February 2025 Monthly Compliance Report

Solid Waste Permit No. 588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-37 | March 10, 2025

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sec.	tion			Page
	Intro	duction		4
1.0	Gas	Collectio	on	4
	1.1	Surface	e and Leachate Collection Emissions	4
		1.1.1	Surface Emissions	4
		1.1.2	Monitoring of Leachate Collection Components	5
	1.2	Existing	g Gas Extraction System Performance	6
	1.3	Remote	e Monitoring System	6
		1.3.1	Automated Wellhead Temperature Measurements	7
		1.3.2	Comparison with Manual Temperature Measurements	9
		1.3.3	Monthly Regulatory Wellhead Temperature Measurements	10
		1.3.4	LFG Sampling	10
2.0	Side	wall Odo	or Mitigation	11
	2.1	Perime	eter Gas Collection System	11
	2.2	Sidewa	all Odor Mitigation System	12
	2.3	Pilot Sy	ystem Construction	12
	2.4	Full Sys	stem Construction	12
3.0	Was	te Temp	erature Monitoring	13
	3.1	Summa	ary of Waste Temperature Monitoring	13
		3.1.1	Operational Challenges	15
		3.1.2	Probes with Consistent Temperatures over Time	15
		3.1.3	Probes with Changing Temperatures over Time	20
4.0	Lead	hate Ext	traction and Monitoring	24
	4.1	Dewate	ering Pump Operations and Maintenance	24
		4.1.1	Total LFG Liquids Removal	24
		4.1.2	Status of LFG Liquids Pumps	25
	4.2	Sampli	ng and Analysis Plan	28
		4.2.1	Sample Collection	28
		4.2.1	Quality Assurance and Quality Control	29
		4.2.2	Data Validation	30
		4.2.3	Laboratory Analytical Results	31
5.0	Settl	lement N	Nonitoring and Management	33
	5.1	Settlen	nent Monitoring and Management Plan	33
	5.2	Monthl	ly Surveys	33

Table of Contents

Sect	ion		Р	'age
		5.2.1	Topographic Data Collection	33
		5.2.2	Settlement Plate Surveys	39
6.0	Inter	mediate	Cover and EVOH Cover System	41
	6.1	Interme	ediate Cover Installation	41
	6.2	EVOH (Cover System Design	41
	6.3	EVOH (Cover System Procurement	42
	6.4	EVOH (Cover System Installation	42
7.0	Storr	nwater M	Management	42
8.0	Misc	ellaneou	JS	42
	8.1	Cease '	Waste Acceptance	42
	8.2	Long-Te	erm Plan	42
	8.3	Monthl	y Compliance Reports	42
	8.4	Commi	unity Outreach Program	42
		Stroke	Counter Data Analysis	2
			Figures	
Figur	e 1	Mont	thly Average Automated Wellhead Temperatures	8
Figur			mated vs. Manual Temperature Measurements	
Figur			s H_2 Concentration from gas wells in February 2025 with historical trend	
Figur			Placed Against the Sidewall	
Figur			perature Monitoring Probe Locations	14
Figur	e 6.		Average Temperatures for the Months of March 2023, March 2024, January 5, and February 2025	16
Figur	e 7.	TP-3	Average Temperatures for the Months of March 2023, March 2024, January	
Figur	- 8		5, and February 2025Average Temperatures for the Months of March 2023, March 2024, January	17
i igui	e o.	2025	5, and February 2025	18
Figur	e 9.	TP-8	Average Temperatures for the Months of March 2023, March 2024, January	
Figur	e 10.		5, and February 2025Average Temperatures for the Months of March 2023, March 2024, January	19
ı ıgaı	C 10 .	2025	5, and February 2025	20
Figur	e 11.		Average Temperatures for the Months of March 2023, March 2024, January	04
Figur	e 12.	2025 TP-5	5, and February 2025Average Temperatures for the Months of March 2023, April 2024, January 20	21 125.
		and F	February 2025	
Figur	e 13.		Average Temperatures for the Months of March 2023, March 2024, January 5, and February 2025	၁၁
Figur	e 14.		Dewatering Liquid Removal	
_	e 15.		nician Attempting to Access EW-96	

Table of Contents

Section		Page
Figure 16.	Solids in Landfill Gas Liquids Forcemain	
Figure 17.	Aerial Photo of the SWP No. 588 Landfill	
Figure 18.	1-Month Elevation Change Map	
Figure 19.	3-Month Elevation Change Map	
Figure 20.	1-Year Elevation Change Map Settlement Plate Locations	
Figure 21. Figure 22.	Elevation Change of Select Settlement Plates Over Time	
riguic 22.	Elevation onange of Select Settlement Flates Over Time	······
	Tables	
Table 1.	Summary of January Surface Emissions Monitoring	4
Table 2.	Leachate Cleanout Pipe Monitoring Results	5
Table 3.	February Temperature Exceedance Summary	
Table 4.	LFG Wellhead Sampling Summary	
Table 5.	Average SOMS Gas Composition	
Table 6.	Summary Wells Unable to be Sampled for Leachate	
Table 7. Table 8.	Quality Control Blank Summary Monthly LFG-EW Leachate Monitoring Event Summary	30 21
Table 9.	Elevation and Strain Data at Settlement Plate Locations	
100.00		
Appendic	ces	
Appendix A	Surface Emissions Monitoring Summary	
Appendix B	In-Waste Temperatures on Select Days in February	
Appendix C	Daily Wellhead Temperature Averages	
Appendix D	Solid Waste Permit 588 Daily Borehole Temperature Averages	
Appendix E	Monthly Topography Analysis	
Appendix F	Field Logs	
Appendix G	LFG Dewatering Pump Stroke Data Analysis	

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with Item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report provides updates regarding the progress towards completion of the items outlined in Appendix A of the Consent Decree between the City and VDEQ. The following sections outline progress during the month of February 2025 related to Solid Waste Permit (SWP) No. 588.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

SCS performed surface emissions monitoring on February 4, 2025; February 10, 2025; February 17, 2025; and February 24, 2025. These weekly surface emissions monitoring (SEM) events were performed in accordance with Item 1.i in Appendix A of the Consent Decree between the City and VDEQ. SCS also performs quarterly SEM at the landfill in accordance with regulatory requirements.

The details and results of the SEM are included in Appendix A. A summary of the outcomes is provided in Table 1.

- 10	ab	ole -	I. :	Summar	/ ot .	January	/ Surtac	ce Emissior	ıs N	10nit	oring	a

Description	February 4, 2025	February 10, 2025	February 17, 2025	February 24, 2025
Number of Points Sampled	168	168	167	167
Number of Points in Serpentine Route	100	100	100	100
Number of Points at Surface Cover Penetrations	68	68	67	67
Number of Exceedances	2	1	1	3
Number of Serpentine Exceedances	0	0	0	0
Number of Pipe Penetration Exceedances	2	1	1	3

In response to the SEM results, the City and the City's operations, monitoring, and maintenance contractor, SCS Field Services O&M (SCS-FS or SCS-FS) took the following actions:

- In response to a pipe penetration exceedance at EW-75, SCS-FS increased the vacuum at EW-75. Monitoring of this well during a follow-up event did not result in an exceedance.
- In response to a pipe penetration exceedance at EW-95, SCS-FS increased the vacuum at EW-95 on February 25, 2024. Monitoring of this well during a follow-up event did not result in an exceedance.
- In response to a pipe penetration exceedance at EW-76, SCS-FS increased the vacuum at EW-76.
- Pipe penetration exceedances occurred on February 24, 2025 at EW-53, EW-54, and EW-66 when those wells were disconnected for maintenance. Those wells were subsequently re-connected once the maintenance activities were completed.

1.1.2 Monitoring of Leachate Collection Components

SCS Field Services (SCS-FS) visited the Bristol Landfill on February 17, 26, and 27, 2025, and performed monitoring of the leachate, witness zone, northern cleanouts, and gradient control cleanouts at the southern end of the landfill. The results of that monitoring are included in Table 2.

Table 2. Leachate Cleanout Pipe Monitoring Results

Description	ID#	Record Date	CH4 (% by Vol)	CO2 (% by Vol)	O2 (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H2O)	Adj Static Pressure (in H2O)	System Pressure (in H2O)
Southern Cleanouts Gradient West	LC01	2/17/2025 8:10:40 AM	55.3	39.8	1.1	3.8	39.7	40.2	-15.81	-16.72	-18.19
Southern Cleanouts Gradient East	LC02	2/17/2025 8:15:06 AM	30.5	25.0	11.0	33.5	29.1	29.2	-18.16	-18.16	-18.26
Southern Cleanouts Leachate Center	LC03	2/17/2025 8:22:26 AM	7.9	4.7	19.4	68.0	26.9	26.8	-18.07	-17.99	-18.54
Southern Cleanouts Witness East	LC04	2/17/2025 8:27:13 AM	3.1	1.9	20.9	74.1	30.8	30.3	-4.71	-4.82	-18.35
Southern Cleanouts Leachate West	LC05	2/17/2025 8:30:52 AM	53.2	43.8	0.7	2.3	40.9	40.8	-18.51	-18.13	-18.51
Southern Cleanouts Gradient Center West	LC06	2/17/2025 8:35:46 AM	30.3	16.6	11.2	41.9	29.6	29.5	-16.02	-16.12	-18.32
Southern Cleanouts Leachate East	LC08	2/17/2025 8:41:55 AM	15.8	11.7	16.2	56.3	30.9	30.9	-18.27	-18.36	-18.76
Southern Cleanouts Gradient Center East	LC09	2/26/2025 12:33:36 PM	51.9	48.1	0.0	0.0	59.4	59.2	-4.97	-4.93	-18.82
Southern Cleanouts Leachate West	LC10	2/26/2025 12:37:22 PM	51.2	48.8	0.0	0.0	61.2	61.1	-17.29	-17.45	-19.20
Northern Cleanouts Leachate East	NC01	2/26/2025 12:47:58 PM	27.8	17.3	11.7	43.2	66.1	65.6	-4.90	-4.54	0.00
Northern Cleanouts Leachate Center	NC02	2/26/2025 12:50:13 PM	24.4	15.0	12.9	47.7	66.8	66.8	-5.02	-5.41	0.00
Northern Cleanouts Leachate West	NC03	2/26/2025 12:52:22 PM	10.1	5.6	17.6	66.7	66.9	66.9	-4.31	-4.34	0.00
Northern Cleanouts Witness East	NC04	2/26/2025 2:21:46 PM	59.5	36.2	0.0	4.4	66.2	66.0	-2.05	-2.04	0.00
Northern Cleanouts Witness Center	NC05	2/26/2025 2:24:02 PM	55.4	37.7	0.5	6.4	66.4	66.4	-2.38	-2.29	0.00

Description	ID#	Record Date	CH4 (% by Vol)	CO2 (% by Vol)	O2 (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H2O)	Adj Static Pressure (in H2O)	System Pressure (in H2O)
Northern Cleanouts Witness West	NC06	2/26/2025 2:25:43 PM	12.7	7.5	17.1	62.8	66.0	66.1	-2.70	-2.69	0.00
Northern Cleanouts Gradient East	NC07	2/27/2025 2:41:39 PM	64.1	34.6	0.0	1.4	56.3	56.3	-4.34	-4.38	0.00
Northern Cleanouts Gradient Center East	NC08	2/27/2025 2:43:19 PM	49.1	33.9	3.4	13.6	55.8	55.8	-4.38	-4.37	0.00
Northern Cleanouts Gradient Center West	NC09	2/27/2025 2:45:53 PM	0.1	0.2	21.5	78.2	58.6	61.1	-5.07	-5.07	0.00
Northern Cleanouts Gradient West	NC10	2/27/2025 2:47:39 PM	7.9	4.0	18.9	69.3	60.2	60.4	-4.47	-4.47	-0.01

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in the following sections of this report.

Additional actions taken by SCS-FS include the following:

- Adjustments to LFGCCS
- Maintenance of air lines and pressurized air infrastructure
- Maintenance of wellhead and other gas collection infrastructure
- Removal of liquids from landfill gas headers

Replacement of a section of blocked forcemain.

1.3 REMOTE MONITORING SYSTEM

In the Fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas wellheads. The purpose of the sensors is to record and transmit wellhead gas temperatures via cellular connection to a database managed by SCS-RMC. Since the initial installation, some sensors have been relocated and additional sensors have been added to the network. There are currently 59 wellhead temperature sensors operating within the wellfield.

The City is providing the minimum, maximum, and average daily temperature recorded by each sensor to VDEQ on a daily basis via email. Minimum, maximum, and average daily temperatures recorded by the remote monitoring system during the month of February are included in Appendix C. In addition, SCS previously prepared semi-monthly status updates to satisfy the conditions of compliance provision no. 2 of the Environmental Protection Agency (EPA) Region III letter, Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility, dated August 23, 2021. On August 2, 2023, VDEQ requested that such updates be included in the monthly compliance reports. Accordingly, this section is a summary of temperature monitoring activities during the monthly monitoring period of February 2025.

1.3.1 Automated Wellhead Temperature Measurements

SCS reviewed the automated hourly temperature measurements from February 2025, and observed the following:

• Wells with new sensors: The City contracted with SCS to increase the number of wells with automated wellhead temperature sensors in November of 2024. Many of these wells on which sensors were added were located in portions of the landfill known to exhibit higher temperatures. The higher temperatures in this region of the landfill are reflected in higher monthly average temperatures. The wells with sensors installed in November 2024 are shown in green in Figure 1, while wells with older sensors are shown in blue.

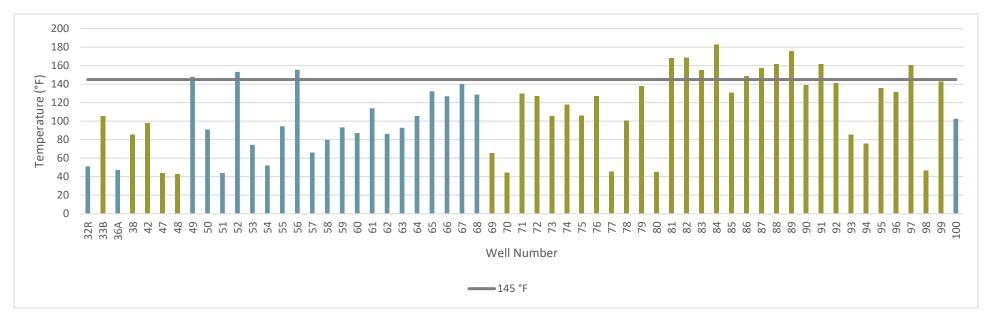


Figure 1. Monthly Average Automated Wellhead Temperatures¹

¹ 145°F is the NESHAP AAAA compliance threshold for well temperature, included here for reference.

1.3.2 Comparison with Manual Temperature Measurements

Per the approval issued by VDEQ on August 2, 2023, the Facility ceased dedicated daily manual temperature measurements in the Permit No. 588 Landfill. In lieu of these measurements, the City compares instantaneous hourly automated temperature measurements with temperatures measured at each wellhead using a handheld sensor during monthly compliance monitoring. These comparisons are shown in Figure 2, with the $\pm 8\,^{\circ}$ F deviation thresholds as prescribed in the VDEQ approval.

Temperatures outside the ±8°F deviation lines were observed at eight wells during this reporting period: EW-54, EW-58, EW-64, EW-71, EW-72, EW-92, EW-97, and EW-100.

The disparity between automated and manual temperature measurements at EW-58, 64, and 100 has persisted for several months. The City, SCS, and SCS-RMC are coordinating a test to assess the functionality of these three existing sensors (EW-58, EW-64, and EW-100).

LFG flow at EW-54 being under 2 cubic feet per minute (cfm) during the manual temperature check, and the temperature variance being close to the $\pm 8\,^{\circ}$ F threshold, SCS believes low LFG flow affected the automated sensor, allowing ambient temperature to influence the measurement and cause the discrepancy.

The remaining wells with temperature measurements outside the ±8°F threshold in February 2025 had sensors newly installed in November 2024 (EW-71, EW-72, EW-92, and EW-97). All of these also had automated temperature measurements higher than the manual temperature measurements in December and January. These wells have stainless steel wellheads, which have sample ports that are more difficult to use and prevent manual sampling probes from reaching fully into the gas stream. This causes the manual reading to be influenced by ambient temperatures and results in a lower temperature than the automated reading. SCS-FS is in the process of modifying the wellheads to accommodate a new sample port that allows from more precise measurements using a handheld instrument. Stainless steel wellheads are more challenging to modify, which has delayed modifications to address the discrepancy.

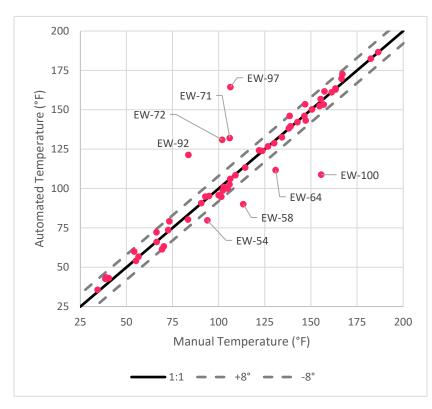


Figure 2. Automated vs. Manual Temperature Measurements

1.3.3 Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring was conducted on February 10, 2025 to comply with 40 CFR 60.36f(a)(5). Table 3 provides the status of exceedances recorded during this monitoring period.

Well ID	Initial Exceedance Date	Compliant Reading	Most Recent Reading	Duration of Exceedance	Status as of 2/1/2025
EW-56	2/10/25	2/14/25 158.7°F	2/25/25 154.7°F	5 days	Resolved within 15- day timeline
EW-84	2/3/25	N/A	2/27/25 185.2°F	25 days	Ongoing, within the 60-day timeline
EW-87	2/25/25	N/A	2/27/25 164.0°F	2 days	Ongoing, within the 15-day timeline

Table 3. February Temperature Exceedance Summary

1.3.4 LFG Sampling

SCS collected weekly LFG samples from wells with temperature exceedances lasting more than seven days using 1.5-L Summa canisters. The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H_2) content. As of March 1, 2025, the City has

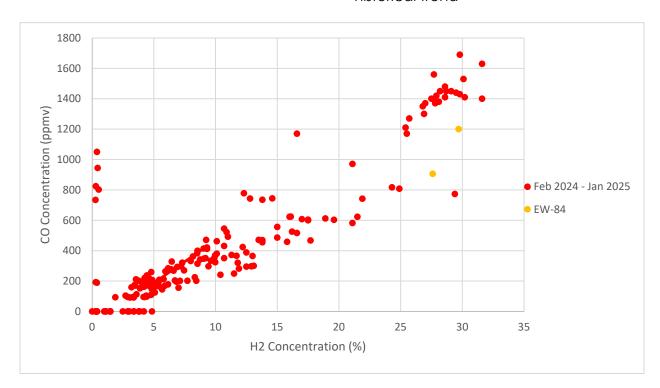

received lab results for sampling on January 30, 2025 and February 6, 2025 to fulfill the requirement in 40 CFR 63.1961(a)(5). Lab results are summarized in Table 4.

Table 4. LFG Wellhead Sampling Summary

Sample Da	te	1/30/25	2/6/25
EW 04	CO (ppmv)	1200	906
EW-84	H2 (Vol. %)	29.7	27.6

The presence of hydrogen in the samples collected during this monitoring period indicates that combustion reactions are unlikely. As shown in Figure 3, the carbon monoxide and hydrogen data collected during this period appear to be consistent with the data collected previously in 2024.

Figure 3. CO vs H₂ Concentration from gas wells in February 2025 with historical trend

2.0 SIDEWALL ODOR MITIGATION

On the City's behalf, SCS designed and constructed a system to control fugitive emissions emanating from the quarry sidewalls.

2.1 PERIMETER GAS COLLECTION SYSTEM

Refer to the April 2023 Monthly Compliance Report for the SWP No. 588 Landfill, for information about the perimeter gas extraction wells.

2.2 SIDEWALL ODOR MITIGATION SYSTEM

Refer to the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill, for information about the design of the sidewall odor mitigation system.

2.3 PILOT SYSTEM CONSTRUCTION

Refer to the February 2023 Monthly Compliance Report for the SWP No. 588 Landfill, for information about the design of the construction of the pilot sidewall odor mitigation system.

2.4 FULL SYSTEM CONSTRUCTION

Operation of the sidewall odor mitigation system is monitored on a monthly basis. During the month of February 2025, SCS-FS collected monitoring data at each wellhead under vacuum. A summary of system averages during the month is shown in Table 5.

Table 5. Average SOMS Gas Composition

Record Dates	Average CH4 [%]	Average CO ₂ [%]	Average O ₂ [%]	Average Bal Gas [%]
2/3/2025, 2/4/2025, 2/21/2025, 2/24/2025	4.9	7.8	17.7	69.6

The sidewall system average gas composition indicates lower methane content than other components in the LFGCCS. These gas composition measurements indicate that the SOMS is collecting a mixture of LFG escaping the sidewall and ambient air.

The City placed additional soil on select sections of the sidewall to reduce air intrusion and prevent emissions from bypassing the SOMS. A photo showing soil placed against the sidewall to improve SOMS performance is shown in Figure 4.

Figure 4. Soil Placed Against the Sidewall

3.0 WASTE TEMPERATURE MONITORING

SCS designed a monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

3.1 SUMMARY OF WASTE TEMPERATURE MONITORING

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP No. 588 Landfill. The locations of the temperature probes are shown in Figure 5.

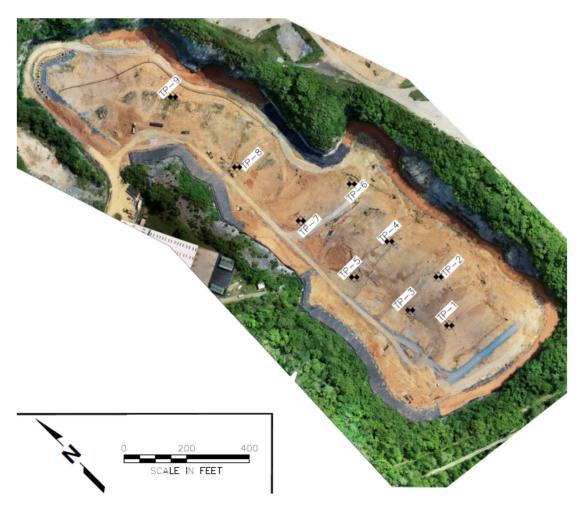


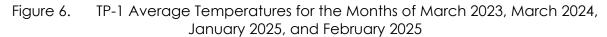
Figure 5. Temperature Monitoring Probe Locations

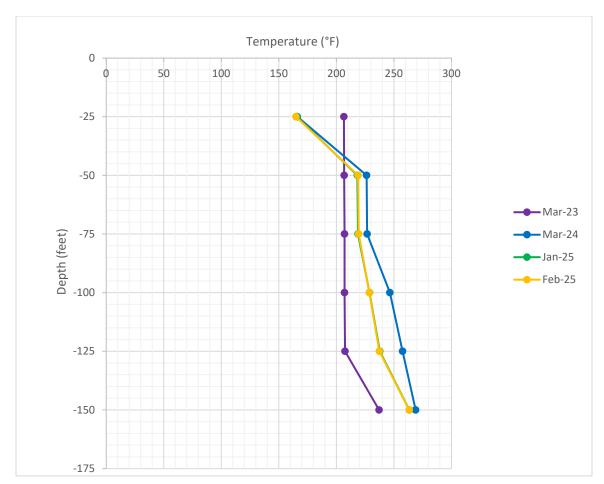
SCS began collecting temperature data daily on February 15, 2023.

Average daily temperatures recorded by the sensors for the month of February are included in Appendix D. Each week the average temperatures from a select day of that week are downloaded and compared to temperatures recorded during the previous week. Average daily temperatures recorded on select days during the month of February are shown in Appendix B. The average temperatures recorded for March 2023, March 2024, January 2025, and February 2025 are shown in Figures 6 through 13 on the following pages.

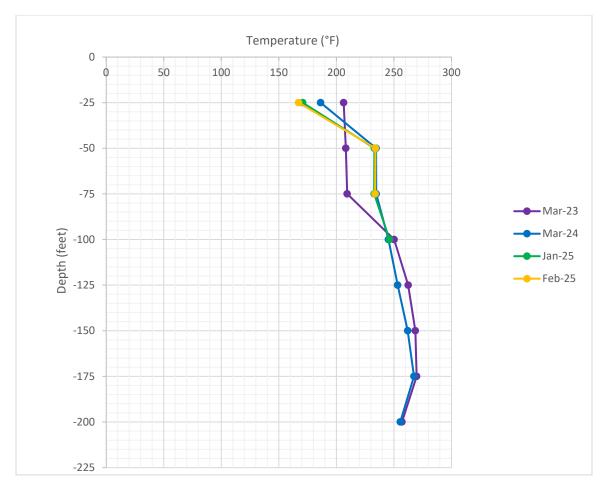
Overall, these data indicate that temperatures within the landfill are generally stable and are typical of those observed at elevated temperature landfills (ETLFs). The temperatures recorded are substantially lower than those associated with landfill fires or other combustion processes, which can exceed 1000°F, which is further evidence that the elevated temperatures are due to sources other than combustion.

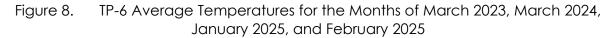
3.1.1 Operational Challenges

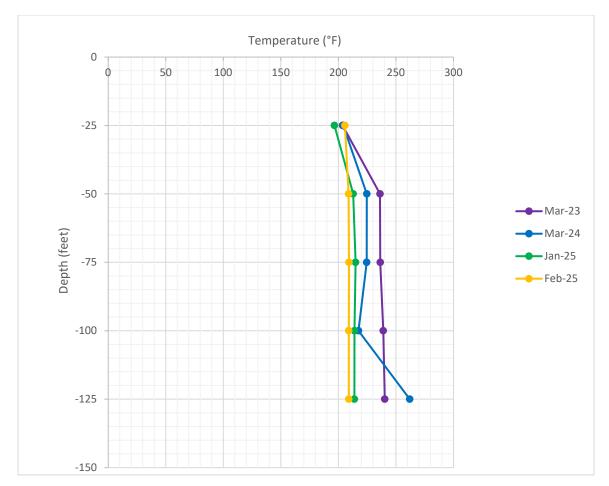

TP-3 began having sensor reading issues at the 150-foot depth at the end of October 2024. These issues continued through December 2024. Sensor readings resumed at the 25-foot depth in early December; however, sensor reading issues arose at the 125-foot and 175-foot depths in the latter half of December.

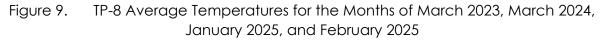

In January 2025, all sensors in TP-3 below the 75-foot level appeared to record erroneous temperatures intermittently. There was no improvement to the temperature signals after replacing the thermocouple interface card at TP-3 in January. This may indicate that the thermocouples are damaged. TP-2 stopped recording on 2/14/25, indicating thermocouple failure. Measurements at the 75-foot level and 150-foot level appeared erroneous in January as well.

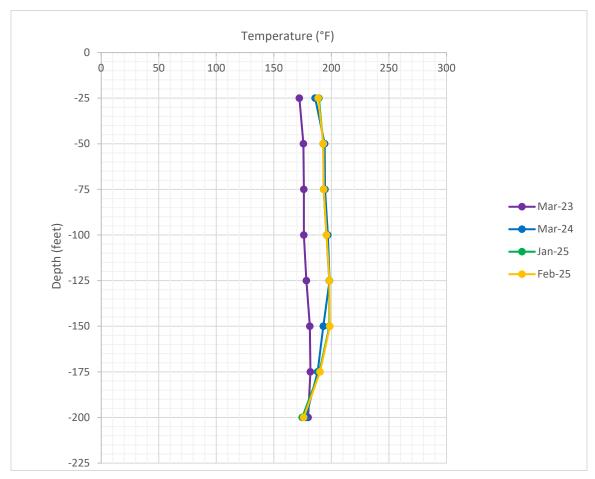
SCS is coordinating with the City to pull the string of thermocouples from these probes and assess their condition, potentially replacing them if needed.

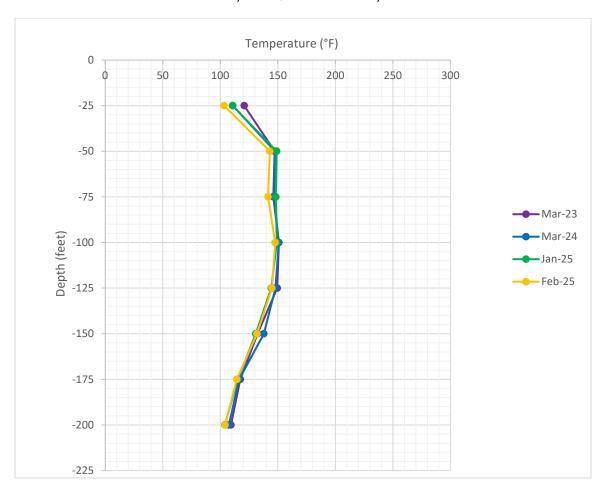
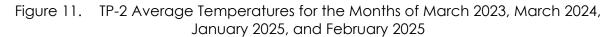

3.1.2 Probes with Consistent Temperatures over Time

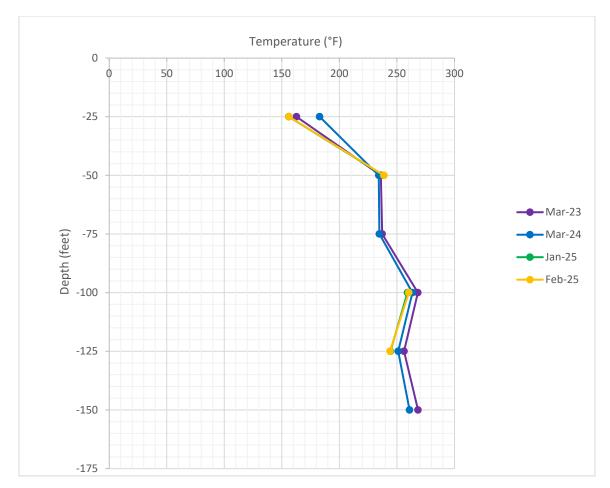

TP-1, TP-3, TP-6, TP-8, and TP-9 have exhibited relatively consistent monthly average temperatures over time (as shown in Figures 6, 7, 8, 9, and 10).

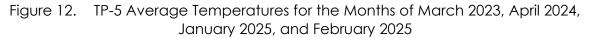


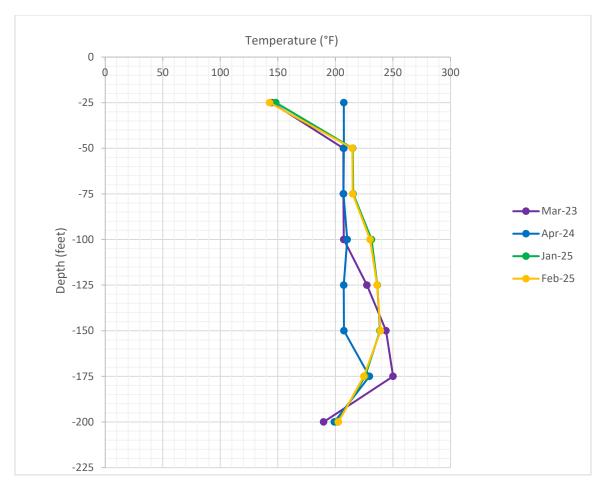


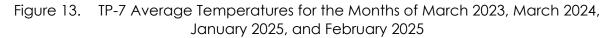


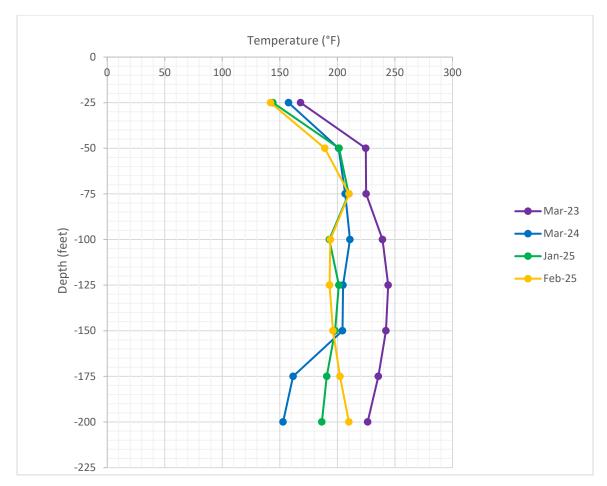




Figure 10. TP-9 Average Temperatures for the Months of March 2023, March 2024, January 2025, and February 2025


3.1.3 Probes with Changing Temperatures over Time


The temperatures at probes TP-2, TP-5, and TP-7 are more varied over time.


- TP-2: As previously noted in this section, the sensors located at the 75-foot and 150-foot depths are not currently providing accurate temperature measurements (see Figure 11).
- TP-5: The curve shape of the temperature averages with depth in Winter and Spring months are similar to one another while the Summer and Fall months follow a different pattern. Changes in temperature trends with depth at TP-5 have been observed since its installation. April 2024 is provided for this temperature probe instead due to recording issues in March 2024 (see Figure 12).
- TP-7: There is no identifiable trend over time in the average temperatures in TP-7. Changes in temperature trends with depth at TP-7 have been observed since its installation. (see Figure 13).



4.0 LEACHATE EXTRACTION AND MONITORING

The City is taking steps to improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals. Refer to Appendix G for narrative sections without updates.

4.1 DEWATERING PUMP OPERATIONS AND MAINTENANCE

4.1.1 Total LFG Liquids Removal

To improve the accuracy of the total landfill gas liquids flow rate, two flow meters were installed on the landfill gas liquid forcemains in December 2023. One flow meter was installed on the SWP No. 588 primary landfill gas liquid forcemain. The other was installed on the SWP No. 588 alternate landfill gas liquids forcemain, which also serves as the conduit for condensate from the SWP No. 498 landfill gas liquids and the SWP No. 588 stormwater pump. Given the improved accuracy of the flowmeter data compared to flow estimates based on collected stroke counter data, SCS prefers to use flow rates from the flowmeters to estimate total liquids removed when that data is available because the volume of liquid pumped per stroke is highly variable. Flow rates from individual pump performance data (e.g., stroke counts) will typically only be used to evaluate pump performance.

Figure 14 illustrates landfill gas liquids removal over the past year. During September, November, and December 2024 through February 2025, the liquids data recorded by the flowmeter were replaced with estimates from stroke counter data (colored in blue in Figure 14). These replacements were due to either the use of stormwater liquids for cleaning the dewatering forcemain or air intrusion in the dewatering forcemain, which caused the flowmeter readings to be nonrepresentative or erroneous.

SCS and the City continue to address the air intrusion in this LFG liquids flowmeter by installing additional air release valves and cleanouts to decrease interruptions to its function. SCS will continue to use stroke count estimates to track total liquids removal in the meantime. Stroke counts indicate approximately 109,000 gallons of liquid were pumped out of the landfill in February.

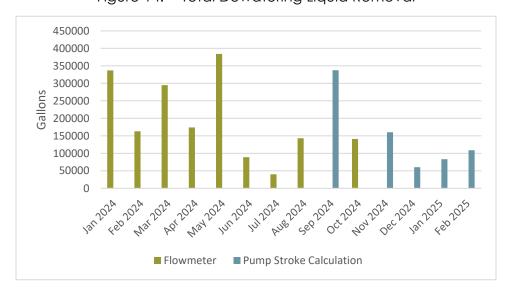


Figure 14. Total Dewatering Liquid Removal

4.1.2 Status of LFG Liquids Pumps

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations.

Daily pump checks and maintenance of spare pumps will continue indefinitely, along with pump replacements as needed. The City, along with SCS-FS, have found that the best pumps for the landfill's current conditions are QED pumps designed for high temperature operation. The City received eight additional QED pumps in October 2024; some were installed in new wells and others were reserved to swap/replace existing pumps for cleaning. The additional pumps will help with the rotation of field pumps needing maintenance and replacement going forward.

SCS has prepared the summary below to outline the operating conditions and specific challenges associated with each pump.

Wells with pumps working properly

- EW- 50, EW-59, EW-60, EW-61, EW-85, EW-93, EW-94, EW-98
 - The pump in EW-60 was swapped in February for cleaning
 - The check valve at EW-61 was replaced in February

Wells that received replacement parts or other non-routine fixes

- SCS-FS used a piece of heavy equipment to attempt to extract and replace the pumps in EW-57 and EW-90. The pumps were unable to be removed and are now considered to be permanently lodged in the well, rendering the wells unable to be pumped.
- The stroke counter on the pump in EW-78 was recently replaced due to a malfunction.
 Based on a review of stroke counter data, the pump removed approximately 10 gallons of liquid. The liquid column measured in February was 8 feet. SCS, SCS-FS, and the City will continue to monitor the pump.

Inaccessible Pumps/Wells

- The pump in EW-33B is stuck in the well casing and has been disconnected. SCS-FS is coordinating with the City to attempt to pull it with a piece of heavy equipment.
- The well casing at EW-49 needs to be cut down to perform maintenance on the pump.
 SCS-FS has scheduled these activities for March 2025.
- SCS-FS used heavy equipment to attempt to extract and replace the pump in EW-51. The pump was unable to be removed and is now considered to be permanently lodged in the well, rendering it unable to be fixed.
- SCS-FS used heavy equipment to extract and replace the pump in EW-53, then inspected
 and replaced it. SCS, SCS-FS, and the City will continue to monitor the pump for
 performance.
- The casings of EW-36A, EW-81, EW-83, EW-91, EW-92, and EW-96 extend too high above the existing ground level for a pump to be safely accessed. These are stainless steel

wells that cannot be lowered through conventional means. SCS-FS and the City are coordinating placement of additional soil around the wells to provide safe access. Figure 15 shows a technician attempting to access EW-96 for liquid level measurement.

Figure 15. Technician Attempting to Access EW-96

Other circumstances

 Based on a review of the stroke counter data, the pump in EW-52 pumped approximately 12 gallons of liquid during the month of February 2025. The pump was replaced on January 27, 2025, but has not been able to operate due to excessive forcemain pressure buildup. SCS-FS and the City are coordinating on modifications to the forcemain to address high pressures.

- The pumps in EW-54 and EW-67 were unable to be operated in February due to a clogged forcemain line. SCS-FS and the City are coordinating on efforts to clean the forcemain.
- The pump in EW-62 is offline due to a damaged airline. SCS-FS will evaluate the extent of damage and will coordinate with the City to procure materials needed for the repair.
- The pumps in EW-69 and EW-70 were removed because the liquid levels were found to be low after liquid level sampling.
- Pumps in the EW-74 and EW-75 were inoperable due to the build-up of solids on the pump. In EW-75, the solids were able to be cleared enough to reestablish vacuum on 2/26/25. SCS, SCS-FS, and the City will monitor the pump for functionality.
- EW-82, EW-87, EW-88, and EW-89 are scheduled to be removed and inspected by SCS-FS in March.

