September 2025 Monthly Compliance Report

Solid Waste Permit No. 588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-44 | October 10, 2025

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sec	tion			Page
	Intro	duction		4
1.0	Gas	Collectio	on	4
	1.1	Surface	e and Leachate Collection Emissions	4
		1.1.1	Surface Emissions	4
		1.1.2	Monitoring of Leachate Collection Components	5
	1.2	Existing	g Gas Extraction System Performance	6
	1.3	Remote	e Monitoring System	7
		1.3.1	Automated Wellhead Temperature Measurements	7
		1.3.2	Comparison with Manual Temperature Measurements	9
		1.3.3	Monthly Regulatory Wellhead Temperature Measurements	10
		1.3.4	LFG Sampling	10
2.0	Side	wall Odo	or Mitigation	11
	2.1	Perime	eter Gas Collection System	11
	2.2	Sidewa	all Odor Mitigation System	11
	2.3	Pilot Sy	ystem Construction	11
	2.4	Full Sys	stem Construction	12
3.0	Was	te Temp	erature Monitoring	12
	3.1	Summa	ary of Waste Temperature Monitoring	12
		3.1.1	Operational Challenges	14
		3.1.2	Temperature Profiles	14
4.0	Lead	hate Ext	traction and Monitoring	21
	4.1	Dewate	ering Pump Operations and Maintenance	21
		4.1.1	Total LFG Liquids Removal	21
		4.1.2	LFG Liquids Pump Operations and Maintenance	21
	4.2	Sampli	ing and Analysis Plan	23
		4.2.1	Sample Collection	23
		4.2.2	Quality Assurance and Quality Control	24
		4.2.3	Data Validation	25
		4.2.4	Laboratory Analytical Results	25
5.0	Settl	ement N	Nonitoring and Management	27
	5.1	Settlen	nent Monitoring and Management Plan	27
	5.2	Monthl	ly Surveys	27
		5.2.1	Topographic Data Collection	27

Table of Contents

Sect	ion	Pa	ge
		5.2.2 Settlement Plate Surveys	32
6.0	Inter	mediate Cover and EVOH Cover System	35
	6.1	Intermediate Cover Installation	35
	6.2	EVOH Cover System Design	35
	6.3	EVOH Cover System Procurement	
	6.4	EVOH Cover System Installation	36
7.0	Storn	nwater Management	
8.0	Misc	ellaneous	36
	8.1	Cease Waste Acceptance	36
	8.2	Long-Term Plan	
	8.3	Monthly Compliance Reports	
	8.4	Community Outreach Program	
		Stroke Counter Data Analysis	
		Figures	
Figur	e 1.	Monthly Average Automated Wellhead Temperatures	8
Figur		Automated vs. Manual Temperature Measurements	
Figur Figur		CO vs H ₂ Concentration from gas wells in September 2025 with historical trend Temperature Monitoring Probe Locations	
Figur		TP-1 Average Temperatures for the Months of March 2023, March 2024, March 202 August 2025, and September 2025	25,
Figur	e 6.	TP-5 Average Temperatures for the Months of March 2023, April 2024, March 2025	
	_	August 2025, and September 2025	
Figur	e /.	TP-6 Average Temperatures for the Months of March 2023, March 2024, March 202 August 2025, and September 2025	
Figur	e 8.	TP-7 Average Temperatures for the Months of March 2023, March 2024, March 202	
F:	- 0	August 2025, and September 2025	18
Figur	e 9.	TP-8 Average Temperatures for the Months of March 2023, March 2024, March 202 August 2025, and September 2025	19, 19
Figur	e 10.	TP-9 Average Temperatures for the Months of March 2023, March 2024, March 202	25,
Figur	o 11	August 2025, and September 2025	
Figur Figur		Total Dewatering Liquid Removal	
Figur		1-Month Elevation Change Map	
Figur		3-Month Elevation Change Map	
Figur		1-Year Elevation Change Map	
Figur		Settlement Plate Locations	
Figur		Elevation Change of Select Settlement Plates Over Time	

Table of Contents

Section		Page
	Tables	
Table 1.	Summary of September Surface Emissions Monitoring	
Table 2.	Leachate Cleanout Pipe Monitoring Results	5
Table 3. Table 4.	September Temperature Exceedance Summary	
Table 4.	LFG Wellhead Sampling Summary Average SOMS Gas Composition	
Table 6.	Summary Wells Unable to be Sampled for Leachate	
Table 7.	Quality Control Blank Detection Summary	
Table 8.	Monthly LFG-EW Leachate Monitoring Event Summary	
Table 9.	Elevation and Strain Data at Settlement Plate Locations	34
Appendic	ces	
Appendix A	Surface Emissions Monitoring Summary	
Appendix B	In-Waste Temperatures on Select Days in September	
Appendix C	Daily Wellhead Temperature Averages	
Appendix D	Solid Waste Permit 588 Daily Borehole Temperature Averages	
Appendix E Appendix F	Monthly Topography Analysis Field Logs	
• •		
Appendix G	LFG Dewatering Pump Stroke Data Analysis	

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with Item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report provides updates regarding the progress towards completion of the items outlined in Appendix A of the Consent Decree between the City and VDEQ. The following sections outline progress during the month of September 2025 related to Solid Waste Permit (SWP) No. 588.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

SCS performed surface emissions monitoring on September 5, 2025; September 12, 2025; September 19, 2025; and September 26, 2025. These weekly surface emissions monitoring (SEM) events were performed in accordance with Item 1.i in Appendix A of the Consent Decree between the City and VDEQ. SCS also performs quarterly SEM at the landfill in accordance with regulatory requirements.

The details and results of the SEM are included in Appendix A. A summary of the outcomes is provided in Table 1.

Table 1. Summary of September Surface Emissions Monitoring

Description	September 5, 2025	September 12, 2025	September 19, 2025	September 26, 2025
Number of Points Sampled	166	166	165	166
Number of Points in Serpentine Route	100	100	99	100
Number of Points at Surface Cover Penetrations	66	66	66	66
Number of Exceedances	10	4	3	2
Number of Serpentine Exceedances	0	0	0	0
Number of Pipe Penetration Exceedances	10	4	3	2

In response to the SEM results, the City and the City's operations, monitoring, and maintenance contractor, SCS Field Services O&M (SCS-FS or SCS-FS) took the following actions or noted the following observations:

- An initial pipe penetration exceedance was recorded at EW-87. Monitoring of this well
 during a follow-up event did not result in an exceedance.
- An initial pipe penetration exceedance was recorded at EW-86. Monitoring of this well during a follow-up event did not result in an exceedance.
- An initial pipe penetration exceedance was recorded at EW-91. Monitoring of this well during a follow-up event did not result in an exceedance.
- An initial pipe penetration exceedance was recorded at EW-57. Monitoring of this well during a follow-up event did not result in an exceedance.
- In response to an initial pipe penetration exceedance at EW-52, SCS-FS performed field investigations and identified low available vacuum at EW-52. SCS-FS plans to conduct further field investigations on the low available vacuum during the week of October 13, 2025.
- In response to an initial pipe penetration exceedance at TP-7, SCS-FS performed field investigations and identified low available vacuum at adjacent wells EW-49 and EW-50. SCS-FS plans to conduct further field investigations on the low available vacuum during the week of October 13, 2025.
- In response to an on-going pipe penetration exceedance at EW-49, SCS-FS installed a
 new lateral vacuum supply line which increased the available vacuum supply at EW-49.
 Monitoring of this well during a follow-up event did not result in an exceedance.
- Pipe penetration exceedances were previously recorded at EW-60, EW-67, EW-76, and EW-95. Monitoring of these wells during a follow-up event did not result in an exceedance.

1.1.2 Monitoring of Leachate Collection Components

SCS Field Services (SCS-FS) visited the Bristol Landfill on September 2, 2025, and performed monitoring of the leachate, witness zone, northern cleanouts, and gradient control clean-outs at the southern end of the landfill. The results of that monitoring are included in Table 2.

Table 2. Leachate Cleanout Pipe Monitoring Results

Description	ID#	Record Date	CH4 (% by Vol)	CO2 (% by Vol)	O2 (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H2O)	Adj Static Pressure (in H2O)	System Pressure (in H2O)
Southern Cleanouts Gradient West	LC01	9/2/2025 10:23:17 AM	41.6	36.4	0.0	22.0	69.0	69.0	-10.22	-9.76	-13.21
Southern Cleanouts Gradient East	LC02	9/2/2025 10:26:11 AM	21.3	32.5	0.0	46.3	66.5	66.7	-9.85	-9.91	-12.58
Southern Cleanouts Leachate Center	LC03	9/2/2025 10:28:53 AM	5.6	6.6	17.1	70.7	66.8	66.5	-11.86	-11.69	-11.71

Description	ID#	Record Date	CH4 (% by Vol)	CO2 (% by Vol)	O2 (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H2O)	Adj Static Pressure (in H2O)	System Pressure (in H2O)
Southern Cleanouts Witness East	LC04	9/2/2025 10:31:06 AM	2.7	1.2	19.7	76.4	67.8	67.9	-7.40	-7.40	-12.08
Southern Cleanouts Leachate West	LC05	9/2/2025 10:46:41 AM	15.6	27.3	0.0	57.1	70.5	71.0	-10.25	-10.13	-12.75
Southern Cleanouts Gradient Center West	LC06	9/2/2025 10:43:41 AM	65.7	29.5	0.6	4.2	73.7	74.2	-12.05	-11.66	-13.24
Southern Cleanouts Leachate East	LC08	9/2/2025 10:34:31 AM	18.6	28.6	0.0	52.8	65.3	64.5	-10.06	-9.72	-13.22
Southern Cleanouts Gradient Center East	LC09	9/2/2025 10:40:35 AM	27.5	26.0	3.1	43.4	75.4	76.1	-12.11	-11.96	-12.47
Southern Cleanouts Leachate West	LC10	9/2/2025 10:37:38 AM	13.4	10.6	15.8	60.3	72.8	74.0	-10.74	-10.77	-12.86
Northern Cleanouts Leachate East	NC01	9/2/2025 9:58:02 AM	0.1	0.1	20.9	79.0	68.4	68.0	-6.73	-6.73	-0.27
Northern Cleanouts Leachate Center	NC02	9/2/2025 9:59:54 AM	0.1	0.0	20.9	79.0	66.3	66.2	-6.73	-6.73	-0.01
Northern Cleanouts Leachate West	NC03	9/2/2025 10:01:23 AM	0.1	0.0	21.0	78.9	66.0	66.0	-6.73	-6.73	0.03
Northern Cleanouts Witness East	NC04	9/2/2025 10:03:58 AM	0.0	0.0	21.1	78.9	66.1	66.0	-6.73	-6.73	0.01
Northern Cleanouts Witness Center	NC05	9/2/2025 10:06:01 AM	0.0	0.0	21.1	78.8	66.2	66.2	-6.73	-6.73	0.04
Northern Cleanouts Witness West	NC06	9/2/2025 10:08:08 AM	0.0	0.0	21.2	78.8	66.3	66.4	-6.67	-6.69	0.02
Northern Cleanouts Gradient East	NC07	9/2/2025 10:09:58 AM	0.0	0.0	21.1	78.8	66.4	66.5	-8.84	-8.87	0.04
Northern Cleanouts Gradient Center East	NC08	9/2/2025 10:11:49 AM	0.0	0.0	21.2	78.8	66.6	66.6	-8.76	-8.76	-0.05
Northern Cleanouts Gradient Center West	NC09	9/2/2025 10:13:46 AM	0.0	0.0	21.2	78.8	66.7	66.8	-6.61	-6.62	0.02
Northern Cleanouts Gradient West	NC10	9/2/2025 10:15:29 AM	0.2	0.0	21.1	78.7	66.9	66.9	-8.39	-8.39	-0.11

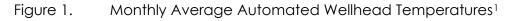
1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

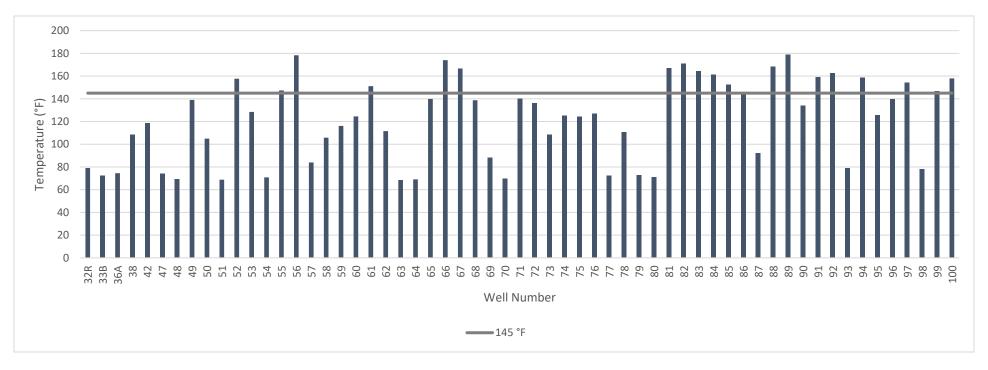
SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in the following sections of this report.

Additional actions taken by SCS-FS include the following:

- Adjustments to LFGCCS
- Maintenance of air lines and pressurized air infrastructure
- Maintenance of wellhead and other gas collection infrastructure
- Removal of liquids from landfill gas headers
- Replacement of a section of blocked forcemain
- Temporary relocation of header pipes to facilitate placement of additional soil.

1.3 REMOTE MONITORING SYSTEM


In the Fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas wellheads. The purpose of the sensors is to record and transmit wellhead gas temperatures via cellular connection to a database managed by SCS-RMC. Since the initial installation, some sensors have been relocated and additional sensors have been added to the network. There are currently 59 wellhead temperature sensors operating within the wellfield.


The City is providing the minimum, maximum, and average daily temperature recorded by each sensor to VDEQ on a daily basis via email. Minimum, maximum, and average daily temperatures recorded by the remote monitoring system during the month of September are included in Appendix C. In addition, SCS previously prepared semi-monthly status updates to satisfy the conditions of compliance provision no. 2 of the Environmental Protection Agency (EPA) Region III letter, Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility, dated August 23, 2021. On August 2, 2023, VDEQ requested that such updates be included in the monthly compliance reports. Accordingly, this section is a summary of temperature monitoring activities during the monthly monitoring period of September 2025.

1.3.1 Automated Wellhead Temperature Measurements

SCS reviewed the automated hourly temperature measurements from September 2025, and observed the following:

- The average temperature in August was above the regulatory threshold of 145°F at 19 wells (see Figure 1).
- The highest average temperature was 178.6°F at EW-89. Temperatures at EW-89 are being monitored closely, and SCS-FS has prioritized pump maintenance at this well to remove liquids (and associated heat) at this well. Per the stroke counter data documented in Table G-1, the pump in EW-89 was the fifth most productive in the wellfield in September 2025.

 $^{^{\}rm 1}\,145\,^{\circ}\text{F}$ is the NESHAP AAAA compliance threshold for well temperature, included here for reference.

1.3.2 Comparison with Manual Temperature Measurements

Per the approval issued by VDEQ on August 2, 2023, the Facility ceased dedicated daily manual temperature measurements in the Permit No. 588 Landfill. In lieu of these measurements, the City compares instantaneous hourly automated temperature measurements with temperatures measured at each wellhead using a handheld sensor during monthly compliance monitoring. These comparisons are shown in Figure 2, with the $\pm 8\,^{\circ}$ F deviation thresholds as prescribed in the VDEQ approval.

Temperatures outside the ±8°F deviation threshold were observed at two wells during this reporting period: EW-57 and EW-82. At EW-57, the recorded manual temperature was higher than the automated temperature. At EW-82, the recorded automated temperature was higher than the manual temperature. Low gas flow is one potential cause of higher automated temperature than manual temperature, and flow could not be recorded during the measurement of EW-82 due to the configuration of the stainless-steel wellhead. At both wells, the temperatures were very close to the threshold, a difference of 8.6°F at EW-57 and 10.0°F at EW-82. Further investigation may be merited if these discrepancies worsen.

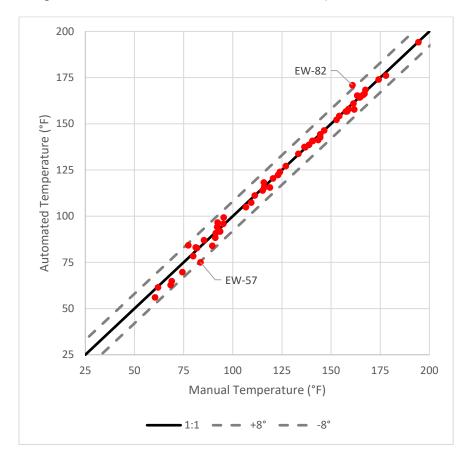


Figure 2. Automated vs. Manual Temperature Measurements

1.3.3 Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring was conducted on September 9 and September 22, 2025 to comply with 40 CFR 60.36f(a)(5). Table 3 provides the status of exceedances recorded during this monitoring period.

Well ID	Initial Exceedance Date	Compliant Reading	Most Recent Reading	Duration of Exceedance	Status as of 10/1/2025
EW-49	8/11/25	9/9/25 156.6°F	9/22/25 162.3°F	30 days	Resolved within 60- day timeline
EW-49	9/11/25	9/15/25 164.9°F	9/22/25 162.3°F	5 days	Resolved within 15- day timeline
EW-56	5/29/25	N/A	9/25/25 181.9°F	126 days	Ongoing, beyond 120- day timeline
EW-60	9/22/25	N/A	9/25/25 170.0°F	10 days	Ongoing, within 15-day timeline
EW-66	7/28/25	N/A	9/25/25 176.6°F	66 days	Ongoing, within 120- day timeline
EW-92	6/3/25	N/A	9/25/25 173.4°F	121 days	Ongoing, beyond 120- day timeline

Table 3. September Temperature Exceedance Summary

1.3.4 LFG Sampling

SCS collected weekly LFG samples from wells with temperature exceedances lasting more than seven days using 1.5-L summa canisters. The samples were sent to Enthalpy Analytical for laboratory analysis of carbon monoxide (CO) and hydrogen (H₂) content. As of October 1, 2025, the City has received lab results for sampling on August 21, August 27, September 4, September 11, and September 15, 2025 to fulfill the requirement in 40 CFR 63.1961(a)(5). The lab data are summarized in Table 4.

Sample Date		8/21/25	8/27/25	9/4/25	9/11/25	9/15/25
EW-49	CO (ppmv)	161	181	258		
EVV-49	H2 (Vol. %)	7.21	8.63	14.4		
EW-56	CO (ppmv)	617		589	579	642
EVV-30	H2 (Vol. %)	24.1		22.6	20.3	22.9
EW 66	CO (ppmv)	811	833	779	726	829
EW-66	H2 (Vol. %)	21.2	20.7	19.1	18.4	21.5
EW-92	CO (ppmv)	1360	1350	1330	1240	1320
EVV-92	H2 (Vol. %)	32.1	32.8	34.8	32.5	32.7

Table 4. LFG Wellhead Sampling Summary

As shown in Figure 3, the carbon monoxide and hydrogen data collected during this period appear to be generally consistent with the data collected previously in 2024 and 2025.

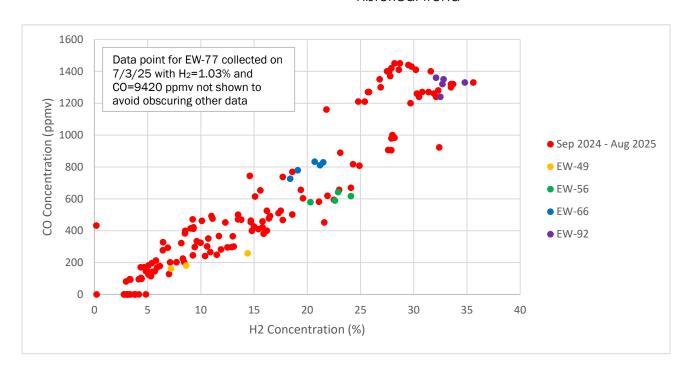


Figure 3. CO vs H₂ Concentration from gas wells in September 2025 with historical trend

2.0 SIDEWALL ODOR MITIGATION

On the City's behalf, SCS designed and constructed a system to control fugitive emissions emanating from the quarry sidewalls.

2.1 PERIMETER GAS COLLECTION SYSTEM

Refer to the April 2023 Monthly Compliance Report for the SWP No. 588 Landfill, for information about the perimeter gas extraction wells.

2.2 SIDEWALL ODOR MITIGATION SYSTEM

Refer to the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill, for information about the design of the sidewall odor mitigation system.

2.3 PILOT SYSTEM CONSTRUCTION

Refer to the February 2023 Monthly Compliance Report for the SWP No. 588 Landfill, for information about the design of the construction of the pilot sidewall odor mitigation system.

2.4 FULL SYSTEM CONSTRUCTION

Operation of the sidewall odor mitigation system is monitored on a monthly basis. SCS-FS collected monitoring data at each wellhead under vacuum in September. A summary of system averages during the month is shown in Table 5.

Table 5. Average SOMS Gas Composition

Record Dates	Average CH4 [%]	Average CO ₂ [%]	Average O ₂ [%]	Average Bal Gas [%]	
9/2/2025	5.5	7.7	15.9	70.9	
9/15/2025	4.8	6.9	16.9	71.4	
9/29/2025	5.3	8.4	16.5	69.7	

The sidewall system average gas composition indicates lower methane content and higher oxygen and balance gases than other components in the LFGCCS. These gas composition measurements indicate that the SOMS is collecting a mixture of LFG escaping the sidewall and air. Adjustments to vacuum at each wellhead are made on a regular basis to address changes in sidewall emissions and facilitate placement of additional soil.

3.0 WASTE TEMPERATURE MONITORING

SCS designed a monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

3.1 SUMMARY OF WASTE TEMPERATURE MONITORING

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP No. 588 Landfill. The locations of the temperature probes are shown in Figure 4.

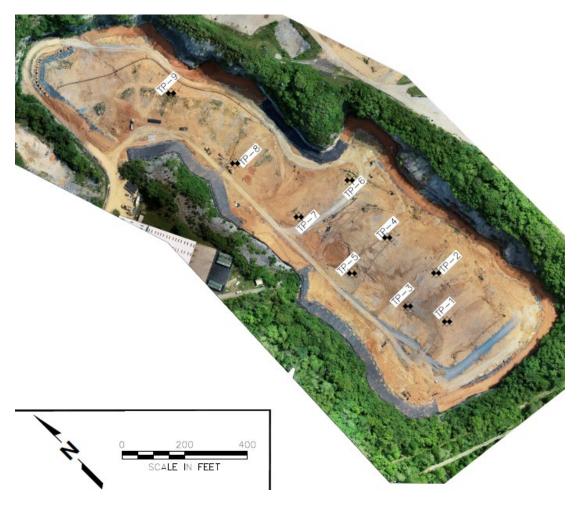


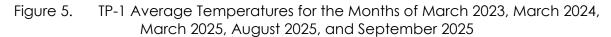
Figure 4. Temperature Monitoring Probe Locations

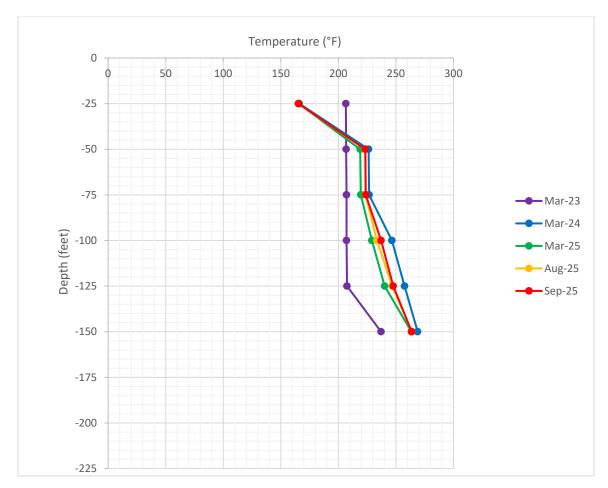
SCS began collecting temperature data daily on February 15, 2023.

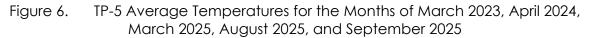
Average daily temperatures recorded by the sensors for the month of September are included in Appendix D. Each week the average temperatures from a select day of that week are downloaded and compared to temperatures recorded during the previous week. Average daily temperatures recorded on select days during the month of September are shown in Appendix B. The average temperatures recorded for March 2023, March 2024, March 2025, August 2025, and September 2025 are shown in Figures 5 through 10 on the following pages.

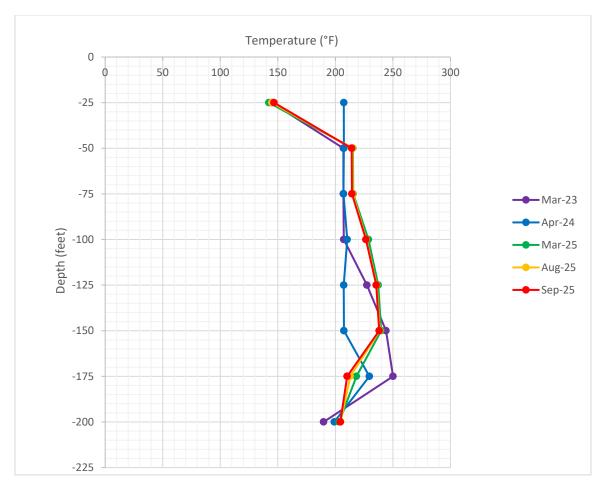
Overall, these data indicate that temperatures within the landfill are generally stable and are typical of those observed at elevated temperature landfills (ETLFs). The temperatures recorded are substantially lower than those associated with landfill fires or other combustion processes, which can exceed 1000°F, which is further evidence that the elevated temperatures are due to sources other than combustion.

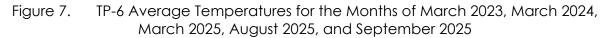
3.1.1 Operational Challenges

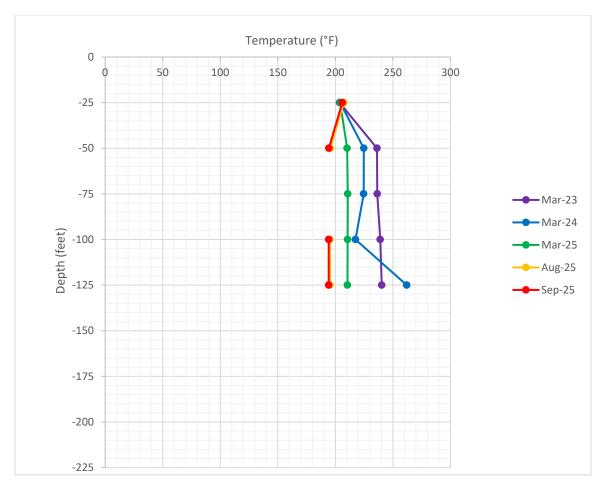
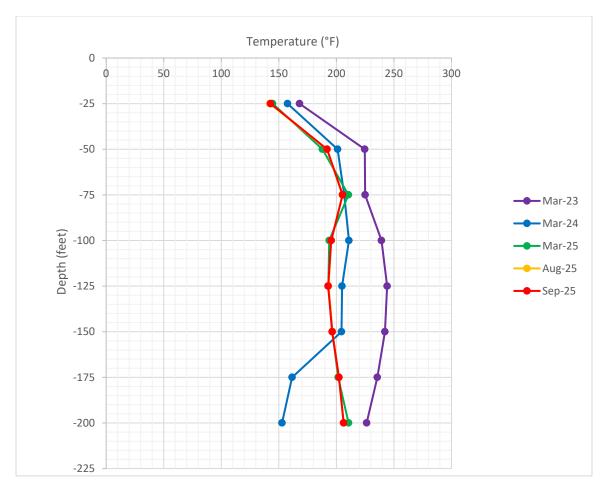
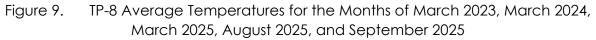
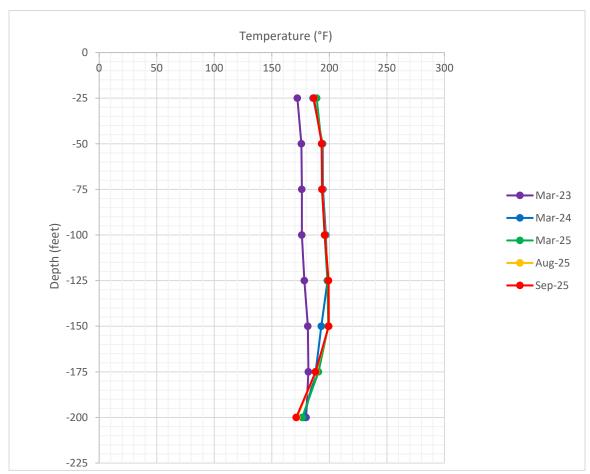
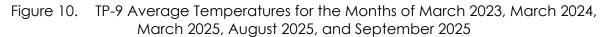

Multiple thermocouples in TP-2 and TP-3 started to fault in late 2024/early 2025. SCS coordinated with the City in March to pull the string of thermocouples from TP-2 and TP-3 but were unable to remove the strings in either probe due to suspected pinching of the casings. TP-2 and TP-3 have been abandoned and a replacement plan is being developed.

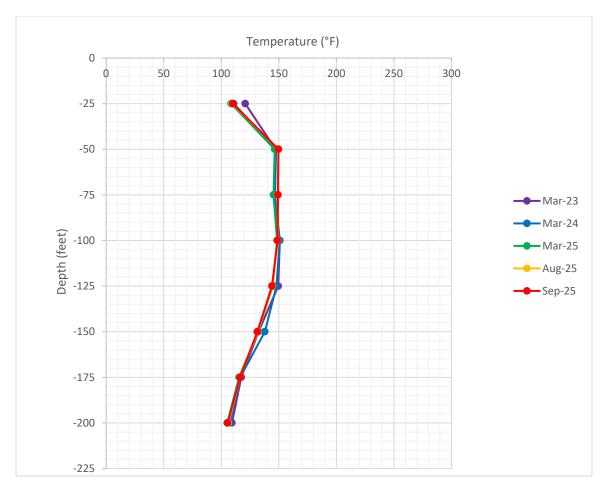

EW-91 and EW-92 were jetted to remove solids that would impede the installation of temperature probes. However, the casing in both wells could not be cleared past 140 feet below surface. Because VDEQ has asked that the replacement probes achieve at least 150 feet in depth, the City is considering other options for replacement.


3.1.2 Temperature Profiles


Temperature profiles for the operational thermocouple strings are shown in Figures 5-10. Temperatures profiles have been consistent throughout 2025, with the temperature profiles generally exhibiting the "belly curve" shape with peak temperatures between 200 and 275°F in TP-1, TP-5, TP-7, and TP-8 and 150°F in TP-9.


The profile at TP-6 is an exception, where temperatures have declined below 200°F in 2025 and outlying temperature measurements have been recorded at 75 ft. Troubleshooting by field staff indicated that the sensor at the 75-foot level is malfunctioning. Given that the majority of the sensors within this casing are still functioning properly, the sensor at 75 ft will not be retrieved to avoid damaging the other sensors within the casing. Data from the 75-foot level of TP-6 has been excluded from this report.


Figure 8. TP-7 Average Temperatures for the Months of March 2023, March 2024, March 2025, August 2025, and September 2025

4.0 LEACHATE EXTRACTION AND MONITORING

The City is continuously taking steps to maintain and improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals. Refer to Appendix G for narrative sections without updates.

4.1 DEWATERING PUMP OPERATIONS AND MAINTENANCE

4.1.1 Total LFG Liquids Removal

Figure 11 illustrates monthly landfill gas liquids removal over the past year. The volume was estimated from stroke counter data for November 2024 through April 2025, and June 2025 through September 2025 (blue bars in Figure 11). A flow meter was used to record the volume in the other months. Over the past 6 months, the estimated monthly leachate pumped has ranged from 74,800 to 237,800 gallons per month, and has averaged 125,100 gallons per month.

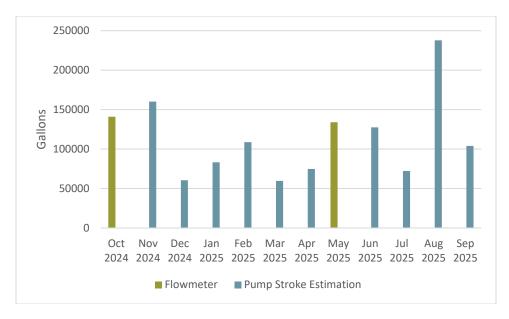


Figure 11. Total Dewatering Liquid Removal

4.1.2 LFG Liquids Pump Operations and Maintenance

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations. Daily pump checks and maintenance of spare pumps will continue indefinitely, along with pump replacements as needed.

Estimated volumes of liquids removed at each pump are presented in **Table G-1**, **Appendix G**. SCS has prepared the summary below regarding operating conditions and specific challenges associated with each pump in September 2025.

Pump Maintenance Activities

• The pump was swapped in EW-50.

- The pump in EW-60 was swapped, and the pump depth was set higher in the well case. The tri-tubing was also replaced.
- The pump in EW-89 was swapped, and the tri-tubing was replaced.
- The pumps in EW-88 and EW-94 were removed, cleaned, and reinstalled, and the tritubing was replaced.
- The pump was removed, cleaned, and reinstalled in TP-4.

Wells with Inactive Pumps

- The pumps in EW-33B and EW-76 are stuck in the well casing and have been disconnected. SCS-FS scheduled to attempt to pull the pumps with a piece of heavy equipment when new QED pumps arrive on site to replace them. These pumps have arrived on-site, and replacement is scheduled for the week of October 14th, weather permitting.
- The casing at EW-49 has been lowered to allow access to the pump.
- SCS-FS intends to replace the Blackhawk pump with a QED in EW-36A, which has also been scheduled for the week of October 14th.
- The pumps in EW-52, EW-53, EW-55, EW-66, and EW-68 are inactive due to excessive pressure buildup in the forcemain line. The LFG construction project currently underway includes modifications to the piping system to alleviate these issues.
- The pump in EW-62 is offline due to a damaged air line. SCS-FS will evaluate the extent of damage and will coordinate with the City to procure materials needed for the repair.
- All pump types deployed in EW-74 and EW-75 have experienced buildup on the intake screens preventing effective pump operation.
- The pumps in EW-51, EW-57, EW-90, and EW-100 are permanently stuck in their wells even after attempts to remove them with heavy equipment. Therefore, they cannot be cleaned and/or repaired.
- The casings of EW-81, EW-83, EW-91, and EW-96 extend too high above the existing ground level for a pump to be safely accessed. These are stainless steel wells that cannot be lowered through conventional means. SCS-FS and the City are coordinating placement of additional soil around the wells to provide safe access.

In addition to the challenges associated with the individual pumps, SCS-FS has generally observed high forcemain pressures and significant build-up of solids within the forcemain. This results in SCS-FS dedicating substantial amounts of time to relieving air pressure on the system. The Harnden Group began a LFG expansion construction project in September, including installation of additional cleanouts and air release valves in the wellfield to address this issue in October 2025.

4.2 SAMPLING AND ANALYSIS PLAN

4.2.1 Sample Collection

On September 24, 2025, SCS collected a leachate sample from Dual Phase LFG extraction wells (EW-50 and EW-60). Field measurements for dissolved oxygen, oxidation-reduction potential, pH, specific conductance, temperature, and turbidity were taken and recorded at the time of sample collection. The associated field logs are included in **Appendix F**. In September 2025, SCS field staff could not collect samples from the wells listed in **Table 6**. Additional details about the condition of these wells and planned maintenance activities are included in Section 4.1.2.

Table 6. Summary Wells Unable to be Sampled for Leachate

Wells With Pumps	Wells Without Pumps
 Pump was not running/cycling at the time of monitoring for the following wells: EW-36A, EW-59, EW-61, EW-65, EW-66, EW-68, EW-78, EW-81, EW-82, EW-83, EW-85, EW-89, EW-94, EW-96, and EW-98. 	 There was no pump at the time of the monitoring for the following wells: EW-33B, EW-49, EW-54, EW-56, EW-63, EW-64, EW-67, EW-69, EW-70, EW-73, EW-76, EW-77, EW-79, EW-80, EW-84, EW-86, EW-88, EW-91, EW-92, EW-95, EW-97, and EW-99. Without a pump, a
 Pump was disconnected or off at the time of monitoring for EW-52, EW-53, EW-55, EW-62, EW-87, and EW-93 	leachate sample is not collected.Additional information:
Additional information:	 Pump was pulled for maintenance or replacement in EW-76.
 EW-96 was too tall to safely measure the liquid level. 	 EW-33B, EW-63, EW-64, EW-77, and EW-79 had the vacuum shut down
 Liquid depth was not measured at the time of monitoring for EW-36A, EW-81, 	and were unable to be approached during the time of monitoring.
EW-89 and EW-94 as gauging equipment has historically become stuck in the well.	 The liquid depth was not measured at the time of monitoring for EW-84 and EW-86 due to an obstruction.
 The liquid depth was not measured at the time of monitoring for EW-52, EW-66, and EW-93 as the pump is slotted for maintenance or replacement. 	 The well was too tall to safely measure the liquid level for EW-92 and EW-97.

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia for analysis. The samples were analyzed for the parameters utilizing the analytical methods described in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan, December 1, 2022, prepared by SCS Engineers. At the time of preparation of this report, laboratory analytical results were not available for the September 2025 monitoring event. The September 2025 analytical results will be provided in the October 2025 Monthly Compliance Report.

4.2.2 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for VOC analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analysis. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A summary of each of these is presented below:

- Method Blank The method blank is deionized water subjected to the same reagents and manipulations to which site samples are subjected. Positive results in the method blanks may indicate either contamination of the chemical reagents or the glassware and implements used to store or prepare the sample and resulting solutions.
- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis. MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.
- LCS These samples consist of distilled/deionized water injected with the parameters of
 interest for single parameter methods and selected parameters for multi-parameter
 methods according to the appropriate analytical method. LCS samples are prepared and
 analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to
 monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are like the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

This report provides the August 2025 analytical results, which became available in September 2025. The September 2025 analytical results will be reported in October 2025. The QC blank detection identified for the August 2025 monitoring event is shown on **Table 7**. The laboratory analysis report for the August 2025 monitoring event trip blank is included in **Appendix F**. The laboratory QA/QC report for the August 2025 monitoring event, including the method blank results, is included in the certificate of analysis (COA) in **Appendix F**.

Table 7. Quality Control Blank Detection Summary

Location ID	Parameter	Concentration (ug/L)
Trip Blank	Acetone	15.9

ug/L = micrograms per liter

4.2.3 Data Validation

Data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection Agency (EPA) guidance². Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with concentrations less than five times that of the trip blank, field blank, and/or method blank concentration, but greater than the laboratory's LOD are flagged with a "B" qualifier. Samples with common laboratory concentrations less than 10 times that of the trip blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not valid as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis.

No leachate results were flagged with a "B" qualifier for the August 2025 monitoring event as acetone was detected in the leachate samples at concentration greater than 10 times the detection in the trip blank. The August 2025 detections flagged with a "J" qualifier are shown on **Table 8**.

4.2.4 Laboratory Analytical Results

The analytical results for the August 2025 leachate samples collected from extraction wells EW-89 and EW-98 are summarized in **Table 8**. The associated COA is included in **Appendix F**. Concentrations from August 2025 and previous monitoring events (November 2022 – July 2025) are presented in the Historical LFG-EW Leachate Monitoring Results Summary in **Appendix F**. Time-series plots of each VOC for EW-89 and EW-98 and the wells that have historically been sampled are included in **Appendix F**.

Table 8. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-89	EW-98	LOD	LOQ	
Parameter	August 2025 C	Concentration	LOD		
Ammonia as N (mg/L)	1660	778	120	200	
Biological Oxygen Demand (mg/L)	38599.6	5650	0.2	2	
Chemical Oxygen Demand (mg/L)		9760	630	1000	

² United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. November 2020. United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. November 2020.

Table 8. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-89	EW-98	LOD	100
Parameter	August 2025 Concentration			LOQ
	62700		6300	10000
		ND	0.255	1
Nitrate as N (mg/L)	ND		1.45	2
NII II N. (1)	ND		0.13	0.5
Nitrite as N (mg/L)		ND	0.26	1
Phenolics, Total Recoverable (mg/L)	71.6	11.5	1.54	2.5
Total Kjeldahl Nitrogen (mg/L)	2740	1090	45.9	50
SEMI-VOLATILE ORGANIC COMPOUND	(ug/L)			
		ND	100	200
Anthracene	ND		400	800
TOTAL METALS (mg/L)				
Arsenic	0.206	0.178	0.0018	0.02
Barium	3.07	0.444	0.0005	0.01
Cadmium	0.0183	0.001 J	0.0002	0.004
Chromium	0.303	0.0578	0.0004	0.01
Copper	ND	0.0049 J	0.0017	0.01
Lead	0.087	0.0142	0.0018	0.01
Mercury	0.00234	0.00139 J	0.000271	0.002
Nickel	0.0925	0.0393	0.0005	0.01
Selenium	ND	ND	0.0069	0.05
Silver	ND	0.0008 J	0.0004	0.01
		0.0318	0.0064	0.02
Zinc	2.92		0.0096	0.03
VOLATILE FATTY ACIDS (mg/L)	I .			
Acetic Acid	8500	678	71.4	500
		338	7-	50-
Butyric Acid	2200		70.3	500
		ND	0.6	5
Lactic Acid	1100		55.7	500
Propionic Acid	3140	696	57.3	500
		61.3	0.9	5
Pyruvic Acid	93.9 J		17.8	100
VOLATILE ORGANIC COMPOUNDS (ug	1			
2-Butanone	6680		150	500
		47400	1500	5000
Acetone	36000	89600	3500	5000
Benzene	112	1300	20	50

Table 8. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-89	EW-98	LOD	LOQ
Parameter	August 2025 C	Concentration		
Ethylbenzene	ND	230	20	50
Tetrahydrofuran	2430	16800	500	500
Toluene	ND	131	25	50
Xylenes	ND	458	50	150

⁻⁻⁻not applicable

Concentration is estimated and not validated

LOD = laboratory's limit of detection

LOQ = laboratory's limit of quantitation

mg/L=milligrams per liter

ND= Not Detected

ug/L = micrograms per liter

5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below. Refer to Appendix G for narrative sections without updates.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

Information about the Settlement Monitoring and Management Plan for the SWP No. 588 Landfill and a copy of the plan can be found in the November 2022 Compliance Report for the SWP No. 588 Landfill.

5.2 MONTHLY SURVEYS

5.2.1 Topographic Data Collection

SCS collected topographic data of the Solid Waste Permit No. 588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone) on September 11, 2025. Aerial imagery collected on September 11, 2025, is depicted in Figure 12. The topographic data collected is shown on Sheet 4 in Appendix E.

J = Constituent was detected at a concentration above the laboratory's LOD but below the laboratory's LOQ.

Figure 12. Aerial Photo of the SWP No. 588 Landfill

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on August 21, 2025. A drawing depicting the August 21, 2025 topography is included as Sheet 3 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, the data shows a fill of 2,800 cubic yards across the site. Fill may have been placed and spread on the site to address differential settlement, surface emissions, and to provide access to LFG collection vertical wells. Additionally, a substantial increase in vegetation at the site can influence the topographic data recorded by the drone, which contributes to the fill volume. During that same time period, calculations indicate a "cut" volume of approximately 2,800 cubic yards. Cut volumes are typically attributed to settlement. This resulted in a negligible volume change.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 13. Areas in yellow and orange indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 5 in Appendix E.

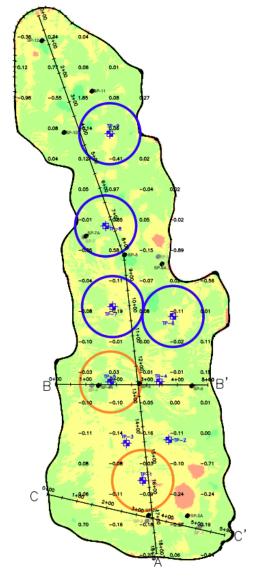


Figure 13. 1-Month Elevation Change Map

The locations of in-waste temperature monitoring probes are also shown on Figure 13, Figure 14, and Figure 15. The circles around the probes in each of these figures are indicative of the average borehole temperature. The circles shown are offset from the probes for clarity only and do not necessarily indicate temperatures measured at locations away from the probe. Probes with a blue circle around them typically have an average temperature less than 200°F across the full depth of the probe. Probes with an orange circle around them typically have an average temperature greater than 200°F and less than 250°F across the full depth of the probe. Probes with no circle around them represent no temperature readings for this month due to sensor malfunctions. There were no probes measuring average temperatures greater than 250°F during the month of September 2025.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation decrease between the flyover dates was negligible.

SCS also compared the topographic data collected in September to the topographic data collected on June 12, 2025. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 6,500 cubic yards. During that same time period calculations indicate approximately 4,800 cubic yards of fill were placed on the landfill, for a net decrease in waste volume of 1,800 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 14. Areas in orange/yellow indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 6 in Appendix E.

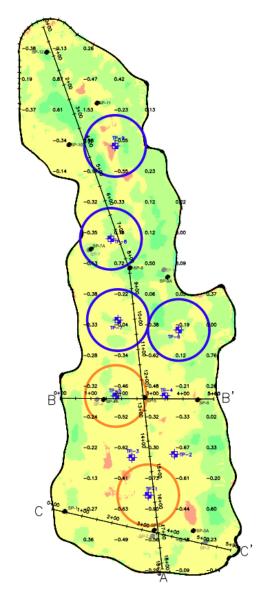


Figure 14. 3-Month Elevation Change Map

Based on the area of the landfill and the net volume change, the average elevation decrease was approximately 0.1 feet.

SCS also compared the topographic data collected in September 2025 to the drone topographic data collected on September 23, 2024. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 31,500 cubic yards. During that same time period approximately 2,100 cubic yards of construction-related fill were placed on the landfill. This resulted in a net volume decrease of approximately 29,300 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 15. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 7 in Appendix E.

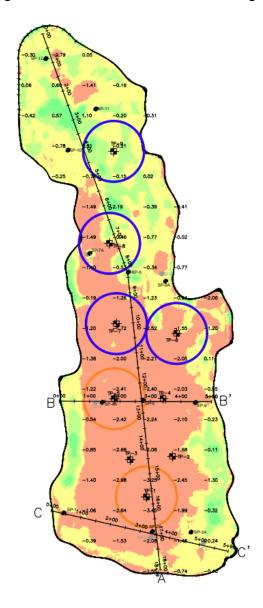


Figure 15. 1-Year Elevation Change Map

The largest settlement occurred primarily at the southern end of the landfill where the waste settled by 3 feet or more in some areas. Significant settlements are typical of elevated temperature landfill conditions. The landfill perimeter exhibited an increase in elevation, likely due to soil placement associated with construction and/or ongoing maintenance of the Sidewall Odor Mitigation System. There were variations in elevation associated with soil stockpiling operations.

Based on the landfill area and the net volume change, the average elevation decrease was approximately 1.0 feet.

SCS will collect topographic data covering the landfill surface again in October using photogrammetric methods via UAV. This data will be compared to the data collected in October 2024, July 2025, and September 2025.

5.2.2 Settlement Plate Surveys

On November 7, 2022, SCS field services installed 12 settlement plates on the Solid Waste Permit No. 588 landfill. Five new settlement plates (SP-2A, SP-3A, SP-4A, SP-7A, and SP-9A) installed during June 2024 are intended to replace non-operational settlement plates. The settlement plate locations are depicted in Figure 16 and on Sheet 1 in Appendix E. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan.

Figure 16. Settlement Plate Locations

The locations of the settlement plates were initially surveyed on November 14, 2022, and have been surveyed monthly thereafter. The survey coordinates and elevation changes of the settlement plates are shown in Table 9.

Table 9. Elevation and Strain Data at Settlement Plate Locations

Settlement Plate	Northing	Easting	Elevation on September 9, 2025 (ft)	Elevation Change Since August 14, 2025 (ft)	Strain ³ Since August 14, 2024	Elevation Change Since Installation (ft)
SP-1	3,397,887.5	10,412,080.8	1,828.5	-0.2	-0.2%	-5.9
SP-2A	3,397,823.3	10,412,370.5	1,792.1	-0.2	-0.1%	-3.6
SP-3A	3,397,820.3	10,412,498.1	1,778.9	-0.1	-0.1%	-1.3
SP-4A	3,398,246.9	10,412,207.5	1,802.0	-0.2	-0.1%	-3.1
SP-5	3,398,255.8	10,412,339.7	1,787.7	-0.1	-0.1%	-13.1
SP-6	3,398,248.9	10,412,510.0	1,772.6	-0.2	-0.1%	-5.1
SP-7A	3,398,731.5	10,412,158.3	1,821.9	-0.1	-0.1%	-1.5
SP-8	3,398,678.0	10,412,290.9	1,799.4	-0.2	-0.1%	-8.0
SP-9A	3,398,644.3	10,412,416.0	1,787.9	-0.2	-0.1%	-0.9
SP-10	3,399,079.5	10,412,095.2	1,836.0	0.0	0.0%	-4.2
SP-11	3,399,216.4	10,412,183.9	1,814.3	-0.1	0.0%	-2.0
SP-12	3,399,381.7	10,412,019.7	1,809.8	0.0	0.0%	-0.9

Prior to April 2024, the City's in-house surveyor read the settlement plate elevations. Starting April 2024 through June 2025, the settlement plate elevations were measured by FEI Civil Engineers and Land Surveyors. As of July 2025, the settlement plate elevations are measured by Miller Land Surveying LLC. Some variations in elevation measurements may be the result of changes in personnel and equipment.

Settlement Plate 1 demonstrated the largest strain due to settlement than at other locations. Settlement Plate 1 is at the southern end of the landfill. This area is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher strain values are typical of elevated temperature landfill conditions.

The strains at the other settlement plates were lower during this monthly measurement period compared to Settlement Plate 1.

Figure 17 shows the changes in elevation of select settlement plates over time. The data in Figure 17 are reported in days since the landfill was required to stop accepting waste.

_

³ Strain is defined as the change in elevation divided by the estimated waste depth.

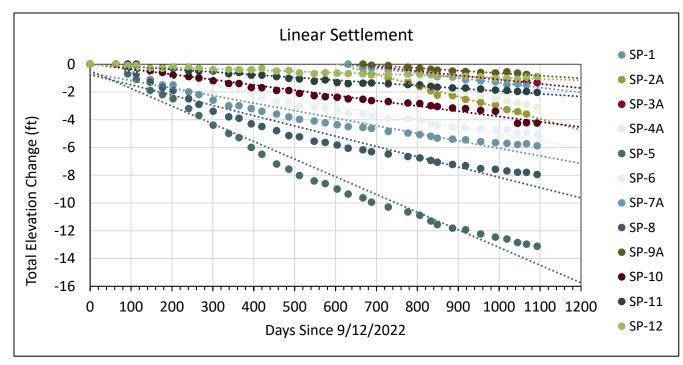


Figure 17. Elevation Change of Select Settlement Plates Over Time

The settlement plates will be surveyed again during October 2025. The elevations surveyed will be compared to the elevations surveyed the previous months.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City has taken steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below describe the steps taken by the City and future plans related to cover.

6.1 INTERMEDIATE COVER INSTALLATION

A summary of the intermediate cover installation can be found in the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill.

6.2 EVOH COVER SYSTEM DESIGN

An amendment to the Consent Decree was issued on March 21, 2024 which requires an ethylene vinyl alcohol (EVOH) deployment no later than December 1, 2026. The amended Consent Decree also requires regular settlement assessments, and the EVOH deployment may occur earlier if settlement rates appear acceptable. The first of these assessments was submitted to VDEQ on April 11, 2024. The most recent assessment was submitted on April 10, 2025. The next assessment will be submitted on or before October 7, 2025.

6.3 EVOH COVER SYSTEM PROCUREMENT

Information about the procurement of materials for the EVOH cover system can be found in the January 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

6.4 EVOH COVER SYSTEM INSTALLATION

As outlined in the amendment to the Consent Decree dated March 21, 2024, the deadline for EVOH Cover System installation has been extended. The City is conducting the assessments described in Section 6.2 to determine the appropriate time for installation.

7.0 STORMWATER MANAGEMENT

Information about the most recent stormwater management plans, basin location, plan implementation, long-term control, and stormwater monitoring for the SWP No. 588 Landfill can be found in the December 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit No. 588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

Refer to the December 2022 and March 2023 Monthly Compliance Reports for the SWP No. 588 Landfill for additional information about the development and implementation of the Monitoring, Maintenance, and Repair Plan.

8.3 MONTHLY COMPLIANCE REPORTS

As described in the introduction, this report is intended to provide comprehensive updates regarding progress towards completion of each item described in Appendix A of the Consent Decree between the City and VDEQ.

8.4 COMMUNITY OUTREACH PROGRAM

The City's consultant leading community outreach, McGuireWoods Consulting, prepared a summary of the actions taken as part of their community outreach efforts. For the month of September 2025, those actions include:

- Ongoing basis: Five (4) posts on each the BristolVALandfill.org site and the existing City of Bristol Landfill Notifications and Information page covering important updates including:
 - Progress updates related to remediation efforts and normal maintenance activities at the Quarry Landfill.

- Updates at the Quarry Landfill included cleaning, repairing, and replacing several pumps in the gas extraction system; draining condensation from the gas system piping to improve efficiency; removing surface water from rainfall with the stormwater pump; performing maintenance on the leachate extraction system including removal and replacement pumps and cleaning and rebuilding others; and fusing pipe and excavating the route for the new gas header associated with the new permanent flare being installed at the Quarry Landfill.
- Weekly updates on landing page on Bristolvalandfill.org titled "Air Sampling and Air Monitoring" that includes a summary of the air sampling and monitoring being conducted by Bristol, VA around the quarry landfill.
 - Website now includes weekly air monitoring reports starting from May 15, 2023, and running through August 3, 2025. Additional reports will be posted as they are received.
- E-mail communication sent to the list of members of the public signed up through the Bristol,
 VA website, the BristolVALandfill.org website, or at subsequent Open Houses to receive information via e-mail
 - E-mails sent included weekly remediation progress update and links to website updates and latest news articles.

Appendix A

Surface Emissions Monitoring Summary

Quarterly SEM

SCS performed the Third Quarter 2025 surface emissions monitoring event on August 28, 2025. The results of the Quarterly SEM were summarized in the August 2025 Compliance Report for the SWP No. 588 Landfill. A report outlining the results and exceedance locations will be included in the Semi-Annual report to be submitted to VDEO prior to March 1, 2026.

The Fourth Quarter 2025 SEM Event is scheduled to be completed by December 31, 2025.

Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, the monitoring in August generally conformed to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The SEM route included the waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at applicable surface cover penetrations within the waste footprint.

The Facility submitted letters to VDEQ describing the results of the September monitoring events on September 10, 2025; September 17, 2025; September 24, 2025; and, October 1, 2025. Copies of those letters are included in this Appendix.

The Facility continues to take proactive steps to limit fugitive surface emissions including dewatering activities, additional cover soil placement, and LFG system maintenance and tuning to increase gas extraction.

SCS ENGINEERS

Rev. September 24, 2025 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – September 5, 2025

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Management Facility located in Bristol, Virginia on September 5, 2025. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	166
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	66
Number of Exceedances	10
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	10

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	9/5/25 Event	9/5/25 Event Result	Comments
EW-76	7/15/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	7/23/25	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-49	8/7/25	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-90	8/7/25	1-Month Retest	Failed	Requires 1-Month Follow-Up Retest
TP-6	8/7/25	1-Month Retest	Passed	Exceedance Resolved
EW-60	8/11/25	N/A	Failed	Requires 1-Month Retest
EW-67	8/11/25	N/A	Failed	Requires 1-Month Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylie R Hicklin Staff Professional SCS Engineers

Wylin R Hickin

Lucas S. Nachman Senior Project Professional SCS Engineers

Lucus D. Nachman

LSN/WJF

cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ

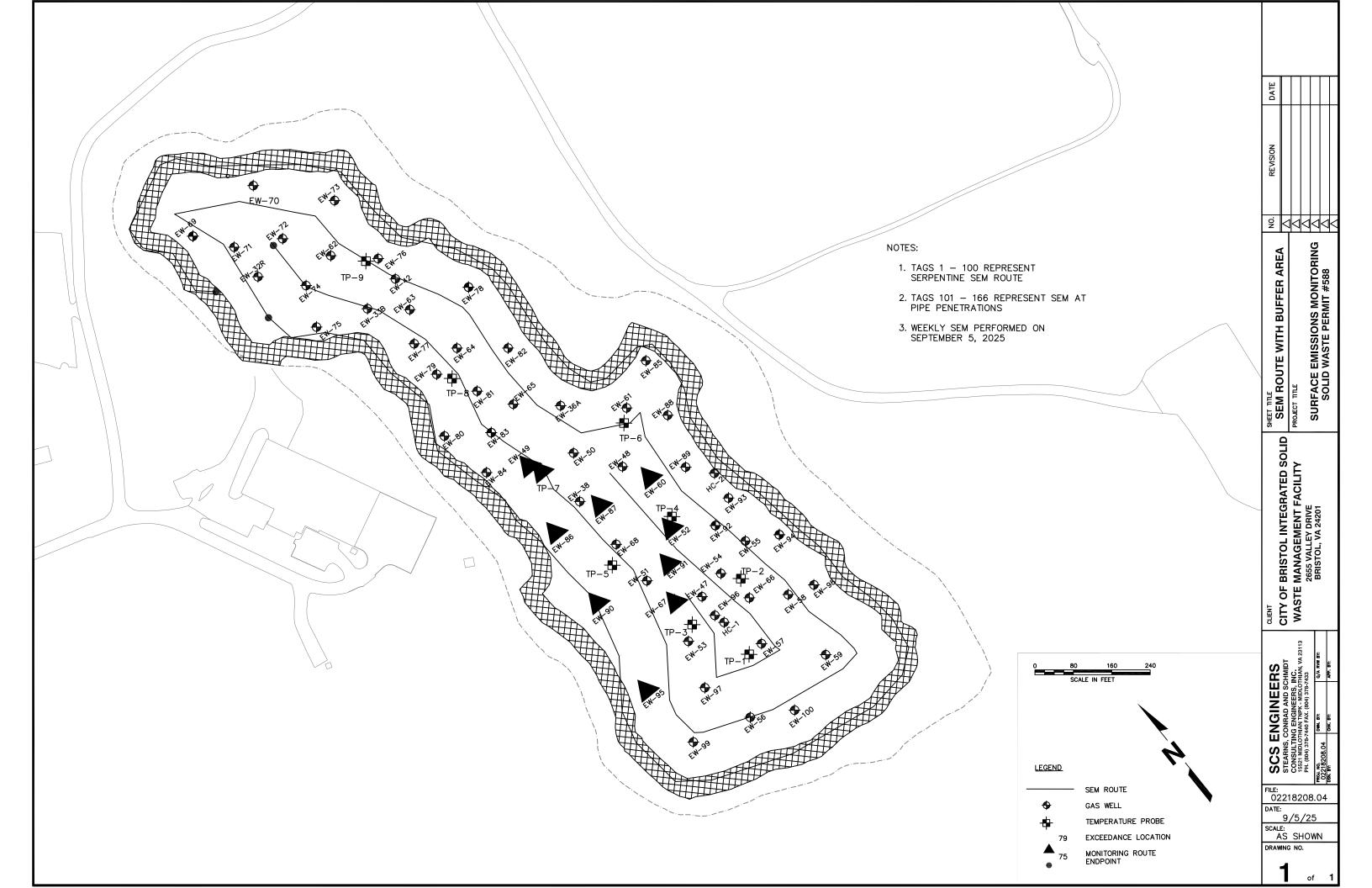
Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	0.9 PPM	OK			Start Serpentine Route
2	0.9 PPM	OK			
3	1.8 PPM	OK			
4	0.6 PPM	OK			
5	0.8 PPM	OK			
6	0.9 PPM	OK			
7	1.1 PPM	OK			
8	0.8 PPM	OK			
9	2.5 PPM	OK			
10	54.0 PPM	OK			
11	0.4 PPM	OK			
12	1.0 PPM	OK			
13	0.8 PPM	OK			
14	0.5 PPM	OK			
15	6.0 PPM	OK			
16	0.3 PPM	OK			
1 <i>7</i>	0.2 PPM	OK			
18	2.5 PPM	OK			
19	0.0 PPM	OK			
20	0.1 PPM	OK			
21	0.1 PPM	OK			
22	7.2 PPM	OK			
23	45.3 PPM	OK			
24	4.9 PPM	OK OK			
25	0.2 PPM	OK OK			
26	10.8 PPM	OK OK			
27	1.5 PPM	OK			
28	17.1 PPM	OK			
29	0.5 PPM	OK OK			
30	0.2 PPM	OK			
31	4.4 PPM	OK			
32	0.2 PPM	OK			
33	0.4 PPM	OK OK			
34	0.6 PPM	OK OK			
35	0.1 PPM	OK OK			
36	0.2 PPM	OK OK			
37	0.1 PPM	OK OK			
38	0.0 PPM	OK OK			
39	0.2 PPM	OK OK			
40	0.2 PPM	OK OK			
41	0.0 PPM	OK OK			
42	3.5 PPM	OK OK			
43	0.1 PPM	OK OK			
43		OK OK			
	0.2 PPM				
45 46	0.0 PPM 0.0 PPM	OK OK			
46 47	0.0 PPM	OK OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
48	0.0 PPM	OK			
49	22.8 PPM	OK			
50	0.2 PPM	OK			
51	0.1 PPM	OK			
52	0.0 PPM	OK			
53	0.0 PPM	OK			
54	0.1 PPM	OK			
55	0.0 PPM	OK			
56	0.1 PPM	OK			
57	0.1 PPM	OK			
58	0.0 PPM	OK			
59	0.2 PPM	OK			
60	0.1 PPM	OK			
61	0.0 PPM	OK			
62	0.0 PPM	OK			
63	0.3 PPM	OK			
64	0.5 PPM	OK			
65	5.5 PPM	OK			
66	2.3 PPM	OK			
67	0.3 PPM	OK			
68	0.2 PPM	OK			
69	0.1 PPM	OK			
70	0.0 PPM	OK			
<i>7</i> 1	0.0 PPM	OK			
72	0.1 PPM	OK			
73	0.4 PPM	OK			
74	0.1 PPM	OK			
75	0.0 PPM	OK			
76	0.0 PPM	OK			
77	0.0 PPM	OK			
78	6.1 PPM	OK			
79	2.9 PPM	OK			
80	2.9 PPM	OK			
81	0.4 PPM	OK			
82	0.7 PPM	OK			
83	1.0 PPM	OK			
84	1.6 PPM	OK			
85	0.0 PPM	OK			
86	2.0 PPM	OK			
87	3.3 PPM	OK			
88	2.2 PPM	OK			
89	4.5 PPM	OK			
90	0.7 PPM	OK			
91	0.1 PPM	OK			
92	0.2 PPM	OK			
93	0.2 PPM	OK			

	Methane		GPS Co	ordinates		
ID#	Concentration	Compliance	Lat.	Long.	Comments	
94	0.0 PPM	OK				
95	5.5 PPM	OK				
96	3.6 PPM	OK				
97	0.4 PPM	OK				
98	0.8 PPM	OK				
99	1.6 PPM	OK				
100	0.6 PPM	OK			End Serpentine Route	
101	0.6 PPM	OK			EW-75	
102	0.2 PPM	OK			EW-74	
103	0.7 PPM	OK			EW-32R	
104	0.2 PPM	OK			EW-71	
105	0.1 PPM	OK			EW-69	
106	0.2 PPM	OK			EW-72	
107	0.1 PPM	OK			EW-62	
108	0.0 PPM	OK			EW-33B	
109	1.0 PPM	OK			EW-63	
110	0.4 PPM	OK			EW-77	
111	0.1 PPM	OK			EW-64	
112	0.1 PPM	OK			EW-79	
113	0.1 PPM	OK			TP-8	
114	0.4 PPM	OK			EW-81	
115	0.9 PPM	OK			EW-80	
116	1.4 PPM	OK			EW-84	
117	0.5 PPM	OK			EW-83	
118	2.7 PPM	OK			EW-65	
119	2123.0 PPM	HIGH_ALRM	36.59978	-82.14805	EW-49	
120	6209.0 PPM	HIGH_ALRM	36.59971	-82.14801	TP-7	
121	3.4 PPM	OK	00.07771	02.14001	EW-50	
122	2.5 PPM	OK			EW-36A	
123	38.2 PPM	OK			TP-6	
124	8.2 PPM	OK			EW-61	
125	0.9 PPM	OK			EW-85	
126	1.1 PPM	OK			EW-88	
127	33.9 PPM	OK			EW-48	
128	1404.0 PPM	HIGH_ALRM	36.59931	-82.14742	EW-60	
129	1567.0 PPM	HIGH_ALRM	36.59934	-82.14782	EW-87	
130	55.5 PPM	OK	00.57704	-02.14/02	EW-38	
131	2214.0 PPM	HIGH_ALRM	36.59937	-82.14819	EW-86	
132	509.0 PPM	HIGH_ALRM	36.59890	-82.14825	EW-90	
133	0.2 PPM	OK	33.37070	-02.17023	TP-5	
134	31.1 PPM	OK OK			EW-68	
135	1391.0 PPM	HIGH_ALRM	36.59900	-82.14749	EW-52	
136	1.0 PPM	OK	30.37700	-02.14/47	TP-4	
137	3.4 PPM	OK OK			EW-89	
138	5.5 PPM	OK OK			EW-83	
139	172.0 PPM	OK OK			EW-92	

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comment
140	522.0 PPM	HIGH_ALRM	36.59884	-82.14767	EW-91
141	1.0 PPM	OK			EW-51
142	1 <i>57</i> 6.0 PPM	HIGH_ALRM	36.59866	-82.14779	EW-67
143	0.3 PPM	OK			EW-47
144	0.0 PPM	OK			EW-54
145	1.7 PPM	OK			EW-55
146	1.1 PPM	OK			EW-94
147	0.0 PPM	OK			EW-66
148	0.5 PPM	OK			EW-96
149	0.5 PPM	OK			EW-53
150	2.8 PPM	OK			TP-1
151	27.9 PPM	OK			EW-57
152	0.8 PPM	OK			EW-58
153	0.2 PPM	OK			EW-98
154	6.1 PPM	OK			EW-59
155	24.6 PPM	OK			EW-100
156	17.2 PPM	OK			EW-56
1 <i>57</i>	0.7 PPM	OK			EW-97
158	11.1 PPM	OK			EW-99
159	23100.0 PPM	HIGH_ALRM	36.59835	-82.14834	EW-95
160	127.0 PPM	OK			EW-82
161	0.4 PPM	OK			EW-78
162	16.6 PPM	OK			EW-42
163	138.0 PPM	OK			EW-76
164	4.4 PPM	OK			TP-9
165	0.0 PPM	OK			EW-73
166	2.9 PPM	OK			EW-70
	Number of loc Number of excee	cations sampled: dance locations:	166 10		


NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 166 represent SEM at Pipe Penetrations

Weather Conditions: Mostly Cloudy/Light Rain $67^{\circ}F$ Wind: 5 mph SW

9/5/2025	10:42	nane - 500 ppm, ZERO	0.1	гррш РРМ
9/5/2025	10:55	SPAN	501.0	PPM
<u>Background Re</u>	<u>ading:</u>			
9/5/2025	11:13	Upwind	1.9	PPM
9/5/2025	11.17	Downwind	1 9	PPM

SCS ENGINEERS

September 17, 2025 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – September 12, 2025

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Management Facility located in Bristol, Virginia on September 12, 2025. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	166
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	66
Number of Exceedances	4
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	4

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	9/12/25 Event	9/12/25 Event Result	Comments
EW-76	7/15/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	7/23/25	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-49	8/7/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-60	8/11/25	1-Month Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	8/11/25	1-Month Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-90	8/7/25	1-Month Retest Follow-Up	Passed	Exceedance Resolved
TP-7	9/5/25	10-Day Retest	Passed	Requires 1-Month Retest
EW-52	9/5/25	10-Day Retest	Passed	Requires 1-Month Retest
EW-86	9/5/25	10-Day Retest	Passed	Requires 1-Month Retest
EW-87	9/5/25	10-Day Retest	Passed	Requires 1-Month Retest
EW-91	9/5/25	10-Day Retest	Passed	Requires 1-Month Retest
EW-96	9/5/25	10-Day Retest	Passed	Requires 1-Month Retest

If you have questions or require additional information, please contact either of the undersigned.

