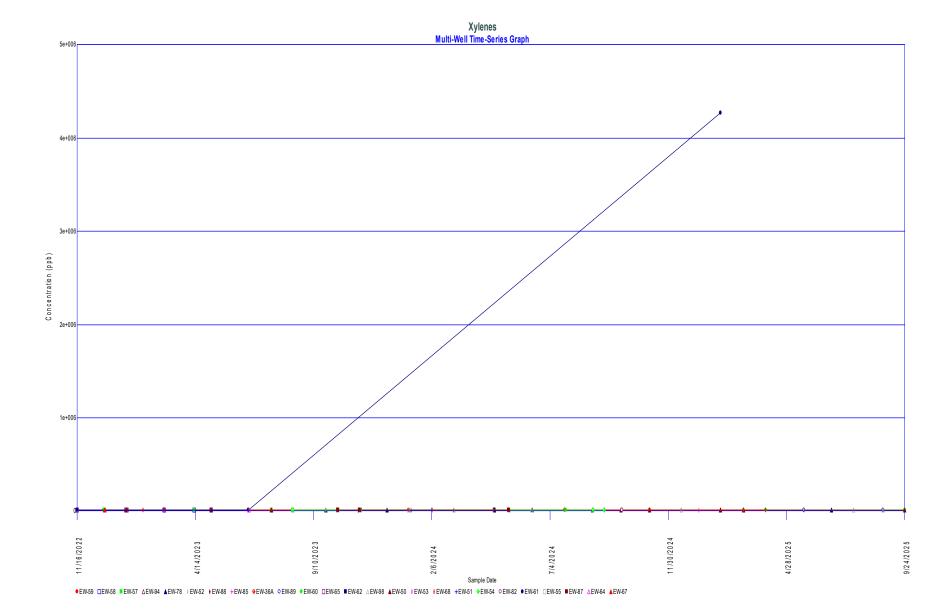


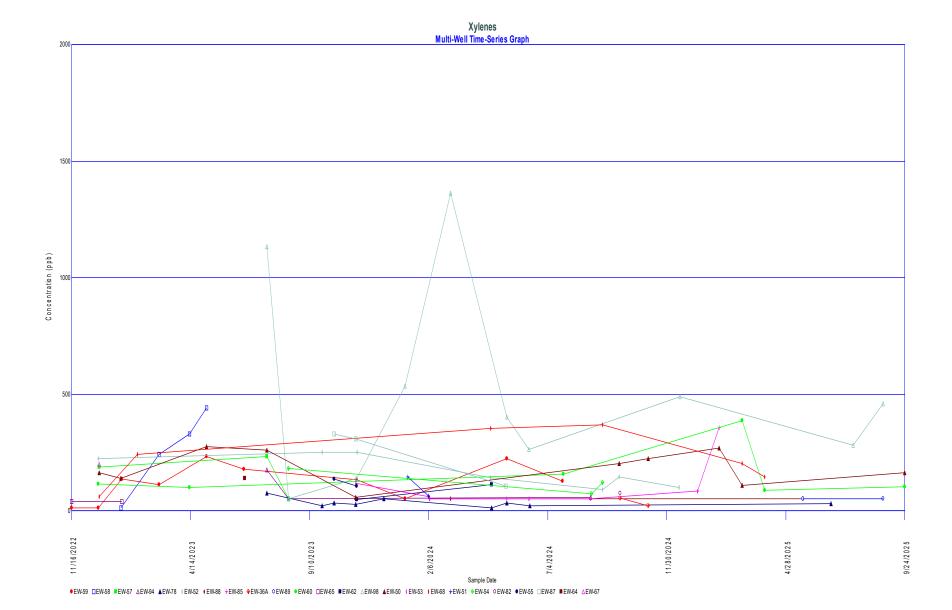


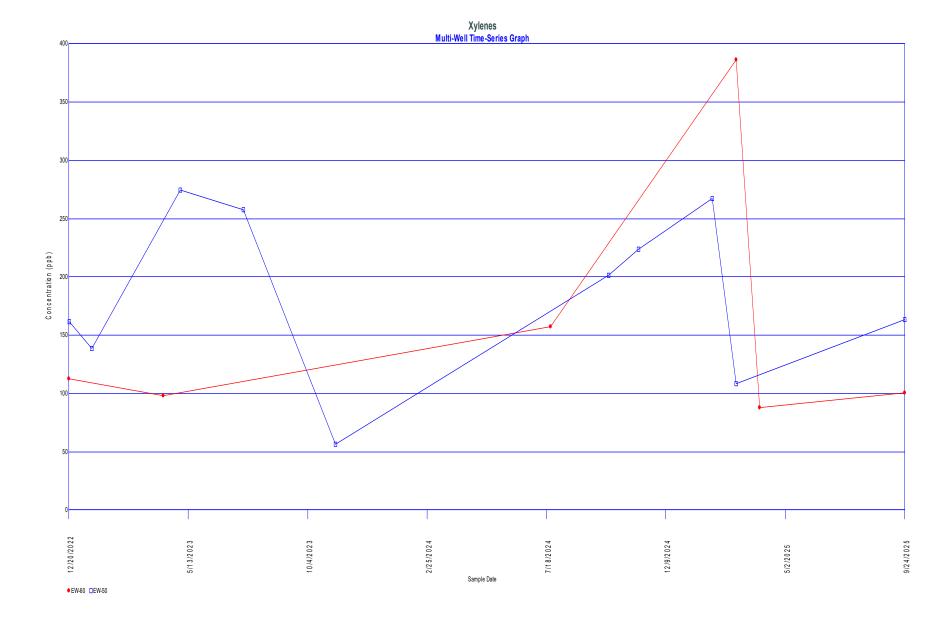

Page 8











Appendix G

LFG Dewatering Pump Stroke Counter Data Analysis

Stroke Counter Data Analysis

During the monthly liquid depth measurement event and during LFG monitoring, SCS collected stroke counter data from the pumps installed in the GCCS extraction wells. These stroke counts were collected from 18 wells from September 30, 2025, to November 3, 2025. The recorded stroke count data from each well during November is included in Table G-1.

Based on the number of strokes in each well, SCS can estimate the number of gallons of liquid pumped from each well to assess pump performance. SCS assumed that each stroke from a float-style pneumatic pump correlates to approximately 0.3 gallons of liquid removed from the well. Blackhawk piston-style pumps remove approximately 0.11 gallons per stroke.

Table G - 1 Summary of Dual Extraction Well Pump Stroke Counter Data

Well	9/30/2025	11/3/2025	# of strokes between measurements	Estimated liquid removed (gallons)
EW33B			-	0
EW36A			-	0
EW49	79565	94293	14,728	4,418
EW50	1674597	1705753	31,156	9,347
EW52	1239179	1239179	-	0
EW53			-	0
EW55	73387	73387	-	0
EW59	3684734	3757362	72,628	21,788
EW60	346781	362366	15,585	4,676
EW61	190785	204673	13,888	4,166
EW62			-	0
EW65	150120	153307	3,187	956
EW66	39058	39058	-	0
EW67			-	0
EW68	2662095	2662095	-	0
EW76			-	0
EW78	237340	269193	31,853	3,568
EW82			-	0
EW85	351154	353661	2,507	281
EW87	340749	340749	-	0
EW88	467313	470085	2,772	310
EW89	506736	609883	103,147	30,944
EW93	1409957	1409957	-	0
EW94	1905705	1932974	27,269	3,054
EW98	2648042	2674390	26,348	7,904
TP-4	27632	27655	23	7
Total Estimated Liquid Removal				91,420