In addition to the challenges associated with the individual pumps, SCS-FS has generally observed high forcemain pressures and significant build-up of solids within the forcemain. An example of solids build-up within the forcemain is shown in Figure 16. This results in SCS-FS dedicating substantial amounts of time to relieving air pressure on the system. The City issued a solicitation for bids for installation of additional cleanouts and air release valves in the wellfield to address the issue on February 18, 2025.

Figure 16. Solids in Landfill Gas Liquids Forcemain

4.2 SAMPLING AND ANALYSIS PLAN

4.2.1 Sample Collection

On February 4, 2025, SCS collected a leachate sample from one Dual Phase LFG extraction well (EW-50, EW-61, and EW-85). Field measurements for dissolved oxygen, oxidation-reduction potential, pH, specific conductance, temperature, and turbidity were taken and recorded at the time of sample collection. The associated field logs are included in **Appendix F**. In February 2025, SCS' field staff were not able to collect samples from the wells summarized in **Table 6**. Additional details about the condition of these wells and planned maintenance activities are included in Section 4.1.2.

Table 6. Summary Wells Unable to be Sampled for Leachate

Wells With Pumps	Wells Without Pumps
Pump was not running at the time of monitoring for the following wells: EW-52, EW-55, EW-59, EW-60, EW-62, EW-64, EW-68, EW-69, EW-78, EW-93, and EW-98.	There was no pump at the time of the monitoring for the following wells: EW-63, EW-66, EW-70, EW-71, EW-72, EW-73, EW-74, EW-79, EW-86, EW-91, EW-95, and EW-99.

Table 6. Summary Wells Unable to be Sampled for Leachate

Wells With Pumps	Wells Without Pumps
 Pump was disconnected or off at the time of monitoring for EW-33B, EW-36A, EW-49, EW-51, EW-53, EW-54, EW-65, EW-67, EW-81, EW-82, EW-83, EW-87, EW-88, EW-89, and EW-90. 	There was no pump at the time of the monitoring for EW-75, EW-77, EW-80, and EW-84 and the liquid level could not be gauged as well was not under vacuum thus unsafe to open for water level.
Pump was not running for EW-96 and well was too tall to safely measure the liquid level.	There is no pump and the well appeared dry at the time of monitoring for EW-56.
Pump was not running, and the liquid depth was not measured at the time of monitoring for EW-76 and EW-94.	There was no pump at the time of the monitoring for EW-92 and EW-97 and well was too tall to safely measure the liquid level.
	There is no pump and the liquid depth was not measured at the time of monitoring for EW-58 and EW-100.

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia for analysis. Enthalpy's Virginia Division of Consolidated Laboratory Services (VELAP) certification is provided on the certificate of analysis (COA) included in **Appendix F**. The samples were analyzed for the parameters utilizing the analytical methods described in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan, December 1, 2022, prepared by SCS Engineers, except for volatile fatty acids (VFAs) as this analysis was inadvertently omitted from the sampling plan. Future lab analysis will include VFA analysis.

4.2.1 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for VOC analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analyses. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A summary of each of these is presented below:

 Method Blank – The method blank is deionized water subjected to the same reagents and manipulations to which site samples are subjected. Positive results in the method blanks may indicate either contamination of the chemical reagents or the glassware and implements used to store or prepare the sample and resulting solutions.

- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis. MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.
- LCS These samples consist of distilled/deionized water injected with the parameters of
 interest for single parameter methods and selected parameters for multi-parameter
 methods according to the appropriate analytical method. LCS samples are prepared and
 analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to
 monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are like the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

QC blank detects identified for the February 2025 monitoring event are shown on **Table 7**. The laboratory analysis report for the February 2025 monitoring event trip blank is included in **Appendix F**. The February 2025 monitoring event laboratory QA/QC report, including the method blank results, is included in the COA in **Appendix F**.

Table 7. Quality Control Blank Summary

Location ID	Parameter	Concentration (mg/L)	LOQ (mg/L)	
Method Blank	Copper	0.000487	0.001	

LOQ = laboratory's Limit of Quantitation mg/L = milligrams per liter

4.2.2 Data Validation

To identify analytical data that may not represent valid results, data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection Agency (EPA) guidance². Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with parameter detections less

² United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. November 2020. United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. November 2020.

than five times that of the trip blank, field blank, and/or method blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Samples with common laboratory contaminant parameter detections less than 10 times that of the trip blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not validated as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis.

No leachate results were flagged with a "B" qualifier for the February 2025 monitoring event as copper was the only QC blank detection and the only copper detection in the leachate samples was in EW-85 and the concentration was greater than five time the concentration detected in the QC blank. The January 2025 detections flagged with a "J" qualifier are shown on **Table 8**.

4.2.3 Laboratory Analytical Results

The analytical results for the February 2025 leachate samples collected from extraction wells EW-50, EW-61, and EW-85 are summarized in **Table 8**. The associated COA is included in **Appendix F**. Parameter results from February 2025 and previous monitoring events (November 2022 – January 2025) are presented on a table in **Appendix F**. Time-series plots of each VOC for the wells that have historically been sampled are included in **Appendix F**.

Table 8. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-50	EW-61	EW-85	LOD	100
Parameter	February 2025 Concentration			LOD	LOQ
Ammonia as N (ma/l)	1300		1400	73.1	100
Ammonia as N (mg/L)		1160		199	199
Biological Oxygen Demand (mg/L)	4420	43418.4	16200	0.2	2
	3630			1000	1000
Chemical Oxygen Demand (mg/L)			23400	5000	5000
		447000		100000	100000
NCharles and N. Caras (II.)	ND		ND	1	5
Nitrate as N (mg/L)		ND		10	50
Nitrita as N. (mag./l.)	ND		ND	1	5
Nitrite as N (mg/L)		ND		10	50
	8.15			0.75	1.25
Total Recoverable Phenolics (mg/L)			20.8	1.5	2.5
		516		495	495
Tabal Kalalah Niba ayar Isaa II		0.948		0.0398	0.0995
Total Kjeldahl Nitrogen (mg/L)	1190		1520	100	250
SEMI-VOLATILE ORGANIC COMPOUND (ug/L)					
	ND			100	200
Anthracene			ND	200	400
		ND		4160	4160

Table 8. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-50	EW-61	EW-85	LOD	100
Parameter	February	February 2025 Concentration			LOQ
TOTAL METALS (mg/L)	<u>'</u>				
Arsenic	0.17		0.73	0.005	0.01
		0.774 J		0.465	1
Barium	0.633		1.48	0.01	0.05
		ND		0.465	0.5
Cadmium	ND		0.0101	0.001	0.01
		ND		0.186	0.2
Clause main man	0.21		0.196	0.004	0.01
Chromium		0.0992		0.0465	0.05
Copper	ND		0.00381 J	0.003	0.01
		ND		0.0465	0.05
La suel	ND		0.02	0.01	0.01
Lead		0.0561		0.0465	0.05
		0.00011		0.000009	0.000009
Mercury	ND		ND	0.002	0.002
Nichal	0.09275		0.1021	0.01	0.01
Nickel		ND		0.0465	0.05
Calariana	ND		ND	0.0085	0.01
Selenium		ND		2.32	2.5
Cilcon	ND		ND	0.0006	0.01
Silver		ND		0.00232	0.0025
Zinc	0.0405 J		0.527	0.025	0.05
		0.136		0.0465	0.05
VOLATILE ORGANIC COMPOU	NDS (ug/L)				·
	6930			60	200
2-Butanone (MEK)			23900	150	500
		ND		24500	24500
	9820			700	1000
Acetone			46400	3500	5000
		ND		49000	98000
	739			8	20
Benzene			443	20	50
		559000		24500	24500
Ethylbenzene	164			8	20
			158	20	50
		2090000		24500	24500

Table 8. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-50	EW-61	EW-85	LOD	100	
Parameter	February 2025 Concentration		LOD	LOQ		
VOLATILE ORGANIC COMPOUNDS (ug/L)						
	1020			200	200	
Tetrahydrofuran			7490	500	500	
		ND		24500	24500	
	271			10	20	
Toluene			54.5	25	50	
		537000		24500	24500	
	267			20	60	
Xylenes, Total			354	50	150	
		4260000		24500	24500	

^{--- =} not available

5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below. Refer to Appendix G for narrative sections without updates.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

Information about the Settlement Monitoring and Management Plan for the SWP No. 588 Landfill and a copy of the plan can be found in the November 2022 Compliance Report for the SWP No. 588 Landfill.

5.2 MONTHLY SURVEYS

5.2.1 Topographic Data Collection

SCS collected topographic data of the Solid Waste Permit No. 588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone) on February 18, 2025. On this date there was snow present on the ground that impacted the collection of topographic data. Aerial imagery collected on February 18, 2025 is depicted in Figure 17. The topographic data collected is shown on Sheet 4 in Appendix E.

J = Constituent was detected at a concentration above the laboratory's LOD but below the laboratory's LOQ. Concentration is estimated and not validated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

Figure 17. Aerial Photo of the SWP No. 588 Landfill

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on January 14, 2025. A drawing depicting the January 14, 2025 topography is included as Sheet 3 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, the data shows a fill of 600 cubic yards across the site. Fill may have been placed on the site to address differential settlement, surface emissions, and to provide access to LFG collection vertical wells. During that same time period, calculations indicate a "cut" volume of approximately 17,700 cubic yards. Cut volumes are typically attributed to settlement. This resulted in a net volume decrease of approximately 17,100 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 18. Areas in yellow, orange, and red indicate where elevations decreased and areas in green indicate

areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 5 in Appendix E.

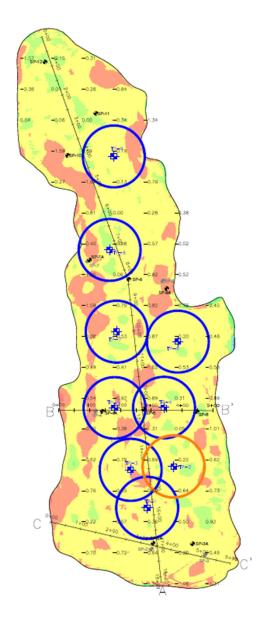


Figure 18. 1-Month Elevation Change Map

The locations of in-waste temperature monitoring probes are also shown on Figure 18, Figure 19, and Figure 20. The circles around the probes in each of these figures are indicative of the average borehole temperature. The circles shown are offset from the probes for clarity only and do not necessarily indicate temperatures measured at locations away from the probe. Probes with a blue circle around them typically have an average temperature less than 200°F across the full depth of the probe. Probes with an orange circle around them typically have an average temperature greater than 200°F and less than 250°F across the full depth of the probe. There were no probes

measuring average temperatures greater than 250°F and less than 300°F during the month of February 2025.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation decrease between the flyover dates was 0.6 feet.

SCS also compared the topographic data collected in February to the topographic data collected on November 12, 2024. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 12,800 cubic yards. During that same time period calculations indicate approximately 900 cubic yards of fill were placed on the landfill, for a net decrease in waste volume of 11,900 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 19. Areas in orange/yellow indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 6 in Appendix E.

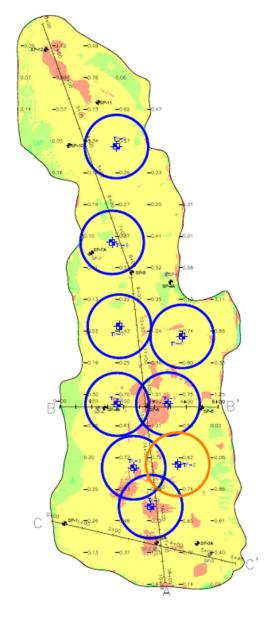


Figure 19. 3-Month Elevation Change Map

Based on the area of the landfill and the net volume change, the average elevation decrease was approximately 0.4 feet.

SCS also compared the topographic data collected in February 2025 to the drone topographic data collected on February 15, 2024. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 28,200 cubic yards. During that same time period approximately 6,800 cubic yards of construction-related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction and ongoing maintenance (i.e. filling to compensate for settlement). This resulted in a net volume decrease of approximately 21,400 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 20. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 7 in Appendix E.

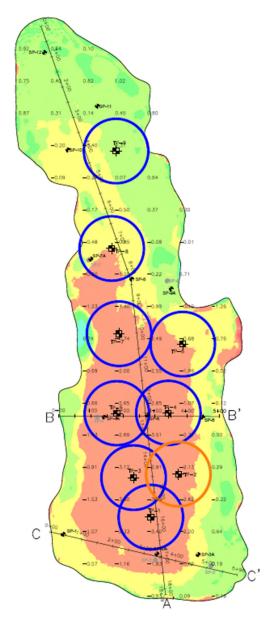


Figure 20. 1-Year Elevation Change Map

The largest settlement occurred primarily at the southern end of the landfill where the waste settled by 5 feet or more in some areas. Significant settlements are typical of elevated temperature landfill conditions. The landfill perimeter exhibited an increase in elevation, likely due to soil placement associated with construction and/or ongoing maintenance of the Sidewall Odor Mitigation System. There were variations in elevation associated with soil stockpiling operations.

Based on the landfill area and the net volume change, the average elevation decrease was approximately 0.7 feet.

SCS will collect topographic data covering the landfill surface again in March using photogrammetric methods via UAV. This data will be compared to the data collected in March 2024, December 2024, and February 2025.

5.2.2 Settlement Plate Surveys

On November 7, 2022, SCS field services installed 12 settlement plates on the Solid Waste Permit No. 588 landfill. Five new settlement plates (SP-2A, SP-3A, SP-4A, SP-7A, and SP-9A) installed during June 2024 are intended to replace non-operational settlement plates. The settlement plate locations are depicted in Figure 21 and on Sheet 1 in Appendix E. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan.

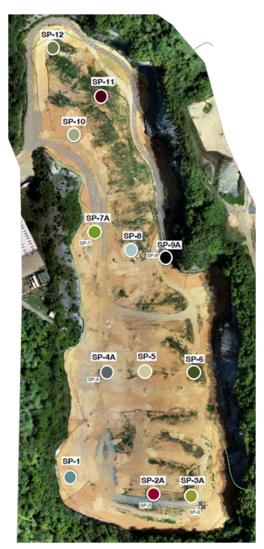


Figure 21. Settlement Plate Locations

The locations of the settlement plates were surveyed on November 14, 2022. The locations of the settlement plates were initially surveyed on November 14, 2022, and have been surveyed monthly thereafter. The survey coordinates and elevation changes of the settlement plates are shown in Table 8.

Table 9. Elevation and Strain Data at Settlement Plate Locations

Settlement Plate	Northing	Easting	Elevation on Feb. 14, 2025	Elevation Change Since Jan. 8, 2025	Strain³ Since Jan. 8, 2024	Elevation Change Since Installation	Strain/Year
SP-1	3,397,887.5	10,412,080.6	1,829.0	-0.1	-0.1%	-5.4	-1.1%
SP-2A	3,397,823.0	10,412,370.6	1,793.5	-0.3	-0.2%	-2.2	-2.1%
SP-3A	3,397,820.1	10,412,498.2	1,779.3	-0.1	-0.1%	-0.9	-1.2%
SP-4A	3,398,247.1	10,412,206.9	1,803.3	-0.3	-0.2%	-1.9	-1.6%
SP-5	3,398,255.8	10,412,339.5	1,789.0	-0.3	-0.1%	-11.8	-1.0%
SP-6	3,398,248.8	10,412,509.9	1,773.1	-0.1	-0.1%	-4.5	-1.0%
SP-7A	3,398,731.8	10,412,157.9	1,822.5	-0.1	-0.1%	-0.9	-1.1%
SP-8	3,398,678.2	10,412,290.9	1,800.1	-0.2	-0.1%	-7.2	-0.6%
SP-9A	3,398,644.2	10,412,416.2	1,788.3	-0.1	-0.1%	-0.5	-0.5%
SP-10	3,399,080.2	10,412,093.3	1,837.0	-0.1	0.0%	-3.2	-0.4%
SP-11	3,399,216.3	10,412,183.8	1,814.6	0.0	0.0%	-1.7	-0.2%
SP-12	3,399,381.7	10,412,019.6	1,809.7	-0.1	-0.1%	-0.9	-0.8%

Prior to April 2024, the City's in-house surveyor read the settlement plate elevations. Starting April 2024, the settlement plate elevations were measured by FEI Civil Engineers and Land Surveyors.

Settlement Plates 2A and 4A demonstrated larger settlements than at other locations. Settlement Plates 2A and 4A are located in the southern end of the landfill. This area is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlements values are typical of elevated temperature landfill conditions.

The change in elevation at Settlement Plates 10 and 11 was lower and more representative of typical settlement at municipal landfills with waste of similar depth.

The settlement observed at the rest of the settlement plates fell in between these two categories.

Figure 22 shows the changes in elevation of select settlement plates over time. For the purposes of recording data in this figure, times are reported in days since the landfill was required to stop accepting waste.

_

³ Strain is defined as the change in elevation divided by the estimated waste depth.



Figure 22. Elevation Change of Select Settlement Plates Over Time

The settlement plates will be surveyed again during March 2025. The elevations surveyed will be compared to the elevations surveyed the previous months.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City has taken steps to provide intermediate and temporary cover of the wastes in the landfill. The section below outline the steps taken by the City and future plans related to temporary cover.

6.1 INTERMEDIATE COVER INSTALLATION

A summary of the intermediate cover installation can be found in the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill.

6.2 EVOH COVER SYSTEM DESIGN

An amendment to the Consent Decree was issued on March 21, 2024 which requires an ethylene vinyl alcohol (EVOH) deployment no later than December 1, 2026. The amended Consent Decree also requires regular settlement assessments, and the EVOH deployment may occur earlier if settlement rates appear acceptable. The first of these assessments was submitted to VDEQ on April

11, 2024. The most recent assessment was submitted on January 13, 2025. The next assessment will be submitted on or before April 10, 2025.

6.3 EVOH COVER SYSTEM PROCUREMENT

Information about the procurement of materials for the EVOH cover system can be found in the January 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

6.4 EVOH COVER SYSTEM INSTALLATION

As outlined in the amendment to the Consent Decree dated March 21, 2024, the deadline for EVOH Cover System installation has been extended. The City is conducting the assessments described in Section 6.2 to determine the appropriate time for installation.

7.0 STORMWATER MANAGEMENT

Information about the most recent stormwater management plans, basin location, plan implementation, long-term control, and stormwater monitoring for the SWP No. 588 Landfill can be found in the December 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit No. 588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

Refer to the December 2022 and March 2023 Monthly Compliance Reports for the SWP No. 588 Landfill for additional information about the development and implementation of the Monitoring, Maintenance, and Repair Plan.

8.3 MONTHLY COMPLIANCE REPORTS

As described in the introduction this report is intended to provide comprehensive updates regarding progress towards completion of each item described in Appendix A of the Consent Decree between the City and VDEQ.

8.4 COMMUNITY OUTREACH PROGRAM

The City's consultant leading community outreach, McGuireWoods Consulting, prepared a summary of the actions taken as part of their community outreach efforts. For the month of February 2025, those actions include:

Ongoing basis: Four (4) posts on each the BristalVALandfill.org site and the existing City
of Bristol Landfill Notifications and Information page covering important updates
including:

- Progress updates related to remediation efforts and normal maintenance activities at the Quarry Landfill
- Updates at the Quarry Landfill included replacing faulty pumps; cleaning of the benzene/leachate tanks and sending the extracted waste to an off-site facility; assessing issues with the stormwater flow meter; working with our engineering partners to ensure temperature probes within the landfill are working correctly; pumping out stormwater that accumulated during heavy rains; clearing frozen sump lines; fixing vacuum issues with wells; adding soil around the Sidewall Odor Mitigation System to improve efficiency; and moving soil to address areas within the landfill that are experiencing settlement issues.
- The City has also issued a bid request for a new permanent flare and emergency generator at the landfill. The new permanent flare, which will require a new air permit, would double the capacity of the previous flare, and matches the capacity of current temporary flare.
- Weekly updates on landing page on Bristolvalandfill.org titled "Air Sampling and Air Monitoring" that includes a summary of the air sampling and monitoring being conducted by Bristol, VA around the quarry landfill.
 - Website now includes weekly air monitoring reports starting from May 15, 2023, and running through February 9, 2025. Additional reports will be posted as the they are received.
- E-mail communication sent to the list of members of the public signed up through the Bristol, VA website, the BristolVALandfill.org website, or at subsequent Open Houses to receive information via e-mail
 - E-mails sent included weekly remediation progress update and links to website updates and latest news articles.
 - All submissions are reviewed by the City and DEQ.

Appendix A

Surface Emissions Monitoring Summary

Quarterly SEM

SCS performed the Fourth Quarter surface emissions monitoring event on December 4, 2024. The results of the Quarterly SEM were summarized in the December 2024 Compliance Report for the SWP No. 588 Landfill. A report outlining the results and exceedance locations will be included in the Semi-Annual Report to be submitted to VDEO prior to March 1, 2025.

The First Quarter 2025 SEM Event is scheduled to be completed by March 31, 2025.

Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, the monitoring in February generally conformed to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The SEM route included the waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at applicable surface cover penetrations within the waste footprint.

The Facility submitted letters to VDEQ describing the results of the February monitoring events on February 12, 2025; February 19, 2025; February 26, 2025; and March 5, 2025. Copies of those letters are included in this Appendix.

On February 20, 2024, the City submitted an Alternate Remedy Request for corrective actions for five exceedance locations where an exceedance was recorded on at least three separate monitoring events throughout the Fourth Quarter 2024. Adjustments to vacuum, placement of additional cover soil, and well dewatering improvements (the corrective actions outlined in this request) have been successful at reducing methane concentrations below the regulatory threshold at all five locations as of the February 24, 2025 monitoring event.

The Facility is also taking proactive steps to limit fugitive surface emissions including dewatering activities, additional cover soil placement, and LFG system maintenance and tuning to increase gas extraction.

SCS ENGINEERS

February 19, 2025 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – February 10, 2025

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Management Facility located in Bristol, Virginia on February 10, 2025. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	168
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	68
Number of Exceedances	1
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	1

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

A summary of ongoing exceedance points is provided in Table 2.

 Table 2.
 Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	2/10/25 Event	2/10/25 Event Result	Comments
EW-82	10/16/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	10/21/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-76	11/26/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-86	11/26/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-97	12/18/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-90	1/17/25	N/A	Passed	Requires 1-Month Retest
EW-80	1/23/25	N/A	Passed	Requires 1-Month Retest
EW-75	1/30/25	2 nd 10-Day Retest	Passed	Requires 1-Month Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

William J. Fabrie Staff Professional SCS Engineers Lucas S. Nachman Senior Project Professional SCS Engineers

Lucus D. Nachman

LSN/WJF

cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

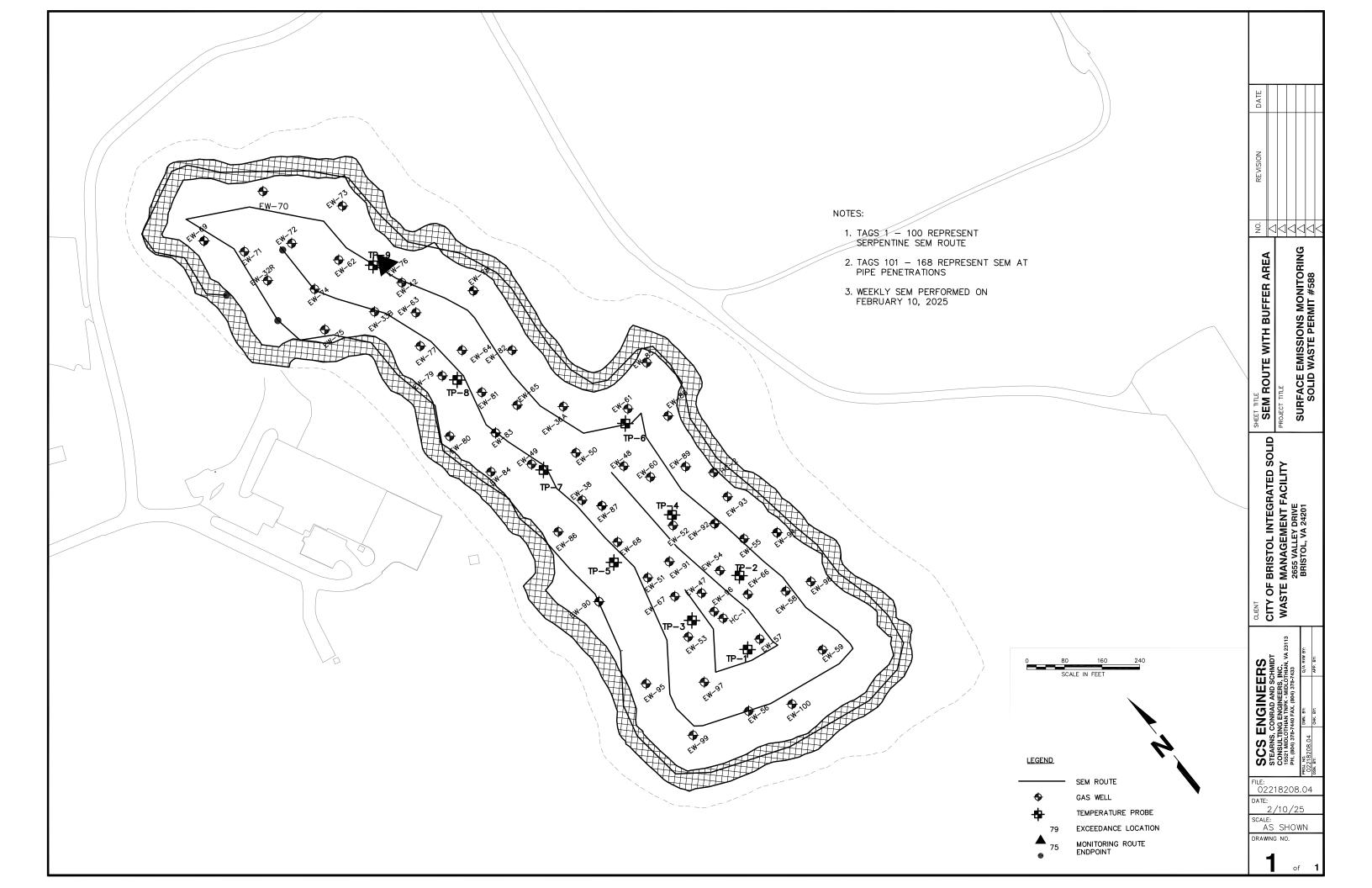
		Methane		GPS Co	ordinates	
ID	#	Concentration	Compliance	Lat.	Long.	Comments
1	l	1.9 PPM	OK			Start Serpentine Route
2	2	1.8 PPM	OK			
3	3	10.4 PPM	OK			
4	4	1.8 PPM	OK			
5	5	1.7 PPM	OK			
ć	3	1.6 PPM	OK			
7	7	1.6 PPM	OK			
	3	1.6 PPM	OK			
	7	1.6 PPM	OK			
1	0	1.6 PPM	OK			
1	1	1.6 PPM	OK			
	2	1.6 PPM	OK			
	3	1.6 PPM	OK			
	4	1.6 PPM	OK			
	5	1.6 PPM	OK			
	6	2.8 PPM	OK			
	7	2.8 PPM	OK			
	8	3.0 PPM	OK			
	9	3.9 PPM	OK			
	0	2.5 PPM	OK			
2		11.6 PPM	OK			
	2	1.9 PPM	OK			
	3	4.6 PPM	OK			
	4	2.9 PPM	OK OK			
2		1.7 PPM	OK			
	6	2.9 PPM	OK			
	7	1.9 PPM	OK			
	8	4.7 PPM	OK OK			
	9	14.3 PPM	OK OK			
	0		OK OK			
3		19.3 PPM	OK OK			
		9.1 PPM				
	2	10.2 PPM	OK			
	3	141.0 PPM	OK OK			
	4	471.0 PPM	OK			
	5	105.0 PPM	OK			
	6	73.9 PPM	OK			
	7	11.5 PPM	OK			
	8	2.8 PPM	OK			
	9	2.8 PPM	OK			
4		4.3 PPM	OK			
4		3.7 PPM	OK			
4		2.4 PPM	OK			
4		2.4 PPM	OK			
4		1.8 PPM	OK			
4		1.6 PPM	OK			
4		1.6 PPM	OK			
4	7	1.6 PPM	OK			

	Methane					
ID#	Concentration	Compliance	Lat.	Long.	Comments	
48	2.2 PPM	ОК				
49	2.0 PPM	OK				
50	2.1 PPM	OK				
51	1.9 PPM	OK				
52	1.6 PPM	OK				
53	4.3 PPM	OK				
54	1.7 PPM	OK				
55	1.5 PPM	OK				
56	2.3 PPM	OK				
<i>57</i>	2.3 PPM	OK				
58	2.8 PPM	OK				
59	1.9 PPM	OK				
60	1.5 PPM	OK				
61	2.1 PPM	OK				
62	2.3 PPM	OK				
63	1.8 PPM	OK				
64	1.9 PPM	OK				
65	2.0 PPM	OK				
66	2.4 PPM	OK				
67	2.7 PPM	OK				
68	3.3 PPM	OK				
69	2.9 PPM	OK				
70	7.8 PPM	OK				
<i>7</i> 1	6.0 PPM	OK				
72	8.4 PPM	OK				
73	1.9 PPM	OK				
74	2.4 PPM	OK				
75	80.9 PPM	OK				
76	6.4 PPM	OK				
77	9.4 PPM	OK				
78	3.5 PPM	OK				
79	5.3 PPM	OK				
80	1.7 PPM	OK				
81	1.7 PPM	OK				
82	1.4 PPM	OK				
83	1.4 PPM	OK				
84	1.7 PPM	OK				
85	2.7 PPM	OK				
86	2.4 PPM	OK				
87	2.4 PPM	OK				
88	3.0 PPM	OK				
89	1.4 PPM	OK				
90	3.4 PPM	OK				
91	2.0 PPM	OK				
92	2.3 PPM	OK				
93	12.6 PPM	OK				
94	9.4 PPM	OK				

	Methane		GPS Cod	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
95	2.0 PPM	OK			
96	1.4 PPM	OK			
97	2.2 PPM	OK			
98	2.0 PPM	OK			
99	1.6 PPM	OK			
100	1.4 PPM	OK			End Serpentine Route
101	93.5 PPM	OK			EW-52
102	16.6 PPM	OK			TP-4
103	44.6 PPM	OK			EW-60
104	9.0 PPM	OK			EW-48
105	13.0 PPM	OK			TP-6
106	2.7 PPM	OK			EW-61
107	1.6 PPM	OK			EW-50
108	108.0 PPM	OK			EW-67
109	3.7 PPM	OK			EW-47
110	64.7 PPM	OK			EW-54
111	2.3 PPM	OK			EW-55
112	21.6 PPM	OK			EW-92
113	2.0 PPM	OK			EW-91
114	3.6 PPM	OK			EW-96
115	6.2 PPM	OK			TP-2
116	191.0 PPM	OK			EW-66
110 117	2.2 PPM	OK			EW-58
118	16.8 PPM	OK			EW-57
119	4.8 PPM	OK			TP-1
120	15.9 PPM	OK			EW-59
121	19.2 PPM	OK			EW-100
122	13.0 PPM	OK			EW-56
123	154.0 PPM	OK			EW-97
124	81.1 PPM	OK			EW-53
125	1.4 PPM	OK			TP-3
126	4.9 PPM	OK			EW-51
127	1.7 PPM	OK			TP-5
128	3.5 PPM	OK			EW-68
129	1.6 PPM	OK			EW-87
130	1.4 PPM	OK OK			EW-38
131	2.3 PPM	OK OK			TP-7
132	4.3 PPM				EW-49
133		OK OK			EW-83
134	1.3 PPM	OK OK			
	1.2 PPM				EW-65
135	1.4 PPM	OK			EW-81
136	2.4 PPM	OK OK			TP-8
137	2.3 PPM	OK OK			EW-64
138	2.9 PPM	OK OK			EW-63
139 140	2.6 PPM 4644.0 PPM	OK HIGH_ALRM	36.60120	-82.14801	EW-42 EW-76

	Methane		GPS Coordinates		
ID#	Concentration	Compliance	Lat.	Long.	Comments
141	3.7 PPM	OK			TP-9
142	2.6 PPM	OK			EW-62
143	8.5 PPM	OK			EW-74
144	8.8 PPM	OK			EW-32R
145	2.5 PPM	OK			EW-69
146	1.3 PPM	OK			EW-71
147	2.0 PPM	OK			EW-72
148	1.1 PPM	OK			EW-70
149	1.9 PPM	OK			EW-73
150	16.5 PPM	OK			EW-78
151	10.6 PPM	OK			EW-82
152	1.5 PPM	OK			EW-36A
153	1.1 PPM	OK			EW-85
154	1.4 PPM	OK			EW-88
155	2.6 PPM	OK			EW-89
156	1.6 PPM	OK			EW-93
1 <i>57</i>	1.6 PPM	OK			EW-94
158	2.5 PPM	OK			EW-98
159	1.5 PPM	OK			EW-99
160	3.8 PPM	OK			EW-95
161	56.0 PPM	OK			EW-90
162	1.5 PPM	OK			EW-86
163	2.9 PPM	OK			EW-84
164	1.4 PPM	OK			EW-80
165	1.1 PPM	OK			EW-79
166	0.9 PPM	OK			EW-77
167	1.0 PPM	OK			EW-33B
168	7.2 PPM	OK			EW-75
		ations sampled:	168		
	Number of exceed	dance locations:	1		

NOTES:


Points 1 through 100 represent serpentine SEM route.

Points 101 through 168 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, 42°F Wind: 7 MPH SW

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm

2/10/2025	11:14	ZERO	0.0	PPM
2/10/2025	11:15	SPAN	501.0	PPM
Background Rec	ıding:			
2/10/2025	11:20	Upwind	2.1	PPM
2/10/2025	11:32	Downwind	2.1	PPM

SCS ENGINEERS

February 26, 2025 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – February 17, 2025

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Management Facility located in Bristol, Virginia on February 17, 2025. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	167
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	67
Number of Exceedances	1
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	1

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

On February 20, 2024, the City submitted an Alternate Remedy Request for corrective actions for exceedances located at the surface cover penetration of vertical extraction wells EW-76, EW-82, EW-86, EW-95, and EW-97. Details regarding the specific proposed corrective actions are outlined in the letter request. As of monitoring conducted on February 17, 2024, these corrective actions have been successful at reducing methane concentrations below the regulatory threshold at four of the five locations.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	2/17/25 Event	2/17/25 Event Result	Comments
EW-82	10/16/24	N/A	Passed	Alternate Remedy Requested – corrective actions have resolved exceedance
EW-95	10/21/24	N/A	Passed	Alternate Remedy Requested – corrective actions have resolved exceedance
EW-76	11/26/24	N/A	Failed	Alternate Remedy Requested – undergoing corrective actions
EW-86	11/26/24	N/A	Passed	Alternate Remedy Requested – corrective actions have resolved exceedance
EW-97	12/18/24	N/A	Passed	Alternate Remedy Requested – corrective actions have resolved exceedance
EW-90	1/17/25	1-Month Retest	Passed	Exceedance Resolved
EW-80	1/23/25	N/A	Passed	Requires 1-Month Retest
EW-75	1/30/25	N/A	Passed	Requires 1-Month Retest

If you have questions or require additional information, please contact either of the undersigned.