Lucus D. Nachman

Lucas S. Nachman

Sincerely,

Wylie R Hicklin Staff Professional

Wylin R Hickin

SCS Engineers

Senior Project Professional SCS Engineers

LSN/WRH

cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol

Susan "Tracey" Blalock, VDEQ

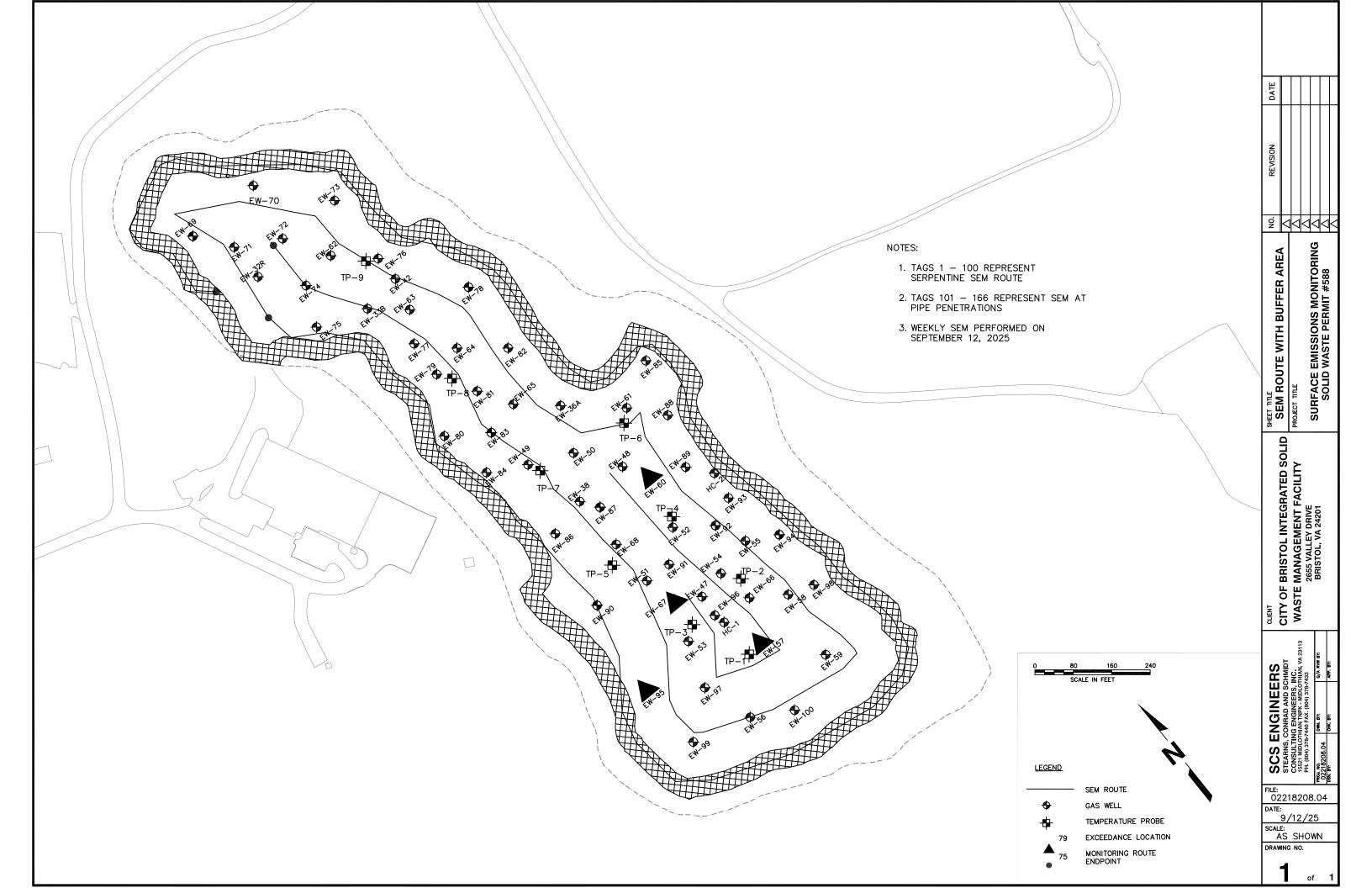
Surface Emissions Monitoring Results Encl.

Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	2.0 PPM	OK			Start Serpentine Route
2	2.1 PPM	OK			
3	1.7 PPM	OK			
4	1.7 PPM	OK			
5	1.7 PPM	OK			
6	1.7 PPM	OK			
7	1.7 PPM	OK			
8	34.9 PPM	OK			
9	1.7 PPM	OK			
10	1.6 PPM	OK			
11	1.7 PPM	OK			
12	1.7 PPM	OK			
13	1.8 PPM	OK			
14	2.1 PPM	OK			
15	1.9 PPM	OK			
16	1.9 PPM	OK			
1 <i>7</i>	1.6 PPM	OK			
18	1.5 PPM	OK			
19	1.8 PPM	OK			
20	1.8 PPM	OK			
21	1.9 PPM	OK			
22	2.9 PPM	OK			
23	41.3 PPM	OK			
24	4.7 PPM	OK			
25	3.9 PPM	OK			
26	1.7 PPM	OK			
27	2.2 PPM	OK			
28	3.6 PPM	OK			
29	2.7 PPM	OK			
30	4.2 PPM	OK			
31	3.1 PPM	OK			
32	40.8 PPM	OK			
33	8.9 PPM	OK			
34	2.2 PPM	OK			
35	14.8 PPM	OK			
36	85.2 PPM	OK			
37	20.4 PPM	OK			
38	111.0 PPM	OK			
39	348.0 PPM	OK			
40	105.0 PPM	OK			
41	3.4 PPM	OK			
42	19.6 PPM	OK			
43	1.9 PPM	OK			
44	4.4 PPM	OK			
45	1.4 PPM	OK			
46	1.4 PPM	OK			
47	1.3 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
48	1.7 PPM	OK			
49	1.4 PPM	OK			
50	1.0 PPM	OK			
51	1.0 PPM	OK			
52	1.1 PPM	OK			
53	5.1 PPM	OK			
54	2.6 PPM	OK			
55	1.0 PPM	OK			
56	1.3 PPM	OK			
57	30.8 PPM	OK			
58	1.0 PPM	OK			
59	1.1 PPM	OK			
60	1.0 PPM	OK			
61	1.1 PPM	OK			
62	1.1 PPM	OK			
63	2.7 PPM	OK			
64	176.0 PPM	OK			
65	6.2 PPM	OK			
66	3.0 PPM	OK			
67	3.9 PPM	OK			
68	29.6 PPM	OK			
69	0.9 PPM	OK			
70	0.9 PPM	OK			
<i>7</i> 1	5.1 PPM	OK			
72	5.3 PPM	OK			
73	9.1 PPM	OK			
74	10.7 PPM	OK			
<i>7</i> 5	11.0 PPM	OK			
76	0.9 PPM	OK			
77	0.8 PPM	OK			
78	1.0 PPM	OK			
79	1.0 PPM	OK			
80	0.8 PPM	OK			
81	11.2 PPM	OK			
82	2.8 PPM	OK			
83	1.7 PPM	OK			
84	7.8 PPM	OK			
85	2.0 PPM	OK			
86	8.0 PPM	OK			
87	3.2 PPM	OK			
88	2.7 PPM	OK			
89	1.7 PPM	OK			
90	1.7 PPM	OK			
91	13.5 PPM	OK			
92	1.4 PPM	OK			
93	1.4 PPM	OK			

		Methane		GPS Co	ordinates	
ID	#	Concentration	Compliance	Lat.	Long.	Comments
9	94	16.1 PPM	OK			
9	95	5.8 PPM	OK			
9	96	0.8 PPM	OK			
9	97	2.5 PPM	OK			
9	8	10.5 PPM	OK			
9	9	5.3 PPM	OK			
10	00	0.8 PPM	OK			End Serpentine Route
10	01	169.0 PPM	OK			EW-52
10	02	239.0 PPM	OK			TP-4
10	03	928.0 PPM	HIGH_ALRM	36.59924	-82.14742	EW-60
10	04	55.9 PPM	OK			EW-48
	05	131.0 PPM	OK			TP-6
	06	2.8 PPM	OK			EW-61
	07	1.9 PPM	OK			EW-50
	08	3029.0 PPM	HIGH_ALRM	36.59878	-82.14771	EW-67
	09	0.7 PPM	OK			EW-47
	10	0.7 PPM	OK			EW-54
	11	114.0 PPM	OK			EW-55
	12	42.3 PPM	OK			EW-92
	13	5.0 PPM	OK			EW-91
	14	0.7 PPM	OK			EW-96
	15	0.9 PPM	OK			EW-66
	16	5.4 PPM	OK			EW-58
	1 <i>7</i>	4024.0 PPM	HIGH_ALRM	36.59831	-82.14720	EW-57
	18	0.7 PPM	OK			TP-1
	19	18.7 PPM	OK			EW-59
	20	2.1 PPM	OK			EW-100
	21	4.9 PPM	OK			EW-56
	22	0.9 PPM	OK			EW-97
	23	0.4 PPM	OK			EW-53
	24	6.3 PPM	OK			EW-51
	25	0.4 PPM	OK			TP-5
	26	10.6 PPM	OK			EW-68
	27	174.0 PPM	OK			EW-87
	28	26.9 PPM	OK			EW-38
	29	46.1 PPM	OK			TP-7
	30	0.3 PPM	OK			EW-49
	31	0.3 PPM	OK			EW-83
	32	0.5 PPM	OK			EW-65
	33	0.5 PPM	OK			EW-81
	34	0.4 PPM	OK			TP-8
	35	0.3 PPM	OK			EW-64
	36	0.5 PPM	OK			EW-63
	37	6.0 PPM	OK			EW-42
	38	78.2 PPM	OK			EW-76
	39	218.0 PPM	OK			TP-9


	Methane		GPS Co		
ID#	Concentration	Compliance	Lat.	Long.	Comment
140	0.3 PPM	OK			EW-62
141	0.2 PPM	OK			EW-74
142	0.2 PPM	OK			EW-32R
143	0.1 PPM	OK			EW-69
144	0.2 PPM	OK			EW-71
145	0.1 PPM	OK			EW-72
146	0.2 PPM	OK			EW-70
147	0.2 PPM	OK			EW-73
148	4.9 PPM	OK			EW-78
149	41.6 PPM	OK			EW-82
150	0.4 PPM	OK			EW-36A
151	1.1 PPM	OK			EW-85
152	0.5 PPM	OK			EW-88
153	1 <i>4</i> .6 PPM	OK			EW-89
154	4.5 PPM	OK			EW-93
155	1.1 PPM	OK			EW-94
156	0.4 PPM	OK			EW-98
1 <i>57</i>	0.4 PPM	OK			EW-99
158	3099.0 PPM	HIGH_ALRM	36.59802	-82.14811	EW-95
159	51.4 PPM	OK			EW-90
160	447.0 PPM	OK			EW-86
161	0.9 PPM	OK			EW-84
162	1.4 PPM	OK			EW-80
163	0.0 PPM	OK			EW-79
164	0.0 PPM	OK			EW-77
165	91.5 PPM	OK			EW-338
166	2.2 PPM	OK			EW-75
	Number of locations sampled: Number of exceedance locations:		166 4		

NOTES:

Points 1 through 100 represent serpentine SEM route. Points 101 through 166 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, 75°F Wind: 4 mph N

Sampling Calibr	ration: Meth	<u>iane - 500 ppm,</u>	Zero Air - 0.0	<u>ppm</u>
9/12/2025	11:36	ZERO	0.1	PPM
9/12/2025	11:3 <i>7</i>	SPAN	500.0	PPM
Background Rec	ading:			
9/12/2025	11:40	Upwind	3.2	PPM
9/12/2025	11:44	Downwind	3.3	PPM

SCS ENGINEERS

September 24, 2025 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – September 19, 2025

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Management Facility located in Bristol, Virginia on September 19, 2025. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	166
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	66
Number of Exceedances	3
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	3

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	9/19/25 Event	9/19/25 Event Result	Comments
EW-76	7/15/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	7/23/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-49	8/7/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-60	8/11/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	8/11/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
TP-7	9/5/25	N/A	Failed	Requires 1-Month Retest
EW-52	9/5/25	N/A	Failed	Requires 1-Month Retest
EW-86	9/5/25	N/A	Failed	Requires 1-Month Retest
EW-87	9/5/25	N/A	Passed	Requires 1-Month Retest
EW-91	9/5/25	N/A	Passed	Requires 1-Month Retest
EW-57	9/12/25	10-Day Retest	Passed	Requires 1-Month Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylie R Hicklin Staff Professional SCS Engineers

Wylin R Hickin

Lucas S. Nachman Senior Project Professional SCS Engineers

Lucus D. Nachman

LSN/WRH

cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

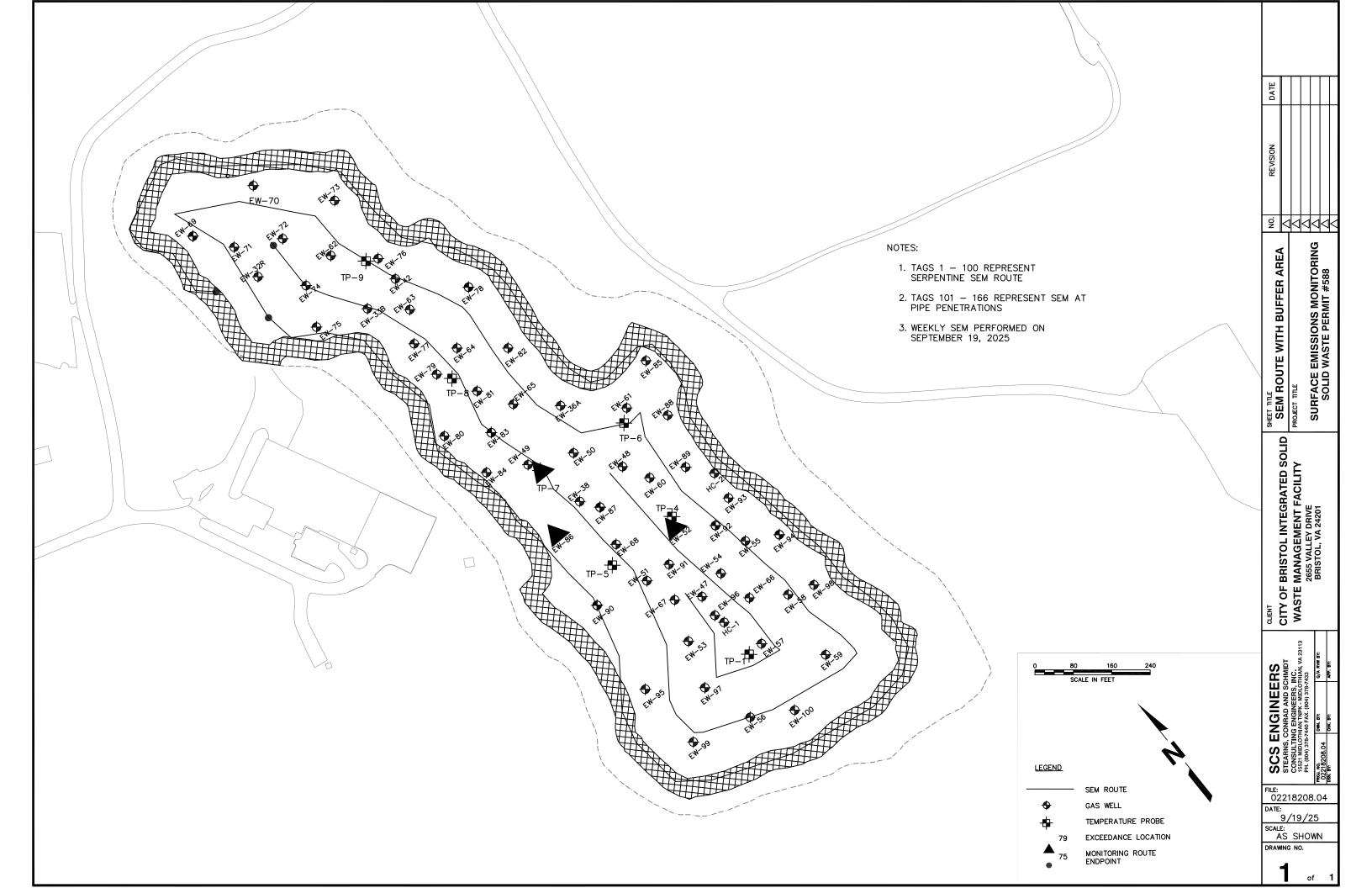
Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	5.0 PPM	OK			Start Serpentine Route
2	6.0 PPM	OK			
3	4.7 PPM	OK			
4	4.9 PPM	OK			
5	5.0 PPM	OK			
6	17.6 PPM	OK			
7	5.3 PPM	OK			
8	5.6 PPM	OK			
9	6.2 PPM	OK			
10	5.6 PPM	OK			
11	5.6 PPM	OK			
12	9.2 PPM	OK			
13	19.1 PPM	OK			
14	5.0 PPM	OK			
15	4.2 PPM	OK			
16	4.4 PPM	OK			
17	4.6 PPM	OK			
18	4.5 PPM	OK			
19	4.6 PPM	OK			
20	5.9 PPM	OK			
21	10.0 PPM	OK			
22	20.4 PPM	OK			
23	5.5 PPM	OK			
24	14.2 PPM	OK			
25	4.8 PPM	OK			
26	4.3 PPM	OK			
27	7.3 PPM	OK			
28	9.6 PPM	OK			
29	6.1 PPM	OK			
30	12.9 PPM	OK			
31	12.7 PPM	OK			
32	194.0 PPM	OK			
33	13.8 PPM	OK OK			
34	33.9 PPM	OK OK			
35	11.6 PPM	OK OK			
36	6.2 PPM	OK OK			
37	77.7 PPM	OK OK			
38 39	3.4 PPM 3.7 PPM	OK OK			
40	4.1 PPM	OK OK			
41	3.6 PPM	OK OK			
42	4.9 PPM	OK			
43	5.4 PPM	OK OK			
44	3.7 PPM	OK OK			
45	3.6 PPM	OK			
46 47	4.2 PPM 3.9 PPM	OK OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
48	3.4 PPM	OK			
49	3.3 PPM	OK			
50	3.1 PPM	OK			
51	3.1 PPM	OK			
52	3.2 PPM	OK			
53	3.0 PPM	OK			
54	3.0 PPM	OK			
55	21.1 PPM	OK			
56	3.4 PPM	OK			
57	4.2 PPM	OK			
58	4.8 PPM	OK			
59	4.0 PPM	OK			
60	4.8 PPM	OK			
61	5.0 PPM	OK			
62	14.4 PPM	OK			
63	2.9 PPM	OK			
64	2.5 PPM	OK			
65	4.2 PPM	OK			
66	2.7 PPM	OK			
67	2.9 PPM	OK			
68	4.2 PPM	OK			
69	17.9 PPM	OK			
70	3.9 PPM	OK			
<i>7</i> 1	3.5 PPM	OK			
72	5.2 PPM	OK			
73	3.3 PPM	OK			
74	6.4 PPM	OK			
75	6.6 PPM	OK			
76	4.4 PPM	OK			
77	2.8 PPM	OK			
78	2.1 PPM	OK			
79	3.9 PPM	OK			
80	2.7 PPM	OK			
81	2.7 PPM	OK			
82	2.4 PPM	OK			
83	6.6 PPM	OK			
84	3.0 PPM	OK			
85	11.2 PPM	OK			
86	3.4 PPM	OK			
87	2.7 PPM	OK			
88	3.3 PPM	OK			
89	2.2 PPM	OK			
90	2.3 PPM	OK			
91	3.6 PPM	OK			
92	2.9 PPM	OK			
93	17.0 PPM	OK			

	Methane		GPS Cod	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
94	2.5 PPM	OK			
95	2.7 PPM	OK			
96	5.8 PPM	OK			
97	2.4 PPM	OK			
98	2.3 PPM	OK			
99	2.7 PPM	OK			
100	2.0 PPM	OK			End Serpentine Route
101	2.5 PPM	OK			EW-75
102	2.8 PPM	OK			EW-74
103	2.4 PPM	OK			EW-32R
104	1.9 PPM	OK			EW-71
105	1.8 PPM	OK			EW-69
106	1.8 PPM	OK			EW-72
107	1.9 PPM	OK			EW-62
108	12.5 PPM	OK			EW-33B
109	1.5 PPM	OK			EW-63
110	1.4 PPM	OK			EW-77
111	1.5 PPM	OK			EW-64
112	1.3 PPM	OK			EW-79
113	1.4 PPM	OK			TP-8
114	1.3 PPM	OK			EW-81
115	1.2 PPM	OK			EW-65
116	1.4 PPM	OK			EW-83
117	1.2 PPM	OK			EW-80
118	1.2 PPM	OK			EW-84
119	1.5 PPM	OK			EW-49
120	629.0 PPM	HIGH_ALRM	36.59982	-82.14800	TP-7
121	1.3 PPM	OK			EW-50
122	15.6 PPM	OK			TP-6
123	4.2 PPM	OK			EW-61
124	5.0 PPM	OK			EW-85
125	23.4 PPM	OK			EW-88
126	5.3 PPM	OK			EW-89
127	57.4 PPM	OK			EW-60
128	19.0 PPM	OK			EW-48
129	201.0 PPM	OK			EW-87
130	3.8 PPM	OK			EW-38
131	599.0 PPM		36.5993719	-82.148189	EW-86
132	121.0 PPM	OK			EW-90
133	1.1 PPM	OK			TP-5
134	11.8 PPM	OK			EW-68
135	1.3 PPM	OK			EW-51
136	1.0 PPM	OK			EW-91
137	1815.0 PPM	HIGH_ALRM	36.59900	-82.14768	EW-52
138	27.8 PPM	OK			TP-4
139	179.0 PPM	OK			EW-92

	Methane		GPS Co		
ID#	Concentration	Compliance	Lat.	Long.	Comment
140	1.6 PPM	OK			EW-93
141	9.0 PPM	OK			EW-94
142	22.3 PPM	OK			EW-55
143	1.2 PPM	OK			EW-54
144	0.8 PPM	OK			EW-47
145	90.0 PPM	OK			EW-67
146	12.3 PPM	OK			EW-53
147	1.1 PPM	OK			EW-96
148	2.8 PPM	OK			TP-1
149	18.2 PPM	OK			EW-57
150	1.7 PPM	OK			EW-66
151	267.0 PPM	OK			EW-58
152	10.8 PPM	OK			EW-98
153	7.7 PPM	OK			EW-59
154	4.5 PPM	OK			EW-100
155	6.2 PPM	OK			EW-56
156	1.3 PPM	OK			EW-97
1 <i>57</i>	1.8 PPM	OK			EW-99
158	253.0 PPM	OK			EW-95
159	0.5 PPM	OK			EW-36A
160	28.9 PPM	OK			EW-82
161	0.7 PPM	OK			EW-78
162	63.9 PPM	OK			EW-42
163	14.8 PPM	OK			EW-76
164	97.0 PPM	OK			TP-9
165	7.2 PPM	OK			EW-73
166	0.4 PPM	OK			EW-70
	Number of loc	ations sampled:	166		
	Number of exceed	•	3		


NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 166 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, 75°F Wind: 2 mph NW

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm 9/12/2025 11:31 ZERO 0.0 PPM 9/12/2025 11:35 SPAN 499.0 PPM**Background Reading:** 9/12/2025 11:48 Upwind 3.6 PPM 9/12/2025 11:55 Downwind 3.6 PPM

SCS ENGINEERS

October 1, 2025 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – September 26, 2025

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Management Facility located in Bristol, Virginia on September 26, 2025. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	166
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	66
Number of Exceedances	2
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	2

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	9/19/25 Event	9/19/25 Event Result	Comments
EW-76	7/15/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	7/23/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-49	8/7/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-60	8/11/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	8/11/25	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
TP-7	9/5/25	Second 10-Day Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-52	9/5/25	Second 10-Day Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-86	9/5/25	N/A	Passed	Requires 1-Month Retest
EW-87	9/5/25	N/A	Passed	Requires 1-Month Retest
EW-91	9/5/25	N/A	Passed	Requires 1-Month Retest
EW-57	9/12/25	N/A	Passed	Requires 1-Month Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

William J. Fabrie Project Professional

SCS Engineers

LSN/WJF

cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

Lucas S. Nachman Senior Project Professional

Lucus D. Nachman

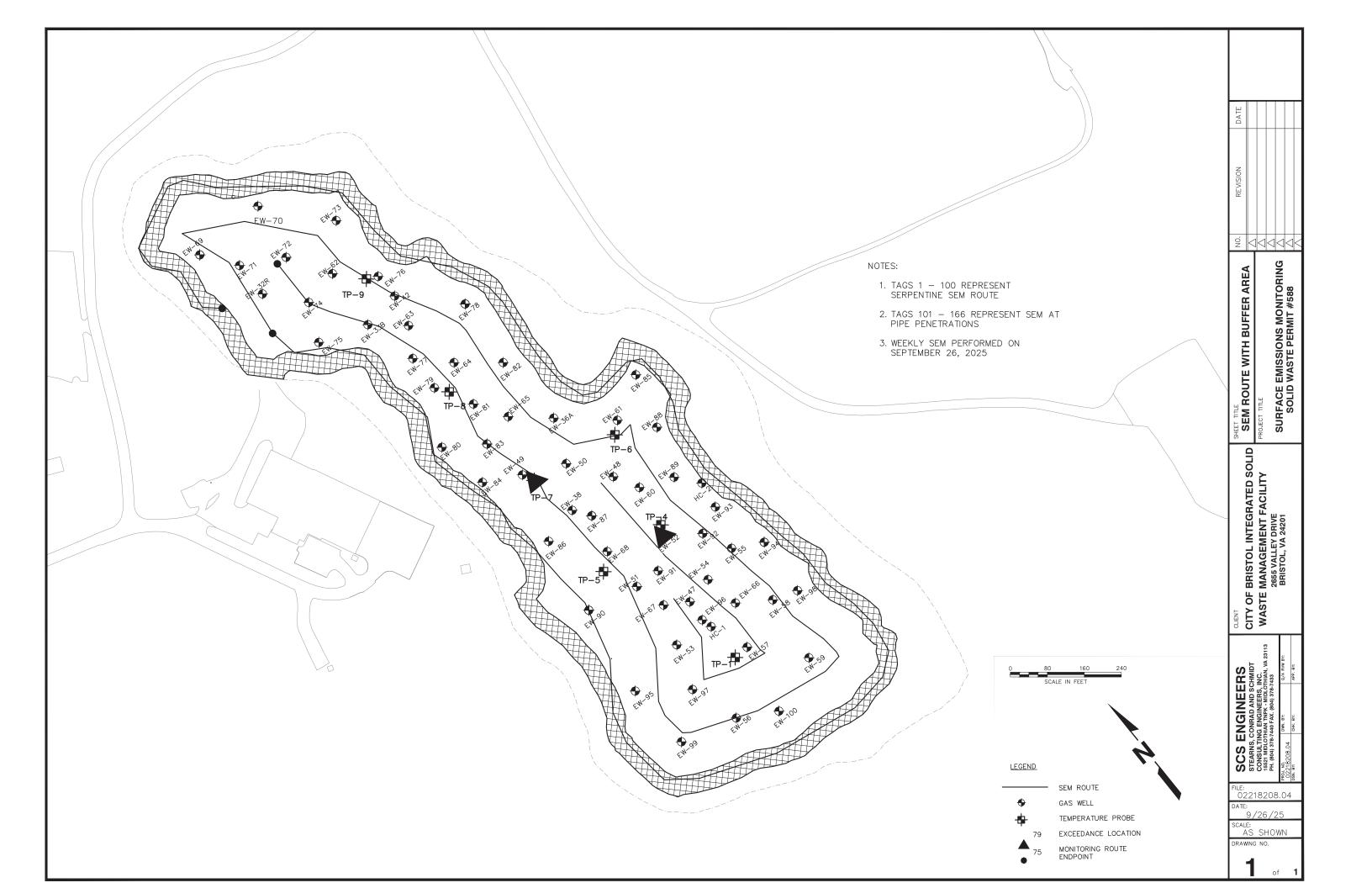
SCS Engineers

		Methane		GPS Co	ordinates	
ID :	#	Concentration	Compliance	Lat.	Long.	Comments
1		1.8 PPM	OK			Start Serpentine Route
2	!	3.8 PPM	OK			
3		1.6 PPM	OK			
4		1.5 PPM	OK			
5		1.5 PPM	OK			
6		1.9 PPM	OK			
7		2.5 PPM	OK			
8		2.6 PPM	OK			
9		2.5 PPM	OK			
10		2.1 PPM	OK			
11		1.8 PPM	OK			
12		2.8 PPM	OK			
13		2.4 PPM	OK			
14		2.2 PPM	OK			
1.5		2.6 PPM	OK			
16		2.5 PPM	OK			
17		2.0 PPM	OK			
18		1.6 PPM	OK			
19		1.5 PPM	OK			
20		2.3 PPM	OK			
21		4.4 PPM	OK OK			
22						
		5.1 PPM	OK			
23		2.6 PPM	OK			
24		20.1 PPM	OK			
25		5.8 PPM	OK			
26		3.4 PPM	OK			
27		7.9 PPM	OK			
28		2.3 PPM	OK			
29		2.0 PPM	OK			
30		3.2 PPM	OK			
31		1.7 PPM	OK			
32		2.6 PPM	OK			
33		9.7 PPM	OK			
34		2.6 PPM	OK			
35		3.9 PPM	OK			
36		28.9 PPM	OK			
37		21.6 PPM	OK			
38		17.0 PPM	OK			
39		5.1 PPM	OK			
40		33.8 PPM	OK			
41		2.8 PPM	OK			
42		1.9 PPM	OK			
43		1.6 PPM	OK			
44		1.6 PPM	OK			
45		2.8 PPM	OK			
46	5	1.7 PPM	OK			
47	7	8.2 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
48	1.6 PPM	OK			
49	2.5 PPM	OK			
50	2.1 PPM	OK			
51	1.3 PPM	OK			
52	1.1 PPM	OK			
53	188.0 PPM	OK			
54	1.2 PPM	OK			
55	1.2 PPM	OK			
56	1.1 PPM	OK			
57	1.0 PPM	OK			
58	1.1 PPM	OK			
59	4.2 PPM	OK			
60	25.9 PPM	OK			
61	3.1 PPM	OK			
62	1.9 PPM	OK			
63	2.9 PPM	OK			
64	2.0 PPM	OK			
65	2.6 PPM	OK			
66	2.1 PPM	OK			
67	14.7 PPM	OK			
68	4.4 PPM	OK			
69	4.0 PPM	OK			
70	4.6 PPM	OK			
<i>7</i> 1	1.2 PPM	OK			
72	1.1 PPM	OK			
73	13.3 PPM	OK			
74	14.1 PPM	OK			
75	1.7 PPM	OK			
76	1.0 PPM	OK			
77	0.8 PPM	OK			
78	0.9 PPM	OK			
79	5.7 PPM	OK			
80	1.4 PPM	OK			
81	1.8 PPM	OK			
82	5.0 PPM	OK			
83	1.7 PPM	OK			
84	1.5 PPM	OK			
85	3.0 PPM	OK			
86	1.4 PPM	OK			
87	3.7 PPM	OK			
88	1.5 PPM	OK			
89	1.0 PPM	OK			
90	1.3 PPM	OK			
91	12.8 PPM	OK			
92	4.4 PPM	OK			
93	5.3 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
94	49.1 PPM	OK			
95	0.9 PPM	OK			
96	1.4 PPM	OK			
97	1.5 PPM	OK			
98	0.9 PPM	OK			
99	0.8 PPM	OK			
100	3.5 PPM	OK			End Serpentine Route
101	1023.0 PPM	HIGH_ALRM	36.59900	-82.14768	EW-52
102	9.5 PPM	OK			TP-4
103	172.0 PPM	OK			EW-60
104	27.0 PPM	OK			EW-48
105	13.8 PPM	OK			TP-6
106	39.0 PPM	OK			EW-61
107	0.6 PPM	OK			EW-50
108	125.0 PPM	OK			EW-67
109	0.8 PPM	OK			EW-47
110	0.8 PPM	OK			EW-54
111	0.8 PPM	OK			EW-55
112	14.7 PPM	OK			EW-92
113	3.2 PPM	OK			EW-91
114	0.7 PPM	OK			EW-96
115	0.8 PPM	OK			EW-66
116	0.8 PPM	OK			EW-58
11 <i>7</i>	74.6 PPM	OK			EW-57
118	4.5 PPM	OK			TP-1
119	15.9 PPM	OK			EW-59
120	4.5 PPM	OK			EW-100
121	1.3 PPM	OK			EW-56
122	0.9 PPM	OK			EW-97
123	1.6 PPM	OK			EW-53
124	4.1 PPM	OK			EW-51
125	1.3 PPM	OK			TP-5
126	1.7 PPM	OK			EW-68
127	3.8 PPM	OK			EW-87
128	0.5 PPM	OK			EW-38
129	889.0 PPM	HIGH_ALRM	36.59982	-82.14800	TP-7
130	3.9 PPM	OK			EW-49
131	2.0 PPM	OK			EW-83
132	0.5 PPM	OK			EW-65
133	0.5 PPM	OK			EW-81
134	0.4 PPM	OK			TP-8
135	0.5 PPM	OK			EW-64
136	0.4 PPM	OK			EW-63
137	29.8 PPM	OK			EW-42
138	178.0 PPM	OK			EW-76
139	0.4 PPM	OK			TP-9

	Methane		GPS Coordinates		
ID#	Concentration	Compliance	Lat.	Long.	Comments
140	0.5 PPM	OK			EW-62
141	0.4 PPM	OK			EW-74
142	0.9 PPM	OK			EW-32R
143	0.4 PPM	OK			EW-69
144	0.3 PPM	OK			EW-71
145	0.3 PPM	OK			EW-72
146	0.4 PPM	OK			EW-70
147	0.4 PPM	OK			EW-73
148	1.8 PPM	OK			EW-78
149	90.2 PPM	OK			EW-82
150	2.4 PPM	OK			EW-36A
151	0.5 PPM	OK			EW-85
152	3.0 PPM	OK			EW-88
153	4.3 PPM	OK			EW-89
154	1.4 PPM	OK			EW-93
155	0.8 PPM	OK			EW-94
156	4.3 PPM	OK			EW-98
1 <i>57</i>	0.4 PPM	OK			EW-99
158	22.4 PPM	OK			EW-95
159	14.7 PPM	OK			EW-90
160	1 <i>77</i> .0 PPM	OK			EW-86
161	0.3 PPM	OK			EW-84
162	0.9 PPM	OK			EW-80
163	0.8 PPM	OK			EW-79
164	1.2 PPM	OK			EW-77
165	0.2 PPM	OK			EW-33B
166	11.7 PPM	OK			EW-75
	Number of locations sampled:		166		
	Number of exceed	dance locations:	2		


NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 166 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, 70°F Wind: 7 mph NW

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm 9/26/2025 9:53 ZERO 0.0 PPM 9/26/2025 9:55 SPAN 504.0 PPM**Background Reading:** 9/26/2025 10:00 Upwind 1.7 PPM 9/26/2025 10:07 Downwind 3.3 PPM

Appendix B

In-Waste Temperatures on Select Days in September

Appendix B Figures

Figure B - 1 Average Temperatures Recorded by TP-1 on September 3, 2025	B-3
Figure B - 2 Average Temperatures Recorded by TP-1 on September 10, 2025	B-3
Figure B - 3 Average Temperatures Recorded by TP-1 on September 17, 2025	B-4
Figure B - 4 Average Temperatures Recorded by TP-1 on September 24, 2025	B-4
Figure B - 5 Average Temperatures Recorded by TP-5 on September 3, 2025	B-5
Figure B - 6 Average Temperatures Recorded by TP-5 on September 10, 2025	B-5
Figure B - 7 Average Temperatures Recorded by TP-5 on September 17, 2025	B-6
Figure B - 8 Average Temperatures Recorded by TP-5 on September 24, 2025	B-6
Figure B - 9 Average Temperatures Recorded by TP-6 on September 3, 2025	B-7
Figure B - 10 Average Temperatures Recorded by TP-6 on September 10, 2025	B-7
Figure B - 11 Average Temperatures Recorded by TP-6 on September 17, 2025	B-8
Figure B - 12 Average Temperatures Recorded by TP-6 on September 24, 2025	. B-8
Figure B - 13 Average Temperatures Recorded by TP-7 on September 3, 2025	. B-9
Figure B - 14 Average Temperatures Recorded by TP-7 on September 10, 2025	. B-9
Figure B - 15 Average Temperatures Recorded by TP-7 on September 17, 2025	B-10
Figure B - 16 Average Temperatures Recorded by TP-7 on September 24, 2025	B-10
Figure B - 17 Average Temperatures Recorded by TP-8 on September 3, 2025	B-11
Figure B - 18 Average Temperatures Recorded by TP-8 on September 10, 2025	B-11
Figure B - 19 Average Temperatures Recorded by TP-8 on September 17, 2025	B-12
Figure B - 20 Average Temperatures Recorded by TP-8 on September 24, 2025	B-12
Figure B - 21 Average Temperatures Recorded by TP-9 on September 3, 2025	B-13
Figure B - 22 Average Temperatures Recorded by TP-9 on September 10, 2025	B-13
Figure B - 23 Average Temperatures Recorded by TP-9 on September 17, 2025	B-14
Figure B - 24 Average Temperatures Recorded by TP-9 on September 24, 2025	B-14

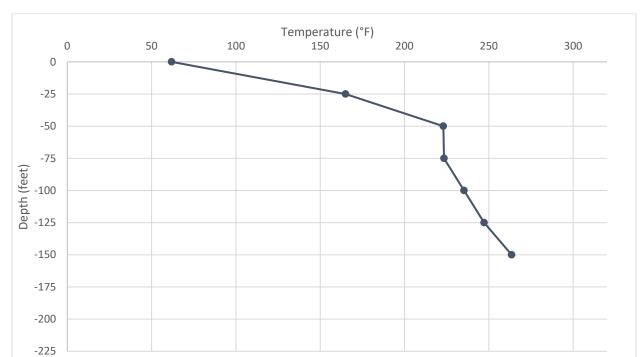
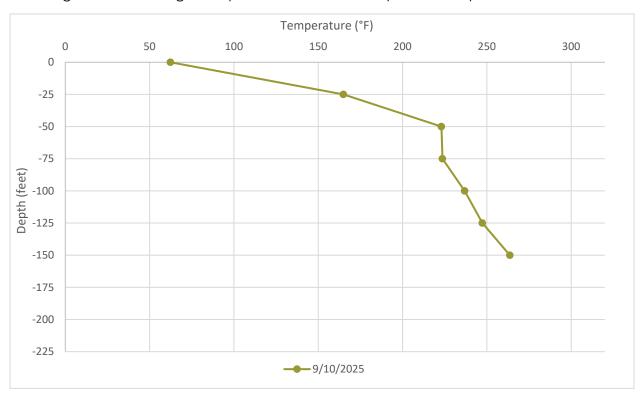



Figure B - 1 Average Temperatures Recorded by TP-1 on September 3, 2025

Figure B - 2 Average Temperatures Recorded by TP-1 on September 10, 2025

9/3/2025

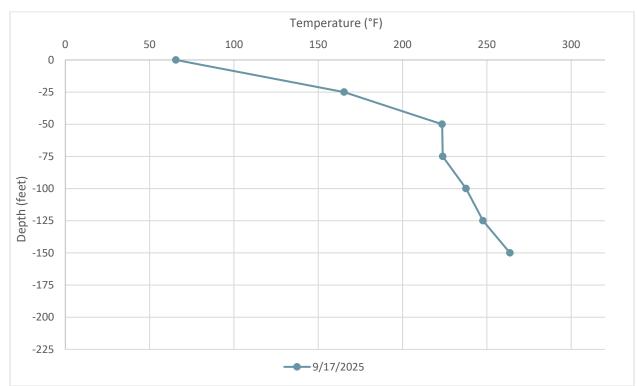
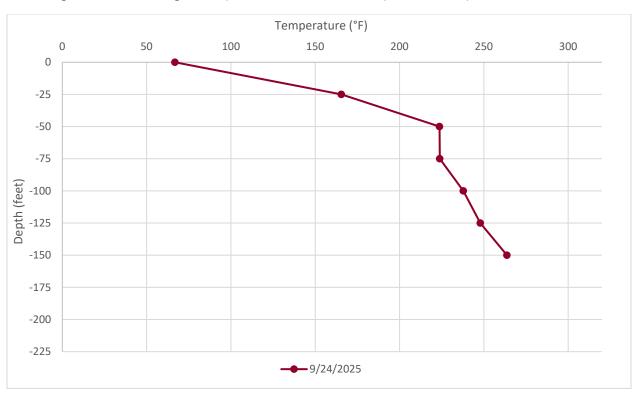



Figure B - 3 Average Temperatures Recorded by TP-1 on September 17, 2025

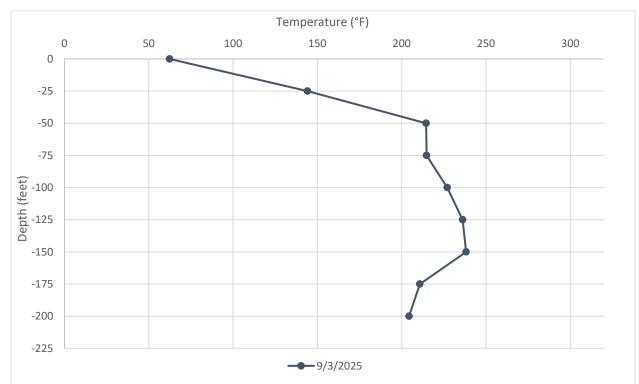
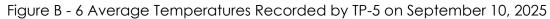
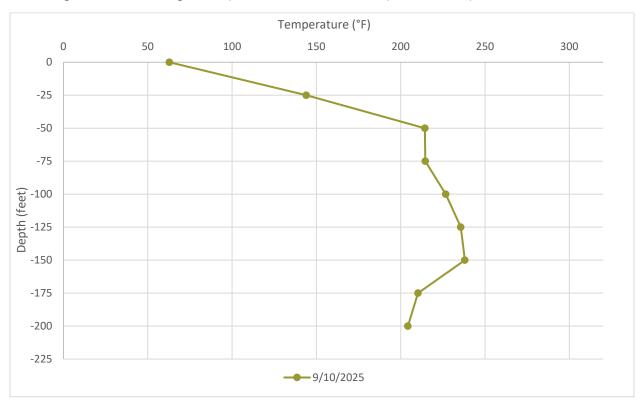




Figure B - 5 Average Temperatures Recorded by TP-5 on September 3, 2025

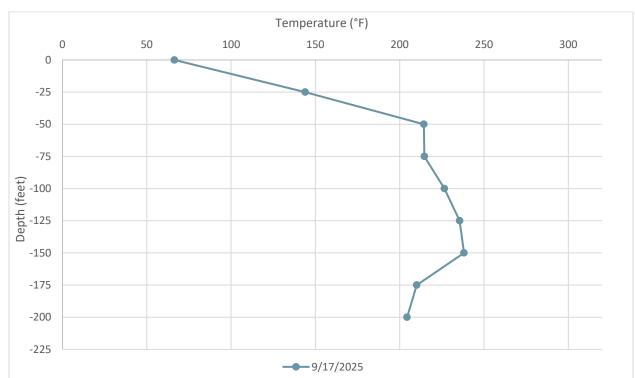
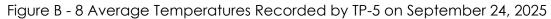
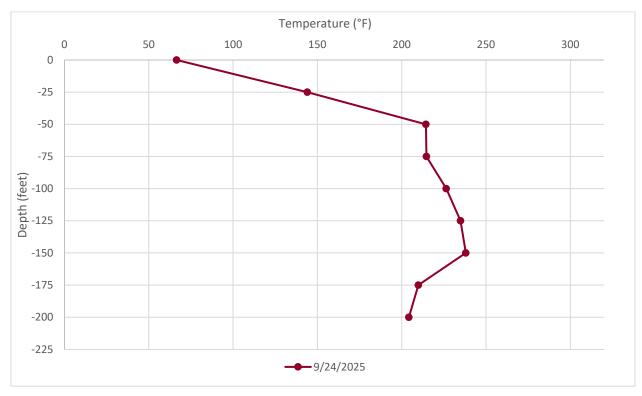




Figure B - 7 Average Temperatures Recorded by TP-5 on September 17, 2025

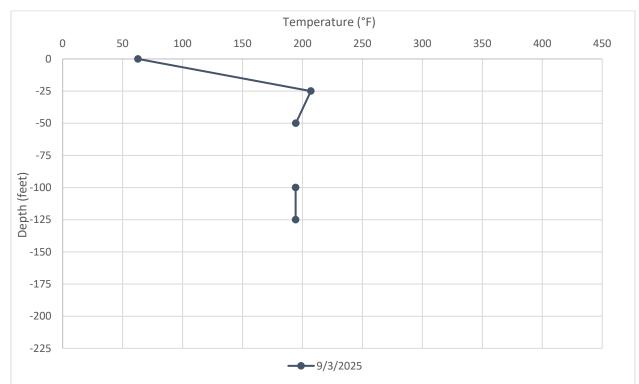
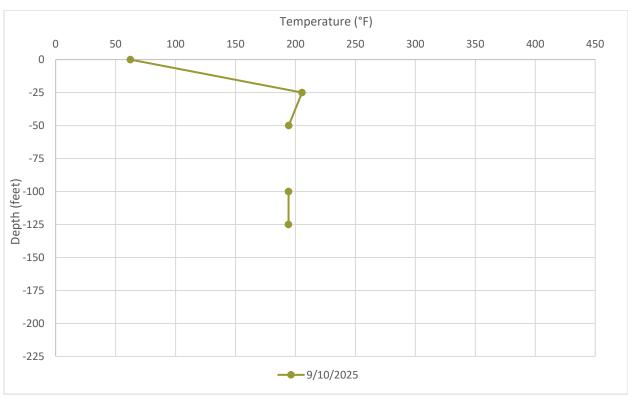



Figure B - 9 Average Temperatures Recorded by TP-6 on September 3, 2025

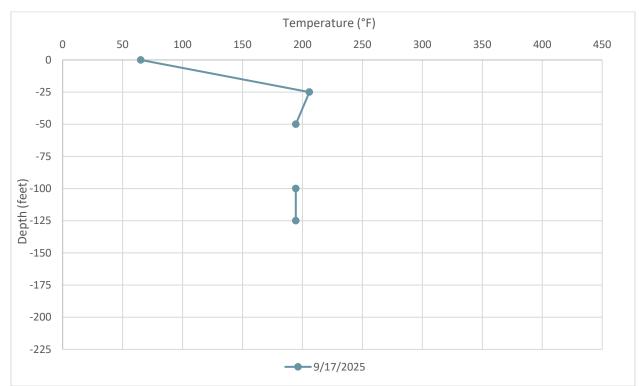
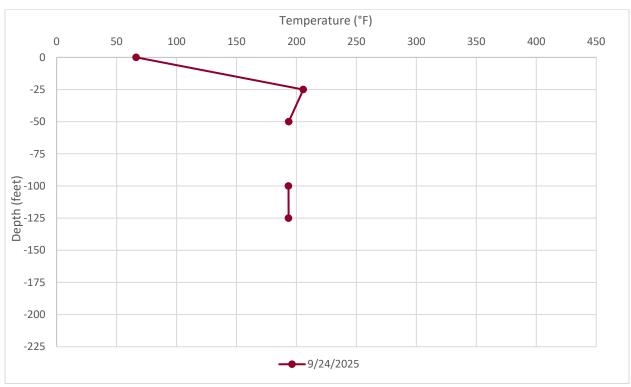



Figure B - 11 Average Temperatures Recorded by TP-6 on September 17, 2025

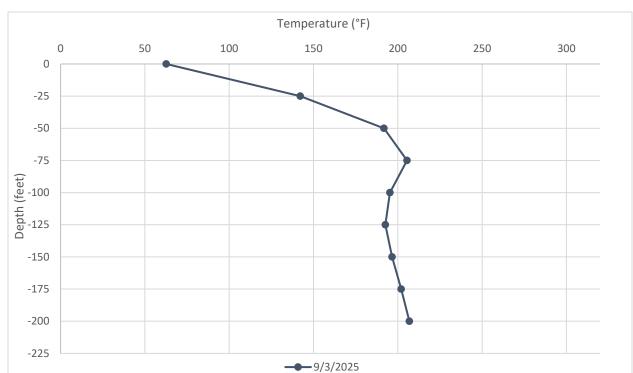
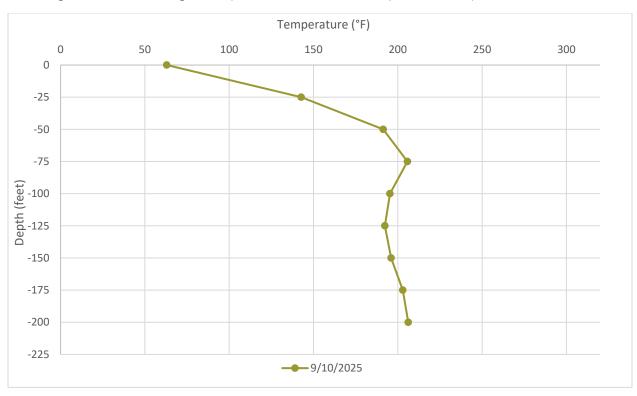



Figure B - 13 Average Temperatures Recorded by TP-7 on September 3, 2025

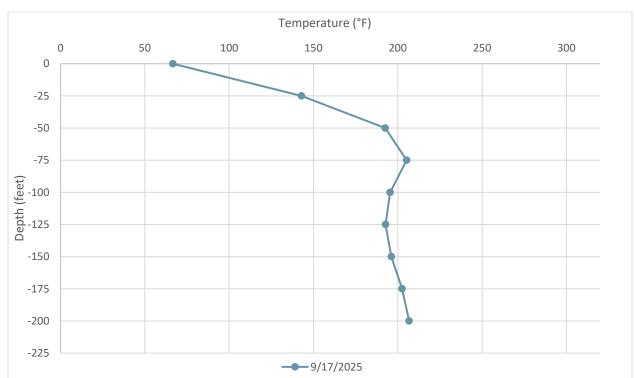
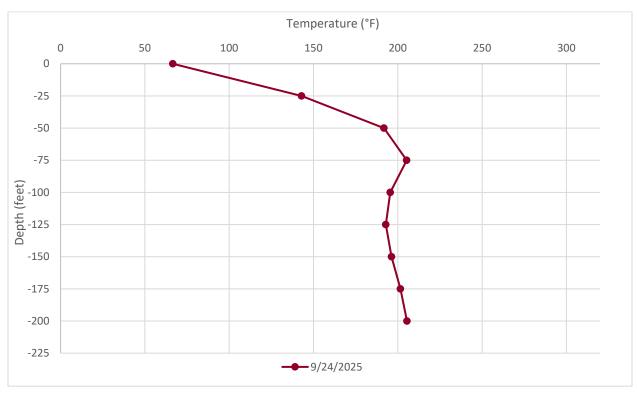



Figure B - 15 Average Temperatures Recorded by TP-7 on September 17, 2025

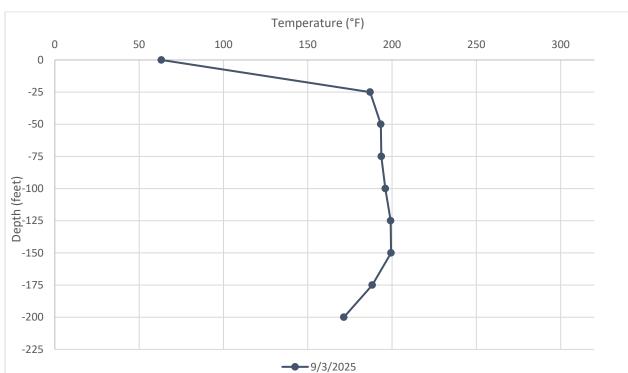
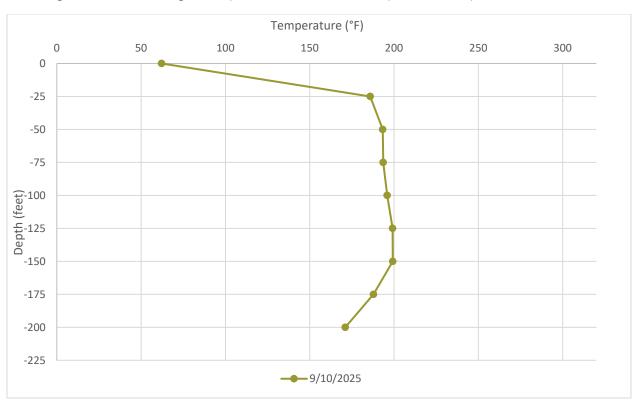



Figure B - 17 Average Temperatures Recorded by TP-8 on September 3, 2025

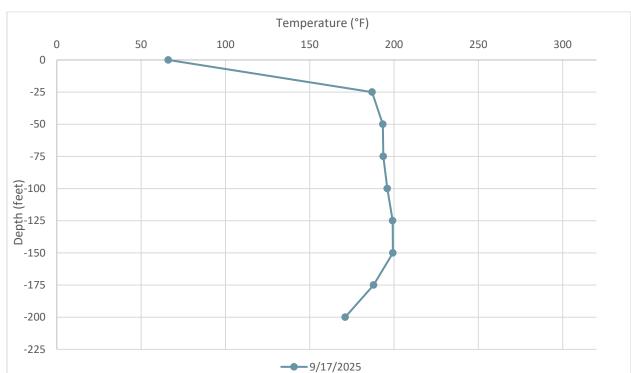
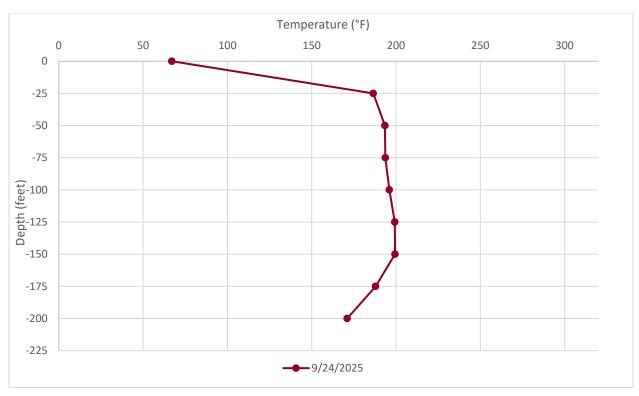



Figure B - 19 Average Temperatures Recorded by TP-8 on September 17, 2025

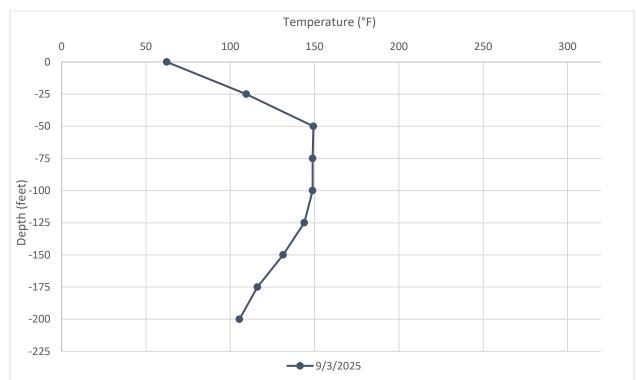
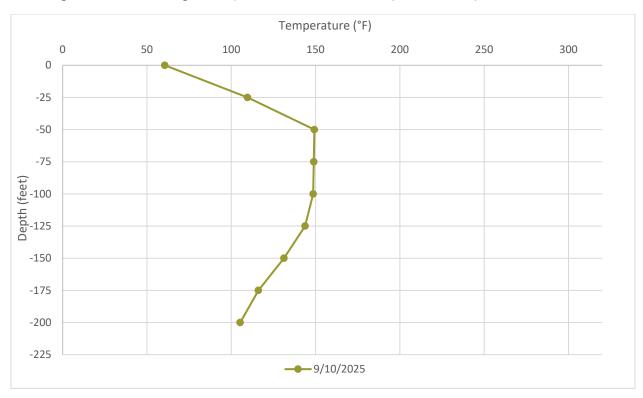



Figure B - 21 Average Temperatures Recorded by TP-9 on September 3, 2025

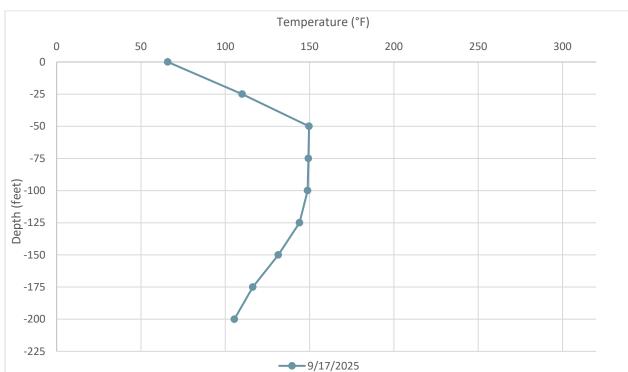
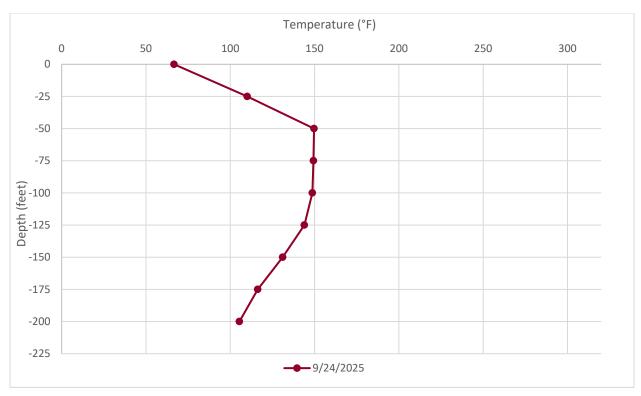



Figure B - 23 Average Temperatures Recorded by TP-9 on September 17, 2025

Appendix C

Daily Wellhead Temperature Averages

The data provided in this report represent initial readings provided by field instrumentation without Validation, analysis, quality assurance review, or context based on operating conditions. This report is subject to revision following quality assurance review and an analysis of operating conditions. SCS will continue to provide a supplemental report with additional information and further analysis on a monthly basis at a minimum.

SCS ENGINEERS

07222143.00 | October 3, 2025

274 Granite Run Drive Lancaster, PA 17601 717-550-6330

		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	80.6	69.5	93.8
Sep 2	80.6	68.7	94.1
Sep 3	77.4	71.1	88.0
Sep 4	76.2	72.7	89.8
Sep 5	80.9	71.6	93.0
Sep 6	80.0	73.8	91.0
Sep 7	75.8	67.4	88.3
Sep 8	74.8	61.6	90.2
Sep 9	73.7	63.7	89.1
Sep 10	73.0	59.6	89.2
Sep 11	74.5	60.4	90.8
Sep 12	76.0	61.4	93.2
Sep 13	77.4	64.5	93.8
Sep 14	78.1	65.4	93.9
Sep 15	76.8	66.0	93.7
Sep 16	75.4	68.0	90.0
Sep 17	75.6	62.6	90.3
Sep 18	78.6	64.0	95.1
Sep 19	78.7	64.6	95.5
Sep 20	78.5	66.5	97.8
Sep 21	78.6	67.2	95.0
Sep 22	80.8	67.5	98.1
Sep 23	85.1	77.1	94.4
Sep 24	83.0	78.7	87.5
Sep 25	84.7	80.8	93.9
Sep 26	85.7	80.2	97.0
Sep 27	83.1	78.0	95.1
Sep 28	83.4	76.2	93.8
Sep 29	82.6	74.9	93.5
Summary	79.0	73.0	85.7

.			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	74.8	57.9	100.4
Sep 2	73.2	55.5	95.6
Sep 3	68.6	60.4	85.8
Sep 4	65.1	59.7	83.0
Sep 5	72.8	59.0	92.2
Sep 6	71.1	64.7	86.0
Sep 7	67.6	56.0	84.3
Sep 8	67.2	49.7	91.8
Sep 9	68.0	50.3	90.8
Sep 10	69.5	51.8	91.5
Sep 11	71.3	52.6	93.4
Sep 12	73.5	53.6	100.1
Sep 13	75.5	57.8	100.0
Sep 14	75.4	58.4	97.9
Sep 15	73.9	59.3	101.1
Sep 16	71.6	62.8	87.3
Sep 17	71.8	55.5	90.8
Sep 18	76.8	57.9	103.0
Sep 19	77.5	58.2	106.3
Sep 20	76.6	60.6	104.7
Sep 21	76.0	62.4	99.4
Sep 22	75.9	62.3	99.2
Sep 23	75.4	64.6	94.3
Sep 24	70.6	66.1	77.8
Sep 25	73.2	67.0	86.9
Sep 26	75.3	65.4	98.3
Sep 27	72.3	64.5	93.9
Sep 28	73.3	60.9	95.8
Sep 29	72.9	61.2	91.1
Summary	72.6	65.1	77.5

		,g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	76.4	63.6	96.1
Sep 2	75.6	62.0	94.9
Sep 3	70.7	64.7	83.2
Sep 4	68.6	65.0	81.4
Sep 5	74.8	64.9	90.1
Sep 6	73.3	68.2	85.5
Sep 7	70.3	61.4	85.7
Sep 8	70.5	56.5	91.4
Sep 9	70.9	57.1	91.3
Sep 10	71.6	57.4	91.2
Sep 11	73.2	57.7	93.4
Sep 12	75.0	58.9	98.6
Sep 13	76.8	62.1	99.0
Sep 14	76.6	62.4	97.8
Sep 15	75.0	63.4	95.4
Sep 16	73.7	66.2	88.8
Sep 17	73.6	60.9	89.5
Sep 18	78.0	62.6	103.3
Sep 19	78.4	62.7	103.7
Sep 20	78.1	64.9	105.2
Sep 21	78.0	66.0	99.9
Sep 22	77.2	66.2	96.3
Sep 23	75.9	68.1	89.2
Sep 24	72.9	69.4	78.4
Sep 25	75.2	70.7	87.5
Sep 26	77.3	69.9	92.7
Sep 27	74.2	68.0	85.7
Sep 28	75.9	65.8	96.3
Sep 29	74.9	65.7	88.8
Summary	74.6	68.6	78.4

		., g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	111.2	109.1	114.6
Sep 2	111.2	108.4	115.1
Sep 3	109.8	106.6	113.2
Sep 4	109.5	107.1	112.7
Sep 5	110.6	108.1	113.6
Sep 6	110.2	106.3	112.6
Sep 7	109.5	105.7	113.2
Sep 8	109.6	106.4	113.0
Sep 9	110.0	107.0	114.2
Sep 10	109.1	99.7	113.8
Sep 11	108.9	105.5	113.8
Sep 12	107.8	102.8	114.3
Sep 13	108.8	104.1	114.6
Sep 14	109.2	105.5	114.1
Sep 15	107.6	104.8	112.9
Sep 16	107.2	104.2	111.6
Sep 17	107.2	103.4	112.4
Sep 18	108.5	104.3	115.2
Sep 19	108.5	104.0	115.4
Sep 20	108.1	104.2	115.1
Sep 21	108.3	104.5	114.4
Sep 22	108.7	104.3	114.1
Sep 23	106.5	102.8	109.1
Sep 24	106.9	103.8	109.2
Sep 25	107.8	106.5	110.9
Sep 26	108.6	106.8	112.9
Sep 27	107.7	106.0	111.2
Sep 28	107.9	105.1	112.9
Sep 29	107.5	105.6	111.0
Summary	108.7	106.5	111.2

		., g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	119.5	118.2	121.2
Sep 2	119.4	118.4	121.2
Sep 3	118.9	117.6	120.1
Sep 4	118.8	117.9	120.2
Sep 5	119.2	118.1	120.2
Sep 6	118.9	117.4	120.1
Sep 7	118.2	116.8	119.6
Sep 8	118.2	117.0	120.0
Sep 9	118.3	116.6	120.0
Sep 10	118.4	117.5	120.0
Sep 11	118.5	117.1	120.2
Sep 12	118.6	117.4	120.4
Sep 13	118.9	117.6	120.5
Sep 14	118.9	117.8	120.4
Sep 15	118.7	117.6	120.4
Sep 16	118.6	117.9	120.1
Sep 17	118.6	117.7	119.9
Sep 18	118.8	117.6	120.6
Sep 19	119.0	117.9	120.5
Sep 20	118.9	117.6	120.8
Sep 21	118.9	117.9	120.9
Sep 22	119.0	117.2	120.5
Sep 23	118.9	117.7	120.0
Sep 24	118.8	117.6	119.2
Sep 25	118.8	118.3	119.6
Sep 26	119.0	118.1	120.5
Sep 27	118.7	118.1	120.4
Sep 28	118.8	117.8	120.2
Sep 29	118.9	117.8	120.5
Summary	118.8	118.2	119.5

		, ge.	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	76.1	65.0	92.8
Sep 2	76.7	62.7	96.0
Sep 3	71.4	65.1	84.5
Sep 4	69.7	65.6	85.4
Sep 5	75.7	65.7	90.5
Sep 6	76.0	69.9	87.5
Sep 7	73.0	64.0	86.4
Sep 8	71.4	59.2	88.3
Sep 9	71.1	59.3	87.9
Sep 10	72.3	59.3	88.8
Sep 11	72.9	58.7	89.8
Sep 12	72.9	57.0	94.9
Sep 13	74.8	60.8	95.3
Sep 14	75.7	62.2	93.7
Sep 15	74.7	62.5	94.3
Sep 16	73.3	65.7	91.0
Sep 17	72.5	59.3	89.0
Sep 18	75.8	61.1	96.6
Sep 19	76.4	61.1	98.4
Sep 20	76.6	63.2	98.1
Sep 21	77.6	65.8	98.0
Sep 22	76.6	65.8	93.5
Sep 23	74.1	66.7	86.0
Sep 24	72.4	67.9	79.0
Sep 25	74.4	69.3	86.0
Sep 26	75.7	68.1	92.0
Sep 27	72.6	65.9	89.8
Sep 28	73.6	63.8	90.5
Sep 29	72.5	63.3	86.6
Summary	74.1	69.7	77.6

		,g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	69.5	54.7	88.5
Sep 2	70.0	52.5	90.7
Sep 3	65.5	59.5	77.8
Sep 4	63.1	57.5	79.7
Sep 5	69.4	57.2	87.2
Sep 6	69.7	64.3	82.2
Sep 7	64.9	52.5	80.2
Sep 8	64.0	47.1	84.8
Sep 9	63.2	47.0	86.1
Sep 10	65.5	49.2	87.6
Sep 11	67.0	49.7	87.6
Sep 12	68.4	50.7	92.5
Sep 13	70.2	54.9	91.9
Sep 14	71.5	55.9	92.4
Sep 15	71.2	56.4	93.5
Sep 16	68.7	60.0	87.0
Sep 17	68.4	53.0	86.7
Sep 18	72.1	55.5	95.8
Sep 19	72.7	55.8	97.8
Sep 20	72.5	58.3	97.2
Sep 21	74.0	60.3	93.9
Sep 22	73.3	60.3	92.4
Sep 23	72.0	63.6	86.9
Sep 24	68.9	64.3	75.8
Sep 25	71.3	65.7	83.1
Sep 26	72.8	64.0	92.3
Sep 27	69.8	61.0	89.5
Sep 28	70.7	59.3	90.1
Sep 29	69.4	58.5	87.4
Summary	69.3	63.1	74.0

		., 9	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	69.4	55.2	88.8
Sep 2	99.6	53.3	163.5
Sep 3	105.5	61.9	162.0
Sep 4	111.6	62.8	175.8
Sep 5	123.3	90.3	176.2
Sep 6	73.1	65.3	89.5
Sep 7	63.5	53.0	78.7
Sep 8	80.1	47.5	174.3
Sep 9	83.0	46.8	174.6
Sep 10	124.9	49.7	175.5
Sep 11	169.4	167.1	171.6
Sep 12	167.0	165.9	167.8
Sep 13	165.7	164.8	166.4
Sep 14	164.6	163.9	165.2
Sep 15	163.6	163.0	164.4
Sep 16	163.0	162.6	163.5
Sep 17	162.4	162.0	163.0
Sep 18	162.1	161.4	163.0
Sep 19	161.7	161.0	162.9
Sep 20	161.4	160.7	162.5
Sep 21	161.1	160.2	162.1
Sep 22	160.8	159.3	161.8
Sep 23	160.2	159.3	160.8
Sep 24	160.1	159.3	160.4
Sep 25	160.0	159.6	160.5
Sep 26	160.0	159.5	160.7
Sep 27	159.6	158.9	160.1
Sep 28	159.1	158.5	159.8
Sep 29	158.9	158.1	159.3
Summary	138.4	63.5	169.4

		,, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	75.0	63.7	89.3
Sep 2	82.8	61.5	113.3
Sep 3	81.3	67.9	110.3
Sep 4	75.3	66.3	114.5
Sep 5	84.6	61.2	120.2
Sep 6	84.6	78.1	93.9
Sep 7	79.9	71.4	91.9
Sep 8	88.2	69.6	134.7
Sep 9	88.9	65.3	135.2
Sep 10	106.5	69.3	135.5
Sep 11	121.8	118.4	125.3
Sep 12	118.6	116.8	121.1
Sep 13	117.7	116.1	120.5
Sep 14	116.9	115.1	119.5
Sep 15	116.4	114.8	119.4
Sep 16	116.0	115.1	118.1
Sep 17	115.5	113.6	117.6
Sep 18	115.9	113.4	119.3
Sep 19	115.7	113.3	119.0
Sep 20	115.6	113.4	118.6
Sep 21	115.4	113.4	118.6
Sep 22	115.0	112.2	117.9
Sep 23	114.6	113.1	116.5
Sep 24	113.6	112.4	114.4
Sep 25	112.9	112.0	114.6
Sep 26	112.7	111.5	115.6
Sep 27	112.1	110.6	114.7
Sep 28	111.6	110.1	114.2
Sep 29	111.7	110.5	113.7
Summary	104.7	75.0	121.8

_			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	68.7	54.9	88.9
Sep 2	69.1	53.3	93.2
Sep 3	64.6	59.0	78.2
Sep 4	62.4	56.9	79.8
Sep 5	69.3	57.1	87.8
Sep 6	69.2	64.0	83.3
Sep 7	64.1	51.6	83.0
Sep 8	62.6	47.5	85.9
Sep 9	62.6	47.0	85.9
Sep 10	64.8	49.8	87.5
Sep 11	66.4	49.2	89.9
Sep 12	68.0	50.4	92.7
Sep 13	70.0	54.6	94.9
Sep 14	71.0	55.4	95.3
Sep 15	70.0	56.2	93.6
Sep 16	68.7	59.4	85.8
Sep 17	68.0	52.6	88.2
Sep 18	71.5	55.0	96.5
Sep 19	72.2	55.3	97.2
Sep 20	73.1	58.1	100.3
Sep 21	73.9	60.8	95.9
Sep 22	73.3	60.3	93.6
Sep 23	71.3	62.9	85.8
Sep 24	68.6	63.5	75.5
Sep 25	71.0	65.5	84.1
Sep 26	72.6	63.7	90.2
Sep 27	69.0	61.8	85.2
Sep 28	70.3	59.0	88.6
Sep 29	69.2	58.8	86.1
Summary	68.8	62.4	73.9

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	157.1	156.0	158.4
Sep 2	157.5	150.8	160.1
Sep 3	157.2	152.4	158.4
Sep 4	157.1	155.1	158.9
Sep 5	158.4	156.4	161.0
Sep 6	156.8	155.2	159.5
Sep 7	154.7	152.5	156.2
Sep 8	155.1	153.3	156.9
Sep 9	154.9	153.8	156.8
Sep 10	154.8	152.5	156.8
Sep 11	155.7	153.4	158.0
Sep 12	158.4	156.0	160.7
Sep 13	158.1	155.8	159.7
Sep 14	157.9	156.1	160.0
Sep 15	158.0	156.0	160.4
Sep 16	158.2	157.0	159.2
Sep 17	157.9	155.9	159.4
Sep 18	158.5	156.3	160.8
Sep 19	159.0	156.3	162.1
Sep 20	159.6	157.1	162.4
Sep 21	159.3	157.4	161.4
Sep 22	158.8	156.9	161.1
Sep 23	159.0	157.0	160.3
Sep 24	158.1	156.4	159.5
Sep 25	158.2	156.9	159.2
Sep 26	158.7	156.9	160.3
Sep 27	158.5	157.0	159.8
Sep 28	158.2	156.2	159.9
Sep 29	158.0	153.5	159.3
Summary	157.6	154.7	159.6

		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	133.2	126.1	144.9
Sep 2	134.9	124.6	154.8
Sep 3	128.8	115.5	141.1
Sep 4	127.3	120.3	138.7
Sep 5	130.3	116.2	143.1
Sep 6	127.0	111.5	134.7
Sep 7	121.8	106.6	135.6
Sep 8	123.6	109.8	138.2
Sep 9	125.1	114.2	138.0
Sep 10	122.9	111.9	135.3
Sep 11	124.1	114.4	139.7
Sep 12	128.4	112.9	145.7
Sep 13	129.6	115.5	144.8
Sep 14	129.4	117.4	143.1
Sep 15	128.3	116.7	141.1
Sep 16	127.3	120.3	137.0
Sep 17	127.1	116.4	139.2
Sep 18	130.2	118.5	145.9
Sep 19	130.7	117.0	145.5
Sep 20	130.1	119.1	144.6
Sep 21	130.2	117.8	143.6
Sep 22	131.3	117.5	144.0
Sep 23	129.2	117.3	137.0
Sep 24	127.6	117.6	132.2
Sep 25	130.2	122.9	138.3
Sep 26	132.9	124.8	143.3
Sep 27	130.5	121.9	140.8
Sep 28	129.9	120.1	140.2
Sep 29	128.4	122.9	137.9
Summary	128.6	121.8	134.9

		. 3	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	71.9	58.5	91.0
Sep 2	71.2	56.1	95.2
Sep 3	67.5	61.6	80.4
Sep 4	65.2	60.6	79.8
Sep 5	71.4	60.3	87.7
Sep 6	71.1	65.6	83.1
Sep 7	66.2	54.9	83.0
Sep 8	64.8	48.9	84.9
Sep 9	65.4	50.1	86.9
Sep 10	67.3	51.5	88.5
Sep 11	68.8	51.6	90.8
Sep 12	69.9	52.1	93.6
Sep 13	72.3	56.6	95.0
Sep 14	73.1	57.8	95.2
Sep 15	71.8	58.6	94.4
Sep 16	70.3	61.8	88.5
Sep 17	69.7	55.2	88.1
Sep 18	73.6	57.2	96.4
Sep 19	74.1	57.5	99.0
Sep 20	74.6	59.9	99.5
Sep 21	75.5	62.5	99.0
Sep 22	74.5	61.9	93.7
Sep 23	72.9	64.3	86.5
Sep 24	70.8	66.0	77.4
Sep 25	72.8	67.4	87.4
Sep 26	74.5	66.4	90.4
Sep 27	71.1	64.1	86.0
Sep 28	72.1	61.2	90.3
Sep 29	71.2	61.1	85.6
Summary	70.9	64.8	75.5

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	147.0	144.4	151.6
Sep 2	147.3	143.8	155.5
Sep 3	146.1	136.4	149.4
Sep 4	145.6	136.3	148.1
Sep 5	147.2	144.5	151.3
Sep 6	145.2	133.9	148.0
Sep 7	141.4	128.3	147.2
Sep 8	144.1	139.8	151.0
Sep 9	144.6	138.7	152.4
Sep 10	145.4	139.4	152.7
Sep 11	145.7	140.3	153.2
Sep 12	144.5	135.9	155.9
Sep 13	149.3	141.3	159.6
Sep 14	150.1	142.8	159.9
Sep 15	148.2	141.2	156.8
Sep 16	147.5	144.2	151.6
Sep 17	146.5	141.6	151.7
Sep 18	149.8	140.2	160.2
Sep 19	150.0	142.0	160.7
Sep 20	150.0	144.8	157.9
Sep 21	150.1	142.4	158.7
Sep 22	148.8	129.6	157.7
Sep 23	147.4	143.1	152.2
Sep 24	148.1	140.7	151.7
Sep 25	149.9	146.2	154.6
Sep 26	151.4	147.4	158.3
Sep 27	149.6	140.5	153.8
Sep 28	147.6	143.7	155.7
Sep 29	147.1	139.2	151.9
Summary	147.4	141.4	151.4

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	175.7	175.1	176.7
Sep 2	176.0	174.6	177.5
Sep 3	176.1	175.0	177.0
Sep 4	176.0	175.1	177.0
Sep 5	176.2	175.3	177.2
Sep 6	176.0	175.4	177.0
Sep 7	175.0	174.3	175.9
Sep 8	175.2	174.1	176.7
Sep 9	175.8	174.9	177.1
Sep 10	175.9	175.0	177.0
Sep 11	176.3	175.2	177.4
Sep 12	177.3	176.1	178.7
Sep 13	177.9	177.1	178.9
Sep 14	178.1	177.3	178.8
Sep 15	178.2	177.4	178.9
Sep 16	178.6	177.7	179.4
Sep 17	179.1	178.4	180.0
Sep 18	179.4	178.6	180.3
Sep 19	179.7	178.8	180.7
Sep 20	180.1	179.4	181.1
Sep 21	180.1	179.2	181.1
Sep 22	180.2	179.0	181.3
Sep 23	180.3	179.4	181.0
Sep 24	180.5	180.0	181.1
Sep 25	180.7	180.3	181.2
Sep 26	181.0	180.3	181.8
Sep 27	181.1	180.6	181.7
Sep 28	181.0	180.3	181.8
Sep 29	181.2	180.5	181.9
Summary	178.2	175.0	181.2

		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	86.1	74.9	103.7
Sep 2	86.6	72.2	109.9
Sep 3	81.4	74.0	95.8
Sep 4	78.1	74.6	93.5
Sep 5	85.0	74.2	102.4
Sep 6	84.2	76.6	96.4
Sep 7	79.4	65.6	99.1
Sep 8	79.1	63.8	102.3
Sep 9	79.6	64.8	102.4
Sep 10	81.5	66.5	102.9
Sep 11	82.2	66.2	103.8
Sep 12	83.3	63.8	110.4
Sep 13	85.2	70.2	109.4
Sep 14	85.8	70.8	106.0
Sep 15	84.4	70.2	107.2
Sep 16	83.5	74.9	97.3
Sep 17	82.5	67.7	102.6
Sep 18	86.7	70.1	111.0
Sep 19	87.3	69.2	114.9
Sep 20	87.4	72.3	113.3
Sep 21	88.1	75.2	110.5
Sep 22	87.3	75.0	106.7
Sep 23	85.4	74.3	100.3
Sep 24	82.8	76.4	88.8
Sep 25	85.8	80.1	97.2
Sep 26	87.7	79.4	107.1
Sep 27	83.4	75.3	103.6
Sep 28	84.3	73.3	103.1
Sep 29	82.5	74.1	98.3
Summary	84.0	78.1	88.1

		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	106.4	105.3	108.2
Sep 2	106.2	104.9	108.2
Sep 3	105.5	104.4	106.8
Sep 4	105.3	104.4	106.8
Sep 5	106.2	105.1	107.7
Sep 6	106.3	105.0	107.3
Sep 7	106.0	104.8	107.8
Sep 8	105.9	104.6	107.8
Sep 9	105.7	104.6	107.8
Sep 10	105.8	104.5	107.6
Sep 11	105.7	104.1	107.9
Sep 12	105.5	103.4	108.3
Sep 13	105.8	104.2	108.5
Sep 14	105.9	104.2	108.2
Sep 15	105.7	104.2	108.4
Sep 16	105.6	104.6	107.6
Sep 17	105.5	103.8	107.7
Sep 18	102.6	26.9	108.8
Sep 19	106.1	104.0	109.3
Sep 20	106.0	104.3	109.0
Sep 21	106.2	104.7	108.9
Sep 22	106.2	104.4	108.5
Sep 23	106.1	104.7	107.9
Sep 24	105.9	104.8	106.8
Sep 25	106.1	105.5	107.3
Sep 26	106.3	105.1	108.6
Sep 27	105.8	104.7	108.2
Sep 28	106.0	104.6	108.3
Sep 29	105.8	104.8	108.0
Summary	105.8	102.6	106.4

		., g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	116.2	115.3	117.8
Sep 2	116.3	114.9	118.6
Sep 3	115.5	114.6	116.6
Sep 4	115.4	114.9	116.5
Sep 5	116.2	115.3	117.3
Sep 6	116.2	115.4	117.0
Sep 7	115.8	114.8	116.9
Sep 8	115.5	114.5	116.9
Sep 9	111.3	26.1	116.5
Sep 10	115.1	114.0	117.0
Sep 11	115.1	113.7	117.0
Sep 12	115.3	113.4	117.7
Sep 13	115.8	114.4	118.1
Sep 14	115.8	114.3	118.0
Sep 15	115.7	114.1	117.9
Sep 16	115.7	114.9	117.7
Sep 17	115.6	114.3	117.5
Sep 18	116.2	114.6	118.6
Sep 19	116.3	114.6	118.8
Sep 20	116.4	114.7	119.1
Sep 21	116.5	115.2	118.8
Sep 22	116.6	115.0	118.9
Sep 23	116.5	115.6	117.9
Sep 24	116.6	115.7	117.3
Sep 25	116.9	116.3	117.8
Sep 26	117.2	116.4	119.0
Sep 27	116.9	115.8	118.8
Sep 28	117.0	116.0	118.7
Sep 29	116.7	115.7	118.6
Summary	115.9	111.3	117.2

		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	126.0	122.6	130.9
Sep 2	111.5	94.5	125.2
Sep 3	94.5	87.4	101.6
Sep 4	91.3	86.1	98.1
Sep 5	92.8	86.6	100.5
Sep 6	92.5	86.1	98.0
Sep 7	89.7	83.7	96.9
Sep 8	89.8	82.5	99.4
Sep 9	89.9	84.0	100.4
Sep 10	89.9	83.1	98.7
Sep 11	88.7	81.4	99.2
Sep 12	86.3	75.5	99.6
Sep 13	87.4	78.4	99.9
Sep 14	87.2	78.4	99.5
Sep 15	85.7	78.8	99.0
Sep 16	84.4	79.0	95.2
Sep 17	109.4	75.3	161.6
Sep 18	162.6	160.1	165.4
Sep 19	164.4	161.7	168.0
Sep 20	165.7	163.5	168.3
Sep 21	157.7	135.0	167.8
Sep 22	151.3	128.6	166.1
Sep 23	165.0	162.7	166.6
Sep 24	165.5	163.7	166.3
Sep 25	166.8	165.7	167.9
Sep 26	168.1	166.8	169.9
Sep 27	168.2	166.8	169.3
Sep 28	167.6	165.8	169.1
Sep 29	167.5	166.9	168.6
Summary	123.0	84.4	168.2

		, , , , ,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	155.5	154.5	156.9
Sep 2	156.9	153.7	162.2
Sep 3	155.3	153.9	156.3
Sep 4	155.9	153.1	162.3
Sep 5	155.3	153.4	161.0
Sep 6	151.8	149.7	154.2
Sep 7	146.7	144.2	149.4
Sep 8	146.1	142.1	155.1
Sep 9	152.3	143.3	160.4
Sep 10	147.3	144.6	156.5
Sep 11	144.7	143.0	146.4
Sep 12	147.6	142.5	159.2
Sep 13	145.4	144.1	147.0
Sep 14	144.6	143.3	146.3
Sep 15	150.4	143.1	161.9
Sep 16	147.9	147.1	149.1
Sep 17	156.3	146.4	163.8
Sep 18	149.9	147.6	152.4
Sep 19	153.6	146.1	163.1
Sep 20	149.7	147.9	151.6
Sep 21	149.4	146.3	158.7
Sep 22	149.7	145.9	161.0
Sep 23	148.8	146.3	156.9
Sep 24	150.9	144.7	161.6
Sep 25	151.3	147.2	162.3
Sep 26	156.5	147.2	163.4
Sep 27	151.1	148.7	155.7
Sep 28	148.4	147.4	150.0
Sep 29	154.1	146.7	162.2
Summary	150.8	144.6	156.9

		., g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	112.2	110.9	114.6
Sep 2	112.2	110.9	114.1
Sep 3	111.7	109.9	113.3
Sep 4	111.3	110.2	112.8
Sep 5	111.8	110.7	113.4
Sep 6	111.4	109.5	112.5
Sep 7	110.7	108.8	112.6
Sep 8	110.9	109.1	113.6
Sep 9	110.8	109.5	113.5
Sep 10	110.7	108.7	113.2
Sep 11	111.0	109.2	113.6
Sep 12	111.3	109.2	114.0
Sep 13	111.6	110.0	114.0
Sep 14	111.7	110.0	113.9
Sep 15	111.3	110.0	113.8
Sep 16	111.3	110.3	112.8
Sep 17	111.4	109.8	113.3
Sep 18	111.9	109.8	114.6
Sep 19	112.0	109.9	115.3
Sep 20	111.8	110.1	115.1
Sep 21	111.8	110.2	114.5
Sep 22	111.7	108.8	114.2
Sep 23	111.5	109.0	113.8
Sep 24	111.3	109.8	112.3
Sep 25	112.2	111.1	114.5
Sep 26	112.4	110.9	115.3
Sep 27	111.8	110.8	114.0
Sep 28	111.7	109.8	114.8
Sep 29	111.8	109.8	114.5
Summary	111.6	110.7	112.4

		, ge.	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	68.7	54.3	87.1
Sep 2	67.7	51.5	89.8
Sep 3	64.4	59.4	77.7
Sep 4	62.3	57.4	79.9
Sep 5	68.9	57.0	85.4
Sep 6	68.7	63.6	83.3
Sep 7	63.5	52.0	79.9
Sep 8	62.5	46.2	84.1
Sep 9	62.1	46.1	82.0
Sep 10	64.1	48.1	86.0
Sep 11	66.3	49.2	89.4
Sep 12	68.2	50.7	91.9
Sep 13	69.6	54.3	91.9
Sep 14	70.3	55.3	92.9
Sep 15	69.9	56.2	92.5
Sep 16	68.1	59.3	85.3
Sep 17	68.1	52.5	88.9
Sep 18	71.3	54.9	96.8
Sep 19	72.1	55.2	95.1
Sep 20	72.4	58.1	96.3
Sep 21	73.9	59.6	93.1
Sep 22	72.4	60.0	91.4
Sep 23	71.4	63.1	85.2
Sep 24	68.2	63.8	74.2
Sep 25	70.7	65.5	84.9
Sep 26	72.7	64.0	89.9
Sep 27	68.9	62.1	86.0
Sep 28	70.5	59.0	87.5
Sep 29	69.9	58.4	86.7
Summary	68.5	62.1	73.9

		,g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	70.0	53.9	91.9
Sep 2	68.8	51.3	95.9
Sep 3	65.1	59.4	79.2
Sep 4	62.7	57.0	80.5
Sep 5	69.5	56.9	88.2
Sep 6	68.8	63.8	82.0
Sep 7	64.0	52.7	82.5
Sep 8	62.7	45.9	86.3
Sep 9	63.6	46.7	90.0
Sep 10	65.0	48.3	88.3
Sep 11	66.4	49.2	90.4
Sep 12	68.8	50.3	96.3
Sep 13	70.7	54.4	98.7
Sep 14	71.0	55.3	94.6
Sep 15	70.5	55.9	98.0
Sep 16	68.6	59.4	88.2
Sep 17	68.1	52.5	89.4
Sep 18	72.2	54.8	98.4
Sep 19	72.7	55.4	97.8
Sep 20	72.8	57.6	100.4
Sep 21	73.3	59.7	98.0
Sep 22	73.3	59.9	95.0
Sep 23	72.0	63.1	88.3
Sep 24	68.6	64.0	76.4
Sep 25	70.9	65.2	87.0
Sep 26	73.3	64.1	92.7
Sep 27	69.4	61.3	89.9
Sep 28	71.2	59.2	90.8
Sep 29	69.9	58.4	88.3
Summary	69.1	62.7	73.3

_		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	141.6	140.3	143.4
Sep 2	141.6	139.8	144.2
Sep 3	141.0	138.9	142.6
Sep 4	141.1	139.3	142.2
Sep 5	141.5	140.1	142.8
Sep 6	141.0	138.7	141.9
Sep 7	140.3	137.8	141.7
Sep 8	140.8	139.4	143.0
Sep 9	140.8	139.5	142.5
Sep 10	140.7	139.1	143.1
Sep 11	140.7	136.6	143.5
Sep 12	141.7	139.6	144.3
Sep 13	142.3	140.5	144.7
Sep 14	142.5	140.5	145.0
Sep 15	142.3	141.0	144.5
Sep 16	142.3	141.3	144.3
Sep 17	142.4	140.8	144.1
Sep 18	143.2	141.4	146.0
Sep 19	142.5	138.5	146.1
Sep 20	138.6	136.6	141.6
Sep 21	138.0	133.8	140.4
Sep 22	140.0	135.5	144.6
Sep 23	140.3	136.9	142.1
Sep 24	138.2	135.6	140.0
Sep 25	139.3	136.5	142.3
Sep 26	141.2	139.5	143.5
Sep 27	138.0	133.3	141.1
Sep 28	133.3	131.3	137.5
Sep 29	131.5	128.0	137.1
Summary	140.3	131.5	143.2

		., · g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	173.2	172.5	174.2
Sep 2	173.4	171.9	175.7
Sep 3	0.0	173.6	173.6
Sep 4	0.0	173.5	173.5
Sep 5	0.0	173.3	173.3
Sep 6	0.0	173.2	173.2
Sep 7	0.0	173.1	173.1
Sep 8	0.0	172.9	172.9
Sep 9	0.0	172.8	172.8
Sep 10	0.0	172.7	172.7
Sep 11	172.5	170.5	174.0
Sep 12	172.6	169.9	175.6
Sep 13	173.6	171.6	176.1
Sep 14	173.8	172.0	176.3
Sep 15	173.3	171.5	176.1
Sep 16	173.8	172.6	175.3
Sep 17	173.7	171.5	175.8
Sep 18	174.5	170.9	177.4
Sep 19	174.4	171.8	177.7
Sep 20	174.6	172.7	177.3
Sep 21	174.9	172.0	177.6
Sep 22	174.5	168.3	177.0
Sep 23	174.3	172.6	175.4
Sep 24	174.2	170.4	175.5
Sep 25	174.9	173.6	176.1
Sep 26	175.3	173.9	176.8
Sep 27	174.8	172.0	176.1
Sep 28	174.0	172.4	175.5
Sep 29	174.0	170.6	175.7
Summary	126.0	0.0	175.3

		,g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	163.5	161.4	166.2
Sep 2	165.2	161.9	169.1
Sep 3	164.7	157.8	168.4
Sep 4	165.2	157.7	168.2
Sep 5	167.0	164.4	169.9
Sep 6	165.7	158.3	168.0
Sep 7	162.3	152.0	167.1
Sep 8	162.8	158.4	168.4
Sep 9	164.6	161.9	169.2
Sep 10	165.2	161.1	168.4
Sep 11	165.3	162.6	169.2
Sep 12	166.0	162.4	170.5
Sep 13	167.0	163.6	170.5
Sep 14	167.8	164.2	171.5
Sep 15	166.5	163.3	171.0
Sep 16	166.4	164.5	168.6
Sep 17	166.4	164.0	168.7
Sep 18	168.1	164.7	172.3
Sep 19	168.3	165.0	173.4
Sep 20	168.2	164.4	173.0
Sep 21	167.7	163.4	172.1
Sep 22	168.2	159.5	173.5
Sep 23	168.4	163.0	171.0
Sep 24	168.8	161.4	171.6
Sep 25	170.5	168.9	171.9
Sep 26	170.7	168.2	174.3
Sep 27	169.7	165.3	171.9
Sep 28	167.6	163.7	170.6
Sep 29	166.4	159.7	170.4
Summary	166.7	162.3	170.7

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	138.6	137.4	140.0
Sep 2	139.0	135.7	140.8
Sep 3	138.8	135.5	139.8
Sep 4	138.7	136.1	140.0
Sep 5	138.7	136.8	139.9
Sep 6	139.0	137.9	140.0
Sep 7	137.5	135.8	139.2
Sep 8	137.3	135.3	139.5
Sep 9	137.6	135.9	139.5
Sep 10	137.7	136.2	139.4
Sep 11	137.9	136.5	139.5
Sep 12	138.0	135.7	140.3
Sep 13	139.0	137.7	140.7
Sep 14	139.5	137.5	141.6
Sep 15	139.0	137.9	140.8
Sep 16	139.2	138.2	140.9
Sep 17	139.3	137.7	141.4
Sep 18	139.5	138.1	141.7
Sep 19	139.3	137.0	141.6
Sep 20	139.3	137.0	141.8
Sep 21	139.1	136.8	141.5
Sep 22	138.7	120.0	142.3
Sep 23	139.1	137.8	140.2
Sep 24	139.4	138.2	140.4
Sep 25	139.5	138.4	140.5
Sep 26	139.5	138.7	141.0
Sep 27	139.0	137.1	140.6
Sep 28	138.4	136.8	139.9
Sep 29	138.4	134.9	140.6
Summary	138.8	137.3	139.5

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	81.0	69.6	95.9
Sep 2	81.3	68.5	99.6
Sep 3	78.5	72.0	94.3
Sep 4	76.3	71.7	91.2
Sep 5	81.0	71.6	95.8
Sep 6	81.2	74.4	93.8
Sep 7	76.5	66.9	93.2
Sep 8	74.5	60.7	94.4
Sep 9	76.2	62.6	99.5
Sep 10	78.4	64.8	97.9
Sep 11	79.2	66.0	98.4
Sep 12	81.3	66.8	102.4
Sep 13	82.7	69.4	102.9
Sep 14	82.9	70.4	101.3
Sep 15	81.4	70.6	101.3
Sep 16	80.1	72.2	95.2
Sep 17	79.9	67.1	97.3
Sep 18	82.8	68.3	105.2
Sep 19	83.9	69.4	103.9
Sep 20	83.3	71.0	106.9
Sep 21	82.9	71.5	105.0
Sep 22	89.6	71.8	105.5
Sep 23	104.6	102.5	107.0
Sep 24	106.6	105.4	108.0
Sep 25	108.5	107.4	110.0
Sep 26	109.8	108.6	112.0
Sep 27	110.1	109.3	112.0
Sep 28	110.7	109.4	112.7
Sep 29	111.0	110.0	112.6
Summary	87.5	74.5	111.0

		,, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	70.3	55.8	92.3
Sep 2	68.4	52.6	92.5
Sep 3	66.3	60.8	80.7
Sep 4	64.0	58.5	79.6
Sep 5	69.8	57.9	87.3
Sep 6	70.1	64.8	83.8
Sep 7	65.9	53.0	82.9
Sep 8	63.8	47.8	89.0
Sep 9	64.6	47.9	89.8
Sep 10	65.2	48.3	90.1
Sep 11	66.7	49.8	92.2
Sep 12	68.4	51.1	93.9
Sep 13	70.0	54.5	95.8
Sep 14	71.0	55.7	94.8
Sep 15	70.6	57.1	93.2
Sep 16	69.3	59.8	85.8
Sep 17	68.7	53.5	90.6
Sep 18	71.8	55.7	97.6
Sep 19	72.4	55.7	97.8
Sep 20	72.9	58.5	100.6
Sep 21	72.7	58.7	97.5
Sep 22	72.3	60.3	88.7
Sep 23	72.5	65.8	82.9
Sep 24	70.5	66.9	75.5
Sep 25	72.0	67.5	82.0
Sep 26	74.1	67.0	87.3
Sep 27	71.3	65.3	84.9
Sep 28	72.8	63.4	88.7
Sep 29	72.2	62.7	86.5
Summary	69.7	63.8	74.1

		, , , , , , , , , , , , , , , , , , ,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	140.6	140.0	141.6
Sep 2	140.8	140.0	141.6
Sep 3	140.3	138.6	141.1
Sep 4	140.2	138.5	141.0
Sep 5	140.5	140.0	141.2
Sep 6	140.3	138.7	140.7
Sep 7	139.8	137.9	140.9
Sep 8	140.1	139.1	141.4
Sep 9	140.2	139.5	140.9
Sep 10	140.2	139.4	141.1
Sep 11	140.3	139.7	141.1
Sep 12	140.4	139.7	141.4
Sep 13	140.5	139.8	141.6
Sep 14	140.5	139.8	141.2
Sep 15	140.2	139.5	141.3
Sep 16	140.2	139.8	140.7
Sep 17	140.1	139.6	140.7
Sep 18	140.3	139.5	141.3
Sep 19	140.3	139.5	141.7
Sep 20	140.3	139.7	141.3
Sep 21	140.1	139.0	141.2
Sep 22	140.2	137.4	141.7
Sep 23	140.4	139.9	140.8
Sep 24	140.4	139.5	140.6
Sep 25	140.4	140.2	141.0
Sep 26	140.5	139.9	141.5
Sep 27	140.3	139.8	141.2
Sep 28	140.2	139.5	140.9
Sep 29	140.0	139.2	140.8
Summary	140.3	139.8	140.8

		., g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	136.4	134.9	138.8
Sep 2	136.6	135.2	138.9
Sep 3	136.0	133.3	138.5
Sep 4	135.9	133.5	137.1
Sep 5	136.4	134.9	138.1
Sep 6	135.7	130.1	137.2
Sep 7	134.1	130.0	136.3
Sep 8	134.9	133.0	137.2
Sep 9	135.6	134.0	138.8
Sep 10	136.2	134.3	138.1
Sep 11	136.4	135.0	138.8
Sep 12	136.6	135.1	139.3
Sep 13	137.0	135.3	139.7
Sep 14	137.1	135.6	139.4
Sep 15	136.5	135.1	139.1
Sep 16	136.5	135.4	137.7
Sep 17	136.4	135.4	137.9
Sep 18	137.0	135.3	139.4
Sep 19	136.9	135.6	139.8
Sep 20	136.8	135.4	140.0
Sep 21	136.8	135.0	139.8
Sep 22	136.6	132.5	139.3
Sep 23	136.2	133.5	138.1
Sep 24	136.0	134.9	137.0
Sep 25	136.4	135.6	137.6
Sep 26	136.4	134.7	138.4
Sep 27	136.0	135.3	137.5
Sep 28	135.7	133.4	137.5
Sep 29	135.8	134.3	137.9
Summary	136.2	134.1	137.1

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	113.5	112.4	115.4
Sep 2	113.2	112.3	114.8
Sep 3	112.2	111.2	113.0
Sep 4	111.5	110.8	112.6
Sep 5	111.7	111.0	112.9
Sep 6	111.1	110.1	112.1
Sep 7	110.6	109.6	112.2
Sep 8	110.6	109.1	112.7
Sep 9	107.9	103.5	110.1
Sep 10	105.0	102.8	108.2
Sep 11	105.3	103.0	108.7
Sep 12	105.7	103.3	109.7
Sep 13	105.8	103.5	109.5
Sep 14	105.7	103.7	108.9
Sep 15	105.6	103.7	108.9
Sep 16	105.0	103.8	107.8
Sep 17	105.0	103.0	108.1
Sep 18	105.4	103.0	109.3
Sep 19	105.6	103.2	109.6
Sep 20	105.5	103.3	109.6
Sep 21	105.3	103.1	109.0
Sep 22	107.5	103.6	112.3
Sep 23	110.8	110.1	111.9
Sep 24	110.4	109.9	110.8
Sep 25	110.5	110.1	111.2
Sep 26	110.7	110.0	112.1
Sep 27	110.3	109.7	111.9
Sep 28	110.4	109.5	111.8
Sep 29	110.1	109.3	111.4
Summary	108.5	105.0	113.5

		,, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	124.1	121.8	127.8
Sep 2	125.5	123.4	128.5
Sep 3	124.7	119.7	126.9
Sep 4	124.6	122.1	125.7
Sep 5	124.6	122.8	126.1
Sep 6	123.6	118.2	125.3
Sep 7	121.6	116.1	124.0
Sep 8	122.6	118.9	125.8
Sep 9	123.6	121.2	126.5
Sep 10	124.1	121.0	126.5
Sep 11	124.8	122.8	127.7
Sep 12	125.3	123.1	128.4
Sep 13	126.3	124.3	129.5
Sep 14	126.4	124.2	129.1
Sep 15	125.3	123.1	129.1
Sep 16	125.3	124.2	126.6
Sep 17	125.8	124.2	128.5
Sep 18	126.5	123.7	129.8
Sep 19	126.5	124.4	129.5
Sep 20	126.0	124.1	129.4
Sep 21	125.9	123.4	129.9
Sep 22	126.1	118.8	130.0
Sep 23	125.9	123.1	128.7
Sep 24	126.1	123.2	127.8
Sep 25	127.4	126.2	129.8
Sep 26	127.4	124.9	130.5
Sep 27	126.3	124.7	128.0
Sep 28	124.8	121.8	126.7
Sep 29	125.0	123.0	126.9
Summary	125.2	121.6	127.4

_		•	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	125.2	124.3	126.2
Sep 2	125.4	124.8	126.6
Sep 3	124.9	123.2	125.9
Sep 4	124.6	122.5	125.5
Sep 5	125.0	124.3	125.8
Sep 6	124.9	121.9	125.3
Sep 7	124.4	122.3	125.2
Sep 8	124.7	123.6	126.1
Sep 9	125.0	123.7	126.0
Sep 10	125.0	123.9	125.9
Sep 11	125.1	124.3	126.0
Sep 12	125.2	124.4	126.3
Sep 13	125.3	124.6	126.3
Sep 14	125.2	124.4	125.8
Sep 15	124.9	123.1	126.2
Sep 16	124.8	124.1	125.5
Sep 17	124.9	124.4	125.7
Sep 18	125.0	124.1	126.3
Sep 19	125.0	124.1	126.4
Sep 20	124.9	124.2	126.2
Sep 21	124.8	123.9	126.0
Sep 22	123.7	119.1	125.2
Sep 23	123.5	122.0	124.9
Sep 24	123.3	121.2	123.9
Sep 25	123.7	123.3	124.7
Sep 26	123.8	122.8	125.7
Sep 27	123.6	122.1	125.1
Sep 28	123.5	122.4	124.9
Sep 29	123.4	122.3	125.0
Summary	124.6	123.3	125.4

_		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	127.7	127.4	128.2
Sep 2	127.5	127.2	127.8
Sep 3	127.2	126.8	127.6
Sep 4	127.1	126.9	127.4
Sep 5	127.2	127.0	127.6
Sep 6	127.1	126.8	127.3
Sep 7	126.9	126.7	127.3
Sep 8	127.0	126.7	127.5
Sep 9	127.0	126.6	127.6
Sep 10	126.9	126.6	127.5
Sep 11	127.0	126.6	127.5
Sep 12	126.9	126.5	127.4
Sep 13	127.0	126.5	127.6
Sep 14	126.9	126.6	127.5
Sep 15	126.9	126.5	127.4
Sep 16	126.8	126.6	127.3
Sep 17	126.8	126.5	127.2
Sep 18	126.9	126.4	127.5
Sep 19	126.9	126.5	127.5
Sep 20	126.8	126.4	127.4
Sep 21	126.7	126.4	127.3
Sep 22	126.7	126.4	127.3
Sep 23	126.6	126.3	127.1
Sep 24	126.5	126.3	126.7
Sep 25	126.6	126.4	126.8
Sep 26	126.6	126.4	127.1
Sep 27	126.6	126.3	126.9
Sep 28	126.6	126.3	127.1
Sep 29	126.5	126.2	126.9
Summary	126.9	126.5	127.7

		. 3	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	74.5	58.9	96.2
Sep 2	73.7	56.5	95.6
Sep 3	67.9	60.9	82.1
Sep 4	65.4	60.1	84.5
Sep 5	72.6	59.5	91.3
Sep 6	71.1	64.5	84.7
Sep 7	66.3	56.1	82.6
Sep 8	66.9	49.4	87.1
Sep 9	68.2	50.4	90.1
Sep 10	69.2	51.8	93.7
Sep 11	71.3	52.6	96.4
Sep 12	73.7	53.9	100.0
Sep 13	75.4	57.7	99.2
Sep 14	75.6	58.6	98.4
Sep 15	74.0	59.9	99.0
Sep 16	72.5	62.9	90.4
Sep 17	72.0	55.8	93.1
Sep 18	76.7	57.9	102.8
Sep 19	77.4	58.3	103.0
Sep 20	77.3	60.7	103.3
Sep 21	76.7	62.3	99.5
Sep 22	76.0	62.2	97.1
Sep 23	74.2	64.6	88.9
Sep 24	70.5	66.0	77.8
Sep 25	73.0	66.7	86.4
Sep 26	75.5	65.5	93.5
Sep 27	71.8	63.3	91.4
Sep 28	73.2	60.6	91.0
Sep 29	73.3	60.8	89.9
Summary	72.6	65.4	77.4

		,, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	111.2	104.3	117.0
Sep 2	111.2	104.3	117.1
Sep 3	110.8	107.1	114.6
Sep 4	109.3	104.4	112.9
Sep 5	109.8	102.2	114.5
Sep 6	109.7	104.8	111.9
Sep 7	107.0	101.2	113.8
Sep 8	109.9	106.3	116.7
Sep 9	109.6	105.2	114.5
Sep 10	111.1	108.0	115.9
Sep 11	111.6	108.2	116.7
Sep 12	110.3	103.2	117.2
Sep 13	111.4	106.0	116.7
Sep 14	112.4	110.0	117.3
Sep 15	110.8	106.3	116.4
Sep 16	111.7	109.7	115.2
Sep 17	110.7	103.5	115.2
Sep 18	111.8	106.8	117.7
Sep 19	112.4	108.9	117.9
Sep 20	112.4	110.0	118.0
Sep 21	111.6	107.0	117.4
Sep 22	111.4	103.3	116.8
Sep 23	110.7	105.1	114.2
Sep 24	109.5	84.5	112.2
Sep 25	110.9	108.1	114.3
Sep 26	112.1	109.8	115.4
Sep 27	109.8	108.1	113.2
Sep 28	109.9	107.1	115.6
Sep 29	110.7	107.1	116.5
Summary	110.7	107.0	112.4

		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	74.6	59.0	98.0
Sep 2	74.4	56.5	98.1
Sep 3	68.2	60.6	85.2
Sep 4	64.9	60.3	82.1
Sep 5	73.1	59.9	92.5
Sep 6	71.3	64.9	85.7
Sep 7	66.8	56.2	86.7
Sep 8	67.5	49.9	95.5
Sep 9	68.2	51.2	90.8
Sep 10	69.5	52.4	94.5
Sep 11	71.5	53.0	94.8
Sep 12	73.8	54.2	99.3
Sep 13	75.8	58.7	99.0
Sep 14	75.7	59.3	99.3
Sep 15	74.4	60.3	101.2
Sep 16	72.6	63.8	89.8
Sep 17	72.6	56.2	92.8
Sep 18	77.5	58.6	104.7
Sep 19	78.4	58.8	107.1
Sep 20	77.7	61.0	103.9
Sep 21	77.3	63.3	99.5
Sep 22	76.6	63.1	98.3
Sep 23	74.8	64.6	93.7
Sep 24	71.1	66.0	78.4
Sep 25	73.6	67.7	87.1
Sep 26	76.1	66.1	100.0
Sep 27	72.7	64.6	93.4
Sep 28	74.0	61.5	97.7
Sep 29	73.9	61.8	90.2
Summary	73.1	64.9	78.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	71.4	54.7	94.0
Sep 2	71.4	52.6	97.5
Sep 3	66.0	59.9	81.3
Sep 4	63.3	57.6	85.0
Sep 5	71.7	57.6	90.1
Sep 6	70.4	64.4	86.1
Sep 7	66.2	51.7	86.8
Sep 8	65.1	46.8	89.5
Sep 9	65.6	46.4	90.3
Sep 10	67.4	48.7	93.9
Sep 11	69.2	49.3	95.4
Sep 12	71.6	50.7	99.9
Sep 13	73.1	54.6	100.2
Sep 14	73.5	55.8	98.0
Sep 15	72.1	56.3	99.3
Sep 16	70.2	59.8	92.1
Sep 17	71.2	52.7	94.5
Sep 18	74.6	55.3	101.8
Sep 19	75.6	55.5	104.1
Sep 20	75.8	58.5	103.9
Sep 21	76.2	60.3	99.0
Sep 22	75.7	60.4	99.3
Sep 23	73.1	63.4	88.7
Sep 24	69.7	64.1	77.5
Sep 25	72.0	65.3	86.6
Sep 26	74.3	64.1	95.4
Sep 27	70.4	61.0	95.1
Sep 28	72.4	59.3	92.8
Sep 29	71.5	58.8	90.8
Summary	71.1	63.3	76.2

		., g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	163.7	162.2	164.8
Sep 2	164.5	163.2	166.0
Sep 3	164.2	160.3	165.5
Sep 4	164.2	161.9	165.5
Sep 5	164.4	163.2	165.6
Sep 6	163.0	160.0	165.1
Sep 7	160.8	156.8	162.5
Sep 8	162.9	161.8	164.1
Sep 9	164.2	162.5	166.6
Sep 10	165.8	164.5	167.1
Sep 11	166.6	165.7	167.9
Sep 12	167.4	165.6	168.9
Sep 13	168.2	167.0	169.7
Sep 14	168.5	167.0	169.4
Sep 15	168.2	165.8	169.3
Sep 16	168.5	167.5	169.0
Sep 17	168.4	167.5	169.6
Sep 18	169.3	168.4	170.6
Sep 19	169.3	168.0	171.3
Sep 20	169.2	168.0	171.2
Sep 21	169.1	166.9	170.8
Sep 22	168.5	160.2	170.4
Sep 23	168.3	166.6	169.6
Sep 24	168.2	163.7	169.7
Sep 25	169.1	167.5	169.9
Sep 26	169.3	167.3	171.1
Sep 27	169.1	166.9	170.1
Sep 28	167.4	165.1	169.0
Sep 29	168.0	165.2	169.3
Summary	166.8	160.8	169.3

_		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	172.2	171.4	173.2
Sep 2	172.3	171.4	173.8
Sep 3	171.9	168.5	173.3
Sep 4	171.9	168.4	172.6
Sep 5	171.6	170.5	172.4
Sep 6	168.9	165.9	172.1
Sep 7	167.7	164.7	169.1
Sep 8	169.1	167.8	171.2
Sep 9	170.0	168.9	171.5
Sep 10	170.3	168.9	171.2
Sep 11	170.7	169.2	171.8
Sep 12	171.2	170.2	172.6
Sep 13	171.5	170.7	173.1
Sep 14	171.7	170.8	173.1
Sep 15	171.4	170.1	172.2
Sep 16	171.4	170.6	172.1
Sep 17	171.6	170.5	172.3
Sep 18	172.0	170.7	173.6
Sep 19	171.9	171.2	173.0
Sep 20	171.6	170.9	172.7
Sep 21	171.3	168.5	173.0
Sep 22	171.2	166.2	172.7
Sep 23	170.4	168.0	171.4
Sep 24	170.6	168.4	171.4
Sep 25	170.8	169.1	171.5
Sep 26	171.5	170.5	172.7
Sep 27	171.0	169.2	172.1
Sep 28	170.5	169.5	171.9
Sep 29	170.6	169.7	171.5
Summary	171.0	167.7	172.3

		,g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	165.0	164.3	165.6
Sep 2	165.5	164.5	166.3
Sep 3	164.9	162.7	165.7
Sep 4	164.7	162.1	165.4
Sep 5	165.3	164.7	166.2
Sep 6	165.2	163.1	166.1
Sep 7	163.8	161.4	164.9
Sep 8	164.0	162.8	165.0
Sep 9	164.6	163.4	166.0
Sep 10	164.8	163.5	165.6
Sep 11	164.7	163.7	165.6
Sep 12	164.7	163.7	165.7
Sep 13	165.0	164.0	166.0
Sep 14	164.8	163.8	165.6
Sep 15	164.6	162.7	165.7
Sep 16	164.6	164.1	165.4
Sep 17	164.1	163.5	164.9
Sep 18	164.6	163.4	165.7
Sep 19	164.6	163.3	166.2
Sep 20	164.5	163.7	165.6
Sep 21	164.3	163.0	165.8
Sep 22	164.2	158.8	166.1
Sep 23	163.8	162.6	164.9
Sep 24	163.7	157.8	165.1
Sep 25	164.0	162.4	164.9
Sep 26	163.9	162.4	165.4
Sep 27	163.3	161.9	164.6
Sep 28	162.0	160.4	163.8
Sep 29	162.2	160.3	164.1
Summary	164.3	162.0	165.5

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	161.7	161.3	162.1
Sep 2	161.9	161.2	162.6
Sep 3	161.9	161.3	162.4
Sep 4	161.9	161.4	162.4
Sep 5	161.9	161.5	162.5
Sep 6	161.7	161.3	162.1
Sep 7	161.2	160.8	161.7
Sep 8	161.1	160.5	162.0
Sep 9	161.1	160.8	161.5
Sep 10	161.0	160.4	161.5
Sep 11	161.1	160.5	161.6
Sep 12	161.3	160.7	162.0
Sep 13	161.4	160.9	162.1
Sep 14	161.5	161.0	161.9
Sep 15	161.4	160.8	162.1
Sep 16	161.4	161.1	161.8
Sep 17	161.5	160.9	162.0
Sep 18	161.5	160.9	162.4
Sep 19	161.6	160.9	162.4
Sep 20	161.5	160.9	162.4
Sep 21	161.4	160.9	162.3
Sep 22	161.5	160.9	162.3
Sep 23	161.4	161.0	161.9
Sep 24	161.3	161.0	161.8
Sep 25	161.5	161.3	161.9
Sep 26	161.6	161.1	162.3
Sep 27	161.4	160.9	162.2
Sep 28	161.1	160.7	161.8
Sep 29	161.0	160.6	161.6
Summary	161.4	161.0	161.9

		,g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	154.8	153.2	157.6
Sep 2	155.5	152.4	158.7
Sep 3	155.6	153.0	157.2
Sep 4	155.6	153.0	156.5
Sep 5	155.8	154.0	157.2
Sep 6	153.8	152.0	156.0
Sep 7	153.3	150.8	155.5
Sep 8	152.8	151.3	156.0
Sep 9	153.2	150.7	156.4
Sep 10	153.0	151.8	155.2
Sep 11	152.4	150.7	154.7
Sep 12	152.0	150.0	155.7
Sep 13	152.6	150.8	156.3
Sep 14	152.6	150.8	155.8
Sep 15	151.9	150.3	153.9
Sep 16	151.8	150.9	153.9
Sep 17	151.5	148.5	153.8
Sep 18	152.3	149.9	155.8
Sep 19	152.5	150.6	155.4
Sep 20	152.3	150.1	156.0
Sep 21	152.5	149.2	156.2
Sep 22	152.1	147.9	155.7
Sep 23	151.4	149.7	153.8
Sep 24	149.3	99.9	155.7
Sep 25	150.8	149.4	152.8
Sep 26	152.2	150.7	154.1
Sep 27	151.1	149.2	152.8
Sep 28	151.6	149.3	154.9
Sep 29	151.6	150.2	154.1
Summary	152.7	149.3	155.8

		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	144.5	144.0	145.3
Sep 2	144.7	143.4	146.2
Sep 3	144.6	143.7	145.1
Sep 4	144.3	143.6	145.1
Sep 5	144.4	143.6	145.3
Sep 6	144.1	143.5	144.5
Sep 7	143.4	142.7	144.3
Sep 8	143.5	142.7	144.6
Sep 9	143.7	143.1	144.6
Sep 10	143.7	142.7	144.5
Sep 11	143.7	142.8	144.6
Sep 12	144.0	143.0	145.4
Sep 13	144.2	143.4	145.3
Sep 14	144.3	143.4	145.5
Sep 15	144.3	143.4	145.6
Sep 16	144.4	143.8	145.4
Sep 17	144.6	143.8	145.4
Sep 18	144.8	143.8	146.3
Sep 19	144.9	143.8	146.7
Sep 20	145.0	144.0	146.4
Sep 21	145.0	144.1	146.5
Sep 22	145.0	144.0	146.1
Sep 23	144.7	144.1	145.3
Sep 24	144.6	143.9	145.0
Sep 25	144.9	144.5	145.3
Sep 26	144.9	144.4	146.0
Sep 27	144.7	144.0	145.9
Sep 28	144.4	143.7	145.6
Sep 29	144.4	143.8	145.3
Summary	144.4	143.4	145.0

		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	92.7	86.0	102.2
Sep 2	94.5	82.3	108.3
Sep 3	89.8	78.6	97.1
Sep 4	88.4	77.5	99.5
Sep 5	93.5	84.5	104.2
Sep 6	90.9	79.2	97.1
Sep 7	84.3	71.9	96.3
Sep 8	85.9	72.7	101.5
Sep 9	89.1	79.9	105.7
Sep 10	90.7	77.3	104.5
Sep 11	94.4	81.7	109.4
Sep 12	101.3	88.8	114.4
Sep 13	100.5	90.6	112.6
Sep 14	96.6	85.2	110.1
Sep 15	94.6	84.2	112.1
Sep 16	95.2	88.9	105.6
Sep 17	96.6	87.4	107.3
Sep 18	99.7	89.8	113.8
Sep 19	97.6	84.4	116.0
Sep 20	97.0	85.5	115.0
Sep 21	96.8	85.1	113.2
Sep 22	94.3	77.9	112.4
Sep 23	89.4	77.1	99.0
Sep 24	88.4	79.6	93.3
Sep 25	90.3	85.9	97.9
Sep 26	91.9	85.0	106.8
Sep 27	88.8	82.4	101.6
Sep 28	88.0	77.5	103.6
Sep 29	86.7	77.8	99.1
Summary	92.7	84.3	101.3

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	171.2	170.6	171.7
Sep 2	171.6	170.7	172.6
Sep 3	172.1	171.1	172.9
Sep 4	172.1	170.6	172.7
Sep 5	172.1	171.5	172.6
Sep 6	171.2	170.6	172.0
Sep 7	170.7	170.1	171.3
Sep 8	170.6	169.6	171.5
Sep 9	170.7	169.8	171.3
Sep 10	170.4	169.2	171.6
Sep 11	170.7	170.0	171.8
Sep 12	171.3	170.9	172.4
Sep 13	171.4	170.8	172.1
Sep 14	171.4	170.9	172.1
Sep 15	171.4	170.5	172.0
Sep 16	171.5	170.8	172.1
Sep 17	171.7	170.8	172.5
Sep 18	171.7	171.1	172.7
Sep 19	171.9	171.3	172.7
Sep 20	141.2	136.2	172.0
Sep 21	135.9	134.9	137.4
Sep 22	155.5	134.9	168.4
Sep 23	167.7	165.0	169.3
Sep 24	167.3	166.5	168.0
Sep 25	170.6	167.7	173.0
Sep 26	172.5	171.6	173.4
Sep 27	172.5	172.0	173.1
Sep 28	172.1	171.0	172.7
Sep 29	172.3	171.5	172.8
Summary	168.4	135.9	172.5

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	194.0	193.5	194.5
Sep 2	196.3	192.6	198.7
Sep 3	196.4	194.2	198.4
Sep 4	198.2	197.6	198.6
Sep 5	197.1	195.6	198.6
Sep 6	194.4	193.6	195.4
Sep 7	193.4	192.5	194.2
Sep 8	194.9	192.3	198.2
Sep 9	193.7	188.8	194.3
Sep 10	193.5	192.9	194.0
Sep 11	193.3	193.0	193.8
Sep 12	193.3	192.8	194.1
Sep 13	193.2	192.8	193.8
Sep 14	193.0	192.5	193.5
Sep 15	192.8	192.4	193.5
Sep 16	192.7	192.4	193.1
Sep 17	192.5	192.0	193.1
Sep 18	192.5	191.9	193.3
Sep 19	192.4	191.9	193.3
Sep 20	192.4	191.9	193.1
Sep 21	192.4	191.7	193.3
Sep 22	191.6	185.9	193.2
Sep 23	191.4	189.0	192.4
Sep 24	152.3	118.4	192.2
Sep 25	120.5	117.1	125.5
Sep 26	121.6	118.1	128.3
Sep 27	121.1	118.6	125.2
Sep 28	120.4	116.1	126.2
Sep 29	120.6	116.7	125.5
Summary	179.7	120.4	198.2

		., g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	134.4	133.8	135.0
Sep 2	134.5	133.8	135.5
Sep 3	134.3	133.8	134.9
Sep 4	134.3	133.7	134.7
Sep 5	134.5	134.1	135.3
Sep 6	134.4	134.0	134.7
Sep 7	133.9	133.4	134.6
Sep 8	133.8	133.1	134.5
Sep 9	133.9	133.4	134.8
Sep 10	134.0	133.1	134.7
Sep 11	134.0	133.4	134.7
Sep 12	134.0	133.4	135.1
Sep 13	134.1	133.5	134.9
Sep 14	134.3	133.8	135.1
Sep 15	134.3	133.9	135.2
Sep 16	134.2	133.8	134.9
Sep 17	134.3	133.7	135.0
Sep 18	134.5	133.9	135.5
Sep 19	134.5	133.4	135.4
Sep 20	134.5	133.8	135.5
Sep 21	134.4	133.7	135.5
Sep 22	134.4	133.6	135.2
Sep 23	134.3	133.6	134.7
Sep 24	134.3	133.7	134.6
Sep 25	134.4	134.1	134.9
Sep 26	134.5	134.2	135.3
Sep 27	134.4	133.9	135.0
Sep 28	134.1	133.8	134.8
Sep 29	133.8	133.3	134.6
Summary	134.2	133.8	134.5

		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	158.8	158.0	159.8
Sep 2	159.4	157.8	160.9
Sep 3	159.2	156.4	160.3
Sep 4	159.0	154.4	160.1
Sep 5	159.7	158.7	160.8
Sep 6	158.7	156.8	160.3
Sep 7	156.6	152.8	157.8
Sep 8	156.6	145.7	159.6
Sep 9	157.7	156.4	159.3
Sep 10	157.9	156.6	159.5
Sep 11	158.2	156.7	159.8
Sep 12	159.1	157.9	160.6
Sep 13	159.4	158.2	160.6
Sep 14	159.4	158.2	160.5
Sep 15	159.5	158.5	160.6
Sep 16	159.3	152.5	160.4
Sep 17	159.3	158.4	160.3
Sep 18	159.9	158.7	161.4
Sep 19	159.9	158.5	161.9
Sep 20	160.0	158.8	161.7
Sep 21	159.7	158.5	161.6
Sep 22	159.4	156.1	161.2
Sep 23	159.4	157.6	160.6
Sep 24	159.4	154.8	160.4
Sep 25	159.7	157.9	160.6
Sep 26	159.8	158.7	161.2
Sep 27	159.8	158.4	160.4
Sep 28	159.0	157.5	160.0
Sep 29	158.6	155.4	160.6
Summary	159.0	156.6	160.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	165.7	156.6	173.0
Sep 2	166.9	161.0	173.8
Sep 3	161.7	138.8	172.8
Sep 4	162.6	116.7	170.4
Sep 5	168.0	155.9	175.0
Sep 6	157.1	122.9	174.1
Sep 7	149.0	108.1	163.0
Sep 8	157.7	144.9	168.4
Sep 9	159.6	151.2	166.6
Sep 10	158.0	149.7	164.6
Sep 11	161.4	151.9	172.7
Sep 12	164.9	155.6	173.8
Sep 13	168.3	158.8	175.6
Sep 14	167.7	159.9	176.1
Sep 15	165.3	143.3	178.2
Sep 16	166.9	161.8	171.9
Sep 17	162.2	151.9	170.4
Sep 18	167.4	153.7	178.7
Sep 19	166.6	156.8	177.2
Sep 20	163.7	153.5	177.0
Sep 21	162.8	139.3	172.0
Sep 22	159.3	124.1	176.2
Sep 23	160.3	142.3	169.2
Sep 24	161.9	138.6	170.7
Sep 25	163.5	144.5	171.9
Sep 26	167.0	155.5	174.1
Sep 27	164.0	138.5	172.1
Sep 28	158.8	147.1	169.4
Sep 29	160.6	138.9	170.8
Summary	162.7	149.0	168.3

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	79.0	63.2	107.7
Sep 2	77.9	60.6	104.6
Sep 3	73.3	65.6	94.9
Sep 4	70.4	65.0	87.7
Sep 5	78.3	65.1	99.5
Sep 6	78.3	69.7	90.7
Sep 7	79.7	66.8	104.5
Sep 8	79.7	63.3	109.4
Sep 9	79.6	64.4	107.2
Sep 10	80.0	66.0	108.6
Sep 11	80.9	65.3	108.9
Sep 12	78.4	58.8	112.2
Sep 13	80.0	62.5	109.2
Sep 14	78.5	63.3	106.6
Sep 15	78.8	64.1	105.3
Sep 16	76.7	67.3	93.8
Sep 17	76.5	60.8	103.8
Sep 18	82.6	62.9	114.6
Sep 19	80.9	63.3	114.3
Sep 20	80.1	65.2	114.2
Sep 21	80.8	67.0	111.7
Sep 22	81.0	67.3	107.9
Sep 23	80.1	70.3	96.4
Sep 24	77.8	72.9	85.1
Sep 25	80.9	74.7	99.3
Sep 26	84.5	74.4	105.4
Sep 27	80.1	71.0	98.0
Sep 28	82.6	68.9	111.0
Sep 29	80.5	69.7	101.5
Summary	79.2	70.4	84.5

		., g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	145.2	141.5	150.5
Sep 2	141.3	137.4	146.8
Sep 3	137.0	135.0	140.1
Sep 4	145.0	132.7	168.2
Sep 5	170.8	168.3	173.6
Sep 6	170.5	169.1	171.1
Sep 7	170.3	168.6	172.9
Sep 8	169.6	167.5	171.6
Sep 9	167.3	165.0	170.2
Sep 10	165.3	162.8	168.1
Sep 11	163.0	156.6	167.1
Sep 12	163.2	161.3	166.8
Sep 13	163.6	161.7	167.1
Sep 14	164.6	162.8	167.9
Sep 15	165.1	158.6	168.5
Sep 16	165.0	158.4	169.4
Sep 17	166.2	160.1	170.4
Sep 18	164.5	158.1	170.1
Sep 19	163.7	157.9	170.5
Sep 20	161.6	156.3	169.0
Sep 21	159.1	152.8	166.9
Sep 22	156.9	148.1	168.5
Sep 23	153.8	149.9	166.1
Sep 24	153.5	148.7	167.4
Sep 25	154.2	149.4	167.0
Sep 26	152.2	147.5	165.9
Sep 27	152.5	145.6	167.0
Sep 28	152.3	147.1	169.2
Sep 29	150.1	146.5	153.8
Summary	158.9	137.0	170.8

		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	132.8	126.5	136.9
Sep 2	130.4	116.2	142.8
Sep 3	129.1	123.3	139.9
Sep 4	131.5	126.3	141.6
Sep 5	130.1	110.7	141.3
Sep 6	133.7	118.8	139.2
Sep 7	137.9	135.6	139.8
Sep 8	138.0	135.8	141.7
Sep 9	138.3	136.8	141.4
Sep 10	138.3	136.5	140.3
Sep 11	136.6	126.2	142.0
Sep 12	122.3	102.1	141.2
Sep 13	124.3	102.2	134.8
Sep 14	127.9	117.7	135.4
Sep 15	126.2	110.4	141.2
Sep 16	124.3	113.1	142.2
Sep 17	124.9	112.8	142.0
Sep 18	124.4	107.0	141.7
Sep 19	121.6	101.0	141.8
Sep 20	108.0	84.6	122.7
Sep 21	108.2	85.1	124.0
Sep 22	116.4	94.3	141.2
Sep 23	119.2	103.3	140.4
Sep 24	126.1	107.4	140.8
Sep 25	127.5	117.7	141.4
Sep 26	123.3	104.4	140.6
Sep 27	116.3	106.2	123.7
Sep 28	118.2	102.6	126.9
Sep 29	121.2	108.1	141.0
Summary	126.1	108.0	138.3

		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	138.4	137.6	139.4
Sep 2	139.5	137.9	141.8
Sep 3	139.0	137.2	140.0
Sep 4	138.9	135.9	140.6
Sep 5	139.9	138.6	141.2
Sep 6	139.0	136.9	140.8
Sep 7	137.2	134.2	138.6
Sep 8	137.6	135.8	139.9
Sep 9	137.7	136.1	139.9
Sep 10	137.8	136.3	139.8
Sep 11	138.1	136.3	139.9
Sep 12	139.4	137.6	141.8
Sep 13	139.6	138.4	141.5
Sep 14	139.4	137.9	141.4
Sep 15	139.6	137.6	141.9
Sep 16	139.9	139.0	141.6
Sep 17	139.4	138.1	140.7
Sep 18	140.3	138.4	142.2
Sep 19	140.7	138.8	143.5
Sep 20	141.1	139.6	143.2
Sep 21	141.2	139.0	143.3
Sep 22	141.0	136.1	143.0
Sep 23	140.6	139.5	141.4
Sep 24	140.5	138.6	141.6
Sep 25	140.9	140.4	141.3
Sep 26	141.2	139.7	143.4
Sep 27	141.3	139.6	142.4
Sep 28	140.9	139.3	142.2
Sep 29	140.5	137.9	141.6
Summary	139.7	137.2	141.3