Lucus D. Nachman

Lucas S. Nachman

SCS Engineers

Senior Project Professional

Sincerely,

William J. Fabrie Staff Professional SCS Engineers

LSN/WJF

cc: Randall Eads, City of Bristol

Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

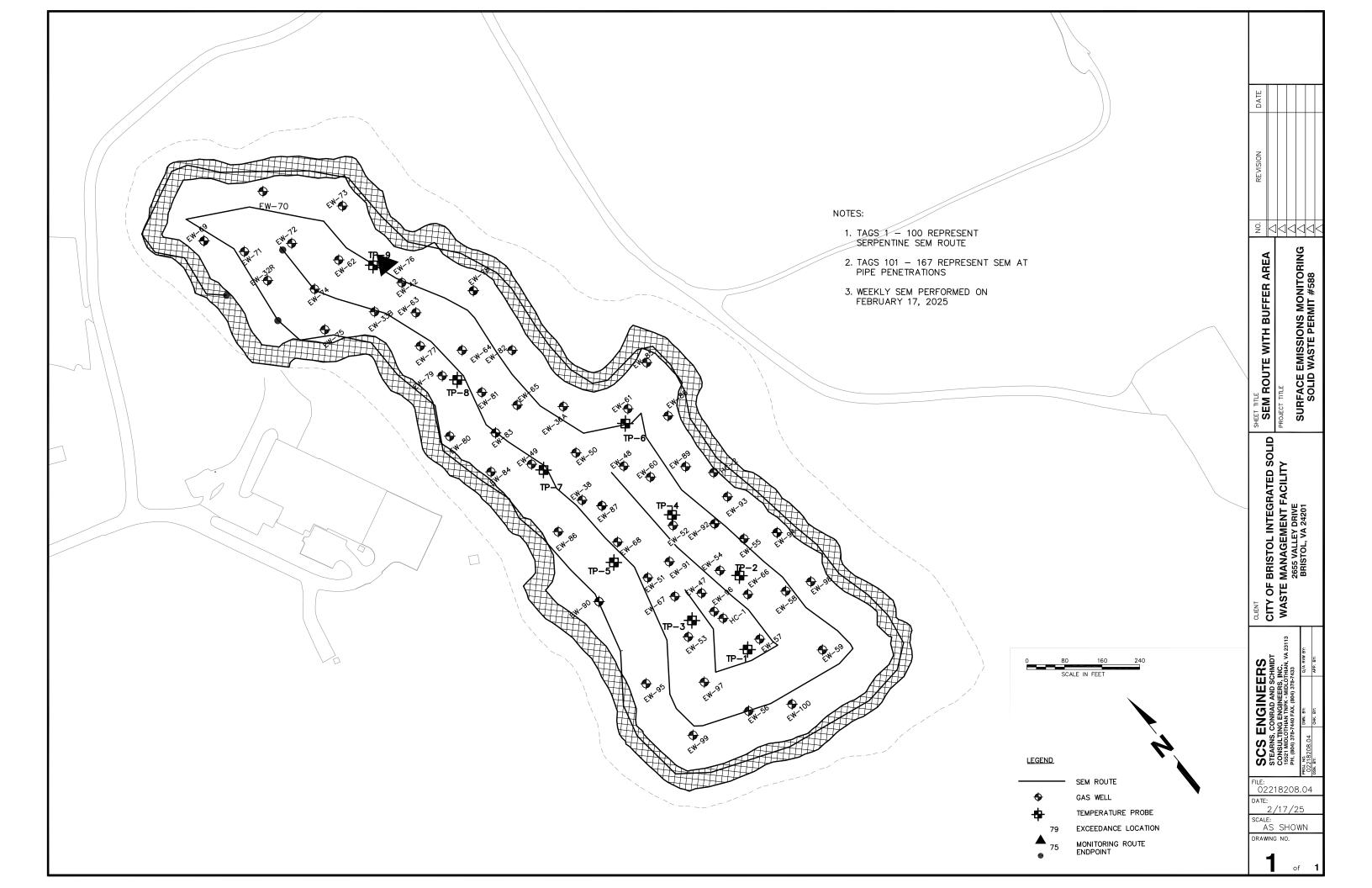
Bristol SEM Route Drawing

		Methane		GPS Co	ordinates	
ID	#	Concentration	Compliance	Lat.	Long.	Comments
1	1	3.4 PPM	OK			Start Serpentine Route
2	2	3.7 PPM	OK			
3	3	3.8 PPM	OK			
4	4	6.4 PPM	OK			
	5	3.9 PPM	OK			
(3	3.6 PPM	OK			
7	7	3.6 PPM	OK			
	3	3.6 PPM	OK			
	9	3.7 PPM	OK			
	0	3.5 PPM	OK			
	1	3.4 PPM	OK			
	2	3.2 PPM	OK			
	3	3.6 PPM	OK			
	4	3.7 PPM	OK			
	5	3.5 PPM	OK			
	6	3.2 PPM	OK			
	7	3.4 PPM	OK			
	8	3.3 PPM	OK			
	9	3.2 PPM	OK			
	0	3.3 PPM	OK			
	1	3.2 PPM	OK OK			
	2	3.3 PPM	OK			
	3	3.1 PPM	OK			
	4	3.5 PPM	OK			
	5	3.6 PPM	OK			
	6	3.2 PPM	OK			
	7	3.1 PPM	OK			
	8	3.3 PPM	OK			
	9	3.4 PPM	OK			
	0	3.8 PPM	OK			
	1	41.0 PPM	OK			
	2	8.2 PPM	OK			
	3	15.4 PPM	OK			
	4	4.0 PPM	OK			
	5	25.0 PPM	OK			
	6	11.6 PPM	OK			
3	7	68.6 PPM	OK			
	8	55.7 PPM	OK			
	9	5.2 PPM	OK			
	0	3.5 PPM	OK			
4	1	3.9 PPM	OK			
4	2	4.5 PPM	OK			
	3	3.6 PPM	OK			
	4	3.5 PPM	OK			
	5	2.9 PPM	OK			
	6	3.3 PPM	OK			
	7	3.7 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
48	3.5 PPM	OK			
49	4.2 PPM	OK			
50	4.2 PPM	OK			
51	2.9 PPM	OK			
52	2.7 PPM	OK			
53	2.7 PPM	OK			
54	2.8 PPM	OK			
55	2.9 PPM	OK			
56	2.9 PPM	OK			
57	3.3 PPM	OK			
58	2.8 PPM	OK			
59	2.6 PPM	OK			
60	2.6 PPM	OK			
61	2.8 PPM	OK			
62	4.0 PPM	OK			
63	5.5 PPM	OK			
64	2.7 PPM	OK			
65	2.9 PPM	OK			
66	4.2 PPM	OK			
67	2.6 PPM	OK			
68	2.8 PPM	OK			
69	2.6 PPM	OK			
70	2.9 PPM	OK			
71	2.7 PPM	OK			
72	2.7 PPM	OK			
73	2.5 PPM	OK			
74	3.0 PPM	OK			
75	2.6 PPM	OK			
76	2.6 PPM	OK			
77	2.5 PPM	OK			
78	2.8 PPM	OK			
79	3.4 PPM	OK			
80	2.8 PPM	OK			
81	3.1 PPM	OK			
82	3.3 PPM	OK			
83	7.2 PPM	OK			
84	2.8 PPM	OK			
85	2.7 PPM	OK			
86	2.6 PPM	OK			
87	2.9 PPM	OK			
88	2.7 PPM	OK			
89	2.3 PPM	OK			
90	2.7 PPM	OK			
91	2.5 PPM	OK			
92	2.3 PPM	OK			
93	2.5 PPM	OK			
94	25.6 PPM	OK			

	Methane		GPS Cod	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
95	2.6 PPM	OK			
96	2.4 PPM	OK			
97	2.5 PPM	OK			
98	2.4 PPM	OK			
99	2.6 PPM	OK			
100	2.6 PPM	OK			End Serpentine Route
101	30.4 PPM	OK			EW-52
102	2.9 PPM	OK			TP-4
103	5.0 PPM	OK			EW-60
104	2.4 PPM	OK			EW-48
105	2.4 PPM	OK			TP-6
106	3.1 PPM	OK			EW-61
107	2.3 PPM	OK			EW-50
108	2.8 PPM	OK			EW-67
109	2.3 PPM	OK			EW-47
110	2.5 PPM	OK			EW-54
111	2.3 PPM	OK			EW-55
112	2.4 PPM	OK			EW-92
113	2.4 PPM	OK			EW-91
114	2.5 PPM	OK			EW-96
115	2.5 PPM	OK			TP-2
116	2.4 PPM	OK			EW-66
117	2.6 PPM	OK			EW-58
118	3.2 PPM	OK			EW-57
119	3.0 PPM	OK			TP-1
120	3.3 PPM	OK			EW-59
121	3.9 PPM	OK			EW-100
122	26.7 PPM	OK			EW-56
123	4.9 PPM	OK			EW-97
124	3.1 PPM	OK			EW-53
125	2.9 PPM	OK			TP-3
126	14.4 PPM	OK			EW-51
127	3.0 PPM	OK OK			TP-5
128	4.1 PPM	OK			EW-68
129	2.7 PPM	OK			EW-87
130	2.4 PPM				
131	2.4 PPM 2.3 PPM	OK OK			EW-38 TP- <i>7</i>
132					
	2.2 PPM	OK			EW-49
133 134	2.4 PPM	OK OK			EW-83
	2.2 PPM				EW-65
135	2.3 PPM	OK			EW-81
136	2.9 PPM	OK OK			TP-8
137	2.6 PPM	OK OK			EW-64
138	4.7 PPM	OK OK			EW-63 EW-42
139 140	3.3 PPM 686.0 PPM	OK HIGH_ALRM	36.60120	-82.14801	EW-42 EW-76

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comment
141	3.5 PPM	OK			TP-9
142	2.1 PPM	OK			EW-62
143	2.2 PPM	OK			EW-74
144	2.3 PPM	OK			EW-32R
145	2.5 PPM	OK			EW-69
146	2.1 PPM	OK			EW-71
147	2.1 PPM	OK			EW-72
148	1.9 PPM	OK			EW-73
149	8.7 PPM	OK			EW-78
150	2.0 PPM	OK			EW-82
151	2.0 PPM	OK			EW-36A
152	2.7 PPM	OK			EW-85
153	4.5 PPM	OK			EW-88
154	2.6 PPM	OK			EW-89
155	2.2 PPM	OK			EW-93
156	3.6 PPM	OK			EW-94
1 <i>57</i>	104.0 PPM	OK			EW-98
158	3.3 PPM	OK			EW-99
159	3.2 PPM	OK			EW-95
160	2.6 PPM	OK			EW-90
161	2.3 PPM	OK			EW-86
162	3.4 PPM	OK			EW-84
163	3.2 PPM	OK			EW-80
164	3.5 PPM	OK			EW-79
165	4.3 PPM	OK			EW-77
166	2.7 PPM	OK			EW-33B
167	16.8 PPM	OK			EW-75
	Number of loc	ations sampled:	167		
	Number of exceed	•	1		


NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 167 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, 37°F Wind: 11 MPH NW

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm 2/17/2025 10:44 ZERO 0.1 PPM 2/17/2025 10:46 SPAN 499.0 PPM **Background Reading:** 2/17/2025 10:48 Upwind 2.6 PPM 2/17/2025 10:53 Downwind 3.8 PPM

Environmental Consulting & Contracting

SCS ENGINEERS

March 5, 2025 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – February 24, 2025

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Management Facility located in Bristol, Virginia on February 24, 2025. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	167
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	67
Number of Exceedances	1
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	1

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

On February 20, 2024, the City submitted an Alternate Remedy Request for corrective actions for exceedances at five specific locations. Details regarding the specific proposed corrective actions are outlined in the letter request. As of monitoring conducted on February 24, 2024, these corrective actions have been successful at reducing methane concentrations below the regulatory threshold at all five locations.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	2/24/25 Event	2/24/25 Event Result	Comments
EW-76	11/26/24	N/A	Passed	Alternate Remedy Requested – corrective actions have resolved exceedance
EW-80	1/23/25	1-Month Retest	Passed	Exceedance Resolved
EW-75	1/30/25	1-Month Retest	Passed	Exceedance Resolved

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylie R Hicklin Associate Professional

Wylin R Hicklin

SCS Engineers

Lucas S. Nachman Senior Project Professional SCS Engineers

Lucus D. Nachman

LSN/WRH

cc: Randall Eads, City of Bristol

Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

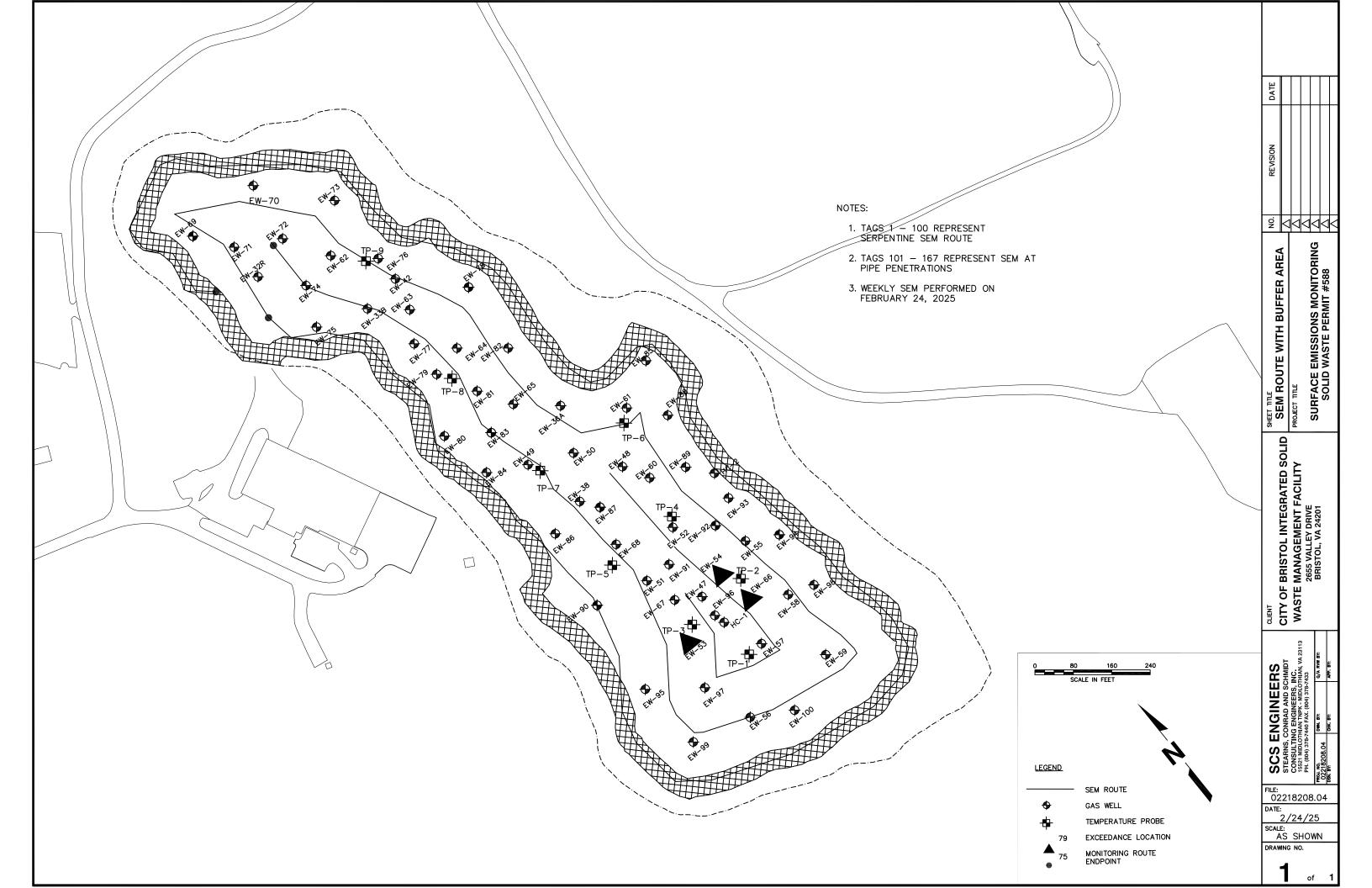
Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	2.3 PPM	OK			Start Serpentine Route
2	2.3 PPM	OK			
3	4.1 PPM	OK			
4	3.5 PPM	OK			
5	2.7 PPM	OK			
6	2.4 PPM	OK			
7	2.1 PPM	OK			
8	2.5 PPM	OK			
9	2.4 PPM	OK			
10	2.3 PPM	OK			
11	2.1 PPM	OK			
12	2.3 PPM	OK			
13	2.1 PPM	OK			
14	1.9 PPM	OK			
15	2.0 PPM	OK			
16	2.2 PPM	OK			
17	2.5 PPM	OK			
18	2.4 PPM	OK			
19	2.5 PPM	OK			
20	5.7 PPM	OK			
21	3.5 PPM	OK			
22	6.0 PPM	OK			
23	3.2 PPM	OK			
24	1.6 PPM	OK			
25	1.8 PPM	OK			
26	8.6 PPM	OK OK			
27	1.8 PPM	OK			
28	2.8 PPM	OK			
29	10.1 PPM	OK OK			
30	268.0 PPM	OK			
31	179.0 PPM	OK			
32	22.6 PPM	OK OK			
33	326.0 PPM	OK OK			
34	52.9 PPM	OK OK			
35	71.9 PPM	OK OK			
36	5.4 PPM	OK OK			
37	6.7 PPM	OK OK			
38	4.4 PPM	OK OK			
39	8.9 PPM	OK OK			
40	2.4 PPM	OK OK			
41	2.2 PPM	OK OK			
42	4.0 PPM	OK OK			
43	2.2 PPM	OK OK			
44		OK OK			
	4.2 PPM				
45 46	6.2 PPM 6.0 PPM	OK OK			
46 47	29.7 PPM	OK OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
48	3.2 PPM	OK			
49	3.9 PPM	OK			
50	5.0 PPM	OK			
51	1.3 PPM	OK			
52	1.2 PPM	OK			
53	1.2 PPM	OK			
54	1.4 PPM	OK			
55	2.6 PPM	OK			
56	8.2 PPM	OK			
57	6.3 PPM	OK			
58	1.4 PPM	OK			
59	1.2 PPM	OK			
60	1.9 PPM	OK			
61	1.6 PPM	OK			
62	11.2 PPM	OK			
63	22.6 PPM	OK OK			
64	2.8 PPM	OK OK			
65	1.2 PPM	OK OK			
66	1.8 PPM	OK OK			
67	1.9 PPM	OK			
68	1.7 PPM	OK			
69	18.4 PPM	OK			
70	2.4 PPM	OK			
71	2.1 PPM	OK			
72	1.5 PPM	OK			
73	114.0 PPM	OK			
74	26.8 PPM	OK			
75	5.7 PPM	OK			
76	14.3 PPM	OK			
77	1.9 PPM	OK			
78	1.3 PPM	OK			
79	2.9 PPM	OK			
80	2.0 PPM	OK			
81	6.3 PPM	OK			
82	3.5 PPM	OK			
83	2.4 PPM	OK			
84	2.9 PPM	OK			
85	5.0 PPM	OK			
86	5.3 PPM	OK			
87	3.0 PPM	OK			
88	5.0 PPM	OK			
89	0.9 PPM	OK			
90	5.3 PPM	OK			
91	2.8 PPM	OK			
92	1.6 PPM	OK			
93	238.0 PPM	OK			
94	5.2 PPM	OK			

		Methane		GPS Co	ordinates	
ID #	#	Concentration	Compliance	Lat.	Long.	Comments
95		2.9 PPM	OK			
96		9.6 PPM	OK			
97	•	24.7 PPM	OK			
98		1.6 PPM	OK			
99	•	3.1 PPM	OK			
100)	11.8 PPM	OK			End Serpentine Route
101	1	126.0 PPM	OK			EW-52
102	2	1.6 PPM	OK			TP-4
103	3	416.0 PPM	OK			EW-60
104	4	3.4 PPM	OK			EW-48
105	5	110.0 PPM	OK			TP-6
106	5	2.8 PPM	OK			EW-61
107	7	1.7 PPM	OK			EW-50
108		243.0 PPM	OK			EW-67
109	9	1.1 PPM	OK			EW-47
110)	1504.0 PPM	HIGH_ALRM	36.59859	-82.14738	EW-54
111	1	1.8 PPM	OK			EW-55
112	2	83.5 PPM	OK			EW-92
113	3	3.1 PPM	OK			EW-91
114		3.6 PPM	OK			EW-96
115	5	1.7 PPM	OK			TP-2
116	5	658.0 PPM	HIGH_ALRM	36.59842	-82.14736	EW-66
117	7	15.9 PPM	OK			EW-58
118	3	9.0 PPM	OK			EW-57
119	9	2.0 PPM	OK			TP-1
120)	82.4 PPM	OK			EW-59
121	1	54.0 PPM	OK			EW-100
122	2	22.2 PPM	OK			EW-56
123	3	3.7 PPM	OK			EW-97
124	4	2117.0 PPM	HIGH_ALRM	36.59842	-82.14789	EW-53
125	5	5.4 PPM	OK			TP-3
126	5	9.7 PPM	OK			EW-51
127	7	5.3 PPM	OK			TP-5
128	3	7.3 PPM	OK			EW-68
129	9	3.2 PPM	OK			EW-87
130)	4.6 PPM	OK			EW-38
131	1	44.1 PPM	OK			TP-7
132	2	3.7 PPM	OK			EW-49
133		1.0 PPM	OK			EW-83
134	4	0.8 PPM	OK			EW-65
135	5	0.9 PPM	OK			EW-81
136	5	1.1 PPM	OK			TP-8
137	7	1.1 PPM	OK			EW-64
138	3	2.3 PPM	OK			EW-63
139	9	15.3 PPM	OK			EW-42
140		67.7 PPM	OK			EW-76

	Methane			ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comment
141	20.2 PPM	OK			TP-9
142	0.8 PPM	OK			EW-62
143	1.9 PPM	OK			EW-74
144	2.5 PPM	OK			EW-32R
145	1.5 PPM	OK			EW-69
146	1.0 PPM	OK			EW-71
1 <i>47</i>	2.5 PPM	OK			EW-72
148	1.2 PPM	OK			EW-73
149	0.4 PPM	OK			EW-78
150	36.9 PPM	OK			EW-82
151	0.7 PPM	OK			EW-36A
152	31.2 PPM	OK			EW-85
153	4.8 PPM	OK			EW-88
154	3.0 PPM	OK			EW-89
155	1.9 PPM	OK			EW-93
156	1.1 PPM	OK			EW-94
1 <i>57</i>	1.0 PPM	OK			EW-98
158	1 <i>7</i> .6 PPM	OK			EW-99
159	46.7 PPM	OK			EW-95
160	14.0 PPM	OK			EW-90
161	119.0 PPM	OK			EW-86
162	3.7 PPM	OK			EW-84
163	2.3 PPM	OK			EW-80
164	1.6 PPM	OK			EW-79
165	3.5 PPM	OK			EW-77
166	5.0 PPM	OK			EW-33B
167	479.0 PPM	OK			EW-75
	N. oberest		167]	
	Number of loc	ations sampled:	3		


NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 167 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, 50°F Wind: 3 MPH NE

Sampling Calib	ration: Meth	ane - 500 ppm,	, Zero Air - 0.0	ppm_
2/24/2025	10:40	ZERO	0.2	PPM
2/24/2025	10:43	SPAN	501.0	PPM
Background Red	ading:			
2/24/2025	10:45	Upwind	2.6	PPM
2/24/2025	10:49	Downwind	3.8	PPM

SCS ENGINEERS

February 12, 2025 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – February 4, 2025

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Management Facility located in Bristol, Virginia on February 4, 2025. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	168
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	68
Number of Exceedances	2
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	2

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

A summary of ongoing exceedance points is provided in Table 2.

 Table 2.
 Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	2/4/25 Event	2/4/25 Event Result	Comments
EW-82	10/16/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	10/21/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-76	11/26/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-86	11/26/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-97	12/18/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
Tag 28	12/31/24	1-Month Retest Follow-Up	Passed	Exceedance Resolved
Tag 31	12/31/24	1-Month Retest Follow-Up	Passed	Exceedance Resolved
EW-90	1/17/25	2 nd 10-Day Retest	Passed	Requires 1-Month Retest
EW-80	1/23/25	N/A	Passed	Requires 1-Month Retest
EW-75	1/30/25	10-Day Retest	Failed	Requires 2 nd 10-Day Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

William J. Fabrie Staff Professional SCS Engineers Lucas S. Nachman Senior Project Professional SCS Engineers

Lucus D. Nachman

LSN/WJF

cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

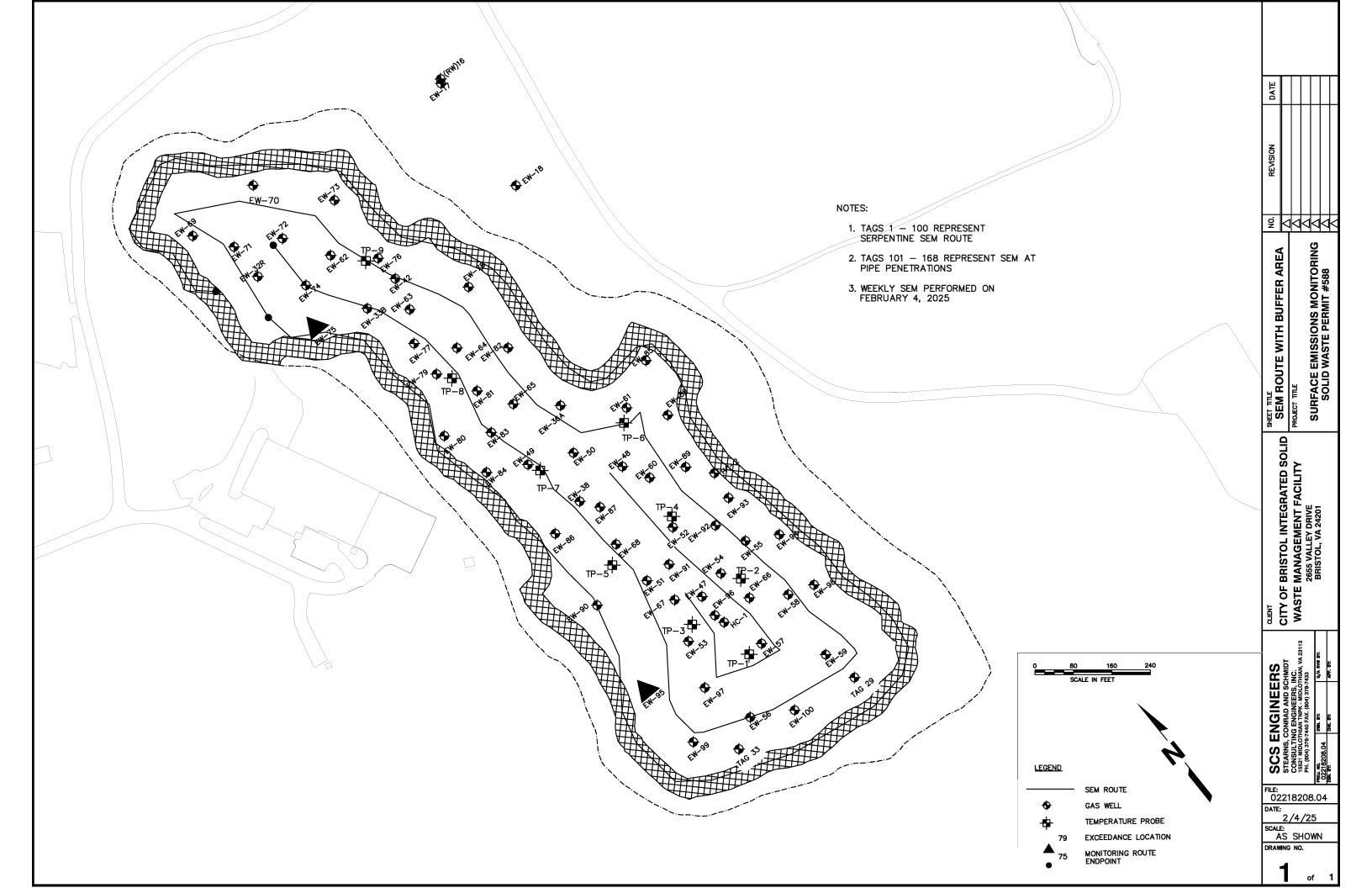
Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	1.6 PPM	OK			Start Serpentine Route
2	9.9 PPM	OK			·
3	1.5 PPM	OK			
4	1.5 PPM	OK			
5	1.6 PPM	OK			
6	1.5 PPM	OK			
7	1.5 PPM	OK			
8	1.5 PPM	OK			
9	1.4 PPM	OK			
10	1.6 PPM	OK			
11	1.9 PPM	OK			
12	2.7 PPM	OK			
13	1.8 PPM	OK			
14	2.2 PPM	OK			
15	1.8 PPM	OK			
16	1.8 PPM	OK			
17	1.9 PPM	OK			
18	2.8 PPM	OK			
19	1.8 PPM	OK			
20	3.6 PPM	OK			
21	6.9 PPM	OK			
22	1.1 PPM	OK			
23	1.4 PPM	OK			
24	1.4 PPM	OK			
25	2.3 PPM	OK			
26	1.3 PPM	OK			
27	1.3 PPM	OK			
28	2.5 PPM	OK			
29	2.0 PPM	OK			
30	2.6 PPM	OK			
31	8.3 PPM	OK OK			
32	9.0 PPM	OK			
33	6.0 PPM	OK			
34	160.0 PPM	OK			
35	70.3 PPM	OK			
36	82.6 PPM	OK			
37	21.0 PPM	OK			
38	17.7 PPM	OK			
39	4.9 PPM	OK			
40	4.6 PPM	OK			
41	1.3 PPM	OK			
42	2.3 PPM	OK			
43	1.6 PPM	OK			
44	1.7 PPM	OK			
45	2.4 PPM	OK			
46	2.4 PPM	OK			
47	4.3 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
48	6.1 PPM	OK			
49	4.7 PPM	OK			
50	6.1 PPM	OK			
51	1.4 PPM	OK			
52	1.1 PPM	OK			
53	1.0 PPM	OK			
54	0.7 PPM	OK			
55	0.7 PPM	OK			
56	0.9 PPM	OK			
57	1.6 PPM	OK			
58	1.2 PPM	OK			
59	1.1 PPM	OK			
60	1.2 PPM	OK			
61	1.3 PPM	OK			
62	1.2 PPM	OK			
63	1.1 PPM	OK			
64	1.2 PPM	OK			
65	1.2 PPM	OK			
66	0.8 PPM	OK			
67	0.9 PPM	OK			
68	1.2 PPM	OK			
69	0.8 PPM	OK			
70	1.3 PPM	OK			
<i>7</i> 1	2.7 PPM	OK			
72	6.9 PPM	OK			
73	2.9 PPM	OK			
74	46.2 PPM	OK			
75	1.2 PPM	OK			
76	1.2 PPM	OK			
77	7.3 PPM	OK			
78	6.4 PPM	OK			
79	31.3 PPM	OK			
80	1.0 PPM	OK			
81	1.3 PPM	OK			
82	0.9 PPM	OK			
83	0.8 PPM	OK			
84	1.5 PPM	OK			
85	1.9 PPM	OK			
86	0.6 PPM	OK			
87	1.4 PPM	OK			
88	0.5 PPM	OK			
89	1.4 PPM	OK			
90	0.8 PPM	OK			
91	0.5 PPM	OK			
92	0.5 PPM	OK			
93	0.5 PPM	OK			
94	1.9 PPM	OK			

	Methane		GPS Cod	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
95	1.0 PPM	OK			
96	1.0 PPM	OK			
97	1.8 PPM	OK			
98	0.8 PPM	OK			
99	1.2 PPM	OK			
100	0.3 PPM	OK			End Serpentine Route
101	59.7 PPM	OK			EW-52
102	16.5 PPM	OK			TP-4
103	91.2 PPM	OK			EW-60
104	0.8 PPM	OK			EW-48
105	0.8 PPM	OK			TP-6
106	2.0 PPM	OK			EW-61
107	9.8 PPM	OK			EW-50
108	60.5 PPM	OK			EW-67
109	0.8 PPM	OK			EW-47
110	0.9 PPM	OK			EW-54
111	2.2 PPM	OK			EW-55
112	24.0 PPM	OK			EW-92
113	7.9 PPM	OK			EW-91
114	1.6 PPM	OK			EW-96
115	0.8 PPM	OK			TP-2
116	0.6 PPM	OK			EW-66
117	0.6 PPM	OK OK			EW-58
118	5.0 PPM	OK OK			EW-57
119	3.1 PPM	OK OK			TP-1
120	15.6 PPM	OK			EW-59
121	17.5 PPM	OK			EW-100
122	2.6 PPM	OK			EW-56
123	0.9 PPM	OK			EW-97
124	94.7 PPM	OK			EW-53
125	4.3 PPM	OK			TP-3
126	35.1 PPM	OK OK			EW-51
127	0.6 PPM	OK OK			TP-5
128	0.4 PPM	OK OK			EW-68
129	0.5 PPM	OK OK			EW-87
130	0.6 PPM	OK OK			EW-38
131	0.7 PPM	OK OK			TP-7
132	0.8 PPM	OK OK			EW-49
133	0.7 PPM	OK OK			EW-83
134	0.5 PPM	OK OK			EW-65
135	2.1 PPM	OK OK			EW-81
136		OK OK			TP-8
137	2.4 PPM 2.5 PPM	OK OK			EW-64
138		OK OK			EW-63
	2.5 PPM				EW-42
139 140	3.9 PPM 109.0 PPM	OK OK			EW-42 EW-76

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
141	0.7 PPM	OK			TP-9
142	0.0 PPM	OK			EW-62
143	0.0 PPM	OK			EW-74
144	0.7 PPM	OK			EW-32R
145	0.0 PPM	OK			EW-69
146	0.0 PPM	OK			EW-71
1 <i>47</i>	0.0 PPM	OK			EW-72
148	0.1 PPM	OK			EW-70
149	0.1 PPM	OK			EW-73
150	0.0 PPM	OK			EW-78
151	0.3 PPM	OK			EW-82
152	0.7 PPM	OK			EW-36A
153	0.2 PPM	OK			EW-85
154	0.8 PPM	OK			EW-88
155	3.3 PPM	OK			EW-89
156	0.7 PPM	OK			EW-93
1 <i>57</i>	0.2 PPM	OK			EW-94
158	0.4 PPM	OK			EW-98
159	4.5 PPM	OK			EW-99
160	1223.0 PPM	HIGH_ALRM	36.59837	-82.14835	EW-95
161	1.0 PPM	OK			EW-90
162	43.6 PPM	OK			EW-86
163	5.8 PPM	OK			EW-84
164	2.7 PPM	OK			EW-80
165	1.4 PPM	OK			EW-79
166	0.3 PPM	OK			EW-77
1 <i>67</i>	10.8 PPM	OK			EW-33B
168	1203.0 PPM	HIGH_ALRM	36.60106	-82.14828	EW-75
	Ni. mala ay af la-	ations sampled:	168		
	Number of loc	•	2		


NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 168 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, $63^{\circ}F$ Wind: 10 MPH S

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm							
2/4/2025	10:54	ZERO	0.2	PPM			
2/4/2025	10:56	SPAN	499.0	PPM			
Background Reading:							
2/4/2025	10:57	Upwind	2.1	PPM			
2/4/2025	11:01	Downwind	1. <i>7</i>	PPM			

Appendix B

In-Waste Temperatures on Select Days in February

Appendix B Figures

Figure B - 1 Average Temperatures Recorded by TP-1 on February 5, 2025	3
Figure B - 2 Average Temperatures Recorded by TP-1 on February 12, 2025	3
Figure B - 3 Average Temperatures Recorded by TP-1 on February 26, 2025	4
Figure B - 4 Average Temperatures Recorded by TP-3 on February 5, 2025	5
Figure B - 5 Average Temperatures Recorded by TP-3 on February 12, 2025	5
Figure B - 6 Average Temperatures Recorded by TP-3 on February 19, 2025	6
Figure B - 7 Average Temperatures Recorded by TP-3 on February 26, 2025	6
Figure B - 8 Average Temperatures Recorded by TP-5 on February 5, 2025	7
Figure B - 9 Average Temperatures Recorded by TP-5 on February 12, 2025	7
Figure B - 10 Average Temperatures Recorded by TP-5 on February 19, 2025	8
Figure B - 11 Average Temperatures Recorded by TP-5 on February 26, 2025	8
Figure B - 12 Average Temperatures Recorded by TP-6 on February 5, 2025	9
Figure B - 13 Average Temperatures Recorded by TP-6 on February 12, 2025	9
Figure B - 14 Average Temperatures Recorded by TP-6 on February 19, 2025	10
Figure B - 15 Average Temperatures Recorded by TP-6 on February 26, 2025	10
Figure B - 16 Average Temperatures Recorded by TP-7 on February 5, 2025	11
Figure B - 17 Average Temperatures Recorded by TP-7 on February 12, 2025	11
Figure B - 18 Average Temperatures Recorded by TP-7 on February 19, 2025	12
Figure B - 19 Average Temperatures Recorded by TP-7 on February 26, 2025	12
Figure B - 20 Average Temperatures Recorded by TP-8 on February 5, 2025	13
Figure B - 21 Average Temperatures Recorded by TP-8 on February 12, 2025	13
Figure B - 22 Average Temperatures Recorded by TP-8 on February 19, 2025	14
Figure B - 23 Average Temperatures Recorded by TP-8 on February 26, 2025	14
Figure B - 24 Average Temperatures Recorded by TP-9 on February 5, 2025	15
Figure B - 25 Average Temperatures Recorded by TP-9 on February 12, 2025	
Figure B - 26 Average Temperatures Recorded by TP-9 on February 19, 2025	16
Figure B - 27 Average Temperatures Recorded by TP-9 on February 26, 2025	16

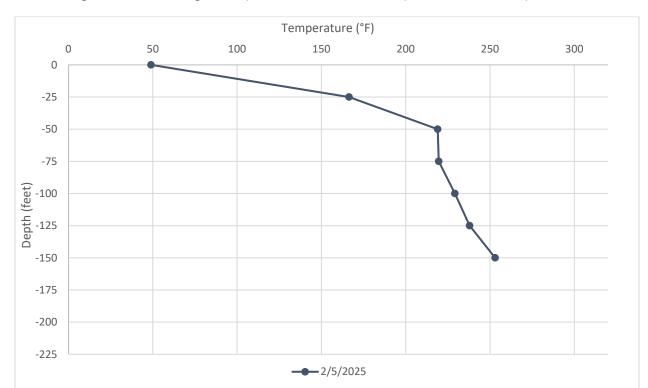
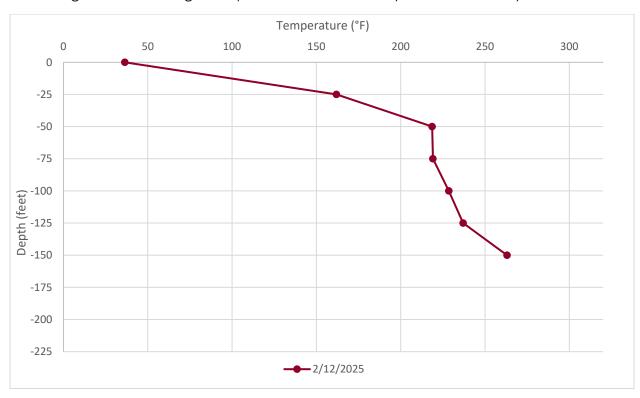



Figure B - 1 Average Temperatures Recorded by TP-1 on February 5, 2025

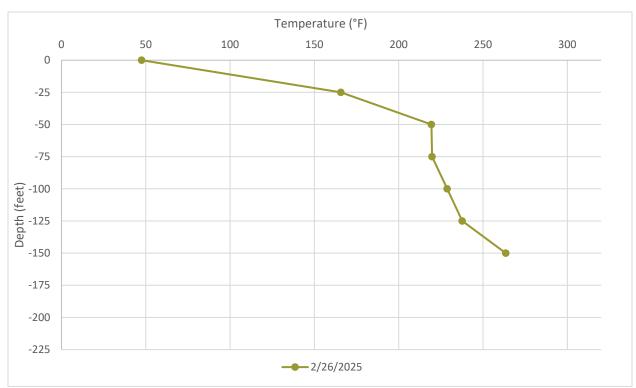


Figure B - 3 Average Temperatures Recorded by TP-1 on February 26, 2025

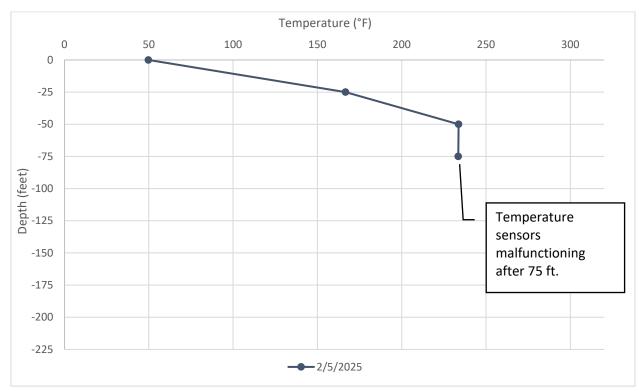
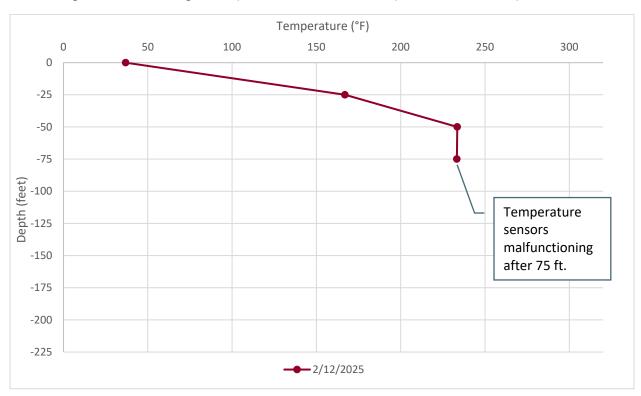