		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	152.1	151.0	153.5
Sep 2	153.0	151.2	155.0
Sep 3	153.1	151.1	154.2
Sep 4	153.1	151.7	153.7
Sep 5	153.3	151.3	154.9
Sep 6	152.3	147.1	154.5
Sep 7	150.1	146.7	151.7
Sep 8	150.3	147.5	152.1
Sep 9	151.0	149.7	153.0
Sep 10	151.0	149.0	153.6
Sep 11	152.0	150.2	153.6
Sep 12	154.1	152.4	155.7
Sep 13	154.5	152.9	156.2
Sep 14	154.7	153.3	156.2
Sep 15	154.9	153.7	156.6
Sep 16	155.2	154.2	156.2
Sep 17	155.1	153.9	156.1
Sep 18	155.9	154.7	157.6
Sep 19	155.9	154.3	157.8
Sep 20	156.3	154.8	157.9
Sep 21	156.0	153.8	157.9
Sep 22	155.9	153.9	157.7
Sep 23	156.0	154.2	157.0
Sep 24	155.8	154.5	156.8
Sep 25	156.3	155.5	157.2
Sep 26	156.6	155.2	157.7
Sep 27	156.5	155.8	157.0
Sep 28	156.0	154.4	157.3
Sep 29	155.6	153.5	156.9
Summary	154.2	150.1	156.6

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Well 98

Bristol, Virginia

Det	A	BALL LINE (OF)	NA
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	71.3	54.7	101.0
Sep 2	74.4	52.4	101.4
Sep 3	81.1	75.5	92.9
Sep 4	81.1	77.3	92.5
Sep 5	86.8	78.3	98.3
Sep 6	86.5	80.8	94.5
Sep 7	75.5	53.0	91.0
Sep 8	69.7	47.1	93.1
Sep 9	80.7	69.8	98.0
Sep 10	83.6	72.4	99.1
Sep 11	80.8	59.6	100.7
Sep 12	72.5	51.0	101.7
Sep 13	72.6	55.0	105.1
Sep 14	72.4	56.0	102.7
Sep 15	75.5	56.5	100.6
Sep 16	82.3	75.2	95.7
Sep 17	79.0	62.6	96.7
Sep 18	75.2	55.9	104.2
Sep 19	76.8	55.9	106.1
Sep 20	77.4	61.1	104.7
Sep 21	79.2	60.6	103.5
Sep 22	86.2	76.7	101.8
Sep 23	86.5	80.0	97.0
Sep 24	79.8	69.5	86.8
Sep 25	76.5	65.9	94.5
Sep 26	80.9	65.8	101.7
Sep 27	73.5	62.1	94.7
Sep 28	73.3	59.5	99.3
Sep 29	75.5	58.9	95.1
Summary	78.2	69.7	86.8

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Well 99

Bristol, Virginia

		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	147.2	146.7	147.8
Sep 2	147.1	146.7	148.0
Sep 3	146.9	146.1	147.5
Sep 4	146.7	146.3	147.3
Sep 5	146.8	146.3	147.2
Sep 6	146.8	146.1	147.2
Sep 7	146.6	146.1	147.1
Sep 8	146.5	146.1	147.1
Sep 9	146.7	146.2	147.4
Sep 10	146.7	146.3	147.2
Sep 11	146.7	146.3	147.1
Sep 12	146.6	146.1	147.6
Sep 13	146.7	146.1	147.6
Sep 14	146.8	146.3	147.5
Sep 15	146.6	146.2	147.5
Sep 16	146.6	146.3	147.3
Sep 17	146.7	146.3	147.2
Sep 18	146.8	146.3	147.7
Sep 19	146.8	146.4	147.5
Sep 20	146.8	146.2	147.8
Sep 21	146.7	146.1	147.6
Sep 22	146.7	145.8	147.6
Sep 23	146.2	140.9	147.1
Sep 24	146.4	145.9	146.8
Sep 25	146.4	145.4	146.8
Sep 26	146.4	145.9	147.2
Sep 27	146.2	145.7	146.8
Sep 28	146.1	145.7	146.7
Sep 29	145.9	145.5	146.6
Summary	146.6	145.9	147.2

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Well 100

Bristol, Virginia

		,, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	157.2	156.8	157.7
Sep 2	139.0	135.7	140.8
Sep 3	157.3	156.5	158.0
Sep 4	138.7	136.1	140.0
Sep 5	157.6	157.0	158.3
Sep 6	139.0	137.9	140.0
Sep 7	157.1	156.3	157.7
Sep 8	137.3	135.3	139.5
Sep 9	157.1	156.6	158.0
Sep 10	137.7	136.2	139.4
Sep 11	157.3	156.6	158.0
Sep 12	138.0	135.7	140.3
Sep 13	157.8	157.1	158.6
Sep 14	139.5	137.5	141.6
Sep 15	157.7	157.2	158.7
Sep 16	139.2	138.2	140.9
Sep 17	157.9	157.2	158.5
Sep 18	139.5	138.1	141.7
Sep 19	158.4	157.5	159.6
Sep 20	139.3	137.0	141.8
Sep 21	158.5	157.8	159.4
Sep 22	138.7	120.0	142.3
Sep 23	158.6	157.8	159.1
Sep 24	139.4	138.2	140.4
Sep 25	158.8	158.5	159.2
Sep 26	139.5	138.7	141.0
Sep 27	158.8	158.3	159.6
Sep 28	138.4	136.8	139.9
Sep 29	158.6	158.0	159.2
Summary	157.9	157.0	158.9

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

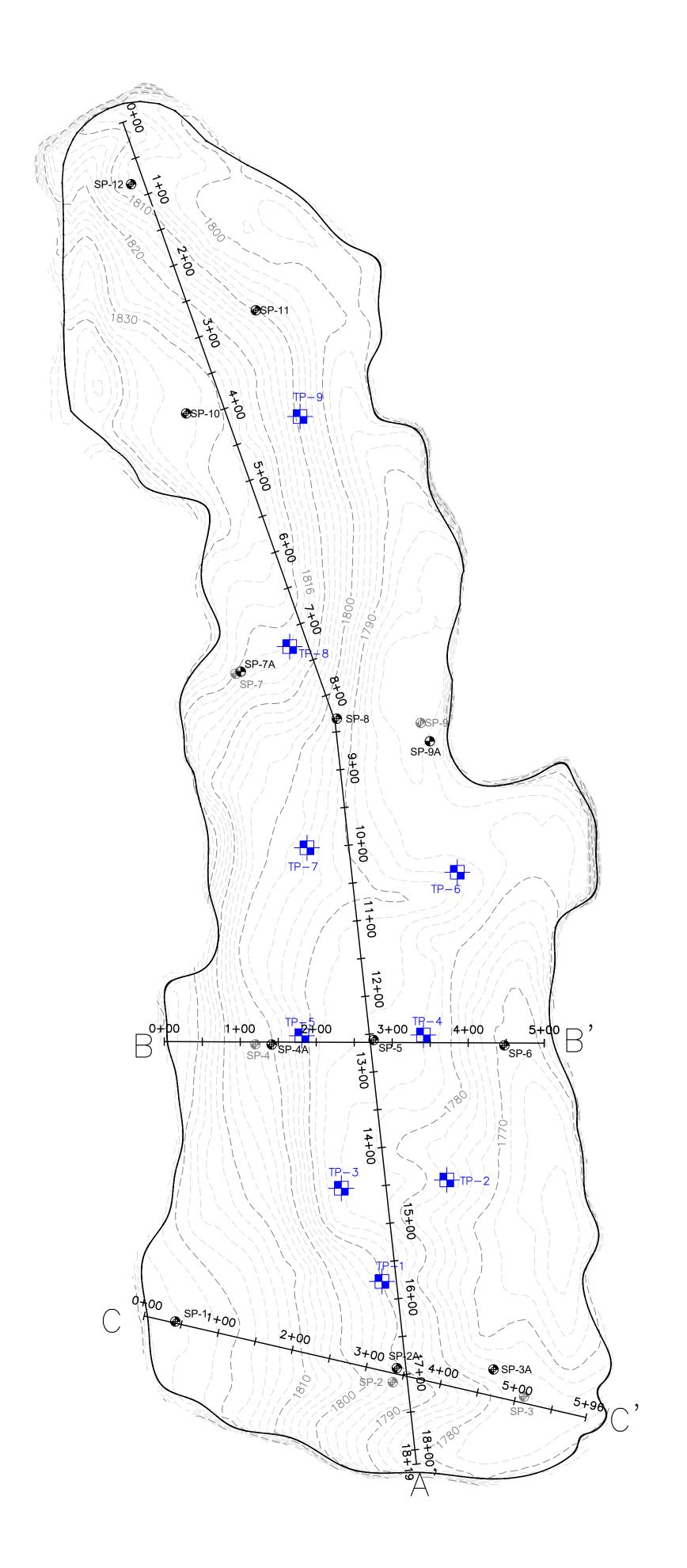
Appendix D Table of Contents

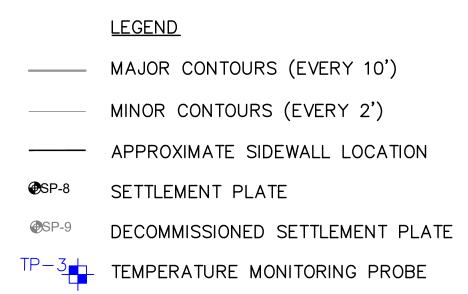
Secti	ion	Page
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 1	D-3
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 5	D-4
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 6	D-5
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 7	D-6
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 8	D-7
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 9	D-8

			Depth fro	m Surface		
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft
1-Sep	165.3	223.2	223.7	235.2	247.3	263.7
2-Sep	165.3	223.3	223.6	235.4	247.3	263.7
3-Sep	165.0	223.0	223.4	235.3	247.2	263.5
4-Sep	165.1	223.0	223.4	235.5	247.3	263.6
5-Sep	165.2	223.3	223.7	235.7	247.5	263.8
6-Sep	165.3	223.3	223.8	235.8	247.6	263.8
7-Sep	164.8	223.2	223.7	236.0	247.3	263.6
8-Sep	164.9	223.0	223.6	236.3	247.2	263.5
9-Sep	164.9	222.9	223.7	236.7	247.4	263.6
10-Sep	165.0	223.1	223.7	236.8	247.4	263.6
11-Sep	164.7	223.2	223.7	237.1	247.5	263.6
12-Sep	165.0	223.3	223.9	237.4	247.6	263.7
13-Sep	165.3	223.5	223.9	237.7	247.8	263.7
14-Sep	165.4	223.5	224.0	237.7	247.9	263.8
15-Sep	165.1	223.4	223.9	237.6	247.8	263.8
16-Sep	165.2	223.5	223.8	237.8	247.8	263.8
17-Sep	165.3	223.5	223.9	237.7	247.7	263.7
18-Sep	165.5	223.6	224.0	237.7	247.9	263.8
19-Sep	165.7	223.7	224.0	237.7	247.8	263.8
20-Sep	165.7	223.8	224.0	237.8	247.9	263.8
21-Sep	165.7	223.8	224.0	238.0	247.8	263.8
22-Sep	165.8	223.9	224.1	238.1	248.0	263.9
23-Sep	165.7	223.9	224.0	237.8	247.9	263.8
24-Sep	165.5	223.7	223.9	237.8	247.9	263.7
25-Sep	166.0	223.8	223.9	238.0	248.0	263.8
26-Sep	165.9	223.7	224.0	238.1	248.0	263.8
27-Sep	165.7	223.6	223.8	237.9	248.0	263.7
28-Sep	165.5	223.6	223.8	237.9	248.0	263.7
29-Sep	165.5	223.6	223.8	237.8	248.1	263.7
30-Sep	165.7	223.6	223.8	237.4	248.1	263.6
Average	165.4	223.4	223.8	237.1	247.7	263.7

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Sep	144.4	214.6	214.9	227.1	236.2	238.3	211.0	204.4
2-Sep	144.4	214.6	214.9	227.1	236.2	238.3	210.9	204.5
3-Sep	144.2	214.5	214.8	227.0	236.1	238.2	210.8	204.4
4-Sep	143.8	214.3	214.6	226.8	235.9	238.0	210.5	204.2
5-Sep	144.1	214.5	214.8	227.0	236.0	238.3	210.7	204.4
6-Sep	144.0	214.4	214.7	226.9	235.9	238.2	210.5	204.4
7-Sep	143.9	214.3	214.6	226.8	235.6	238.1	210.3	204.2
8-Sep	143.9	214.3	214.5	226.6	235.6	238.0	210.2	204.2
9-Sep	143.8	214.2	214.5	226.7	235.6	238.0	210.2	204.2
10-Sep	144.0	214.3	214.6	226.7	235.6	238.1	210.3	204.3
11-Sep	144.1	214.3	214.6	226.7	235.6	238.0	210.2	204.3
12-Sep	144.2	214.4	214.7	226.6	235.7	238.2	210.3	204.4
13-Sep	144.2	214.4	214.8	226.7	235.7	238.2	210.3	204.5
14-Sep	144.1	214.5	214.8	226.7	235.8	238.3	210.3	204.5
15-Sep	144.1	214.4	214.7	226.6	235.6	238.3	210.2	204.4
16-Sep	144.0	214.3	214.7	226.5	235.6	238.1	210.1	204.3
17-Sep	144.0	214.3	214.6	226.5	235.6	238.2	210.1	204.4
18-Sep	144.1	214.4	214.7	226.4	235.5	238.2	210.2	204.5
19-Sep	144.2	214.5	214.7	226.4	235.5	238.3	210.1	204.5
20-Sep	144.2	214.5	214.8	226.4	235.4	238.3	210.2	204.5
21-Sep	144.2	214.5	214.8	226.5	235.2	238.3	210.1	204.5
22-Sep	144.2	214.6	214.9	226.5	235.2	238.3	210.1	204.6
23-Sep	144.1	214.5	214.9	226.5	235.0	238.2	210.1	204.4
24-Sep	144.1	214.4	214.7	226.4	234.9	238.0	209.9	204.3
25-Sep	144.0	214.4	214.7	226.4	235.0	237.9	210.0	204.4
26-Sep	144.1	214.5	214.9	226.3	235.2	237.8	210.1	204.5
27-Sep	143.9	214.2	214.5	226.0	235.0	237.5	209.8	204.2
28-Sep	148.7	212.7	212.7	226.0	235.1	237.7	210.0	204.4
29-Sep	179.4	211.4	211.4	225.8	235.0	237.5	209.9	204.2
30-Sep	182.2	210.9	210.8	225.9	235.0	237.5	209.8	204.2
Average	146.7	214.1	214.4	226.6	235.5	238.1	210.2	204.4

		Dept	h from Sı	urface	
Date	25 ft	50 ft	75 ft	100 ft	125 ft
1-Sep	207.6	194.6	*	194.4	194.4
2-Sep	207.3	194.4	*	194.2	194.3
3-Sep	207.0	194.5	*	194.4	194.4
4-Sep	206.7	193.3	*	193.2	193.2
5-Sep	207.1	194.2	*	194.0	193.9
6-Sep	206.8	194.8	*	194.4	194.4
7-Sep	206.2	194.8	*	194.4	194.5
8-Sep	205.7	194.2	*	194.0	194.1
9-Sep	205.5	194.3	*	194.1	194.1
10-Sep	205.5	194.4	*	194.3	194.2
11-Sep	205.5	194.8	*	194.7	194.7
12-Sep	205.6	196.1	*	195.9	196.0
13-Sep	205.7	195.4	*	195.2	195.3
14-Sep	205.6	195.8	*	195.7	195.7
15-Sep	205.7	194.9	*	194.8	194.8
16-Sep	206.0	194.8	*	194.8	194.7
17-Sep	205.8	194.5	*	194.5	194.5
18-Sep	206.1	194.0	*	194.0	194.0
19-Sep	206.1	194.9	*	194.9	194.9
20-Sep	206.2	193.7	*	193.7	193.6
21-Sep	206.3	193.8	*	193.8	193.8
22-Sep	206.3	193.9	*	194.0	194.0
23-Sep	206.0	193.8	*	193.8	193.9
24-Sep	205.7	193.6	*	193.3	193.4
25-Sep	205.6	193.6	*	193.4	193.4
26-Sep	205.5	193.6	*	193.4	193.5
27-Sep	205.4	193.3	*	193.2	193.2
28-Sep	205.8	193.8	*	193.7	193.8
29-Sep	205.6	194.2	*	194.1	194.2
30-Sep	204.7	194.1	*	193.8	194.0
Average	206.0	194.3	N/A	194.2	194.2

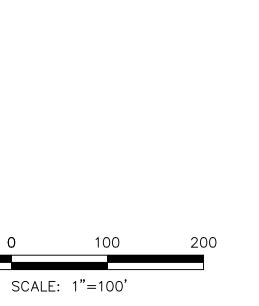

^{*} Indicates sensor reading issues

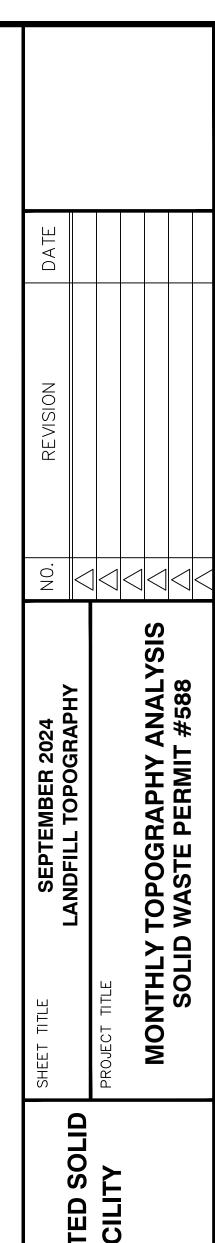

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Sep	142.2	192.0	205.8	195.7	193.1	197.1	202.0	207.3
2-Sep	142.4	192.2	205.8	195.7	193.1	197.3	201.9	212.6
3-Sep	142.2	191.8	205.5	195.3	192.6	196.6	202.0	206.9
4-Sep	142.3	191.5	205.3	195.1	192.4	196.3	202.0	205.8
5-Sep	142.7	191.8	205.8	195.5	192.9	196.7	202.9	205.6
6-Sep	142.6	191.8	205.4	195.4	192.8	196.4	202.6	205.6
7-Sep	142.7	191.7	205.5	195.4	192.7	196.6	202.6	205.7
8-Sep	142.7	191.5	205.8	195.4	192.5	196.8	202.8	206.1
9-Sep	142.5	191.2	205.9	195.3	192.2	196.5	202.8	206.5
10-Sep	142.7	191.4	205.8	195.4	192.4	196.1	203.0	206.2
11-Sep	142.7	191.8	205.5	195.4	192.6	196.1	202.8	206.3
12-Sep	142.8	192.1	205.5	195.7	192.8	196.4	202.8	206.6
13-Sep	142.9	192.3	205.4	195.7	193.1	196.4	202.7	206.7
14-Sep	142.8	192.3	205.4	195.6	193.0	196.1	202.6	206.2
15-Sep	142.9	192.4	205.6	195.6	192.9	196.1	202.6	206.6
16-Sep	142.9	192.4	205.3	195.5	192.8	196.2	202.7	206.9
17-Sep	142.9	192.6	205.3	195.5	192.7	196.2	202.6	206.7
18-Sep	143.0	192.3	205.5	195.5	192.9	196.2	202.9	207.1
19-Sep	143.1	192.1	205.4	195.6	193.1	196.3	202.7	207.4
20-Sep	143.0	192.5	205.4	195.6	193.2	196.4	202.5	206.2
21-Sep	143.2	192.7	205.4	195.8	193.4	196.6	202.6	205.8
22-Sep	143.1	192.1	205.5	195.7	193.1	196.5	202.5	205.9
23-Sep	143.1	192.2	205.8	195.8	193.1	196.5	202.4	205.7
24-Sep	142.9	191.8	205.3	195.5	192.9	196.3	201.5	205.4
25-Sep	143.0	191.5	205.2	195.4	192.8	196.2	201.6	205.3
26-Sep	143.1	191.9	205.0	195.5	192.8	196.1	201.4	205.2
27-Sep	143.1	191.5	204.9	195.2	192.6	195.7	200.9	205.0
28-Sep	143.2	191.6	205.3	195.5	192.9	196.2	201.4	205.4
29-Sep	143.1	191.9	205.1	195.5	192.9	196.1	201.2	205.7
30-Sep	143.1	191.9	205.1	195.4	192.8	196.1	201.3	205.7
Average	142.8	191.9	205.4	195.5	192.8	196.4	202.3	206.3

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Sep	186.8	193.4	193.7	196.1	199.2	199.4	188.2	171.4
2-Sep	187.1	193.4	193.7	196.0	199.2	199.4	188.2	171.3
3-Sep	187.0	193.3	193.6	196.0	199.2	199.4	188.3	171.4
4-Sep	186.6	193.2	193.5	195.8	199.0	199.3	188.0	171.2
5-Sep	186.0	193.4	193.7	196.0	199.1	199.5	188.2	171.4
6-Sep	185.0	193.4	193.7	196.0	199.2	199.4	188.2	171.4
7-Sep	184.3	193.3	193.5	196.0	199.1	199.3	188.0	171.2
8-Sep	185.2	193.3	193.5	196.0	199.1	199.3	187.9	171.1
9-Sep	186.2	193.3	193.6	196.0	199.1	199.3	187.8	171.1
10-Sep	185.9	193.3	193.6	196.0	199.2	199.3	187.8	171.1
11-Sep	186.3	193.3	193.6	196.0	199.2	199.4	187.9	171.1
12-Sep	187.5	193.4	193.7	196.1	199.3	199.4	188.0	171.2
13-Sep	187.8	193.5	193.8	196.1	199.3	199.5	188.1	171.3
14-Sep	187.8	193.5	193.7	196.1	199.3	199.5	188.1	171.3
15-Sep	186.8	193.5	193.8	196.2	199.4	199.5	188.1	171.3
16-Sep	186.3	193.5	193.7	196.2	199.3	199.5	188.0	171.2
17-Sep	186.9	193.4	193.6	196.0	199.2	199.3	187.9	171.0
18-Sep	186.9	193.5	193.8	196.2	199.4	199.6	188.1	171.3
19-Sep	186.4	193.5	193.8	196.2	199.4	199.5	188.1	171.3
20-Sep	186.5	193.6	193.8	196.2	199.4	199.5	188.1	171.2
21-Sep	186.6	193.6	193.8	196.2	199.4	199.6	188.1	171.3
22-Sep	187.2	193.6	193.9	196.3	199.5	199.6	188.1	171.3
23-Sep	186.6	193.6	193.8	196.2	199.4	199.6	188.1	171.3
24-Sep	186.5	193.4	193.6	196.0	199.2	199.4	187.9	171.0
25-Sep	186.8	193.4	193.7	196.0	199.3	199.5	188.0	171.2
26-Sep	186.8	193.5	193.7	196.0	199.3	199.5	188.0	171.2
27-Sep	186.7	193.4	193.6	196.0	199.2	199.4	188.0	171.2
28-Sep	186.4	193.5	193.8	196.2	199.3	199.5	188.0	171.3
29-Sep	186.9	193.5	193.7	196.1	199.3	199.3	187.8	171.0
30-Sep	187.1	193.4	193.7	196.1	199.3	199.4	187.9	171.1
Average	186.6	193.4	193.7	196.1	199.3	199.4	188.0	171.2

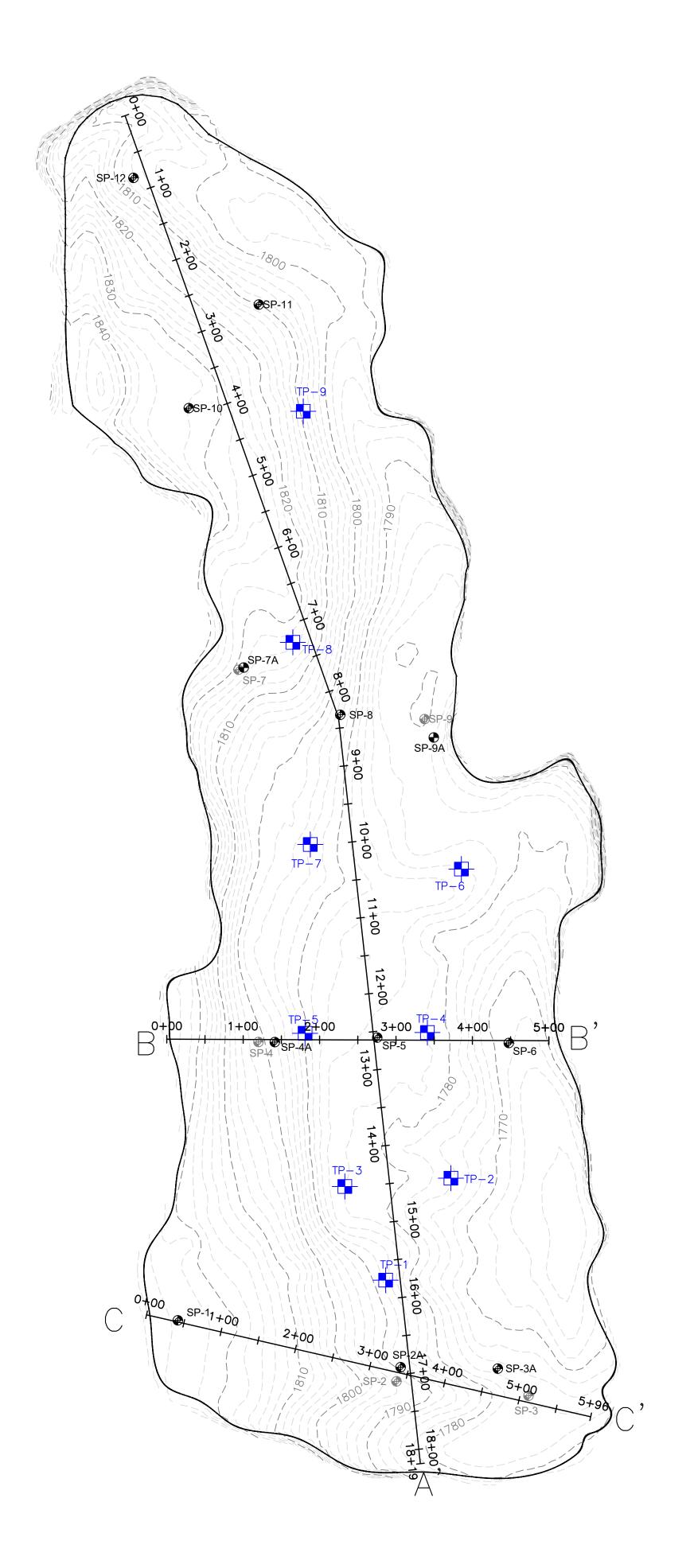
				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Sep	109.9	149.6	149.2	149.0	144.2	131.4	116.4	105.8
2-Sep	109.7	149.5	149.1	149.0	144.1	131.5	116.3	105.7
3-Sep	109.5	149.3	148.9	148.9	143.9	131.3	116.1	105.4
4-Sep	109.3	149.2	148.8	148.8	143.8	131.2	116.1	105.4
5-Sep	109.8	149.6	149.2	149.0	144.1	131.4	116.3	105.6
6-Sep	108.9	149.5	149.0	148.9	144.0	131.5	116.3	105.6
7-Sep	108.7	149.3	148.9	148.9	143.9	131.4	116.3	105.6
8-Sep	109.4	149.3	148.9	148.6	143.8	131.1	116.1	105.4
9-Sep	109.6	149.4	149.1	148.6	143.8	131.1	116.2	105.4
10-Sep	109.7	149.3	149.0	148.6	143.8	131.3	116.1	105.3
11-Sep	109.9	149.6	149.2	148.8	143.9	131.3	116.3	105.4
12-Sep	110.0	149.7	149.3	148.8	144.0	131.3	116.3	105.4
13-Sep	110.0	149.7	149.4	148.9	144.0	131.4	116.4	105.5
14-Sep	109.8	149.7	149.3	148.9	144.1	131.5	116.4	105.4
15-Sep	110.1	149.7	149.4	148.9	144.1	131.4	116.4	105.4
16-Sep	110.0	149.7	149.3	148.8	144.0	131.3	116.3	105.4
17-Sep	110.0	149.7	149.3	148.9	144.0	131.5	116.4	105.4
18-Sep	110.3	149.9	149.6	149.0	144.2	131.6	116.5	105.5
19-Sep	110.3	150.0	149.6	149.0	144.3	131.6	116.5	105.7
20-Sep	110.3	150.0	149.6	149.0	144.3	131.5	116.5	105.7
21-Sep	110.2	150.0	149.6	149.0	144.3	131.5	116.5	105.6
22-Sep	110.4	150.0	149.6	149.0	144.2	131.4	116.5	105.6
23-Sep	109.0	149.6	149.2	149.0	144.1	131.3	116.4	105.6
24-Sep	110.1	149.7	149.3	148.7	144.0	131.1	116.3	105.4
25-Sep	110.5	149.8	149.5	148.8	144.0	131.2	116.4	105.5
26-Sep	110.8	150.0	149.6	149.0	144.2	131.4	116.6	105.7
27-Sep	110.6	149.8	149.5	148.7	144.1	131.1	116.3	105.5
28-Sep	110.9	150.1	149.7	148.8	144.2	131.2	116.4	105.6
29-Sep	110.8	150.1	149.7	148.7	144.1	131.2	116.4	105.6
30-Sep	110.7	149.9	149.5	148.6	144.0	131.0	116.3	105.4
Average	110.0	149.7	149.3	148.9	144.1	131.3	116.3	105.5

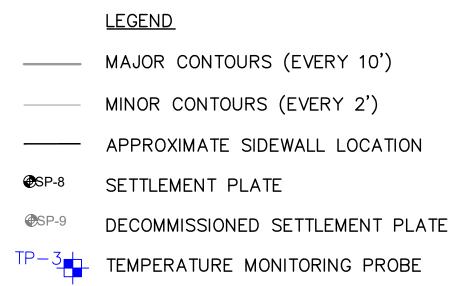
Appendix E





NOTES:


- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON SEPTEMBER 23, 2024 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

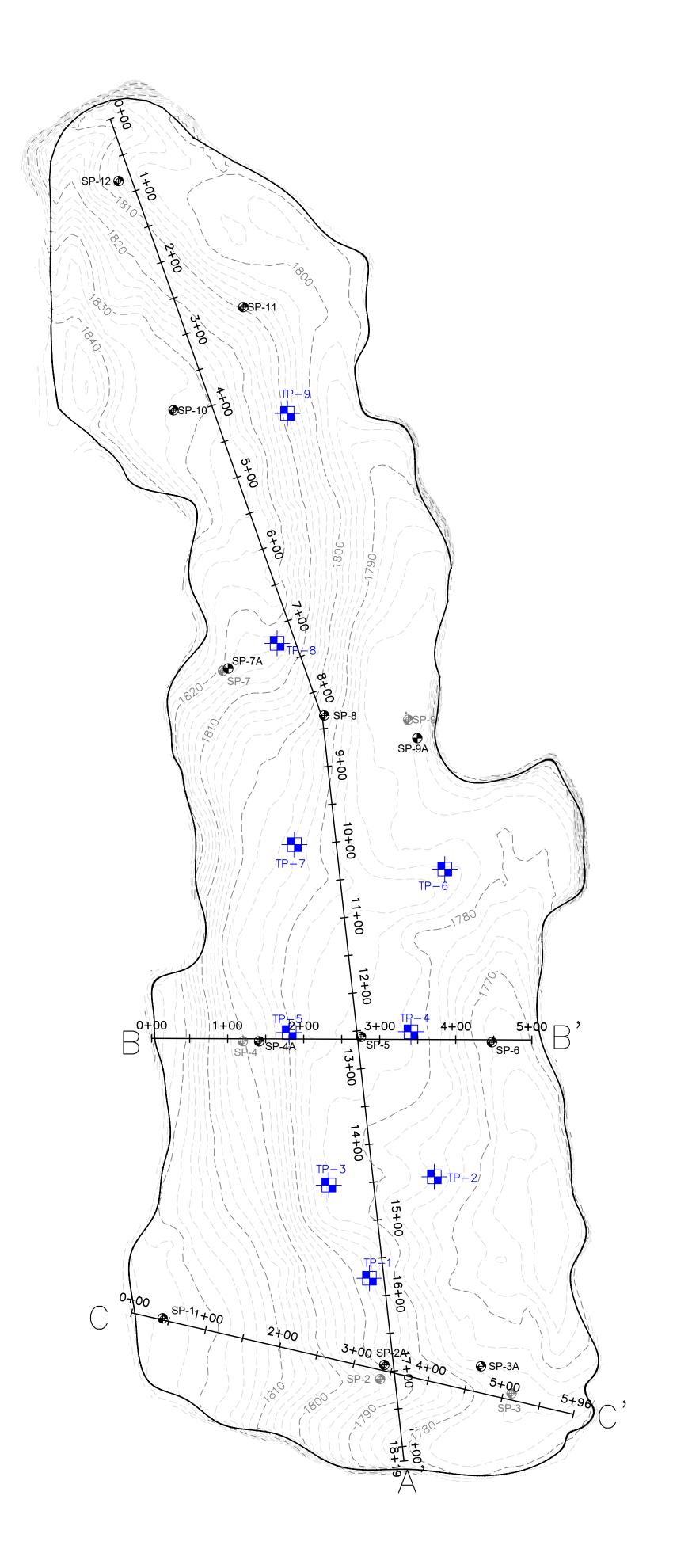

CLIENT	CITY OF BRISTOL INTEGRATI	WASTE MANAGEMENT FAC	2655 VALLEY DRIVE
SCS ENGINEERS	STEARNS, CONRAD AND SCHMIDT	CONSULTING ENGINEERS, INC. 15521 MIDLOTHIAN TNPK - MIDLOTHIAN, VA 23113	PH. (804) 378-7440 FAX. (804) 378-7433
CAD	d fii SUR	LE: ?F (CC
DAT.	e: 10/	/1/	20
SCA	LE:		

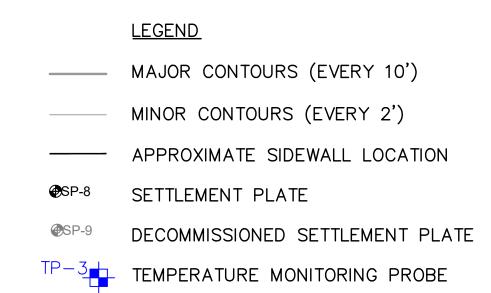
DRAWING NO.

NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON JUNE 12, 2025 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

SCALE: 1"=100'


IGINEERS	CLIENT	SHEET TITLE JUNE 2025	ON	REV
NRAD AND SCHMIDT	CITY OF BRISTOL INTEGRATED SOLID	LAINDLIEE IOTOGRAFIII	<	
ENGINEERS, INC.	WASTE MANAGEMENT FACILITY	PROJECT TITLE		
10 FAX. (804) 378-7433	2655 VALLEY DRIVE			
0/A RVW BY:	BRISTOL VIRGINIA 24201	MONTHLY TOPOGRAPHY ANALYSIS	\triangleleft	
CJW CAPP BX:		SOLID WASTE PERMIT #588	\triangleleft	
MCO.				


CADD FILE: SURF COMP

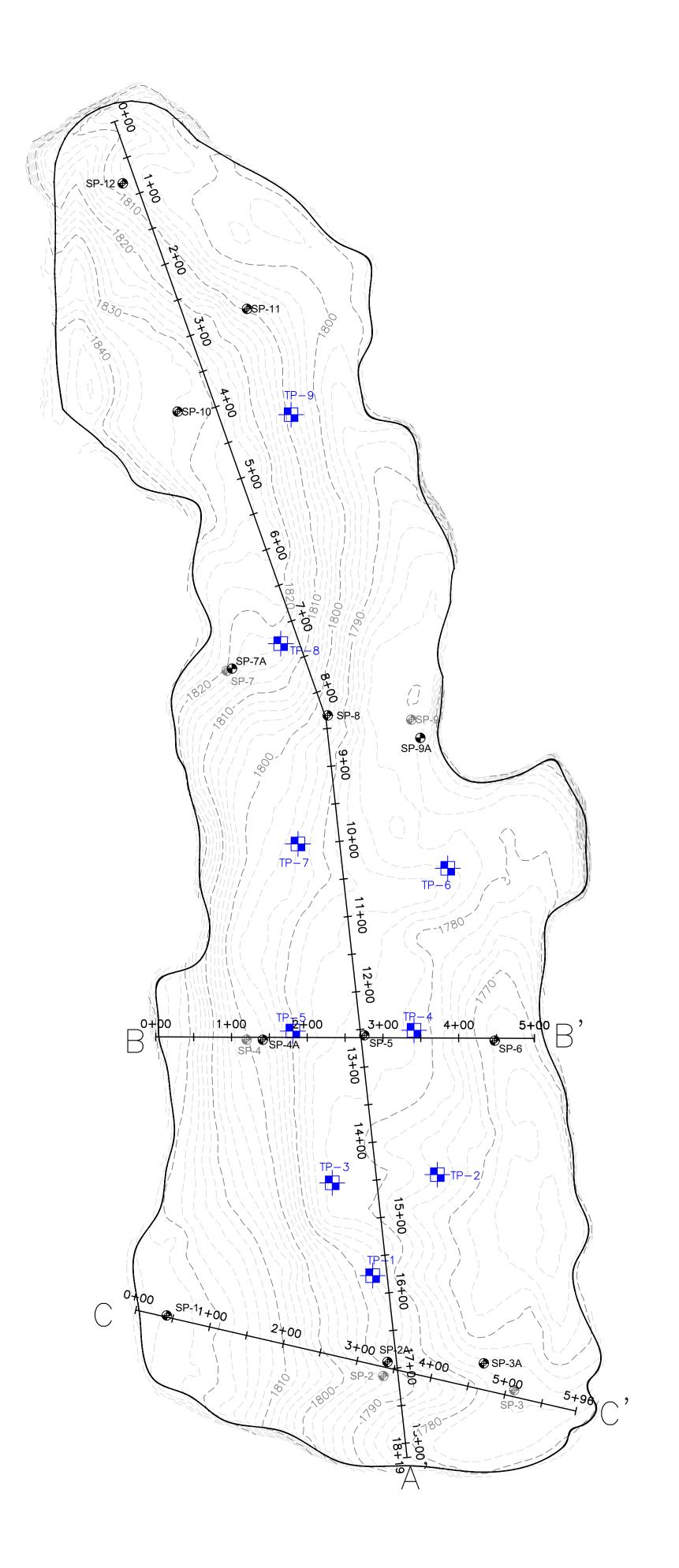
10/1/2025

SCALE:

DRAWING NO.

NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON AUGUST 21, 2025 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.


С
D
S
D

SCALE: 1"=100'

CLIENT	SHEET TITLE	AUGUST 2025	NO.	REVISION	DATE	
		VUOVOCOCOT I HOUN				
CITY OF BRISTOL INTEGRATED SOLID		LANDLIEE IOPOGNATUI				
WASTE MANAGEMENT FACILITY	PROJECT TITLE					
2655 VALLEY DRIVE			\triangleleft			
BRISTOL VIRGINIA 24201	MONTHLY	MONTHLY TOPOGRAPHY ANALYSIS	\triangleleft			
	SOLID	SOLID WASTE PERMIT #588	\langle			
			•			

RS: HMIDT INC.		Q/A RVW B	C	VD DOV
SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS, INC. 15521 MIDLOTHIAN TNPK - MIDLOTHIAN, VA PH. (804) 378-7440 FAX. (804) 378-7433		DWN. BY:	NMN	אם אדט
SCS E STEARNS, C CONSULTIN 15521 MIDLOTI PH. (804) 378-7		PROJ. NO.	02218208.05	DON BY:
CADD FILE: SURF CC)(ΛI	\supset	
DATE: 10/1/20) ′_	25	5	
SCALE:				
DRAWING NO.				
3				8

LEGEND

MAJOR CONTOURS (EVERY 10')

MINOR CONTOURS (EVERY 2')

APPROXIMATE SIDEWALL LOCATION

SP-8 SETTLEMENT PLATE

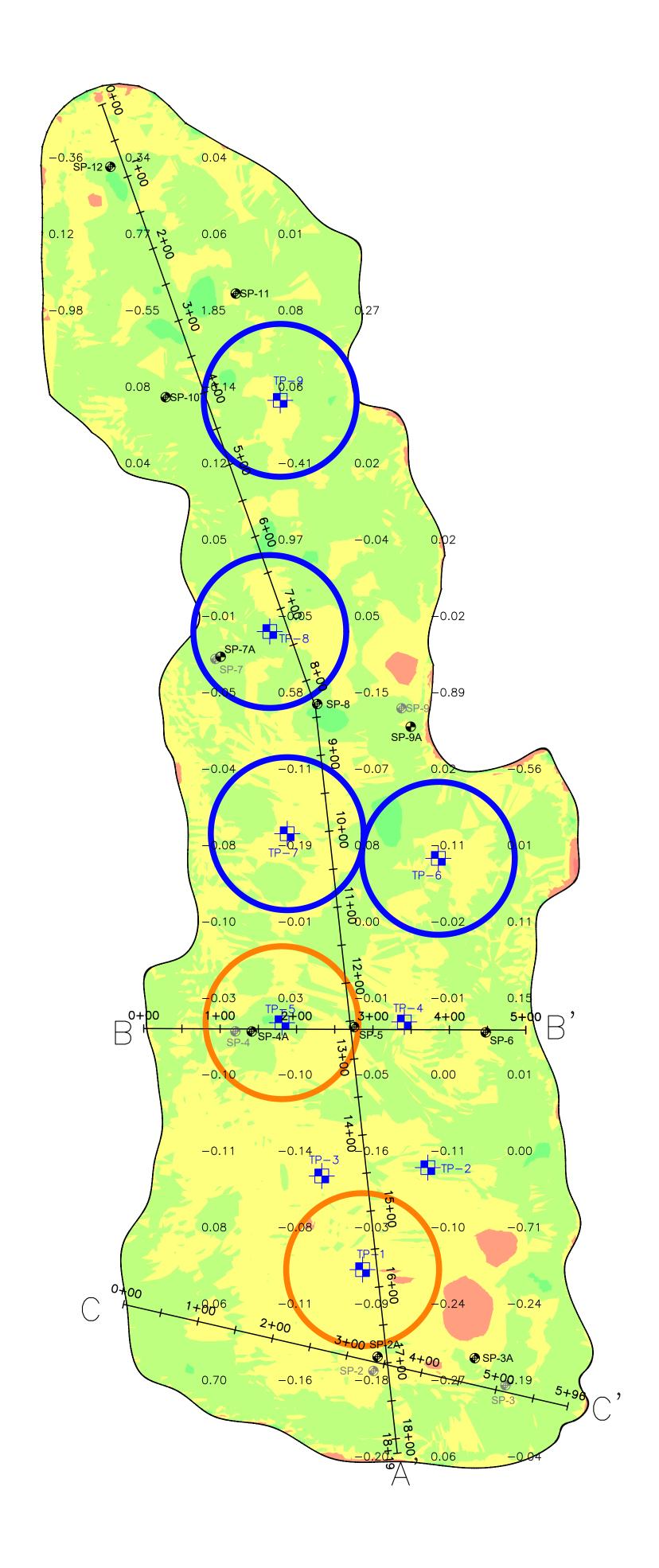
DECOMMISSIONED SETTLEMENT PLATE

TEMPERATURE MONITORING PROBE

NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON SEPTEMBER 11, 2025 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

SHEET TITLE SEPTEMBER 2025 NO.		PROJECT TITLE		MONTHLY TOPOGRAPHY ANALYSIS	SOLID WASTE PERMIT #588	
	CITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY PROJ		-		
S ENGINEERS	ARNS, CONRAD AND SCHMIDT	SULTING ENGINEERS, INC. MIDI OTHIAN TNBK - MIDI OTHIAN VA 23113	304) 378-7440 FAX. (804) 378-7433	DWN BY:	WW	CHK. BY: CJW CJW CJW


cadd file: SURF COMP

10/1/2025

DRAWING NO.

100 50 0 100 20 SCALE: 1"=100'

<u>LEGEND</u>

— MAJOR CONTOURS (EVERY 10')

——— MINOR CONTOURS (EVERY 2')

----- APPROXIMATE WASTE BOUNDARY

●SP-8 SETTLEMENT PLATE

©SP-9 DECOMMISSIONED SETTLEMENT PLATE

SPOT ELEVATION ON 100' GRID

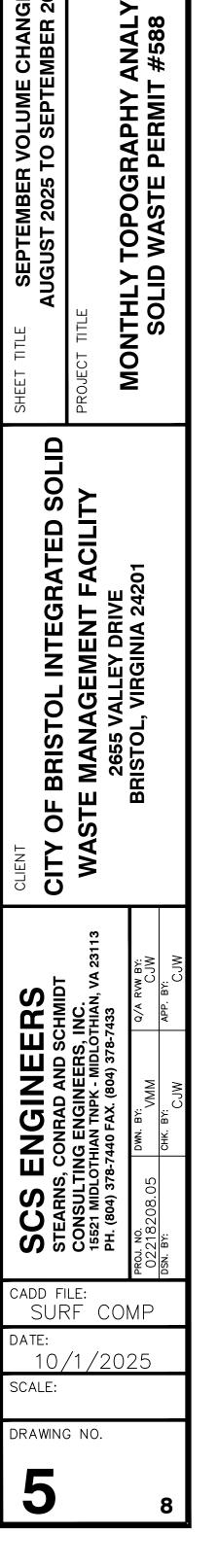
TEMPERATURE MONITORING PROBE WITH
AVERAGE TEMPERATURES AT DEPTH LESS THAN 200 °F

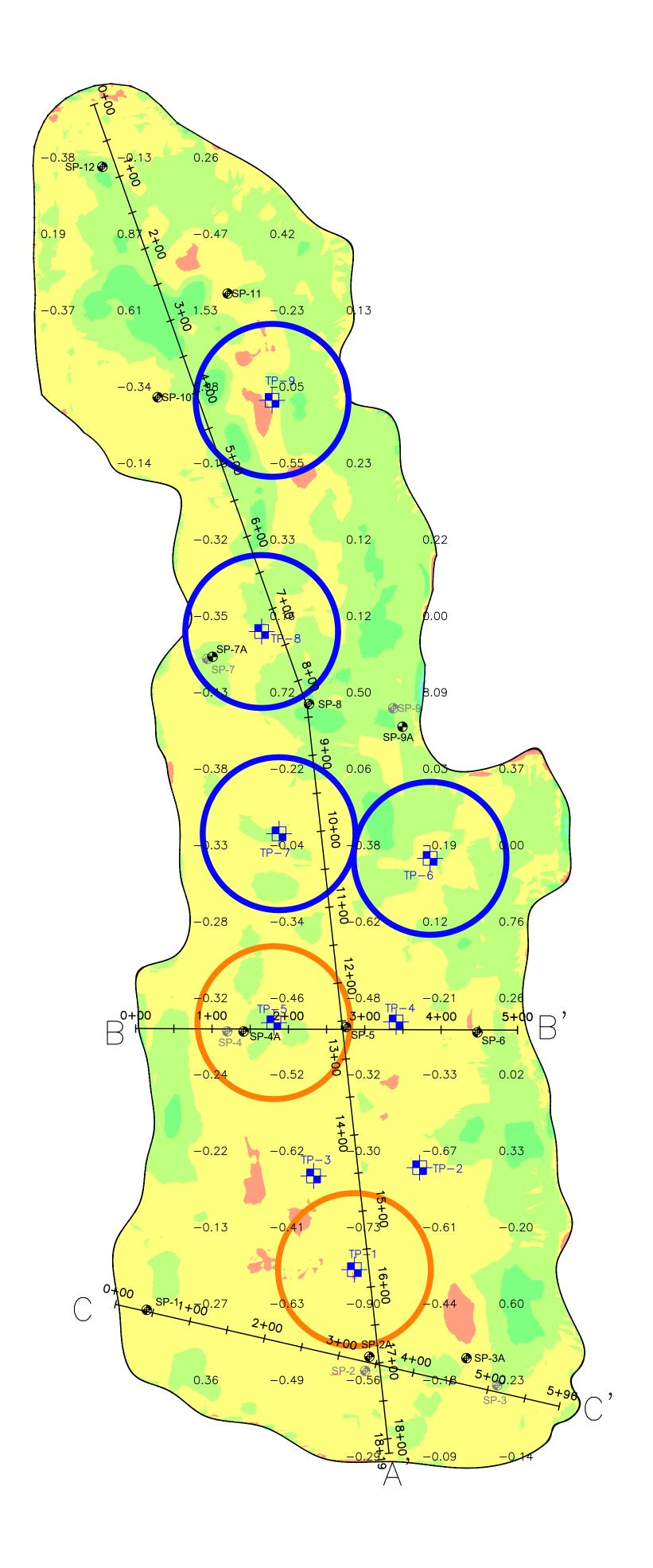
TP-1+
TEMPERATURE MONITORING PROBE WITH
AVERAGE TEMPERATURES AT DEPTH BETWEEN 200 °F AND 250 °F

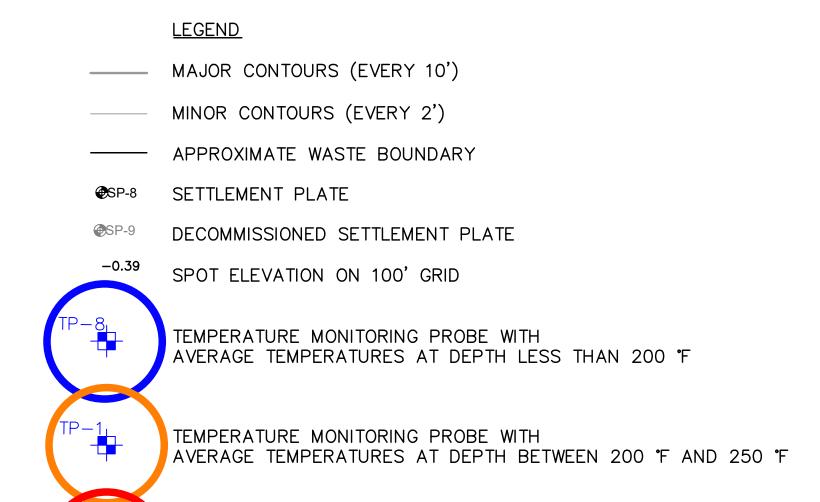
TP-2
TEMPERATURE MONITORING PROBE WITH
AVERAGE TEMPERATURES AT DEPTH BETWEEN 250 °F AND 300 °F


Volume		
Base Surface		
Comparison Surface	TOPO - September	11, 2025
Cut Volume	2 757	Cu. Yd.
Cut volume	2,757	Cu. Tu.

Cut Volume	2,757	Cu. Yd.
Fill Volume	2,753	Cu. Yd.
Net Cut	4	Cu. Yd.

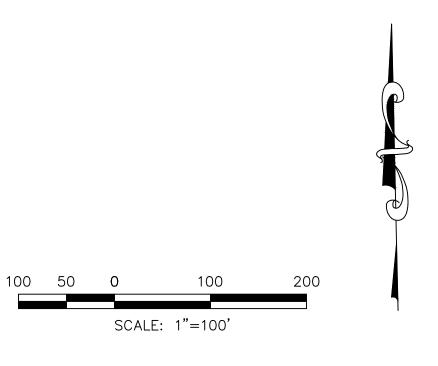

	Elevation	ons Table	
Number	Minimum Elevation	Maximum Elevation	Color
1	-20.000	-10.000	
2	-10.000	-5.000	
3	-5.000	-1.000	
4	-1.000	0.000	
5	0.000	1.000	
6	1.000	5.000	
7	5.000	10.000	
8	10.000	20.000	


NOTES:


- THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON AUGUST 21, 2025 AND SEPTEMBER 11, 2025 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

SCALE: 1"=100'

ne Base Surfac Comparison				2025
Cut Volume Fill Volume Net Cut	6,540 4,879 1,751	Ci	ı. Yd. ı. Yd. ı. Yd.	


TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 250 °F AND 300 °F

Elevations Table

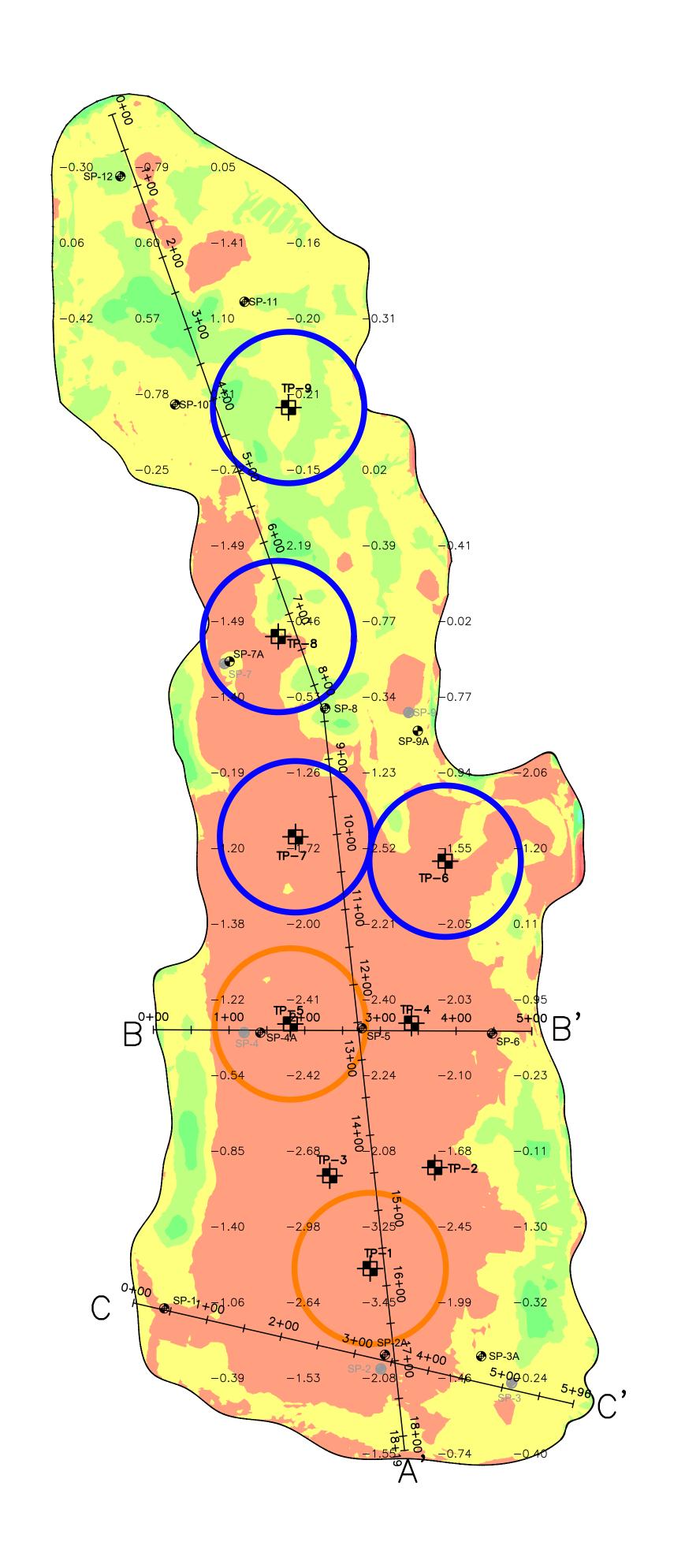
Number	Minimum Elevation	Maximum Elevation	Color
1	-20.000	-10.000	
2	-10.000	-5.000	
3	-5.000	-1.000	
4	-1.000	0.000	
5	0.000	1.000	
6	1.000	5.000	
7	5.000	10.000	
8	10.000	20.000	

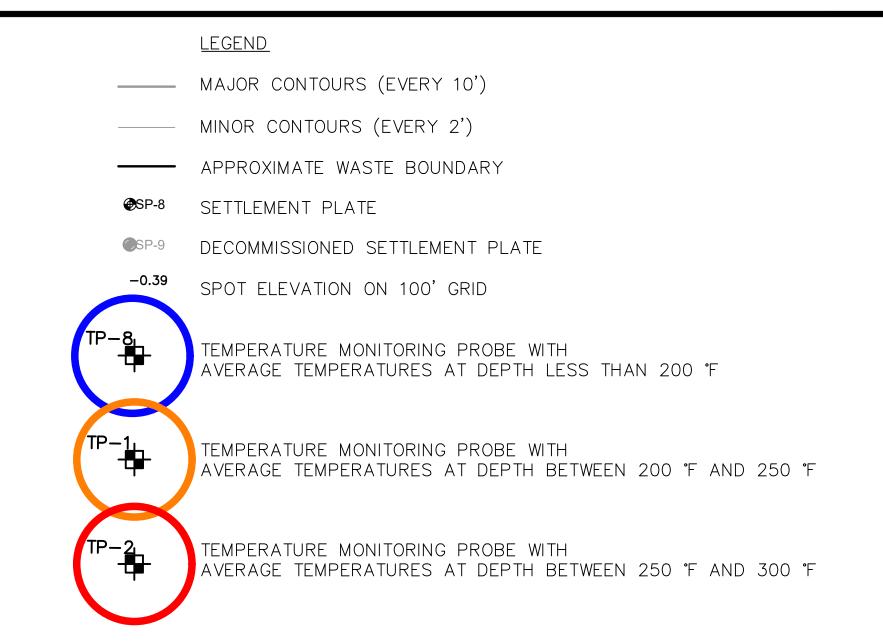
NOTES:

- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON JUNE 12, 2025 AND SEPTEMBER 11, 2025 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

HANGE	NO.	REVISION	DATE	
- L 2023				
	\triangleleft			
IALYSIS	\triangleleft			
588	\triangleleft			
	<			

	SHEET TITLE		ON	REVISIO
ED SOLID		JUNE 2025 I O SEPTEMBER 2025	<	
ILITY	PROJECT TITLE			
			\triangleleft	
	MONTH	MONTHLY TOPOGRAPHY ANALYSIS	\triangleleft	
	SO	SOLID WASTE PERMIT #588	\triangleleft	
			<	


	CLIENI
	CITY OF BRISTOL INTEGRATE
113	WASTE MANAGEMENT FACII
	2655 VALLEY DRIVE
	BRISTOL, VIRGINIA 24201

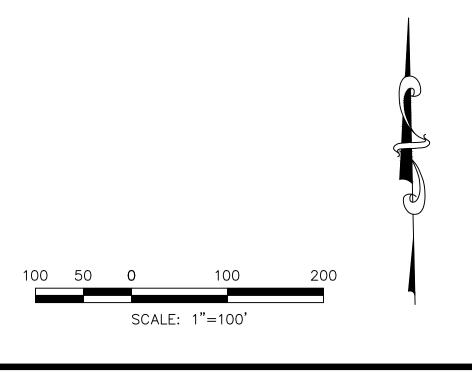

RS:HMIDT:INC.	Q/A RVW BY: CJW	ADD DV.
SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS, INC. 15521 MIDLOTHIAN TNPK - MIDLOTHIAN, VA 231- PH. (804) 378-7440 FAX. (804) 378-7433	DWN. BY: VMM	
SCS E STEARNS, C CONSULTIN 15521 MIDLOTE PH. (804) 378-7	PROJ. NO. 02218208.05	DON DV.
CADD FILE: SURF CON	MР	

SCALE:

10/1/2025

Volume

Base Surface TOPO — September 23, 2024 Comparison Surface TOPO — September 11, 2025


Cut Volume 31,471 Cu. Yd. Fill Volume 2,122 Cu. Yd. Net Cut 29,349 Cu. Yd.

Elevations Table

	Elevations rable									
Number	Minimum Elevation	Maximum Elevation	Color							
1	-20.000	-10.000								
2	-10.000	-5.000								
3	-5.000	-1.000								
4	-1.000	0.000								
5	0.000	1.000								
6	1.000	5.000								
7	5.000	10.000								
8	10.000	20.000								
		•								

NOTES:

- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON SEPTEMBER 23, 2024 AND SEPTEMBER 11, 2025 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
- 4. THE VERTICAL DATUM(S) IS BASED UPON NAVD-88.

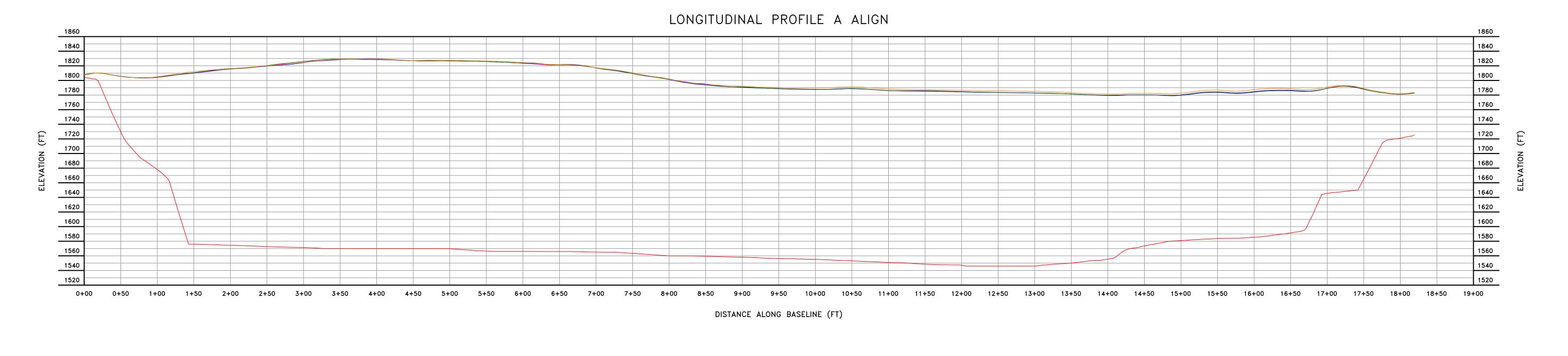
REVISION DATE

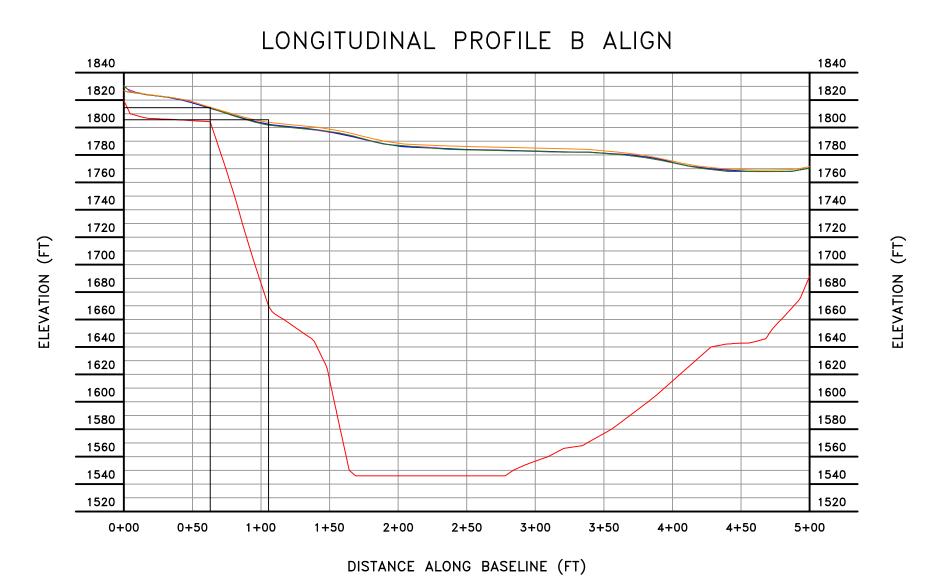
SCS ENGINEERS

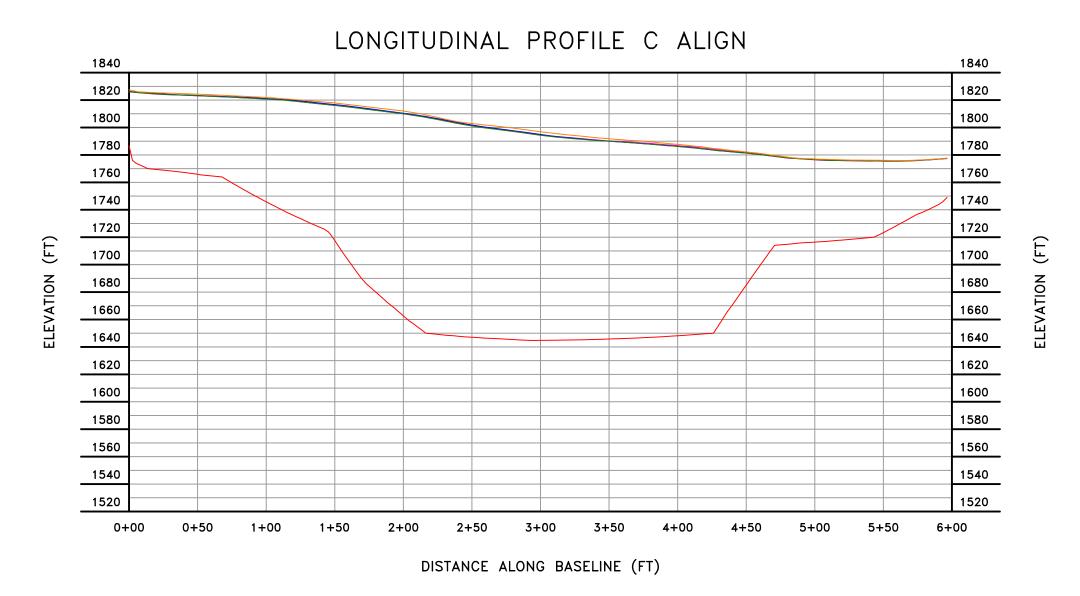
STEARNS, CONRAD AND SCHMIDT

CONSULTING ENGINEERS, INC.

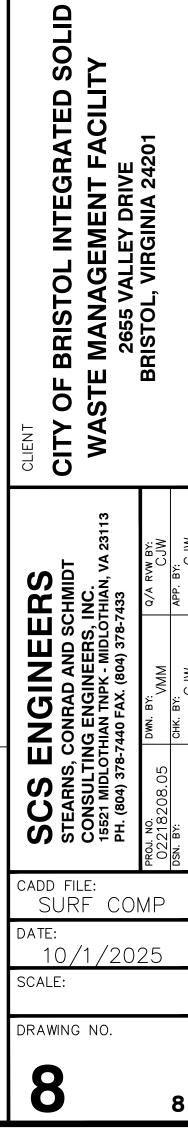
15521 MIDLOTHIAN TNPK - MIDLOTHIAN, VA 2


PROJ. NO.


PROJ. NO.


OCZ18208.05

OMN. BY:


OCZ18208.05

PROFILES

Appendix F

Field Logs

Lab Report

Historical LFG-EW Leachate Monitoring Results Summary

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date								9/23-25	/25					
SCS Personnel	Field Person	inel:	L. Nelson	& C. Kirby			Checked By: L. Howard and J. Robb							
Location ID	Date	Casing Stickup (ft)		Prior Depth to Liquid (ft)	Cycle Count	Prior Cycle Count	Well Casing Depth (ft)	Pump Depth (ft)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Sample Collected	Check/ Photo	Comments
PUMP INSTALLED														
EW-50	9/24/2025	4.95	55.12		1664385.00		77.70	83	22.58	Y	90.00	Y	Y	Air on
EW-53	9/23/2025	4.72	39.97	39.6	3294540	3294540	100.70	77	60.73	Y	0	Ν	Y	Air off
EW-55	9/23/2025	4.59	41.52	42.52	73387	73387	90.40	90	48.88	Y	0	Ν	Y	Air Disconneted
EW-59	9/23/2025	3.41	38.62	40.15	3684734	3684552	73.40	61	34.78	Y	115	N	Y	Air on
EW-60	9/24/2025	4.52	55.22	41.86	334022	299167	81.80	72.5	26.58	Y	95	Y	Y	Air on
EW-61	9/24/2025	3.41	70.02	73.91	189001	181617	87.80	75	17.78	Y	100	N	Y	
EW-62	9/24/2025	4.41	82.23	83.8			110.60	91.5	28.37	Y	0	N	Y	Air off
EW-65	9/24/2025	3.08	47.64	49.32	148348	13496	88.40	70	40.76	Y	120	N	Y	Air on
EW-68	9/24/2025	2.15	42.81	44.88	266211	2662104	73.57	60	30.76	Y	115	N	Y	
EW-78	9/24/2025	3.81	44.8	46.04	235152	185303	57.00	47	12.20	Υ	95	N	Y	
EW-82	9/24/2025	4.40	121.5	118.37	650289	631268	163.26	145	41.76	Y	0	Ν	Y	
EW-83	9/24/2025	4.83	84.22	82.97	2269	2265	167.04	145	82.82	Y	0	Ν	Y	
EW-85	9/24/2025	4.90	53.74	60.18	351154	347869	91.00	78	37.26	Y	100	Ν	Y	Air on
EW-87	9/24/2025	5.48	47.5	69.53	340749	340749	149.57	110	102.07	Y	0	N	Y	Air Disconneted
EW-96	9/23/2025	8.00					164.35	145	#VALUE!	Y	0	Ν	Y	Too Tall
EW-98	9/24/2025	4.31	55.51	46.11	2627153	2497452	51.00	46	-4.51	Y	100	N	Y	

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date		9/23-25/25												
SCS Personnel	Field Person	inel:	L. Nelson	& C. Kirby			Checked By:							
Location ID	Date	Casing Stickup (ft)		Prior Depth to Liquid (ft)	Cycle Count	Prior Cycle Count	Well Casing Depth (ft)	Pump Depth (ft)		Pump (Y/N)	Pump PSI	Sample Collected	Check/ Photo	Comments
NO PUMP														
EW-49	9/24/2025	2.86	66.92				96.15	87	29.23	N		N	Y	
EW-54	9/23/2025	3.41	35.67	37			82.70	65	47.03	N		N	Y	
EW-56	9/23/2025	3.70	37.68	38.05			42.71		5.03	N		N	Y	
EW-67	9/23/2025	2.76	41.04	41.05			107.75	76	66.71	N		N	Y	
EW-69	9/24/2025	4.62	92.5	93.18			98.00		5.50	N		N	Y	
EW-70	9/24/2025	1.85	64	64.07			71.00	58	7.00	N		N	Y	
EW-73	9/24/2025	3.87	106.17	105.68			116.00		9.83	N		N	Y	
EW-80	9/24/2025	3.36	136.86	136.93			149.00		12.14	N		N	Y	
EW-84	9/24/2025	4.09		78.24			130.56		#VALUE!	N		N	Y	Obstruction at 101'
EW-86	9/24/2025	3.43					153.00		#VALUE!	N		N	Y	Obstruction at 88.8'
EW-88	9/24/2025	3.18	58.2				100.00	61	41.80	N		N	Y	
EW-91	9/24/2025	5.27	48.11	48.07			137.70		89.59	N		N	Y	
EW-92	9/24/2025	7.94		54.01			112.99		#VALUE!	N		N	Y	Too Tall
EW-95	9/23/2025	3.92	58.32	57.13			68.00		9.68	N		N	Y	
EW-97	9/23/2025	9.92					144.50		#VALUE!	N		N	Y	Too Tall
EW-99	9/23/2025	3.85	59.68	59.2			65.00		5.32	N		N	Y	

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date		9/23-25/25													
SCS Personnel	Field Person	inel:	L. Nelson	& C. Kirby			Checked By: L. Howard and J. Robb								
Location ID	Date	Casing Stickup (ft)		Prior Depth to Liquid (ft)	Cycle Count	Prior Cycle Count	Well Casing Depth (ft)	Pump Depth (ft)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Sample Collected	Check/ Photo	Comments	
MEASURE CASIN	IG STICKUP A	ND CYCL	E COUNTE	R ONLY		ı									
EW-36A ¹	9/24/2025	1.72			459999	459999	180.00	135		Y	0	N	Y		
EW-52 ²	9/24/2025	3.39			1239786	1239706	98.70	80		Y	0	Ν	Y	Air Disconneted	
EW-66 ²	9/23/2025	2.90			39057	39055				Y	100	Ν	Y	Air On	
EW-76 ²	9/24/2025	8.63					127.00	108		N		Ν	Y		
EW-81 ¹	9/24/2025	5.10		106.08			151.56	125	45.48	Y	0	Ν	Y	No Cylce Counter	
EW-89 ¹	9/24/2025	4.46	68.2	65.16	511705	471935	84.57	70	19.41	Y	90	Ν	Y		
EW-93 ²	9/24/2025	4.27			1409960	1409960	111.00			Y	0	Ν	Y	Air Disconneted	
EW-94 ¹	9/23/2025	3.60			1900357	1814445	50.00	38		Y	100	Ν	Y		
DO NOT APPRO	ACH														
EW-33B														SSO Concerns - Do not approach	
EW-63														SSO Concerns - Do not approach	
EW-64														SSO Concerns - Do not approach	
EW-77														SSO Concerns - Do not approach	
EW-79														SSO Concerns - Do not approach	

^{--- =} not applicable or available

ft = feet

LEL = Lower Explosive Limit

O2 = Oxygen

ppm = parts per million

SSO = Subsurface oxygen event

VOC = Total Volatile Organic Compounds

CO = Carbon monoxide

^{1 =} Not Measured as gauging equipment has historically become stuck in well.

^{2 =} Not Measured as pump is shut off and intended to be pulled for maintenance/replacement or has been removed for maintenance or replacement.

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (°C)	pH (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-50	9/24/2025	9:30	50.60	7.86	19.52	0.27	-153.20	0.00	Black
EW-60	9/24/2025	9:00	69.20	5.55	39.20	0.36	-20.40	0.00	Black
SCS Personnel Sampler: L. Nelson & C.Kirby					Checked By: L. Howard and J. Robb				
Sampl	es Shipped By:	Courier				Laboratory:	Enthalpy .	Analytical	

[°]C = degrees Celsius

mg/L = milligrams per liter

mV = milliVolts

NTU = Nephelometric Turbidity Unit

s.u. = Standard Unit

mS/cm = milliSiemens per centimeter

1941 Reymet Road ● Richmond, Virginia 23237 ● Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 25H2532

Client Name: SCS Engineers - Winchester

296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Date Received:

August 29, 2025 8:00

Date Issued:

September 15, 2025 18:16

Project Number:

02218208.15 Task 5

Purchase Order:

Client Site I.D.: Bristol LFG-EW Monthly Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 08/29/2025 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ginny Thrasher

Senior Project Manager

Dinny Thrasher

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

9/15/2025 6:16:40PM

Date Issued:

Analysis Detects Report

Client Name: SCS Engineers - Winchester

Client Site ID: Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Laboratory Sample ID: 25H2532-01 Client Sample ID: EW-98

25112552-01							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Factor	Units
Arsenic	01	SW6010D	0.178		0.0018	0.0200	1	mg/L
Barium	01	SW6010D	0.444		0.0005	0.0100	1	mg/L
Cadmium	01	SW6010D	0.0010	J	0.0002	0.0040	1	mg/L
Chromium	01	SW6010D	0.0578		0.0004	0.0100	1	mg/L
Copper	01	SW6010D	0.0049	J	0.0017	0.0100	1	mg/L
Lead	01	SW6010D	0.0142		0.0018	0.0100	1	mg/L
Mercury	01	SW6020B	1.39	J	0.271	2.00	10	ug/L
Nickel	01	SW6010D	0.0393		0.0005	0.0100	1	mg/L
Silver	01	SW6010D	0.0008	J	0.0004	0.0100	1	mg/L
Zinc	01RE1	SW6010D	0.0318		0.0064	0.0200	2	mg/L
2-Butanone (MEK)	01RE1	SW8260D	47400		1500	5000	500	ug/L
Acetone	01RE1	SW8260D	89600		3500	5000	500	ug/L
Benzene	01	SW8260D	1300		20.0	50.0	50	ug/L
Ethylbenzene	01	SW8260D	230		20.0	50.0	50	ug/L
Tetrahydrofuran	01	SW8260D	16800		500	500	50	ug/L
Toluene	01	SW8260D	131		25.0	50.0	50	ug/L
Xylenes, Total	01	SW8260D	458		50.0	150	50	ug/L
Acetic Acid	01	D3705	678		71.4	500	1000	mg/L
Butyric Acid	01RE1	D3705	338		7.0	50.0	100	mg/L
Formic Acid	01RE2	D3705	67.2		0.6	5.0	10	mg/L
i-Pentanoic Acid	01RE1	D3705	93.4		10.2	50.0	100	mg/L
n-Hexanoic Acid	01RE2	D3705	57.7		0.6	5.0	10	mg/L
n-Pentanoic Acid	01RE2	D3705	68.7		0.6	5.0	10	mg/L
Propionic Acid	01	D3705	696		57.3	500	1000	mg/L
Pyruvic Acid	01RE2	D3705	61.3		0.9	5.0	10	mg/L
Ammonia as N	01	EPA350.1 R2.0	778		120	200	2000	mg/L
BOD	01	SM5210B-2016	5650		0.2	2.0	1	mg/L

9/15/2025 6:16:40PM

Date Issued:

Analysis Detects Report

Client Name: SCS Engineers - Winchester

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site ID:

Laboratory Sample ID: 25H2532-01 Client Sample ID: EW-98

							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Factor	Units
COD	01	SM5220D-2011	9760		630	1000	100	mg/L
TKN as N	01	EPA351.2 R2.0	1090		45.9	50.0	1	mg/L
Total Recoverable Phenolics	01	SW9065	11.5		1.54	2.50	1	mg/L

9/15/2025 6:16:40PM

Date Issued:

Analysis Detects Report

Client Name: SCS Engineers - Winchester

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site ID:

Laboratory Sample ID: 25H2532-02 Client Sample ID: EW-89

Qual	DL 0.0018 0.0005 0.0002 0.0004 0.0018 0.271 0.0005	LOQ 0.0200 0.0100 0.0040 0.0100 0.0100 2.00	Dil. Factor 1 1 1 1 1	Units mg/L mg/L mg/L mg/L mg/L
Qual	0.0018 0.0005 0.0002 0.0004 0.0018 0.271	0.0200 0.0100 0.0040 0.0100 0.0100	1 1 1 1	mg/L mg/L mg/L mg/L
	0.0005 0.0002 0.0004 0.0018 0.271	0.0100 0.0040 0.0100 0.0100	1 1 1	mg/L mg/L mg/L
	0.0002 0.0004 0.0018 0.271	0.0040 0.0100 0.0100	1	mg/L mg/L
	0.0004 0.0018 0.271	0.0100 0.0100	1	mg/L
	0.0018 0.271	0.0100		•
	0.271		1	ma/l
		2.00		mg/L
	0.0005		10	ug/L
		0.0100	1	mg/L
	0.0096	0.0300	3	mg/L
	150	500	50	ug/L
	3500	5000	500	ug/L
	20.0	50.0	50	ug/L
	500	500	50	ug/L
	71.4	500	1000	mg/L
	70.3	500	1000	mg/L
	64.5	500	1000	mg/L
	20.4	100	200	mg/L
	55.7	500	1000	mg/L
	12.1	100	200	mg/L
	11.2	100	200	mg/L
	57.3	500	1000	mg/L
J	17.8	100	200	mg/L
	120	200	2000	mg/L
	0.2	2.0	1	mg/L
	6300	10000	1000	mg/L
	45.9	50.0	1	mg/L
	1.54	2.50	1	mg/L
	J	500 71.4 70.3 64.5 20.4 55.7 12.1 11.2 57.3 J 17.8 120 0.2 6300 45.9	500 500 71.4 500 70.3 500 64.5 500 20.4 100 55.7 500 12.1 100 11.2 100 57.3 500 J 17.8 100 120 200 0.2 2.0 6300 10000 45.9 50.0	500 500 50 71.4 500 1000 70.3 500 1000 64.5 500 1000 20.4 100 200 55.7 500 1000 12.1 100 200 11.2 100 200 57.3 500 1000 J 17.8 100 200 120 200 2000 0.2 2.0 1 6300 10000 1000 45.9 50.0 1

9/15/2025 6:16:40PM

Date Issued:

Analysis Detects Report

Client Name: SCS Engineers - Winchester

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site ID:

Laboratory Sample ID: 25H2532-03 Client Sample ID: Trip Blank

_							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Factor	Units
Acetone	03	SW8260D	15.9		7.00	10.0	1	ug/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

9/15/2025 6:16:40PM

Work Order:

25H2532

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-98	25H2532-01	Ground Water	08/28/2025 09:40	08/29/2025 08:00
EW-89	25H2532-02	Ground Water	08/28/2025 10:13	08/29/2025 08:00
Trip Blank	25H2532-03	Ground Water	05/01/2025 11:00	08/29/2025 08:00

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued: 9/15/2025 6:16:40PM

Client Site I.D.: Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25H2532

Client Sample ID: EW-98 Laboratory Sample ID: 25H2532-01

			Reference	Sample Prep	Analyzed	Sample						
Parameter	Samp ID	CAS	Method	Date/Time	Date/Time	Results	Qual	DL	LOQ	DF	Units	Analys
Metals (Total) by EPA 6000/7000 Series	s Methods											
Silver	01	7440-22-4	SW6010D	09/02/2025 17:00	09/03/2025 13:52	0.0008	J	0.0004	0.0100	1	mg/L	NBT
Arsenic	01	7440-38-2	SW6010D	09/02/2025 17:00	09/03/2025 13:52	0.178		0.0018	0.0200	1	mg/L	NBT
Barium	01	7440-39-3	SW6010D	09/02/2025 17:00	09/03/2025 13:52	0.444		0.0005	0.0100	1	mg/L	NBT
Cadmium	01	7440-43-9	SW6010D	09/02/2025 17:00	09/03/2025 13:52	0.0010	J	0.0002	0.0040	1	mg/L	NBT
Chromium	01	7440-47-3	SW6010D	09/02/2025 17:00	09/03/2025 13:52	0.0578		0.0004	0.0100	1	mg/L	NBT
Copper	01	7440-50-8	SW6010D	09/02/2025 17:00	09/03/2025 13:52	0.0049	J	0.0017	0.0100	1	mg/L	NBT
Mercury	01	7439-97-6	SW6020B	09/02/2025 17:00	09/04/2025 13:53	1.39	J	0.271	2.00	10	ug/L	AB
Nickel	01	7440-02-0	SW6010D	09/02/2025 17:00	09/03/2025 13:52	0.0393		0.0005	0.0100	1	mg/L	NBT
Lead	01	7439-92-1	SW6010D	09/02/2025 17:00	09/03/2025 13:52	0.0142		0.0018	0.0100	1	mg/L	NBT
Selenium	01	7782-49-2	SW6010D	09/02/2025 17:00	09/03/2025 13:52	BLOD		0.0069	0.0500	1	mg/L	NBT
Zinc	01RE1	7440-66-6	SW6010D	09/02/2025 17:00	09/03/2025 14:56	0.0318		0.0064	0.0200	2	mg/L	NBT
Volatile Organic Compounds by GCM	S											
2-Butanone (MEK)	01RE1	78-93-3	SW8260D	09/04/2025 16:40	09/04/2025 16:40	47400		1500	5000	500	ug/L	TLH
Acetone	01RE1	67-64-1	SW8260D	09/04/2025 16:40	09/04/2025 16:40	89600		3500	5000	500	ug/L	TLH
Benzene	01	71-43-2	SW8260D	09/02/2025 00:00	09/02/2025 17:49	1300		20.0	50.0	50	ug/L	TLH
Ethylbenzene	01	100-41-4	SW8260D	09/02/2025 00:00	09/02/2025 17:49	230		20.0	50.0	50	ug/L	TLH
Toluene	01	108-88-3	SW8260D	09/02/2025 00:00	09/02/2025 17:49	131		25.0	50.0	50	ug/L	TLH
Xylenes, Total	01	1330-20-7	SW8260D	09/02/2025 00:00	09/02/2025 17:49	458		50.0	150	50	ug/L	TLH
Tetrahydrofuran	01	109-99-9	SW8260D	09/02/2025 00:00	09/02/2025 17:49	16800		500	500	50	ug/L	TLH
Surr: 1,2-Dichloroethane-d4 (Surr)	01	113	% 70-120	09/02/2025 0	0:00 09/02/2025 17	7:49						
Surr: 4-Bromofluorobenzene (Surr)	01	97.2	% 75-120	09/02/2025 0	0:00 09/02/2025 17	7:49						
Surr: Dibromofluoromethane (Surr)	01	110	% 70-130	09/02/2025 0	0:00 09/02/2025 17	7:49						
Surr: Toluene-d8 (Surr)	01	103	% 70-130	09/02/2025 0	0:00 09/02/2025 17	7:49						
Surr: 1,2-Dichloroethane-d4 (Surr)	01RE1	103	% 70-120	09/04/2025 10	6:40	6:40						
Surr: 4-Bromofluorobenzene (Surr)	01RE1	100	% 75-120	09/04/2025 10	6:40	6:40						

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Client Sample ID: EW-98 Laboratory Sample ID: 25H2532-01

·												
Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Compounds by GCN	I S											
Surr: Dibromofluoromethane (Surr)	01RE1	107 %	6 70-130	09/04/2025 16:	40 09/04/2025 16:4	10						
Surr: Toluene-d8 (Surr)	01RE1	99.8 %	6 70-130	09/04/2025 16:	40 09/04/2025 16:4	10						
Semivolatile Organic Compounds by	GCMS											
Anthracene	01	120-12-7	SW8270E	09/02/2025 08:00	09/02/2025 22:02	BLOD		100	200	10	ug/L	HLY
Surr: 2,4,6-Tribromophenol (Surr)	01	106 %	6 5-136	09/02/2025 08:	00 09/02/2025 22:0)2						
Surr: 2-Fluorobiphenyl (Surr)	01	62.2 %	6 9-117	09/02/2025 08:	00 09/02/2025 22:0)2						
Surr: 2-Fluorophenol (Surr)	01	33.7 %	6 5-60	09/02/2025 08:	00 09/02/2025 22:0)2						
Surr: Nitrobenzene-d5 (Surr)	01	105 %	6 5-151	09/02/2025 08:	00 09/02/2025 22:0)2						
Surr: Phenol-d5 (Surr)	01	1.90 %	6 5-60	09/02/2025 08:	00 09/02/2025 22:0)2						DS
Surr: p-Terphenyl-d14 (Surr)	01	32.2 %	6 5-141	09/02/2025 08:	00 09/02/2025 22:0)2						

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.: Submitted To: **Bristol LFG-EW Monthly Monitoring**

Jennifer Robb

Work Order: 25H2532

Client Sample ID: EW-98 Laboratory Sample ID: 25H2532-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Ion Chromatography Analyses												
Acetic Acid	01	64-19-7	D3705	09/02/2025 15:51	09/02/2025 15:51	678		71.4	500	1000	mg/L	MGC
Butyric Acid	01RE1	107-92-6	D3705	09/02/2025 17:48	09/02/2025 17:48	338		7.0	50.0	100	mg/L	MGC
Formic Acid	01RE2	64-18-6	D3705	09/02/2025 18:17	09/02/2025 18:17	67.2		0.6	5.0	10	mg/L	MGC
n-Hexanoic Acid	01RE2	142-62-1	D3705	09/02/2025 18:17	09/02/2025 18:17	57.7		0.6	5.0	10	mg/L	MGC
i-Hexanoic Acid	01RE2	646-07-1	D3705	09/02/2025 18:17	09/02/2025 18:17	BLOD		0.5	5.0	10	mg/L	MGC
Lactic Acid	01RE2	50-21-5	D3705	09/02/2025 18:17	09/02/2025 18:17	BLOD		0.6	5.0	10	mg/L	MGC
n-Pentanoic Acid	01RE2	109-52-4	D3705	09/02/2025 18:17	09/02/2025 18:17	68.7		0.6	5.0	10	mg/L	MGC
i-Pentanoic Acid	01RE1	503-74-2	D3705	09/02/2025 17:48	09/02/2025 17:48	93.4		10.2	50.0	100	mg/L	MGC
Propionic Acid	01	79-09-4	D3705	09/02/2025 15:51	09/02/2025 15:51	696		57.3	500	1000	mg/L	MGC
Pyruvic Acid	01RE2	127-17-3	D3705	09/02/2025 18:17	09/02/2025 18:17	61.3		0.9	5.0	10	mg/L	MGC
Wet Chemistry Analysis												
Ammonia as N	01	7664-41-7	EPA350.1 R2.0	09/11/2025 15:45	09/11/2025 15:45	778		120	200	2000	mg/L	SPH
BOD	01	E1640606	SM5210B-20 16	08/29/2025 16:30	08/29/2025 16:30	5650		0.2	2.0	1	mg/L	CET
COD	01	NA	SM5220D-20 11	09/03/2025 15:11	09/03/2025 15:11	9760		630	1000	100	mg/L	WGW
Nitrate as N	01	14797-55-8	SM4500-NO 3F-2019CAL C	09/12/2025 10:00	09/12/2025 14:05	BLOD		0.255	1.00	10	mg/L	HJB
Nitrate+Nitrite as N	01	E701177	SM4500-NO 3F-2019	09/12/2025 10:00	09/12/2025 14:05	BLOD		0.14	0.20	10	mg/L	AAL
Nitrite as N	01	14797-65-0	SM4500-NO 2B-2021	08/29/2025 16:00	08/29/2025 16:00	BLOD		0.26	1.00	1	mg/L	HJB
Total Recoverable Phenolics	01	NA	SW9065	09/12/2025 16:15	09/12/2025 16:15	11.5		1.54	2.50	1	mg/L	SPH
TKN as N	01	E17148461	EPA351.2 R2.0	09/10/2025 16:36	09/11/2025 11:00	1090		45.9	50.0	1	mg/L	HJB

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued: 9/15/2025 6:16:40PM

Client Site I.D.: Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25H2532

Client Sample ID: EW-89 Laboratory Sample ID: 25H2532-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Metals (Total) by EPA 6000/7000 Series	s Methods											
Silver	02	7440-22-4	SW6010D	09/02/2025 17:00	09/03/2025 13:55	BLOD		0.0004	0.0100	1	mg/L	NBT
Arsenic	02	7440-38-2	SW6010D	09/02/2025 17:00	09/03/2025 13:55	0.206		0.0018	0.0200	1	mg/L	NBT
Barium	02	7440-39-3	SW6010D	09/02/2025 17:00	09/03/2025 13:55	3.07		0.0005	0.0100	1	mg/L	NBT
Cadmium	02	7440-43-9	SW6010D	09/02/2025 17:00	09/03/2025 13:55	0.0183		0.0002	0.0040	1	mg/L	NBT
Chromium	02	7440-47-3	SW6010D	09/02/2025 17:00	09/03/2025 13:55	0.303		0.0004	0.0100	1	mg/L	NBT
Copper	02	7440-50-8	SW6010D	09/02/2025 17:00	09/03/2025 13:55	BLOD		0.0017	0.0100	1	mg/L	NBT
Mercury	02	7439-97-6	SW6020B	09/02/2025 17:00	09/04/2025 13:55	2.34		0.271	2.00	10	ug/L	AB
Nickel	02	7440-02-0	SW6010D	09/02/2025 17:00	09/03/2025 13:55	0.0925		0.0005	0.0100	1	mg/L	NBT
Lead	02	7439-92-1	SW6010D	09/02/2025 17:00	09/03/2025 13:55	0.0870		0.0018	0.0100	1	mg/L	NBT
Selenium	02	7782-49-2	SW6010D	09/02/2025 17:00	09/03/2025 13:55	BLOD		0.0069	0.0500	1	mg/L	NBT
Zinc	02RE1	7440-66-6	SW6010D	09/02/2025 17:00	09/03/2025 14:58	2.92		0.0096	0.0300	3	mg/L	NBT
Volatile Organic Compounds by GCM	S											
2-Butanone (MEK)	02	78-93-3	SW8260D	09/02/2025 00:00	09/02/2025 18:13	6680		150	500	50	ug/L	TLH
Acetone	02RE1	67-64-1	SW8260D	09/03/2025 20:41	09/03/2025 20:41	36000		3500	5000	500	ug/L	TLH
Benzene	02	71-43-2	SW8260D	09/02/2025 00:00	09/02/2025 18:13	112		20.0	50.0	50	ug/L	TLH
Ethylbenzene	02	100-41-4	SW8260D	09/02/2025 00:00	09/02/2025 18:13	BLOD		20.0	50.0	50	ug/L	TLH
Toluene	02	108-88-3	SW8260D	09/02/2025 00:00	09/02/2025 18:13	BLOD		25.0	50.0	50	ug/L	TLH
Xylenes, Total	02	1330-20-7	SW8260D	09/02/2025 00:00	09/02/2025 18:13	BLOD		50.0	150	50	ug/L	TLH
Tetrahydrofuran	02	109-99-9	SW8260D	09/02/2025 00:00	09/02/2025 18:13	2430		500	500	50	ug/L	TLH
Surr: 1,2-Dichloroethane-d4 (Surr)	02	113	% 70-120	09/02/2025 0	0:00 09/02/2025 18:1	3						
Surr: 4-Bromofluorobenzene (Surr)	02	97.9	% 75-120	09/02/2025 0	0:00 09/02/2025 18:1	3						
Surr: Dibromofluoromethane (Surr)	02	110	% 70-130	09/02/2025 0	0:00 09/02/2025 18:1	3						
Surr: Toluene-d8 (Surr)	02	98.6	% 70-130	09/02/2025 0	0:00 09/02/2025 18:1	3						
Surr: 1,2-Dichloroethane-d4 (Surr)	02RE1	101	% 70-120	09/03/2025 20	0:41 09/03/2025 20:4	1						

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Client Sample ID: EW-89 Laboratory Sample ID: 25H2532-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Compounds by GCM	S											
Surr: 4-Bromofluorobenzene (Surr)	02RE1	104 %	% 75-120	09/03/2025 20:4	41 09/03/2025 20:4	41						
Surr: Dibromofluoromethane (Surr)	02RE1	99.5 %	6 70-130	09/03/2025 20:4	41 09/03/2025 20:4	41						
Surr: Toluene-d8 (Surr)	02RE1	102 %	6 70-130	09/03/2025 20:4	41 09/03/2025 20:4	41						
Semivolatile Organic Compounds by	GCMS											
Anthracene	02	120-12-7	SW8270E	09/02/2025 08:00	09/02/2025 23:09	BLOD		400	800	20	ug/L	HLY
Surr: 2,4,6-Tribromophenol (Surr)	02	9	6 5-136	09/02/2025 08:0	00 09/02/2025 23:0	09						DS
Surr: 2-Fluorobiphenyl (Surr)	02	52.8 %	6 9-117	09/02/2025 08:0	00 09/02/2025 23:0	09						
Surr: 2-Fluorophenol (Surr)	02	42.0 %	6 5-60	09/02/2025 08:0	00 09/02/2025 23:0	09						
Surr: Nitrobenzene-d5 (Surr)	02	726 %	6 5-151	09/02/2025 08:0	00 09/02/2025 23:0	09						DS
Surr: Phenol-d5 (Surr)	02	14.0 %	6 5-60	09/02/2025 08:0	00 09/02/2025 23:0	09						
Surr: p-Terphenyl-d14 (Surr)	02	78.4 9	6 5-141	09/02/2025 08:0	00 09/02/2025 23:0	09						

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued: 9/15/2025 6:16:40PM

Client Site I.D.: Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25H2532

Client Sample ID: EW-89 Laboratory Sample ID: 25H2532-02

			Reference	Sample Prep	Analyzed	Sample						
Parameter	Samp ID	CAS	Method	Date/Time	Date/Time	Results	Qual	DL	LOQ	DF	Units	Analys
Ion Chromatography Analyses												
Acetic Acid	02	64-19-7	D3705	09/02/2025 18:46	09/02/2025 18:46	8500		71.4	500	1000	mg/L	MGC
Butyric Acid	02	107-92-6	D3705	09/02/2025 18:46	09/02/2025 18:46	2200		70.3	500	1000	mg/L	MGC
Formic Acid	02	64-18-6	D3705	09/02/2025 18:46	09/02/2025 18:46	2600		64.5	500	1000	mg/L	MGC
n-Hexanoic Acid	02RE1	142-62-1	D3705	09/02/2025 19:16	09/02/2025 19:16	450		12.1	100	200	mg/L	MGC
i-Hexanoic Acid	02RE1	646-07-1	D3705	09/02/2025 19:16	09/02/2025 19:16	BLOD		10.1	100	200	mg/L	MGC
Lactic Acid	02	50-21-5	D3705	09/02/2025 18:46	09/02/2025 18:46	1100		55.7	500	1000	mg/L	MGC
n-Pentanoic Acid	02RE1	109-52-4	D3705	09/02/2025 19:16	09/02/2025 19:16	327		11.2	100	200	mg/L	MGC
i-Pentanoic Acid	02RE1	503-74-2	D3705	09/02/2025 19:16	09/02/2025 19:16	263		20.4	100	200	mg/L	MGC
Propionic Acid	02	79-09-4	D3705	09/02/2025 18:46	09/02/2025 18:46	3140		57.3	500	1000	mg/L	MGC
Pyruvic Acid	02RE1	127-17-3	D3705	09/02/2025 19:16	09/02/2025 19:16	93.9	J	17.8	100	200	mg/L	MGC
Wet Chemistry Analysis												
Ammonia as N	02	7664-41-7	EPA350.1 R2.0	09/11/2025 15:45	09/11/2025 15:45	1660		120	200	2000	mg/L	SPH
BOD	02	E1640606	SM5210B-20 16	08/29/2025 16:39	08/29/2025 16:39	>38599.6		0.2	2.0	1	mg/L	CET
BOD	02	E1640606	SM5210B-20 16	08/29/2025 16:39	08/29/2025 16:39	>38599.6		0.2	2.0	1	mg/L	CET
COD	02	NA	SM5220D-20 11	09/03/2025 15:11	09/03/2025 15:11	62700		6300	10000	1000	mg/L	WGW
Nitrate as N	02	14797-55-8	SM4500-NO 3F-2019CAL C	09/12/2025 10:00	09/12/2025 15:28	BLOD		1.45	2.00	100	mg/L	AAL
Nitrate+Nitrite as N	02RE1	E701177	SM4500-NO 3F-2019	09/12/2025 10:00	09/12/2025 15:28	BLOD		1.45	2.00	100	mg/L	AAL
Nitrite as N	02	14797-65-0	SM4500-NO 2B-2021	08/29/2025 16:00	08/29/2025 16:00	BLOD		0.13	0.50	1	mg/L	HJB
Total Recoverable Phenolics	02	NA	SW9065	09/12/2025 16:15	09/12/2025 16:15	71.6		1.54	2.50	1	mg/L	SPH

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To:

Jennifer Robb

Work Order:

25H2532

Client Sample ID: EW-89 Laboratory Sample ID: 25H2532-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Wet Chemistry Analysis												
TKN as N	02	E17148461	EPA351.2 R2.0	09/10/2025 16:36	09/11/2025 11:00	2740		45.9	50.0	1	mg/L	HJB

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Work Order:

25H2532

Submitted To:

Client Sample ID:

Jennifer Robb

Trip Blank Laboratory Sample ID: 25H2532-03

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Compounds by GCM	S											
2-Butanone (MEK)	03	78-93-3	SW8260D	09/03/2025 16:01	09/03/2025 16:01	BLOD	С	3.00	10.0	1	ug/L	TLH
Acetone	03	67-64-1	SW8260D	09/03/2025 16:01	09/03/2025 16:01	15.9		7.00	10.0	1	ug/L	TLH
Benzene	03	71-43-2	SW8260D	09/03/2025 16:01	09/03/2025 16:01	BLOD		0.40	1.00	1	ug/L	TLH
Ethylbenzene	03	100-41-4	SW8260D	09/03/2025 16:01	09/03/2025 16:01	BLOD		0.40	1.00	1	ug/L	TLH
Toluene	03	108-88-3	SW8260D	09/03/2025 16:01	09/03/2025 16:01	BLOD		0.50	1.00	1	ug/L	TLH
Xylenes, Total	03	1330-20-7	SW8260D	09/03/2025 16:01	09/03/2025 16:01	BLOD		1.00	3.00	1	ug/L	TLH
Tetrahydrofuran	03	109-99-9	SW8260D	09/03/2025 16:01	09/03/2025 16:01	BLOD		10.0	10.0	1	ug/L	TLH
Surr: 1,2-Dichloroethane-d4 (Surr)	03	98.7	% 70-120	09/03/2025 16:	01 09/03/2025 16:01	1						
Surr: 4-Bromofluorobenzene (Surr)	03	101	% 75-120	09/03/2025 16:	01 09/03/2025 16:01	1						
Surr: Dibromofluoromethane (Surr)	03	98.1	% 70-130	09/03/2025 16:	01 09/03/2025 16:01	1						
Surr: Toluene-d8 (Surr)	03	101	% 70-130	09/03/2025 16:	01 09/03/2025 16:01	1						

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Ва	tch BII0020 - SW3005	A-ICP								
Blank (BII0020-BLK1)				Prepared: 09/02/	2025 Analyzed: (09/03/2025				
Arsenic	ND	0.0200	mg/L							
Barium	ND	0.0100	mg/L							
Cadmium	ND	0.0040	mg/L							
Chromium	ND	0.0100	mg/L							
Copper	ND	0.0100	mg/L							
Lead	ND	0.0100	mg/L							
Nickel	ND	0.0100	mg/L							
Selenium	ND	0.0500	mg/L							
Silver	ND	0.0100	mg/L							
Zinc	ND	0.0100	mg/L							
LCS (BII0020-BS1)				Prepared: 09/02/	2025 Analyzed: (09/03/2025				
Arsenic	0.496	0.0200	mg/L	0.500		99.3	80-120			
Barium	0.508	0.0100	mg/L	0.500		102	80-120			
Cadmium	0.498	0.0040	mg/L	0.500		99.6	80-120			
Chromium	0.500	0.0100	mg/L	0.500		100	80-120			
Copper	0.488	0.0100	mg/L	0.500		97.5	80-120			
Lead	0.499	0.0100	mg/L	0.500		99.8	80-120			
Nickel	0.4984	0.0100	mg/L	0.500		99.7	80-120			
Selenium	0.500	0.0500	mg/L	0.500		100	80-120			
Silver	0.0967	0.0100	mg/L	0.100		96.7	80-120			
Zinc	0.498	0.0100	mg/L	0.500		99.5	80-120			
Matrix Spike (BII0020-MS1)	Sour	ce: 25H2518-0	1	Prepared: 09/02/	2025 Analyzed: (09/03/2025				
Arsenic	0.514	0.0200	mg/L	0.500	BLOD	103	75-125			
Barium	0.552	0.0100	mg/L	0.500	0.0464	101	75-125			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

-

Work Order:

25H2532

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BII0020 - SW300	5A-ICP								
Matrix Spike (BII0020-MS1)	Soui	rce: 25H2518-0	1	Prepared: 09/02	/2025 Analyzed: 0	9/03/2025				
Cadmium	0.496	0.0040	mg/L	0.500	BLOD	99.2	75-125			
Chromium	0.505	0.0100	mg/L	0.500	0.0007	101	75-125			
Copper	0.508	0.0100	mg/L	0.500	BLOD	102	75-125			
Lead	0.496	0.0100	mg/L	0.500	BLOD	99.2	75-125			
Nickel	0.4970	0.0100	mg/L	0.500	0.0016	99.1	75-125			
Selenium	0.507	0.0500	mg/L	0.500	BLOD	101	75-125			
Silver	0.0972	0.0100	mg/L	0.100	BLOD	97.2	75-125			
Zinc	0.483	0.0100	mg/L	0.500	BLOD	96.7	75-125			
Matrix Spike Dup (BII0020-MSD1)	Sour	rce: 25H2518-0	1	Prepared: 09/02	/2025 Analyzed: (9/03/2025				
Arsenic	0.517	0.0200	mg/L	0.500	BLOD	103	75-125	0.677	20	
Barium	0.553	0.0100	mg/L	0.500	0.0464	101	75-125	0.174	20	
Cadmium	0.498	0.0040	mg/L	0.500	BLOD	99.6	75-125	0.425	20	
Chromium	0.508	0.0100	mg/L	0.500	0.0007	101	75-125	0.603	20	
Copper	0.512	0.0100	mg/L	0.500	BLOD	102	75-125	0.723	20	
Lead	0.497	0.0100	mg/L	0.500	BLOD	99.5	75-125	0.265	20	
Nickel	0.4994	0.0100	mg/L	0.500	0.0016	99.6	75-125	0.486	20	
Selenium	0.512	0.0500	mg/L	0.500	BLOD	102	75-125	1.03	20	
Silver	0.0979	0.0100	mg/L	0.100	BLOD	97.9	75-125	0.708	20	
Zinc	0.482	0.0100	mg/L	0.500	BLOD	96.4	75-125	0.277	20	
Batch	BII0021 - SW300	5A-ICPMS								
Blank (BII0021-BLK1)				Prepared: 09/02	/2025 Analyzed: (9/04/2025				
Mercury	ND	0.200	ug/L							
LCS (BII0021-BS1)				Prepared: 09/02	/2025 Analyzed: (9/04/2025				

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch Bll0021 - SW3005	A-ICPMS								
LCS (BII0021-BS1)				Prepared: 09/02/	2025 Analyzed: (9/04/2025				
Mercury	0.985	0.200	ug/L	1.00		98.5	80-120			
Matrix Spike (BII0021-MS1)	Sourc	e: 25H2518-0	1	Prepared: 09/02/	2025 Analyzed: 0	9/04/2025				
Mercury	1.03	0.200	ug/L	1.00	BLOD	103	70-130			
Matrix Spike Dup (BII0021-MSD1)	Sourc	e: 25H2518-0	1	Prepared: 09/02/	2025 Analyzed: 0	9/04/2025				
Mercury	1.00	0.200	ug/L	1.00	BLOD	100	70-130	2.42	20	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bll	0062 - SW5030	B-MS								
Blank (BII0062-BLK1)				Prepared & Anal	/zed: 09/02/2025					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	56.1		ug/L	50.0		112	70-120			
Surr: 4-Bromofluorobenzene (Surr)	48.4		ug/L	50.0		96.8	75-120			
Surr: Dibromofluoromethane (Surr)	54.6		ug/L	50.0		109	70-130			
Surr: Toluene-d8 (Surr)	51.0		ug/L	50.0		102	70-130			
CS (BII0062-BS1)				Prepared & Analy	/zed: 09/02/2025	i				
1,1,1,2-Tetrachloroethane	52.0		ug/L	50.0		104	80-130			
1,1,1-Trichloroethane	58.7		ug/L	50.0		117	65-130			
1,1,2,2-Tetrachloroethane	41.4		ug/L	50.0		82.8	65-130			
1,1,2-Trichloroethane	54.1		ug/L	50.0		108	75-125			
1,1-Dichloroethane	53.7		ug/L	50.0		107	70-135			
1,1-Dichloroethylene	52.3		ug/L	50.0		105	70-130			
1,1-Dichloropropene	55.9		ug/L	50.0		112	75-135			
1,2,3-Trichlorobenzene	50.9		ug/L	50.0		102	55-140			
1,2,3-Trichloropropane	47.4		ug/L	50.0		94.8	75-125			
1,2,4-Trichlorobenzene	52.1		ug/L	50.0		104	65-135			
1,2,4-Trimethylbenzene	56.9		ug/L	50.0		114	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	43.3		ug/L	50.0		86.5	50-130			
1,2-Dibromoethane (EDB)	49.9		ug/L	50.0		99.7	80-120			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BII0062 - SW5030I	B-MS							
.CS (BII0062-BS1)			Prepared & Anal	yzed: 09/02/2025					
1,2-Dichlorobenzene	52.2	ug/L	50.0		104	70-120			
1,2-Dichloroethane	46.9	ug/L	50.0		93.8	70-130			
1,2-Dichloropropane	53.6	ug/L	50.0		107	75-125			
1,3,5-Trimethylbenzene	56.4	ug/L	50.0		113	75-125			
1,3-Dichlorobenzene	52.4	ug/L	50.0		105	75-125			
1,3-Dichloropropane	54.4	ug/L	50.0		109	75-125			
1,4-Dichlorobenzene	52.2	ug/L	50.0		104	75-125			
2,2-Dichloropropane	56.6	ug/L	50.0		113	70-135			
2-Butanone (MEK)	2.63	ug/L	50.0		5.26	30-150			L
2-Chlorotoluene	51.7	ug/L	50.0		103	75-125			
2-Hexanone (MBK)	38.2	ug/L	50.0		76.3	55-130			
4-Chlorotoluene	51.7	ug/L	50.0		103	75-130			
4-Isopropyltoluene	56.8	ug/L	50.0		114	75-130			
4-Methyl-2-pentanone (MIBK)	39.4	ug/L	50.0		78.8	60-135			
Acetone	49.5	ug/L	50.0		99.0	40-140			
Benzene	54.4	ug/L	50.0		109	80-120			
Bromobenzene	50.0	ug/L	50.0		100	75-125			
Bromochloromethane	52.9	ug/L	50.0		106	65-130			
Bromodichloromethane	53.4	ug/L	50.0		107	75-120			
Bromoform	50.8	ug/L	50.0		102	70-130			
Bromomethane	57.1	ug/L	50.0		114	30-145			
Carbon disulfide	48.0	ug/L	50.0		96.0	35-160			
Carbon tetrachloride	54.0	ug/L	50.0		108	65-140			
Chlorobenzene	51.6	ug/L	50.0		103	80-120			
Chloroethane	57.3	ug/L	50.0		115	60-135			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.: Submitted To: Bristol LFG-EW Monthly Monitoring

Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch Bll0062 - SW5030	B-MS							
LCS (BII0062-BS1)			Prepared & Ana	lyzed: 09/02/2025					
Chloroform	52.8	ug/L	50.0		106	65-135			
Chloromethane	44.2	ug/L	50.0		88.5	40-125			
cis-1,2-Dichloroethylene	55.9	ug/L	50.0		112	70-125			
cis-1,3-Dichloropropene	54.6	ug/L	50.0		109	70-130			
Dibromochloromethane	52.1	ug/L	50.0		104	60-135			
Dibromomethane	48.5	ug/L	50.0		97.0	75-125			
Dichlorodifluoromethane	58.7	ug/L	50.0		117	30-155			
Ethylbenzene	53.4	ug/L	50.0		107	75-125			
Hexachlorobutadiene	49.6	ug/L	50.0		99.1	50-140			
Isopropylbenzene	53.3	ug/L	50.0		107	75-125			
m+p-Xylenes	107	ug/L	100		107	75-130			
Methylene chloride	53.9	ug/L	50.0		108	55-140			
Methyl-t-butyl ether (MTBE)	50.2	ug/L	50.0		100	65-125			
Naphthalene	54.2	ug/L	50.0		108	55-140			
n-Butylbenzene	58.5	ug/L	50.0		117	70-135			
n-Propylbenzene	52.8	ug/L	50.0		106	70-130			
o-Xylene	51.3	ug/L	50.0		103	80-120			
sec-Butylbenzene	57.6	ug/L	50.0		115	70-125			
Styrene	53.3	ug/L	50.0		107	65-135			
tert-Butylbenzene	55.2	ug/L	50.0		110	70-130			
Tetrachloroethylene (PCE)	48.2	ug/L	50.0		96.5	45-150			
Toluene	53.4	ug/L	50.0		107	75-120			
trans-1,2-Dichloroethylene	52.6	ug/L	50.0		105	60-140			
trans-1,3-Dichloropropene	51.9	ug/L	50.0		104	55-140			
Trichloroethylene	50.7	ug/L	50.0		101	70-125			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bll	0062 - SW5030	B-MS							
LCS (BII0062-BS1)			Prepared & Ana	lyzed: 09/02/2025	;				
Trichlorofluoromethane	51.9	ug/L	50.0		104	60-145			
Vinyl chloride	58.1	ug/L	50.0		116	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	51.0	ug/L	50.0		102	70-120			
Surr: 4-Bromofluorobenzene (Surr)	48.4	ug/L	50.0		96.9	75-120			
Surr: Dibromofluoromethane (Surr)	52.3	ug/L	50.0		105	70-130			
Surr: Toluene-d8 (Surr)	49.4	ug/L	50.0		98.8	70-130			
Matrix Spike (BII0062-MS1)	Sourc	ce: 25H2585-02	Prepared & Ana	lyzed: 09/02/2025	;				
1,1,1,2-Tetrachloroethane	50.8	ug/L	50.0	BLOD	102	80-130			
1,1,1-Trichloroethane	52.9	ug/L	50.0	BLOD	106	65-130			
1,1,2,2-Tetrachloroethane	42.5	ug/L	50.0	BLOD	85.1	65-130			
1,1,2-Trichloroethane	52.5	ug/L	50.0	BLOD	105	75-125			
1,1-Dichloroethane	59.2	ug/L	50.0	BLOD	118	70-135			
1,1-Dichloroethylene	46.6	ug/L	50.0	BLOD	93.2	50-145			
1,1-Dichloropropene	50.4	ug/L	50.0	BLOD	101	75-135			
1,2,3-Trichlorobenzene	49.9	ug/L	50.0	BLOD	99.9	55-140			
1,2,3-Trichloropropane	48.9	ug/L	50.0	BLOD	97.8	75-125			
1,2,4-Trichlorobenzene	50.4	ug/L	50.0	BLOD	101	65-135			
1,2,4-Trimethylbenzene	52.5	ug/L	50.0	BLOD	105	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	41.9	ug/L	50.0	BLOD	83.8	50-130			
1,2-Dibromoethane (EDB)	50.3	ug/L	50.0	BLOD	101	80-120			
1,2-Dichlorobenzene	49.1	ug/L	50.0	BLOD	98.1	70-120			
1,2-Dichloroethane	46.0	ug/L	50.0	BLOD	91.9	70-130			
1,2-Dichloropropane	50.0	ug/L	50.0	BLOD	99.9	75-125			
1,3,5-Trimethylbenzene	51.3	ug/L	50.0	BLOD	103	75-124			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batcl	n BII0062 - SW5030B	B-MS							
Matrix Spike (BII0062-MS1)	Source	e: 25H2585-02	Prepared & Ana	lyzed: 09/02/2025	5				
1,3-Dichlorobenzene	48.4	ug/L	50.0	BLOD	96.8	75-125			
1,3-Dichloropropane	52.8	ug/L	50.0	BLOD	106	75-125			
1,4-Dichlorobenzene	49.2	ug/L	50.0	BLOD	98.4	75-125			
2,2-Dichloropropane	50.7	ug/L	50.0	BLOD	101	70-135			
2-Butanone (MEK)	35.5	ug/L	50.0	BLOD	70.9	30-150			
2-Chlorotoluene	47.3	ug/L	50.0	BLOD	94.6	75-125			
2-Hexanone (MBK)	38.3	ug/L	50.0	BLOD	76.5	55-130			
4-Chlorotoluene	47.8	ug/L	50.0	BLOD	95.5	75-130			
4-Isopropyltoluene	51.7	ug/L	50.0	BLOD	103	75-130			
4-Methyl-2-pentanone (MIBK)	39.8	ug/L	50.0	BLOD	79.5	60-135			
Acetone	40.9	ug/L	50.0	BLOD	74.2	40-140			
Benzene	50.1	ug/L	50.0	BLOD	100	80-120			
Bromobenzene	49.4	ug/L	50.0	BLOD	98.8	75-125			
Bromochloromethane	51.1	ug/L	50.0	BLOD	102	65-130			
Bromodichloromethane	49.9	ug/L	50.0	BLOD	99.8	75-136			
Bromoform	51.2	ug/L	50.0	BLOD	102	70-130			
Bromomethane	52.4	ug/L	50.0	BLOD	105	30-145			
Carbon disulfide	38.6	ug/L	50.0	BLOD	76.3	35-160			
Carbon tetrachloride	47.8	ug/L	50.0	BLOD	95.5	65-140			
Chlorobenzene	50.8	ug/L	50.0	BLOD	102	80-120			
Chloroethane	50.6	ug/L	50.0	BLOD	101	60-135			
Chloroform	49.9	ug/L	50.0	BLOD	99.8	65-135			
Chloromethane	38.2	ug/L	50.0	BLOD	76.4	40-125			
cis-1,2-Dichloroethylene	51.7	ug/L	50.0	BLOD	103	70-125			
cis-1,3-Dichloropropene	51.4	ug/L	50.0	BLOD	103	47-136			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.: Submitted To: Bristol LFG-EW Monthly Monitoring

Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ (Jnits	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	8110062 - SW5030	B-MS								
Matrix Spike (BII0062-MS1)	Sour	ce: 25H2585-02		Prepared & Analy	/zed: 09/02/2025					
Dibromochloromethane	51.6		ug/L	50.0	BLOD	103	60-135			
Dibromomethane	46.5		ug/L	50.0	BLOD	93.1	75-125			
Dichlorodifluoromethane	50.6		ug/L	50.0	BLOD	101	30-155			
Ethylbenzene	51.0		ug/L	50.0	BLOD	102	75-125			
Hexachlorobutadiene	44.9		ug/L	50.0	BLOD	89.9	50-140			
Isopropylbenzene	50.4		ug/L	50.0	BLOD	101	75-125			
m+p-Xylenes	102		ug/L	100	BLOD	102	75-130			
Methylene chloride	48.9		ug/L	50.0	BLOD	97.3	55-140			
Methyl-t-butyl ether (MTBE)	50.1		ug/L	50.0	BLOD	100	65-125			
Naphthalene	53.1		ug/L	50.0	BLOD	106	55-140			
n-Butylbenzene	53.2		ug/L	50.0	BLOD	106	70-135			
n-Propylbenzene	48.1		ug/L	50.0	BLOD	96.2	70-130			
o-Xylene	49.4		ug/L	50.0	BLOD	98.9	80-120			
sec-Butylbenzene	51.8		ug/L	50.0	BLOD	104	70-125			
Styrene	51.8		ug/L	50.0	BLOD	104	65-135			
tert-Butylbenzene	49.2		ug/L	50.0	BLOD	98.4	70-130			
Tetrachloroethylene (PCE)	45.1		ug/L	50.0	BLOD	90.1	51-231			
Toluene	48.8		ug/L	50.0	BLOD	97.7	75-120			
trans-1,2-Dichloroethylene	47.2		ug/L	50.0	BLOD	94.4	60-140			
trans-1,3-Dichloropropene	51.2		ug/L	50.0	BLOD	102	55-140			
Trichloroethylene	45.8		ug/L	50.0	BLOD	91.5	70-125			
Trichlorofluoromethane	44.9		ug/L	50.0	BLOD	89.8	60-145			
Vinyl chloride	48.9		ug/L	50.0	BLOD	97.9	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	53.4		ug/L	50.0		107	70-120			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ (Jnits	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl	0062 - SW5030E	B-MS								
Matrix Spike (BII0062-MS1)	Sourc	e: 25H2585-02		Prepared & Anal	yzed: 09/02/2025					
Surr: 4-Bromofluorobenzene (Surr)	51.4		ug/L	50.0		103	75-120			
Surr: Dibromofluoromethane (Surr)	52.6		ug/L	50.0		105	70-130			
Surr: Toluene-d8 (Surr)	49.1		ug/L	50.0		98.2	70-130			
Matrix Spike Dup (BII0062-MSD1)	Sourc	e: 25H2585-02		Prepared & Analy	yzed: 09/02/2025					
1,1,1,2-Tetrachloroethane	50.5		ug/L	50.0	BLOD	101	80-130	0.533	30	
1,1,1-Trichloroethane	53.5		ug/L	50.0	BLOD	107	65-130	1.26	30	
1,1,2,2-Tetrachloroethane	43.9		ug/L	50.0	BLOD	87.8	65-130	3.15	30	
1,1,2-Trichloroethane	55.0		ug/L	50.0	BLOD	110	75-125	4.65	30	
1,1-Dichloroethane	49.7		ug/L	50.0	BLOD	99.3	70-135	17.5	30	
1,1-Dichloroethylene	46.5		ug/L	50.0	BLOD	92.9	50-145	0.344	30	
1,1-Dichloropropene	50.8		ug/L	50.0	BLOD	102	75-135	0.771	30	
1,2,3-Trichlorobenzene	51.4		ug/L	50.0	BLOD	103	55-140	2.94	30	
1,2,3-Trichloropropane	48.4		ug/L	50.0	BLOD	96.9	75-125	0.986	30	
1,2,4-Trichlorobenzene	52.3		ug/L	50.0	BLOD	105	65-135	3.88	30	
1,2,4-Trimethylbenzene	53.4		ug/L	50.0	BLOD	107	75-130	1.76	30	
1,2-Dibromo-3-chloropropane (DBCP)	43.1		ug/L	50.0	BLOD	86.2	50-130	2.82	30	
1,2-Dibromoethane (EDB)	51.5		ug/L	50.0	BLOD	103	80-120	2.28	30	
1,2-Dichlorobenzene	51.7		ug/L	50.0	BLOD	103	70-120	5.30	30	
1,2-Dichloroethane	48.6		ug/L	50.0	BLOD	97.1	70-130	5.50	30	
1,2-Dichloropropane	52.6		ug/L	50.0	BLOD	105	75-125	5.15	30	
1,3,5-Trimethylbenzene	52.7		ug/L	50.0	BLOD	105	75-124	2.64	30	
1,3-Dichlorobenzene	50.4		ug/L	50.0	BLOD	101	75-125	4.07	30	
1,3-Dichloropropane	56.6		ug/L	50.0	BLOD	113	75-125	6.97	30	
1,4-Dichlorobenzene	50.3		ug/L	50.0	BLOD	101	75-125	2.21	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BII0062 - SW5030	B-MS							
Matrix Spike Dup (BII0062-MSD1)	Source	ce: 25H2585-02	Prepared & Ana	llyzed: 09/02/2025	5				
2,2-Dichloropropane	51.2	ug	L 50.0	BLOD	102	70-135	0.923	30	
2-Butanone (MEK)	40.5	ug	L 50.0	BLOD	81.0	30-150	13.2	30	
2-Chlorotoluene	47.1	ug	′L 50.0	BLOD	94.2	75-125	0.360	30	
2-Hexanone (MBK)	38.9	ug	L 50.0	BLOD	77.8	55-130	1.68	30	
4-Chlorotoluene	48.8	ug	L 50.0	BLOD	97.5	75-130	2.07	30	
4-Isopropyltoluene	51.6	ug	′L 50.0	BLOD	103	75-130	0.116	30	
4-Methyl-2-pentanone (MIBK)	44.3	ug	L 50.0	BLOD	88.6	60-135	10.8	30	
Acetone	43.0	ug	L 50.0	BLOD	78.4	40-140	4.91	30	
Benzene	50.3	ug	L 50.0	BLOD	101	80-120	0.359	30	
Bromobenzene	48.6	ug	L 50.0	BLOD	97.2	75-125	1.57	30	
Bromochloromethane	54.4	ug	L 50.0	BLOD	109	65-130	6.37	30	
Bromodichloromethane	52.2	ug	L 50.0	BLOD	104	75-136	4.58	30	
Bromoform	52.5	ug	L 50.0	BLOD	105	70-130	2.43	30	
Bromomethane	53.9	ug	L 50.0	BLOD	108	30-145	2.94	30	
Carbon disulfide	42.8	ug	L 50.0	BLOD	84.8	35-160	10.5	30	
Carbon tetrachloride	48.9	ug	L 50.0	BLOD	97.9	65-140	2.44	30	
Chlorobenzene	49.7	ug	L 50.0	BLOD	99.3	80-120	2.27	30	
Chloroethane	51.9	ug	L 50.0	BLOD	104	60-135	2.50	30	
Chloroform	50.6	ug	L 50.0	BLOD	101	65-135	1.39	30	
Chloromethane	39.6	ug	L 50.0	BLOD	79.2	40-125	3.57	30	
cis-1,2-Dichloroethylene	52.5	ug	L 50.0	BLOD	105	70-125	1.42	30	
cis-1,3-Dichloropropene	54.3	ug	L 50.0	BLOD	109	47-136	5.52	30	
Dibromochloromethane	55.1	ug	L 50.0	BLOD	110	60-135	6.60	30	
Dibromomethane	50.2	ug		BLOD	100	75-125	7.57	30	
Dichlorodifluoromethane	51.8	ug	L 50.0	BLOD	104	30-155	2.50	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.: Bristo

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ U	Inits	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	II0062 - SW5030	B-MS								
Matrix Spike Dup (BII0062-MSD1)	Sour	ce: 25H2585-02	!	Prepared & Anal	yzed: 09/02/2025					
Ethylbenzene	49.5		ug/L	50.0	BLOD	99.1	75-125	2.83	30	
Hexachlorobutadiene	45.0		ug/L	50.0	BLOD	90.1	50-140	0.245	30	
Isopropylbenzene	48.4		ug/L	50.0	BLOD	96.7	75-125	4.03	30	
m+p-Xylenes	98.6		ug/L	100	BLOD	98.6	75-130	3.21	30	
Methylene chloride	51.9		ug/L	50.0	BLOD	103	55-140	5.85	30	
Methyl-t-butyl ether (MTBE)	46.1		ug/L	50.0	BLOD	92.2	65-125	8.33	30	
Naphthalene	56.3		ug/L	50.0	BLOD	112	55-140	5.98	30	
n-Butylbenzene	53.1		ug/L	50.0	BLOD	106	70-135	0.0753	30	
n-Propylbenzene	48.2		ug/L	50.0	BLOD	96.3	70-130	0.145	30	
o-Xylene	48.8		ug/L	50.0	BLOD	97.5	80-120	1.38	30	
sec-Butylbenzene	52.2		ug/L	50.0	BLOD	104	70-125	0.808	30	
Styrene	51.0		ug/L	50.0	BLOD	102	65-135	1.56	30	
tert-Butylbenzene	49.7		ug/L	50.0	BLOD	99.3	70-130	0.951	30	
Tetrachloroethylene (PCE)	43.8		ug/L	50.0	BLOD	87.6	51-231	2.81	30	
Toluene	50.0		ug/L	50.0	BLOD	100	75-120	2.43	30	
trans-1,2-Dichloroethylene	48.0		ug/L	50.0	BLOD	96.1	60-140	1.79	30	
trans-1,3-Dichloropropene	53.8		ug/L	50.0	BLOD	108	55-140	4.97	30	
Trichloroethylene	46.9		ug/L	50.0	BLOD	93.8	70-125	2.50	30	
Trichlorofluoromethane	45.5		ug/L	50.0	BLOD	91.0	60-145	1.28	30	
Vinyl chloride	48.0		ug/L	50.0	BLOD	96.0	50-145	1.92	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	56.4		ug/L	50.0		113	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.5		ug/L	50.0		99.0	75-120			
Surr: Dibromofluoromethane (Surr)	53.3		ug/L	50.0		107	70-130			
Surr: Toluene-d8 (Surr)	49.6		ug/L	50.0		99.1	70-130			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BII	0136 - SW5030	B-MS								
Blank (BII0136-BLK1)			F	Prepared & Anal	yzed: 09/03/2025	;				
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	49.9		ug/L	50.0		99.9	70-120			
Surr: 4-Bromofluorobenzene (Surr)	51.2		ug/L	50.0		102	75-120			
Surr: Dibromofluoromethane (Surr)	48.9		ug/L	50.0		97.8	70-130			
Surr: Toluene-d8 (Surr)	51.7		ug/L	50.0		103	70-130			
_CS (BII0136-BS1)			F	Prepared & Anal	yzed: 09/03/2025	5				
1,1,1,2-Tetrachloroethane	39.8		ug/L	50.0		79.6	80-130			L
1,1,1-Trichloroethane	47.8		ug/L	50.0		95.6	65-130			
1,1,2,2-Tetrachloroethane	38.8		ug/L	50.0		77.6	65-130			
1,1,2-Trichloroethane	50.5		ug/L	50.0		101	75-125			
1,1-Dichloroethane	52.9		ug/L	50.0		106	70-135			
1,1-Dichloroethylene	55.5		ug/L	50.0		111	70-130			
1,1-Dichloropropene	50.1		ug/L	50.0		100	75-135			
1,2,3-Trichlorobenzene	43.4		ug/L	50.0		86.7	55-140			
1,2,3-Trichloropropane	37.9		ug/L	50.0		75.7	75-125			
1,2,4-Trichlorobenzene	44.7		ug/L	50.0		89.4	65-135			
1,2,4-Trimethylbenzene	51.1		ug/L	50.0		102	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	39.2		ug/L	50.0		78.4	50-130			
1,2-Dibromoethane (EDB)	40.0		ug/L	50.0		80.1	80-120			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BII0136 - SW5030	B-MS							
LCS (BII0136-BS1)			Prepared & Ana	lyzed: 09/03/2025					
1,2-Dichlorobenzene	49.8	ug/L	50.0		99.5	70-120			
1,2-Dichloroethane	46.0	ug/L	50.0		91.9	70-130			
1,2-Dichloropropane	54.9	ug/L	50.0		110	75-125			
1,3,5-Trimethylbenzene	52.5	ug/L	50.0		105	75-125			
1,3-Dichlorobenzene	48.1	ug/L	50.0		96.1	75-125			
1,3-Dichloropropane	52.6	ug/L	50.0		105	75-125			
1,4-Dichlorobenzene	46.4	ug/L	50.0		92.9	75-125			
2,2-Dichloropropane	53.7	ug/L	50.0		107	70-135			
2-Butanone (MEK)	38.6	ug/L	50.0		77.3	30-150			
2-Chlorotoluene	51.4	ug/L	50.0		103	75-125			
2-Hexanone (MBK)	33.5	ug/L	50.0		67.1	55-130			
4-Chlorotoluene	49.4	ug/L	50.0		98.9	75-130			
4-Isopropyltoluene	55.7	ug/L	50.0		111	75-130			
4-Methyl-2-pentanone (MIBK)	48.7	ug/L	50.0		97.5	60-135			
Acetone	36.5	ug/L	50.0		73.0	40-140			
Benzene	53.9	ug/L	50.0		108	80-120			
Bromobenzene	39.7	ug/L	50.0		79.4	75-125			
Bromochloromethane	46.4	ug/L	50.0		92.8	65-130			
Bromodichloromethane	49.0	ug/L	50.0		98.1	75-120			
Bromoform	36.7	ug/L	50.0		73.3	70-130			
Bromomethane	45.4	ug/L	50.0		90.9	30-145			
Carbon disulfide	63.0	ug/L	50.0		126	35-160			
Carbon tetrachloride	55.6	ug/L	50.0		111	65-140			
Chlorobenzene	41.8	ug/L	50.0		83.6	80-120			
Chloroethane	54.4	ug/L	50.0		109	60-135			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch Bll0136 - SW5030	B-MS							
LCS (BII0136-BS1)			Prepared & Ana	lyzed: 09/03/2025					
Chloroform	45.5	ug/L	50.0		91.0	65-135			
Chloromethane	50.6	ug/L	50.0		101	40-125			
cis-1,2-Dichloroethylene	50.7	ug/L	50.0		101	70-125			
cis-1,3-Dichloropropene	53.6	ug/L	50.0		107	70-130			
Dibromochloromethane	48.0	ug/L	50.0		95.9	60-135			
Dibromomethane	48.2	ug/L	50.0		96.4	75-125			
Dichlorodifluoromethane	66.5	ug/L	50.0		133	30-155			
Ethylbenzene	44.0	ug/L	50.0		88.0	75-125			
Hexachlorobutadiene	51.7	ug/L	50.0		103	50-140			
Isopropylbenzene	44.4	ug/L	50.0		88.8	75-125			
m+p-Xylenes	88.8	ug/L	100		88.8	75-130			
Methylene chloride	45.2	ug/L	50.0		90.5	55-140			
Methyl-t-butyl ether (MTBE)	48.8	ug/L	50.0		97.5	65-125			
Naphthalene	43.1	ug/L	50.0		86.2	55-140			
n-Butylbenzene	57.2	ug/L	50.0		114	70-135			
n-Propylbenzene	53.7	ug/L	50.0		107	70-130			
o-Xylene	43.7	ug/L	50.0		87.4	80-120			
sec-Butylbenzene	56.2	ug/L	50.0		112	70-125			
Styrene	42.9	ug/L	50.0		85.9	65-135			
tert-Butylbenzene	52.1	ug/L	50.0		104	70-130			
Tetrachloroethylene (PCE)	43.2	ug/L	50.0		86.3	45-150			
Toluene	51.5	ug/L	50.0		103	75-120			
trans-1,2-Dichloroethylene	51.2	ug/L	50.0		102	60-140			
trans-1,3-Dichloropropene	54.9	ug/L	50.0		110	55-140			
Trichloroethylene	52.8	ug/L	50.0		106	70-125			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.: Submitted To: **Bristol LFG-EW Monthly Monitoring**

Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bli	0136 - SW5030E	3-MS							
LCS (BII0136-BS1)			Prepared & Ana	lyzed: 09/03/2025	5				
Trichlorofluoromethane	56.2	ug/L	50.0		112	60-145			
Vinyl chloride	62.8	ug/L	50.0		126	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	48.4	ug/L	50.0		96.7	70-120			
Surr: 4-Bromofluorobenzene (Surr)	42.6	ug/L	50.0		85.3	75-120			
Surr: Dibromofluoromethane (Surr)	47.8	ug/L	50.0		95.7	70-130			
Surr: Toluene-d8 (Surr)	49.6	ug/L	50.0		99.3	70-130			
Matrix Spike (BII0136-MS1)	Sourc	e: 2510097-02	Prepared & Ana	lyzed: 09/03/2025	5				
1,1,1,2-Tetrachloroethane	39.2	ug/L	50.0	BLOD	78.4	80-130			М
1,1,1-Trichloroethane	46.3	ug/L	50.0	BLOD	92.6	65-130			
1,1,2,2-Tetrachloroethane	40.5	ug/L	50.0	BLOD	81.0	65-130			
1,1,2-Trichloroethane	49.4	ug/L	50.0	BLOD	98.8	75-125			
1,1-Dichloroethane	50.0	ug/L	50.0	BLOD	100	70-135			
1,1-Dichloroethylene	52.6	ug/L	50.0	BLOD	105	50-145			
1,1-Dichloropropene	48.5	ug/L	50.0	BLOD	97.0	75-135			
1,2,3-Trichlorobenzene	43.9	ug/L	50.0	BLOD	87.8	55-140			
1,2,3-Trichloropropane	39.2	ug/L	50.0	BLOD	78.3	75-125			
1,2,4-Trichlorobenzene	41.4	ug/L	50.0	BLOD	82.9	65-135			
1,2,4-Trimethylbenzene	48.2	ug/L	50.0	BLOD	96.5	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	42.0	ug/L	50.0	BLOD	84.0	50-130			
1,2-Dibromoethane (EDB)	41.3	ug/L	50.0	BLOD	82.6	80-120			
1,2-Dichlorobenzene	46.4	ug/L	50.0	BLOD	92.7	70-120			
1,2-Dichloroethane	44.2	ug/L	50.0	BLOD	88.5	70-130			
1,2-Dichloropropane	52.7	ug/L	50.0	BLOD	105	75-125			
1,3,5-Trimethylbenzene	49.2	ug/L	50.0	BLOD	98.5	75-124			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.: Submitted To: **Bristol LFG-EW Monthly Monitoring**

Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BII0136 - SW5030I	B-MS							
Matrix Spike (BII0136-MS1)	Source	ce: 2510097-02	Prepared & Ana	llyzed: 09/03/2025	5				
1,3-Dichlorobenzene	44.8	ug/L	50.0	BLOD	89.6	75-125			
1,3-Dichloropropane	50.8	ug/L	50.0	BLOD	102	75-125			
1,4-Dichlorobenzene	46.2	ug/L	50.0	0.54	91.3	75-125			
2,2-Dichloropropane	51.2	ug/L	50.0	BLOD	102	70-135			
2-Butanone (MEK)	42.7	ug/L	50.0	BLOD	85.3	30-150			
2-Chlorotoluene	47.6	ug/L	50.0	BLOD	95.2	75-125			
2-Hexanone (MBK)	40.9	ug/L	50.0	BLOD	81.7	55-130			
4-Chlorotoluene	45.5	ug/L	50.0	BLOD	91.1	75-130			
4-Isopropyltoluene	48.5	ug/L	50.0	BLOD	97.0	75-130			
4-Methyl-2-pentanone (MIBK)	57.7	ug/L	50.0	BLOD	115	60-135			
Acetone	42.1	ug/L	50.0	BLOD	84.2	40-140			
Benzene	51.8	ug/L	50.0	BLOD	103	80-120			
Bromobenzene	38.9	ug/L	50.0	BLOD	77.8	75-125			
Bromochloromethane	44.4	ug/L	50.0	BLOD	88.8	65-130			
Bromodichloromethane	47.7	ug/L	50.0	BLOD	95.3	75-136			
Bromoform	37.6	ug/L	50.0	BLOD	75.1	70-130			
Bromomethane	42.6	ug/L	50.0	BLOD	85.2	30-145			
Carbon disulfide	52.2	ug/L	50.0	BLOD	104	35-160			
Carbon tetrachloride	55.3	ug/L	50.0	BLOD	111	65-140			
Chlorobenzene	41.7	ug/L	50.0	1.23	81.0	80-120			
Chloroethane	52.0	ug/L	50.0	BLOD	104	60-135			
Chloroform	43.3	ug/L	50.0	BLOD	86.6	65-135			
Chloromethane	46.0	ug/L	50.0	BLOD	92.0	40-125			
cis-1,2-Dichloroethylene	49.8	ug/L	50.0	0.46	98.8	70-125			
cis-1,3-Dichloropropene	50.2	ug/L	50.0	BLOD	100	47-136			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	3110136 - SW5030	B-MS								
Matrix Spike (BII0136-MS1)	Sour	ce: 2510097-02		Prepared & Anal	yzed: 09/03/2025	i				
Dibromochloromethane	47.4		ug/L	50.0	BLOD	94.9	60-135			
Dibromomethane	46.5		ug/L	50.0	BLOD	92.9	75-125			
Dichlorodifluoromethane	46.2		ug/L	50.0	BLOD	92.4	30-155			
Ethylbenzene	43.4		ug/L	50.0	BLOD	86.8	75-125			
Hexachlorobutadiene	48.2		ug/L	50.0	BLOD	96.5	50-140			
Isopropylbenzene	43.9		ug/L	50.0	BLOD	87.9	75-125			
m+p-Xylenes	86.4		ug/L	100	BLOD	86.4	75-130			
Methylene chloride	42.3		ug/L	50.0	BLOD	84.6	55-140			
Methyl-t-butyl ether (MTBE)	47.1		ug/L	50.0	BLOD	94.2	65-125			
Naphthalene	42.9		ug/L	50.0	BLOD	85.9	55-140			
n-Butylbenzene	51.2		ug/L	50.0	BLOD	102	70-135			
n-Propylbenzene	49.6		ug/L	50.0	BLOD	99.1	70-130			
o-Xylene	42.4		ug/L	50.0	BLOD	84.8	80-120			
sec-Butylbenzene	52.3		ug/L	50.0	BLOD	105	70-125			
Styrene	41.4		ug/L	50.0	BLOD	82.8	65-135			
tert-Butylbenzene	48.8		ug/L	50.0	BLOD	97.7	70-130			
Tetrachloroethylene (PCE)	43.0		ug/L	50.0	BLOD	85.9	51-231			
Toluene	49.8		ug/L	50.0	BLOD	99.7	75-120			
trans-1,2-Dichloroethylene	50.8		ug/L	50.0	BLOD	102	60-140			
trans-1,3-Dichloropropene	53.6		ug/L	50.0	BLOD	107	55-140			
Trichloroethylene	49.8		ug/L	50.0	BLOD	99.6	70-125			
Trichlorofluoromethane	53.1		ug/L	50.0	BLOD	106	60-145			
Vinyl chloride	60.7		ug/L	50.0	BLOD	121	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	46.6		ug/L	50.0		93.2	70-120			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ L	Jnits	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl	10136 - SW5030	B-MS								
Matrix Spike (BII0136-MS1)	Sourc	ce: 25l0097-02		Prepared & Analy	yzed: 09/03/2025					
Surr: 4-Bromofluorobenzene (Surr)	42.3		ug/L	50.0		84.6	75-120			
Surr: Dibromofluoromethane (Surr)	46.3		ug/L	50.0		92.7	70-130			
Surr: Toluene-d8 (Surr)	49.8		ug/L	50.0		99.6	70-130			
Matrix Spike Dup (BII0136-MSD1)	Sourc	ce: 25l0097-02		Prepared & Analy	yzed: 09/03/2025					
1,1,1,2-Tetrachloroethane	39.4		ug/L	50.0	BLOD	78.9	80-130	0.610	30	М
1,1,1-Trichloroethane	46.8		ug/L	50.0	BLOD	93.6	65-130	1.03	30	
1,1,2,2-Tetrachloroethane	40.8		ug/L	50.0	BLOD	81.6	65-130	0.713	30	
1,1,2-Trichloroethane	50.7		ug/L	50.0	BLOD	101	75-125	2.66	30	
1,1-Dichloroethane	50.4		ug/L	50.0	BLOD	101	70-135	0.856	30	
1,1-Dichloroethylene	51.6		ug/L	50.0	BLOD	103	50-145	1.92	30	
1,1-Dichloropropene	48.9		ug/L	50.0	BLOD	97.8	75-135	0.821	30	
1,2,3-Trichlorobenzene	48.5		ug/L	50.0	BLOD	97.0	55-140	10.0	30	
1,2,3-Trichloropropane	40.6		ug/L	50.0	BLOD	81.1	75-125	3.54	30	
1,2,4-Trichlorobenzene	45.4		ug/L	50.0	BLOD	90.8	65-135	9.07	30	
1,2,4-Trimethylbenzene	49.5		ug/L	50.0	BLOD	98.9	75-130	2.50	30	
1,2-Dibromo-3-chloropropane (DBCP)	46.8		ug/L	50.0	BLOD	93.5	50-130	10.7	30	
1,2-Dibromoethane (EDB)	41.4		ug/L	50.0	BLOD	82.8	80-120	0.193	30	
1,2-Dichlorobenzene	50.1		ug/L	50.0	BLOD	100	70-120	7.67	30	
1,2-Dichloroethane	45.1		ug/L	50.0	BLOD	90.3	70-130	2.04	30	
1,2-Dichloropropane	55.5		ug/L	50.0	BLOD	111	75-125	5.10	30	
1,3,5-Trimethylbenzene	53.5		ug/L	50.0	BLOD	107	75-124	8.27	30	
1,3-Dichlorobenzene	49.3		ug/L	50.0	BLOD	98.5	75-125	9.53	30	
1,3-Dichloropropane	52.7		ug/L	50.0	BLOD	105	75-125	3.67	30	
1,4-Dichlorobenzene	45.4		ug/L	50.0	0.54	89.8	75-125	1.59	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BII0136 - SW5030	B-MS							
Matrix Spike Dup (BII0136-MSD1)	Source	ce: 2510097-02	Prepared & Ana	llyzed: 09/03/2025	5				
2,2-Dichloropropane	50.2	ug	/L 50.0	BLOD	100	70-135	2.05	30	
2-Butanone (MEK)	36.9	ug	/L 50.0	BLOD	73.8	30-150	14.5	30	
2-Chlorotoluene	50.8	ug	/L 50.0	BLOD	102	75-125	6.60	30	
2-Hexanone (MBK)	42.8	ug	/L 50.0	BLOD	85.5	55-130	4.52	30	
4-Chlorotoluene	48.8	ug	/L 50.0	BLOD	97.5	75-130	6.85	30	
4-Isopropyltoluene	55.7	ug	/L 50.0	BLOD	111	75-130	13.9	30	
4-Methyl-2-pentanone (MIBK)	60.8	ug	/L 50.0	BLOD	122	60-135	5.21	30	
Acetone	47.2	ug	/L 50.0	BLOD	94.4	40-140	11.4	30	
Benzene	52.0	ug	/L 50.0	BLOD	104	80-120	0.424	30	
Bromobenzene	38.8	ug	/L 50.0	BLOD	77.6	75-125	0.309	30	
Bromochloromethane	44.8	ug	/L 50.0	BLOD	89.7	65-130	0.941	30	
Bromodichloromethane	49.5	ug	/L 50.0	BLOD	98.9	75-136	3.73	30	
Bromoform	37.6	ug	/L 50.0	BLOD	75.1	70-130	0.00	30	
Bromomethane	43.3	ug	/L 50.0	BLOD	86.7	30-145	1.68	30	
Carbon disulfide	59.2	ug	/L 50.0	BLOD	118	35-160	12.6	30	
Carbon tetrachloride	54.8	ug	/L 50.0	BLOD	110	65-140	0.745	30	
Chlorobenzene	40.8	ug	/L 50.0	1.23	79.1	80-120	2.28	30	М
Chloroethane	50.1	ug	/L 50.0	BLOD	100	60-135	3.62	30	
Chloroform	43.1	ug	/L 50.0	BLOD	86.1	65-135	0.533	30	
Chloromethane	45.5	ug	/L 50.0	BLOD	91.0	40-125	1.07	30	
cis-1,2-Dichloroethylene	49.8	ug	/L 50.0	0.46	98.6	70-125	0.141	30	
cis-1,3-Dichloropropene	52.1	ug	/L 50.0	BLOD	104	47-136	3.64	30	
Dibromochloromethane	49.0	ug	/L 50.0	BLOD	97.9	60-135	3.17	30	
Dibromomethane	47.7	ug	/L 50.0	BLOD	95.4	75-125	2.65	30	
Dichlorodifluoromethane	46.8	ug	/L 50.0	BLOD	93.6	30-155	1.25	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ (Jnits	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	3110136 - SW5030	B-MS								
Matrix Spike Dup (BII0136-MSD1)	Source	ce: 25l0097-02		Prepared & Analy	yzed: 09/03/2025					
Ethylbenzene	43.4		ug/L	50.0	BLOD	86.7	75-125	0.115	30	
Hexachlorobutadiene	52.5		ug/L	50.0	BLOD	105	50-140	8.53	30	
Isopropylbenzene	44.3		ug/L	50.0	BLOD	88.5	75-125	0.748	30	
m+p-Xylenes	85.6		ug/L	100	BLOD	85.6	75-130	0.977	30	
Methylene chloride	41.4		ug/L	50.0	BLOD	82.7	55-140	2.32	30	
Methyl-t-butyl ether (MTBE)	47.6		ug/L	50.0	BLOD	95.2	65-125	1.01	30	
Naphthalene	47.6		ug/L	50.0	BLOD	95.2	55-140	10.3	30	
n-Butylbenzene	57.7		ug/L	50.0	BLOD	115	70-135	11.9	30	
n-Propylbenzene	53.2		ug/L	50.0	BLOD	106	70-130	7.16	30	
o-Xylene	41.6		ug/L	50.0	BLOD	83.2	80-120	1.98	30	
sec-Butylbenzene	54.5		ug/L	50.0	BLOD	109	70-125	4.14	30	
Styrene	41.9		ug/L	50.0	BLOD	83.8	65-135	1.15	30	
tert-Butylbenzene	52.6		ug/L	50.0	BLOD	105	70-130	7.30	30	
Tetrachloroethylene (PCE)	42.9		ug/L	50.0	BLOD	85.8	51-231	0.116	30	
Toluene	50.0		ug/L	50.0	BLOD	99.9	75-120	0.240	30	
trans-1,2-Dichloroethylene	50.0		ug/L	50.0	BLOD	100	60-140	1.59	30	
trans-1,3-Dichloropropene	54.7		ug/L	50.0	BLOD	109	55-140	2.01	30	
Trichloroethylene	50.9		ug/L	50.0	BLOD	102	70-125	2.21	30	
Trichlorofluoromethane	52.9		ug/L	50.0	BLOD	106	60-145	0.283	30	
Vinyl chloride	59.4		ug/L	50.0	BLOD	119	50-145	2.17	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	46.3		ug/L	50.0		92.6	70-120			
Surr: 4-Bromofluorobenzene (Surr)	42.7		ug/L	50.0		85.4	75-120			
Surr: Dibromofluoromethane (Surr)	44.5		ug/L	50.0		88.9	70-130			
Surr: Toluene-d8 (Surr)	51.0		ug/L	50.0		102	70-130			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bli	10238 - SW5030	B-MS		-						
Blank (BII0238-BLK1)			F	Prepared & Analy	yzed: 09/04/2025					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	50.2		ug/L	50.0		100	70-120			
Surr: 4-Bromofluorobenzene (Surr)	50.4		ug/L	50.0		101	75-120			
Surr: Dibromofluoromethane (Surr)	54.4		ug/L	50.0		109	70-130			
Surr: Toluene-d8 (Surr)	50.0		ug/L	50.0		99.9	70-130			
.CS (BII0238-BS1)			F	Prepared & Analy	yzed: 09/04/2025					
1,1,1,2-Tetrachloroethane	56.6		ug/L	50.0		113	80-130			
1,1,1-Trichloroethane	61.7		ug/L	50.0		123	65-130			
1,1,2,2-Tetrachloroethane	51.6		ug/L	50.0		103	65-130			
1,1,2-Trichloroethane	48.7		ug/L	50.0		97.4	75-125			
1,1-Dichloroethane	57.9		ug/L	50.0		116	70-135			
1,1-Dichloroethylene	58.2		ug/L	50.0		116	70-130			
1,1-Dichloropropene	59.7		ug/L	50.0		119	75-135			
1,2,3-Trichlorobenzene	51.1		ug/L	50.0		102	55-140			
1,2,3-Trichloropropane	50.3		ug/L	50.0		101	75-125			
1,2,4-Trichlorobenzene	53.0		ug/L	50.0		106	65-135			
1,2,4-Trimethylbenzene	56.7		ug/L	50.0		113	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	41.4		ug/L	50.0		82.7	50-130			
1,2-Dibromoethane (EDB)	50.8		ug/L	50.0		102	80-120			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BII0238 - SW5030I	B-MS							
LCS (BII0238-BS1)			Prepared & Anal	lyzed: 09/04/2025					
1,2-Dichlorobenzene	57.6	ug/L	50.0		115	70-120			
1,2-Dichloroethane	51.7	ug/L	50.0		103	70-130			
1,2-Dichloropropane	50.7	ug/L	50.0		101	75-125			
1,3,5-Trimethylbenzene	57.1	ug/L	50.0		114	75-125			
1,3-Dichlorobenzene	59.7	ug/L	50.0		119	75-125			
1,3-Dichloropropane	50.8	ug/L	50.0		102	75-125			
1,4-Dichlorobenzene	58.0	ug/L	50.0		116	75-125			
2,2-Dichloropropane	59.8	ug/L	50.0		120	70-135			
2-Butanone (MEK)	46.0	ug/L	50.0		92.0	30-150			
2-Chlorotoluene	56.6	ug/L	50.0		113	75-125			
2-Hexanone (MBK)	44.9	ug/L	50.0		89.9	55-130			
4-Chlorotoluene	57.1	ug/L	50.0		114	75-130			
4-Isopropyltoluene	58.3	ug/L	50.0		117	75-130			
4-Methyl-2-pentanone (MIBK)	43.6	ug/L	50.0		87.1	60-135			
Acetone	42.9	ug/L	50.0		85.9	40-140			
Benzene	54.8	ug/L	50.0		110	80-120			
Bromobenzene	60.8	ug/L	50.0		122	75-125			
Bromochloromethane	55.6	ug/L	50.0		111	65-130			
Bromodichloromethane	53.1	ug/L	50.0		106	75-120			
Bromoform	53.2	ug/L	50.0		106	70-130			
Bromomethane	47.8	ug/L	50.0		95.7	30-145			
Carbon disulfide	46.8	ug/L	50.0		93.5	35-160			
Carbon tetrachloride	58.6	ug/L	50.0		117	65-140			
Chlorobenzene	56.5	ug/L	50.0		113	80-120			
Chloroethane	55.3	ug/L	50.0		111	60-135			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BII0238 - SW5030	B-MS							
LCS (BII0238-BS1)			Prepared & Ana	lyzed: 09/04/2025	i				
Chloroform	59.9	ug/L	50.0		120	65-135			
Chloromethane	50.8	ug/L	50.0		102	40-125			
cis-1,2-Dichloroethylene	55.7	ug/L	50.0		111	70-125			
cis-1,3-Dichloropropene	52.9	ug/L	50.0		106	70-130			
Dibromochloromethane	52.4	ug/L	50.0		105	60-135			
Dibromomethane	50.1	ug/L	50.0		100	75-125			
Dichlorodifluoromethane	49.6	ug/L	50.0		99.3	30-155			
Ethylbenzene	57.5	ug/L	50.0		115	75-125			
Hexachlorobutadiene	55.8	ug/L	50.0		112	50-140			
Isopropylbenzene	60.7	ug/L	50.0		121	75-125			
m+p-Xylenes	119	ug/L	100		119	75-130			
Methylene chloride	57.8	ug/L	50.0		116	55-140			
Methyl-t-butyl ether (MTBE)	52.9	ug/L	50.0		106	65-125			
Naphthalene	44.7	ug/L	50.0		89.4	55-140			
n-Butylbenzene	57.4	ug/L	50.0		115	70-135			
n-Propylbenzene	57.4	ug/L	50.0		115	70-130			
o-Xylene	59.1	ug/L	50.0		118	80-120			
sec-Butylbenzene	58.5	ug/L	50.0		117	70-125			
Styrene	58.8	ug/L	50.0		118	65-135			
tert-Butylbenzene	58.4	ug/L	50.0		117	70-130			
Tetrachloroethylene (PCE)	58.9	ug/L	50.0		118	45-150			
Toluene	54.0	ug/L	50.0		108	75-120			
trans-1,2-Dichloroethylene	58.7	ug/L	50.0		117	60-140			
trans-1,3-Dichloropropene	51.5	ug/L	50.0		103	55-140			
Trichloroethylene	55.9	ug/L	50.0		112	70-125			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bli	10238 - SW5030E	B-MS							
LCS (BII0238-BS1)			Prepared & Anal	yzed: 09/04/2025					
Trichlorofluoromethane	63.4	ug/L	50.0		127	60-145			
Vinyl chloride	57.0	ug/L	50.0		114	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	53.0	ug/L	50.0		106	70-120			
Surr: 4-Bromofluorobenzene (Surr)	51.4	ug/L	50.0		103	75-120			
Surr: Dibromofluoromethane (Surr)	55.8	ug/L	50.0		112	70-130			
Surr: Toluene-d8 (Surr)	49.8	ug/L	50.0		99.7	70-130			
Matrix Spike (BII0238-MS1)	Sourc	e: 2510247-02	Prepared & Anal	yzed: 09/04/2025					
1,1,1,2-Tetrachloroethane	56.5	ug/L	50.0	BLOD	113	80-130			
1,1,1-Trichloroethane	64.9	ug/L	50.0	BLOD	130	65-130			
1,1,2,2-Tetrachloroethane	52.0	ug/L	50.0	BLOD	104	65-130			
1,1,2-Trichloroethane	50.5	ug/L	50.0	BLOD	101	75-125			
1,1-Dichloroethane	59.2	ug/L	50.0	BLOD	118	70-135			
1,1-Dichloroethylene	60.0	ug/L	50.0	BLOD	120	50-145			
1,1-Dichloropropene	63.1	ug/L	50.0	BLOD	126	75-135			
1,2,3-Trichlorobenzene	50.8	ug/L	50.0	BLOD	102	55-140			
1,2,3-Trichloropropane	51.5	ug/L	50.0	BLOD	103	75-125			
1,2,4-Trichlorobenzene	53.1	ug/L	50.0	BLOD	106	65-135			
1,2,4-Trimethylbenzene	57.4	ug/L	50.0	BLOD	115	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	42.9	ug/L	50.0	BLOD	85.8	50-130			
1,2-Dibromoethane (EDB)	50.7	ug/L	50.0	BLOD	101	80-120			
1,2-Dichlorobenzene	57.2	ug/L	50.0	BLOD	114	70-120			
1,2-Dichloroethane	52.4	ug/L	50.0	BLOD	105	70-130			
1,2-Dichloropropane	52.3	ug/L	50.0	BLOD	105	75-125			
1,3,5-Trimethylbenzene	57.8	ug/L	50.0	BLOD	116	75-124			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BII0238 - SW5030E	B-MS							
Matrix Spike (BII0238-MS1)	Sourc	e: 2510247-02	Prepared & Ana	lyzed: 09/04/2025	5				
1,3-Dichlorobenzene	59.4	ug/L	50.0	BLOD	119	75-125			
1,3-Dichloropropane	52.8	ug/L	50.0	BLOD	106	75-125			
1,4-Dichlorobenzene	58.5	ug/L	50.0	BLOD	117	75-125			
2,2-Dichloropropane	62.4	ug/L	50.0	BLOD	125	70-135			
2-Butanone (MEK)	52.4	ug/L	50.0	BLOD	105	30-150			
2-Chlorotoluene	56.6	ug/L	50.0	BLOD	113	75-125			
2-Hexanone (MBK)	49.3	ug/L	50.0	BLOD	98.7	55-130			
4-Chlorotoluene	56.6	ug/L	50.0	BLOD	113	75-130			
4-Isopropyltoluene	59.5	ug/L	50.0	BLOD	119	75-130			
4-Methyl-2-pentanone (MIBK)	48.9	ug/L	50.0	BLOD	97.7	60-135			
Acetone	48.7	ug/L	50.0	BLOD	97.5	40-140			
Benzene	56.7	ug/L	50.0	BLOD	113	80-120			
Bromobenzene	61.6	ug/L	50.0	BLOD	123	75-125			
Bromochloromethane	56.6	ug/L	50.0	BLOD	113	65-130			
Bromodichloromethane	54.3	ug/L	50.0	BLOD	109	75-136			
Bromoform	54.3	ug/L	50.0	BLOD	109	70-130			
Bromomethane	48.9	ug/L	50.0	BLOD	97.0	30-145			
Carbon disulfide	49.8	ug/L	50.0	BLOD	99.1	35-160			
Carbon tetrachloride	61.8	ug/L	50.0	BLOD	124	65-140			
Chlorobenzene	57.2	ug/L	50.0	BLOD	114	80-120			
Chloroethane	54.9	ug/L	50.0	BLOD	110	60-135			
Chloroform	61.1	ug/L	50.0	BLOD	122	65-135			
Chloromethane	50.3	ug/L	50.0	BLOD	100	40-125			
cis-1,2-Dichloroethylene	57.4	ug/L	50.0	BLOD	115	70-125			
cis-1,3-Dichloropropene	54.0	ug/L	50.0	BLOD	108	47-136			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.: Submitted To: **Bristol LFG-EW Monthly Monitoring**

Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	3110238 - SW5030	B-MS								
Matrix Spike (BII0238-MS1)	Sour	ce: 25l0247-02		Prepared & Anal	yzed: 09/04/2025					
Dibromochloromethane	54.3		ug/L	50.0	BLOD	109	60-135			
Dibromomethane	51.5		ug/L	50.0	BLOD	103	75-125			
Dichlorodifluoromethane	50.1		ug/L	50.0	BLOD	100	30-155			
Ethylbenzene	59.0		ug/L	50.0	BLOD	118	75-125			
Hexachlorobutadiene	57.0		ug/L	50.0	BLOD	114	50-140			
Isopropylbenzene	62.3		ug/L	50.0	BLOD	125	75-125			
m+p-Xylenes	121		ug/L	100	BLOD	121	75-130			
Methylene chloride	58.2		ug/L	50.0	BLOD	116	55-140			
Methyl-t-butyl ether (MTBE)	53.1		ug/L	50.0	BLOD	106	65-125			
Naphthalene	45.4		ug/L	50.0	BLOD	90.9	55-140			
n-Butylbenzene	58.8		ug/L	50.0	BLOD	118	70-135			
n-Propylbenzene	58.2		ug/L	50.0	BLOD	116	70-130			
o-Xylene	60.0		ug/L	50.0	BLOD	120	80-120			
sec-Butylbenzene	59.4		ug/L	50.0	BLOD	119	70-125			
Styrene	59.1		ug/L	50.0	BLOD	118	65-135			
tert-Butylbenzene	58.2		ug/L	50.0	BLOD	116	70-130			
Tetrachloroethylene (PCE)	60.7		ug/L	50.0	BLOD	121	51-231			
Toluene	56.8		ug/L	50.0	BLOD	114	75-120			
trans-1,2-Dichloroethylene	60.5		ug/L	50.0	BLOD	121	60-140			
trans-1,3-Dichloropropene	52.4		ug/L	50.0	BLOD	105	55-140			
Trichloroethylene	58.4		ug/L	50.0	BLOD	117	70-125			
Trichlorofluoromethane	65.5		ug/L	50.0	BLOD	131	60-145			
Vinyl chloride	56.9		ug/L	50.0	BLOD	114	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	55.2		ug/L	50.0		110	70-120			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ U	Jnits	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl	10238 - SW5030	B-MS								
Matrix Spike (BII0238-MS1)	Source	ce: 25l0247-02		Prepared & Analy	/zed: 09/04/2025					
Surr: 4-Bromofluorobenzene (Surr)	51.2		ug/L	50.0		102	75-120			
Surr: Dibromofluoromethane (Surr)	56.1		ug/L	50.0		112	70-130			
Surr: Toluene-d8 (Surr)	50.5		ug/L	50.0		101	70-130			
Matrix Spike Dup (BII0238-MSD1)	Sourc	ce: 25l0247-02		Prepared & Analy	/zed: 09/04/2025					
1,1,1,2-Tetrachloroethane	56.5		ug/L	50.0	BLOD	113	80-130	0.0177	30	
1,1,1-Trichloroethane	63.9		ug/L	50.0	BLOD	128	65-130	1.62	30	
1,1,2,2-Tetrachloroethane	54.4		ug/L	50.0	BLOD	109	65-130	4.55	30	
1,1,2-Trichloroethane	50.8		ug/L	50.0	BLOD	102	75-125	0.533	30	
1,1-Dichloroethane	58.1		ug/L	50.0	BLOD	116	70-135	1.79	30	
1,1-Dichloroethylene	59.5		ug/L	50.0	BLOD	119	50-145	0.804	30	
1,1-Dichloropropene	61.4		ug/L	50.0	BLOD	123	75-135	2.62	30	
1,2,3-Trichlorobenzene	51.3		ug/L	50.0	BLOD	103	55-140	0.999	30	
1,2,3-Trichloropropane	53.2		ug/L	50.0	BLOD	106	75-125	3.36	30	
1,2,4-Trichlorobenzene	53.7		ug/L	50.0	BLOD	107	65-135	1.27	30	
1,2,4-Trimethylbenzene	57.5		ug/L	50.0	BLOD	115	75-130	0.122	30	
1,2-Dibromo-3-chloropropane (DBCP)	45.0		ug/L	50.0	BLOD	89.9	50-130	4.69	30	
1,2-Dibromoethane (EDB)	51.8		ug/L	50.0	BLOD	104	80-120	2.11	30	
1,2-Dichlorobenzene	57.6		ug/L	50.0	BLOD	115	70-120	0.854	30	
1,2-Dichloroethane	52.3		ug/L	50.0	BLOD	105	70-130	0.248	30	
1,2-Dichloropropane	52.2		ug/L	50.0	BLOD	104	75-125	0.268	30	
1,3,5-Trimethylbenzene	57.7		ug/L	50.0	BLOD	115	75-124	0.277	30	
1,3-Dichlorobenzene	59.2		ug/L	50.0	BLOD	118	75-125	0.236	30	
1,3-Dichloropropane	52.5		ug/L	50.0	BLOD	105	75-125	0.608	30	
1,4-Dichlorobenzene	57.8		ug/L	50.0	BLOD	116	75-125	1.08	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Unit	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BII0238 - SW5030	B-MS							
Matrix Spike Dup (BII0238-MSD1)	Source	ce: 25I0247-02	Prepared & Ana	alyzed: 09/04/2025	5				
2,2-Dichloropropane	60.8	uç	/L 50.0	BLOD	122	70-135	2.71	30	
2-Butanone (MEK)	54.9	uç	/L 50.0	BLOD	110	30-150	4.63	30	
2-Chlorotoluene	56.9	uç	/L 50.0	BLOD	114	75-125	0.511	30	
2-Hexanone (MBK)	53.3	uç	/L 50.0	BLOD	107	55-130	7.75	30	
4-Chlorotoluene	56.3	uç	/L 50.0	BLOD	113	75-130	0.496	30	
4-Isopropyltoluene	59.1	uç	/L 50.0	BLOD	118	75-130	0.557	30	
4-Methyl-2-pentanone (MIBK)	52.8	uç	/L 50.0	BLOD	106	60-135	7.66	30	
Acetone	52.8	uç	/L 50.0	BLOD	106	40-140	7.98	30	
Benzene	55.7	uç	/L 50.0	BLOD	111	80-120	1.69	30	
Bromobenzene	61.5	uç	/L 50.0	BLOD	123	75-125	0.179	30	
Bromochloromethane	56.7	uç	/L 50.0	BLOD	113	65-130	0.123	30	
Bromodichloromethane	54.1	uç	/L 50.0	BLOD	108	75-136	0.388	30	
Bromoform	55.6	uç	/L 50.0	BLOD	111	70-130	2.37	30	
Bromomethane	47.6	uç	/L 50.0	BLOD	94.3	30-145	2.76	30	
Carbon disulfide	49.7	uç	/L 50.0	BLOD	98.8	35-160	0.261	30	
Carbon tetrachloride	60.7	uç	/L 50.0	BLOD	121	65-140	1.71	30	
Chlorobenzene	57.2	uç	/L 50.0	BLOD	114	80-120	0.0525	30	
Chloroethane	54.6	uç	/L 50.0	BLOD	109	60-135	0.603	30	
Chloroform	60.1	uç	/L 50.0	BLOD	120	65-135	1.53	30	
Chloromethane	49.8	uç	/L 50.0	BLOD	99.3	40-125	0.999	30	
cis-1,2-Dichloroethylene	56.3	uç	/L 50.0	BLOD	113	70-125	1.97	30	
cis-1,3-Dichloropropene	53.7	uç	/L 50.0	BLOD	107	47-136	0.575	30	
Dibromochloromethane	54.4	uç	/L 50.0	BLOD	109	60-135	0.0920	30	
Dibromomethane	51.5	uç		BLOD	103	75-125	0.0388	30	
Dichlorodifluoromethane	49.2	uç	/L 50.0	BLOD	98.5	30-155	1.81	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Ur	Spike lits Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	II0238 - SW5030	B-MS							
Matrix Spike Dup (BII0238-MSD1)	Sour	ce: 25l0247-02	Prepared & Ar	nalyzed: 09/04/2025	;				
Ethylbenzene	58.4		ug/L 50.0	BLOD	117	75-125	0.971	30	
Hexachlorobutadiene	58.4		ug/L 50.0	BLOD	117	50-140	2.30	30	
Isopropylbenzene	61.5		ug/L 50.0	BLOD	123	75-125	1.32	30	
m+p-Xylenes	120		ug/L 100	BLOD	120	75-130	0.989	30	
Methylene chloride	57.7		ug/L 50.0	BLOD	115	55-140	0.949	30	
Methyl-t-butyl ether (MTBE)	53.5		ug/L 50.0	BLOD	107	65-125	0.638	30	
Naphthalene	46.8		ug/L 50.0	BLOD	93.7	55-140	3.08	30	
n-Butylbenzene	58.8		ug/L 50.0	BLOD	118	70-135	0.0680	30	
n-Propylbenzene	57.5		ug/L 50.0	BLOD	115	70-130	1.33	30	
o-Xylene	60.0		ug/L 50.0	BLOD	120	80-120	0.0834	30	
sec-Butylbenzene	59.2		ug/L 50.0	BLOD	118	70-125	0.422	30	
Styrene	59.0		ug/L 50.0	BLOD	118	65-135	0.169	30	
tert-Butylbenzene	58.1		ug/L 50.0	BLOD	116	70-130	0.206	30	
Tetrachloroethylene (PCE)	60.1		ug/L 50.0	BLOD	120	51-231	0.878	30	
Toluene	56.0		ug/L 50.0	BLOD	112	75-120	1.35	30	
trans-1,2-Dichloroethylene	59.7		ug/L 50.0	BLOD	119	60-140	1.30	30	
trans-1,3-Dichloropropene	52.4		ug/L 50.0	BLOD	105	55-140	0.0382	30	
Trichloroethylene	58.1		ug/L 50.0	BLOD	116	70-125	0.481	30	
Trichlorofluoromethane	64.5		ug/L 50.0	BLOD	129	60-145	1.51	30	
Vinyl chloride	56.9		ug/L 50.0	BLOD	114	50-145	0.0879	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	54.2		ug/L 50.0		108	70-120			
Surr: 4-Bromofluorobenzene (Surr)	51.3		ug/L 50.0		103	75-120			
Surr: Dibromofluoromethane (Surr)	55.9		ug/L 50.0		112	70-130			
Surr: Toluene-d8 (Surr)	50.4		ug/L 50.0		101	70-130			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BII0007 - SW3510	C/EPA600-N	IS							
Blank (BII0007-BLK1)			F	repared & Anal	yzed: 09/02/2025					
Anthracene	ND	10.0	ug/L							
Surr: 2,4,6-Tribromophenol (Surr)	99.7		ug/L	100		99.7	5-136			
Surr: 2-Fluorobiphenyl (Surr)	38.8		ug/L	50.0		77.6	9-117			
Surr: 2-Fluorophenol (Surr)	47.9		ug/L	100		47.9	5-60			
Surr: Nitrobenzene-d5 (Surr)	44.7		ug/L	50.0		89.4	5-151			
Surr: Phenol-d5 (Surr)	34.1		ug/L	100		34.1	5-60			
Surr: p-Terphenyl-d14 (Surr)	42.3		ug/L	50.0		84.7	5-141			
_CS (BII0007-BS1)			F	repared & Anal	yzed: 09/02/2025					
1,2,4-Trichlorobenzene	37.8	10.0	ug/L	50.0		75.5	57-130			
1,2-Dichlorobenzene	40.2	10.0	ug/L	50.0		80.3	22-115			
1,3-Dichlorobenzene	38.4	10.0	ug/L	50.0		76.8	22-112			
1,4-Dichlorobenzene	38.7	10.0	ug/L	50.0		77.4	13-112			
2,4,6-Trichlorophenol	50.8	10.0	ug/L	50.0		102	52-129			
2,4-Dichlorophenol	44.4	10.0	ug/L	50.0		88.8	53-122			
2,4-Dimethylphenol	40.3	5.00	ug/L	50.0		80.7	42-120			
2,4-Dinitrophenol	67.5	50.0	ug/L	50.0		135	48-127			L
2,4-Dinitrotoluene	50.5	10.0	ug/L	50.0		101	10-173			
2,6-Dinitrotoluene	49.0	10.0	ug/L	50.0		98.1	68-137			
2-Chloronaphthalene	39.8	10.0	ug/L	50.0		79.6	65-120			
2-Chlorophenol	41.2	10.0	ug/L	50.0		82.3	36-120			
2-Nitrophenol	46.8	10.0	ug/L	50.0		93.5	45-167			
3,3'-Dichlorobenzidine	53.6	10.0	ug/L	50.0		107	10-213			
4,6-Dinitro-2-methylphenol	63.9	50.0	ug/L	50.0		128	53-130			
4-Bromophenyl phenyl ether	48.0	10.0	ug/L	50.0		95.9	65-120			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BII0007 - SW3510	C/EPA600-N	IS							
LCS (BII0007-BS1)			F	Prepared & Anal	yzed: 09/02/2025					
4-Chlorophenyl phenyl ether	43.1	10.0	ug/L	50.0		86.1	38-145			
4-Nitrophenol	23.7	50.0	ug/L	50.0		47.4	13-129			
Acenaphthene	40.4	10.0	ug/L	50.0		80.9	60-132			
Acenaphthylene	41.0	10.0	ug/L	50.0		82.0	54-126			
Acetophenone	37.5	20.0	ug/L	50.0		75.0	0-200			
Anthracene	42.3	10.0	ug/L	50.0		84.5	43-120			
Benzo (a) anthracene	45.2	10.0	ug/L	50.0		90.5	42-133			
Benzo (a) pyrene	46.5	10.0	ug/L	50.0		93.0	32-148			
Benzo (b) fluoranthene	52.9	10.0	ug/L	50.0		106	42-140			
Benzo (g,h,i) perylene	39.2	10.0	ug/L	50.0		78.4	10-195			
Benzo (k) fluoranthene	41.6	10.0	ug/L	50.0		83.3	25-146			
bis (2-Chloroethoxy) methane	41.3	10.0	ug/L	50.0		82.5	49-165			
bis (2-Chloroethyl) ether	41.0	10.0	ug/L	50.0		82.0	43-126			
2,2'-Oxybis (1-chloropropane)	43.0	10.0	ug/L	50.0		85.9	63-139			
bis (2-Ethylhexyl) phthalate	43.8	10.0	ug/L	50.0		87.6	29-137			
Butyl benzyl phthalate	50.8	10.0	ug/L	50.0		102	10-140			
Chrysene	44.6	10.0	ug/L	50.0		89.2	44-140			
Dibenz (a,h) anthracene	43.7	10.0	ug/L	50.0		87.4	10-200			
Diethyl phthalate	48.3	10.0	ug/L	50.0		96.6	10-120			
Dimethyl phthalate	46.3	10.0	ug/L	50.0		92.6	10-120			
Di-n-butyl phthalate	47.5	10.0	ug/L	50.0		94.9	10-120			
Di-n-octyl phthalate	46.1	10.0	ug/L	50.0		92.2	19-132			
Fluoranthene	41.5	10.0	ug/L	50.0		83.1	43-121			
Fluorene	41.7	10.0	ug/L	50.0		83.3	70-120			
Hexachlorobenzene	47.0	2.50	ug/L	50.0		93.9	10-142			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25H2532

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bli	0007 - SW3510	C/EPA600-N	ıs							
.CS (BII0007-BS1)			F	Prepared & Anal	yzed: 09/02/2025					
Hexachlorobutadiene	42.4	10.0	ug/L	50.0		84.9	38-120			
Hexachlorocyclopentadiene	28.1	10.0	ug/L	50.0		56.2	10-76			
Hexachloroethane	38.3	10.0	ug/L	50.0		76.6	55-120			
Indeno (1,2,3-cd) pyrene	39.9	10.0	ug/L	50.0		79.9	10-151			
Isophorone	36.5	10.0	ug/L	50.0		73.1	47-180			
Naphthalene	37.7	5.00	ug/L	50.0		75.4	36-120			
Nitrobenzene	44.7	10.0	ug/L	50.0		89.3	54-158			
n-Nitrosodimethylamine	25.8	10.0	ug/L	50.0		51.7	10-85			
n-Nitrosodi-n-propylamine	43.7	10.0	ug/L	50.0		87.5	14-198			
n-Nitrosodiphenylamine	37.6	10.0	ug/L	50.0		75.1	12-97			
p-Chloro-m-cresol	46.6	10.0	ug/L	50.0		93.3	10-142			
Pentachloronitrobenzene (quintozene)	ND	10.0	ug/L				0-200			
Pentachlorophenol	50.3	20.0	ug/L	50.0		101	38-152			
Phenanthrene	47.0	10.0	ug/L	50.0		94.0	65-120			
Phenol	17.8	10.0	ug/L	50.5		35.2	17-120			
Pyrene	41.1	10.0	ug/L	50.0		82.1	70-120			
Pyridine	28.7	10.0	ug/L	50.0		57.4	10-103			
Surr: 2,4,6-Tribromophenol (Surr)	106		ug/L	100		106	5-136			
Surr: 2-Fluorobiphenyl (Surr)	39.8		ug/L	50.0		79.6	9-117			
Surr: 2-Fluorophenol (Surr)	48.3		ug/L	100		48.3	5-60			
Surr: Nitrobenzene-d5 (Surr)	47.3		ug/L	50.0		94.6	5-151			
Surr: Phenol-d5 (Surr)	36.6		ug/L	100		36.6	5-60			
Surr: p-Terphenyl-d14 (Surr)	46.3		ug/L	50.0		92.6	5-141			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:
Submitted To:

Bristol LFG-EW Monthly Monitoring

Jennifer Robb

Work Order:

25H2532

Ion Chromatography Analyses - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bat	ch BIH1586 - No Prep	IC								
Blank (BIH1586-BLK1)				Prepared & Anal	yzed: 09/02/2025					
Acetic Acid	ND	0.5	mg/L							
Butyric Acid	ND	0.5	mg/L							
Formic Acid	ND	0.5	mg/L							
n-Hexanoic Acid	ND	0.5	mg/L							
i-Hexanoic Acid	ND	0.5	mg/L							
Lactic Acid	ND	0.5	mg/L							
n-Pentanoic Acid	ND	0.5	mg/L							
i-Pentanoic Acid	ND	0.5	mg/L							
Propionic Acid	ND	0.5	mg/L							
Pyruvic Acid	ND	0.5	mg/L							
LCS (BIH1586-BS1)				Prepared & Anal	yzed: 09/02/2025					
Acetic Acid	5.7		mg/L	5.00		115	70-130			
Butyric Acid	5.4		mg/L	5.00		107	70-130			
Formic Acid	5.7		mg/L	4.99		115	70-130			
n-Hexanoic Acid	4.7		mg/L	5.00		94.5	70-130			
i-Hexanoic Acid	5.2		mg/L	5.00		105	70-130			
Lactic Acid	5.7		mg/L	5.00		115	70-130			
n-Pentanoic Acid	5.1		mg/L	5.00		102	70-130			
i-Pentanoic Acid	4.5		mg/L	5.00		90.7	70-130			
Propionic Acid	5.4		mg/L	5.00		108	70-130			
Pyruvic Acid	5.9		mg/L	5.00		118	70-130			
Matrix Spike (BIH1586-MS1)	Source	e: 25H2532-01		Prepared & Anal	yzed: 09/02/2025					
Acetic Acid	6170	500	mg/L	5000	678	110	70-130			
Butyric Acid	5320	500	mg/L	5000	293	101	70-130			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Work Order:

Date Issued:

25H2532

9/15/2025 6:16:40PM

Ion Chromatography Analyses - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIH1586 - No Prep	IC								
Matrix Spike (BIH1586-MS1)	Sourc	e: 25H2532-01	I	Prepared & Anal	yzed: 09/02/2025	i				
Formic Acid	5330	500	mg/L	5000	BLOD	107	70-130			
n-Hexanoic Acid	4860	500	mg/L	5000	BLOD	97.3	70-130			
i-Hexanoic Acid	5020	500	mg/L	5000	BLOD	100	70-130			
Lactic Acid	5520	500	mg/L	5000	BLOD	111	70-130			
n-Pentanoic Acid	5010	500	mg/L	5000	BLOD	100	70-130			
i-Pentanoic Acid	4670	500	mg/L	5000	BLOD	93.4	70-130			
Propionic Acid	6090	500	mg/L	5000	696	108	70-130			
Pyruvic Acid	5270	500	mg/L	5000	BLOD	105	70-130			
Matrix Spike Dup (BIH1586-MSD1)	Sourc	e: 25H2532-01	ļ	Prepared & Anal	yzed: 09/02/2025	i				
Acetic Acid	6480	500	mg/L	5000	678	116	70-130	4.87	20	
Butyric Acid	5690	500	mg/L	5000	293	108	70-130	6.74	20	
Formic Acid	5650	500	mg/L	5000	BLOD	113	70-130	5.75	20	
n-Hexanoic Acid	5290	500	mg/L	5000	BLOD	106	70-130	8.46	20	
i-Hexanoic Acid	5280	500	mg/L	5000	BLOD	106	70-130	5.04	20	
Lactic Acid	5900	500	mg/L	5000	BLOD	118	70-130	6.53	20	
n-Pentanoic Acid	5280	500	mg/L	5000	BLOD	106	70-130	5.29	20	
i-Pentanoic Acid	4960	500	mg/L	5000	BLOD	99.2	70-130	6.07	20	
Propionic Acid	6450	500	mg/L	5000	696	115	70-130	5.67	20	
Pyruvic Acid	5590	500	mg/L	5000	BLOD	112	70-130	6.00	20	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

9/15/2025 6:16:40PM

Work Order:

25H2532

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIH1546 - No Prep	Wet Chem								
Blank (BIH1546-BLK1)				Prepared & Anal	yzed: 08/29/2025					
BOD	ND	2.0	mg/L							
LCS (BIH1546-BS1)				Prepared & Anal	yzed: 08/29/2025					
BOD	206		mg/L	198		104	84.6-115.4			
Duplicate (BIH1546-DUP1)	Sourc	e: 25H2485-04	ı	Prepared & Anal	yzed: 08/29/2025					
BOD	2.7	2.0	mg/L		2.6			3.77	20	
Batch	BIH1550 - No Prep	Wet Chem								
Blank (BIH1550-BLK1)				Prepared & Anal	yzed: 08/29/2025					
Nitrite as N	ND	0.05	mg/L							
LCS (BIH1550-BS1)				Prepared & Anal	yzed: 08/29/2025					
Nitrite as N	0.10	0.05	mg/L	0.100		102	80-120			
Matrix Spike (BIH1550-MS1)	Sourc	e: 25H2443-01	I	Prepared & Anal	yzed: 08/29/2025					
Nitrite as N	0.10	0.05	mg/L	0.100	BLOD	99.0	80-120			
Matrix Spike Dup (BIH1550-MSD1)	Sourc	e: 25H2443-01	l	Prepared & Anal	yzed: 08/29/2025					
Nitrite as N	0.10	0.05	mg/L	0.100	BLOD	101	80-120	2.00	20	
Batch	BII0110 - No Prep	Wet Chem								
Blank (BII0110-BLK1)				Prepared & Anal	yzed: 09/03/2025					
COD	ND	10.0	mg/L							

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Date Issued:

9/15/2025 6:16:40PM

Work Order:

25H2532

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BII0110 - No Prep	Wet Chem								
LCS (BII0110-BS1)				Prepared & Anal	yzed: 09/03/2025					
COD	50.9	10.0	mg/L	50.0		102	88-119			
Matrix Spike (BII0110-MS1)	Sourc	e: 2510097-01		Prepared & Anal	yzed: 09/03/2025					
COD	62.4	10.0	mg/L	50.0	17.7	89.4	72.4-130			
Matrix Spike Dup (BII0110-MSD1)	Sourc	e: 2510097-01		Prepared & Anal	yzed: 09/03/2025					
COD	66.3	10.0	mg/L	50.0	17.7	97.3	72.4-130	6.09	20	
Batch	BII0550 - No Prep	Wet Chem								
Blank (BII0550-BLK1)				Prepared: 09/10	/2025 Analyzed: 0	9/11/2025				
TKN as N	ND	0.50	mg/L							
LCS (BII0550-BS1)				Prepared: 09/10/	/2025 Analyzed: 0	9/11/2025				
TKN as N	5.32		mg/L	5.00		106	90-110			
Matrix Spike (BII0550-MS1)	Sourc	e: 25l0299-01		Prepared: 09/10/	/2025 Analyzed: 0	9/11/2025				
TKN as N	10.3	0.50	mg/L	5.00	4.87	108	90-110			
Matrix Spike (BII0550-MS2)	Sourc	e: 2510492-02		Prepared: 09/10	/2025 Analyzed: 0	9/11/2025				
TKN as N	4.43	0.50	mg/L	5.00	0.15	85.6	90-110			М
Matrix Spike Dup (BII0550-MSD1)	Sourc	e: 25l0299-01		Prepared: 09/10	/2025 Analyzed: 0	9/11/2025				
TKN as N	10.2	0.50	mg/L	5.00	4.87	107	90-110	0.604	20	
Matrix Spike Dup (BII0550-MSD2)	Sourc	e: 25l0492-02		Prepared: 09/10	/2025 Analyzed: 0	9/11/2025				
TKN as N	4.49	0.50	mg/L	5.00	0.15	86.7	90-110	1.19	20	М

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:
Submitted To:

Bristol LFG-EW Monthly Monitoring

Jennifer Robb

Work Order:

25H2532

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BII0639 - No Prep	Wet Chem								
Blank (Bli0639-BLK1)				Prepared & Analy	zed: 09/11/2025					
Ammonia as N	ND	0.10	mg/L							
LCS (BII0639-BS1)				Prepared & Analy	zed: 09/11/2025					
Ammonia as N	1.06		mg/L	1.00		106	90-110			
Matrix Spike (BII0639-MS1)	Source	e: 25l0513-01		Prepared & Analy	zed: 09/11/2025					
Ammonia as N	1.09	0.10	mg/L	1.00	0.07	101	89.3-131			
Matrix Spike (BII0639-MS2)	Source	e: 25l0516-01		Prepared & Analy	zed: 09/11/2025					
Ammonia as N	1.10	0.10	mg/L	1.00	0.08	102	89.3-131			
Matrix Spike Dup (BII0639-MSD1)	Source	e: 25l0513-01		Prepared & Analy	zed: 09/11/2025					
Ammonia as N	1.05	0.10	mg/L	1.00	0.07	97.9	89.3-131	3.28	20	
Matrix Spike Dup (BII0639-MSD2)	Source	e: 25l0516-01		Prepared & Analy	zed: 09/11/2025					
Ammonia as N	1.06	0.10	mg/L	1.00	0.08	98.6	89.3-131	3.34	20	
Batch	BII0717 - No Prep	Wet Chem								
Blank (BII0717-BLK1)				Prepared & Analy	zed: 09/12/2025					
Nitrate+Nitrite as N	ND	0.10	mg/L							
LCS (BII0717-BS1)				Prepared & Analy	zed: 09/12/2025					
Nitrate+Nitrite as N	1.03		mg/L	1.00		103	90-110			
Matrix Spike (BII0717-MS1)	Sourc	e: 25H2551-0	3	Prepared & Analy	zed: 09/12/2025					
Nitrate+Nitrite as N	14.0	0.20	mg/L	10.0	4.18	97.7	90-120			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

9/15/2025 6:16:40PM

Work Order:

25H2532

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BII0717 - No Prep	Wet Chem								
Matrix Spike Dup (BII0717-MSD1)	Source	e: 25H2551-03	3	Prepared & Anal	yzed: 09/12/2025					
Nitrate+Nitrite as N	14.1	0.20	mg/L	10.0	4.18	98.9	90-120	0.857	20	
Batch	BII0726 - No Prep	Wet Chem								
Blank (BII0726-BLK1)				Prepared & Anal	yzed: 09/12/2025					
Total Recoverable Phenolics	ND	0.050	mg/L							
LCS (BII0726-BS1)				Prepared & Anal	yzed: 09/12/2025					
Total Recoverable Phenolics	0.46	0.050	mg/L	0.505		91.1	80-120			
Matrix Spike (BII0726-MS1)	Sourc	e: 25l0915-01		Prepared & Anal	yzed: 09/12/2025					
Total Recoverable Phenolics	0.45	0.050	mg/L	0.500	0.04	82.0	70-130			
Matrix Spike Dup (BII0726-MSD1)	Sourc	e: 25l0915-01		Prepared & Anal	yzed: 09/12/2025					
Total Recoverable Phenolics	0.46	0.050	mg/L	0.500	0.04	83.6	70-130	1.75	20	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:
Submitted To:

Bristol LFG-EW Monthly Monitoring

Jennifer Robb

Work Order: 25H2532

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Ion Chromatography	Analyses		Preparation Method:	No Prep IC	
25H2532-01	1.00 mL / 1.00 mL	D3705	BIH1586	SII0068	AE50224
25H2532-01RE1	1.00 mL / 1.00 mL	D3705	BIH1586	SII0068	AE50224
25H2532-01RE2	1.00 mL / 1.00 mL	D3705	BIH1586	SII0068	AE50224
25H2532-02	1.00 mL / 1.00 mL	D3705	BIH1586	SII0068	AE50224
25H2532-02RE1	1.00 mL / 1.00 mL	D3705	BIH1586	SII0068	AE50224
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	rsis		Preparation Method:	No Prep Wet Chem	
25H2532-01	300 mL / 300 mL	SM5210B-2016	BIH1546	SII0107	
25H2532-02	300 mL / 300 mL	SM5210B-2016	BIH1546	SII0107	
25H2532-01	0.500 mL / 25.0 mL	SM4500-NO2B-2021	BIH1550	SII0038	AD50358
25H2532-02	1.00 mL / 25.0 mL	SM4500-NO2B-2021	BIH1550	SII0038	AD50358
25H2532-01	2.00 mL / 2.00 mL	SM5220D-2011	BII0110	SII0095	AG50211
25H2532-02	2.00 mL / 2.00 mL	SM5220D-2011	BII0110	SII0095	AG50211
25H2532-01	0.0500 mL / 25.0 mL	EPA351.2 R2.0	BII0550	SII0499	AI50206
25H2532-02	0.0500 mL / 25.0 mL	EPA351.2 R2.0	BII0550	SII0499	AI50206
25H2532-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BII0639	SII0523	AI50209
25H2532-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BII0639	SII0523	AI50209
25H2532-01	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BII0717	SII0588	Al50221
25H2532-02	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BII0717	SII0588	AI50221
25H2532-02RE1	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BII0717	SII0588	AI50221
25H2532-01	0.100 mL / 10.0 mL	SW9065	BII0726	SII0591	AI50222
25H2532-02	0.100 mL / 10.0 mL	SW9065	BII0726	SII0591	AI50222

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order: 25H2532

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	6000/7000 Series Methods		Preparation Method:	SW3005A-ICP	
25H2532-01	50.0 mL / 50.0 mL	SW6010D	BII0020	SII0063	AI50142
25H2532-01RE1	50.0 mL / 50.0 mL	SW6010D	BII0020	SII0063	AI50142
25H2532-02	50.0 mL / 50.0 mL	SW6010D	BII0020	SII0063	AI50142
25H2532-02RE1	50.0 mL / 50.0 mL	SW6010D	BII0020	SII0063	AI50142
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	6000/7000 Series Methods		Preparation Method:	SW3005A-ICPMS	
25H2532-01	50.0 mL / 50.0 mL	SW6020B	BII0021	SII0153	AI50152
25H2532-02	50.0 mL / 50.0 mL	SW6020B	BII0021	SII0153	Al50152
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
	minai / i mai				
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-	MS
_		SW8270E	Preparation Method:	SW3510C/EPA600- SII0098	MS AC50298
Semivolatile Organic 25H2532-01 25H2532-02	Compounds by GCMS	SW8270E SW8270E	·		
25H2532-01	Compounds by GCMS 500 mL / 1.00 mL		BII0007	SII0098	AC50298
25H2532-01 25H2532-02 Sample ID	Compounds by GCMS 500 mL / 1.00 mL 500 mL / 2.00 mL Preparation Factors Initial / Final	SW8270E	BII0007 BII0007	SII0098 SII0098	AC50298 AC50298
25H2532-01 25H2532-02 Sample ID Volatile Organic Com	Compounds by GCMS 500 mL / 1.00 mL 500 mL / 2.00 mL Preparation Factors Initial / Final	SW8270E	BII0007 BII0007 Batch ID	SII0098 SII0098 Sequence ID	AC50298 AC50298
25H2532-01 25H2532-02 Sample ID Volatile Organic Com 25H2532-01	Compounds by GCMS 500 mL / 1.00 mL 500 mL / 2.00 mL Preparation Factors Initial / Final pounds by GCMS	SW8270E Method	BII0007 BII0007 Batch ID Preparation Method:	SII0098 SII0098 Sequence ID SW5030B-MS	AC50298 AC50298 Calibration ID
25H2532-01 25H2532-02 Sample ID Volatile Organic Com 25H2532-01 25H2532-02	Compounds by GCMS 500 mL / 1.00 mL 500 mL / 2.00 mL Preparation Factors Initial / Final pounds by GCMS 5.00 mL / 5.00 mL	SW8270E Method SW8260D	BII0007 BII0007 Batch ID Preparation Method: BII0062	SII0098 SII0098 Sequence ID SW5030B-MS SII0046	AC50298 AC50298 Calibration ID AH50309
25H2532-01 25H2532-02	Compounds by GCMS 500 mL / 1.00 mL 500 mL / 2.00 mL Preparation Factors Initial / Final pounds by GCMS 5.00 mL / 5.00 mL 5.00 mL / 5.00 mL	SW8270E Method SW8260D SW8260D	BII0007 BII0007 Batch ID Preparation Method: BII0062 BII0062	SII0098 SII0098 Sequence ID SW5030B-MS SII0046 SII0046	AC50298 AC50298 Calibration ID AH50309 AH50309

9/15/2025 6:16:40PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25H2532

QC Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Ion Chromatography	y Analyses		Preparation Method:	No Prep IC	
BIH1586-BLK1	1.00 mL / 1.00 mL	D3705	BIH1586	SII0068	AE50224
BIH1586-BS1	1.00 mL / 1.00 mL	D3705	BIH1586	SII0068	AE50224
BIH1586-MS1	0.00500 mL / 5.00 mL	D3705	BIH1586	SII0068	AE50224
BIH1586-MSD1	0.00500 mL / 5.00 mL	D3705	BIH1586	SII0068	AE50224
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Anal	ysis		Preparation Method:	No Prep Wet Chem	
BIH1546-BLK1	300 mL / 300 mL	SM5210B-2016	BIH1546	SII0107	
BIH1546-BS1	300 mL / 300 mL	SM5210B-2016	BIH1546	SII0107	
BIH1546-DUP1	300 mL / 300 mL	SM5210B-2016	BIH1546	SII0107	
BIH1550-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BIH1550	SII0038	AD50358
BIH1550-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BIH1550	SII0038	AD50358
BIH1550-MS1	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BIH1550	SII0038	AD50358
BIH1550-MSD1	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BIH1550	SII0038	AD50358
BII0110-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BII0110	SII0095	AG50211
BII0110-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BII0110	SII0095	AG50211
BII0110-MRL1	2.00 mL / 2.00 mL	SM5220D-2011	BII0110	SII0095	AG50211
BII0110-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BII0110	SII0095	AG50211
BII0110-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BII0110	SII0095	AG50211
BII0550-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BII0550	SII0499	AI50206
BII0550-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BII0550	SII0499	AI50206
BII0550-MRL1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BII0550	SII0499	AI50206
BII0550-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BII0550	SII0499	AI50206
BII0550-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BII0550	SII0499	AI50206
BII0550-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BII0550	SII0499	Al50206

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.: Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Date Issued:

9/15/2025 6:16:40PM

Work Order: 25H2532

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Anal	lysis		Preparation Method:	No Prep Wet Chem	
BII0550-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BII0550	SII0499	AI50206
BII0639-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BII0639	SII0523	AI50209
BII0639-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BII0639	SII0523	AI50209
BII0639-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BII0639	SII0523	AI50209
BII0639-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BII0639	SII0523	AI50209
BII0639-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BII0639	SII0523	AI50209
BII0639-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BII0639	SII0523	AI50209
BII0717-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BII0717	SII0588	AI50221
BII0717-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BII0717	SII0588	Al50221
BII0717-MRL1	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BII0717	SII0588	Al50221
BII0717-MS1	2.50 mL / 25.0 mL	SM4500-NO3F-2019	BII0717	SII0588	Al50221
BII0717-MSD1	2.50 mL / 25.0 mL	SM4500-NO3F-2019	BII0717	SII0588	AI50221
BII0726-BLK1	5.00 mL / 10.0 mL	SW9065	BII0726	SII0591	AI50222
BII0726-BS1	5.00 mL / 10.0 mL	SW9065	BII0726	SII0591	AI50222
BII0726-MRL1	5.00 mL / 10.0 mL	SW9065	BII0726	SII0591	AI50222
BII0726-MS1	5.00 mL / 10.0 mL	SW9065	BII0726	SII0591	AI50222
BII0726-MSD1	5.00 mL / 10.0 mL	SW9065	BII0726	SII0591	Al50222
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EP	A 6000/7000 Series Methods		Preparation Method:	SW3005A-ICP	
BII0020-BLK1	50.0 mL / 50.0 mL	SW6010D	BII0020	SII0063	AI50142
BII0020-BS1	50.0 mL / 50.0 mL	SW6010D	BII0020	SII0063	AI50142
BII0020-MS1	50.0 mL / 50.0 mL	SW6010D	BII0020	SII0063	Al50142
BII0020-MSD1	50.0 mL / 50.0 mL	SW6010D	BII0020	SII0063	Al50142
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EF	A 6000/7000 Series Methods		Preparation Method:	SW3005A-ICPMS	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order: 25H2532

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EP	A 6000/7000 Series Methods		Preparation Method:	SW3005A-ICPMS	
BII0021-BLK1	50.0 mL / 50.0 mL	SW6020B	BII0021	SII0153	AI50152
BII0021-BS1	50.0 mL / 50.0 mL	SW6020B	BII0021	SII0153	AI50152
BII0021-MS1	50.0 mL / 50.0 mL	SW6020B	BII0021	SII0153	AI50152
BII0021-MSD1	50.0 mL / 50.0 mL	SW6020B	BII0021	SII0153	Al50152
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organi	c Compounds by GCMS		Preparation Method:	SW3510C/EPA600-	MS
BII0007-BLK1	1000 mL / 1.00 mL	SW8270E	BII0007	SII0081	AG50329
BII0007-BS1	1000 mL / 1.00 mL	SW8270E	BII0007	SII0081	AG50329
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Co	mpounds by GCMS		Preparation Method:	SW5030B-MS	
BII0062-BLK1	5.00 mL / 5.00 mL	SW8260D	BII0062	SII0046	AH50309
BII0062-BS1	5.00 mL / 5.00 mL	SW8260D	BII0062	SII0046	AH50309
BII0062-MS1	5.00 mL / 5.00 mL	SW8260D	BII0062	SII0046	AH50309
BII0062-MSD1	5.00 mL / 5.00 mL	SW8260D	BII0062	SII0046	AH50309
BII0136-BLK1	5.00 mL / 5.00 mL	SW8260D	BII0136	SII0116	AH50341
BII0136-BS1	5.00 mL / 5.00 mL	SW8260D	BII0136	SII0116	AH50341
BII0136-MS1	5.00 mL / 5.00 mL	SW8260D	BII0136	SII0116	AH50341
BII0136-MSD1	5.00 mL / 5.00 mL	SW8260D	BII0136	SII0116	AH50341
BII0238-BLK1	5.00 mL / 5.00 mL	SW8260D	BII0238	SII0194	AH50338
BII0238-BLK2	5.00 mL / 5.00 mL	SW8260D	BII0238	SII0194	AH50338
BII0238-BS1	5.00 mL / 5.00 mL	SW8260D	BII0238	SII0194	AH50338
BII0238-BS2	5.00 mL / 5.00 mL	SW8260D	BII0238	SII0194	AH50338
BII0238-MS1	5.00 mL / 5.00 mL	SW8260D	BII0238	SII0194	AH50338

25H2532

9/15/2025 6:16:40PM

Date Issued:

Work Order:

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Page 59 of 68

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

9/15/2025 6:16:40PM

Work Order: 25H2532

Certified Analyses included in this Report

Analyte	Certifications
EPA350.1 R2.0 in Non-Potable Water	
Ammonia as N	VELAP,NCDEQ,PADEP,WVDEP,SCDES,TXCEQ
EPA351.2 R2.0 in Non-Potable Water	
TKN as N	VELAP,NCDEQ,WVDEP,SCDES,PADEP
SM4500-NO2B-2021 in Non-Potable Water	
Nitrite as N	VELAP,WVDEP,NCDEQ,SCDES,PADEP
SM4500-NO3F-2019 in Non-Potable Water	
Nitrate+Nitrite as N	VELAP,WVDEP,NCDEQ,SCDES,PADEP
SM5210B-2016 in Non-Potable Water	
BOD	VELAP,NCDEQ,WVDEP,PADEP
SM5220D-2011 in Non-Potable Water	
COD	VELAP,NCDEQ,PADEP,WVDEP,SCDES,TXCEQ
SW6010D in Non-Potable Water	
Arsenic	VELAP,WVDEP,NCDEQ,SCDES,PADEP
Barium	VELAP,WVDEP,PADEP,NCDEQ,SCDES
Cadmium	VELAP,WVDEP,PADEP,NCDEQ,SCDES
Chromium	VELAP,WVDEP,NCDEQ,SCDES,TXCEQ,PADEP
Copper	VELAP,WVDEP,NCDEQ,SCDES,PADEP
Lead	VELAP,WVDEP,SCDES,NCDEQ,PADEP
Nickel	VELAP,WVDEP,SCDES,NCDEQ,PADEP
Selenium	VELAP,WVDEP,SCDES,NCDEQ,PADEP
Silver	VELAP,WVDEP,PADEP,SCDES,NCDEQ
Zinc	VELAP,WVDEP,SCDES,NCDEQ,PADEP
SW6020B in Non-Potable Water	
Mercury	VELAP,NCDEQ,PADEP,WVDEP

Certificate of Analysis

Client Name: SCS Engineers - Winchester Date Issued:

9/15/2025 6:16:40PM

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order: 25H2532

Certified Analyses included in this Report

Analyte	Certifications
SW8260D in Non-Potable Water	
2-Butanone (MEK)	NCDEQ,PADEP,VELAP,WVDEP,TXCEQ
Acetone	NCDEQ,PADEP,VELAP,WVDEP,TXCEQ
Benzene	NCDEQ,PADEP,VELAP,WVDEP,TXCEQ
Ethylbenzene	NCDEQ,PADEP,VELAP,WVDEP,TXCEQ
Toluene	NCDEQ,PADEP,VELAP,WVDEP,TXCEQ
Xylenes, Total	NCDEQ,PADEP,VELAP,WVDEP,TXCEQ
Tetrahydrofuran	VELAP
SW8270E in Non-Potable Water	
Anthracene	NCDEQ,VELAP,PADEP,WVDEP,TXCEQ
SW9065 in Non-Potable Water	
Total Recoverable Phenolics	VELAP,WVDEP,PADEP

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued: 9/

9/15/2025 6:16:40PM

Work Order: 25H2532

Code	Description	Laboratory ID	Expires
DURSC-NCDEQ	NCDEQ Durham Service Center	703	12/31/2025
DURSC-NCDHHS	NCDHHS Durham Service Center	37918	07/31/2026
MdDOE	Maryland DE Drinking Water	341	12/31/2025
NCDEQ	North Carolina DEQ	495	12/31/2025
NCDHHS	North Carolina Department of Health and Human Services	51714	07/31/2026
PADEP	NELAP-Pennsylvania Certificate #010	68-03503	10/31/2025
SCDES	South Carolina Dept of Environmental Services Certificate 93016001	93016	06/14/2026
TXCEQ	Texas Comm on Environmental Quality #TX-C25-00143	T104704576	05/31/2026
VELAP	NELAP-Virginia Certificate #13599	460021	06/14/2026
WVDEP	West Virginia DEP Cert ID: WV-C25-00105	350	11/30/2025

25H2532

9/15/2025 6:16:40PM

Date Issued:

Work Order:

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Qualifiers and Definitions

C Continuing calibration verification response for this analyte is outside specifications.