Figure B - 4 Average Temperatures Recorded by TP-3 on February 5, 2025

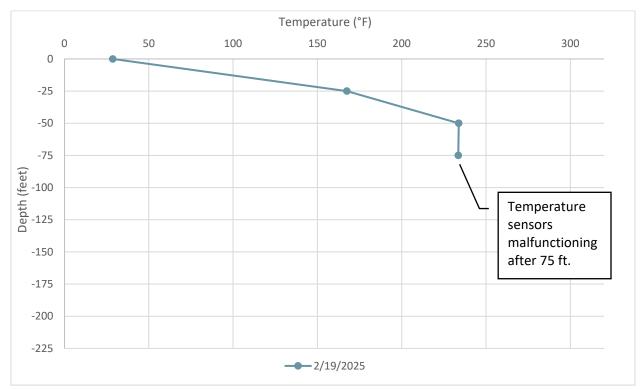


Figure B - 6 Average Temperatures Recorded by TP-3 on February 19, 2025

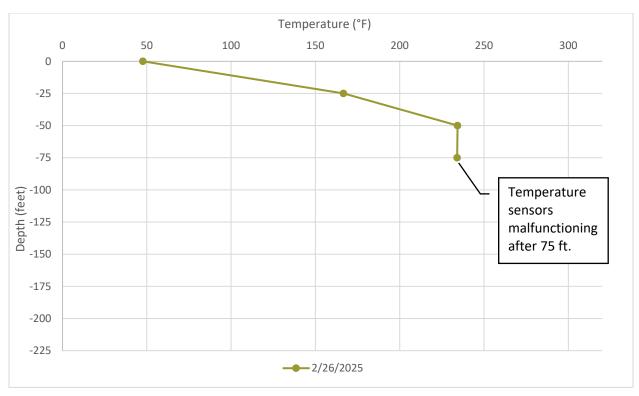
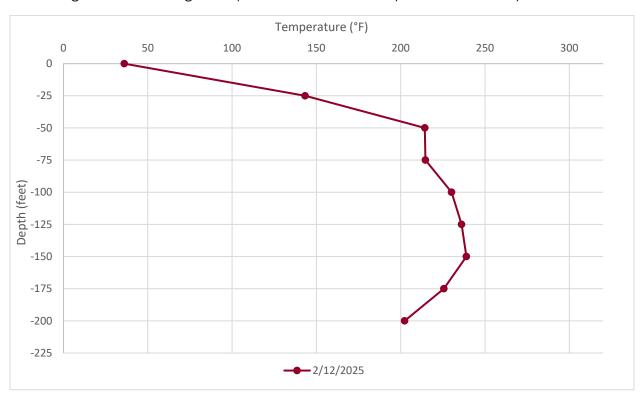



Figure B - 8 Average Temperatures Recorded by TP-5 on February 5, 2025

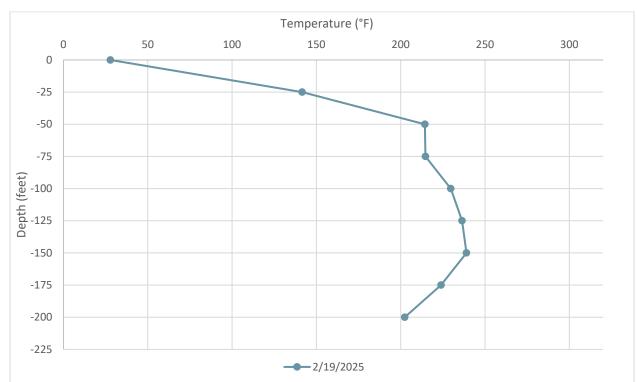
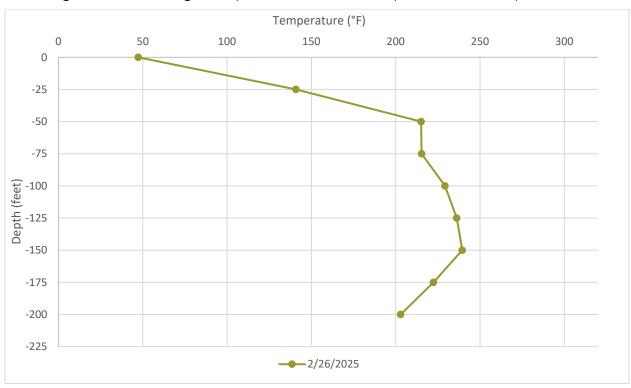



Figure B - 10 Average Temperatures Recorded by TP-5 on February 19, 2025

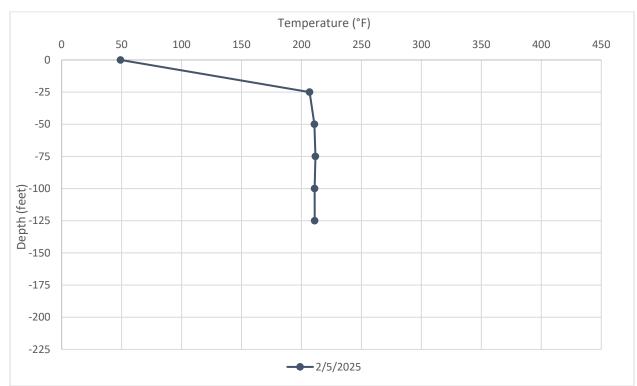
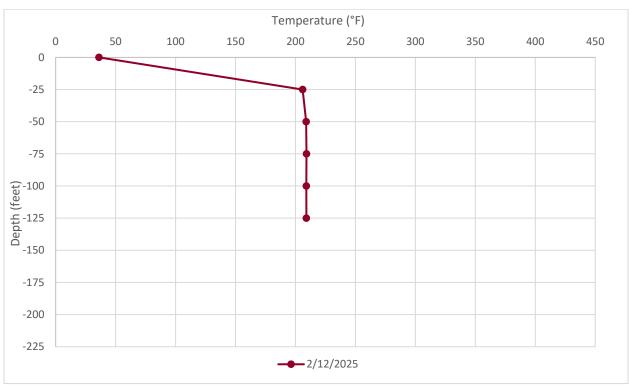



Figure B - 12 Average Temperatures Recorded by TP-6 on February 5, 2025

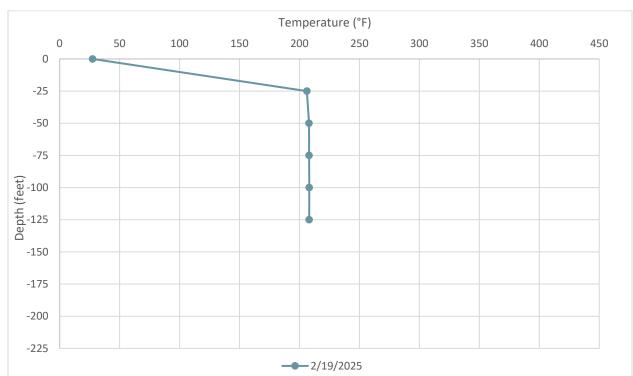
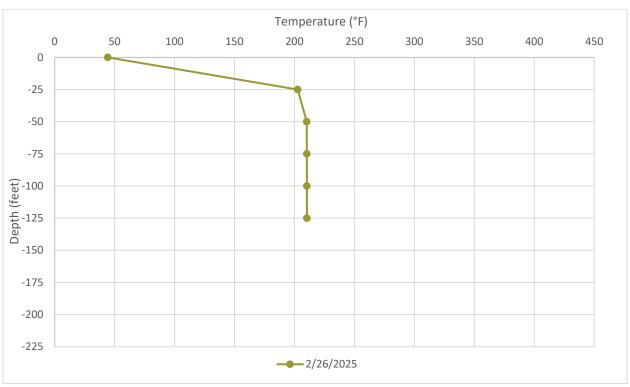



Figure B - 14 Average Temperatures Recorded by TP-6 on February 19, 2025

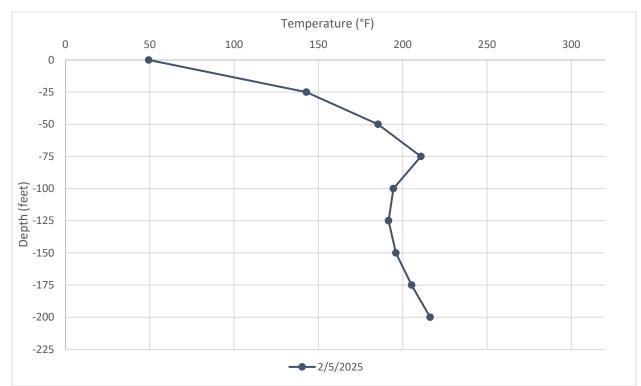
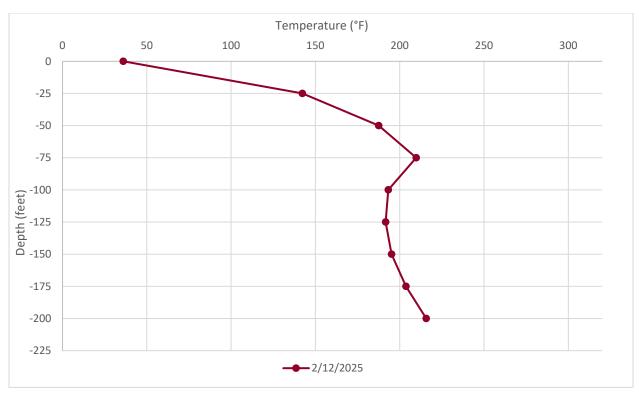



Figure B - 16 Average Temperatures Recorded by TP-7 on February 5, 2025

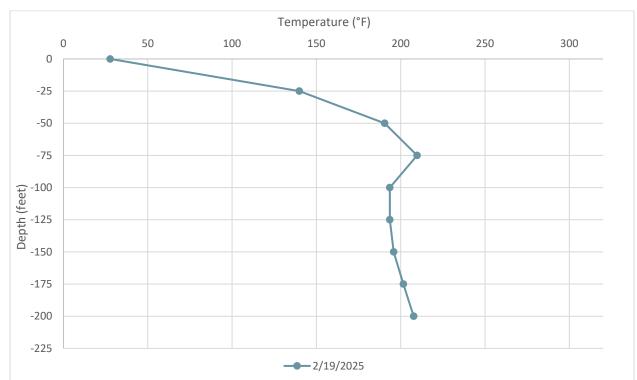
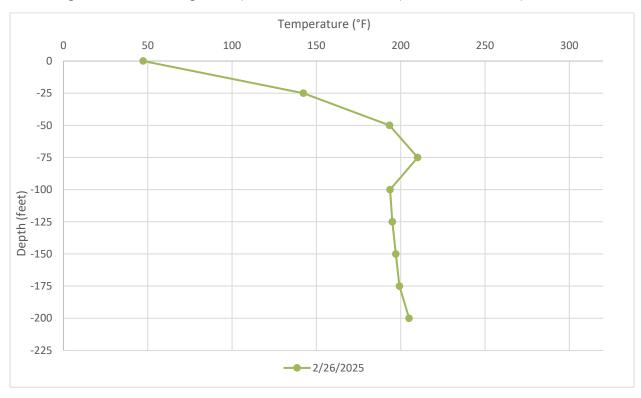



Figure B - 18 Average Temperatures Recorded by TP-7 on February 19, 2025

Figure B - 19 Average Temperatures Recorded by TP-7 on February 26, 2025

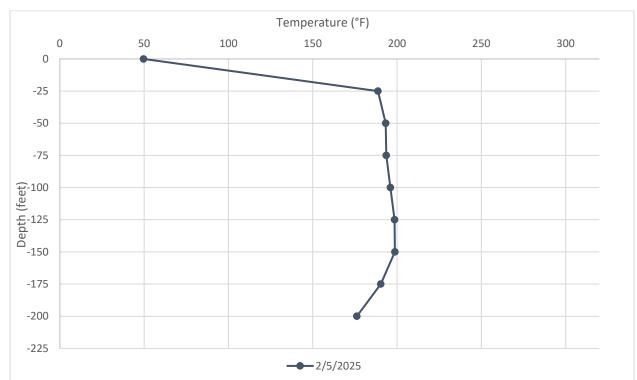
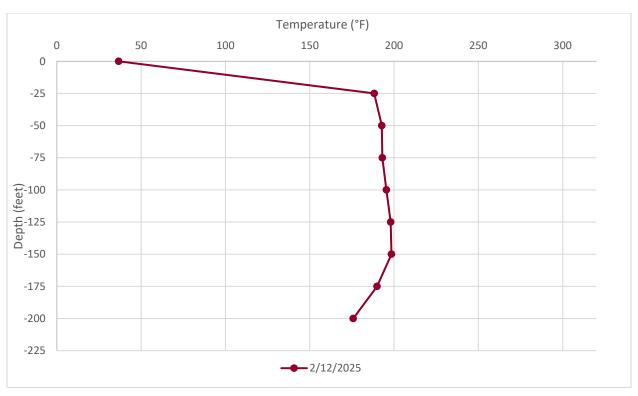



Figure B - 20 Average Temperatures Recorded by TP-8 on February 5, 2025

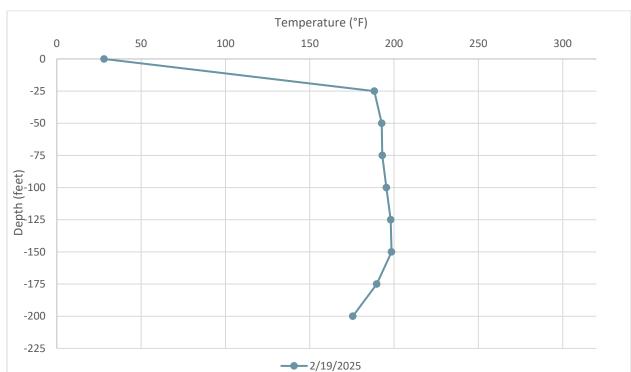
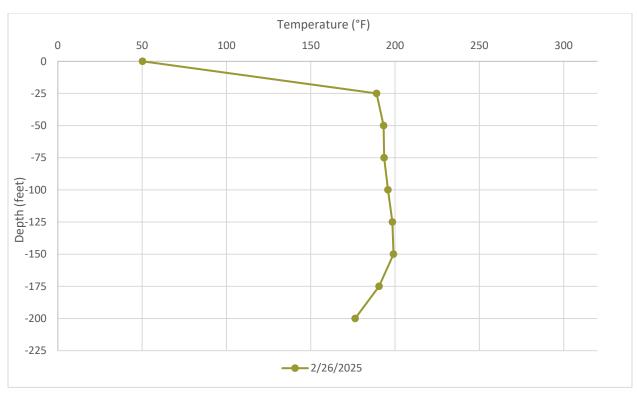



Figure B - 22 Average Temperatures Recorded by TP-8 on February 19, 2025

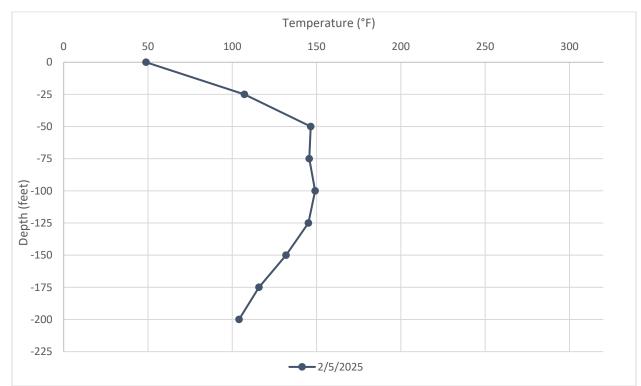
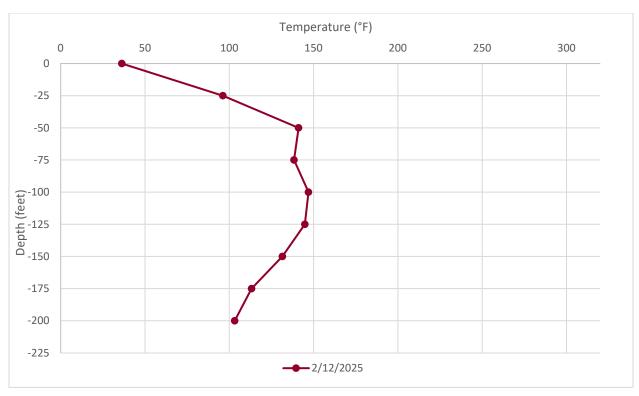



Figure B - 24 Average Temperatures Recorded by TP-9 on February 5, 2025

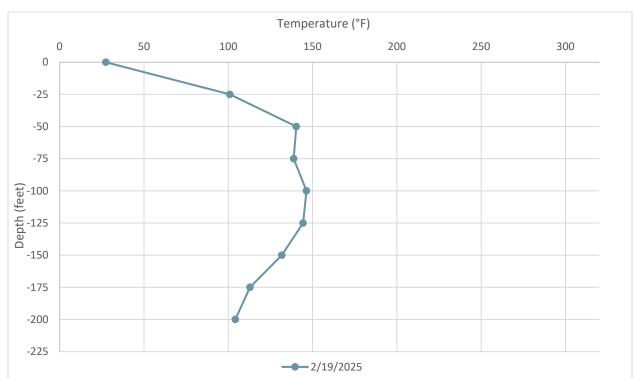
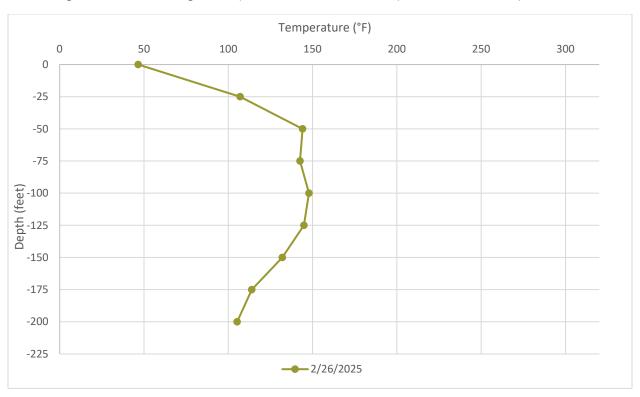



Figure B - 26 Average Temperatures Recorded by TP-9 on February 19, 2025

Figure B - 27 Average Temperatures Recorded by TP-9 on February 26, 2025

Appendix C

Daily Wellhead Temperature Averages

Solid Waste Permit 588 Daily Wellhead Temperature Averages

The data provided in this report represent initial readings provided by field instrumentation without Validation, analysis, quality assurance review, or context based on operating conditions. This report is subject to revision following quality assurance review and an analysis of operating conditions. SCS will continue to provide a supplemental report with additional information and further analysis on a monthly basis at a minimum.

SCS ENGINEERS

07222143.00 | February 1, 2025

274 Granite Run Drive Lancaster, PA 17601 717-550-6330

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Feb 1, 2025

Bristol, Virginia

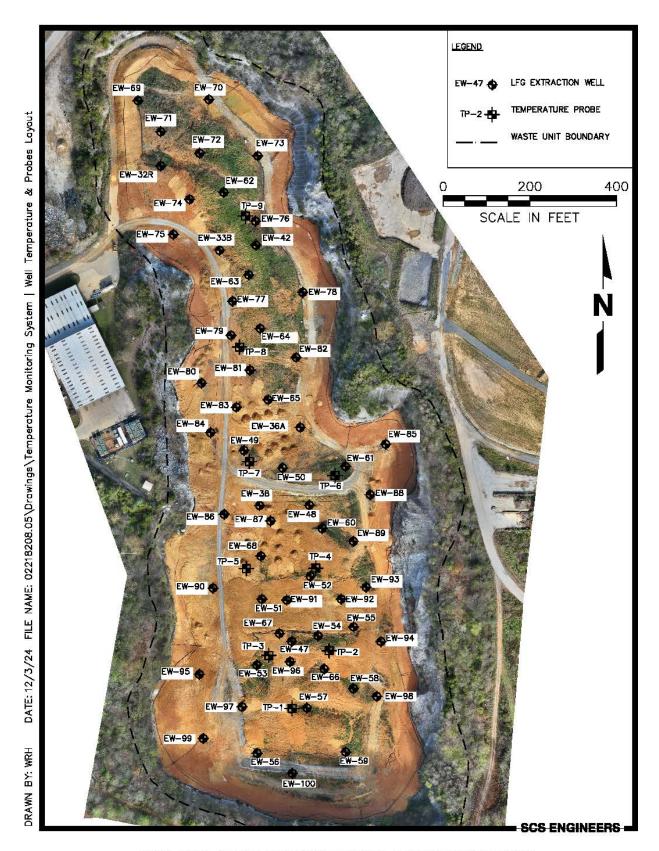
Well ID	Average (°F)	Minimum (°F)	Maximum (°F)
Well 32R	49.3	27.1	99.4
Well 33B	104.82	72	128.78
Well 36A	47.16	32.11	82.26
Well 38	85.28	69.37	97.68
Well 42	98.16	81.88	109.17
Well 47	43.75	29.85	79.35
Well 48	42.97	29.85	74.99
Well 49	147.9	131.1	156.2
Well 50	90.9	71.8	104.2
Well 51	43.8	25.9	80.9
Well 52	153.3	43.6	171.7
Well 53	73.3	26.5	119.3
Well 54	51.8	27.4	88.4
Well 55	94.9	48.6	151.1
Well 56	155.9	145.5	163.8
Well 57	65.5	32.1	106.5
Well 58	79.8	64.3	94.4
Well 59	95.1	37.0	127.2
Well 60	86.8	30.7	154.3
Well 61	116.6	26.3	170.69
Well 62	86.4	62.1	104.4
Well 63	92.9	74.9	110.5
Well 64	105.9	92.1	120.0
Well 65	132.5	87.3	149.8
Well 66	127.3	88.8	153.7
Well 67	140.3	115.4	155.0
Well 68	128.7	39.8	158.1
Well 69	65.49	45.61	90.98

SCS ENGINEERS

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Feb 1, 2025

Bristol, Virginia

Well ID	Average (°F)	Minimum (°F)	Maximum (°F)
Well 70	44.3	29.8	73.9
Well 71	129.75	122.16	134.42
Well 72	127.41	112.05	135.14
Well 73	105.22	100.09	111.11
Well 74	117.85	39.87	128.41
Well 75	105.9	51.28	122.83
Well 76	127.14	101.01	129.18
Well 77	45.2	29.9	83.2
Well 78	100.8	83.0	113.0
Well 79	137.9	117.1	146.5
Well 80	44.6	29.8	79.8
Well 81	168.7	160.7	173.3
Well 82	168.6	156.5	174.1
Well 83	155.0	90.2	181.1
Well 84	182.7	165.4	186.7
Well 85	132.9	47.2	163.8
Well 86	148.5	140.9	151.9
Well 87	157.2	132.8	168.1
Well 88	161.9	157.6	165.1
Well 89	176.12	155.26	188.72
Well 90	138.9	133.2	145.1
Well 91	161.9	67.0	184.6
Well 92	142.1	76.2	181.9
Well 93	87.1	29.9	195.1
Well 94	76.9	34.1	148.4
Well 95	135.6	110.1	139.8
Well 96	131.6	111.1	152.5
Well 97	160.74	148.9	168.95


SCS ENGINEERS

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Feb 1, 2025

Bristol, Virginia

Well ID	Average (°F)	Minimum (°F)	Maximum (°F)
Well 98	46.3	29.9	85.5
Well 99	142.87	138.53	146.1
Well 100	102.47	81.14	123.17

Solid Waste Permit 588 Well Temperatures & Probe Layout

SWP #588 - WELL TEMPERATURES & PROBES LAYOUT

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

Appendix D Table of Contents

Secti	ion	Page
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 1	D-3
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 2	D-4
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 3	D-5
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 5	D-6
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 6	D-7
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 7	D-8
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 8	D-9
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 9	D-10

	Depth from Surface					
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft
1-Feb	161.9	218.7	219.2	229.0	237.6	263.3
2-Feb	164.5	219.0	219.5	229.2	237.8	263.5
3-Feb	165.9	219.0	219.5	229.3	237.8	263.6
4-Feb	166.1	219.1	219.7	229.3	237.9	263.6
5-Feb	166.4	219.0	219.6	229.2	237.9	263.6
6-Feb	167.0	219.2	219.8	229.4	238.1	263.7
7-Feb	165.4	219.0	219.6	229.1	237.8	263.4
8-Feb	166.4	219.2	219.8	229.3	238.0	263.7
9-Feb	166.5	219.2	219.7	229.2	237.8	263.6
10-Feb	166.0	218.7	219.2	228.7	237.3	263.1
11-Feb	165.5	218.6	219.1	228.5	237.0	263.0
12-Feb	162.0	218.6	219.1	228.5	237.0	263.1
13-Feb	159.6	219.0	219.4	228.8	237.3	263.4
14-Feb	162.8	218.7	219.2	228.5	236.9	263.1
15-Feb	164.4	218.7	219.2	228.4	236.9	263.0
16-Feb	164.1	218.9	219.4	228.6	237.0	263.2
17-Feb	164.0	218.6	219.1	228.3	236.7	262.8
18-Feb	164.7	218.7	219.2	228.4	236.8	263.1
19-Feb	164.8	218.6	219.1	228.2	236.8	262.9
20-Feb	164.7	218.5	218.9	228.1	236.7	262.8
21-Feb	164.5	218.4	219.0	228.1	236.7	262.8
22-Feb	165.4	218.8	219.3	228.3	236.9	263.1
23-Feb	165.8	218.8	219.4	228.3	237.1	263.1
24-Feb	165.9	219.2	219.6	228.7	237.3	263.4
25-Feb	165.6	219.1	219.6	228.3	237.3	263.4
26-Feb	165.7	219.4	219.8	228.7	237.7	263.5
27-Feb	165.6	219.0	219.5	228.6	237.5	263.3
28-Feb	165.8	219.1	219.6	228.7	237.8	263.4
Average	164.9	218.9	219.4	228.7	237.3	263.3

	Depth from Surface							
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft		
1-Feb	156.3	238.7	*	259.4	244.1	*		
2-Feb	156.3	238.8	*	259.3	244.0	*		
3-Feb	156.4	238.9	*	260.1	244.2	*		
4-Feb	156.4	239.0	*	260.6	244.3	*		
5-Feb	156.3	238.9	*	261.0	244.1	*		
6-Feb	156.4	239.0	*	261.0	244.3	*		
7-Feb	156.1	238.8	*	260.5	243.9	*		
8-Feb	156.5	239.0	*	260.8	244.2	*		
9-Feb	156.4	238.9	*	260.7	244.2	*		
10-Feb	156.1	238.5	*	260.5	243.7	*		
11-Feb	155.7	238.3	*	259.9	243.4	*		
12-Feb	155.9	238.3	*	259.9	243.4	*		
13-Feb	156.1	238.6	*	260.4	243.8	*		
14-Feb	*	*	*	*	*	*		
15-Feb	*	*	*	*	*	*		
16-Feb	*	*	*	*	*	*		
17-Feb	*	*	*	*	*	*		
18-Feb	*	*	*	*	*	*		
19-Feb	*	*	*	*	*	*		
20-Feb	*	*	*	*	*	*		
21-Feb	*	*	*	*	*	*		
22-Feb	*	*	*	*	*	*		
23-Feb	*	*	*	*	*	*		
24-Feb	*	*	*	*	*	*		
25-Feb	*	*	*	*	*	*		
26-Feb	*	*	*	*	*	*		
27-Feb	*	*	*	*	*	*		
28-Feb	*	*	*	*	*	*		
Average	156.2	238.7	N/A	260.3	244.0	N/A		

^{*} Indicates sensor reading issues

	Depth from Surface							
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Feb	172.2	233.5	233.2	*	*	*	*	*
2-Feb	170.8	233.8	233.5	*	*	*	*	*
3-Feb	168.2	233.8	233.6	*	*	*	*	*
4-Feb	168.0	233.9	233.6	*	*	*	*	*
5-Feb	166.7	233.7	233.5	*	*	*	*	*
6-Feb	166.2	233.9	233.5	*	*	*	*	*
7-Feb	166.1	234.1	233.8	*	*	*	*	*
8-Feb	164.8	233.9	233.7	*	*	*	*	*
9-Feb	165.0	234.1	233.8	*	*	*	*	*
10-Feb	164.5	233.8	233.5	*	*	*	*	*
11-Feb	164.2	233.5	233.3	*	*	*	*	*
12-Feb	166.8	233.5	233.3	*	*	*	*	*
13-Feb	168.1	233.9	233.6	*	*	*	*	*
14-Feb	164.2	233.8	233.6	*	*	*	*	*
15-Feb	166.9	233.6	233.3	*	*	*	*	*
16-Feb	172.3	233.8	233.6	*	*	*	*	*
17-Feb	167.0	234.0	233.7	*	*	*	*	*
18-Feb	165.6	233.9	233.7	*	*	*	*	*
19-Feb	167.4	233.8	233.5	*	*	*	*	*
20-Feb	168.7	233.9	233.7	*	*	*	*	*
21-Feb	167.8	234.1	233.9	*	*	*	*	*
22-Feb	167.9	234.1	233.8	*	*	*	*	*
23-Feb	168.2	234.3	234.1	*	*	*	*	*
24-Feb	167.9	234.4	234.1	*	*	*	*	*
25-Feb	167.1	234.2	234.0	*	*	*	*	*
26-Feb	166.7	234.3	234.1	*	*	*	*	*
27-Feb	166.0	233.9	233.6	*	*	*	*	*
28-Feb	166.0	234.2	233.9	*	*	*	*	*
Average	167.2	233.9	233.7	N/A	N/A	N/A	N/A	N/A

^{*} Indicates sensor reading issues

	Depth from Surface							
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Feb	146.3	214.7	215.2	231.0	236.3	238.9	226.0	202.3
2-Feb	146.2	215.1	215.5	231.2	236.5	239.1	226.2	202.5
3-Feb	145.3	215.1	215.6	231.2	236.6	239.3	226.2	202.6
4-Feb	145.4	215.1	215.5	231.2	236.7	239.4	226.3	202.7
5-Feb	145.1	214.9	215.3	231.0	236.5	239.2	226.2	202.5
6-Feb	144.5	215.1	215.5	231.2	236.6	239.3	226.4	202.8
7-Feb	144.6	214.9	215.3	231.1	236.6	239.3	226.3	202.7
8-Feb	144.5	214.8	215.1	231.1	236.7	239.4	226.4	202.9
9-Feb	144.5	214.9	215.2	231.1	236.8	239.6	226.5	203.0
10-Feb	144.0	214.5	214.8	230.7	236.4	239.1	226.0	202.6
11-Feb	143.5	214.3	214.6	230.3	236.1	238.8	225.6	202.3
12-Feb	143.3	214.3	214.6	230.2	236.1	238.9	225.6	202.3
13-Feb	143.3	214.7	215.0	230.4	236.4	239.3	225.9	202.7
14-Feb	143.3	214.5	214.8	230.2	236.1	239.0	225.5	202.4
15-Feb	142.5	214.4	214.7	230.1	236.1	239.0	225.4	202.3
16-Feb	142.4	214.5	214.8	230.2	236.2	239.2	225.0	202.5
17-Feb	142.2	214.5	214.8	229.9	236.2	239.2	224.8	202.5
18-Feb	142.2	214.4	214.8	229.8	236.2	239.0	224.4	202.4
19-Feb	141.5	214.3	214.7	229.7	236.4	239.0	223.9	202.4
20-Feb	141.0	214.3	214.6	229.6	236.5	239.0	223.8	202.4
21-Feb	140.9	214.6	214.9	229.6	236.5	239.3	223.9	202.7
22-Feb	140.6	214.6	214.9	229.3	235.7	239.1	223.4	202.5
23-Feb	140.4	214.7	214.9	229.3	235.7	239.2	223.2	202.7
24-Feb	140.2	214.8	215.1	229.3	235.9	239.3	223.0	202.8
25-Feb	140.0	214.8	215.2	229.2	235.9	239.4	222.7	202.9
26-Feb	140.8	215.1	215.4	229.2	236.2	239.5	222.4	203.0
27-Feb	140.7	215.1	215.4	229.1	236.1	239.3	221.8	202.7
28-Feb	140.8	215.3	215.5	229.2	236.3	239.5	221.5	202.9
Average	142.9	214.7	215.1	230.2	236.3	239.2	224.8	202.6

	Depth from Surface						
Date	25 ft	50 ft	75 ft	100 ft	125 ft		
1-Feb	206.5	208.4	208.8	208.6	208.6		
2-Feb	206.7	208.3	208.7	208.6	208.7		
3-Feb	206.6	209.0	209.8	209.4	209.5		
4-Feb	206.8	211.8	212.7	212.0	212.0		
5-Feb	206.8	210.8	211.6	211.0	211.0		
6-Feb	206.7	209.8	210.5	210.0	210.1		
7-Feb	206.9	209.5	210.3	209.9	210.0		
8-Feb	206.7	210.4	210.9	210.7	210.7		
9-Feb	207.0	210.6	211.0	210.9	210.9		
10-Feb	206.9	210.7	211.1	211.0	210.9		
11-Feb	206.3	209.3	209.6	209.4	209.5		
12-Feb	206.0	208.9	209.2	209.1	209.1		
13-Feb	206.6	209.0	209.1	209.1	209.1		
14-Feb	207.0	208.8	208.9	208.9	208.9		
15-Feb	206.2	208.4	208.5	208.4	208.5		
16-Feb	205.7	207.0	206.9	207.0	207.0		
17-Feb	206.5	207.8	207.8	207.9	207.9		
18-Feb	206.5	207.9	208.0	208.1	208.0		
19-Feb	206.2	208.0	208.1	208.1	208.1		
20-Feb	206.4	207.4	207.5	207.6	207.5		
21-Feb	187.5	209.4	209.9	209.6	209.8		
22-Feb	206.7	207.5	207.6	207.6	207.6		
23-Feb	206.7	207.9	207.8	208.0	208.0		
24-Feb	206.6	207.8	207.7	207.9	207.8		
25-Feb	206.3	207.4	207.4	207.5	207.4		
26-Feb	202.6	210.3	210.3	210.4	210.4		
27-Feb	206.3	208.1	208.1	208.2	208.2		
28-Feb	206.4	208.2	208.4	208.3	208.3		
Average	205.7	208.9	209.1	209.0	209.1		

	Depth from Surface							
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Feb	144.4	188.3	210.6	194.9	192.1	196.0	204.4	212.5
2-Feb	144.3	184.5	211.3	195.2	191.1	195.6	206.2	216.1
3-Feb	143.7	183.6	211.2	195.1	190.8	195.7	206.4	220.6
4-Feb	143.2	186.1	211.0	194.8	192.0	196.1	205.4	216.3
5-Feb	142.8	185.3	210.8	194.5	191.6	196.0	205.3	216.3
6-Feb	143.0	188.3	210.6	194.5	192.2	196.3	205.5	216.6
7-Feb	143.1	189.9	210.5	194.4	193.2	196.4	204.1	214.4
8-Feb	143.3	189.1	210.5	194.3	192.4	196.2	204.6	212.9
9-Feb	142.8	189.3	210.5	194.3	192.8	196.3	204.5	209.2
10-Feb	142.0	188.3	210.4	194.3	192.4	196.0	204.9	206.9
11-Feb	141.8	185.5	210.0	193.4	191.4	195.1	204.0	208.8
12-Feb	142.3	187.5	209.8	193.2	191.6	195.2	203.7	215.7
13-Feb	142.3	189.3	210.1	193.7	193.3	196.1	202.3	208.4
14-Feb	141.0	187.0	209.8	194.0	193.0	196.0	202.6	207.3
15-Feb	140.3	186.1	209.9	193.7	191.8	195.6	204.1	209.6
16-Feb	140.5	190.4	210.4	193.3	193.0	195.7	202.1	210.8
17-Feb	140.3	192.4	209.8	193.4	194.7	196.1	199.8	207.7
18-Feb	140.0	192.3	209.6	193.3	195.0	196.3	199.4	206.8
19-Feb	139.9	190.6	209.6	193.5	193.6	195.9	201.5	207.6
20-Feb	140.0	194.1	209.7	193.4	196.6	196.7	197.2	200.2
21-Feb	140.6	190.6	209.9	193.6	196.9	197.2	196.7	200.2
22-Feb	140.9	184.8	210.1	193.2	193.1	196.1	201.3	210.0
23-Feb	141.3	186.8	210.0	193.3	193.4	196.4	200.3	214.0
24-Feb	141.7	190.3	210.1	193.5	193.8	196.7	200.2	209.2
25-Feb	141.9	192.5	210.2	193.5	194.2	196.9	199.5	204.2
26-Feb	142.3	193.5	210.0	193.7	195.1	197.1	199.2	204.9
27-Feb	142.4	193.0	210.0	193.7	194.2	196.8	200.0	210.0
28-Feb	142.8	194.5	209.9	193.8	195.1	197.2	198.5	203.4
Average	142.0	189.1	210.2	193.9	193.2	196.2	202.3	210.0

Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 8

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Feb	188.5	193.0	193.3	195.8	198.2	198.4	190.3	175.8
2-Feb	188.6	193.2	193.6	196.1	198.4	198.7	190.3	176.0
3-Feb	188.7	193.3	193.6	196.1	198.5	198.7	190.3	176.1
4-Feb	188.8	193.4	193.7	196.1	198.6	198.9	190.5	176.3
5-Feb	188.7	193.3	193.6	196.1	198.5	198.7	190.4	176.2
6-Feb	188.9	193.4	193.7	196.1	198.6	198.9	190.6	176.6
7-Feb	188.6	193.3	193.6	196.0	198.5	198.8	190.4	176.4
8-Feb	188.8	193.4	193.7	196.1	198.7	199.0	190.5	176.3
9-Feb	188.8	193.4	193.7	196.1	198.6	198.9	190.5	176.4
10-Feb	188.3	193.1	193.4	196.0	198.4	198.6	190.1	176.0
11-Feb	188.2	192.8	193.1	195.6	198.1	198.4	189.8	175.6
12-Feb	188.2	192.7	193.0	195.5	198.0	198.4	189.9	175.8
13-Feb	188.3	193.1	193.4	195.8	198.3	198.7	190.3	176.2
14-Feb	188.1	193.0	193.3	195.9	198.4	198.4	189.8	175.6
15-Feb	188.2	192.8	193.1	195.5	198.2	198.6	189.8	175.5
16-Feb	188.4	192.8	193.1	195.4	198.0	198.7	190.1	176.0
17-Feb	188.1	192.8	193.1	195.6	198.2	198.5	190.0	175.8
18-Feb	188.2	192.8	193.2	195.6	198.1	198.5	189.8	175.6
19-Feb	188.3	192.7	193.0	195.4	198.0	198.5	189.7	175.5
20-Feb	188.2	192.6	193.0	195.5	198.0	198.5	189.8	175.6
21-Feb	188.0	192.9	193.3	195.8	198.4	198.6	189.9	175.7
22-Feb	188.5	192.9	193.2	195.7	198.3	198.5	189.7	175.4
23-Feb	188.7	193.0	193.3	195.7	198.3	198.8	190.0	175.8
24-Feb	188.9	193.1	193.4	195.7	198.4	199.0	190.3	176.1
25-Feb	188.9	193.0	193.3	195.6	198.3	199.0	190.4	176.2
26-Feb	189.0	193.2	193.5	195.8	198.5	199.1	190.5	176.3
27-Feb	188.9	193.0	193.3	195.6	198.1	198.9	190.4	176.2
28-Feb	189.0	193.1	193.4	195.7	198.2	199.0	190.5	176.3
Average	188.5	193.0	193.4	195.8	198.3	198.7	190.2	176.0