DS Surrogate concentration reflects a dilution factor.

J The reported result is an estimated value.

LCS recovery is outside of established acceptance limits

M Matrix spike recovery is outside established acceptance limits

RPD Relative Percent Difference

Qual Qualifers

Client Site I.D.:

-RE Denotes sample was re-analyzed

LOD Limit of Detection, same as Method Detection Limit (MDL) as defined by 40 CFR 136 Appendix B

BLOD Below Limit of Detection, same as Below Method Detection Limit (MDL) as defined by 40 CFR 136 Appendix B

LOQ Limit of Quantitation
DF Dilution Factor

DL Detection Limit, same as MDL as defined by 40 CFR 136 Appendix B

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral

library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations

are estimated and are calculated using an internal standard response factor of 1.

PCBs, Total Total PCBs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.

1941 REYMET ROAD **RICHMOND, VIRGINIA 23237** (804) 358-8295 PHONE (804)358-8297 FAX

							CHAI	N OF	CUS	ΓΟΙ	ΣY									PAGE 1 OF 1
COMPANY NAME: SCS Eng	jine	ers			INV	OICE TO		(City of I	Bris	tol, VA		PROJ	ECT	NAM	E/Quo	te #:		City	of Bristol Landfill #588
CONTACT: Jennifer Robb					INV	OICE CO	NTACT	: Jo	n Haye	s			SITE I	NAM	IE:	LFG-I	EVV	Mon	thly l	Monitoring
ADDRESS: 296 Victory Road.	Win	iche	ester	r, VA	INV	OICE AD	DRESS	3: 265	5 Valley D	Drive,	Bristol, VA, 2	24201	PROJ	ECT	NUM	BER:	022	2182	08.1	5 Task \$5
PHONE #: 703-471-6150	6				INV	OICE PH	ONE #:	27	6-645-3	3788	8		P.O. #	:						Tank K
EMAIL: jrobb@scsengineers.con	n				EM	AIL: jon	.hayes(@brist	olva.org	9			Pretre	atme	ent Pro	ogram:				
Is sample for compliance reportir	ng?	~	YES	NO Re	gulator	y State:	V A	is san	ple fro	m a	chlorinate	d supp	oly?	ΥE	S	0	PV	VS I.	D. #:	
SAMPLER NAME (PRINT):	6-	1	Nel	en		SA	MPLEF	RSIGN	ATUR	E	The	1/2		/Le	god	TI	ırn A	roui	nd Tir	me: 10 Day(s)
Matrix Codes: WW=Waste Water/Storm Wat	-				Orinking V	Vater S=Soil/	Solids OF	R=Organ	ic A=Air	WP=	Wipe OT=Oth	er	/	-						COMMENTS
			(SIE									ANAL	YSIS /	(PR	ESER'	VATIV	Έ)			Preservative Codes: N=Nitric Acid C=Hydrochloric Acid S=Sulfuric Acid
CLIENT SAMPLE I.D.	Grab	Composite	Field Filtered (Dissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Time Preserved	Matrix (See Codes)	Number of Containers	VOCs (Acetone, Benzene, EB, MEK, THF, Toluene, Xylene) Custom List	Mercury Method 6020	Metals 6010 (Ag, As, Ba, Cd, Cr, Cu, Ni, Pb, Se, Zn)	Phenolics	TKN, Nitrate (Cd), Nitrite	SVOC (Anthracene only)	COD, Ammonia	ВОД	VFAs	Note VOC 8260 Note VOC 8260 Note VOC 8260 NOTE PRESERVATIVE(S), INTERFERENCE CHECKS or PUMP RATE (L/min)
1) FW-98	X					182825,		1	GW	10	X	X	X	X	X	X	X	X	X	
2) EW - 89	X					0828215	103		GW	10	X	X	X	X	X	1	X	K.	4	
3)									GW								-			
4)	╀		H						GW			-		\vdash		-	+		-	
5) 6)	+	H	H					1	GW					Н		-	+	\vdash		+
7)	+		\vdash					Į.	GW										- Oh	served Temp °C: 2 . 4
8)									GW											
9)									GW										Co	rrection Factor °C: O · O
10) Trip Blank	X					50125	1100		DI	2	X					361			- Co	rrected Temp °C: 2.4
RELINQUISHED: RELINQUISHED:	082.8	325	TIME TIME	RECEIV	La	Nu '	2129	DATE /		Leve	Data Packa	Cus	stody Seal	S USE	d and inta	rm ID: 1	271 N)			Received on ice?(Y)N)
RELINQUISHED:	DAT	E /	TIME	RECEIV	ED:		3101	DATE /		Leve	el IV 🗆		ğ Bı	isto	ol LF				thly	5H2532 Monitor Page 64 of 68

Sample Preservation Log

Order ID	2	5H.	253	2									[Date	Perfo	ormed	d:	8-	-2	9-	23	5						Anal	yst F	erfor	ming C	heck:	8	C	J			_			
0	0	Met	als	С	yanid	le		Sulfide	e	An	nmoi	nia		TKN			os, T	50000000	3000000)3+N			DRC)	(808 PCE	estici 1/608 3 DW	de /508)	(525	SVO(С		* **	S	(508) (OC(CB /	C	op		pro	nol	٠٠
ple I	iner I	pH as Receive	4 H	pH Rece	l as eived	Hd	pH Rece	as eived	H	pH Rece	as ived	μ	pH Rece	as ived	H	pH a Recei	ved	표	PH	l as eived	Hd	pl Rec	ł as eived	н н		eived s. CI	final +	Rece	ived . Cl	final +	ived H	Ha		d as eived	Final pH	pH Rece	as pived	Final pH	PH Rece	as ived	Final pH
Sample ID	Container ID	< 2 Other	Final pH	> 12	Other	Final pH	> 9	Other	Final pH	< 2 0	Other	Final pH	< 2	Other	Final	Recei	ther	Fina	< 2	Other	Final pH	< 2	Other	Final pH	+	-	or -	+		final + or -	Received pH	Final pH	< 2	Other	Fina	2	Other	Fina	4	Other	Fina
10	A	7	L 2																																						
01	B										7	CL		7	cl					7	レン																7	42			
0)	E																																							7	4
01	F																												1												
62	A	7	42																																						
02	B										7	CL		7	لمر					7	CL																7	2			
62	E																												*											7	-1
01	F																												-												
																П																									
																П																	Γ								
NaOH II	D:							HNO:	3 ID:	5H	60	99	7							d dat			on oraș	100					Ana	lyst Ir	nitials: _							3			
NaOH II H2SO4 I	D: <u>5</u>	1107	34	1			_	Na ₂ S:	2O3	ID:							Particular Control			usted fer So			.3 - 9.7	§1 																	
HCL ID:								Na ₂ S	O3 [D:						_	N N	аОН	ID:									ě.													

Metals were received with pH = HNO3 was added at 1345 on August 29 2025 by RCT in the Log-In room to bring pH = <2.

9/15/2025 6:16:40PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25H2532

9/15/2025 6:16:40PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25H2532

Laboratory Order ID: 25H2532

Sample Conditions Checklist

Samples Received at:	2.40°C
How were samples received?	Logistics Courier
Were Custody Seals used?	Yes
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	Yes
Are all volatile organic and TOX containers free of headspace?	Yes
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	Yes
Are all samples received appropriately preserved? Metals (except Hg, B) do not require field preservation, but lab preservation may delay analysis. Field parameters performed by the lab are always received past holding time and will be noted as such.	No

Work Order Comments

Jennifer Robb notified via email for the samples were all preserved in the lab to the appropriate pH for analysis. The P500mL container preserved with HNO3 was also preserved in the lab which is a deviation for Hg analysis. HEG 8/29/25 1548

9/15/2025 6:16:40PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.:

Bristol LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25H2532

N/ a	JI ID	F14/ O/ A	F14/ F0	F14/ F1	F14/ F0	FW 50	FW 54	FW 55	F14/ 57	FW 50	FW 50	FW 40	F147 4.1	FW (0	F14/ / 4	F144 4 F	FW 47	F144 40	FW 70	FW 00	F)44 O.F	FW 07	FW 00	F14/ 00	FW 04	FW 00		
	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event													Concentration	1				1				1					
	November-2022										1560		1400			1380											50	50
	December-2022		1700		2280				2110		1410	1310					1150	1780									100	100
	January-2023		1520							936						1330											50	50
	January 2020										2440																100	100
	February-2023																	1490									100	100
	March-2023									667	1480																73.1	100
	April-2023									1410		1220															73.1	100
	May-2023		1390							1860	2380																146	200
	June-2023										2740		2370		2170												146	200
																			1180								73.1	100
	July-2023		1570						2260																2350	310	146	200
	August-2023						1600		1890																2140	222	146	200
																			1720								73.1	100
	September-2023				1250																						146	200
	October-2023							1980											1730			2890					146	200
	00.000.2020		1260		2490	1830		2070											1800			2590					146	200
	November-2023													1170												2080	183	250
											2440																366	500
	D 1 0000																		1540								73.1	100
	December-2023				2900													2200									146	200
	January-2024			2160							2400															1610	146	200
	February-2024			1900		2600															1780		2380				146	200
Ammonia as N	March-2024																						2280			968	146	200
(mg/L)	April-2024				2290									928				2140	1800								146	200
	NA= 2004																									898	73.1	100
	May-2024										2550								1620		1950	2660					146	200
	June-2024																		1990		2170					1850	146	200
	July-2024										1860																73.1	100
	JUIY-2024											1950															146	200
	A						1110																				73.1	100
	August-2024																				2130				2550		146	200
	September-2024						1440																				73.1	100
	3CDICITIBEI 2024				2210													2290									146	200
	October-2024	343																		1490							73.1	100
			1370		2180																						146	200
	November-2024	934	1370																								146	200
	December-2024				1510																					1560	146	200
	January-2025																				0.68						0.005	0.01
	February-2025		1300																		1400						73.1	100
			1040									1400	1160														199	199
	March-2025		1240									1480						2110									146	200
	April-2025											2440						2580					0020	02/0			146	200
	May-2025																		01/0				2030	2360			146	200
	June-2025																		2160							1010	120	200
	July-2025																							1440		1210	120	200
	August-2025																							1660		778	120	200

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event	LIII-OUA	L11-30	LW-51	LW-32	L11-30	LIV-34	L11-33	L11-37	LW-30	LIV-37	L11-00		Concentration		L11-03	L11-07	L11-00		LW-02	LW-03	L11-07		LW-07			LOD	LOQ
	November-2022										15700		5860			5140											0.2	2
	December-2022		6440		12500				11400		9240	3330					8360	6770									0.2	2
	January-2023		9920							999	28100					7060											0.2	2
	February-2023																	7230									0.2	2
	March-2023									1570	9190																0.2	2
	April-2023									8430		2860															0.2	2
	May-2023		7350							11900	35300																0.2	2
	June-2023										20000		27400		23100												0.2	2
	July-2023		6820						32900										330						31800	937	0.2	2
	August-2023						>33045		>33225																>32805	506	0.2	2
	September-2023				40185.5														659								0.2	2
	October-2023							34600											690			37000					0.2	2
	November-2023		1910		30400	27500		32015			29600			3640					480			32135				21500	0.2	2
	December-2023				>44105													13700	681								0.2	2
	January-2024			26000							17100															14000	0.2	2
Biological	February-2024			23200		26200															21400		34300				0.2	2
Oxygen Demand	March-2024																						40600			7680	0.2	2
(mg/L)	April-2024				41142									1210				19600	386								0.2	2
(0, ,	May-2024										25600								448		22200	33400				7750	0.2	2
	June-2024																		421		24400					16200	0.2	2
	July-2024										25800	4750															0.2	2
	August-2024						31000														20800				33400		0.2	2
	September-2024				ND		36100											27400									0.2	2
	October-2024	180	6680																	36100							0.2	2
	November-2024	4760	7360																								0.2	2
	December-2024				42600																					20300	0.2	2
	January-2025																				22900						0.2	2
	February-2025		4420										43418.4								16200						0.2	2
	March-2025		3490									20400						22000									0.2	2
	April-2025											33900						24600									0.2	2
	May-2025																						42196.44	42316.44			0.2	2
	June-2025																		230								0.2	2
	July-2025																									12000	0.2	2
	August-2025																							38599.6		5650	0.2	2

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	100	100
Parameter	Monitoring Event													Concentration													LOD	LOQ
	November-2022												9790			10800											1000	1000
			7440								23500																2000 1000	1000
	Da a a mala a w 20000										13200	8000					20300	14100									2000	2000
	December-2022								22400																		5000	5000
					86800																						10000	10000
	January-2023		14900							3630						8430											500 2000	2000
	3411041 y 2020										47600																5000	5000
	February-2023																	9210									1000	1000
	March-2023									1690																	500	500
											10600	7370															2000 1000	1000
	April-2023									16800		7370															2000	2000
	Mari 20003		7590							18700																	2000	2000
	May-2023										44700																4000	4000
	June-2023												44800														5000	5000
											41300				55000											2180	10000	10000
			6480																2460								1000	1000
	July-2023																								41000		5000	5000
									50100																		10000	10000
	August-2023						59000		58600																60600	1750	500 5000	500
	Santamber 2000						59000												6260								1000	1000
	September-2023				87400																						10000	10000
	October-2023							51000											5320								500 5000	500
	OCIODEI-2023																					63600					10000	10000
																			4710								1000	1000
	November-2023		6200			48100		57900			43700			5620												37600	2000 5000	2000 5000
					77100	46100					43700											63900					10000	10000
																			4870								1000	1000
Clara di sal	December-2023				94200													19900									5000 10000	10000
Chemical Oxygen Demand	January-2024			48600	74200						59800															38200	5000	5000
(mg/L)	February-2024			42700		51200															48900						5000	5000
	,																						68400			14400	10000 2000	10000 2000
	March-2024																						75500				10000	10000
														3110					4200								1000	1000
	April-2024																	32400									5000	5000
					79700														4930								10000	10000
	May-2024																									17700	5000	5000
											48500										43100	70700					10000	10000
	June-2024																		4520								1000	1000
											42400										51400					31300	5000 5000	5000
	July-2024											98500															10000	10000
	August-2024						 E4400														48100				59500		5000	5000
	-						56600											26800									10000 4000	10000 4000
	September-2024						55900																				5000	5000
		 0£1			78300																						10000	10000
	October-2024	951	10700																								500 2000	2000
					83300															62000							10000	10000
	November-2024	9540																									1000	1000
	Describe cost		8840																							36600	2000 5000	2000 5000
	December-2024				81500																						10000	10000
	January-2025		2/20																		36800						5000	5000
	February-2025		3630																		23400						1000 5000	1000 5000
	2020												447000														100000	100000
	Marrala 0005		8700															 E1E00									1000	1000
	March-2025											74600						51500									5000 10000	5000 10000
	April-2025											47900						24100									6300	10000
	May-2025																		2500				60700	67900			6300	10000
	June-2025 July-2025																		3500							19900	630 3150	1000 5000
	August-2025																							62700		9760	630-6300	10000-

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	100
Parameter	Monitoring Event		1		1				1			1		Concentration	i												LOD	LOQ
																	ND										0.2	0.2
	December-2022		ND		ND				ND		ND	ND 															0.2	0.6 5.1
																		ND									1.5	5.5
										ND																	0.35	1.35
	January-2023															ND											1.1	1.1
	January-2025		3.9																								2.1	2.1
	5.1.0000										ND																2.2	2.2
	February-2023 March-2023									ND	ND							ND 									0.35 1.04	1.35
	April-2023									ND		ND															0.6	2.6
			ND																								1.1	5.1
	May-2023									ND	ND																1.2	5.2
	June-2023										ND				ND												1.1	5.1
													ND														1.2	5.2
																			0.355							ND	0.15	0.35
	July-2023		ND																								1	3
									ND																ND		1.5	5.5
	August-2023																									ND	0.15	0.35
	A09031-2025						ND		ND																ND		1.5	3.5
	September-2023				ND														ND 								0.3	1.1
																			ND								0.35	1.35
	October-2023							ND																			1	3
			ND																ND			ND					1.5	3.5
			ND 											ND					ND 								0.15	0.35
	November-2023							ND																			0.75	1.75
					ND																						1.1	5.1
					ND	ND 					ND 								ND			ND 				ND 	1.5	5.5 5.1
	December-2023																	ND									1.5	5.5
Nitrate as N (mg/L)	January-2024			2.01							ND															ND	1.5	5.5
(111971)	February-2024			9.1																	ND		ND				1.5	5.5
	March-2024					ND 																	ND			ND	3.5 0.75	7.5 1.75
	111011111111111111111111111111111111111													ND					ND								0.35	0.35
	April-2024				ND																						1.5	5.5
																		ND									2.5	10.5
																			ND								0.15	0.35
	May-2024																				ND					ND	0.35	1.35 2.6
	Widy-2024																				ND 	1.9					1	3
											ND																1.1	5.1
	June-2024																		0.692								0.6	2.6
	30110 2024																				ND					ND	1.5	3.5
	July-2024										6.66	ND 															0.5	2.5 25
	August-2024						1.57														ND				ND		0.25	1.25
	September-2024				ND		2.42																				0.25	1.25
		ND																ND 									0.1	0.5
	October-2024		ND																	ND							1	5
					ND																						10	50
	November-2024	ND	ND																								0.25	1.25
	December-2024				ND																					ND	0.5	2.5
	January-2025																				ND						0.5	1.25
	February-2025		ND																		ND						1	5
			ND									ND	ND					ND									10	50
	March-2025		ND 									ND ND						ND 									0.5	1.25
	April-2025																	ND									1	5
	May-2025																						4210	4700			500	500
	June-2025																		0.28							ND	0.03	0.1
	July-2025 August-2025																							ND		ND ND	0.51	
	. 320		1	1	I.	1	I	1	1	1	1	1	1	1	1	1			1	1	1	I	1	.,.			3.203 1.40	

											ı																	
	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event										ı		C	oncentration														
	December-2022											0.12 J															0.1	0.5
	5000111501 2022		ND		ND				ND		ND						ND	ND									1	5
										ND																	0.25	1.25
	January-2023															ND											1	1
			ND								ND																2	2
	February-2023																	0.48 J									0.25	1.25
	March-2023									ND	ND																1	5
	April-2023									ND		ND															0.5	2.5
	May-2023		ND							ND	ND																1	5
	June-2023										2 J		ND		ND												1	5
																			ND							ND	0.05	0.25
	July-2023		ND																								0.5	2.5
	,								1.2 J																ND		1	5
	Aaat 0002																									ND	0.05	0.25
	August-2023						ND		ND																ND		0.5	2.5
	September-2023				ND														ND								0.2	1
	October-2023																		ND								0.25	1.25
	OC10001 2020							ND														ND					0.5	2.5
			0.06 J																ND								0.05	0.25
	November-2023							ND						ND													0.25	1.25
	Da a a see la au 0000				ND	ND					ND											ND				ND	1	5
	December-2023 January-2024			1.7 J	ND 						ND							ND	ND 							ND	1	5
	February-2024			ND		ND															ND		ND				1	5
	March-2024																						ND			0.25 J	0.25	1.25
	Walter Edz I													ND					ND								0.25	0.25
Nitrite as N	April-2024				ND																						1	5
(mg/L)																		ND									2	10
																			ND								0.05	0.25
																										ND	0.25	1.25
	May-2024																				ND	ND					0.5	2.5
											ND																1	5
	June-2024																		ND		ND					ND	0.5	2.5
												ND															0.5	2.5
	July-2024										ND																5	25
	August-2024						ND														ND				ND		0.25	1.25
	September-2024				ND		ND																				0.25	1.25
	3epiember-2024																	ND									5	25
		ND																									0.1	0.5
	October-2024		ND																	ND							1	5
					ND																						10	50
	November-2024	ND	1 25 1																								0.25	1.25
	December 2024		1.35 J		ND																					ND	0.5	2.5
	December-2024 January-2025																				ND						0.25	1.25
			ND																		ND						1	5
	February-2025												ND														10	50
	March-2025		ND									ND						ND									2	10
												ND															0.25	1.25
	April-2025																	7.6									1	5
	May-2025																						ND	ND			1	5
	June-2025																		ND								0.1	0.5
	July-2025																									ND	0.51	5
	August-2025																							ND		ND	0.13-0.26	0.5-1

				1														ı		1								
	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event			1							1 1			oncentration				I	1	I	l I		I					
	November-2022												1290			1470											20	50
											2110																50	125
	December-2022		1510		3570				1790		1830	1490					1340	1940									200	500
	January-2023		1840							881						1410											20	50
											2970																40	100
	February-2023																	1870									16.8	50
	March-2023									879	1920																33.6	100
	April-2023									1820		1510															16.8	50
	May-2023		1590							1950	2910																40	100
	June-2023										3080				2750												100	250
	30110 2020												2650														200	500
	July-2023		1670						2960										1670						2720	285	40	100
	August-2023																									279	10	25
							2240		2820																2850		100	250
	September-2023				3340														2680								100	250
	October-2023							1050											4100			1320					40	100
								0040											4630							0100	100	250
	November-2023		1440		3290	2630		2240			2530			1120					2270			3170				2120	100	200 250
			1440		3270	2030					2550							1880				3170					80	200
	December-2023				3130														1890								100	250
	January-2024			2450							3020															1810	100	250
	February-2024			2540		2890															2470		2970				100	250
																										1030	50	125
	March-2024																						2980				100	250
Total Kjeldahl														1030					1730								40	100
Nitrogen (mg/L)	April-2024																	2320									50	125
					3260																						100	250
	NA= 000 A																									1140	40	100
	May-2024										3120								1780		2470	3280					100	250
	June-2024																		1870							4750	100	250
	JUNE-2024																				2680						200	500
	July-2024										2840	2680															100	250
	August-2024						1980														1460				3150		100	250
							2090																				50	125
	September-2024				2200													2650									80	200
		351			3320															1870							100 40	250 100
	October-2024	331	1360		2850															1070							100	250
	November-2024	1070	1610																								40	100
	December-2024				2790																					2210	100	250
	January-2025																				1960						40	100
													0.948														0.0398	0.0995
	February-2025		1190																		1520						100	250
	March 2025		1230																								40	100
	March-2025											1920						2700									100	250
	April-2025																	2600									45.9	250
	7 (5111 2023											2240															80	200
	May-2025																						2580				27.7	151
																								2800			55.3	301
	June-2025																		1720							1000	45.9	250
	July-2025																									1290	45.9	250
	August-2025																							2740		1090	45.9	50

We	II ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event	LW-30A	LW-30	LW-51	LW-32	LW-33	LW-34	LW-33	LW-3/	LW-30	LW-57	L##-00		oncentration	LW-04	LW-03	LW-07	LW-00	LW-70	LW-02	LW-03	LW-07	L44-00	LW-07	LW-74	LW-70	LOD	LOQ
	-												5.68			3											0.3	0.5
	November-2022										28.8																0.75	1.25
	D 1 0000											8.94															0.3	0.5
	December-2022		24.9		54.6				28.3		32						20.2	36									1.5	2.5
			27.2							1.3						20.2											0.75	1.25
	January-2023										56.5																1.5	2.5
	February-2023																	22.4									1.5	2.5
	Marrala 2002									0.4																	0.03	0.05
	March-2023										13.9																0.3	0.5
	April-2023									18.7		5.1															0.3	0.5
	May-2023		18.6							20	50																1.5	2.5
	June-2023										39.1		45.6		80.6												1.5	2.5
																			0.7								0.15	0.25
	July-2023																									2.92	0.3	0.5
			11.6						47.9																37.3		1.5	2.5
	August-2023																									1.46	0.15	0.25
	3						28.6		31.4										4 50						40.4		1.5	2.5
	September-2023				38.2														4.58								0.3	0.5
					30.2														4.13								0.15	0.25
	October-2023							37														38.7					0.6	1
																			3.65								0.15	0.25
	November-2023		7.88			36.4								4.76													0.6	1
	THO VOITIBOL 2020				38.8			47.4														47.1					0.75	1.25
											46.9								0.70							29.1	1.5	2.5
	December-2023																	23	3.72								0.06 0.75	0.1 1.25
	December-2023				34.2																						1.5	2.5
				38																						22.7	1.5	2.5
	January-2024										39.2																3	5
Total	February-2024			37.3		42.9															50.2		43.1				1.5	2.5
Recoverable	March-2024																						46.6			12.8	3	5
Phenolics (mg/L)	April-2024													1.68					1.16								0.3	0.5
	, ,				38.4													28.6									1.5	2.5
																			1.06								0.3	0.5
	May-2024																									13.6	1.5	2.5
											36.6										33.6	51					3	5
	June-2024																		0.82							23.2	0.3 1.5	0.5 2.5
	JUI16-2024																				44.8					23.2	3	5
												28.8															0.75	1.25
	July-2024										37.8																3	5
	August-2024						29.2														44.2				39.2		3	5
	September-2024				39.6		31.6											31.6									3	5
		0.376	0.4																								0.03	0.05
	October-2024		8.4																	45.1							0.3 1.5	0.5 2.5
					37.6															45.1							3	5
	November 2000 f	5.22																									0.3	0.5
	November-2024		10.1																								1.5	2.5
	December-2024																									26.4	1.5	2.5
					37.2																						3	5
	January-2025																				34.4						3	5
	Eobruss 2005		8.15																		20.0						0.75	1.25
	February-2025												516								20.8						1.5 495	2.5 495
	.,		3.88																								0.3	0.5
	March-2025											21.4						25.9									0.75	1.25
	April-2025																	35									0.75	1.25
												43															1.5	2.5
	May-2025																						56	67.4			3	5
	June-2025																		0.508							07.4	0.031	0.05
	July-2025 August-2025																							71./		37.4 11.5	1.54	2.5
I																								71.6			1.54	2.5

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event	2 ((1)											С	oncentration	ı												105	104
SEMI-VOLATILE OF	RGANIC COMPOUN	D (ug/L)		T									ND			ND	I I										46.7	93.5
	November-2022										ND																93.5	187
											ND	ND						ND									9.35	9.35
	December-2022								ND								ND										11.7	11.7
	Bocombor 2022				ND																						23.4	23.4
			ND 							ND																	485 243	971 485
																ND											253	505
	January-2023		ND																								490	980
											ND																500	1000
	February-2023																	ND									187	374
	March-2023									ND	ND 																51 117	102 234
										ND																	37.4	74.8
	April-2023											ND															38.8	77.7
	May-2023		ND								ND																93.5	187
	111dy 2020									ND																	467	935
	June-2023										ND		ND		ND												485 490	971
																										ND	46.7	980 93.5
	1.1.0000		ND																								100	200
	July-2023																		ND								250	500
									ND																ND		1000	2000
	August-2023						ND		ND																ND	ND 	19.6 1000	39.2 2000
	September-2023				ND														ND								40	80
																						ND					40	80
	October-2023							ND											ND 								50 500	100
			ND											ND													20	40
																			ND								50	100
	November-2023					ND		ND			ND											ND				ND 	100 400	200 800
					ND																						1000	2000
																			ND								50	100
	December-2023				ND													ND 									100 200	200 400
Anthracene				ND																							100	200
7 (III) II deene	January-2024																									ND	250	500
						ND					ND 																1000 200	2000 400
	February-2024			ND																							250	500
																					ND		ND				400000	800000
	March-2024																						ND			ND 	20 80	160
														ND													5	100
	April-2024																		ND								20	40
	7 (5111 202 1																	ND									100	200
					ND						ND								ND								400 10	10
	May-2024																				ND 	ND				ND 	80	160
	June-2024																		ND								20	40
	30/16-2024																				ND					ND	100	200
	July-2024										ND 	ND															40 80	160
							ND																				400	800
	August-2024																				ND						500	1000
	Santambar 2001																	ND							ND 		1000	2000
	September-2024				ND		ND																				200	400
	October-2024	ND 	ND 		ND															ND							50 200	100 400
	November-2024		ND																								50	100
	December-2024																									ND	200	400
					ND																						400	800
	January-2025		ND																		ND 						100	200
	February-2025																				ND						200	400
													ND														4160	4160
	March-2025		ND									ND						ND 									100 200	200 400
	A part 0005																	ND									100	200
	April-2025											ND															200	400
	May-2025 June-2025																		ND				ND 	ND 			400 50	100
	July-2025																									ND	200	400
	August-2025																							ND		ND		200-800

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event												1	oncentration													LOD	LOQ
TOTAL METALS (m																												
(11)	November-2022										0.863		0.464			1.3											0.02	0.04
	December-2022		1.02		0.406				0.174		1.69	0.49					0.159	0.574									0.02	0.04
	January-2023		0.285							0.596	0.225					0.846											0.01	0.02
	February-2023																	0.29									0.005	0.01
	March-2023									1.07	1																0.003	0.02
	March-2023											0.11															0.0005	0.001
	April-2023									0.36																	0.005	0.001
	May-2023		0.26							0.3	0.27																0.003	0.005
				_																								
	June-2023										0.26		0.5		0.14												0.0025	0.005
	July-2023		0.23																0.24						0.19	0.06	0.0005	0.001
									0.7																		0.0025	0.005
	August-2023						0.32		0.43																0.29	0.15	0.0025	0.005
	September-2023				0.42		0.32		0.43										0.25						0.29		0.005	0.01
	3epiember-2023																		0.23			0.31					0.0005	0.001
	October-2023							0.36											0.24								0.0003	0.001
	November-2023		0.23		0.33	0.53		0.43			0.35			0.78					0.34			0.27				0.2	0.003	0.003
					0.4													0.26									0.0025	0.005
	December-2023																		0.24								0.001	0.002
	January-2024			0.47							0.23															0.18	0.0025	0.005
Arsenic	February-2024			0.68		0.42															0.33		0.23				0.002	0.002
	March-2024																									0.12	0.001	0.002
	Maich 2024																						0.23				0.0025	0.005
	April-2024													0.49					0.18								0.0005	0.001
	7 (pill 2024)				0.31													0.33									0.004	0.004
	May-2024										0.33								0.2		0.73	0.22				0.22	0.005	0.01
	June-2024																		0.19		0.49					0.14	0.005	0.01
	July-2024										300	0.095															0.0025	0.005
	August-2024						0.18														0.49				0.13		0.005	0.01
	September-2024				0.27		0.15											0.19									0.005	0.01
	October-2024		0.26		0.24															0.18							0.005	0.01
	November-2024		0.15		0.00																					0.00	0.005	0.01
	December-2024				0.28																1.00					0.09	0.005	0.01
	January-2025		0.17																		1.88						0.01	0.05
	February-2025		0.17										0.774.1								0.73						0.005	0.01
	March-2025		0.158									0.344	0.774 J					0.254									0.465	0.02
	April-2025		0.136									0.344						0.234									0.01	0.02
	May-2025											0.240						0.217					0.15	0.2			0.0025	0.02
	June-2025																		0.322				0.13				0.0023	0.003
	July-2025																									0.19	0.003	0.02
	August-2025																							0.206		0.178	0.0018	0.02
	,g 2020				1															1				0.200		0.170	0.0010	0.02

V	Well ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												C	Concentratio	n												LOD	LOQ
	November-2022										0.871		0.485			0.36											0.01	0.02
	December-2022		0.566		0.803				0.978		0.438	0.214					0.856	0.793									0.01	0.02
	January-2023		0.643							0.683	1.92					0.554											0.005	0.01
	February-2023																	1.04									0.01	0.05
	March-2023									0.406	0.683																0.005	0.01
	April-2023									1.21		0.326															0.01	0.05
	·		0.636																								0.005	0.025
	May-2023									1.2	1.83																0.003	0.05
											1.69				1.65												0.005	0.03
	June-2023			_				_			-																	0.023
													3.01													0.017	0.01	
																										0.217	0.001	0.005
	July-2023																		0.558								0.002	0.01
			0.542						2.28																1.02		0.005	0.025
	August-2023																									0.218	0.005	0.025
							1.61		1.58																1.48		0.01	0.05
	September-2023				0.72														0.649								0.01	0.05
	October-2023																		0.664								0.002	0.01
								2.56			1.04			0.410								1.93					0.005	0.025
	November-2023		0.572		0.81	2.28		2.51			1.96			0.418				1.04	0.67			2.06				2.84	0.01	0.05
	December-2023				0.68													1.36	0.470								0.005	0.025
											1.92								0.672							1.91	0.002	0.01
Barium	January-2024			3.27																						1.91	0.005	0.025
	February-2024			3.03		4.41															2.65		0.925				0.005	0.03
	1 ebiodiy-2024			3.03		4.41															2.03		0.725			1.03	0.003	0.023
	March-2024																						1.54			1.03	0.002	0.01
														0.4					0.634				1.54				0.003	0.005
	April-2024				1.02													2.15	0.054								0.001	0.005
	140004			_				_																				
	May-2024										1.79								0.619		2.8	2.06				0.872	0.01	0.05
	June-2024										1.00	0.75							0.6		3.44					1.51	0.01	0.05
	July-2024						1.27				1.28	2.75									0.20				0.040		0.005	0.025
	August-2024 September-2024				1.34		1.33											3.65			2.39				0.862		0.01	0.05
	October-2024		0.568		1.17		1.33											3.03		3.33							0.01	0.05
	November-2024		0.69																	3.33							0.01	0.05
	December-2024				2.4																					1.21	0.01	0.05
				_				_			_						+			_								
	January-2025																				1.88						0.01	0.05
	February-2025		0.633										ND								1.48						0.01	0.05
	March 2025		0.516									1.05	ND					2.93									0.465	0.5
	March-2025 April-2025											1.05						2.95									0.005	0.01
												1.70						2.75									0.005	0.01
	May-2025 June-2025																		0.514				2.1	1.76			0.003	0.025
	July-2025			_				_			_																 	
																								2.07		0.842	0.0005	0.01
	August-2025																							3.07		0.444	0.0005	0.01

w	/ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event	LIV OUA			-11 02	211 00		111 00				2 00		Concentration					211 70		LW 00	211 07	111 00		-11 /-		LOD	LOQ
	November-2022										ND		ND			ND											0.004	0.008
	December-2022		ND		0.0104				ND		ND	ND					ND	ND									0.004	0.008
	January-2023		ND							ND	ND					ND											0.002	0.004
	February-2023																	0.000297 J									0.0001	0.001
	March-2023									ND	ND																0.002	0.004
	April-2023									0.000158 J		0.000333 J															0.0001	0.001
	May-2023		ND							ND	ND																0.0005	0.005
	June-2023										ND		ND		ND												0.0005	0.005
	July-2023		0.000219 J						0.000156 J										0.000186 J						ND	ND	0.0001	0.001
																										ND	0.0005	0.005
	August-2023						ND		ND																ND		0.001	0.01
	September-2023				ND														ND								0.001	0.01
	October-2023																		0.000171 J			ND					0.0001	0.001
								ND																			0.0002	0.002
	November-2023		ND		ND	ND		ND			ND			ND					ND			ND				ND	0.001	0.003
	December-2023				ND													0.000604 J									0.0005	0.0015
	1 000.4																		ND								0.0002	0.002
	January-2024			ND		ND.					ND										0.0175		ND.			ND	0.0005	0.005
	February-2024			ND		ND															0.0175		ND			ND	0.0005 0.0002	0.005
Cadmium	March-2024																						ND				0.0002	0.002
														0.000204 J					0.000195 J								0.0003	0.003
	April-2024				ND									0.000204 J				ND	0.000173 3								0.0001	0.001
	May-2024																+			_	0.0483							
	June-2024										ND 								ND ND		0.0463	ND 				ND ND	0.001	0.01
	July-2024										ND	ND									0.0173						0.001	0.005
	August-2024						ND														0.00508 J				0.00247 J		0.0003	0.003
	September-2024				ND		ND											ND									0.001	0.01
	October-2024		ND		ND															ND							0.001	0.01
	November-2024	ND	ND																								0.001	0.01
	December-2024				0.00661 J																					0.00304 J	0.001	0.01
	January-2025																				0.198						0.004	0.01
	,		ND																		0.0101						0.001	0.01
	February-2025												ND														0.186	0.2
	March-2025		ND									0.0119						ND									0.002	0.004
	April-2025											0.0284						ND									0.002	0.004
	May-2025																						ND	ND			0.0005	0.005
	June-2025																		ND								0.0004	0.004
	July-2025																									0.0019 J	0.0002	0.004
	August-2025																							0.0183		0.001 J	0.0002	0.004

V	Well ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event													oncentration	1												LOD	LOQ
	November-2022			T							0.208		0.112			0.354	T I			T			I				0.016	0.02
	December-2022		0.503		1.08				1.76		0.274	0.319					0.499	0.822									0.016	0.02
	January-2023		0.31							0.488	0.178					0.155											0.008	0.02
										0.400						0.133		0.277										
	February-2023										0.100																0.004	0.01
	March-2023									0.213	0.188																0.008	0.01
	April-2023											0.142															0.0004	0.001
										0.306																	0.004	0.01
	May-2023		0.422							0.281	0.237																0.002	0.005
	June-2023										0.251		0.191		0.272												0.002	0.005
	July-2023		0.308						0.535										0.231						0.215	0.0265	0.0004	0.001
	August-2023																									0.0276	0.002	0.005
	A09031-2023						0.606		0.449																0.259		0.004	0.01
	September-2023				1.17														0.234								0.004	0.01
	October-2023																		0.144			0.194					0.0004	0.001
	00.000.2020							0.273																			0.0008	0.002
			0.391																								0	0.003
	November-2023					0.51													0.251			0.403					0.003	0.003
					1.04			0.402			0.246			0.343												0.222	0.004	0.01
	December-2023				1.34													0.259									0.002	0.005
	1			0.17							0.100								0.219							0.100	0.0008	0.002
Chromium	January-2024			0.17		0.070					0.193															0.128	0.002	0.005
Critorriion	February-2024			0.23		0.272															0.203		0.336			0.0750	0.002	0.005
	March-2024																						0.414			0.0759	0.0008	0.002
																			0.045				0.414				0.002	0.005
	April-2024													0.36					0.245								0.0004	0.001
					0.836													0.228									0.004	0.01
	May-2024										0.268								0.226		0.183	0.352				0.11	0.004	0.01
	June-2024																		0.226		0.188					0.16	0.004	0.01
	July-2024	i									0.252	0.246															0.002	0.005
	August-2024						0.549														0.185				0.233		0.004	0.01
	September-2024				0.948		0.541											0.228									0.004	0.01
	October-2024		0.246		0.929															0.349							0.004	0.01
	November-2024		0.237		0.772																					0.104	0.004	0.01
	December-2024				0.773																					0.184	0.004	0.01
	January-2025																				0.00941						0.003	0.01
	February-2025		0.21																		0.196						0.004	0.01
													0.0992														0.0465	0.05
	March-2025		0.248									0.199						0.155									0.008	0.01
	April-2025											0.248						0.143					0.271	0.342			0.008	0.01
	May-2025 June-2025																		0.178				0.371	0.342			0.002	0.005
	July-2025																									0.0899		
																								0.202			0.0004	0.01
	August-2025																							0.303		0.0578	0.0004	0.01

W	Vell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event													Concentration			1										LOD	LOQ
	November-2022										ND		ND			ND											0.016	0.02
	December-2022		ND		ND				ND		ND	ND					ND	ND									0.016	0.02
	January-2023		ND							0.0127	0.0256					ND											0.008	0.01
	February-2023																	0.00365									0.0003	0.001
	March-2023									ND	ND																0.008	0.01
	April-2023									0.00664		0.00767															0.0003	0.001
	May-2023		ND							ND	ND																0.0015	0.005
	June-2023										0.00154 J		0.00362 J		0.00269 J												0.0015	0.005
	July-2023		0.00124						0.00163										0.00811						ND	0.0027	0.0003	0.001
	August-2023																									ND	0.0015	0.005
							0.00343 J		0.0176																ND		0.003	0.01
	September-2023				ND														0.00407 J								0.003	0.01
	October-2023							0.00806											0.00361			0.000609 J					0.0003	0.001
	November-2023		0.00607		0.00352	0.0212		0.00756			ND			0.00341					0.00387			ND				ND	0.0008	0.002
					0.00332													ND									0.0015	0.0015
	December-2023																		0.0034								0.0006	0.002
	January-2024			ND							0.019															ND	0.0015	0.005
	February-2024			ND		0.00201															ND		ND				0.0015	0.002
Copper	March-2024																									0.00115 J	0.0006	0.002
''																							0.00184 J				0.0015	0.005
	April-2024													0.00443					0.004								0.0003	0.001
	·				ND													ND									0.003	0.004
	May-2024										ND								0.00486 J		0.00688 J	ND				ND	0.003	0.01
	June-2024																		0.00409 J		ND					ND	0.003	0.01
	July-2024										0.398	ND									ND				ND		0.0015	0.005
	August-2024 September-2024				ND		ND ND											ND							ND 		0.003	0.01
	October-2024		ND		ND															0.00306 J							0.003	0.01
	November-2024		ND																								0.003	0.01
	December-2024				ND																					ND	0.003	0.01
	January-2025																				0.035 J						0.01	0.01
	Falam. am. 000F		ND																		0.00381 J						0.003	0.01
	February-2025												ND														0.0465	0.05
	March-2025		0.0087 J									ND						0.0142									0.008	0.01
	April-2025											ND						0.009 J									0.008	0.01
	May-2025																						ND	0.0123			0.0015	0.005
	June-2025																		0.0082 J								0.002	0.01
	July-2025																									0.0076 J	0.0017	0.01
	August-2025																							ND		0.0049 J	0.0017	0.01

	Well ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event	LII OUA	211 00	211 01	-111 02	211 00	211 04	211 00	211 07	211 00				Concentration		211 00			1 2.17 70			211 07		111 07	-11 /-1	211 70	LOD	LOQ
	November-2022										ND		ND		· 	0.017 J	I I		T				T				0.012	0.02
	December-2022		ND		0.0381				ND		ND	ND					ND	ND									0.012	0.02
	January-2023		ND							ND	ND					ND											0.006	0.01
	February-2023																	0.006									0.001	0.001
	March-2023									ND	ND																0.006	0.01
	April-2023									0.0022		0.0067															0.001	0.001
	May-2023		ND							ND	ND																0.001	0.005
	June-2023										ND		ND		0.0069												0.005	0.005
	July-2023		0.0014						0.019										0.0092						ND	0.0017	0.003	0.003
	,																		0.0072							ND	0.001	0.005
	August-2023						0.014		ND																0.013		0.003	0.003
	September-2023				0.12														ND								0.01	0.01
	October-2023																		0.0036			0.0034					0.001	0.001
	OCIODEI-2023							0.0077																			0.002	0.002
	November-2023		ND		0.13	0.0046		0.014			ND			ND					0.0032			0.0043				ND	0.003	0.003
	December-2023																		0.0043								0.002	0.002
					0.16													0.002									0.0015	0.0015
	January-2024			ND							0.0081															ND	0.005	0.005
	February-2024			0.0065		0.01															0.051		0.012				0.001	0.002
Lead	March-2024																									ND	0.002	0.002
														0.0012					0.0005				0.02				0.005	0.005
	April-2024													0.0013					0.0025								0.001	0.001
					0.13													ND			0.11						0.004	0.004
	May-2024										ND								ND		0.11	ND				ND	0.01	0.01
	June-2024											ND.							ND		0.024					ND	0.01	0.01
	July-2024 August-2024						0.031				ND	ND									0.027				ND		0.005	0.005
	September-2024				0.098		0.057											ND			0.027						0.01	0.01
	October-2024		ND		0.076		0.057													ND							0.01	0.01
	November-2024		ND																								0.01	0.01
	December-2024				0.18																					ND	0.01	0.01
	January-2025																				ND						0.002	0.002
			ND																		0.02						0.002	0.002
	February-2025												0.0561														0.0465	0.01
	March-2025		0.0113									0.0816						0.0229									0.006	0.03
	April-2025											0.132						0.0207									0.006	0.01
	May-2025																						0.016	0.049			0.005	0.005
	June-2025																		0.0079 J								0.003	0.01
	July-2025																									0.0233	0.0018	0.01
	August-2025																							0.087		0.0142	0.0018	0.01

14	/ell ID	FW 2/A	FW 50	FW 51	FW 50	F)4/ F2	FW 54	FW 55	FW 57	F)4/ F0	FW 50	FW 40	FM /1	FW 40	FW / 4	FW 45	FW /7	FW /0	FW 70	FW 00	FW 05	FW 07	FW 00	FW 00	FW 04	FW 00		
Parameter	Monitoring Event	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62 Concentration	EW-64	EW-65	EW-6/	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
raidillelei	Monitoring Eveni			I									0.00169			0.00053			I								0.0004	0.0004
	November-2022										ND		0.00167			0.00033											0.0004	0.0004
			0.00051	-																								
	Docombor 2022	, 							0.00110		ND.	0.00500					0.0040										0.0004	0.0004
	December-2022	·			NID.				0.00118		ND	0.00588					0.0048	ND									0.0008	0.0008
					ND																						0.004	0.004
	January-2023	3	ND							ND						ND											0.0004	0.0004
											ND																0.004	0.004
	February-2023																	ND									0.0004	0.0004
	March-2023									ND																	0.0002	0.0002
	77101017 2020										ND																0.0004	0.0004
	April-2023											0.00128															0.0002	0.0002
	7 (piii 2020	´								ND																	0.0004	0.0004
	May-2023		ND							ND	ND																0.0002	0.0002
	June-2023										ND		ND		ND												0.004	0.004
			0.000306																ND							ND	0.0002	0.0002
	July-2023								0.0107																ND		0.001	0.001
	4																									ND	0.001	0.001
	August-2023						0.00312		0.00397																ND		0.002	0.002
	September-2023				0.00503														ND								0.002	0.002
	October-2023							0.00165											ND			0.00055					0.0004	0.0004
			ND											ND													0.0000002	0.0000002
	November-2023																		ND								0.0000004	0.0000004
					0.00576	0.00606		0.00578			ND											0.00954				ND	0.000004	0.000004
Mercury	December-2023				0.00484													ND									0.001	0.001
,,,,																			ND								0.0004	0.0004
	January-2024			ND							ND															ND	0.001	0.001
	February-2024			0.00376		0.0115															0.00238		0.00284			0.00104	0.001	0.001
	March-2024																									0.00124	0.0004	0.0004
														0.000001					ND.				ND				0.001	0.001
	April-2024				0.00000									0.000201				0.001.51	ND								0.0002	0.0002
					0.00382													0.00151									0.0008	0.0008
	May-2024										ND								ND		ND	ND				ND	0.002	0.002
	June-2024																		ND		0.0119					ND	0.002	0.002
	July-2024										ND 	0.00104									0.00471				ND		0.001	0.001
	August-2024 September-2024				0.00244		ND ND											ND			0.00671				ND		0.002	0.002
	October-2024		ND		ND															0.00254							0.002	0.002
	November-2024		ND																	0.00254							0.002	0.002
	December-2024				0.00213																					ND	0.002	0.002
	January-2025	_																			0.1047						0.01	0.01
													0.00011								0.1047						0.000009	0.000009
	February-2025	j	ND										0.00011								ND						0.0000	0.000
			ND															ND									0.002	0.002
	March-2025											0.0146															0.002	0.002
	April-2025	j										0.00169						ND									0.001	0.001
	May-2025																						ND	0.0128			0.001	0.001
	June-2025																		0.00237								0.0002	0.0002
	July-2025	i																								0.000641	0.0000144	0.0002
	August-2025	j																						0.00234		0.00139 J		0.002
	, ,																		1									

v	Vell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event	LW-00A	111-30	LW-51	LW-32	L11-30	L11-34	L11-33	LW-37	LW-30	LW-37	LW-00		Concentration		L11-03	L11-07	L11-00	LW-70	LW-02	LW-03	LW-07	LW-00	LW-07	L11-7-4	L11-70	LOD	LOQ
Tarameter	November-2022										0.0866		0.1344			0.173											0.014	0.02
	December-2022		0.1722		0.5025				0.2989		0.1299	0.287					0.1853	0.346									0.014	0.02
																0.07/0												
	January-2023		0.1074							0.1442	0.0407					0.0769											0.007	0.01
	February-2023																	0.1726									0.001	0.001
	March-2023									0.1254	0.1033																0.007	0.01
	April-2023									0.1143		0.1732															0.001	0.001
	May-2023		0.113							0.09726	0.05657																0.005	0.005
	June-2023										0.05978		0.05892		0.07161												0.005	0.005
	July-2023		0.09872						0.08332										0.1576						0.03074	0.01403	0.001	0.001
	August-2023																									0.02029	0.005	0.005
	Augusi-2023						0.1457		0.09673																0.0513		0.01	0.01
	September-2023				0.5152														0.2387								0.01	0.01
	October-2023																		0.2019			0.09206					0.001	0.001
								0.104																			0.002	0.002
	November-2023		0.1178		0.4227	0.1242		0.07791			0.05944			0.1493					0.2492			0.1332				0.05277	0.01	0.01
	December-2023				0.6091													0.1447									0.005	0.005
	DCCCITIBCI 2020																		0.2127								0.002	0.002
	January-2024			0.06308							0.04911															0.0326	0.005	0.005
	February-2024			0.07945		0.07013															0.09174		0.06183				0.005	0.005
Nickel	March-2024																									0.02232	0.002	0.002
																							0.08678				0.005	0.005
	April-2024													0.1319					0.196								0.001	0.001
	7 (piii 202 i				0.3136													0.1139									0.01	0.01
	May-2024										0.0538								0.2065		0.07835	0.09235				0.02884	0.01	0.01
	June-2024																		0.211		0.07664					0.03166	0.01	0.01
	July-2024										0.1917	0.03634															0.005	0.005
	August-2024						0.1008														0.0822				0.02104		0.01	0.01
	September-2024				0.396		0.1138											0.08772									0.01	0.01
	October-2024		0.115		0.3536															0.05751							0.01	0.01
	November-2024		0.09665																								0.01	0.01
	December-2024				0.2964																					0.03528	0.01	0.01
	January-2025																				ND						0.0085	0.01
	February-2025		0.09275																		0.1021						0.01	0.01
	·												ND														0.0465	0.05
	March-2025		0.0933									0.0375						0.0818									0.007	0.01
	April-2025											0.0161						0.0713									0.007	0.01
	May-2025																						0.07897	0.03695			0.005	0.005
	June-2025																		0.1796								0.001	0.01
	July-2025																									0.0145	0.0005	0.01
	August-2025																							0.0925		0.0393	0.0005	0.01

Non-information Non-inform	W	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-47	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
November 1962 197		-	EW-30A	EW-30	EW-31	EW-32	E44-33	EW-34	EW-35	EW-5/	EW-30	EW-37	EW-00			E44-04	E44-02	EW-07	E44-00	EW-76	EW-02	EW-03	EW-07	E44-00	EW-07	EVV-74	EW-70	LOD	LOQ
Descriptor 2022 No No No No No No No	raidifielei	-			T	I	T	I	T I		I	ND			T		110	1 1						1 1	I			0.00	0.1
Marine Waster Mo							+																						
February 2009						ND				ND			ND					ND	ND										
Morifice 2022				ND							ND	ND					ND												
Age 2023		February-2023																	0.00199									0.00085	
May 97/23		March-2023									ND	ND																0.04	0.05
July 2073 County County		April-2023									0.00189		0.00185															0.00085	0.001
1.11/-2022 1.1		May-2023		ND							ND	0.00569																0.00425	0.005
August-2022		June-2023										ND		ND		ND												0.00425	0.005
Action		July-2023		0.00101						0.00331										0.00116						0.00251	ND	0.00085	0.001
Action		4																									ND	0.00425	0.005
Cclober-2025		August-2023						ND		ND																ND			
November 2023 ND 0.00425 0.0014 0.00315 ND ND ND ND ND ND ND N		September-2023				ND														ND								0.0085	0.01
November-2023 - ND - 0.00425		Ootobor 2022																		0.00186			0.0044					0.00085	0.001
December 2022		OCIODEI-2023							0.00332																			0.0017	0.002
December 2012		November-2023		ND		0.00425	0.00314		0.00315			ND			ND					ND			0.0032				ND		
January-2024		December-2023				0.00785													0.00253									0.0015	
Selenium February-2024 ND -																				0.00215								0.0017	
March-2024		January-2024			ND							ND															ND		
More-back More		February-2024			ND		ND															0.00571		0.00651					
April-2024	Selenium	March-2024																									ND		
April-2024	00.01.10111																							0.00627					
May-2024		April-2024													ND					0.000929 J									
June-2024		·				ND													ND									0.0085	
July-2024		May-2024										ND								ND		ND	ND				ND	0.0085	
August-2024 ND																				ND		ND					ND		
September-2024 ND ND ND ND ND												ND	ND															0.00425	
October-2024 ND ND																						ND				ND			
November-2024 ND ND ND ND ND								ND											ND										
December-2024 ND ND 0.0085 0.01						ND	_																						
January-2025 -																													
February-2025 ND ND ND ND						ND																					ND		
Hebruary-2025		January-2025																											
March-2025 ND ND ND		February-2025		ND																		ND							
April-2025														ND															
May-2025 ND ND 0.00425 0.005 June-2025				ND									ND						ND										
June-2025		April-2025											ND						ND									0.04	
July-2025 ND 0.0069 0.05		May-2025																						ND	ND			0.00425	
																				ND								0.008	0.05
August-2025		July-2025																									ND	0.0069	0.05
		August-2025																							ND		ND	0.0069	0.05

1	Well ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event												(Concentration	1												LOD	LOQ
	November-2022										ND		ND			ND											0.01	0.02
	December-2022		ND		0.0187 J				ND		ND	ND					ND	ND									0.01	0.02
	January-2023		ND							ND	ND					ND											0.005	0.01
	February-2023																	ND									0.00006	0.001
	March-2023									ND	ND																0.005	0.01
	April-2023									ND		0.00011 J															0.00006	0.001
	May-2023		ND							ND	ND																0.0003	0.005
	June-2023										ND		ND		ND												0.0003	0.005
	July-2023		ND						ND										ND						ND	ND	0.00006	0.001
	A																									ND	0.0003	0.005
	August-2023						ND		ND																ND		0.0006	0.01
	September-2023				ND														ND								0.0006	0.01
	October-2023																		ND			ND					0.00006	0.001
								ND																			0.00012	0.002
	November-2023		ND		ND	ND		ND			ND			ND					ND			ND				ND	0.0006	0.01
	December-2023				ND													ND									0.00025	0.001
	January-2024			NID.							ND.								ND 								0.00012	0.002
	February-2024			ND ND		ND					ND 										ND		ND			ND 	0.0003	0.005
	· ·																									ND	0.0003	0.003
Silver	March-2024																						ND				0.0003	0.005
														ND					ND								0.00006	0.001
	April-2024				ND												T	ND									0.0004	0.001
	May-2024										ND								ND		ND	ND				ND	0.0006	0.01
	June-2024																		ND		ND					ND	0.0006	0.01
	July-2024										ND	ND															0.0003	0.0005
	August-2024						ND														ND				ND		0.0006	0.01
	September-2024				ND		ND											ND									0.0006	0.01
	October-2024	ND	ND		ND															ND							0.0006	0.01
	November-2024	ND	ND																								0.0006	0.01
	December-2024				ND																					ND	0.0006	0.01
	January-2025																				0.789						0.025	0.05
	February-2025		ND																		ND						0.0006	0.01
	, , , , , , , , , , , , , , , , , , ,												ND														0.00232	0.0025
	March-2025		ND									ND						ND									0.005	0.01
	April-2025											0.007 J						ND					ND.	ND.			0.005	0.01
	May-2025																		ND.				ND	ND			0.0003	0.005
	June-2025 July-2025																		ND							0.0000.1	0.002	0.01
																								ND		0.0009 J	0.0004	0.01
	August-2025																							ND		0.0008 J	0.0004	0.01

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												С	oncentration													LOD	LOG
	November-2022										ND		0.032			0.694											0.02	0.02
	December-2022		0.208		29.7				0.162		0.0686	0.75					0.364	0.286									0.02	0.02
	January-2023		0.133							0.15	0.074					0.0752											0.01	0.01
	February-2023																	0.0851									0.0025	0.005
	March-2023									0.0689	0.0538																0.01	0.01
										0.0539																	0.0025	0.005
	April-2023											0.414															0.0025	0.05
	May-2023		0.079							0.0635	0.0519																0.025	0.025
				+											0.945		-											
	June-2023										0.0538		0.0253														0.0125	0.025
	July-2023		0.0488																0.0714						0.354	0.0782	0.0025	0.005
	,								2.03																		0.0125	0.025
																										0.112	0.0125	0.025
	August-2023								1.71																0.914		0.025	0.05
							5.92																				0.05	0.1
	September-2023				45														0.0788								0.025	0.05
					45														0.0622								0.25	0.5
	October-2023							0.203											0.0622			633					0.0025	0.003
			0.0471 J			0.0534		0.203			0.053			0.0618					0.0722			0.845				0.0313 J	0.005	0.01
	November-2023		U.U4713		30.4	0.0554					0.055			0.0010					0.0722			0.043					0.025	0.03
					52.7																						0.25	0.5
	December-2023				JZ.7														0.061								0.005	0.01
	December 2020																	0.0462									0.005	0.025
	January-2024			0.117							0.0974							0.0402								0.0261	0.0125	0.025
	February-2024			0.0879		0.0554															0.475		0.809				0.0125	0.025
Zinc																										0.0342	0.005	0.01
Elito	March-2024																						2.09				0.0125	0.025
														0.0565					0.0539								0.0025	0.005
	April-2024																	0.0394									0.02	0.02
					24.7																						0.25	0.5
	May-2024										0.165								0.0568		1.3	1.43				0.0812	0.025	0.05
	June-2024																		0.0505		0.498					ND	0.025	0.05
	July-2024										0.104	0.0451							0.0303		0.470						0.025	0.03
	August-2024						3.49														0.512				0.417		0.0125	0.05
					0.212																						0.0025	0.005
	September-2024						3.68											0.111									0.025	0.05
	0 1 1 0001	0.266	0.077																	0.342							0.025	0.05
	October-2024				20.2																						0.25	0.5
	November-2024	0.0325 J	0.0367 J																								0.025	0.05
																										0.0696	0.025	0.05
	December-2024				14.3																						0.25	0.5
	January-2025																				ND						0.002	0.002
	,		0.0405 J																		0.527						0.002	0.05
	February-2025												0.136														0.0465	0.05
	March-2025		0.0415									0.155						0.0277									0.01	0.01
			0.0413									0.133						0.0277									0.01	0.01
	April-2025											0.366						0.0277									0.01	0.01
	May 2005				_												_											
	May-2025																		0.0455				1.1	1.55			0.0125	0.025
	June-2025																		0.0455							0.004/	0.007	0.01
	July-2025																									0.0246	0.0032	0.01
	August-2025																							2.92		0.0318	0.0007	0.02-0.03

	ell ID	EW-36A	EW-50	EW-51	EW FO	EW-53	EW-54	EW EE	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW 4E	EW-67	EW-68	EW-78	EW-82	EW OF	EW-87	EW-88	EW-89	EW-94	EW 00		
	Monitoring Event	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-5/	EW-38	EW-59	EW-60	-			EW-05	EW-6/	EW-08	EW-78	EW-82	EW-85	EW-8/	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter													<u> </u>	oncentration	1													
VOLATILE FATTY A	ACIDS (mg/L)			T.	1		ı									1		ı		1			_	1				122
	November-2022												1600														25	100
											3500					150 J											62	250
	December-2022		1800																								62	250
	January-2023		ND							ND	4400					ND												500
	February-2023																	ND										500
	March-2023									ND	640																	500
	April-2023									1200		520															370	500
	May-2023		990							1800	3000																370	500
	June-2023										5900		4100		5000												750	1000
																										ND	150	200
	July-2023		ND																ND								370	500
									6100																750		750	1000
	August-2023						3300		5300																4200	ND		500
	September-2023				7400														ND								370	500
	October-2023							3200											720			4100					370	500
			ND											ND					ND							4160	250	500
	November-2023					4950		6650			5350											7300					500	1000
					9900																						1000	2000
																		660										100
	December-2023																		ND									250
					11200																							1000
	January-2024			4410							5290															3080		250
	February-2024			3130		3530																						250
	,																				3530		6770					500
Acetic Acid	March-2024																						44000			2700		1000
710011071010														ND					ND				46000					1000
	April-2024																	1670										250
	7 (5111 202 1				9170																							1250
																			ND		4370					221		250
	May-2024										4950																	500
	11107 202 1																					6530						1250
																			ND									100
	June-2024																				3890					4450		500
	July-2024										6280	6180																1250
	August-2024						5210														3500				5540			500
																		2950										250
	September-2024						5970																					500
					10400																							1250
		ND																										50
	October-2024		260																									100
	20.000.2021																			4780								250
	N				9410																							1250
	November-2024	960	230																							10000		200
	December-2024																									10000		200
					17000																							400
	January-2025																				3500							100
	May-2025																						6640	6530			71.4	500
	June-2025																		29.9								0.7	5
	July-2025																									3890	71.4	500
1	August-2025																							8500		678	71.4	500

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
	Monitoring Event	EW-36A	EW-30	EW-31	EW-32	E44-33	EW-34	EW-33	EW-3/	E44-20	EW-37	E44-00		oncentration	E44-04	EW-03	EW-07	E44-00	EW-70	EW-02	E44-03	LW-0/	E44-00	EW-07	EVV-74	EVV-70	LOD	LOQ
Parameter	Monitoring Eveni			T		T	I			I	T	I				I	T 1			1			1				10	100
	November-2022												430														12	100
											830					ND											29	250
	December-2022		ND																								29	250
	January-2023		ND							ND	1800					ND												500
	February-2023																	ND										500
	March-2023									ND	ND																	500
	April-2023									ND		ND															330	500
	May-2023		ND							ND	1200																330	500
	June-2023										2500		1500		2900												650	1000
																										ND	130	200
	July-2023		ND																ND								330	500
									2800																650		650	1000
	August-2023						1400		1700																1600	ND		500
	September-2023				3100														ND								330	500
	October-2023							1200											ND			2000					330	500
	Navanala av 0000		ND			1670		1760			1370			ND					ND			2730				740	250	500
	November-2023				3420																						500	1000
																		336										100
	December-2023																		ND									250
					3390																							1000
	January-2024			813							1230															594		250
Butyric Acid	February-2024			583		1170																						250
	,																				1180		2980					500
	March-2024																									500		20
																							2100					200
	April-2024				0100									ND				444	ND									100
					3120						1100							444								440		250
	May-2024										1190								ND		984	2370				448		250
	June-2024										0400								ND		1190					1030		100
	July-2024 August-2024						1630				2400	2360									1180				1930			250 500
	September-2024				3550		2060											670							1730			250
	September 2024	ND																										50
			ND																									100
	October-2024																			1630								250
					3070																							1250
	November-2024	480	ND																									200
																										2200		200
	December-2024				4600																							400
	January-2025																				1100							100
	May-2025																						2220	2160			70.3	500
	June-2025																		ND								0.7	5
	July-2025																									575	7	50
	August-2025																							2200		338	7-70.3	50-500
	A09031-2023																							2200		ააი	/-/0.3	30-300

W	/ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event	LII OOA	211 00		111 02		211 04	211 00	211 07	211 00		211 00		oncentration		211 00		211 00	211 70		111 00	211 07	1 211 00	211 07	211 74		LOD	LOQ
rarameter				T				I					ND				T T								[11	100
	November-2022										ND					ND											27	250
	December-2022		90 J																								27	250
			ND			968		1800			969			ND					ND			1170				324	250	500
	November-2023				6030																						500	1000
																		ND										100
	December-2023																		ND									250
					9050																							1000
	January-2024			629							979															256		250
	February-2024			334		180																						250
	TODIOGIY 2024																				756		1650					500
	March-2024																									ND		20
	WIGICI1-2024																						ND					200
														ND					ND									100
	April-2024																	ND										250
					5120																							1250
	May-2024										1160								ND		1170	1730				ND		250
Lactic Acid	June-2024																		ND		706					246		100
	July-2024										1220	1210																250
	August-2024						2270														593				959			500
	September-2024						2550											ND										250
	00p10111201 202 1				5510																							1250
		ND																										50
	October-2024		ND																									100
																				2590								250
	NI				5630																							1250
	November-2024	ND	ND																							700		200
	December-2024																									730		200
					5300																							400
	January-2025																				480							100
	May-2025																						963	783			55.7	500
	June-2025																		ND								0.6	5
	July-2025																									74.7	5.6	50
	August-2025																									ND	0.6	5
	Augusi-2025																							1100			55.7	500

We Parameter	ell ID Monitoring Event	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
raidillelei	November-2022												620														11	100
											1600					73 J											27	250
	December-2022 January-2023		640 ND							ND	2000					ND											27	250 500
	February-2023																	ND										500
	March-2023									ND	ND																	500
	April-2023		 F20							800 800	1400	ND															340	500
	May-2023 June-2023		520								1400 2900		2000		2900												340 680	1000
																										ND	140	200
	July-2023		ND																ND								340	500
	August-2023						1200		3100 2000																680 1900	ND	680	1000
	September-2023				1800														ND								340	500
	October-2023							1300											ND			2000				1.400	340	500
	November-2023		ND 		2580	2170		2310			2080			387					ND 			3350				1420	250 500	1000
	5 1 0000																	996										100
	December-2023				2280														ND 									250 1000
	January-2024			1680							1970															1030		250
Propionic Acid	February-2024			1210		1510															1980		2900					250 500
	March-2024																									570		20
	Mulc1-2024																						2100					200
	April-2024				2300									ND 				1150	ND 									100 250
	May-2024										1730								ND		1640	2770				647		250
	June-2024 July-2024										2500	2470							ND 		1870					1400		100 250
	August-2024						1320														1920				2040			500
	September-2024	ND			2640		1690											1300										250
	Ontobas 2004		275																									100
	October-2024																			1470								250
	November-2024	1300	310		2240																							1250 200
	December-2024																									3300		200
					4200																1000							400
	January-2025 May-2025																				1800		2570	2560			57.3	500
	June-2025																		ND								0.6	5
	July-2025																									1210	57.3	500
	August-2025												46 J											3140		696	57.3 12	100
	November-2022										98 J					ND											30	250
	December-2022		ND																								30	250
	November-2023		ND 		ND	ND 		ND 			ND 			ND 					ND 			ND 				ND 	250 500	1000
	D																	ND										100
	December-2023				ND														ND 									250 1000
	January-2024			ND							ND															ND		250
	February-2024			ND 		ND 															ND		ND					250 500
	March-2024																									130		20
														ND					ND				460					200 100
	April-2024				ND													ND										250
Pyruvic Acid	May-2024										ND								ND		ND	ND				ND		250
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	June-2024 July-2024										ND	ND							ND 		113					ND 		100 250
	August-2024						ND														ND				ND			500
	September-2024	ND			ND 		ND 											ND 										250 50
	October-2024		ND																									100
	00.0001 2024				 ND															ND 								250 1250
	November-2024		ND																									200
	December-2024																									410		200
	January-2025				460																ND							100
	May-2025																						132 J	124 J			44.4	250
	June-2025																		ND								0.9	5
	July-2025 August-2025																							02.0.1		68	8.9	50
																								93.9 J		61.3	0.9-17.8	J-100

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	100	
Parameter	Monitoring Event													oncentration													LOD	LOQ
	NIC COMPOUNDS (ug	g/L)																								,	,	
	Navanala az 2000										3510					1140											30	100
	November-2022												15600														300	1000
	December-2022		3140									3390															30	100
	December-2022				26800				27700		5670						21700	7150									300	1000
	January 2023		3480							632																	30	100
	January-2023										7840					5470											300	1000
	February-2023																	14400									600	2000
	March-2023									257	2770																30	100
	April-2023									3420		5530															750	2500
	May 2022		5360							5970																	150	500
	May-2023										13600																750	2500
	luna 2022										13800																750	2500
	June-2023												20100		22600												1500	5000
			5860																ND								60	200
	July-2023																									13500	750	2500
									38400																31600		3000	10000
																										5950	60	200
	August-2023																								7350		150	500
	/ (ogusi-2023								3000																		750	2500
							25600												400								1500	5000
	September-2023				17500														439								60	200
	-				17500														211								750 15	2500 50
	October-2023							17800											211			33400					1500	5000
								1/600											78.8 J			33400					30	100
								17700			10600																150	500
	November-2023		3990																								300	1000
					25700																						750	2500
						22300								17600								26700				31200	1500	5000
	December-2023				13700													7060	ND								150	500
	January-2024										10800																150	500
				34700																						28900	1500	5000
	February-2024			30500		28900															12700		17400				150	500
2-Butanone				30300		20700																	17400 11700				1500 150	5000 500
(MEK)	March-2024																									25200	1500	5000
																			ND								30	100
	April-2024													14600													750	2500
					37200													28700									1500	5000
																			ND								60	200
	May-2024																				7340					18600	150	500
	1110, 2021										25700											32700					1500	5000
																			ND								60	200
	June-2024																				13800						150	500
																										33200	15000	25000
	July-2024										15600																150	500
												25400															1500	5000
	August-2024						17700														7260				17900		150	500
	September-2024				19000		16600											22200									150	500
																		32200									1500	5000
	October-2024	28.2	2770																								3 60	10 200
	0010001-2024				13000															10800							150	500
			4140																								60	200
	November-2024																										750	2500
	11076111061-2024	28800																									150	500
		28800			658								1															
	December-2024	28800			658																					41800	600	2000
	December-2024			_																								2000
																										41800	600 1500 60	
	December-2024	 																			17000					41800	1500	2000 5000
	December-2024 January-2025	 	 6930							 		 									17000 			 	 	41800	1500 60	2000 5000 200
	December-2024 January-2025 February-2025		 6930 		 	 				 			 							 	17000 23900				 	41800 	1500 60 150	2000 5000 200 500
	December-2024 January-2025		6930 		 	 				 		 	 ND	 		 	 	 		 	17000 23900	 			 	41800 	1500 60 150 24500	2000 5000 200 500 24500
	December-2024 January-2025 February-2025 March-2025		6930 2540		 	 	 		 	 		 	 ND					 		 	17000 23900 	 			 	41800 	1500 60 150 24500 150	2000 5000 200 500 24500 500
	December-2024 January-2025 February-2025		6930 2540			 	 			 		 30600	 ND			 	 	 33700		 	17000 23900 	 			 	41800 	1500 60 150 24500 150 150	2000 5000 200 500 24500 500 5000
	December-2024 January-2025 February-2025 March-2025		6930 2540		 		 		 			30600 20800	 ND	 		 	 	33700 28100		 	17000 23900 					41800 	1500 60 150 24500 150 150 1500	2000 5000 200 500 24500 500 5000 500
	December-2024 January-2025 February-2025 March-2025 April-2025		6930 2540 		 				 			30600 20800	ND	 		 	 	33700 28100			23900	 	 12500			41800 	1500 60 150 24500 150 1500 150 150 150 60	2000 5000 200 500 24500 500 500 500 500 500 200
	December-2024 January-2025 February-2025 March-2025 April-2025 May-2025 June-2025 July-2025		 6930 2540 									30600 20800	 ND	 		 	 	 33700 28100			23900		 12500	 16700		41800 	1500 60 150 24500 150 150 150 150 150	2000 5000 200 500 24500 500 5000 500 500 5000
	December-2024 January-2025 February-2025 March-2025 April-2025 May-2025 June-2025		 6930 2540 									 30600 20800	 ND 	 		 		33700 28100	 ND		17000 23900 		 12500	 16700		41800 	1500 60 150 24500 150 1500 150 150 150 60	2000 5000 200 500 24500 500 500 500 500 500 200 500

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	100
Parameter	Monitoring Event												С	oncentration													LOD	LOQ
	November-2022															4420											70	100
	November-2022										16100		38300														700	1000
											15600	5170						9800									700	1000
	December-2022		8500																								1750	2500
					53100				49900								45600										3500	5000
										1530																	70	100
	January-2023										22200					14000											700	1000
			8130																								1750	2500
	February-2023																	23900									1400	2000
	March-2023									375																	70	100
	Widicii 2020										6810																700	1000
	April-2023									8290		7560															1750	2500
	May-2023		10700							11700																	350	500
	Widy-2023										29600																1750	2500
	June-2023										29600																1750	2500
	30116-2023												61800		50800												3500	5000
																			1180								140	200
	July-2023		9780																								700	1000
	July-2023																									11600	1750	2500
									77200																69700		7000	10000
																										20900	700	1000
	August-2023								18700																		1750	2500
							72500																		87700		3500	5000
	September-2023				40100														188 J								140	200
					40100														79								1750 35	2500 50
	October-2023							66900														92900					3500	5000
																			104								70	100
	N 0000		5560																								700	1000
	November-2023				64700																						1750	2500
l						43100		61100			36800			32800								53900				67800	3500	5000
Acetone																		ND									140	200
	December-2023				44000														ND								350	500
	January 2024			04400	44300						22000															47200	1750	2500
	January-2024 February-2024			96600 81600		70200					22800										45600		63100			47300	3500 3500	5000
	March-2024					70200																	50800			57600	3500	5000
																			ND								70	100
	April-2024													24300													1750	2500
					95300													55200									3500	5000
																			ND								140	200
	May-2024										63200										39000	91300				33300	3500	5000
	l = 000.4																		ND								140	200
	June-2024																				94400					84400	35000	50000
	July-2024										32200	52600															3500	5000
	August-2024						57700														36000				81500		3500	5000
	September-2024				59800		44500											69300									3500 7	5000
	October-2024	30.1	5230																								140	200
	0010001-2024		3230		49800															40700							3500	5000
	NI 1 000 :		8680																								350	500
	November-2024	44400																									1750	2500
	December-2024				51700																					69700	1400	2000
	January-2025																				65300						3500	5000
			9820																								700	1000
	February-2025																				46400						3500	5000
													ND														49000	98000
	March-2025		4460									70/00						0/400									350	500
												72600 61200						86400 78000									3500	5000
	April-2025 May-2025																	78000					57300	58600			3500 3500	5000
	June-2025																		ND								140	200
	July-2025																									31100	1400	2000
	August-2025																							36000 B		89600	3500	5000
	_							-											-									

14/	-ILID	F14/ 0/ A	FW 50	F144 F3	FW 50	FW 50	FW 54	FW 55	F14/ F7	FW 50	F14/ 50	FW 40	F144 4.1	FW 40	F14/ / 4	F)4/ / F	F14/ / 7	F)4/ / 0	FW 70	FW 00	FW 05	FW 07	FW 00	F14/ 00	FW 04	F14/ 00		
	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event			T	I	T	I	T			7.4.1	1		oncentration	1	50.4	1		T	1	1	I	T T	1				10
	November-2022										7.4 J		2860			50.4											4	10
	December-2022		301		2960						6.3 J	622					1750	179									4	10
									6550																		40	100
	January-2023		240							28.7	1620					167											4	10
	February-2023																	1370									4	10
	March-2023									1540	727																4	10
	April-2023									3740		320															4	10
	May-2023		814							4890	3370																20	50
	June-2023										2630																8	20
	30110 2020												1400		1590												20	50
			824																80.8								8	20
	July-2023								4050																1420		20	50
																										11800	100	250
	August-2023																									379	8	20
	A09031-2023						2320		168																ND		20	50
	September-2023																		193								8	20
	00010111001 2020				468																						100	250
	October-2023																		399								2	5
								576														3100					20	50
			80.8											31.3					202								2	5
	November-2023					1070		154			000								323			10/0				1190		10
					870	1070		654			982											1960					100	50 250
																		932									8	20
	December-2023				1330														463								20	50
Benzene	January-2024			1410							662															2900	20	50
DCTIZCTIC	February-2024			906		884															346		484				20	50
	March-2024																						226			8910	20	50
	A mril 2024													52.1					13.8								4	10
	April-2024				2040													3420									20	50
	14 2004																		276								8	20
	May-2024										3080										144	818				2990	20	50
	1																		173								8	20
	June-2024																				210					2740	20	50
	July-2024										1410	1820															20	50
	August-2024						828														162				384		20	50
	September-2024				960		727											2710									20	50
	0 -1 -1 000 4	306	400																								0.4	1
	October-2024		429		1000															000							2	5
	November-2024	119	512		1200															828							20 8	50
	December-2024				675																					3280	20	50
													_				_			_	588						20	50
	January-2025		739																		388						8	20
	February 2025																				443						20	
	February-2025												559000								443						24500	50 24500
	March-2025		157									1260	337000					2350									24300	50
	April-2025											938						1540									20	50
	May-2025																						255	222			20	50
	June-2025																		97.4								8	20
	July-2025																									1930	20	50
	August-2025																							112		1300	20	50
				1																								

				l		I																						
	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event			T		1	_	1						oncentration	_	1			1	1		ı	T					
	December-2022		67.3		172				287		ND	48.5					108	27.4									4	10
	November-2022										ND		194			16.2											4	10
	January-2023		65.1							ND	93.9					20.8											4	10
	February-2023																	151									4	10
	March-2023									131	71.5																4	10
	April-2023									186		43.4															4	10
	May-2023		124							276	144																20	50
	June-2023										104																8	20
	JUI16-2023												98		116												20	50
																										666	4	10
	July-2023		128																82								8	20
									224																87.5		20	50
	A																									16.8 J	8	20
	August-2023						80		ND																ND		20	50
	September-2023																		22.8								8	20
	3epiember-2023				ND																						100	250
	October-2023																		34.8								2	5
	0010001 2020							42.5 J														247					20	50
			26.3											45.4													2	5
	November-2023										7.5								26.9								4	10
					ND	62		54			76.5											224				60.5	20	50 250
					ND 													46									100	20
	December-2023				69.5														44 J								20	50
	January-2024			99							28 J															248	20	50
Ethylbenzene	February-2024			51		43 J															31 J		41 J				20	50
	March-2024																						25 J			710	20	50
														106					ND								4	10
	April-2024				91.5													186									20	50
																			35.4								8	20
	May-2024										146										ND	59				225	20	50
																			23.6								8	20
	June-2024																				ND					142	20	50
	July-2024										76	118															20	50
	August-2024						27.5 J														ND				27 J		20	50
	September-2024				46.5 J		44 J											192									20	50
		59.6																									0.4	11
	October-2024		112																								2	5
	.,				62.5															76							20	50
	November-2024		135																								8	20
	December-2024				52.5																					252	20	50
	January-2025																				54.5						20	50
			164																								8	20
	February-2025																				158						20	50
	11 1 0000											1/0	2090000					117									24500	24500
	March-2025		61.5									168						117									20	50
	April-2025 May-2025											52.5						73.5					29 J	38 J			20 20	50
	June-2025																		29.2					38 J			20 8	20
	July-2025																		27.2							124	20	50
	August-2025						-	-					-				_									230	20	50
																								ND		230	20	

We											1		_						1	_								
	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event											I		Concentration	1	1						I						
	November-2022										309					176											100	100
													8530														1000	1000
	December-2022		151								170	1120						663									100	100
	BOCOTHBOT 2022				5210				19800								6130										1000	1000
	January-2023		183							566	1810					352											100	100
	February-2023																	3760									2000	2000
	March-2023									353	464																100	100
	April-2023									2410		4790															100	100
	May-2023		ND							2740	2380																500	500
											2100																200	200
	June-2023												7320		6670												500	500
																										2960	100	100
	July-2023		411																616								200	200
	30., 2020								8380																5310		500	500
																										2880	200	200
	August-2023						7370		3210																1200		500	500
																			343								200	200
	September-2023				ND																						2500	2500
	O a la la a v 0000																		606								50	50
	October-2023							4870														9140					500	500
			199											325													50	50
	November-2023																		358								100	100
	November-202					4780		3320			785											5370				4600	500	500
					4620																						2500	2500
	December-2023																	4240									200	200
Tetrahydrofuran					2620														502								500	500
Tolianyalololan	January-2024			5160							1040															10900	500	500
	February-2024			3500		4580															3520		4910			0710	500	500
	March-2024																						3320			8710	500	500
	April-2024													697					ND								100	100
					7290													7680									500	500
	May-2024																		555								200	200
	,										2660										1880	5860				7640	500	500
	June-2024																		568								200	200
											1000	4000									3830					13000	500	500
	July-2024						2000				1900	4020									2020				4/10		500	500
	August-2024 September-2024				2950		3220 2730											6640			2020				4610		500 500	500
	36P16111061-2024	248			2730		2/30											0040									10	10
	October-2024		318																								50	50
	33.3501 2024				2580															2730							500	500
	November-2024	6620	452																								200	200
	December-2024				5660																					17000	500	500
	January-2025																				11200						500	500
	2323, 2020		1020																								200	200
	February-2025																				7490						500	500
	, , ,												ND														24500	24500
	March-2025		ND									4890						10000									500	500
	April-2025											3660						5920									500	500
	May-2025																						4080	5700			500	500
	June-2025																		611								200	200
1	July-2025																									25300	2000	2000
1	August-2025																							2430		16800	500	500

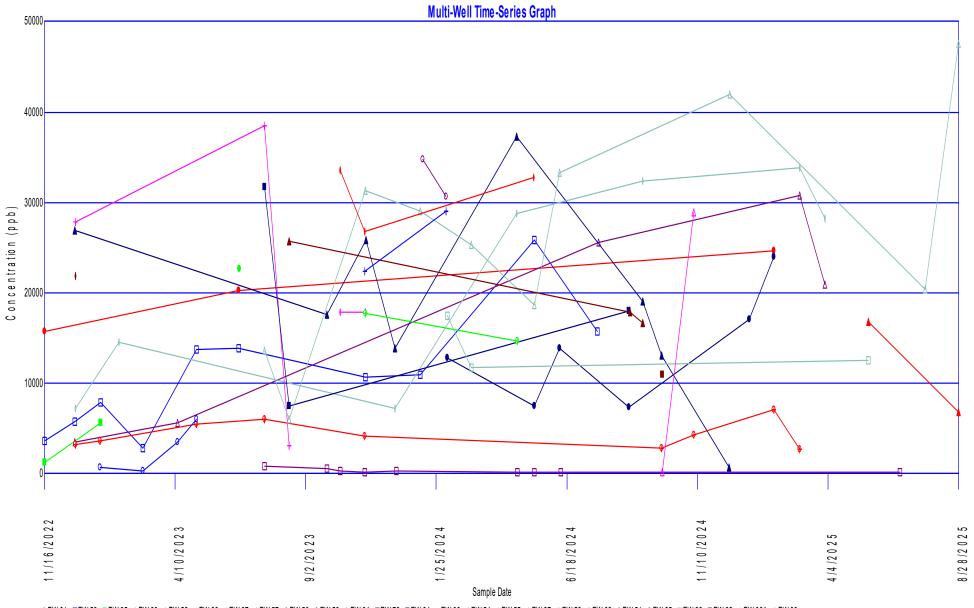
				I																								
	/ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event													oncentration					ı									
	November-2022										ND		214			32.8											5	10
	December-2022		122		175				195		ND	113					113	48.3									5	10
	January-2023		122							8 J	139					35.3											5	10
	February-2023																	224									5	10
	March-2023									182	98.1																5	10
	April-2023									303		94.4															5	10
	May-2023		258							371	239																25	50
	l 2002										165																10	20
	June-2023												67		212												25	50
																										965	5	10
	July-2023		248																107								10	20
									218																118		25	50
																										36.6	10	20
	August-2023						105		ND																ND		25	50
	C I 0000																		40.6								10	20
	September-2023				ND																						125	250
	October-2023																		59.2								2.5	5
	OCIODEI-2023							37 J														235					25	50
			47.3											50.4													2.5	5
	November-2023																		48.7								5	10
	11010111001 2020					62.5		51.5			114											167				114	25	50
					ND																						125	250
	December-2023																	73.2									10	20
	1			05.5	83.5														74.5							210	25	50
Toluene	January-2024			95.5		37 J					60										ND		20 E I			310	25	50
	February-2024 March-2024			49 J		3/ J															ND 		30.5 J 73			916	25 25	50
	March-2024													90.1					ND							710	5	10
	April-2024				104													263										50
					-																						25	
	May-2024																		53.8								10	20
											180										ND	62.5				284	25	50
	June-2024																		34.6		ND.						10	20
	luly 2024										97	125									ND					228	25 25	50
	July-2024						35 J					125									ND				25 J		25	50
	August-2024 September-2024				80		63.5											226							25 J		25	50
	30p10111001-2024	55.7																									0.5	1
	October-2024		173																								2.5	5
					65.5															72							25	50
	November-2024	44.6	245																								10	20
	December-2024				42 J																					288	25	50
	January-2025																				36 J						25	50
	22, 2020		271																								10	20
	February-2025																				54.5						25	50
	, 11												537000														24500	24500
	March-2025		90.5									150						166									25	50
	April-2025											51						114									25	50
	May-2025																						ND	ND			25	50
	June-2025																		40.2								10	20
I	30110 2023																											
	July-2025																									118	25	50

Historical LFG-EW Leachate Monitoring Results Summary

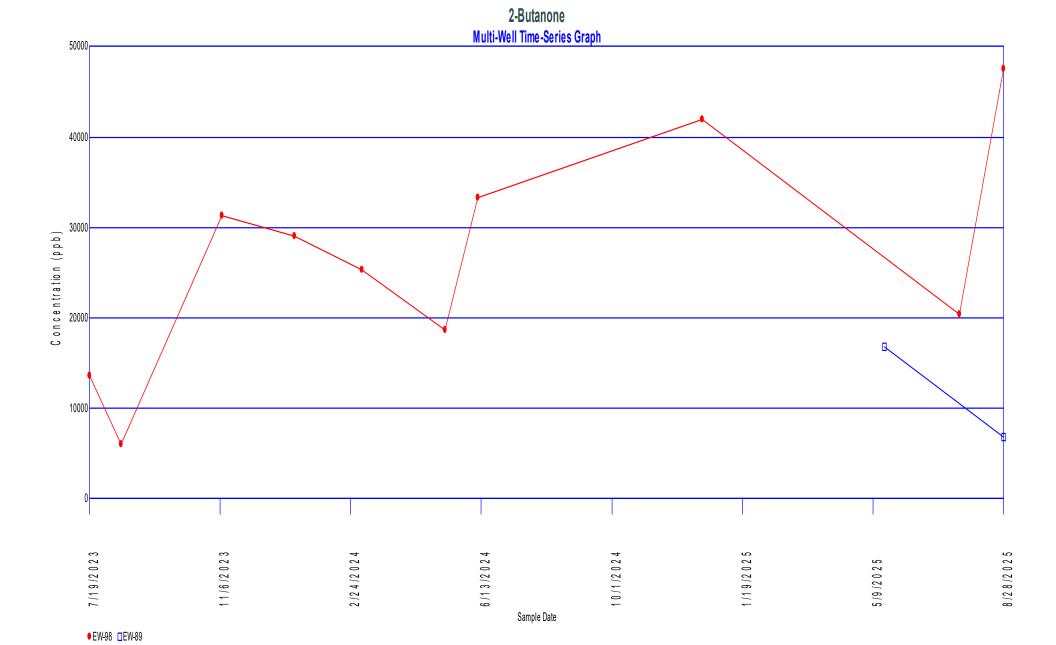
We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	FW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-89	EW-94	EW-98		
Parameter	Monitoring Event	LW-OOA	LW-30	LW-31	111-32	L11-30	LW-34	L11-33	LW-3/	LW-30	L11-37	L11-00		oncentration		L11-03	L11-07	L11-00	LW-70	L11-02	LW-03	L11-07	LW-00	L11-07	L11-7-	L11-70	LOD	LOQ
rarameter	November-2022			T		T		I			ND		185		· 	37.8			T								10	30
	December-2022		161		222				186		ND	112					197	59.9									10	30
	January-2023		138							ND	134					38.1											10	30
	February-2023															30.1		240									10	30
										240																		30
	March-2023									-	111	07.4															10	
	April-2023									329		97.4															10	30
	May-2023		274							441	230																50	150
	June-2023										177																20	60
	*****												92 J		136 J												50	150
																										1130	10	30
	July-2023		257																74.4								20	60
									230																174		50	150
	August-2023																									48.4 J	20	60
	A09031-2025						180		ND																ND		50	150
	September-2023																		ND								20	60
	SOPIOITIBOL 2020				ND																						250	750
	October-2023																		30.6								5	15
	0010001 2020							134 J														328					50	150
			56											48													5	15
	November-2023																		25.3 J								10	30
						116 J		104 J			132 J											306				138 J	50	150
					ND																						250	750
	December-2023																	167									20	60
					224														ND								50	150
Xylenes, Total	January-2024			142 J							ND															534	50	150
Ayleries, Iolai	February-2024			63 J		59 J															ND		ND				50	150
	March-2024																						ND			1360	50	150
	April-2024													110					ND								10	30
					140 J													352									50	150
	May-2024																		31.6 J								20	60
	Widy 2024										223										ND	105 J				400	50	150
	June-2024																		ND								20	60
	JUI 16-2024																				ND					261	50	150
	July-2024										125 J	157															50	150
	August-2024						72.5 J														ND				55.5 J		50	150
	September-2024				90.5 J		120 J											368									50	150
		54.3																									1	3
	October-2024		201																								5	15
					144 J															75.5 J							50	150
	November-2024	ND	223																								20	60
	December-2024				98.5 J																					487	50	150
	January-2025																				82 J						50	150
			267																								20	60
	February-2025																				354						50	150
													4260000														24500	24500
	March-2025		108 J									386						200									50	150
	April-2025											87.5 J						144 J									50	150
	May-2025																						ND	ND			50	150
	June-2025																		29.6 J								20	60
	July-2025																									280	50	150
	August-2025																							ND		458	50	150
= not applicable/a	vailable																											igrams per liter

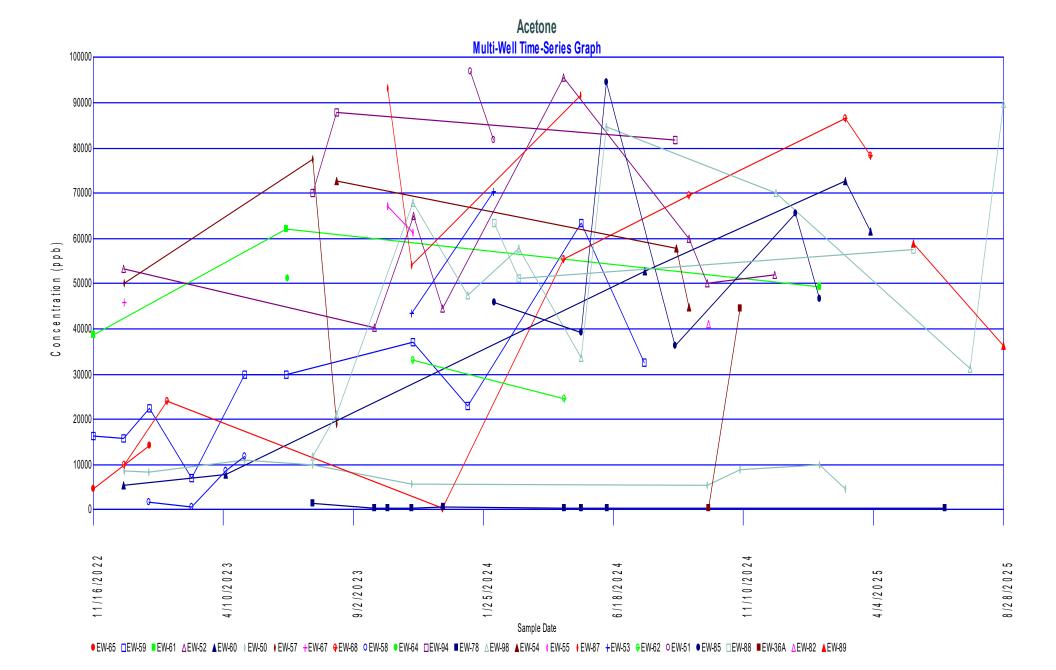
^{--- =} not applicable/available

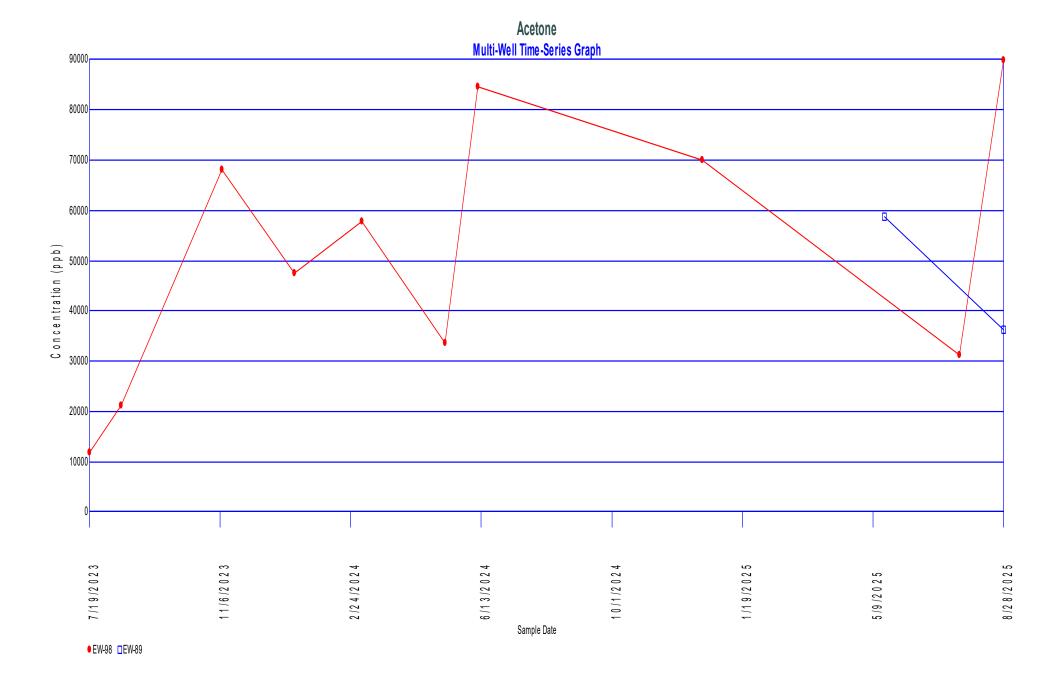
mg/L = milligrams per liter

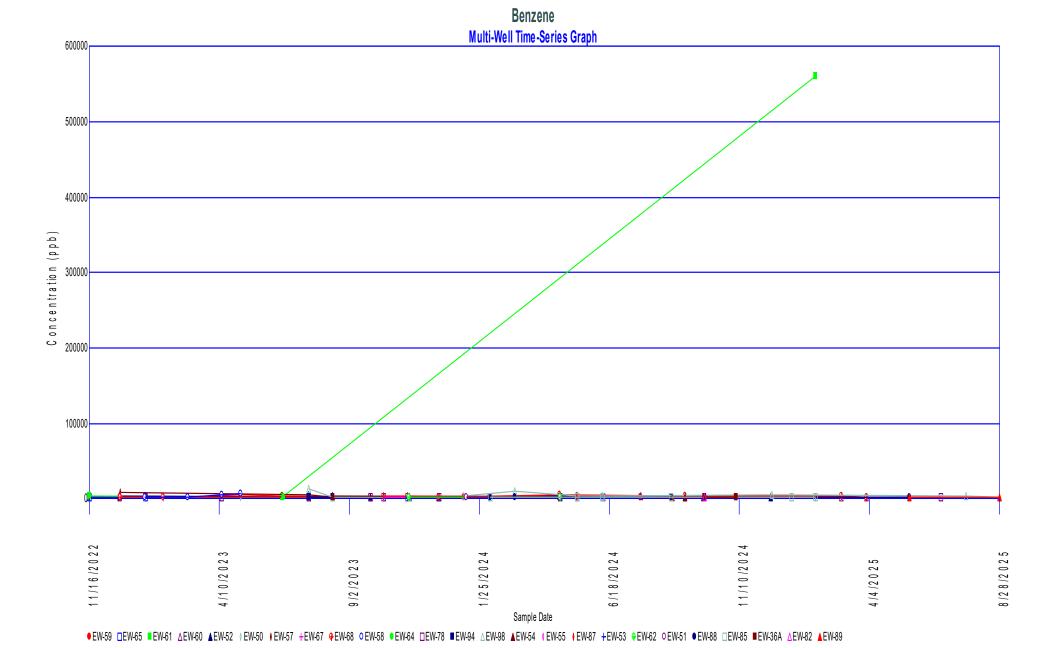

ND = Not Detected ug/L = micrograms per liter

J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.

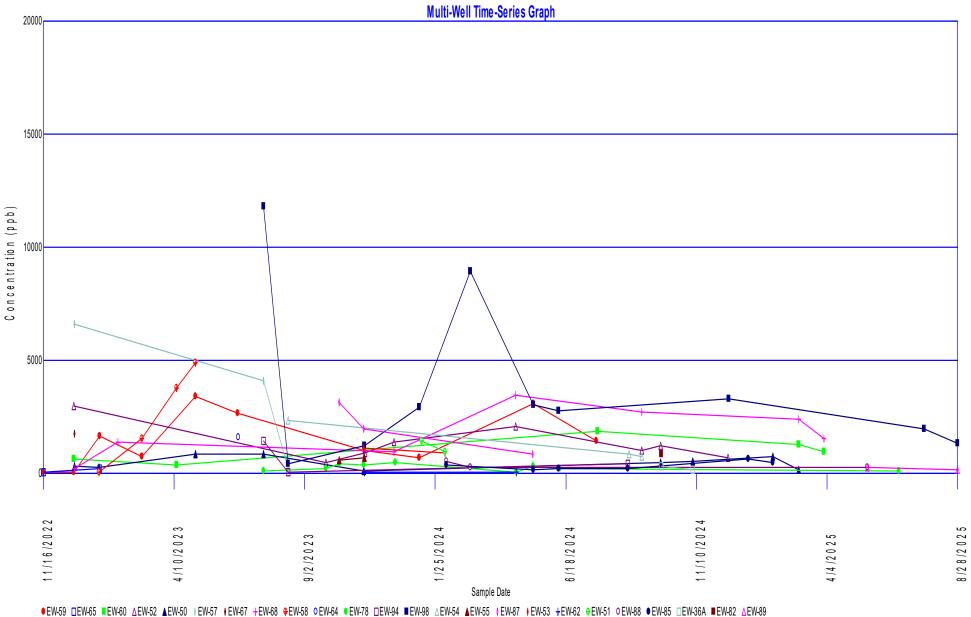

LOD = laboratory's Limit of Detection

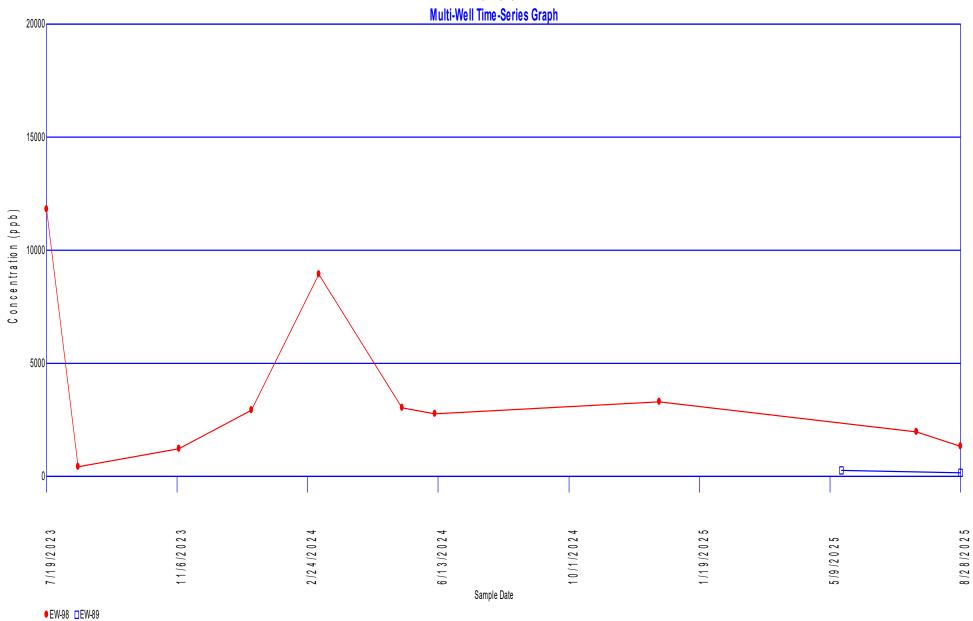

LOQ = laboratory's Limit of Quantitation

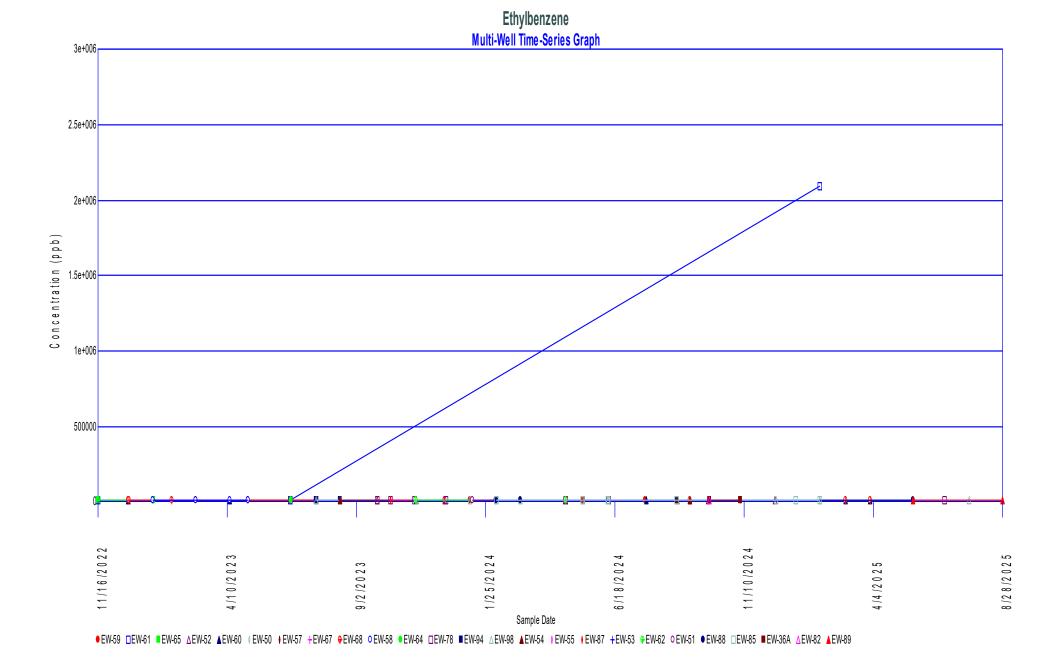


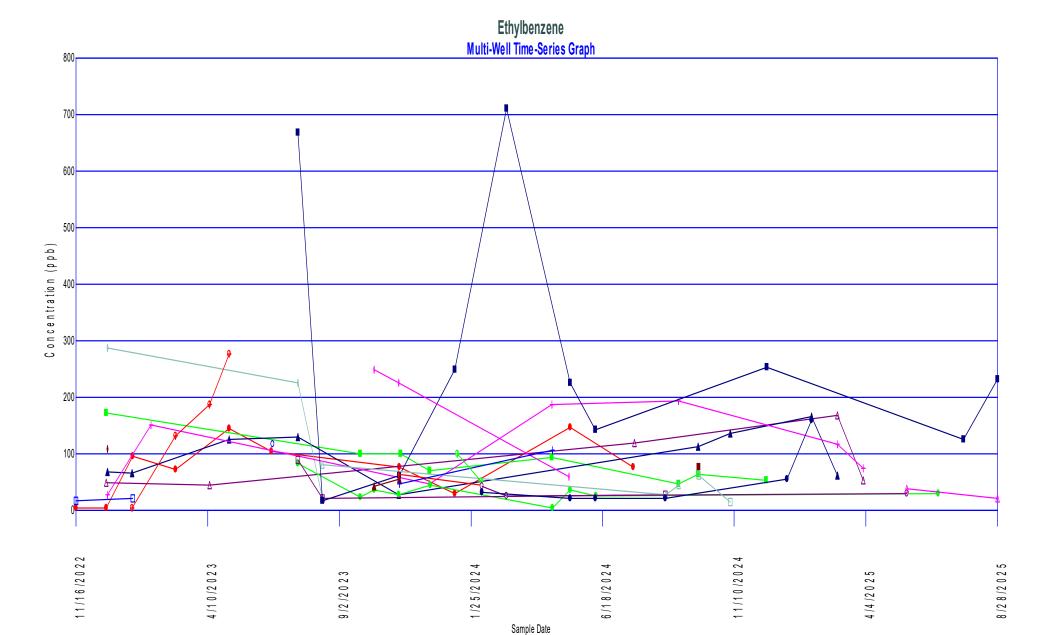


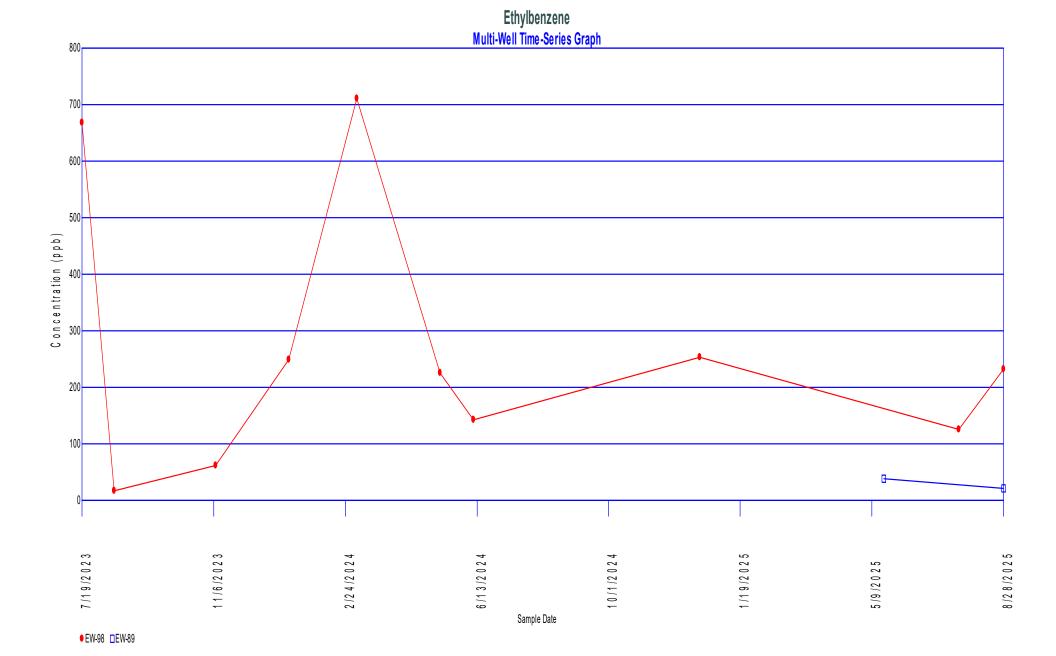
●EW-61 □EW-59 ■EW-65 △EW-60 ▲EW-52 | EW-68 | EW-67 +EW-57 ♥EW-50 ○EW-58 ●EW-64 □EW-78 ■EW-94 △EW-98 ▲EW-54 | EW-55 | EW-87 +EW-53 ♥EW-62 ○EW-51 ●EW-85 □EW-88 ■EW-82 △EW-36A ▲EW-89

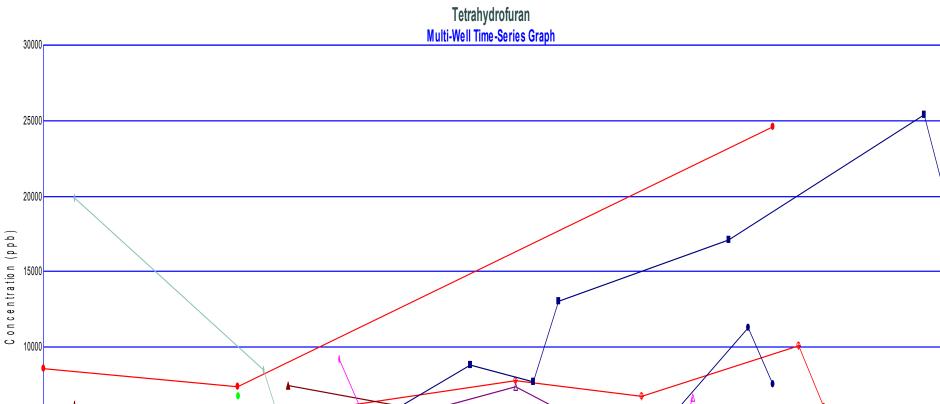


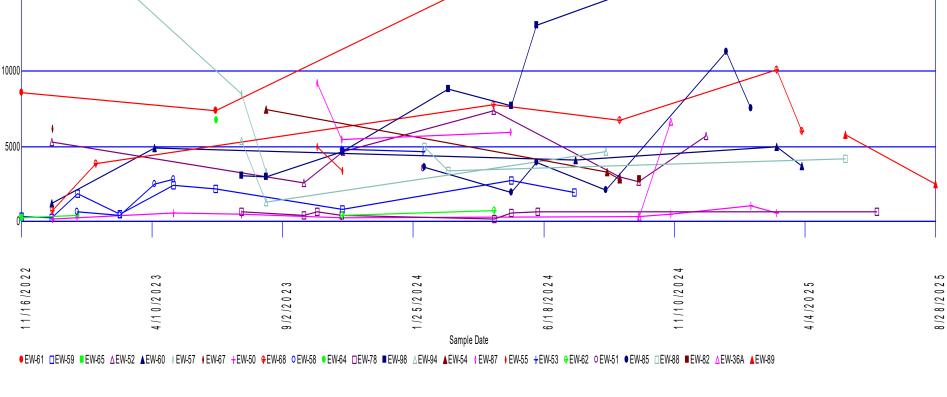


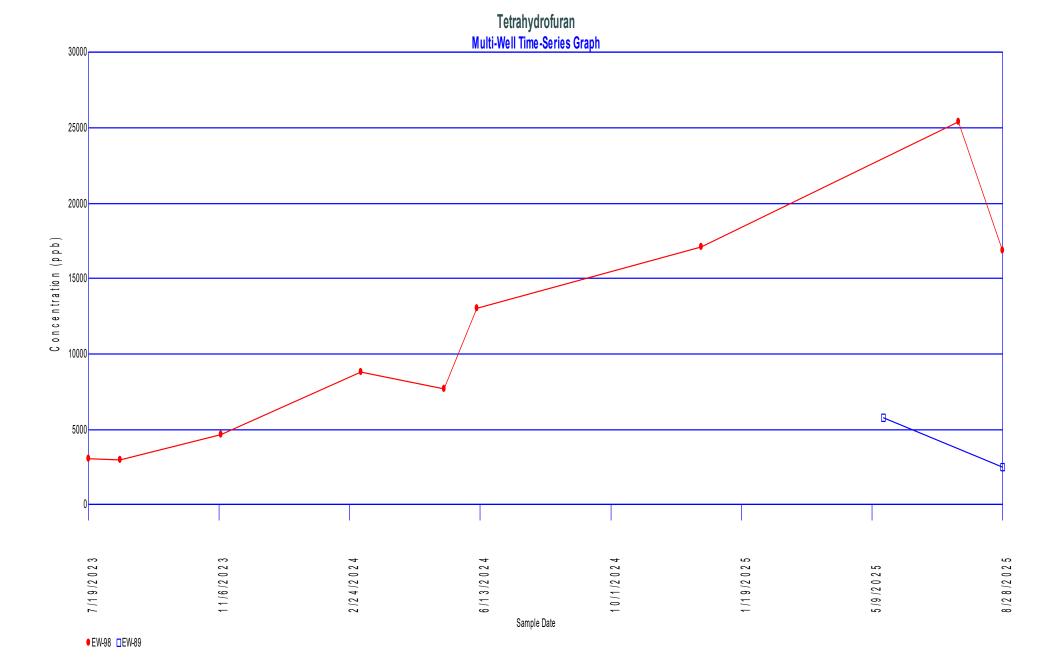


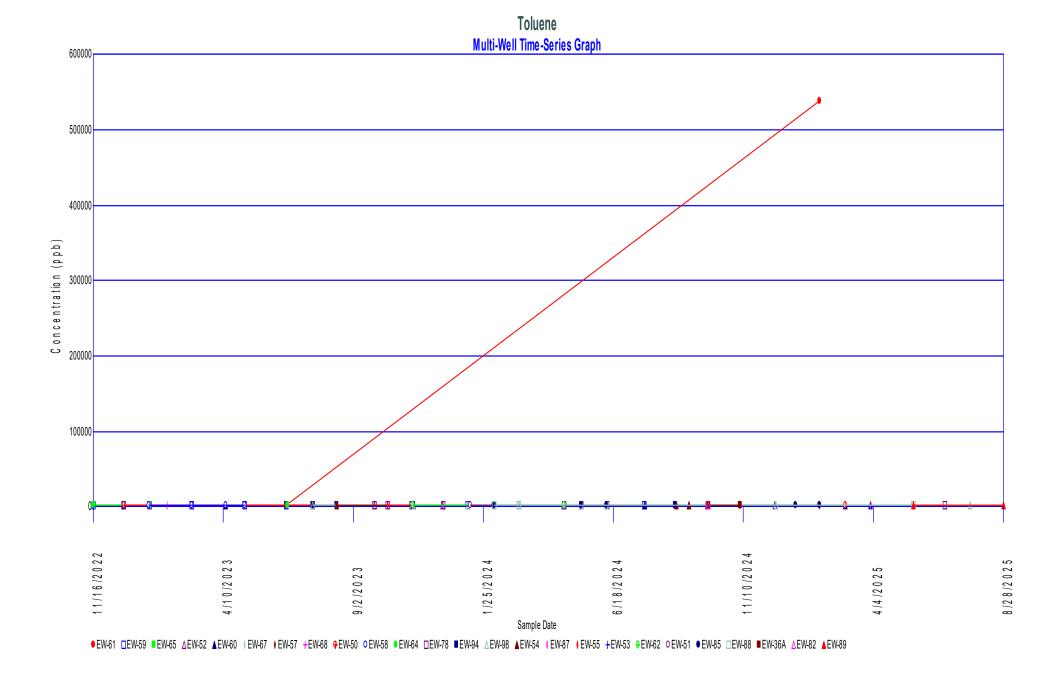


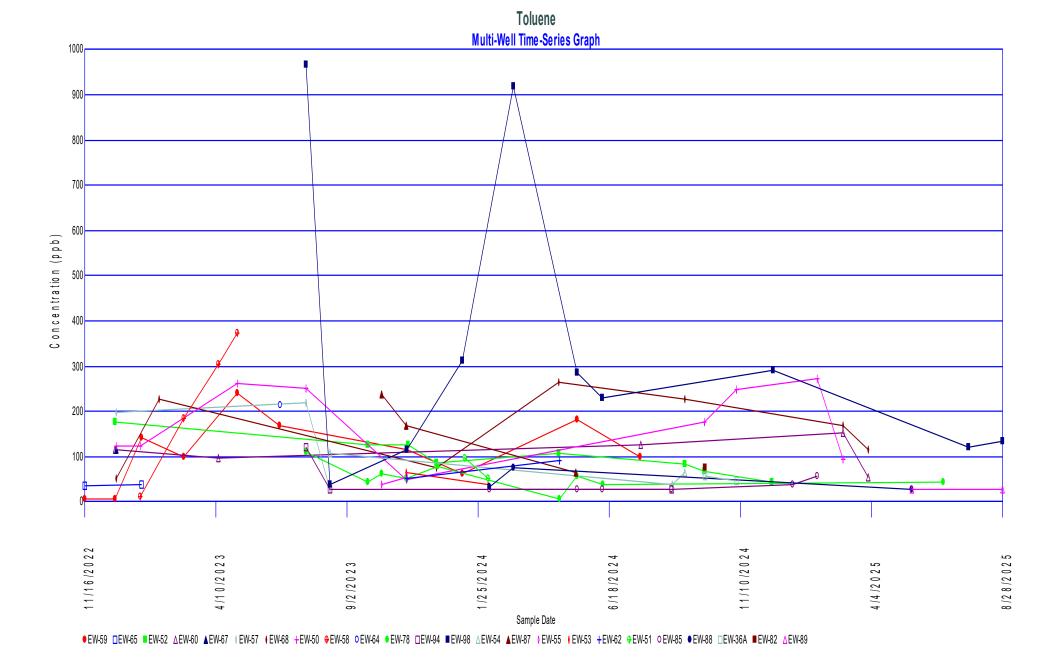


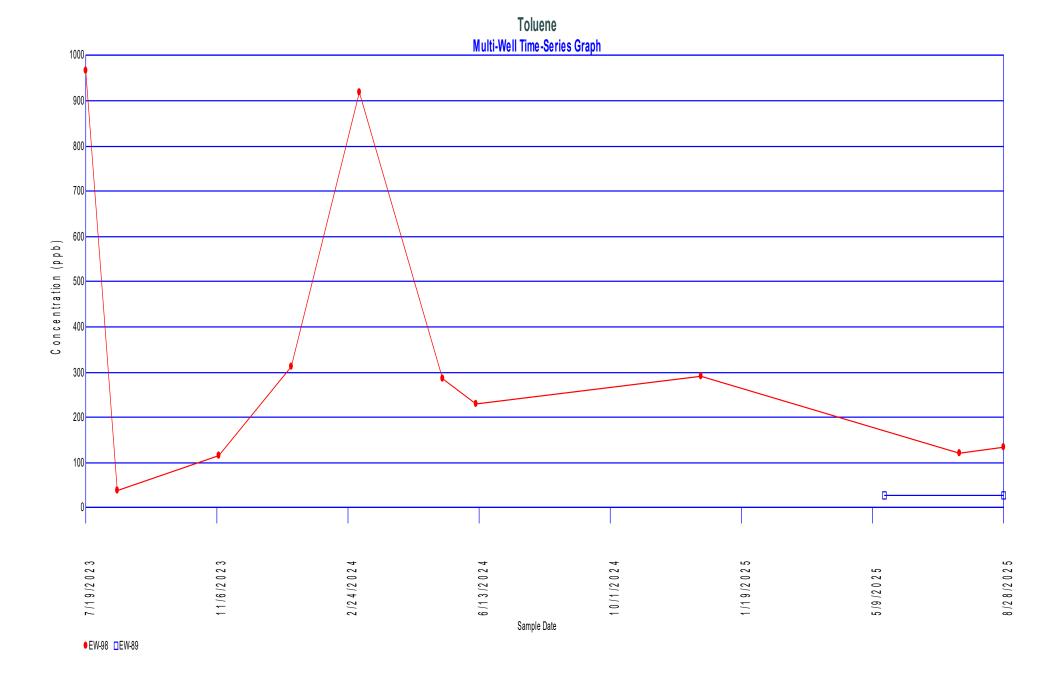


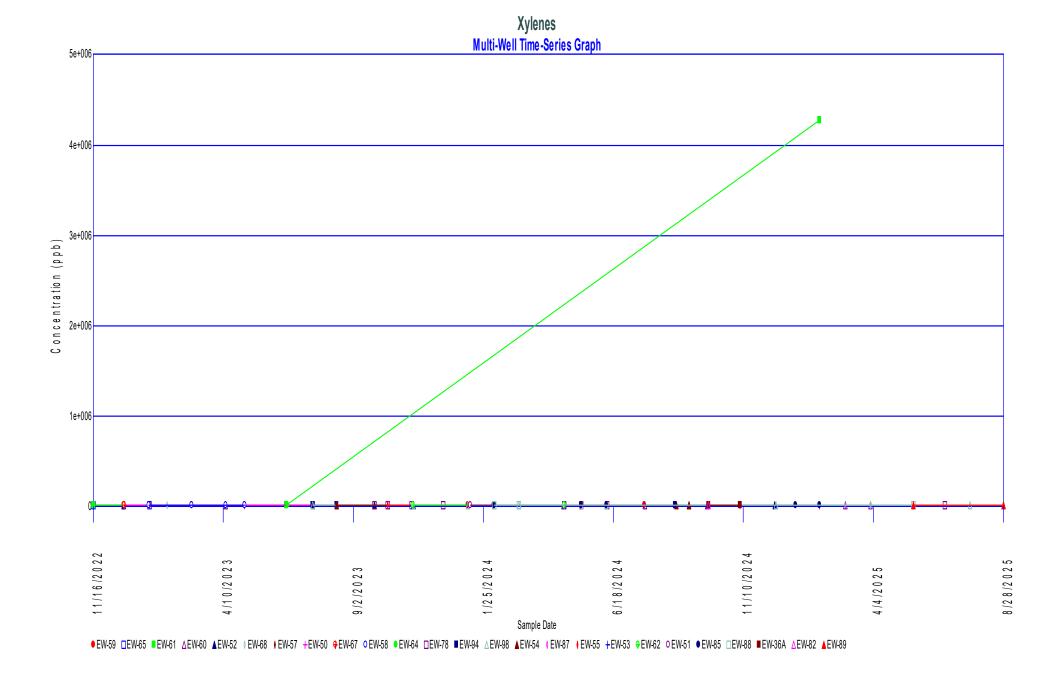


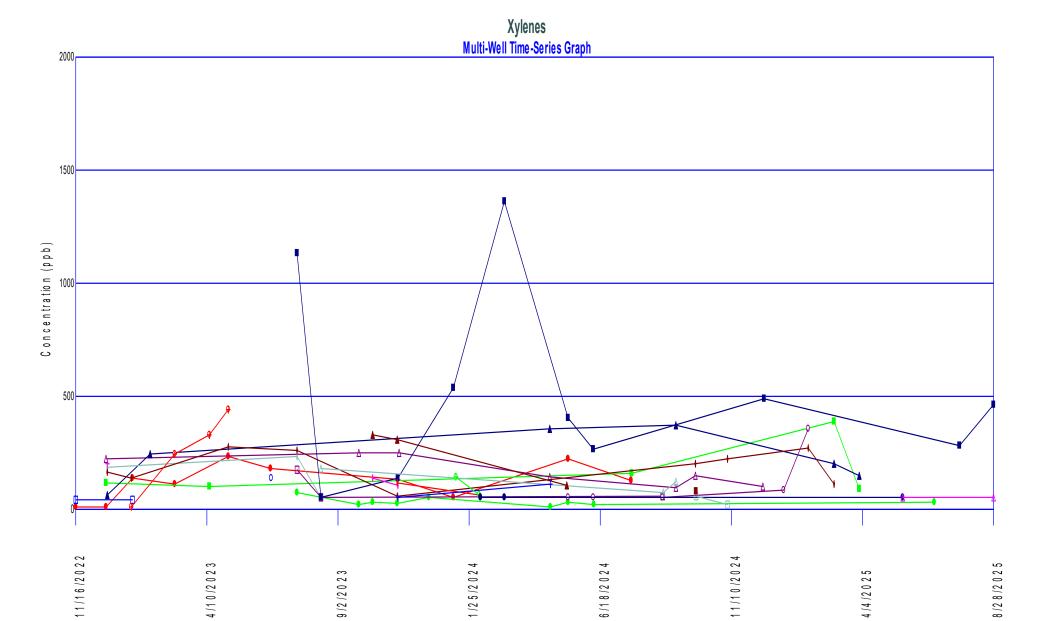


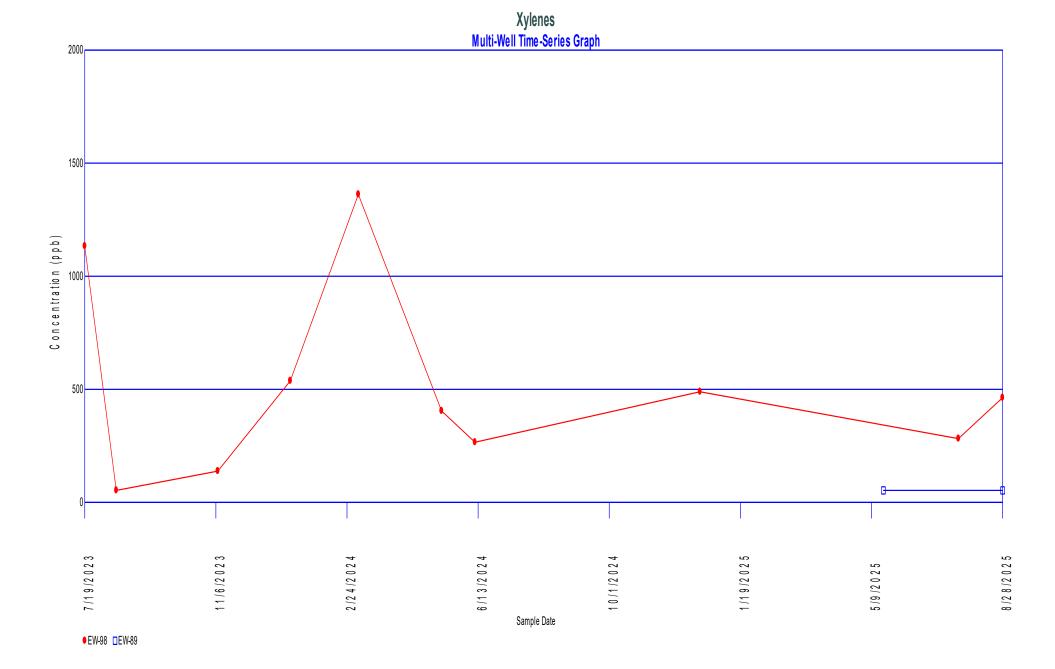

●EW-59 □EW-65 ■EW-52 △EW-60 ▲EW-50 | EW-57 | EW-67 + EW-68 ●EW-58 ○EW-64 ●EW-78 □EW-94 ■EW-98 △EW-54 ▲EW-55 | EW-87 | EW-87 + EW-62 ●EW-85 □EW-85 □E











●EW-59 □EW-65 ■EW-60 △EW-52 ▲EW-68 | EW-57 | EW-50 +EW-67 ●EW-58 ○EW-64 ●EW-78 □EW-94 ■EW-98 △EW-84 | EW-87 | EW-55 | EW-53 +EW-62 ●EW-51 ○EW-85 ●EW-88 □EW-86 ■EW-82 △EW-89

Sample Date

Appendix G

LFG Dewatering Pump Stroke Counter Data Analysis

Stroke Counter Data Analysis

During the monthly liquid depth measurement event and during LFG monitoring, SCS collected stroke counter data from the pumps installed in the GCCS extraction wells. These stroke counts were collected from 18 wells from August 29, 2025, to September 30, 2025. The recorded stroke count data from each well during September is included in Table G-1.

Based on the number of strokes in each well, SCS can estimate the number of gallons of liquid pumped from each well to assess pump performance. SCS assumed that each stroke from a float-style pneumatic pump correlates to approximately 0.3 gallons of liquid removed from the well. Blackhawk piston-style pumps remove approximately 0.11 gallons per stroke.

Table G - 1 Summary of Dual Extraction Well Pump Stroke Counter Data

Well	8/29/2025	9/30/2025	# of strokes between measurements	Estimated liquid removed (gallons)							
EW33B			-	0							
EW36A			-	0							
EW49			-	0							
EW50	1613002	1674597	61,595	18,479							
EW52	1239179	1239179	-	0							
EW53			-	0							
EW55	73387	73387	-	0							
EW59	3684657	3684734	77	23							
EW60	301079	346781	45,702	13,711							
EW61	182811	190785	7,974	2,392							
EW62			-	0							
EW65	137475	150120	12,645	3,794							
EW66	39057	39058	1	0							
EW67				0							
EW68	2662095	2662095	-	0							
EW76			-	0							
EW78	188074	237340	49,266	5,518							
EW82			-	0							
EW85	348642	351154	2,512	281							
EW87	340749	340749	-	0							
EW88	456751	467313	10,562	1,183							
EW89	482183	506736	24,553	7,366							
EW93	1409957	1409957	-	0							
EW94	1824096	1905705	81,609	9,140							
EW98	2507681	2648042	140,361	42,108							
TP-4	27486	27632	146	44							
	Total Estimated Liquid Removal 104,										