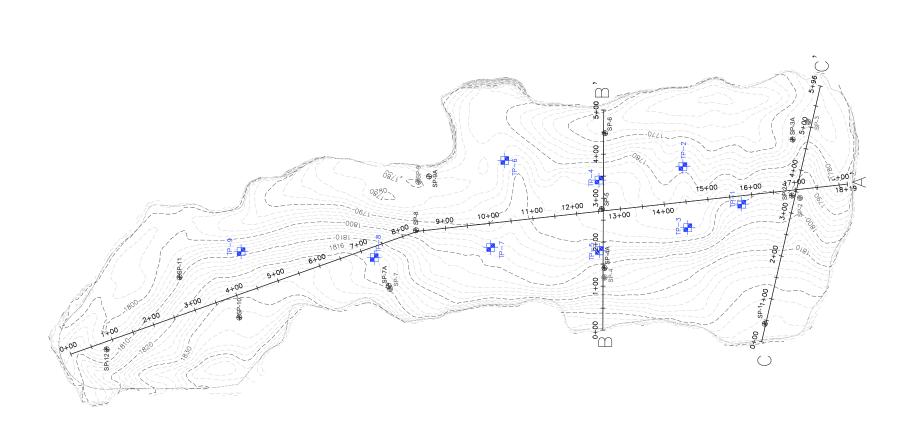
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 9

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Feb	105.3	146.3	144.9	149.0	144.7	131.3	115.4	104.0
2-Feb	106.6	146.9	145.9	149.1	144.9	131.7	115.6	104.1
3-Feb	107.4	147.2	146.2	149.3	145.1	131.9	115.8	104.2
4-Feb	107.3	147.0	146.0	149.5	145.4	132.2	116.1	104.3
5-Feb	107.3	146.6	145.7	149.1	145.2	131.9	115.9	104.0
6-Feb	106.3	146.2	145.1	149.3	145.4	132.2	116.1	104.2
7-Feb	105.4	145.5	144.1	149.0	145.4	132.2	116.0	104.1
8-Feb	105.0	145.1	143.7	148.9	145.5	132.4	116.1	104.2
9-Feb	105.6	144.9	143.3	148.8	145.6	132.6	116.1	104.1
10-Feb	105.5	144.6	143.2	148.3	145.0	131.8	115.6	103.5
11-Feb	103.1	143.6	141.8	147.7	144.7	131.4	115.3	103.2
12-Feb	96.4	141.2	138.5	147.0	144.8	131.5	113.2	103.2
13-Feb	93.2	137.7	135.4	145.8	145.3	131.9	113.3	103.6
14-Feb	95.1	138.0	136.4	145.8	144.9	131.9	113.1	103.7
15-Feb	97.0	138.9	137.5	145.9	144.7	131.9	113.3	103.6
16-Feb	97.7	139.1	137.6	146.2	144.8	132.3	112.7	103.8
17-Feb	98.5	139.4	138.0	146.2	144.6	132.1	112.5	103.9
18-Feb	99.4	139.8	138.4	146.3	144.6	132.0	112.7	104.2
19-Feb	100.9	140.3	138.8	146.4	144.4	131.8	112.9	104.2
20-Feb	102.7	140.5	139.1	146.4	144.2	131.7	113.1	104.1
21-Feb	103.9	141.4	139.9	146.6	144.3	131.7	113.4	104.3
22-Feb	104.7	142.4	140.8	146.9	144.5	131.7	113.6	104.5
23-Feb	105.6	143.0	141.4	147.3	144.6	131.8	113.8	104.8
24-Feb	106.8	143.6	142.1	147.6	144.7	132.0	114.0	105.0
25-Feb	106.9	143.9	142.2	147.7	144.8	132.0	114.0	105.1
26-Feb	107.0	144.1	142.6	147.9	144.9	132.1	114.0	105.3
27-Feb	106.9	143.6	142.4	147.7	144.7	131.8	113.5	105.1
28-Feb	107.6	144.1	142.9	147.8	144.9	132.0	114.5	105.2
Average	103.4	143.0	141.6	147.6	144.9	131.9	114.3	104.2

Appendix E

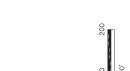
Monthly Topography Analysis

			PROJECT TITE MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588	WASTE MANAGEMENT FACILITY S655 VALLEY DRIVE 10242 VIRGINIA 24201	CONGULTING ENGINEERS, INC. 18631 MIDLOTHIAN THPK - MIDLOTHIAN, VA 23113 1864) 376-7440 FAX. (804) 376-74433 1804) 6046 875 1807 805	E: F COMP	3/2025	NO.	00
DATE	KENIZION	ON.	SHEET TITLE FEBRUARY 2024 LANDFILL TOPOGRAPHY	CITY OF BRISTOL INTEGRATED SOLID	SCS ENGINEERS 2 ENGINEERS	CADD FIL SUR	3/s	DRAWING	



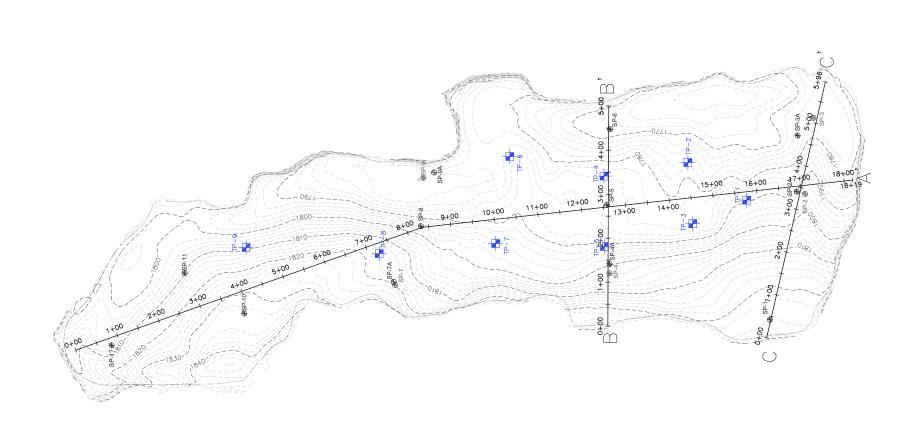
DECOMMISSIONED SETTLEMENT PLATE TP-34 TEMPERATURE MONITORING PROBE APPROXIMATE SIDEWALL LOCATION MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2') SETTLEMENT PLATE

⊕SP-8


LEGEND

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON FEBRUARY 15, 2024 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
 - THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011). 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

			Y TOPOGRAPHY ANALYSIS 888# TIMRAH STSAW C		2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201	28B CHK BL COM VED BL COM STAN COM		α
		Ď		PROJECT TITLE	WASTE MANAGEMENT FACILITY	CONSULTING ENGINEERS, INC. 15521 MIDLOTHIAN TUPK - MIDLOTHIAN, VA 23113	3/2 2/2	o Z
		$\overline{}$	YHAARDOAOT JJIFIUNAJ		CITY OF BRISTOL INTEGRATED SOLID	STEARUS, COURAD AND SCHMIDT	13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N AI
3TAQ	KENIZION	.ou	NOVEMBER 2024	SHEET TITLE	СГІЕИЛ	SCS ENGINEERS	CADI DATE	DRA

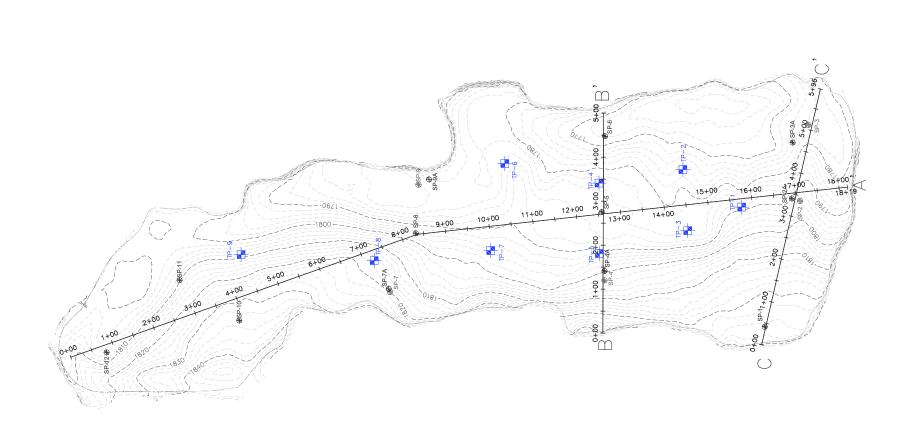


DECOMMISSIONED SETTLEMENT PLATE APPROXIMATE SIDEWALL LOCATION TEMPERATURE MONITORING PROBE MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2') SETTLEMENT PLATE

LEGEND

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON NOVEMBER 12, 2024 BY SCS ENGINEERS.
- ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION. 2.
- THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
 - 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

			V V V	NTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588	OM	2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201	COW COW BK: CO	578-7440 FAX. (804) 37	PH. (804) 3	COMP	2025		œ
1			Ì	TITLE	PROJECT	WASTE MANAGEMENT FACILITY	S, INC.	TING ENGINEERS LOTHIAN TNPK - MIDL	CONSUL	اييت	3/2	Š	
ı			\perp	YHAAROOGOT JJIHUNAJ		CITY OF BRISTOL INTEGRATED SOLID		S, СОИВАР АИР	140 4772	틀님.	E 23.	N N	~
	DATE	KENIZION	.on		II 133HS	СПЕИТ	EBS	ENCINE	sos	CADD	SCAL	DRAN	က



DECOMMISSIONED SETTLEMENT PLATE TP-34 TEMPERATURE MONITORING PROBE APPROXIMATE SIDEWALL LOCATION MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2') SETTLEMENT PLATE €SP-8

LEGEND

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON JANUARY 14, 2025 BY SCS ENGINEERS.
- ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011). 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

JIWA.	NAICIA TV	V	LANDFILL TOPOGRAPHY LY TOPOGRAPHY ANALYSIS LID WASTE PERMIT #588	PROJECT TITLE	CITY OF BRISTOL INTEGRATED SOLID WASTE MANAGEMENT FACILITY S655 VALLEY DRIVE BRISTOL, VIRGINIA 24201	HMIDT NC. HIRN, VA 23113	NGINEER SUB SC SE	STEARNS, C CONSULTING 15521 MIDLOTH 17.808, 378-74 1080, NO. 00.2018208.05	1 1	.TE: 3/3/2025 ALE:	AWING NO.	
DATE	KEVISION	NO.	FEBRUARY 2025	SHEET TITLE	СПЕИТ	30		303	S	SC.	D.R.	_

DECOMMISSIONED SETTLEMENT PLATE

TEMPERATURE MONITORING PROBE

APPROXIMATE SIDEWALL LOCATION

SETTLEMENT PLATE

MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2')

LEGEND

NOTES:

1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON FEBRUARY 18, 2025 BY SCS ENGINEERS.

2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).

4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

6-ds 6-ds 3+00 46+00 15+00 12+00 14+00 10+00 13+00 9+00 TP 2 5 00 SP-11+00 m

MONTHLY TOPOGRAPHY WHEN'S 883 # TIMRAY BTSAW DIJOS	BRISTOL, VIRGINIA 24201	COM CON	i ⊕ ic		8
PROJECT TITLE 212Y IAMA YHDAGADAQOL Y IHTIOOM	WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE	CONSULTING ENGINEERS, INC. 15521 MIDLOTHIBN TNPK - MIDLOTHIBN, VA 23113 PH. (804) 378-7433	LE: CF CON 3 /202	1	.ON &
SHEET TITLE FEBRUARY VOLUME CHANGE JANUARY 2025 TO FEBRUARY 2025	CITY OF BRISTOL INTEGRATED SOLID	SCS ENGINEERS STEARING, CONTRAD AND SCHMIDT	CADD FIL SUR DATE:	SCALE:	DRAWING T

TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 200 °F AND 250 °F TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 250 'F AND 300 'F -

.0И

KENIZION

TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH LESS THAN 200 'F

DECOMMISSIONED SETTLEMENT PLATE

SPOT ELEVATION ON 100' GRID

APPROXIMATE WASTE BOUNDARY

SETTLEMENT PLATE

⊕SP-8 6-dS₩

MINOR CONTOURS (EVERY 2')

MAJOR CONTOURS (EVERY 10')

DATE

Volume Base Surface TOPO — January 14, 2025 Comparison Surface TOPO — February 18, 2025 00. √d. √d. √d. √d. √d. 17,678 624 17,054 Cut Volume Fill Volume Net Fill

Elevations Table

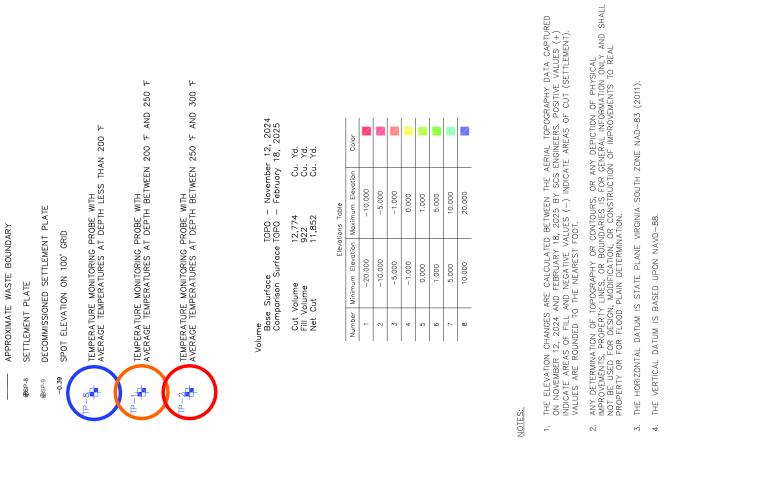
Color									
Maximum Elevation	-10.000	-5.000	-1.000	0.000	1.000	5.000	10.000	20.000	
Minimum Elevation	-20.000	-10.000	-5.000	-1.000	0.000	1.000	5.000	10.000	
Number	-	2	ъ	4	5	9	7	80	

- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON JANUARY 14, 2025 AND FEBRUARY 18, 2025 BY SCS HONGNEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NECATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT

 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR PESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.

 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011) 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

-0.05


MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588	BRISTOL, VIRGINIA 24201	Cart B.K. CAN	œ
PROJECT TITLE	WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE	CONGINE THE STATES OF THE STAT	
NOVEMBER 2024 TO FEBRUARY 2025 FEET TITLE FEBRUARY SO25	CITY OF BRISTOL INTEGRATED SOLID	SCALE: SCALE: SCALE: SCALE: SCALE: STERRING, CONRAD AND SCHMIDT	9

LEGEND		
MAJOR CONTOURS (EVERY 10')		
MINOR CONTOURS (EVERY 2')		
APPROXIMATE WASTE BOUNDARY		\vdash
SETTLEMENT PLATE	∃T A C	
DECOMMISSIONED SETTLEMENT PLATE]	
SPOT ELEVATION ON 100' GRID		
TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH LESS THAN 200 F	NOISIA	
TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 200 'F AND 250 'F	BE	
TEMPERATURE MONITORING PROBE WITH	.ON	$\dashv \vee$
AVERAGE TEMPERATURES AT DEPTH BETWEEN 250 'F AND 300 'F	RY 2025 NGE	

1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON NOVEMBER 12, 2024 AND FEBRUARY 18, 2025 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT.

5+00 D,

SP-11+08.26

⊕SP-9 A6-9S

-0.52 SP-8

DATE	V	SOLID WASTE PERMIT #588 SOLID WASTE PERMIT #588 SOLID WASTE PERMIT #588	CITY OF BRISTOL INTEGRATED SOLID S655 VALLEY DRIVE BRISTOL, VIRGINIA 24201	SCS ENGINEERS SCH SCH		DATE: 3/3/2025 SCALE:	DRAWING NO.	8
------	---	---	--	---	--	-----------------------------	-------------	---

MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588				
ECT TITLE	\square			
FEBRUARY 2024 TO FEBRUARY 2025	\square			
ET TITLE FEBRUARY VOLUME CHANGE	.ON	BEAISION	DATE	

TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 200 'F AND 250

TP--T

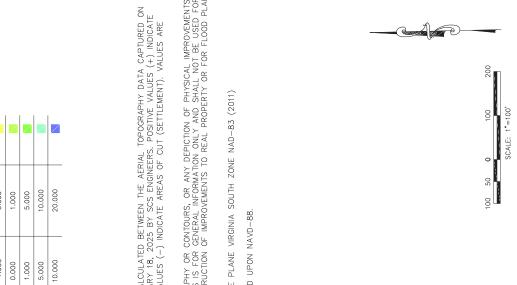
TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH LESS THAN 200 F

DECOMMISSIONED SETTLEMENT PLATE

SPOT ELEVATION ON 100' GRID

APPROXIMATE WASTE BOUNDARY

SETTLEMENT PLATE


€SP-8

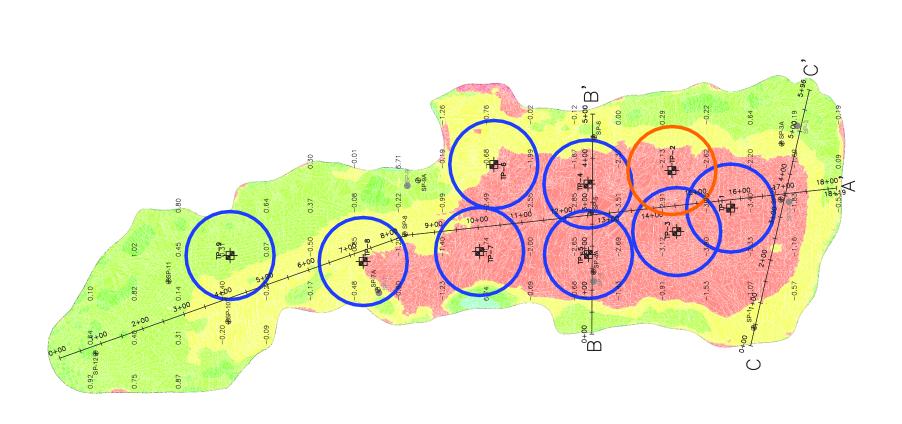
MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2')

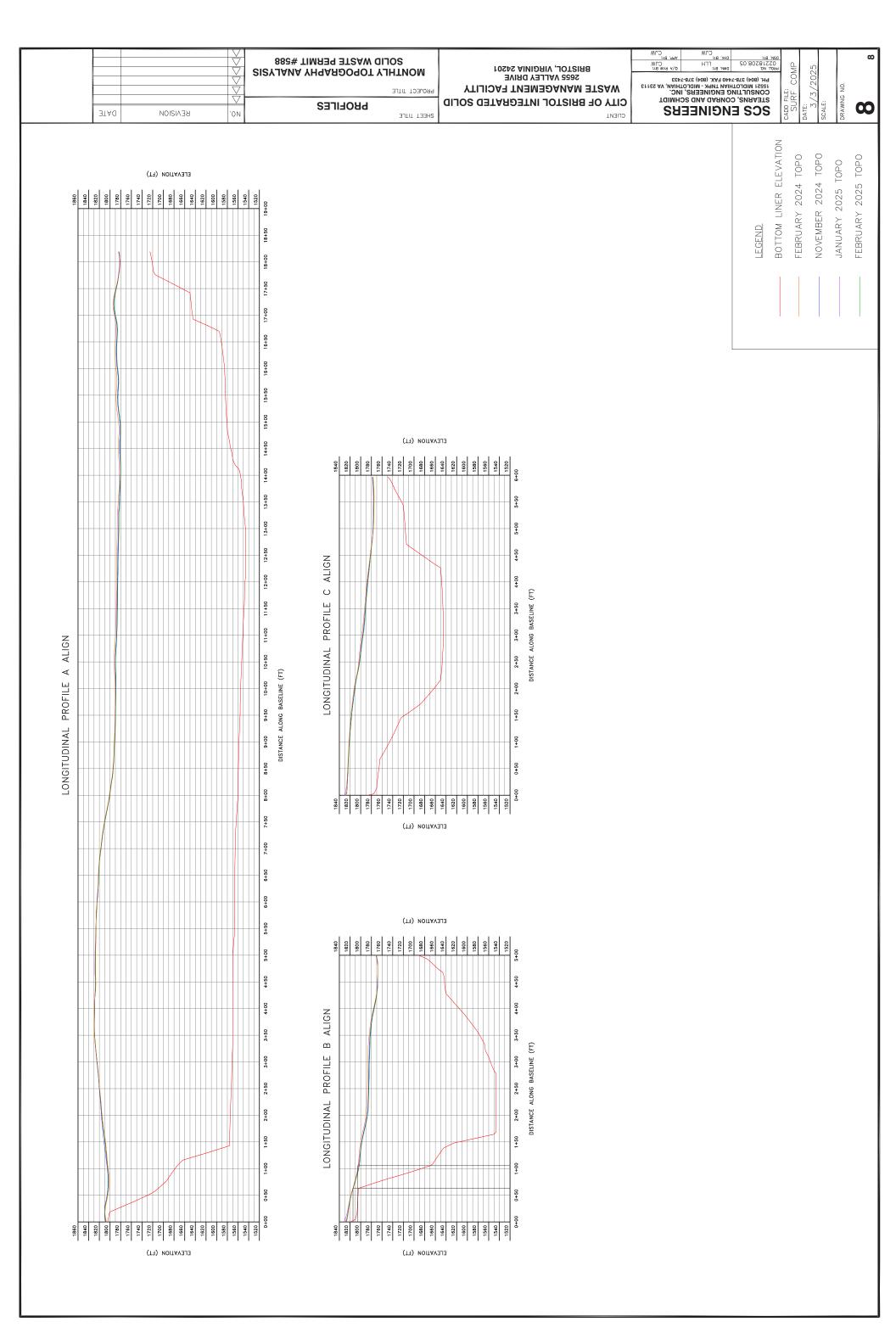
LEGEND

	2655 VALLEY DRIVE
ЯЧ	YTIJIDAH THEMEGEMENT FACILITY
	BRISTOL INTEGRATED SOLID
HS	

APTURED ON INDICATE UES ARE MPROVEMENTS, BE USED FOR R FLOOD PLAIN		7	

F AND 300 F									
H ETWEEN 250	, 15, 2024 , 18, 2025			Color					
TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 250 'F AND 300 'F	TOPO – February 15, TOPO – February 18,	28,235 Cu. Yd. 6,810 Cu. Yd. 21,425 Cu. Yd.	Elevations Table	Maximum Elevation	-10.000	-5.000	-1.000	0.000	
ERATURE MONITC AGE TEMPERATUI	ne Base Surface TOPO — Comparison Surface TOPO —	me ne	Elevat	Minimum Elevation	-20.000	-10.000	-5.000	-1.000	
TP-3 AVER	Volume Base Com	Cut Volu Fill Volu Net Cut		Number	-	2	ю	4	


NOTES:


9 2 ∞

- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAI FEBRUARY 15, 2024 AND FEBRUARY 18, 2025 BY SCS ENGINEERS. POSITIVE VALUES (+) AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALU ROUNDED TO THE NEAREST FOOT
 - ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT EDESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR DETERMINATION. 2
- THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)

Б.

4. THE VERTICAL DATUM(S) IS BASED UPON NAVD-88.

Appendix F

Field Logs

Lab Report

Historical LFG-EW Leachate Monitoring Results Summary

Appendix F

Field Logs
Lab Report
Historical LFG-EW Leachate Monitoring Results Summary
Time-Series Plots

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date	1/3/2025 - 1/4/2025 L. Tucker, M. Nguyen Checked By: L. Howard													
Personnel					1. Nguyen							Check	ced By:	L. Howard
Location ID	Date	Casing Stickup (ft)	Depth to Liquid (ft)	Prior Depth to Liquid (ft) (1/25)	Cycle Count	Prior Cycle Count (1/25)	Well Casing Depth (ft)	Pump Depth (ft)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Sample Collected	Check/ Photo	Comments
PUMP INSTALL	ED													
EW-33B	2/4/2025	5.25	102.76	107.46	94	94	185.00	140	82.24	Y	0	N	~	Air turned off
EW-36A	2/4/2025	5.75	52.94	46.78	Too tall to see	59999	180.00	135	127.06	Y	0	N	~	Air turned off
EW-49	2/4/2025	6.17	73.94	71.39	79585	79565	96.15	87	22.21	Υ	0	N	~	Air turned off
EW-50	2/4/2025	4.75	49.04	50.15	1527474	1513919	77.70	83	28.66	Υ	80	Y	~	
EW-51	2/4/2025	4.17	31.31	32.02	180635	180635	92.80	95	61.49	Y	0	N	~	Air turned off
EW-52	2/3/2025	3.33	47.78	47.11	1233857	1233644	98.70	80	50.92	Y	110	N	~	
EW-53	2/3/2025	5.08	54.00		3294343	3294343	100.70	77	46.70	Υ		N	~	Air disconnected, Lost PVC indicator around 4 ft. inside well
EW-54	2/3/2025	4.42	34.10	36.46		1207083	82.70	65	48.60	Υ		N	~	Air disconnected
EW-55	2/3/2025	4.92	43.00	45.05	73350	72336	90.40	90	47.40	Y	100	N	~	
EW-57	2/3/2025	4.83	45.32	46.00			107.40	94	62.08	Y		N	~	Air disconnected
EW-59	2/3/2025	4.42	59.75	42.81	3525359	3497038	73.40	61	13.65	Υ	80	N	~	
EW-60	2/4/2025	5.08	49.32	46.91	104522	101985	81.80	72.5	32.48	Υ	110	N	~	
EW-61	2/4/2025	3.21	75.23	65.94	474806	431469	87.80	75	12.57	Y	90	Y	~	
EW-62	2/4/2025	4.75	74.52	83.24	214599	214599	110.60	91.5	36.08	Y	0	N	~	Air on, PSI reading 0
EW-64	2/4/2025	4.50	90.24	93.25	196791	196791	109.00	90	18.76	Y	0	N	~	Air on, PSI reading 0
EW-65	2/4/2025	5.04	62.95	65.75	77155	77153	88.40	70	25.45	Υ	0	N	~	Air turned off
EW-67	2/3/2025	3.21	42.92	45.58	288743	288741	107.75	76	64.83	Υ	0	N	~	Air turned off
EW-68	2/4/2025	1.92	45.07	53.47	2640891	2638794	73.57	60	28.50	Y	110	N	~	
EW-69	2/4/2025	4.71	95.33	94.17	18	18	98.00		2.67	Υ	0	N	~	Air on, PSI reading 0
EW-78	2/4/2025	3.92	49.01	44.08	3744	2486	57.00	47	7.99	Y	100	N	~	
EW-81	2/4/2025	6.67	106.91	83.15	Too tall to see		151.56	125	44.65	Y	Too tall	N	~	Air disconnected
EW-82	2/4/2025	4.75	134.47		631289	631289	163.26	145	28.79	Y	0	N	~	Air turned off
EW-83	2/4/2025	5.71	97.63	93.90	Too tall to see		167.04	145	69.41	Y	0	N	~	Air turned off
EW-85	2/4/2025	4.88	61.46	62.66	273333	252602	91.00	78	29.54	Y	115	Y	~	
EW-87	2/4/2025	6.21	59.61	60.98	340749	340749	149.57	110	89.96	Y		N	~	Air turned off

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date	1/3/2025 - 1/4/2025 L. Tucker, M. Nguyen Checked By: L. Howard													I Hawaiid
Personnel					A. Nguyen	Brian Civala			l landal			Check	сеа ву:	L. Howard
Location ID	Date	Casing Stickup (ft)	Depth to Liquid (ft)	Prior Depth to Liquid (ft) (1/25)	Cycle Count	Prior Cycle Count (1/25)	Well Casing Depth (ft)	Pump Depth (ft)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Sample Collected	Check/ Photo	Comments
EW-88	2/4/2025	4.42	54.89	58.65	254736	254736	100.00	61	45.11	Y		N	~	Air disconnected
EW-89	2/4/2025	4.88	46.98	47.32	0		84.57	70	37.59	Y		N	~	Air turned off
EW-90	2/3/2025	4.17	49.30	49.32			114.00	101	64.70	Υ		N	~	Air disconnected
EW-93	2/4/2025	4.21	39.70	38.09	987829	896817	111.00		71.30	Υ	92	N	~	PSI did not go back up once air was reconnected
EW-96	2/3/2025	7.33					164.35	145		Y		N	~	Too tall
EW-98	2/3/2025	4.25	33.70	29.40	1550962	1500838	51.00	46	17.30	Y	102	N	~	
NO PUMP														
EW-56	2/3/2025	5.13	Dry	Dry			42.71		Dry	N		N	~	
EW-63	2/4/2025	4.75	88.42	73.92			117.00		28.58	N		N	~	
EW-66	2/3/2025	6.33	48.41							N		N	~	
EW-70	2/4/2025	2.13	65.13				71.00	58		N	0	N	~	
EW-71	2/4/2025	5.54	159.70	170.11			185.80		26.10	N		N	~	
EW-72	2/4/2025	4.79	118.54	120.72			141.21		22.67	N		N	~	
EW-73	2/4/2025	3.96	107.53	107.33			116.00		8.47	N		N	~	
EW-74	2/4/2025	6.96	159.68	163.98			184.15		24.47	N		N	~	
EW-77*							185.22							
EW-79	2/4/2025	5.92	134.39				185.64			N		N	~	
EW-80*							149.00							
EW-84*							130.56							
EW-86	2/4/2025	3.29	80.93	77.23			153.00		72.07	N		N	~	
EW-91	2/3/2025	5.42	41.23	49.57			137.70		96.47	N		N	~	
EW-92	2/4/2025	8.13					112.99			N		N	~	Too tall
EW-95	2/3/2025	4.38	67.18	54.86			68.00		0.82	N		N	~	
EW-97	2/3/2025	8.08					144.50			N		N	~	Too tall
EW-99	2/3/2025	4.42	60.35	60.22			65.00		4.65	N		N	~	

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date	1/3/2025 - 1/4/2025														
Personnel				L. Tucker, A	Λ. Nguyen				Checked By: L. Howard						
Location ID	Date	Casing Stickup (ft)	Depth to Liquid (ft)	Prior Depth to Liquid (ft) (1/25)	Cycle Count	Prior Cycle Count (1/25)	Well Casing Depth (ft)	Pump Depth (ft)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Comments			
MEASURE CA	MEASURE CASING STICKUP AND CYCLE COUNTER ONLY														
EW-75*	2/4/2025	6.00		DNM			130.82	140		N		N	~		
EW-76	2/4/2025	3.67		DNM			127.00	108		Υ		N	~	Air disconnected	
EW-94	2/3/2025	3.79		DNM	804100	697364	50.00	38		Υ	90	N	~		

DNM = Do not measure

^{* =} Unable to get depth to liquid due to damage to forcemain causing wells to be not under vacuum and therefore unsafe to open.

Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (oC)	pH (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-33B									
EW-36A									
EW-49									
EW-50	2/4/2025	8:10	57.5	7.42	18914	0.11	-226.7	15.98	Dark yellow
EW-51									
EW-52									
EW-53									
EW-54									
EW-55									
EW-57									
EW-58									
EW-59									
EW-60									
EW-61	2/4/2025	9:10	55.7	5.62	367.1	*	8.7	0	Dark greenish-brown
EW-62									
EW-64									
EW-67									
EW-68									
EW-70									
EW-72									

Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (oC)	pH (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations				
EW-73													
EW-74													
EW-75													
EW-76													
EW-78													
EW-81													
EW-82													
EW-83													
EW-85	2/4/2025	8:55	57.2	6.46	30872	*	-222	56.81	Dark brown, foamy, floating sheen				
EW-87													
EW-88													
EW-89													
EW-90													
EW-91													
EW-92													
EW-94													
EW-96													
EW-98													
EW-100													
Sampler:		L. Tucker, M. N	guyen			Sampl	es Shipped By:						
Log Checked	By:	L. Howard				Laboratory: Enthalpy Analytical							

^{*} D.O. gave an error of +++++ on YSI, could not get a reading

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 25B0274

Client Name: SCS Engineers - Winchester

296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Date Received:

February 5, 2025 10:05

Date Issued:

February 26, 2025 10:01

Project Number:

02218208.15 Task 3

Purchase Order:

Client Site I.D.: LFG-EW Monthly Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 02/05/2025 10:05. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Sarah R. Endsley

Laboratory Manager

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

2/26/2025 10:01:59AM

Date Issued:

Analysis Detects Report

SCS Engineers - Winchester

Client Site ID: LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Name:

Laboratory Sample ID: 25B0274-01 Client Sample ID: EW-50

							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Factor	Units
Arsenic	01	SW6020B	170		5.0	10	10	ug/L
Barium	01	SW6020B	633		10.0	50.0	10	ug/L
Chromium	01	SW6020B	210		4.00	10.0	10	ug/L
Nickel	01	SW6020B	92.75		10.00	10.00	10	ug/L
Zinc	01	SW6020B	40.5	J	25.0	50.0	10	ug/L
2-Butanone (MEK)	01	SW8260D	6930		60.0	200	20	ug/L
Acetone	01RE1	SW8260D	9820		700	1000	100	ug/L
Benzene	01	SW8260D	739		8.00	20.0	20	ug/L
Ethylbenzene	01	SW8260D	164		8.00	20.0	20	ug/L
Tetrahydrofuran	01	SW8260D	1020		200	200	20	ug/L
Toluene	01	SW8260D	271		10.0	20.0	20	ug/L
Xylenes, Total	01	SW8260D	267		20.0	60.0	20	ug/L
Ammonia as N	01	EPA350.1 R2.0	1300		73.1	100	1000	mg/L
BOD	01	SM5210B-2016	4420		0.2	2.0	1	mg/L
COD	01	SM5220D-2011	3630		1000	1000	100	mg/L
TKN as N	01	EPA351.2 R2.0	1190		100	250	500	mg/L
Total Recoverable Phenolics	01	SW9065	8.15		0.750	1.25	1	mg/L

2/26/2025 10:01:59AM

Date Issued:

Analysis Detects Report

Client Name: SCS Engineers - Winchester

Client Site ID: LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Laboratory Sample ID: 25B0274-02 Client Sample ID: EW-85

Parameter	Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Dil. Factor	Units
Arsenic	02	SW6020B	730	Quai	5.0	10	10	ug/L
Barium	02	SW6020B	1480		10.0	50.0	10	ug/L
Cadmium	02	SW6020B	10.1		1.00	10.0	10	ug/L
Chromium	02	SW6020B	196		4.00	10.0	10	ug/L
Copper	02RE1	SW6020B	3.81	J	3.00	10.0	10	ug/L
Lead	02	SW6020B	20		10	10	10	ug/L
Nickel	02	SW6020B	102.1		10.00	10.00	10	ug/L
Zinc	02	SW6020B	527		25.0	50.0	10	ug/L
2-Butanone (MEK)	02	SW8260D	23900		150	500	50	ug/L
Acetone	02RE1	SW8260D	46400		3500	5000	500	ug/L
Benzene	02	SW8260D	443		20.0	50.0	50	ug/L
Ethylbenzene	02	SW8260D	158		20.0	50.0	50	ug/L
Tetrahydrofuran	02	SW8260D	7490		500	500	50	ug/L
Toluene	02	SW8260D	54.5		25.0	50.0	50	ug/L
Xylenes, Total	02	SW8260D	354		50.0	150	50	ug/L
Ammonia as N	02	EPA350.1 R2.0	1400		73.1	100	1000	mg/L
BOD	02	SM5210B-2016	16200		0.2	2.0	1	mg/L
COD	02	SM5220D-2011	23400		5000	5000	500	mg/L
TKN as N	02	EPA351.2 R2.0	1520		100	250	500	mg/L
Total Recoverable Phenolics	02	SW9065	20.8		1.50	2.50	1	mg/L

2/26/2025 10:01:59AM

Date Issued:

Analysis Detects Report

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site ID:

Laboratory Sample ID: 25B0274-03 Client Sample ID: EW-61

Laboratory Sample ID: 25E	30274-03	Client	Sample ID: EW-61	·01					
Parameter		Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Dil. Factor	Units
1 didificter		Samp ID	Reference Method	Sample Results	Quai	DL		1 actor	Office
Arsenic		03	SW6020B	774	J	465	1000	1	ug/kg
Chromium		03	SW6020B	99.2		46.5	50.0	1	ug/kg
Lead		03	SW6020B	56.1		46.5	50.0	1	ug/kg
Mercury		03	SW7471B	0.110		0.009	0.009	1	mg/kg
Zinc		03	SW6020B	136		46.5	50.0	1	ug/kg
Benzene		03	SW8260D	559000		24500	24500	2500	ug/kg
Ethylbenzene		03	SW8260D	2090000		24500	24500	2500	ug/kg
Toluene		03	SW8260D	537000		24500	24500	2500	ug/kg
Xylenes, Total		03	SW8260D	4260000		24500	24500	2500	ug/kg
Ammonia as N		03	EPA350.1 R2.0	1160		199	199	20	mg/kg
TKN as N		03RE1	EPA351.2 R2.0	948		39.8	99.5	2	mg/kg
Total Recoverable Phenolics		03	SW9065	516		495	495	20	mg/kg

Laboratory Sample ID: 25B0274-05 Client Sample ID: EW-61

							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Factor	Units
BOD	05	SM5210B-2016	>43418.4		0.2	2.0	1	mg/L
COD	05	SM5220D-2011	447000		100000	100000	10000	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.: LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-50	25B0274-01	Ground Water	02/04/2025 08:10	02/05/2025 10:05
EW-85	25B0274-02	Ground Water	02/04/2025 08:55	02/05/2025 10:05
EW-61	25B0274-03	Organic	02/04/2025 09:10	02/05/2025 10:05
Trip Blank	25B0274-04	Waste Water	01/27/2025 10:10	02/05/2025 10:05
EW-61	25B0274-05	Ground Water	02/04/2025 09:10	02/05/2025 10:05

Please be advised that due to matrix interference all samples were diluted per method protocol, causing the MCLs to be exceeded.

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

2/26/2025 10:01:59AM

Client Site I.D.: LF

Submitted To:

LFG-EW Monthly Monitoring

Jennifer Robb Work Order: 25B0274

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Metals (Total) by EPA 6000/7000 Series	s Methods											
Silver	01	7440-22-4	SW6020B	02/10/2025 17:00	02/11/2025 13:00	BLOD		0.600	10.0	10	ug/L	AB
Arsenic	01	7440-38-2	SW6020B	02/10/2025 17:00	02/11/2025 13:00	170		5.0	10	10	ug/L	AB
Barium	01	7440-39-3	SW6020B	02/10/2025 17:00	02/11/2025 13:00	633		10.0	50.0	10	ug/L	AB
Cadmium	01	7440-43-9	SW6020B	02/10/2025 17:00	02/11/2025 13:00	BLOD		1.00	10.0	10	ug/L	AB
Chromium	01	7440-47-3	SW6020B	02/10/2025 17:00	02/11/2025 13:00	210		4.00	10.0	10	ug/L	AB
Copper	01	7440-50-8	SW6020B	02/10/2025 17:00	02/11/2025 13:00	BLOD		3.00	10.0	10	ug/L	AB
Mercury	01	7439-97-6	SW6020B	02/10/2025 17:00	02/11/2025 13:00	BLOD		2.00	2.00	10	ug/L	AB
Nickel	01	7440-02-0	SW6020B	02/10/2025 17:00	02/11/2025 13:00	92.75		10.00	10.00	10	ug/L	AB
Lead	01	7439-92-1	SW6020B	02/10/2025 17:00	02/11/2025 13:00	BLOD		10	10	10	ug/L	AB
Selenium	01	7782-49-2	SW6020B	02/10/2025 17:00	02/11/2025 13:00	BLOD		8.50	10.0	10	ug/L	AB
Zinc	01	7440-66-6	SW6020B	02/10/2025 17:00	02/11/2025 13:00	40.5	J	25.0	50.0	10	ug/L	AB
Volatile Organic Compounds by GCM	S											
2-Butanone (MEK)	01	78-93-3	SW8260D	02/06/2025 18:47	02/06/2025 18:47	6930		60.0	200	20	ug/L	TLH
Acetone	01RE1	67-64-1	SW8260D	02/06/2025 19:10	02/06/2025 19:10	9820		700	1000	100	ug/L	TLH
Benzene	01	71-43-2	SW8260D	02/06/2025 18:47	02/06/2025 18:47	739		8.00	20.0	20	ug/L	TLH
Ethylbenzene	01	100-41-4	SW8260D	02/06/2025 18:47	02/06/2025 18:47	164		8.00	20.0	20	ug/L	TLH
Toluene	01	108-88-3	SW8260D	02/06/2025 18:47	02/06/2025 18:47	271		10.0	20.0	20	ug/L	TLH
Xylenes, Total	01	1330-20-7	SW8260D	02/06/2025 18:47	02/06/2025 18:47	267		20.0	60.0	20	ug/L	TLH
Tetrahydrofuran	01	109-99-9	SW8260D	02/06/2025 18:47	02/06/2025 18:47	1020		200	200	20	ug/L	TLH
Surr: 1,2-Dichloroethane-d4 (Surr)	01	98.4	% 70-120	02/06/2025 1	8:47 02/06/2025 18:4	7						
Surr: 4-Bromofluorobenzene (Surr)	01	102	% 75-120	02/06/2025 1	8:47 02/06/2025 18:4	7						
Surr: Dibromofluoromethane (Surr)	01	96.9	% 70-130	02/06/2025 1	8:47 02/06/2025 18:4	7						
Surr: Toluene-d8 (Surr)	01	100	% 70-130	02/06/2025 1	8:47 02/06/2025 18:4	7						
Surr: 1,2-Dichloroethane-d4 (Surr)	01RE1	99.7	% 70-120	02/06/2025 1	9:10 02/06/2025 19:1	0						

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

Work Order:

2/26/2025 10:01:59AM

Client Site I.D.:
Submitted To:

LFG-EW Monthly Monitoring

Jennifer Robb

25B0274

Parameter	Samp ID		eference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Compounds by GCM	S											
Surr: 4-Bromofluorobenzene (Surr)	01RE1	104 %	75-120	02/06/2025 19:10	02/06/2025 19:10)						
Surr: Dibromofluoromethane (Surr)	01RE1	94.0 %	70-130	02/06/2025 19:10	02/06/2025 19:10)						
Surr: Toluene-d8 (Surr)	01RE1	97.9 %	70-130	02/06/2025 19:10	02/06/2025 19:10)						
Semivolatile Organic Compounds by	GCMS											
Anthracene	01	120-12-7	SW8270E	02/10/2025 09:30	02/12/2025 00:35	BLOD		100	200	10	ug/L	BMS
Surr: 2,4,6-Tribromophenol (Surr)	01	69.0 %	5-136	02/10/2025 09:30	02/12/2025 00:35	i						
Surr: 2-Fluorobiphenyl (Surr)	01	43.2 %	9-117	02/10/2025 09:30	02/12/2025 00:35	j						
Surr: 2-Fluorophenol (Surr)	01	52.8 %	5-60	02/10/2025 09:30	02/12/2025 00:35	j						
Surr: Nitrobenzene-d5 (Surr)	01	76.0 %	5-151	02/10/2025 09:30	02/12/2025 00:35	i						
Surr: Phenol-d5 (Surr)	01	33.8 %	5-60	02/10/2025 09:30	02/12/2025 00:35	j						
Surr: p-Terphenyl-d14 (Surr)	01	41.8 %	5-141	02/10/2025 09:30	02/12/2025 00:35	i						

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

2/26/2025 10:01:59AM

Client Site I.D.:
Submitted To:

LFG-EW Monthly Monitoring

Jennifer Robb

Work Order:

25B0274

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Wet Chemistry Analysis												
Ammonia as N	01	7664-41-7	EPA350.1 R2.0	02/18/2025 14:09	02/18/2025 14:09	1300		73.1	100	1000	mg/L	MKS
BOD	01	E1640606	SM5210B-20 16	02/05/2025 17:21	02/05/2025 17:21	4420		0.2	2.0	1	mg/L	CET
COD	01	NA	SM5220D-20 11	02/17/2025 10:30	02/17/2025 10:30	3630		1000	1000	100	mg/L	CET
Nitrate as N	01	14797-55-8	Calc.	02/18/2025 11:00	02/18/2025 16:03	BLOD		1.00	5.00	100	mg/L	KJM
Nitrate+Nitrite as N	01	E701177	SM4500-NO 3F-2019	02/18/2025 11:00	02/18/2025 16:03	BLOD		0.50	0.50	5	mg/L	BKR
Nitrite as N	01	14797-65-0	SM4500-NO 2B-2021	02/05/2025 17:00	02/05/2025 17:00	BLOD		1.00	5.00	100	mg/L	KJM
Total Recoverable Phenolics	01	NA	SW9065	02/13/2025 16:30	02/13/2025 16:30	8.15		0.750	1.25	1	mg/L	SPH
TKN as N	01	E17148461	EPA351.2 R2.0	02/13/2025 18:16	02/13/2025 18:16	1190		100	250	500	mg/L	SPH

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Metals (Total) by EPA 6000	/7000 Series Methods											
Silver	02	7440-22-4	SW6020B	02/10/2025 17:00	02/11/2025 13:03	BLOD		0.600	10.0	10	ug/L	AB
Arsenic	02	7440-38-2	SW6020B	02/10/2025 17:00	02/11/2025 13:03	730		5.0	10	10	ug/L	AB
Barium	02	7440-39-3	SW6020B	02/10/2025 17:00	02/11/2025 13:03	1480		10.0	50.0	10	ug/L	AB
Cadmium	02	7440-43-9	SW6020B	02/10/2025 17:00	02/11/2025 13:03	10.1		1.00	10.0	10	ug/L	AB
Chromium	02	7440-47-3	SW6020B	02/10/2025 17:00	02/11/2025 13:03	196		4.00	10.0	10	ug/L	AB
Copper	02RE1	7440-50-8	SW6020B	02/12/2025 17:00	02/14/2025 12:11	3.81	J	3.00	10.0	10	ug/L	AB
Mercury	02	7439-97-6	SW6020B	02/10/2025 17:00	02/11/2025 13:03	BLOD		2.00	2.00	10	ug/L	AB
Nickel	02	7440-02-0	SW6020B	02/10/2025 17:00	02/11/2025 13:03	102.1		10.00	10.00	10	ug/L	AB
Lead	02	7439-92-1	SW6020B	02/10/2025 17:00	02/11/2025 13:03	20		10	10	10	ug/L	AB
Selenium	02	7782-49-2	SW6020B	02/10/2025 17:00	02/11/2025 13:03	BLOD		8.50	10.0	10	ug/L	AB
Zinc	02	7440-66-6	SW6020B	02/10/2025 17:00	02/11/2025 13:03	527		25.0	50.0	10	ua/L	AB

2/26/2025 10:01:59AM

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Work Order: 25B0274

Date Issued:

Client Sample ID: EW-85					Laborator	y Sample ID:	2580	274-02				
Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Compounds by GCM	S											
2-Butanone (MEK)	02	78-93-3	SW8260D	02/06/2025 18:01	02/06/2025 18:01	23900		150	500	50	ug/L	TLH
Acetone	02RE1	67-64-1	SW8260D	02/06/2025 18:24	02/06/2025 18:24	46400		3500	5000	500	ug/L	TLH
Benzene	02	71-43-2	SW8260D	02/06/2025 18:01	02/06/2025 18:01	443		20.0	50.0	50	ug/L	TLH
Ethylbenzene	02	100-41-4	SW8260D	02/06/2025 18:01	02/06/2025 18:01	158		20.0	50.0	50	ug/L	TLH
Toluene	02	108-88-3	SW8260D	02/06/2025 18:01	02/06/2025 18:01	54.5		25.0	50.0	50	ug/L	TLH
Xylenes, Total	02	1330-20-7	SW8260D	02/06/2025 18:01	02/06/2025 18:01	354		50.0	150	50	ug/L	TLH
Tetrahydrofuran	02	109-99-9	SW8260D	02/06/2025 18:01	02/06/2025 18:01	7490		500	500	50	ug/L	TLH
Surr: 1,2-Dichloroethane-d4 (Surr)	02	95.6	% 70-120	02/06/2025 1	8:01 02/06/2025 18	:01						
Surr: 4-Bromofluorobenzene (Surr)	02	104	% 75-120	02/06/2025 1	8:01 02/06/2025 18	:01						
Surr: Dibromofluoromethane (Surr)	02	91.9	% 70-130	02/06/2025 1	8:01 02/06/2025 18	:01						
Surr: Toluene-d8 (Surr)	02	100	% 70-130	02/06/2025 1	8:01 02/06/2025 18	:01						
Surr: 1,2-Dichloroethane-d4 (Surr)	02RE1	103	% 70-120	02/06/2025 1	8:24 02/06/2025 18	:24						
Surr: 4-Bromofluorobenzene (Surr)	02RE1	103	% 75-120	02/06/2025 1	8:24 02/06/2025 18	:24						
Surr: Dibromofluoromethane (Surr)	02RE1	95.3	% 70-130	02/06/2025 1	8:24 02/06/2025 18	:24						
Surr: Toluene-d8 (Surr)	02RE1	103	% 70-130	02/06/2025 1	8:24 02/06/2025 18	:24						
Semivolatile Organic Compounds by	GCMS											
Anthracene	02	120-12-7	SW8270E	02/10/2025 09:30	02/12/2025 01:09	BLOD		200	400	20	ug/L	BMS
Surr: 2,4,6-Tribromophenol (Surr)	02	108	% 5-136	02/10/2025 0	9:30 02/12/2025 01	:09						
Surr: 2-Fluorobiphenyl (Surr)	02	63.6	% 9-117	02/10/2025 0	9:30 02/12/2025 01.	:09						
Surr: 2-Fluorophenol (Surr)	02	77.2	% 5-60	02/10/2025 0	9:30 02/12/2025 01	:09						DS
Surr: Nitrobenzene-d5 (Surr)	02	537	% 5-151	02/10/2025 0	9:30 02/12/2025 01	:09						DS
Surr: Phenol-d5 (Surr)	02	141	% 5-60	02/10/2025 0	9:30 02/12/2025 01	:09						DS
Surr: p-Terphenyl-d14 (Surr)	02	72.4	% 5-141	02/10/2025 0	9:30 02/12/2025 01	:09						

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

2/26/2025 10:01:59AM

Client Site I.D.:

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25B0274

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Wet Chemistry Analysis												
Ammonia as N	02	7664-41-7	EPA350.1 R2.0	02/18/2025 14:11	02/18/2025 14:11	1400		73.1	100	1000	mg/L	MKS
BOD	02	E1640606	SM5210B-20 16	02/05/2025 17:15	02/05/2025 17:15	16200		0.2	2.0	1	mg/L	CET
COD	02	NA	SM5220D-20 11	02/17/2025 10:30	02/17/2025 10:30	23400		5000	5000	500	mg/L	CET
Nitrate as N	02	14797-55-8	Calc.	02/18/2025 11:00	02/18/2025 16:04	BLOD		1.00	5.00	100	mg/L	KJM
Nitrate+Nitrite as N	02	E701177	SM4500-NO 3F-2019	02/18/2025 11:00	02/18/2025 16:04	BLOD		0.50	0.50	5	mg/L	BKR
Nitrite as N	02	14797-65-0	SM4500-NO 2B-2021	02/05/2025 17:00	02/05/2025 17:00	BLOD		1.00	5.00	100	mg/L	KJM
Total Recoverable Phenolics	02	NA	SW9065	02/13/2025 16:30	02/13/2025 16:30	20.8		1.50	2.50	1	mg/L	SPH
TKN as N	02	E17148461	EPA351.2 R2.0	02/13/2025 18:16	02/13/2025 18:16	1520		100	250	500	mg/L	SPH

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Metals (Total) by EPA 6000	7000 Series Methods											
Silver	03	7440-22-4	SW6020B	02/07/2025 11:30	02/19/2025 14:32	BLOD		2.32	2.50	1	ug/kg	MDW
Arsenic	03	7440-38-2	SW6020B	02/07/2025 11:30	02/19/2025 14:32	774	J	465	1000	1	ug/kg	MDW
Barium	03	7440-39-3	SW6020B	02/07/2025 11:30	02/19/2025 14:32	BLOD		465	500	1	ug/kg	MDW
Cadmium	03	7440-43-9	SW6020B	02/07/2025 11:30	02/19/2025 14:32	BLOD		186	200	1	ug/kg	MDW
Chromium	03	7440-47-3	SW6020B	02/07/2025 11:30	02/19/2025 14:32	99.2		46.5	50.0	1	ug/kg	MDW
Copper	03	7440-50-8	SW6020B	02/07/2025 11:30	02/19/2025 14:32	BLOD		46.5	50.0	1	ug/kg	MDW
Mercury	03	7439-97-6	SW7471B	02/13/2025 08:41	02/13/2025 13:33	0.110		0.009	0.009	1	mg/kg	NBT
Nickel	03	7440-02-0	SW6020B	02/07/2025 11:30	02/19/2025 14:32	BLOD		46.5	50.0	1	ug/kg	MDW
Lead	03	7439-92-1	SW6020B	02/07/2025 11:30	02/19/2025 14:32	56.1		46.5	50.0	1	ug/kg	MDW
Selenium	03	7782-49-2	SW6020B	02/07/2025 11:30	02/19/2025 14:32	BLOD		2320	2500	1	ug/kg	MDW
Zinc	03	7440-66-6	SW6020B	02/07/2025 11:30	02/19/2025 14:32	136		46.5	50.0	1	ug/kg	MDW

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Compounds by GCMS	6											
2-Butanone (MEK)	03	78-93-3	SW8260D	02/10/2025 18:21	02/10/2025 18:21	BLOD		24500	24500	2500	ug/kg	TLH
Acetone	03	67-64-1	SW8260D	02/10/2025 18:21	02/10/2025 18:21	BLOD		49000	98000	2500	ug/kg	TLH
Benzene	03	71-43-2	SW8260D	02/10/2025 18:21	02/10/2025 18:21	559000		24500	24500	2500	ug/kg	TLH
Ethylbenzene	03	100-41-4	SW8260D	02/10/2025 18:21	02/10/2025 18:21	2090000		24500	24500	2500	ug/kg	TLH
Toluene	03	108-88-3	SW8260D	02/10/2025 18:21	02/10/2025 18:21	537000		24500	24500	2500	ug/kg	TLH
Xylenes, Total	03	1330-20-7	SW8260D	02/10/2025 18:21	02/10/2025 18:21	4260000		24500	24500	2500	ug/kg	TLH
Tetrahydrofuran	03	109-99-9	SW8260D	02/10/2025 18:21	02/10/2025 18:21	BLOD		24500	24500	2500	ug/kg	TLH
Surr: 1,2-Dichloroethane-d4 (Surr)	03	96.8	% 80-120	02/10/2025 18	3:21 02/10/2025 18	:21						
Surr: 4-Bromofluorobenzene (Surr)	03	88.8	% 85-120	02/10/2025 18	3:21 02/10/2025 18	:21						
Surr: Dibromofluoromethane (Surr)	03	90.6	% 80-130	02/10/2025 18	3:21 02/10/2025 18	:21						
Surr: Toluene-d8 (Surr)	03	107	% 85-115	02/10/2025 18	3:21 02/10/2025 18	:21						

25B0274

2/26/2025 10:01:59AM

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

Work Order:

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Semivolatile Organic Compounds by Anthracene	03	120-12-7	SW8270E	02/17/2025 10:35	02/19/2025 15:24	BLOD		4160	4160	50		BMS
Surr: 2,4,6-Tribromophenol (Surr)	03		% 15-96	02/17/2025 10	:35 02/19/2025 15:2	24						DS
Surr: 2-Fluorobiphenyl (Surr)	03	8.00	% 19-105	02/17/2025 10	:35 02/19/2025 15:2	24						DS
Surr: 2-Fluorophenol (Surr)	03	1.50	% 12-95	02/17/2025 10	:35 02/19/2025 15:2	24						DS
Surr: Nitrobenzene-d5 (Surr)	03	29.0	% 21-100	02/17/2025 10	:35 02/19/2025 15:2	24						
Surr: Phenol-d5 (Surr)	03	3.50	% 13-100	02/17/2025 10	:35 02/19/2025 15:2	24						DS
Surr: p-Terphenyl-d14 (Surr)	03	5.50	% 25-125	02/17/2025 10	:35 02/19/2025 15:2	24						DS

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

2/26/2025 10:01:59AM

Client Site I.D.:

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25B0274

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Wet Chemistry Analysis												
Ammonia as N	03	7664-41-7	EPA350.1 R2.0	02/18/2025 11:00	02/18/2025 16:41	1160		199	199	20	mg/kg	MKS
Total Recoverable Phenolics	03	NA	SW9065	02/13/2025 12:00	02/13/2025 16:30	516		495	495	20	mg/kg	SPH
TKN as N	03RE1	E17148461	EPA351.2 R2 0	02/18/2025 10:49	02/18/2025 10:49	948		39.8	99.5	2	mg/kg	SPH

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order: 25B0274

Client Sample ID: Trip Blank Laboratory Sample ID: 25B0274-04

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Compounds by GCM	S											
2-Butanone (MEK)	04	78-93-3	SW8260D	02/07/2025 12:25	02/07/2025 12:25	BLOD		3.00	10.0	1	ug/L	RJB
Acetone	04	67-64-1	SW8260D	02/07/2025 12:25	02/07/2025 12:25	BLOD		7.00	10.0	1	ug/L	RJB
Benzene	04	71-43-2	SW8260D	02/07/2025 12:25	02/07/2025 12:25	BLOD		0.40	1.00	1	ug/L	RJB
Ethylbenzene	04	100-41-4	SW8260D	02/07/2025 12:25	02/07/2025 12:25	BLOD		0.40	1.00	1	ug/L	RJB
Toluene	04	108-88-3	SW8260D	02/07/2025 12:25	02/07/2025 12:25	BLOD		0.50	1.00	1	ug/L	RJB
Xylenes, Total	04	1330-20-7	SW8260D	02/07/2025 12:25	02/07/2025 12:25	BLOD		1.00	3.00	1	ug/L	RJB
Tetrahydrofuran	04	109-99-9	SW8260D	02/07/2025 12:25	02/07/2025 12:25	BLOD		10.0	10.0	1	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	04	110	% 70-120	02/07/2025 12:	25 02/07/2025 12:25	 5						
Surr: 4-Bromofluorobenzene (Surr)	04	101	% 75-120	02/07/2025 12:	25 02/07/2025 12:25	5						
Surr: Dibromofluoromethane (Surr)	04	108	% 70-130	02/07/2025 12:	25 02/07/2025 12:25	5						
Surr: Toluene-d8 (Surr)	04	107	% 70-130	02/07/2025 12:	25 02/07/2025 12:25	5						

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

2/26/2025 10:01:59AM

Client Site I.D.:

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

25B0274

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Wet Chemistry Analysis												
BOD	05	E1640606	SM5210B-20 16	02/05/2025 17:20	02/05/2025 17:20	>43418.4		0.2	2.0	1	mg/L	CET
BOD	05	E1640606	SM5210B-20 16	02/05/2025 17:20	02/05/2025 17:20	>43418.4		0.2	2.0	1	mg/L	CET
COD	05	NA	SM5220D-20 11	02/19/2025 13:00	02/19/2025 13:00	447000		100000	100000	10000	mg/L	MJRL
Nitrate as N	05	14797-55-8	Calc.	02/18/2025 11:00	02/18/2025 16:09	BLOD		10.0	50.0	1000	mg/L	KJM
Nitrate+Nitrite as N	05	E701177	SM4500-NO 3F-2019	02/18/2025 11:00	02/18/2025 16:09	BLOD		10.0	10.0	100	mg/L	BKR
Nitrite as N	05	14797-65-0	SM4500-NO 2B-2021	02/05/2025 17:00	02/05/2025 17:00	BLOD		10.0	50.0	1000	mg/L	KJM

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
В	atch BIB0259 - SW3050B	-ICPMS								
Blank (BIB0259-BLK1)				Prepared: 02/07/2	2025 Analyzed: (02/19/2025				
Zinc	ND	50.0	ug/kg							
Barium	ND	500	ug/kg							
Cadmium	ND	200	ug/kg							
Chromium	ND	50.0	ug/kg							
Copper	ND	50.0	ug/kg							
Lead	ND	50.0	ug/kg							
Nickel	ND	50.0	ug/kg							
Selenium	ND	2500	ug/kg							
Silver	ND	2.50	ug/kg							
Arsenic	ND	1000	ug/kg							
LCS (BIB0259-BS1)				Prepared: 02/07/2	2025 Analyzed: (02/19/2025				
Silver	500	2.50	ug/kg	479		104	80-120			E
Zinc	2850	50.0	ug/kg	2400		119	80-120			
Arsenic	2670	1000	ug/kg	2400		111	80-120			
Nickel	2540	50.0	ug/kg	2400		106	80-120			
Barium	2520	500	ug/kg	2400		105	80-120			
Cadmium	2680	200	ug/kg	2400		112	80-120			
Chromium	2490	50.0	ug/kg	2400		104	80-120			
Selenium	2820	2500	ug/kg	2400		118	80-120			
Lead	2680	50.0	ug/kg	2400		112	80-120			
Copper	2580	50.0	ug/kg	2400		108	80-120			
Matrix Spike (BIB0259-MS1)	Source: 25B0274-03			Prepared: 02/07/2	2025 Analyzed: (02/19/2025				
Nickel	2580	50.0	ug/kg	2480	BLOD	104	75-125			
Barium	2600	500	ug/kg	2480	BLOD	105	75-125			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BIB0259 - SW305	B-ICPMS								
Matrix Spike (BIB0259-MS1)	Source	e: 25B0274-0	3	Prepared: 02/07/	/2025 Analyzed: (02/19/2025				
Chromium	2460	50.0	ug/kg	2480	99.2	95.6	75-125			
Lead	2730	50.0	ug/kg	2480	56.1	108	75-125			
Arsenic	3590	1000	ug/kg	2480	774	114	75-125			
Selenium	3700	2500	ug/kg	2480	BLOD	149	75-125			М
Silver	509	2.50	ug/kg	495	BLOD	103	75-125			E
Zinc	3140	50.0	ug/kg	2480	136	121	75-125			
Copper	2620	50.0	ug/kg	2480	BLOD	106	75-125			
Cadmium	2780	200	ug/kg	2480	BLOD	112	75-125			
Matrix Spike Dup (BIB0259-MSD1)	Source	e: 25B0274-0	3	Prepared: 02/07/	/2025 Analyzed: (02/19/2025				
Lead	3110	50.0	ug/kg	2390	56.1	128	75-125	13.1	20	М
Silver	489	2.50	ug/kg	477	BLOD	102	75-125	4.10	20	Ε
Zinc	3050	50.0	ug/kg	2390	136	122	75-125	2.87	20	
Nickel	2460	50.0	ug/kg	2390	BLOD	103	75-125	4.53	20	
Selenium	3660	2500	ug/kg	2390	BLOD	154	75-125	0.975	20	М
Copper	2550	50.0	ug/kg	2390	BLOD	107	75-125	2.62	20	
Chromium	2350	50.0	ug/kg	2390	99.2	94.5	75-125	4.64	20	
Cadmium	2710	200	ug/kg	2390	BLOD	114	75-125	2.80	20	
Barium	2510	500	ug/kg	2390	BLOD	105	75-125	3.43	20	
Arsenic	3600	1000	ug/kg	2390	774	119	75-125	0.283	20	
Batch I	BIB0357 - EPA200	.2R2.8/SW3	005A-ICP	MS						
Blank (BIB0357-BLK1)				Prepared: 02/10/	/2025 Analyzed: (02/11/2025				
Mercury	ND	0.200	ug/L							
Arsenic	ND	1.0	ug/L							

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bat	tch BIB0357 - EPA200).2R2.8/SW3(05A-ICP	MS						
Blank (BIB0357-BLK1)				Prepared: 02/10/	2025 Analyzed:	02/11/2025				
Barium	ND	5.00	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	1.00	ug/L							
Copper	0.487	1.00	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	1.000	ug/L							
Selenium	ND	1.00	ug/L							
Silver	ND	1.00	ug/L							
Zinc	ND	5.00	ug/L							
LCS (BIB0357-BS1)				Prepared: 02/10/	2025 Analyzed:	02/11/2025				
Mercury	0.958	0.200	ug/L	1.00		95.8	80-120			
Arsenic	53	1.0	ug/L	50.0		105	80-120			
Barium	53.5	5.00	ug/L	50.0		107	80-120			
Cadmium	53.7	1.00	ug/L	50.0		107	80-120			
Chromium	53.9	1.00	ug/L	50.0		108	80-120			
Copper	52.9	1.00	ug/L	50.0		106	80-120			
Lead	54	1.0	ug/L	50.0		109	80-120			
Nickel	52.90	1.000	ug/L	50.0		106	80-120			
Selenium	53.5	1.00	ug/L	50.0		107	80-120			
Silver	10.7	1.00	ug/L	10.0		107	80-120			
Zinc	53.9	5.00	ug/L	50.0		108	80-120			
Matrix Spike (BIB0357-MS1)	Sour	ce: 25B0521-0	ı	Prepared: 02/10/	2025 Analyzed:	02/11/2025				
Mercury	0.975	0.200	ug/L	1.00	BLOD	97.5	70-130			
Arsenic	57	1.0	ug/L	50.0	5.0	103	75-125			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

2/26/2025 10:01:59AM

Client Site I.D.:

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25B0274

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIB0357 - EPA200).2R2.8/SW3	005A-ICP	MS						
Matrix Spike (BIB0357-MS1)	Sour	ce: 25B0521-0	1	Prepared: 02/10	/2025 Analyzed: (02/11/2025				
Barium	185	5.00	ug/L	50.0	130	108	75-125			Е
Cadmium	51.0	1.00	ug/L	50.0	BLOD	102	75-125			
Chromium	52.4	1.00	ug/L	50.0	BLOD	105	75-125			
Copper	57.2	1.00	ug/L	50.0	6.63	101	75-125			
Lead	51	1.0	ug/L	50.0	BLOD	102	75-125			
Nickel	51.66	1.000	ug/L	50.0	BLOD	103	75-125			
Selenium	48.7	1.00	ug/L	50.0	BLOD	97.4	75-125			
Silver	10.3	1.00	ug/L	10.0	BLOD	103	75-125			
Zinc	73.6	5.00	ug/L	50.0	25.5	96.3	75-125			
Matrix Spike (BIB0357-MS2)	Sour	ce: 25B0587-0	1	Prepared: 02/10	/2025 Analyzed: (02/11/2025				
Mercury	0.955	0.200	ug/L	1.00	BLOD	95.5	70-130			
Arsenic	49	1.0	ug/L	50.0	0.69	97.6	75-125			
Barium	243	5.00	ug/L	50.0	184	117	75-125			E
Cadmium	45.5	1.00	ug/L	50.0	0.137	90.7	75-125			
Chromium	63.1	1.00	ug/L	50.0	3.13	120	75-125			
Copper	55.0	1.00	ug/L	50.0	5.73	98.6	75-125			
Lead	48	1.0	ug/L	50.0	BLOD	96.5	75-125			
Nickel	56.46	1.000	ug/L	50.0	5.144	103	75-125			
Selenium	31.3	1.00	ug/L	50.0	BLOD	62.6	75-125			М
Silver	10.0	1.00	ug/L	10.0	BLOD	100	75-125			
Zinc	68.1	5.00	ug/L	50.0	26.7	82.8	75-125			
Matrix Spike Dup (BIB0357-MSD1)	Sour	ce: 25B0521-0	1	Prepared: 02/10	/2025 Analyzed: (02/11/2025				
Mercury	0.981	0.200	ug/L	1.00	BLOD	98.1	70-130	0.660	20	
Arsenic	56	1.0	ug/L	50.0	5.0	101	75-125	1.66	20	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIB0357 - EPA200).2R2.8/SW3	005A-ICPI	MS						
Matrix Spike Dup (BIB0357-MSD1)	Sour	ce: 25B0521-0	1	Prepared: 02/10	/2025 Analyzed: (02/11/2025				
Barium	182	5.00	ug/L	50.0	130	104	75-125	1.19	20	Е
Cadmium	50.6	1.00	ug/L	50.0	BLOD	101	75-125	0.609	20	
Chromium	51.6	1.00	ug/L	50.0	BLOD	103	75-125	1.72	20	
Copper	56.2	1.00	ug/L	50.0	6.63	99.0	75-125	1.82	20	
Lead	51	1.0	ug/L	50.0	BLOD	102	75-125	0.383	20	
Nickel	50.06	1.000	ug/L	50.0	BLOD	100	75-125	3.14	20	
Selenium	47.2	1.00	ug/L	50.0	BLOD	94.4	75-125	3.09	20	
Silver	10.1	1.00	ug/L	10.0	BLOD	101	75-125	1.77	20	
Zinc	71.2	5.00	ug/L	50.0	25.5	91.5	75-125	3.29	20	
Matrix Spike Dup (BIB0357-MSD2)	Sour	ce: 25B0587-0	1	Prepared: 02/10	/2025 Analyzed: (02/11/2025				
Mercury	0.991	0.200	ug/L	1.00	BLOD	99.1	70-130	3.79	20	
Arsenic	50	1.0	ug/L	50.0	0.69	97.8	75-125	0.162	20	
Barium	244	5.00	ug/L	50.0	184	119	75-125	0.407	20	E
Cadmium	45.7	1.00	ug/L	50.0	0.137	91.1	75-125	0.446	20	
Chromium	64.7	1.00	ug/L	50.0	3.13	123	75-125	2.61	20	
Copper	56.0	1.00	ug/L	50.0	5.73	101	75-125	1.75	20	
Lead	48	1.0	ug/L	50.0	BLOD	96.5	75-125	0.0275	20	
Nickel	56.91	1.000	ug/L	50.0	5.144	104	75-125	0.798	20	
Selenium	31.5	1.00	ug/L	50.0	BLOD	63.0	75-125	0.667	20	М
Silver	9.90	1.00	ug/L	10.0	BLOD	99.0	75-125	1.16	20	
Zinc	68.9	5.00	ug/L	50.0	26.7	84.3	75-125	1.05	20	
Batch	BIB0465 - EPA200).2R2.8/SW3	005A-ICPI	MS						

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIB0465 - EPA200	.2R2.8/SW3	005A-ICP	MS						
Blank (BIB0465-BLK1)				Prepared: 02/12/	/2025 Analyzed: (02/14/2025				
Copper	ND	1.00	ug/L							
LCS (BIB0465-BS1)				Prepared: 02/12/	/2025 Analyzed: (02/14/2025				
Copper	48.4	1.00	ug/L	50.0		96.8	80-120			
Matrix Spike (BIB0465-MS1)	Source	e: 25B0720-0	1	Prepared: 02/12/	/2025 Analyzed: (02/14/2025				
Copper	50.2	1.00	ug/L	50.0	3.60	93.2	75-125			
Matrix Spike Dup (BIB0465-MSD1)	Source	ce: 25B0720-0	1	Prepared: 02/12/	/2025 Analyzed: (02/14/2025				
Copper	51.4	1.00	ug/L	50.0	3.60	95.6	75-125	2.43	20	
Batch	BIB0498 - SW7471	1B								
Blank (BIB0498-BLK1)				Prepared & Anal	yzed: 02/13/2025	i				
Mercury	ND	0.009	mg/kg							
LCS (BIB0498-BS1)				Prepared & Anal	yzed: 02/13/2025	j				
Mercury	0.092	0.009	mg/kg	0.0935		98.4	80-120			
Matrix Spike (BIB0498-MS1)	Sourc	e: 25B0274-0	3	Prepared & Anal	yzed: 02/13/2025	i				
Mercury	0.155	0.009	mg/kg	0.0998	0.110	44.4	80-120			М
Matrix Spike Dup (BIB0498-MSD1)	Source	e: 25B0274-0	3	Prepared & Anal	yzed: 02/13/2025	j				
Mercury	0.180	0.009	mg/kg	0.0998	0.110	70.1	80-120	15.3	20	М

2/26/2025 10:01:59AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.:

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl	B0204 - SW5030	DB-MS								
Blank (BIB0204-BLK1)			F	Prepared & Analy	yzed: 02/06/2025	;				
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	49.0		ug/L	50.0		98.1	70-120			
Surr: 4-Bromofluorobenzene (Surr)	51.0		ug/L	50.0		102	75-120			
Surr: Dibromofluoromethane (Surr)	46.2		ug/L	50.0		92.4	70-130			
Surr: Toluene-d8 (Surr)	49.8		ug/L	50.0		99.6	70-130			
LCS (BIB0204-BS1)			F	Prepared & Analy	yzed: 02/06/2025	5				
1,1,1,2-Tetrachloroethane	56.1		ug/L	50.0		112	80-130			
1,1,1-Trichloroethane	46.0		ug/L	50.0		92.0	65-130			
1,1,2,2-Tetrachloroethane	52.8		ug/L	50.0		106	65-130			
1,1,2-Trichloroethane	50.7		ug/L	50.0		101	75-125			
1,1-Dichloroethane	43.4		ug/L	50.0		86.8	70-135			
1,1-Dichloroethylene	38.7		ug/L	50.0		77.3	70-130			
1,1-Dichloropropene	44.6		ug/L	50.0		89.3	75-135			
1,2,3-Trichlorobenzene	46.1		ug/L	50.0		92.2	55-140			
1,2,3-Trichloropropane	49.5		ug/L	50.0		99.0	75-125			
1,2,4-Trichlorobenzene	45.6		ug/L	50.0		91.3	65-135			
1,2,4-Trimethylbenzene	48.9		ug/L	50.0		97.9	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	41.6		ug/L	50.0		83.2	50-130			
1,2-Dibromoethane (EDB)	49.1		ug/L	50.0		98.3	80-120			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BIB0204 - SW5030	B-MS							
LCS (BIB0204-BS1)			Prepared & Anal	yzed: 02/06/2025					
1,2-Dichlorobenzene	50.5	ug/L	50.0		101	70-120			
1,2-Dichloroethane	42.0	ug/L	50.0		84.0	70-130			
1,2-Dichloropropane	47.7	ug/L	50.0		95.4	75-125			
1,3,5-Trimethylbenzene	47.7	ug/L	50.0		95.4	75-125			
1,3-Dichlorobenzene	50.0	ug/L	50.0		100	75-125			
1,3-Dichloropropane	51.3	ug/L	50.0		103	75-125			
1,4-Dichlorobenzene	48.6	ug/L	50.0		97.1	75-125			
2,2-Dichloropropane	47.4	ug/L	50.0		94.8	70-135			
2-Butanone (MEK)	37.0	ug/L	50.0		73.9	30-150			
2-Chlorotoluene	47.6	ug/L	50.0		95.2	75-125			
2-Hexanone (MBK)	48.4	ug/L	50.0		96.8	55-130			
4-Chlorotoluene	47.5	ug/L	50.0		95.0	75-130			
4-Isopropyltoluene	52.4	ug/L	50.0		105	75-130			
4-Methyl-2-pentanone (MIBK)	46.4	ug/L	50.0		92.8	60-135			
Acetone	37.3	ug/L	50.0		74.6	40-140			
Benzene	47.0	ug/L	50.0		94.1	80-120			
Bromobenzene	52.5	ug/L	50.0		105	75-125			
Bromochloromethane	45.2	ug/L	50.0		90.4	65-130			
Bromodichloromethane	49.3	ug/L	50.0		98.5	75-120			
Bromoform	43.0	ug/L	50.0		85.9	70-130			
Bromomethane	59.4	ug/L	50.0		119	30-145			
Carbon disulfide	31.4	ug/L	50.0		62.8	35-160			
Carbon tetrachloride	48.8	ug/L	50.0		97.6	65-140			
Chlorobenzene	49.3	ug/L	50.0		98.6	80-120			
Chloroethane	45.3	ug/L	50.0		90.6	60-135			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BIB0204 - SW5030E	B-MS							
.CS (BIB0204-BS1)			Prepared & Anal	yzed: 02/06/2025					
Chloroform	43.6	ug/L	50.0		87.2	65-135			
Chloromethane	48.4	ug/L	50.0		96.9	40-125			
cis-1,2-Dichloroethylene	44.1	ug/L	50.0		88.2	70-125			
cis-1,3-Dichloropropene	50.9	ug/L	50.0		102	70-130			
Dibromochloromethane	58.5	ug/L	50.0		117	60-135			
Dibromomethane	45.4	ug/L	50.0		90.7	75-125			
Dichlorodifluoromethane	57.3	ug/L	50.0		115	30-155			
Ethylbenzene	50.8	ug/L	50.0		102	75-125			
Hexachlorobutadiene	48.2	ug/L	50.0		96.4	50-140			
Isopropylbenzene	46.9	ug/L	50.0		93.7	75-125			
m+p-Xylenes	100	ug/L	100		100	75-130			
Methylene chloride	44.0	ug/L	50.0		88.1	55-140			
Methyl-t-butyl ether (MTBE)	45.1	ug/L	50.0		90.1	65-125			
Naphthalene	41.4	ug/L	50.0		82.7	55-140			
n-Butylbenzene	51.2	ug/L	50.0		102	70-135			
n-Propylbenzene	48.6	ug/L	50.0		97.2	70-130			
o-Xylene	49.9	ug/L	50.0		99.8	80-120			
sec-Butylbenzene	52.1	ug/L	50.0		104	70-125			
Styrene	50.7	ug/L	50.0		101	65-135			
tert-Butylbenzene	50.0	ug/L	50.0		100	70-130			
Tetrachloroethylene (PCE)	69.6	ug/L	50.0		139	45-150			
Toluene	47.1	ug/L	50.0		94.1	75-120			
trans-1,2-Dichloroethylene	40.1	ug/L	50.0		80.2	60-140			
trans-1,3-Dichloropropene	43.9	ug/L	50.0		87.7	55-140			
Trichloroethylene	46.5	ug/L	50.0		93.0	70-125			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bli	B0204 - SW5030	B-MS							
LCS (BIB0204-BS1)			Prepared & Ana	lyzed: 02/06/2025	i				
Trichlorofluoromethane	50.0	ug/L	50.0		99.9	60-145			
Vinyl chloride	52.0	ug/L	50.0		104	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	48.4	ug/L	50.0		96.7	70-120			
Surr: 4-Bromofluorobenzene (Surr)	51.3	ug/L	50.0		103	75-120			
Surr: Dibromofluoromethane (Surr)	47.2	ug/L	50.0		94.4	70-130			
Surr: Toluene-d8 (Surr)	51.4	ug/L	50.0		103	70-130			
Matrix Spike (BIB0204-MS1)	Sourc	e: 25B0332-01	Prepared & Ana	lyzed: 02/06/2025	j				
1,1,1,2-Tetrachloroethane	60.1	ug/L	50.0	BLOD	120	80-130			
1,1,1-Trichloroethane	48.0	ug/L	50.0	BLOD	95.9	65-130			
1,1,2,2-Tetrachloroethane	55.4	ug/L	50.0	BLOD	111	65-130			
1,1,2-Trichloroethane	55.0	ug/L	50.0	BLOD	110	75-125			
1,1-Dichloroethane	44.7	ug/L	50.0	BLOD	89.4	70-135			
1,1-Dichloroethylene	41.3	ug/L	50.0	BLOD	82.6	50-145			
1,1-Dichloropropene	46.9	ug/L	50.0	BLOD	93.8	75-135			
1,2,3-Trichlorobenzene	48.1	ug/L	50.0	BLOD	96.3	55-140			
1,2,3-Trichloropropane	54.8	ug/L	50.0	BLOD	110	75-125			
1,2,4-Trichlorobenzene	47.8	ug/L	50.0	BLOD	95.7	65-135			
1,2,4-Trimethylbenzene	50.3	ug/L	50.0	BLOD	101	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	43.5	ug/L	50.0	BLOD	86.9	50-130			
1,2-Dibromoethane (EDB)	53.1	ug/L	50.0	BLOD	106	80-120			
1,2-Dichlorobenzene	52.4	ug/L	50.0	BLOD	105	70-120			
1,2-Dichloroethane	43.9	ug/L	50.0	BLOD	87.7	70-130			
1,2-Dichloropropane	52.3	ug/L	50.0	BLOD	105	75-125			
1,3,5-Trimethylbenzene	50.2	ug/L	50.0	BLOD	100	75-124			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BIB0204 - SW503	OB-MS							
Matrix Spike (BIB0204-MS1)	Source	ce: 25B0332-01	Prepared & Ana	lyzed: 02/06/2025	i				
1,3-Dichlorobenzene	51.6	ug/	L 50.0	BLOD	103	75-125			
1,3-Dichloropropane	54.5	ug/	L 50.0	BLOD	109	75-125			
1,4-Dichlorobenzene	49.7	ug/	L 50.0	BLOD	99.4	75-125			
2,2-Dichloropropane	49.0	ug/	L 50.0	BLOD	98.1	70-135			
2-Butanone (MEK)	37.6	ug/	L 50.0	BLOD	75.2	30-150			
2-Chlorotoluene	49.0	ug/	L 50.0	BLOD	97.9	75-125			
2-Hexanone (MBK)	51.6	ug/	L 50.0	BLOD	103	55-130			
4-Chlorotoluene	48.8	ug/	L 50.0	BLOD	97.7	75-130			
4-Isopropyltoluene	54.1	ug/	L 50.0	BLOD	108	75-130			
4-Methyl-2-pentanone (MIBK)	50.9	ug/	L 50.0	BLOD	102	60-135			
Acetone	39.4	ug/	L 50.0	BLOD	75.5	40-140			
Benzene	49.5	ug/	L 50.0	BLOD	99.1	80-120			
Bromobenzene	57.3	ug/	L 50.0	BLOD	115	75-125			
Bromochloromethane	45.5	ug/	L 50.0	BLOD	91.0	65-130			
Bromodichloromethane	54.7	ug/	L 50.0	BLOD	109	75-136			
Bromoform	45.8	ug/	L 50.0	BLOD	91.5	70-130			
Bromomethane	61.6	ug/	L 50.0	BLOD	123	30-145			
Carbon disulfide	32.8	ug/	L 50.0	BLOD	65.6	35-160			
Carbon tetrachloride	53.2	ug/	L 50.0	BLOD	106	65-140			
Chlorobenzene	51.5	ug/	L 50.0	BLOD	103	80-120			
Chloroethane	48.2	ug/	L 50.0	BLOD	96.5	60-135			
Chloroform	44.6	ug/	L 50.0	BLOD	89.2	65-135			
Chloromethane	51.2	ug/	L 50.0	BLOD	102	40-125			
cis-1,2-Dichloroethylene	45.8	ug/	L 50.0	BLOD	91.5	70-125			
cis-1,3-Dichloropropene	56.5	ug/	L 50.0	BLOD	113	47-136			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Unit	Spike s Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	3IB0204 - SW5030	B-MS							
Matrix Spike (BIB0204-MS1)	Sourc	e: 25B0332-01	Prepared & Ana	alyzed: 02/06/2025	;				
Dibromochloromethane	61.7	u	g/L 50.0	BLOD	123	60-135			
Dibromomethane	48.2	u	g/L 50.0	BLOD	96.4	75-125			
Dichlorodifluoromethane	59.3	u	g/L 50.0	BLOD	119	30-155			
Ethylbenzene	53.0	u	g/L 50.0	BLOD	106	75-125			
Hexachlorobutadiene	52.0	u	g/L 50.0	BLOD	104	50-140			
Isopropylbenzene	50.3	u	g/L 50.0	BLOD	101	75-125			
m+p-Xylenes	105	u	g/L 100	BLOD	105	75-130			
Methylene chloride	43.6	u	g/L 50.0	BLOD	87.3	55-140			
Methyl-t-butyl ether (MTBE)	45.1	u	g/L 50.0	BLOD	90.3	65-125			
Naphthalene	43.6	u	g/L 50.0	BLOD	87.1	55-140			
n-Butylbenzene	52.9	u	g/L 50.0	BLOD	106	70-135			
n-Propylbenzene	49.7	u	g/L 50.0	BLOD	99.4	70-130			
o-Xylene	53.5	u	g/L 50.0	BLOD	107	80-120			
sec-Butylbenzene	54.2	u	g/L 50.0	BLOD	108	70-125			
Styrene	53.8	u	g/L 50.0	BLOD	108	65-135			
tert-Butylbenzene	51.4	u	g/L 50.0	BLOD	103	70-130			
Tetrachloroethylene (PCE)	75.8	u	g/L 50.0	BLOD	152	51-231			
Toluene	50.1	u	g/L 50.0	BLOD	100	75-120			
trans-1,2-Dichloroethylene	42.4	u	g/L 50.0	BLOD	84.9	60-140			
trans-1,3-Dichloropropene	47.9	u	g/L 50.0	BLOD	95.7	55-140			
Trichloroethylene	51.0	u	g/L 50.0	BLOD	102	70-125			
Trichlorofluoromethane	53.6	u	g/L 50.0	BLOD	107	60-145			
Vinyl chloride	52.3	u	g/L 50.0	BLOD	105	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	46.6	u	g/L 50.0		93.2	70-120			

2/26/2025 10:01:59AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.:

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bll	B0204 - SW5030	0B-MS								
Matrix Spike (BIB0204-MS1)	Source	ce: 25B0332-0)1	Prepared & Anal	yzed: 02/06/2025					
Surr: 4-Bromofluorobenzene (Surr)	51.7		ug/L	50.0		103	75-120			
Surr: Dibromofluoromethane (Surr)	46.6		ug/L	50.0		93.3	70-130			
Surr: Toluene-d8 (Surr)	52.8		ug/L	50.0		106	70-130			
Matrix Spike Dup (BIB0204-MSD1)	Sourc	ce: 25B0332-0)1	Prepared & Anal	yzed: 02/06/2025					
1,1,1,2-Tetrachloroethane	59.8		ug/L	50.0	BLOD	120	80-130	0.433	30	
1,1,1-Trichloroethane	46.9		ug/L	50.0	BLOD	93.8	65-130	2.28	30	
1,1,2,2-Tetrachloroethane	60.2		ug/L	50.0	BLOD	120	65-130	8.15	30	
1,1,2-Trichloroethane	54.7		ug/L	50.0	BLOD	109	75-125	0.529	30	
1,1-Dichloroethane	43.6		ug/L	50.0	BLOD	87.3	70-135	2.36	30	
1,1-Dichloroethylene	38.9		ug/L	50.0	BLOD	77.7	50-145	6.06	30	
1,1-Dichloropropene	46.2		ug/L	50.0	BLOD	92.4	75-135	1.55	30	
1,2,3-Trichlorobenzene	49.3		ug/L	50.0	BLOD	98.6	55-140	2.36	30	
1,2,3-Trichloropropane	58.7		ug/L	50.0	BLOD	117	75-125	7.03	30	
1,2,4-Trichlorobenzene	48.9		ug/L	50.0	BLOD	97.8	65-135	2.23	30	
1,2,4-Trimethylbenzene	50.2		ug/L	50.0	BLOD	100	75-130	0.239	30	
1,2-Dibromo-3-chloropropane (DBCP)	52.3		ug/L	50.0	BLOD	105	50-130	18.4	30	
1,2-Dibromoethane (EDB)	54.9		ug/L	50.0	BLOD	110	80-120	3.44	30	
1,2-Dichlorobenzene	51.8		ug/L	50.0	BLOD	104	70-120	1.08	30	
1,2-Dichloroethane	45.0		ug/L	50.0	BLOD	90.0	70-130	2.54	30	
1,2-Dichloropropane	52.9		ug/L	50.0	BLOD	106	75-125	1.20	30	
1,3,5-Trimethylbenzene	49.9		ug/L	50.0	BLOD	99.8	75-124	0.659	30	
1,3-Dichlorobenzene	51.8		ug/L	50.0	BLOD	104	75-125	0.425	30	
1,3-Dichloropropane	56.0		ug/L	50.0	BLOD	112	75-125	2.82	30	
1,4-Dichlorobenzene	49.7		ug/L	50.0	BLOD	99.4	75-125	0.0201	30	

25B0274

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Work Order:

Date Issued:

2/26/2025 10:01:59AM

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIB0204 - SW503	0B-MS							
Matrix Spike Dup (BIB0204-MSD1)	Sour	ce: 25B0332-01	Prepared & Ana	lyzed: 02/06/2025					
2,2-Dichloropropane	48.3	ug/L	50.0	BLOD	96.6	70-135	1.48	30	
2-Butanone (MEK)	39.2	ug/L	50.0	BLOD	78.4	30-150	4.17	30	
2-Chlorotoluene	48.1	ug/L	50.0	BLOD	96.3	75-125	1.69	30	
2-Hexanone (MBK)	57.4	ug/L	50.0	BLOD	115	55-130	10.5	30	
4-Chlorotoluene	48.4	ug/L	50.0	BLOD	96.9	75-130	0.822	30	
4-Isopropyltoluene	53.8	ug/L	50.0	BLOD	108	75-130	0.556	30	
4-Methyl-2-pentanone (MIBK)	56.0	ug/L	50.0	BLOD	112	60-135	9.64	30	
Acetone	41.7	ug/L	50.0	BLOD	80.1	40-140	5.67	30	
Benzene	49.0	ug/L	50.0	BLOD	97.9	80-120	1.20	30	
Bromobenzene	56.1	ug/L	50.0	BLOD	112	75-125	2.15	30	
Bromochloromethane	47.6	ug/L	50.0	BLOD	95.3	65-130	4.57	30	
Bromodichloromethane	54.1	ug/L	50.0	BLOD	108	75-136	1.07	30	
Bromoform	48.3	ug/L	50.0	BLOD	96.6	70-130	5.36	30	
Bromomethane	57.3	ug/L	50.0	BLOD	115	30-145	7.17	30	
Carbon disulfide	31.0	ug/L	50.0	BLOD	62.0	35-160	5.58	30	
Carbon tetrachloride	51.2	ug/L	50.0	BLOD	102	65-140	3.81	30	
Chlorobenzene	51.1	ug/L	50.0	BLOD	102	80-120	0.877	30	
Chloroethane	44.3	ug/L	50.0	BLOD	88.7	60-135	8.45	30	
Chloroform	44.9	ug/L	50.0	BLOD	89.8	65-135	0.648	30	
Chloromethane	47.1	ug/L	50.0	BLOD	94.2	40-125	8.30	30	
cis-1,2-Dichloroethylene	45.8	ug/L	50.0	BLOD	91.7	70-125	0.175	30	
cis-1,3-Dichloropropene	57.0	ug/L	50.0	BLOD	114	47-136	0.933	30	
Dibromochloromethane	63.5	ug/L	50.0	BLOD	127	60-135	2.94	30	
Dibromomethane	49.6	ug/L	50.0	BLOD	99.1	75-125	2.80	30	
Dichlorodifluoromethane	53.7	ug/L	50.0	BLOD	107	30-155	9.94	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Uni	Spike s Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	IB0204 - SW503	0B-MS							
Matrix Spike Dup (BIB0204-MSD1)	Sour	ce: 25B0332-01	Prepared & Ana	llyzed: 02/06/2025	5				
Ethylbenzene	53.1	U	g/L 50.0	BLOD	106	75-125	0.151	30	
Hexachlorobutadiene	51.6	U	g/L 50.0	BLOD	103	50-140	0.869	30	
Isopropylbenzene	50.3	U	g/L 50.0	BLOD	101	75-125	0.00	30	
m+p-Xylenes	104	U	g/L 100	BLOD	104	75-130	0.516	30	
Methylene chloride	42.6	U	g/L 50.0	BLOD	85.3	55-140	2.36	30	
Methyl-t-butyl ether (MTBE)	46.4	U	g/L 50.0	BLOD	92.9	65-125	2.82	30	
Naphthalene	46.6	U	g/L 50.0	BLOD	93.1	55-140	6.66	30	
n-Butylbenzene	53.5	U	g/L 50.0	BLOD	107	70-135	1.13	30	
n-Propylbenzene	49.8	U	g/L 50.0	BLOD	99.7	70-130	0.301	30	
o-Xylene	52.8	U	g/L 50.0	BLOD	106	80-120	1.39	30	
sec-Butylbenzene	53.9	U	g/L 50.0	BLOD	108	70-125	0.573	30	
Styrene	54.4	U	g/L 50.0	BLOD	109	65-135	1.07	30	
tert-Butylbenzene	51.0	U	g/L 50.0	BLOD	102	70-130	0.821	30	
Tetrachloroethylene (PCE)	75.2	U	g/L 50.0	BLOD	150	51-231	0.861	30	
Toluene	49.8	U	g/L 50.0	BLOD	99.6	75-120	0.541	30	
trans-1,2-Dichloroethylene	39.8	U	g/L 50.0	BLOD	79.6	60-140	6.47	30	
trans-1,3-Dichloropropene	49.0	U	g/L 50.0	BLOD	97.9	55-140	2.25	30	
Trichloroethylene	49.6	U	g/L 50.0	BLOD	99.3	70-125	2.66	30	
Trichlorofluoromethane	49.2	U	g/L 50.0	BLOD	98.3	60-145	8.60	30	
Vinyl chloride	49.0	U	g/L 50.0	BLOD	98.0	50-145	6.51	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	47.9	U	g/L 50.0		95.7	70-120			
Surr: 4-Bromofluorobenzene (Surr)	52.6	U	g/L 50.0		105	75-120			
Surr: Dibromofluoromethane (Surr)	45.6	U	g/L 50.0		91.2	70-130			
Surr: Toluene-d8 (Surr)	52.2	U	g/L 50.0		104	70-130			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bli	B0293 - SW5030	B-MS								
Blank (BIB0293-BLK1)			F	Prepared & Anal	yzed: 02/07/2025					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Tetrahydrofuran	ND	10.0	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	57.4		ug/L	50.0		115	70-120			
Surr: 4-Bromofluorobenzene (Surr)	50.5		ug/L	50.0		101	75-120			
Surr: Dibromofluoromethane (Surr)	54.1		ug/L	50.0		108	70-130			
Surr: Toluene-d8 (Surr)	53.6		ug/L	50.0		107	70-130			
LCS (BIB0293-BS1)			F	Prepared & Anal	yzed: 02/07/2025					
1,1,1,2-Tetrachloroethane	35.5		ug/L	50.0		71.1	80-130			L
1,1,1-Trichloroethane	50.7		ug/L	50.0		101	65-130			
1,1,2,2-Tetrachloroethane	42.1		ug/L	50.0		84.2	65-130			
1,1,2-Trichloroethane	51.0		ug/L	50.0		102	75-125			
1,1-Dichloroethane	49.6		ug/L	50.0		99.3	70-135			
1,1-Dichloroethylene	47.6		ug/L	50.0		95.2	70-130			
1,1-Dichloropropene	52.6		ug/L	50.0		105	75-135			
1,2,3-Trichlorobenzene	35.9		ug/L	50.0		71.8	55-140			
1,2,3-Trichloropropane	41.0		ug/L	50.0		82.0	75-125			
1,2,4-Trichlorobenzene	38.3		ug/L	50.0		76.7	65-135			
1,2,4-Trimethylbenzene	49.5		ug/L	50.0		99.0	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	37.0		ug/L	50.0		73.9	50-130			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batcl	h BIB0293 - SW5030	B-MS							
_CS (BIB0293-BS1)			Prepared & Anal	lyzed: 02/07/2025					
1,2-Dibromoethane (EDB)	39.6	ug/L	50.0		79.1	80-120			L
1,2-Dichlorobenzene	47.2	ug/L	50.0		94.3	70-120			
1,2-Dichloroethane	41.8	ug/L	50.0		83.5	70-130			
1,2-Dichloropropane	46.2	ug/L	50.0		92.5	75-125			
1,3,5-Trimethylbenzene	48.8	ug/L	50.0		97.7	75-125			
1,3-Dichlorobenzene	49.1	ug/L	50.0		98.2	75-125			
1,3-Dichloropropane	52.0	ug/L	50.0		104	75-125			
1,4-Dichlorobenzene	47.0	ug/L	50.0		94.0	75-125			
2,2-Dichloropropane	53.8	ug/L	50.0		108	70-135			
2-Butanone (MEK)	39.1	ug/L	50.0		78.3	30-150			
2-Chlorotoluene	49.7	ug/L	50.0		99.4	75-125			
2-Hexanone (MBK)	29.2	ug/L	50.0		58.4	55-130			
4-Chlorotoluene	48.8	ug/L	50.0		97.5	75-130			
4-Isopropyltoluene	53.2	ug/L	50.0		106	75-130			
4-Methyl-2-pentanone (MIBK)	34.5	ug/L	50.0		69.0	60-135			
Acetone	42.2	ug/L	50.0		84.3	40-140			
Benzene	47.7	ug/L	50.0		95.4	80-120			
Bromobenzene	40.3	ug/L	50.0		80.6	75-125			
Bromochloromethane	48.9	ug/L	50.0		97.7	65-130			
Bromodichloromethane	49.2	ug/L	50.0		98.3	75-120			
Bromoform	32.4	ug/L	50.0		64.8	70-130			L
Bromomethane	52.5	ug/L	50.0		105	30-145			
Carbon disulfide	33.8	ug/L	50.0		67.7	35-160			
Carbon tetrachloride	52.3	ug/L	50.0		105	65-140			
Chlorobenzene	40.8	ug/L	50.0		81.6	80-120			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BIB0293 - SW5030	B-MS							
_CS (BIB0293-BS1)			Prepared & Anal	yzed: 02/07/2025					
Chloroethane	55.6	ug/L	50.0		111	60-135			
Chloroform	46.1	ug/L	50.0		92.2	65-135			
Chloromethane	55.7	ug/L	50.0		111	40-125			
cis-1,2-Dichloroethylene	47.4	ug/L	50.0		94.7	70-125			
cis-1,3-Dichloropropene	53.5	ug/L	50.0		107	70-130			
Dibromochloromethane	44.3	ug/L	50.0		88.7	60-135			
Dibromomethane	46.3	ug/L	50.0		92.6	75-125			
Dichlorodifluoromethane	65.2	ug/L	50.0		130	30-155			
Ethylbenzene	40.9	ug/L	50.0		81.8	75-125			
Hexachlorobutadiene	49.9	ug/L	50.0		99.8	50-140			
Isopropylbenzene	37.6	ug/L	50.0		75.3	75-125			
m+p-Xylenes	84.9	ug/L	100		84.9	75-130			
Methylene chloride	44.1	ug/L	50.0		88.1	55-140			
Methyl-t-butyl ether (MTBE)	47.9	ug/L	50.0		95.8	65-125			
Naphthalene	33.9	ug/L	50.0		67.8	55-140			
n-Butylbenzene	54.4	ug/L	50.0		109	70-135			
n-Propylbenzene	51.1	ug/L	50.0		102	70-130			
o-Xylene	41.6	ug/L	50.0		83.2	80-120			
sec-Butylbenzene	56.0	ug/L	50.0		112	70-125			
Styrene	41.4	ug/L	50.0		82.8	65-135			
tert-Butylbenzene	51.6	ug/L	50.0		103	70-130			
Tetrachloroethylene (PCE)	62.6	ug/L	50.0		125	45-150			
Toluene	48.0	ug/L	50.0		96.0	75-120			
trans-1,2-Dichloroethylene	45.0	ug/L	50.0		90.0	60-140			
trans-1,3-Dichloropropene	45.4	ug/L	50.0		90.9	55-140			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bli	B0293 - SW5030	B-MS								
LCS (BIB0293-BS1)				Prepared & Anal	yzed: 02/07/2025					
Trichloroethylene	49.0		ug/L	50.0		98.0	70-125			
Trichlorofluoromethane	60.0		ug/L	50.0		120	60-145			
Vinyl chloride	61.9		ug/L	50.0		124	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	51.8		ug/L	50.0		104	70-120			
Surr: 4-Bromofluorobenzene (Surr)	43.5		ug/L	50.0		87.0	75-120			
Surr: Dibromofluoromethane (Surr)	52.1		ug/L	50.0		104	70-130			
Surr: Toluene-d8 (Surr)	52.2		ug/L	50.0		104	70-130			
Duplicate (BIB0293-DUP1)	Sourc	e: 25B0321-0	1	Prepared & Anal	yzed: 02/07/2025					
1,1,1,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,1-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,2-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichloropropane	ND	1.00	ug/L		BLOD			NA	30	
1,2,4-Trichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2,4-Trimethylbenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dibromo-3-chloropropane (DBCP)	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dibromoethane (EDB)	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dichlorobenzene	ND	0.50	ug/L		BLOD			NA	30	
1,2-Dichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dichloropropane	ND	0.50	ug/L		BLOD			NA	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Source Level Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BIB0293 - SW5030	B-MS							
Duplicate (BIB0293-DUP1)	Sourc	e: 25B0321-0)1	Prepared & Analyzed: 02/07/202	5				
1,3,5-Trimethylbenzene	ND	1.00	ug/L	BLOD			NA	30	
1,3-Dichlorobenzene	ND	1.00	ug/L	BLOD			NA	30	
1,3-Dichloropropane	ND	1.00	ug/L	BLOD			NA	30	
1,4-Dichlorobenzene	ND	1.00	ug/L	BLOD			NA	30	
2,2-Dichloropropane	ND	1.00	ug/L	BLOD			NA	30	
2-Butanone (MEK)	ND	10.0	ug/L	BLOD			NA	30	
2-Chlorotoluene	ND	1.00	ug/L	BLOD			NA	30	
2-Hexanone (MBK)	ND	5.00	ug/L	BLOD			NA	30	
4-Chlorotoluene	ND	1.00	ug/L	BLOD			NA	30	
4-Isopropyltoluene	ND	1.00	ug/L	BLOD			NA	30	
4-Methyl-2-pentanone (MIBK)	ND	5.00	ug/L	BLOD			NA	30	
Acetone	ND	10.0	ug/L	BLOD			NA	30	
Benzene	ND	1.00	ug/L	BLOD			NA	30	
Bromobenzene	ND	1.00	ug/L	BLOD			NA	30	
Bromochloromethane	ND	1.00	ug/L	BLOD			NA	30	
Bromodichloromethane	ND	0.50	ug/L	BLOD			NA	30	
Bromoform	ND	1.00	ug/L	BLOD			NA	30	
Bromomethane	ND	1.00	ug/L	BLOD			NA	30	
Carbon disulfide	ND	10.0	ug/L	BLOD			NA	30	
Carbon tetrachloride	ND	1.00	ug/L	BLOD			NA	30	
Chlorobenzene	ND	1.00	ug/L	BLOD			NA	30	
Chloroethane	ND	1.00	ug/L	BLOD			NA	30	
Chloroform	6.30	0.50	ug/L	6.23			1.12	30	
Chloromethane	ND	1.00	ug/L	BLOD			NA	30	
cis-1,2-Dichloroethylene	ND	1.00	ug/L	BLOD			NA	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	h BIB0293 - SW5030	B-MS								
Duplicate (BIB0293-DUP1)	Sourc	e: 25B0321-0)1	Prepared & Analyzed	1: 02/07/2025					
cis-1,3-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	
Dibromochloromethane	ND	0.50	ug/L		BLOD			NA	30	
Dibromomethane	ND	1.00	ug/L		BLOD			NA	30	
Dichlorodifluoromethane	ND	1.00	ug/L		BLOD			NA	30	
Di-isopropyl ether (DIPE)	ND	5.00	ug/L		BLOD			NA	30	
Ethylbenzene	ND	1.00	ug/L		BLOD			NA	30	
Hexachlorobutadiene	ND	0.80	ug/L		BLOD			NA	30	
Iodomethane	ND	10.0	ug/L		BLOD			NA	30	
Isopropylbenzene	ND	1.00	ug/L		BLOD			NA	30	
m+p-Xylenes	ND	2.00	ug/L		BLOD			NA	30	
Methylene chloride	ND	4.00	ug/L		BLOD			NA	30	
Methyl-t-butyl ether (MTBE)	ND	1.00	ug/L		BLOD			NA	30	
Naphthalene	ND	1.00	ug/L		BLOD			NA	30	
n-Butylbenzene	ND	1.00	ug/L		BLOD			NA	30	
n-Propylbenzene	ND	1.00	ug/L		BLOD			NA	30	
o-Xylene	ND	1.00	ug/L		BLOD			NA	30	
sec-Butylbenzene	ND	1.00	ug/L		BLOD			NA	30	
Styrene	ND	1.00	ug/L		BLOD			NA	30	
tert-Butylbenzene	ND	1.00	ug/L		BLOD			NA	30	
Tetrachloroethylene (PCE)	ND	1.00	ug/L		BLOD			NA	30	
Toluene	ND	1.00	ug/L		BLOD			NA	30	
trans-1,2-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
trans-1,3-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	
Trichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
Trichlorofluoromethane	ND	1.00	ug/L		BLOD			NA	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

2/26/2025 10:01:59AM

Client Site I.D.: Submitted To: LFG-EW Monthly Monitoring

Jennifer Robb

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bll	B0293 - SW503	OB-MS								
Duplicate (BIB0293-DUP1)	Source	ce: 25B0321-0	1	Prepared & Anal	yzed: 02/07/2025					
Vinyl acetate	ND	10.0	ug/L		BLOD			NA	30	
Vinyl chloride	ND	0.50	ug/L		BLOD			NA	30	
Xylenes, Total	ND	3.00	ug/L		BLOD			NA	30	
Tetrahydrofuran	ND	10.0	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	55.8		ug/L	50.0		112	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.8		ug/L	50.0		99.6	75-120			
Surr: Dibromofluoromethane (Surr)	54.7		ug/L	50.0		109	70-130			
Surr: Toluene-d8 (Surr)	54.3		ug/L	50.0		109	70-130			
Matrix Spike (BIB0293-MS1)	Sour	ce: 25B0417-0	1	Prepared & Anal	yzed: 02/07/2025					
1,1,1,2-Tetrachloroethane	44.7		ug/L	50.0	BLOD	89.4	80-130			
1,1,1-Trichloroethane	53.4		ug/L	50.0	BLOD	107	65-130			
1,1,2,2-Tetrachloroethane	52.5		ug/L	50.0	BLOD	105	65-130			
1,1,2-Trichloroethane	54.2		ug/L	50.0	BLOD	108	75-125			
1,1-Dichloroethane	50.9		ug/L	50.0	BLOD	102	70-135			
1,1-Dichloroethylene	51.0		ug/L	50.0	BLOD	102	50-145			
1,1-Dichloropropene	56.2		ug/L	50.0	BLOD	112	75-135			
1,2,3-Trichlorobenzene	37.6		ug/L	50.0	BLOD	75.2	55-140			
1,2,3-Trichloropropane	51.7		ug/L	50.0	BLOD	103	75-125			
1,2,4-Trichlorobenzene	39.7		ug/L	50.0	BLOD	79.3	65-135			
1,2,4-Trimethylbenzene	51.5		ug/L	50.0	BLOD	103	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	38.6		ug/L	50.0	BLOD	77.1	50-130			
1,2-Dibromoethane (EDB)	49.0		ug/L	50.0	BLOD	98.0	80-120			
1,2-Dichlorobenzene	48.7		ug/L	50.0	BLOD	97.3	70-120			
1,2-Dichloroethane	43.4		ug/L	50.0	BLOD	86.8	70-130			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BIB0293 - SW503	0B-MS							
Matrix Spike (BIB0293-MS1)	Source	ce: 25B0417-01	Prepared & Ana	llyzed: 02/07/2025	;				
1,2-Dichloropropane	48.4	ug	L 50.0	BLOD	96.8	75-125			
1,3,5-Trimethylbenzene	51.0	ug	L 50.0	BLOD	102	75-124			
1,3-Dichlorobenzene	51.0	ug	L 50.0	BLOD	102	75-125			
1,3-Dichloropropane	53.4	ug	L 50.0	BLOD	107	75-125			
1,4-Dichlorobenzene	48.4	ug	L 50.0	BLOD	96.7	75-125			
2,2-Dichloropropane	58.2	ug	L 50.0	BLOD	116	70-135			
2-Butanone (MEK)	37.8	ug	L 50.0	BLOD	75.7	30-150			
2-Chlorotoluene	52.5	ug	L 50.0	BLOD	105	75-125			
2-Hexanone (MBK)	33.6	ug.	L 50.0	BLOD	67.3	55-130			
4-Chlorotoluene	52.0	ug.	L 50.0	BLOD	104	75-130			
4-Isopropyltoluene	54.6	ug.	L 50.0	BLOD	109	75-130			
4-Methyl-2-pentanone (MIBK)	35.3	ug.	L 50.0	BLOD	70.5	60-135			
Acetone	43.8	ug.	L 50.0	BLOD	87.5	40-140			
Benzene	50.0	ug.	L 50.0	BLOD	99.9	80-120			
Bromobenzene	50.0	ug.	L 50.0	BLOD	100	75-125			
Bromochloromethane	52.0	ug.	L 50.0	BLOD	104	65-130			
Bromodichloromethane	51.6	ug.	L 50.0	BLOD	103	75-136			
Bromoform	40.6	ug.	L 50.0	BLOD	81.3	70-130			
Bromomethane	57.8	ug.	L 50.0	BLOD	116	30-145			
Carbon disulfide	40.2	ug.	L 50.0	BLOD	80.3	35-160			
Carbon tetrachloride	55.0	ug.	L 50.0	BLOD	110	65-140			
Chlorobenzene	51.0	ug.	L 50.0	BLOD	102	80-120			
Chloroethane	58.8	ug.	L 50.0	BLOD	118	60-135			
Chloroform	48.4	ug.	L 50.0	BLOD	96.9	65-135			
Chloromethane	59.4	ug	L 50.0	BLOD	119	40-125			

25B0274

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Jennifer Robb

Date Issued:

2/26/2025 10:01:59AM

Client Site I.D.:

Submitted To:

LFG-EW Monthly Monitoring

Work Order:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BIB0293 - SW5030	B-MS							
Matrix Spike (BIB0293-MS1)	Sourc	e: 25B0417-01	Prepared & Ana	lyzed: 02/07/2025	j				
cis-1,2-Dichloroethylene	50.1	ug/L	50.0	BLOD	100	70-125			
cis-1,3-Dichloropropene	54.3	ug/L	50.0	BLOD	109	47-136			
Dibromochloromethane	46.8	ug/L	50.0	BLOD	93.7	60-135			
Dibromomethane	46.9	ug/L	50.0	BLOD	93.8	75-125			
Dichlorodifluoromethane	68.2	ug/L	50.0	BLOD	136	30-155			
Ethylbenzene	51.7	ug/L	50.0	BLOD	103	75-125			
Hexachlorobutadiene	52.7	ug/L	50.0	BLOD	105	50-140			
Isopropylbenzene	47.3	ug/L	50.0	BLOD	94.6	75-125			
m+p-Xylenes	105	ug/L	100	BLOD	105	75-130			
Methylene chloride	45.4	ug/L	50.0	BLOD	90.7	55-140			
Methyl-t-butyl ether (MTBE)	50.8	ug/L	50.0	BLOD	102	65-125			
Naphthalene	36.8	ug/L	50.0	BLOD	73.6	55-140			
n-Butylbenzene	55.1	ug/L	50.0	BLOD	110	70-135			
n-Propylbenzene	53.8	ug/L	50.0	BLOD	108	70-130			
o-Xylene	52.6	ug/L	50.0	BLOD	105	80-120			
sec-Butylbenzene	59.7	ug/L	50.0	BLOD	119	70-125			
Styrene	51.1	ug/L	50.0	BLOD	102	65-135			
tert-Butylbenzene	52.7	ug/L	50.0	BLOD	105	70-130			
Tetrachloroethylene (PCE)	77.7	ug/L	50.0	BLOD	155	51-231			
Toluene	50.2	ug/L	50.0	BLOD	100	75-120			
trans-1,2-Dichloroethylene	48.8	ug/L	50.0	BLOD	97.7	60-140			
trans-1,3-Dichloropropene	46.3	ug/L	50.0	BLOD	92.7	55-140			
Trichloroethylene	50.1	ug/L	50.0	BLOD	100	70-125			
Trichlorofluoromethane	62.8	ug/L	50.0	BLOD	126	60-145			
Vinyl chloride	65.9	ug/L	50.0	BLOD	132	50-145			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	BIB0293 - SW5030	B-MS								
Matrix Spike (BIB0293-MS1)	Sourc	e: 25B0417-0)1	Prepared & Analy	yzed: 02/07/2025					
Surr: 1,2-Dichloroethane-d4 (Surr)	51.3		ug/L	50.0		103	70-120			
Surr: 4-Bromofluorobenzene (Surr)	51.5		ug/L	50.0		103	75-120			
Surr: Dibromofluoromethane (Surr)	52.7		ug/L	50.0		105	70-130			
Surr: Toluene-d8 (Surr)	52.6		ug/L	50.0		105	70-130			
Batch B	BIB0294 - SW5030	B-MS								
Blank (BIB0294-BLK1)				Prepared & Analy	yzed: 02/10/2025					
2-Butanone (MEK)	ND	10.0	ug/kg							
Acetone	ND	40.0	ug/kg							
Benzene	ND	10.0	ug/kg							
Ethylbenzene	ND	10.0	ug/kg							
Toluene	ND	10.0	ug/kg							
Xylenes, Total	ND	10.0	ug/kg							
Surr: 1,2-Dichloroethane-d4 (Surr)	50.2		ug/kg	50.0		100	80-120			
Surr: 4-Bromofluorobenzene (Surr)	51.2		ug/kg	50.0		102	85-120			
Surr: Dibromofluoromethane (Surr)	49.2		ug/kg	50.0		98.5	80-130			
Surr: Toluene-d8 (Surr)	51.3		ug/kg	50.0		103	85-115			
LCS (BIB0294-BS1)				Prepared & Analy	yzed: 02/10/2025					
1,1,1,2-Tetrachloroethane	61.6		ug/kg	50.0		123	85-132			
1,1,1-Trichloroethane	50.8		ug/kg	50.0		102	70-135			
1,1,2,2-Tetrachloroethane	58.9		ug/kg	50.0		118	55-130			
1,1,2-Trichloroethane	57.7		ug/kg	50.0		115	60-125			
1,1-Dichloroethane	50.6		ug/kg	50.0		101	70-136			
1,1-Dichloroethylene	44.4		ug/kg	50.0		88.9	65-135			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl	B0294 - SW5030	OB-MS							
LCS (BIB0294-BS1)		F	repared & Anal	yzed: 02/10/2025					
1,1-Dichloropropene	49.2	ug/kg	50.0		98.5	70-135			
1,2,3-Trichlorobenzene	49.8	ug/kg	50.0		99.5	60-135			
1,2,3-Trichloropropane	57.2	ug/kg	50.0		114	65-130			
1,2,4-Trichlorobenzene	50.0	ug/kg	50.0		100	65-130			
1,2,4-Trimethylbenzene	53.4	ug/kg	50.0		107	65-135			
1,2-Dibromo-3-chloropropane (DBCP)	48.6	ug/kg	50.0		97.3	40-135			
1,2-Dibromoethane (EDB)	53.9	ug/kg	50.0		108	70-125			
1,2-Dichlorobenzene	54.6	ug/kg	50.0		109	75-120			
1,2-Dichloroethane	45.8	ug/kg	50.0		91.6	70-135			
1,2-Dichloropropane	53.1	ug/kg	50.0		106	70-120			
1,3,5-Trimethylbenzene	53.1	ug/kg	50.0		106	65-135			
1,3-Dichlorobenzene	54.2	ug/kg	50.0		108	70-125			
1,3-Dichloropropane	58.2	ug/kg	50.0		116	75-125			
1,4-Dichlorobenzene	52.6	ug/kg	50.0		105	70-125			
2,2-Dichloropropane	54.0	ug/kg	50.0		108	65-135			
2-Butanone (MEK)	40.1	ug/kg	50.0		80.1	30-160			
2-Chlorotoluene	52.7	ug/kg	50.0		105	70-130			
2-Hexanone (MBK)	51.0	ug/kg	50.0		102	45-145			
4-Chlorotoluene	52.5	ug/kg	50.0		105	75-125			
4-Isopropyltoluene	56.4	ug/kg	50.0		113	75-135			
4-Methyl-2-pentanone (MIBK)	49.8	ug/kg	50.0		99.6	45-145			
Acetone	44.3	ug/kg	50.0		88.6	20-160			
Benzene	51.0	ug/kg	50.0		102	75-125			
Bromobenzene	56.3	ug/kg	50.0		113	65-120			
Bromochloromethane	50.6	ug/kg	50.0		101	70-125			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BIB0294 - SW5030	B-MS							
CS (BIB0294-BS1)		P	repared & Anal	lyzed: 02/10/2025					
Bromodichloromethane	55.3	ug/kg	50.0		111	70-130			
Bromoform	49.7	ug/kg	50.0		99.3	55-135			
Bromomethane	62.1	ug/kg	50.0		124	30-160			
Carbon disulfide	34.7	ug/kg	50.0		69.3	45-160			
Carbon tetrachloride	54.3	ug/kg	50.0		109	65-135			
Chlorobenzene	52.7	ug/kg	50.0		105	75-125			
Chloroethane	50.5	ug/kg	50.0		101	40-155			
Chloroform	49.6	ug/kg	50.0		99.2	70-125			
Chloromethane	53.7	ug/kg	50.0		107	50-130			
cis-1,2-Dichloroethylene	49.9	ug/kg	50.0		99.8	65-125			
cis-1,3-Dichloropropene	59.2	ug/kg	50.0		118	70-125			
Dibromochloromethane	67.5	ug/kg	50.0		135	65-130			L
Dibromomethane	49.2	ug/kg	50.0		98.3	75-130			
Dichlorodifluoromethane	61.8	ug/kg	50.0		124	35-135			
Ethylbenzene	55.3	ug/kg	50.0		111	75-125			
Hexachlorobutadiene	54.1	ug/kg	50.0		108	55-140			
Isopropylbenzene	51.5	ug/kg	50.0		103	75-130			
m+p-Xylenes	109	ug/kg	100		109	80-125			
Methylene chloride	47.8	ug/kg	50.0		95.6	55-140			
Methyl-t-butyl ether (MTBE)	51.3	ug/kg	50.0		103	65-125			
Naphthalene	45.4	ug/kg	50.0		90.9	40-125			
n-Butylbenzene	56.0	ug/kg	50.0		112	65-140			
n-Propylbenzene	54.0	ug/kg	50.0		108	65-135			
o-Xylene	55.8	ug/kg	50.0		112	75-125			
sec-Butylbenzene	56.4	ug/kg	50.0		113	65-130			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	3IB0294 - SW503	0B-MS								
LCS (BIB0294-BS1)				Prepared & Analy	zed: 02/10/2025					
Styrene	55.8		ug/kg	50.0		112	75-125			
tert-Butylbenzene	53.6		ug/kg	50.0		107	65-130			
Tetrachloroethylene (PCE)	75.6		ug/kg	50.0		151	65-140			L
Toluene	53.2		ug/kg	50.0		106	70-125			
trans-1,2-Dichloroethylene	44.5		ug/kg	50.0		89.0	65-135			
trans-1,3-Dichloropropene	52.1		ug/kg	50.0		104	65-125			
Trichloroethylene	51.5		ug/kg	50.0		103	75-125			
Trichlorofluoromethane	55.0		ug/kg	50.0		110	25-185			
Vinyl chloride	54.4		ug/kg	50.0		109	60-125			
Surr: 1,2-Dichloroethane-d4 (Surr)	48.4		ug/kg	50.0		96.8	80-120			
Surr: 4-Bromofluorobenzene (Surr)	53.2		ug/kg	50.0		106	85-120			
Surr: Dibromofluoromethane (Surr)	49.4		ug/kg	50.0		98.9	80-130			
Surr: Toluene-d8 (Surr)	53.3		ug/kg	50.0		107	85-115			
Duplicate (BIB0294-DUP1)	Sour	ce: 25B0274-03		Prepared & Analy	zed: 02/10/2025	i				
1,1,1,2-Tetrachloroethane	ND	24500	ug/kg		BLOD			NA	30	
1,1,1-Trichloroethane	ND	24500	ug/kg		BLOD			NA	30	
1,1,2,2-Tetrachloroethane	ND	24500	ug/kg		BLOD			NA	30	
1,1,2-Trichloroethane	ND	24500	ug/kg		BLOD			NA	30	
1,1-Dichloroethane	ND	24500	ug/kg		BLOD			NA	30	
1,1-Dichloroethylene	ND	24500	ug/kg		BLOD			NA	30	
1,1-Dichloropropene	ND	24500	ug/kg		BLOD			NA	30	
1,2,3-Trichlorobenzene	ND	24500	ug/kg		BLOD			NA	30	
1,2,3-Trichloropropane	ND	24500	ug/kg		BLOD			NA	30	
1,2,4-Trichlorobenzene	43600	24500	ug/kg		47500			8.60	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Source Level Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	IB0294 - SW503	0B-MS							
Duplicate (BIB0294-DUP1)	Sour	ce: 25B0274-03		Prepared & Analyzed: 02/10/2025					
1,2,4-Trimethylbenzene	5320000	24500	ug/kg	5370000			0.904	30	
1,2-Dibromo-3-chloropropane (DBCP)	ND	24500	ug/kg	BLOD			NA	30	
1,2-Dibromoethane (EDB)	ND	24500	ug/kg	BLOD			NA	30	
1,2-Dichlorobenzene	ND	24500	ug/kg	BLOD			NA	30	
1,2-Dichloroethane	ND	24500	ug/kg	BLOD			NA	30	
1,2-Dichloropropane	ND	24500	ug/kg	BLOD			NA	30	
1,3,5-Trimethylbenzene	1680000	24500	ug/kg	1640000			2.63	30	
1,3-Dichlorobenzene	ND	24500	ug/kg	BLOD			NA	30	
1,3-Dichloropropane	ND	24500	ug/kg	BLOD			NA	30	
1,4-Dichlorobenzene	515000	24500	ug/kg	562000			8.64	30	
2,2-Dichloropropane	ND	24500	ug/kg	BLOD			NA	30	
2-Butanone (MEK)	ND	24500	ug/kg	BLOD			NA	30	
2-Chlorotoluene	40700	24500	ug/kg	34600			16.3	30	
2-Hexanone (MBK)	ND	24500	ug/kg	BLOD			NA	30	
4-Chlorotoluene	ND	24500	ug/kg	BLOD			NA	30	
4-Isopropyltoluene	ND	24500	ug/kg	86500			NA	30	
4-Methyl-2-pentanone (MIBK)	ND	24500	ug/kg	BLOD			NA	30	
Acetone	64200	98000	ug/kg	BLOD			NA	30	
Benzene	507000	24500	ug/kg	559000			9.71	30	
Bromobenzene	ND	24500	ug/kg	BLOD			NA	30	
Bromochloromethane	ND	24500	ug/kg	BLOD			NA	30	
Bromodichloromethane	ND	24500	ug/kg	BLOD			NA	30	
Bromoform	ND	24500	ug/kg	BLOD			NA	30	
Bromomethane	ND	24500	ug/kg	BLOD			NA	30	
Carbon disulfide	ND	24500	ug/kg	BLOD			NA	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BIB0294 - SW503	0B-MS								
Duplicate (BIB0294-DUP1)	Sour	ce: 25B0274-0	3	Prepared & Analyze	d: 02/10/2025					
Carbon tetrachloride	ND	24500	ug/kg		BLOD			NA	30	
Chlorobenzene	ND	24500	ug/kg		BLOD			NA	30	
Chloroethane	ND	24500	ug/kg		BLOD			NA	30	
Chloroform	ND	24500	ug/kg		BLOD			NA	30	
Chloromethane	ND	24500	ug/kg		BLOD			NA	30	
cis-1,2-Dichloroethylene	ND	24500	ug/kg		BLOD			NA	30	
cis-1,3-Dichloropropene	ND	24500	ug/kg		BLOD			NA	30	
Dibromochloromethane	ND	24500	ug/kg		BLOD			NA	30	
Dibromomethane	ND	24500	ug/kg		BLOD			NA	30	
Dichlorodifluoromethane	ND	24500	ug/kg		BLOD			NA	30	
Di-isopropyl ether (DIPE)	ND	24500	ug/kg		BLOD			NA	30	
Ethylbenzene	2000000	24500	ug/kg		2090000			4.82	30	
Hexachlorobutadiene	ND	24500	ug/kg		BLOD			NA	30	
Iodomethane	ND	24500	ug/kg		BLOD			NA	30	
Isopropylbenzene	630000	24500	ug/kg		580000			8.30	30	
m+p-Xylenes	3000000	24500	ug/kg		3070000			2.43	30	
Methylene chloride	ND	98000	ug/kg		BLOD			NA	30	
Methyl-t-butyl ether (MTBE)	ND	24500	ug/kg		BLOD			NA	30	
Naphthalene	1930000	24500	ug/kg		2260000			15.9	30	
n-Butylbenzene	526000	24500	ug/kg		592000			11.7	30	
n-Propylbenzene	735000	24500	ug/kg		671000			9.17	30	
o-Xylene	1200000	24500	ug/kg		1190000			0.719	30	
sec-Butylbenzene	361000	24500	ug/kg		386000			6.77	30	
Styrene	128000	24500	ug/kg		127000			0.959	30	
tert-Butylbenzene	ND	24500	ug/kg		27700			NA	30	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIB0294 - SW503	0B-MS								
Duplicate (BIB0294-DUP1)	Sour	ce: 25B0274-0	3	Prepared & Analyze	d: 02/10/2025					
Tetrachloroethylene (PCE)	ND	24500	ug/kg		BLOD			NA	30	
Toluene	521000	24500	ug/kg		537000			2.92	30	
trans-1,2-Dichloroethylene	ND	24500	ug/kg		BLOD			NA	30	
trans-1,3-Dichloropropene	ND	24500	ug/kg		BLOD			NA	30	
Trichloroethylene	ND	24500	ug/kg		BLOD			NA	30	
Trichlorofluoromethane	ND	24500	ug/kg		BLOD			NA	30	
Vinyl acetate	ND	24500	ug/kg		BLOD			NA	30	
Vinyl chloride	ND	24500	ug/kg		BLOD			NA	30	
Xylenes, Total	4190000	24500	ug/kg		4260000			1.54	30	
Tetrahydrofuran	ND	24500	ug/kg		BLOD			NA	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	44.0		ug/kg	50.0		88.0	80-120			
Surr: 4-Bromofluorobenzene (Surr)	50.5		ug/kg	50.0		101	85-120			
Surr: Dibromofluoromethane (Surr)	45.3		ug/kg	50.0		90.7	80-130			
Surr: Toluene-d8 (Surr)	55.8		ug/kg	50.0		112	85-115			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BIB0337 - SW3510	OC/EPA600-	MS							
Blank (BIB0337-BLK1)			F	Prepared: 02/10/	/2025 Analyzed: ()2/11/2025				
Anthracene	ND	10.0	ug/L							
Surr: 2,4,6-Tribromophenol (Surr)	77.8		ug/L	100		77.8	5-136			
Surr: 2-Fluorobiphenyl (Surr)	40.2		ug/L	50.0		80.4	9-117			
Surr: 2-Fluorophenol (Surr)	38.5		ug/L	100		38.5	5-60			
Surr: Nitrobenzene-d5 (Surr)	47.2		ug/L	50.0		94.3	5-151			
Surr: Phenol-d5 (Surr)	34.4		ug/L	100		34.4	5-60			
Surr: p-Terphenyl-d14 (Surr)	41.9		ug/L	50.0		83.7	5-141			
.CS (BIB0337-BS1)			F	Prepared: 02/10/	/2025 Analyzed: (02/11/2025				
1,2,4-Trichlorobenzene	45.7	10.0	ug/L	50.0		91.5	57-130			
1,2-Dichlorobenzene	38.1	10.0	ug/L	50.0		76.1	22-115			
1,3-Dichlorobenzene	38.2	10.0	ug/L	50.0		76.5	22-112			
1,4-Dichlorobenzene	40.9	10.0	ug/L	50.0		81.7	13-112			
2,4,6-Trichlorophenol	49.1	10.0	ug/L	50.0		98.2	52-129			
2,4-Dichlorophenol	45.0	10.0	ug/L	50.0		89.9	53-122			
2,4-Dimethylphenol	43.2	5.00	ug/L	50.0		86.4	42-120			
2,4-Dinitrophenol	52.5	50.0	ug/L	50.0		105	48-127			
2,4-Dinitrotoluene	49.2	10.0	ug/L	50.0		98.3	10-173			
2,6-Dinitrotoluene	47.2	10.0	ug/L	50.0		94.3	68-137			
2-Chloronaphthalene	46.0	10.0	ug/L	50.0		91.9	65-120			
2-Chlorophenol	39.0	10.0	ug/L	50.0		77.9	36-120			
2-Nitrophenol	47.6	10.0	ug/L	50.0		95.3	45-167			
3,3'-Dichlorobenzidine	36.3	10.0	ug/L	50.0		72.6	10-213			
4,6-Dinitro-2-methylphenol	65.6	50.0	ug/L	50.0		131	53-130			L
4-Bromophenyl phenyl ether	44.1	10.0	ug/L	50.0		88.2	65-120			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batcl	n BIB0337 - SW3510	C/EPA600-	MS							
LCS (BIB0337-BS1)			F	Prepared: 02/10/	2025 Analyzed: 0	2/11/2025				
4-Chlorophenyl phenyl ether	50.2	10.0	ug/L	50.0		100	38-145			
4-Nitrophenol	16.4	50.0	ug/L	50.0		32.9	13-129			
Acenaphthene	49.0	10.0	ug/L	50.0		98.0	60-132			
Acenaphthylene	49.7	10.0	ug/L	50.0		99.3	54-126			
Acetophenone	36.1	20.0	ug/L	50.0		72.1	0-200			
Anthracene	43.1	10.0	ug/L	50.0		86.3	43-120			
Benzo (a) anthracene	52.0	10.0	ug/L	50.0		104	42-133			
Benzo (a) pyrene	49.5	10.0	ug/L	50.0		98.9	32-148			
Benzo (b) fluoranthene	52.6	10.0	ug/L	50.0		105	42-140			
Benzo (g,h,i) perylene	52.8	10.0	ug/L	50.0		106	10-195			
Benzo (k) fluoranthene	46.2	10.0	ug/L	50.0		92.5	25-146			
bis (2-Chloroethoxy) methane	52.6	10.0	ug/L	50.0		105	49-165			
bis (2-Chloroethyl) ether	41.8	10.0	ug/L	50.0		83.5	43-126			
2,2'-Oxybis (1-chloropropane)	42.4	10.0	ug/L	50.0		84.9	63-139			
bis (2-Ethylhexyl) phthalate	52.7	10.0	ug/L	50.0		105	29-137			
Butyl benzyl phthalate	48.5	10.0	ug/L	50.0		97.0	10-140			
Chrysene	56.1	10.0	ug/L	50.0		112	44-140			
Dibenz (a,h) anthracene	52.9	10.0	ug/L	50.0		106	10-200			
Diethyl phthalate	52.5	10.0	ug/L	50.0		105	10-120			
Dimethyl phthalate	49.4	10.0	ug/L	50.0		98.8	10-120			
Di-n-butyl phthalate	50.9	10.0	ug/L	50.0		102	10-120			
Di-n-octyl phthalate	52.5	10.0	ug/L	50.0		105	19-132			
Fluoranthene	53.0	10.0	ug/L	50.0		106	43-121			
Fluorene	49.8	10.0	ug/L	50.0		99.6	70-120			
Hexachlorobenzene	42.3	1.00	ug/L	50.0		84.6	10-142			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bli	B0337 - SW3510	C/EPA600-	MS							
CS (BIB0337-BS1)			P	repared: 02/10	/2025 Analyzed: 0)2/11/2025				
Hexachlorobutadiene	49.8	10.0	ug/L	50.0		99.5	38-120			
Hexachlorocyclopentadiene	23.8	10.0	ug/L	50.0		47.7	10-76			
Hexachloroethane	38.6	10.0	ug/L	50.0		77.2	55-120			
Indeno (1,2,3-cd) pyrene	49.6	10.0	ug/L	50.0		99.3	10-151			
Isophorone	37.3	10.0	ug/L	50.0		74.6	47-180			
Naphthalene	44.1	5.00	ug/L	50.0		88.2	36-120			
Nitrobenzene	42.8	10.0	ug/L	50.0		85.6	54-158			
n-Nitrosodimethylamine	19.7	10.0	ug/L	50.0		39.4	10-85			
n-Nitrosodi-n-propylamine	41.2	10.0	ug/L	50.0		82.4	14-198			
n-Nitrosodiphenylamine	39.3	10.0	ug/L	50.0		78.7	12-97			
p-Chloro-m-cresol	45.6	10.0	ug/L	50.0		91.2	10-142			
Pentachloronitrobenzene (quintozene)	ND	10.0	ug/L				0-200			
Pentachlorophenol	41.0	20.0	ug/L	50.0		81.9	38-152			
Phenanthrene	52.9	10.0	ug/L	50.0		106	65-120			
Phenol	15.8	10.0	ug/L	50.5		31.2	17-120			
Pyrene	51.1	10.0	ug/L	50.0		102	70-120			
Pyridine	39.0	10.0	ug/L	50.0		78.1	10-103			
Surr: 2,4,6-Tribromophenol (Surr)	82.0		ug/L	100		82.0	5-136			
Surr: 2-Fluorobiphenyl (Surr)	44.8		ug/L	50.0		89.5	9-117			
Surr: 2-Fluorophenol (Surr)	33.5		ug/L	100		33.5	5-60			
Surr: Nitrobenzene-d5 (Surr)	40.4		ug/L	50.0		80.7	5-151			
Surr: Phenol-d5 (Surr)	33.5		ug/L	100		33.5	5-60			
Surr: p-Terphenyl-d14 (Surr)	43.1		ug/L	50.0		86.3	5-141			

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIB0129 - No Prep	Wet Chem								
Blank (BIB0129-BLK1)				Prepared & Analy	yzed: 02/05/2025					
BOD	ND	2.0	mg/L							
LCS (BIB0129-BS1)				Prepared & Analy	yzed: 02/05/2025					
BOD	208		mg/L	198		105	84.6-115.4			
Duplicate (BIB0129-DUP1)	Sourc	e: 25B0061-0	1	Prepared & Analy	yzed: 02/05/2025					
BOD	2.6	2.0	mg/L		2.7			4.48	20	
Batch	BIB0175 - No Prep	Wet Chem								
Blank (BIB0175-BLK1)				Prepared & Analy	yzed: 02/05/2025					
Nitrite as N	ND	0.05	mg/L							
LCS (BIB0175-BS1)				Prepared & Analy	yzed: 02/05/2025					
Nitrite as N	0.10	0.05	mg/L	0.100		95.0	80-120			
Matrix Spike (BIB0175-MS1)	Sourc	e: 25B0156-02	2	Prepared & Analy	yzed: 02/05/2025					
Nitrite as N	0.16	0.05	mg/L	0.100	0.08	81.0	80-120			
Matrix Spike Dup (BIB0175-MSD1)	Sourc	e: 25B0156-02	2	Prepared & Analy	yzed: 02/05/2025					
Nitrite as N	0.16	0.05	mg/L	0.100	0.08	81.0	80-120	0.00	20	
Batch	BIB0535 - No Prep	Wet Chem								
Blank (BIB0535-BLK1)				Prepared & Analy	yzed: 02/13/2025					
Total Recoverable Phenolics	ND	0.050	mg/L							

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIB0535 - No Prep	Wet Chem								
LCS (BIB0535-BS1)				Prepared & Anal	yzed: 02/13/2025					
Total Recoverable Phenolics	0.42	0.050	mg/L	0.510		82.0	80-120			
Matrix Spike (BIB0535-MS1)	Source	ce: 25B0412-0)2	Prepared & Anal	yzed: 02/13/2025					
Total Recoverable Phenolics	0.51	0.050	mg/L	0.500	0.16	69.2	70-130			М
Matrix Spike Dup (BIB0535-MSD1)	Source	ce: 25B0412-0)2	Prepared & Anal	yzed: 02/13/2025					
Total Recoverable Phenolics	0.52	0.050	mg/L	0.500	0.16	70.8	70-130	1.56	20	
Batch	BIB0536 - No Prep	Wet Chem								
Blank (BIB0536-BLK1)				Prepared & Anal	yzed: 02/13/2025					
Total Recoverable Phenolics	ND	0.500	mg/kg							
LCS (BIB0536-BS1)				Prepared & Anal	yzed: 02/13/2025					
Total Recoverable Phenolics	ND	0.500	mg/kg	0.510			80-120			
Matrix Spike (BIB0536-MS1)	Source	ce: 25B0274-0	3	Prepared & Anal	yzed: 02/13/2025					
Total Recoverable Phenolics	896	495	mg/kg	495	516	76.8	70-130			
Matrix Spike Dup (BIB0536-MSD1)	Source	ce: 25B0274-0	3	Prepared & Anal	yzed: 02/13/2025					
Total Recoverable Phenolics	906	495	mg/kg	495	516	78.8	70-130	1.10	20	
Batch	BIB0551 - No Prep	Wet Chem								
Blank (BIB0551-BLK1)				Prepared & Anal	yzed: 02/13/2025					
TKN as N	ND	0.50	mg/L							

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIB0551 - No Prep	Wet Chem								
LCS (BIB0551-BS1)				Prepared & Anal	yzed: 02/13/2025					
TKN as N	4.98		mg/L	5.00		99.6	90-110			
Matrix Spike (BIB0551-MS1)	Sourc	e: 25B0367-0	1	Prepared & Anal	yzed: 02/13/2025					
TKN as N	5.72	0.50	mg/L	5.00	0.93	95.9	90-110			
Matrix Spike Dup (BIB0551-MSD1)	Sourc	e: 25B0367-0	1	Prepared & Anal	yzed: 02/13/2025					
TKN as N	5.96	0.50	mg/L	5.00	0.93	101	90-110	3.97	20	
Batch	BIB0675 - No Prep	Wet Chem								
Blank (BIB0675-BLK1)				Prepared & Anal	yzed: 02/17/2025					
COD	ND	10.0	mg/L							
LCS (BIB0675-BS1)				Prepared & Anal	yzed: 02/17/2025					
COD	50.7	10.0	mg/L	50.0		101	88-119			
Matrix Spike (BIB0675-MS1)	Sourc	e: 25B0834-01	1	Prepared & Anal	yzed: 02/17/2025					
COD	53.7	10.0	mg/L	50.0	BLOD	107	72.4-130			
Matrix Spike Dup (BIB0675-MSD1)	Sourc	e: 25B0834-01	1	Prepared & Anal	yzed: 02/17/2025					
COD	53.1	10.0	mg/L	50.0	BLOD	106	72.4-130	1.28	20	
Batch	BIB0697 - No Prep	Wet Chem								
Blank (BIB0697-BLK1)				Prepared & Anal	yzed: 02/18/2025					
TKN as N	ND	0.5	mg/kg							

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Wet Chemistry Analysis - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BIB0697 - No Prep	Wet Chem								
LCS (BIB0697-BS1)				Prepared & Anal	yzed: 02/18/2025					
TKN as N	5.2		mg/kg	5.00		103	80-120			
Matrix Spike (BIB0697-MS1)	Sourc	ce: 25B0274-0	3RE1	Prepared & Anal	yzed: 02/18/2025					
TKN as N	1640	99.5	mg/kg	995	948	69.3	75-125			М
Matrix Spike Dup (BIB0697-MSD1)	Source	e: 25B0274-0	3RE1	Prepared & Anal	yzed: 02/18/2025					
TKN as N	1650	98.7	mg/kg	987	948	71.6	75-125	1.09	20	М
Batch I	BIB0715 - No Prep	Wet Chem								
Blank (BIB0715-BLK1)				Prepared & Anal	yzed: 02/18/2025					
Ammonia as N	ND	0.10	mg/L							
LCS (BIB0715-BS1)				Prepared & Anal	yzed: 02/18/2025					
Ammonia as N	1.01		mg/L	1.00		101	90-110			
Matrix Spike (BIB0715-MS1)	Source	e: 25B0917-0	18	Prepared & Anal	yzed: 02/18/2025					
Ammonia as N	0.97	0.10	mg/L	1.00	BLOD	97.0	89.3-131			
Matrix Spike (BIB0715-MS2)	Source	e: 25B0835-0)1	Prepared & Anal	yzed: 02/18/2025					
Ammonia as N	1.45	0.10	mg/L	1.00	0.62	83.2	89.3-131			М
Matrix Spike Dup (BIB0715-MSD1)	Source	e: 25B0917-0	18	Prepared & Anal	yzed: 02/18/2025					
Ammonia as N	0.96	0.10	mg/L	1.00	BLOD	95.9	89.3-131	1.14	20	
Matrix Spike Dup (BIB0715-MSD2)	Source	e: 25B0835-0)1	Prepared & Anal	yzed: 02/18/2025					
Ammonia as N	1.45	0.10	mg/L	1.00	0.62	83.3	89.3-131	0.0690	20	М

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Wet Chemistry Analysis - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIB0717 - No Prej	p Wet Chem								
Blank (BIB0717-BLK1)				Prepared & Analy	/zed: 02/18/2025					
Ammonia as N	ND	0.1	mg/kg							
LCS (BIB0717-BS1)				Prepared & Analy	/zed: 02/18/2025					
Ammonia as N	1.0		mg/kg	1.00		103	80-120			
Matrix Spike (BIB0717-MS1)	Source	ce: 25B0274-0	3	Prepared & Analy	/zed: 02/18/2025					
Ammonia as N	3150	199	mg/kg	1990	1160	99.8	75-125			
Matrix Spike Dup (BIB0717-MSD1)	Sourc	ce: 25B0274-0	3	Prepared & Analy	/zed: 02/18/2025					
Ammonia as N	3060	197	mg/kg	1970	1160	96.4	75-125	2.64	20	
Batch	BIB0721 - No Prej	p Wet Chem								
Blank (BIB0721-BLK1)				Prepared & Analy	/zed: 02/18/2025					
Nitrate+Nitrite as N	ND	0.10	mg/L							
LCS (BIB0721-BS1)				Prepared & Analy	/zed: 02/18/2025					
Nitrate+Nitrite as N	0.95		mg/L	1.00		94.8	90-110			
Matrix Spike (BIB0721-MS1)	Source	ce: 25B0917-0	2	Prepared & Analy	/zed: 02/18/2025					
Nitrate+Nitrite as N	1.43	0.10	mg/L	1.00	0.54	88.9	90-120			М
Matrix Spike Dup (BIB0721-MSD1)	Source	ce: 25B0917-0	2	Prepared & Analyzed: 02/18/2025						
Nitrate+Nitrite as N	1.40	0.10	mg/L	1.00	0.54	86.5	90-120	1.69	20	М
Batch	BIB0779 - No Prej	p Wet Chem								
Blank (BIB0779-BLK1)				Prepared & Analy	/zed: 02/19/2025					
COD	ND	10.0	mg/L	-						

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Wet Chemistry Analysis - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BIB0779 - No Prep	Wet Chem								
LCS (BIB0779-BS1)				Prepared & Analy	yzed: 02/19/2025					
COD	48.0	10.0	mg/L	50.0		96.0	88-119			
Matrix Spike (BIB0779-MS1)	Source	e: 25B1073-02		Prepared & Analy	yzed: 02/19/2025					
COD	53.3	10.0	mg/L	50.0	BLOD	107	72.4-130			
Matrix Spike Dup (BIB0779-MSD1)	Source	e: 25B1073-02		Prepared & Analy	yzed: 02/19/2025					
COD	54.0	10.0	mg/L	50.0	BLOD	108	72.4-130	1.24	20	•

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

2/26/2025 10:01:59AM

Client Site I.D.:

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order: 25B0274

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	Metals (Total) by EPA 6000/7000 Series Methods			EPA200.2R2.8/SW300	05A-ICPMS
25B0274-01	50.0 mL / 50.0 mL	SW6020B	BIB0357	SIB0348	AB50181
25B0274-02	50.0 mL / 50.0 mL	SW6020B	BIB0357	SIB0348	AB50181
25B0274-02RE1	50.0 mL / 50.0 mL	SW6020B	BIB0465	SIB0522	AB50205
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	rsis		Preparation Method:	No Prep Wet Chem	
25B0274-01	300 mL / 300 mL	SM5210B-2016	BIB0129	SIB0299	
25B0274-02	300 mL / 300 mL	SM5210B-2016	BIB0129	SIB0299	
25B0274-05	300 mL / 300 mL	SM5210B-2016	BIB0129	SIB0299	
25B0274-01	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BIB0175	SIB0376	AJ40362
25B0274-02	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BIB0175	SIB0376	AJ40362
25B0274-05	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BIB0175	SIB0376	AJ40362
25B0274-01	0.200 mL / 10.0 mL	SW9065	BIB0535	SIB0485	AB50200
25B0274-02	0.100 mL / 10.0 mL	SW9065	BIB0535	SIB0485	AB50200
25B0274-03	1.01 g / 100 mL	SW9065	BIB0536	SIB0485	AB50200
25B0274-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BIB0551	SIB0516	AB50209
25B0274-02	25.0 mL / 25.0 mL	EPA351.2 R2.0	BIB0551	SIB0516	AB50209
25B0274-01	2.00 mL / 2.00 mL	SM5220D-2011	BIB0675	SIB0610	AB50163
25B0274-02	2.00 mL / 2.00 mL	SM5220D-2011	BIB0675	SIB0610	AB50163
25B0274-03	1.00 g / 100 mL	EPA351.2 R2.0	BIB0697	SIB0618	AB50229
25B0274-03RE1	1.00 g / 100 mL	EPA351.2 R2.0	BIB0697	SIB0618	AB50229
25B0274-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIB0715	SIB0636	AB50227
25B0274-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIB0715	SIB0636	AB50227

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Date Issued:

2/26/2025 10:01:59AM

Client Site I.D.:

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	ysis		Preparation Method:	No Prep Wet Chem	1
25B0274-03	1.00 g / 100 mL	EPA350.1 R2.0	BIB0717	SIB0636	AB50227
25B0274-01	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BIB0721	SIB0644	AB50231
25B0274-02	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BIB0721	SIB0644	AB50231
25B0274-05	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BIB0721	SIB0644	AB50231
25B0274-05	2.00 mL / 2.00 mL	SM5220D-2011	BIB0779	SIB0695	AK40317
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	SW3050B-ICPMS	
25B0274-03	1.08 g / 50.0 mL	SW6020B	BIB0259	SIB0708	AB50242
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organio	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-	MS
25B0274-01	500 mL / 1.00 mL	SW8270E	BIB0337	SIB0395	AB50156
25B0274-02	500 mL / 1.00 mL	SW8270E	BIB0337	SIB0395	AB50156
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3550C/EPA600-	MS
25B0274-03	30.0 g / 1.00 mL	SW8270E	BIB0636	SIB0713	AL40319
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
25B0274-01	5.00 mL / 5.00 mL	SW8260D	BIB0204	SIB0183	AK40303
25B0274-01RE1	5.00 mL / 5.00 mL	SW8260D	BIB0204	SIB0183	AK40303
	5.00 mL / 5.00 mL	SW8260D	BIB0204	SIB0183	AK40303
25B0274-02	0.00 IIIE / 0.00 IIIE	002002	5.5020.	0.20.00	

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Jennifer Robb

Date Issued:

2/26/2025 10:01:59AM

Client Site I.D.: Submitted To:

LFG-EW Monthly Monitoring

Work Order:

25B0274

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Co	ompounds by GCMS		Preparation Method:	SW5030B-MS	
25B0274-04	5.00 mL / 5.00 mL	SW8260D	BIB0293	SIB0270	AK40161
25B0274-03	1.02 g / 10.0 mL	SW8260D	BIB0294	SIB0271	AK40303
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by E	PA 6000/7000 Series Methods		Preparation Method:	SW7471B	
25B0274-03	0.502 g / 23.0 mL	SW7471B	BIB0498	SIB0452	AB50196

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Preparation Factors

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order: 25B0274

QC Analytical Summary

Sample ID	Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EP	A 6000/7000 Series Methods		Preparation Method:	EPA200.2R2.8/SW300	5A-ICPMS
BIB0357-BLK1	50.0 mL / 50.0 mL	SW6020B	BIB0357	SIB0348	AB50181
BIB0357-BS1	50.0 mL / 50.0 mL	SW6020B	BIB0357	SIB0348	AB50181
BIB0357-MS1	50.0 mL / 50.0 mL	SW6020B	BIB0357	SIB0348	AB50181
BIB0357-MS2	50.0 mL / 50.0 mL	SW6020B	BIB0357	SIB0348	AB50181
BIB0357-MSD1	50.0 mL / 50.0 mL	SW6020B	BIB0357	SIB0348	AB50181
BIB0357-MSD2	50.0 mL / 50.0 mL	SW6020B	BIB0357	SIB0348	AB50181
BIB0465-BLK1	50.0 mL / 50.0 mL	SW6020B	BIB0465	SIB0522	AB50205
BIB0465-BS1	50.0 mL / 50.0 mL	SW6020B	BIB0465	SIB0522	AB50205
BIB0465-MS1	50.0 mL / 50.0 mL	SW6020B	BIB0465	SIB0522	AB50205
BIB0465-MSD1	50.0 mL / 50.0 mL	SW6020B	BIB0465	SIB0522	AB50205
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Anal	ysis		Preparation Method:	No Prep Wet Chem	
BIB0129-BLK1	300 mL / 300 mL	SM5210B-2016	BIB0129	SIB0299	
BIB0129-BS1	300 mL / 300 mL	SM5210B-2016	BIB0129	SIB0299	
BIB0129-DUP1	300 mL / 300 mL	SM5210B-2016	BIB0129	SIB0299	
BIB0175-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BIB0175	SIB0376	AJ40362
BIB0175-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BIB0175	SIB0376	AJ40362
BIB0175-MRL1	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BIB0175	SIB0376	AJ40362
BIB0175-MS1	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BIB0175	SIB0376	AJ40362
BIB0175-MSD1	25.0 mL / 25.0 mL	SM4500-NO2B-2021	BIB0175	SIB0376	AJ40362
BIB0535-BLK1	5.00 mL / 10.0 mL	SW9065	BIB0535	SIB0485	AB50200
	3.00 IIIL / 10.0 IIIL				
BIB0535-BS1	5.00 mL / 10.0 mL	SW9065	BIB0535	SIB0485	AB50200
BIB0535-BS1 BIB0535-MRL1		SW9065 SW9065	BIB0535 BIB0535	SIB0485 SIB0485	AB50200 AB50200

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.: LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Date Issued:

2/26/2025 10:01:59AM

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Anal	ysis		Preparation Method:	No Prep Wet Chem	
BIB0535-MSD1	5.00 mL / 10.0 mL	SW9065	BIB0535	SIB0485	AB50200
BIB0536-BLK1	5.00 g / 10.0 mL	SW9065	BIB0536	SIB0485	AB50200
BIB0536-BS1	5.00 g / 10.0 mL	SW9065	BIB0536	SIB0485	AB50200
BIB0536-MS1	0.00505 g / 10.0 mL	SW9065	BIB0536	SIB0485	AB50200
3IB0536-MSD1	0.00505 g / 10.0 mL	SW9065	BIB0536	SIB0485	AB50200
3IB0551-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BIB0551	SIB0516	AB50209
3IB0551-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BIB0551	SIB0516	AB50209
BIB0551-MRL1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BIB0551	SIB0516	AB50209
3IB0551-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BIB0551	SIB0516	AB50209
3IB0551-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BIB0551	SIB0516	AB50209
3IB0675-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BIB0675	SIB0610	AB50163
BIB0675-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BIB0675	SIB0610	AB50163
3IB0675-MRL1	2.00 mL / 2.00 mL	SM5220D-2011	BIB0675	SIB0610	AB50163
3IB0675-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BIB0675	SIB0610	AB50163
3IB0675-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BIB0675	SIB0610	AB50163
BIB0697-BLK1	25.0 g / 25.0 mL	EPA351.2 R2.0	BIB0697	SIB0618	AB50229
3IB0697-BS1	25.0 g / 25.0 mL	EPA351.2 R2.0	BIB0697	SIB0618	AB50229
BIB0697-MS1	0.126 g / 25.0 mL	EPA351.2 R2.0	BIB0697	SIB0618	AB50229
3IB0697-MSD1	0.127 g / 25.0 mL	EPA351.2 R2.0	BIB0697	SIB0618	AB50229
3IB0715-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIB0715	SIB0636	AB50227
3IB0715-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIB0715	SIB0636	AB50227
3IB0715-MRL1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIB0715	SIB0636	AB50227
3IB0715-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIB0715	SIB0636	AB50227
3IB0715-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIB0715	SIB0636	AB50227
3IB0715-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIB0715	SIB0636	AB50227
3IB0715-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BIB0715	SIB0636	AB50227
3IB0717-BLK1	6.00 g / 6.00 mL	EPA350.1 R2.0	BIB0717	SIB0636	AB50227
3IB0717-BS1	6.00 g / 6.00 mL	EPA350.1 R2.0	BIB0717	SIB0636	AB50227

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	ysis		Preparation Method:	No Prep Wet Chem	
BIB0717-MS1	0.00301 g / 6.00 mL	EPA350.1 R2.0	BIB0717	SIB0636	AB50227
BIB0717-MSD1	0.00304 g / 6.00 mL	EPA350.1 R2.0	BIB0717	SIB0636	AB50227
BIB0721-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BIB0721	SIB0644	AB50231
BIB0721-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BIB0721	SIB0644	AB50231
BIB0721-MRL1	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BIB0721	SIB0644	AB50231
BIB0721-MRL2	5.00 mL / 5.00 mL	SM4500-NO3F-2019	BIB0721	SIB0644	AB50231
BIB0721-MS1	20.0 mL / 20.0 mL	SM4500-NO3F-2019	BIB0721	SIB0644	AB50231
BIB0721-MSD1	20.0 mL / 20.0 mL	SM4500-NO3F-2019	BIB0721	SIB0644	AB50231
BIB0779-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BIB0779	SIB0695	AK40317
BIB0779-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BIB0779	SIB0695	AK40317
BIB0779-MRL1	2.00 mL / 2.00 mL	SM5220D-2011	BIB0779	SIB0695	AK40317
BIB0779-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BIB0779	SIB0695	AK40317
BIB0779-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BIB0779	SIB0695	AK40317
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	SW3050B-ICPMS	
BIB0259-BLK1	1.06 g / 50.0 mL	SW6020B	BIB0259	SIB0708	AB50242
BIB0259-BS1	1.04 g / 50.0 mL	SW6020B	BIB0259	SIB0708	AB50242
BIB0259-MS1	1.01 g / 50.0 mL	SW6020B	BIB0259	SIB0708	AB50242
BIB0259-MSD1	1.05 g / 50.0 mL	SW6020B	BIB0259	SIB0708	AB50242
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-MS	3
BIB0337-BLK1	1000 mL / 1.00 mL	SW8270E	BIB0337	SIB0363	AB50156
BIB0337-BS1	1000 mL / 1.00 mL	SW8270E	BIB0337	SIB0363	AB50156

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
BIB0204-BLK1	5.00 mL / 5.00 mL	SW8260D	BIB0204	SIB0183	AK40303
BIB0204-BS1	5.00 mL / 5.00 mL	SW8260D	BIB0204	SIB0183	AK40303
BIB0204-MS1	5.00 mL / 5.00 mL	SW8260D	BIB0204	SIB0183	AK40303
BIB0204-MSD1	5.00 mL / 5.00 mL	SW8260D	BIB0204	SIB0183	AK40303
BIB0293-BLK1	5.00 mL / 5.00 mL	SW8260D	BIB0293	SIB0270	AK40161
BIB0293-BS1	5.00 mL / 5.00 mL	SW8260D	BIB0293	SIB0270	AK40161
BIB0293-DUP1	5.00 mL / 5.00 mL	SW8260D	BIB0293	SIB0270	AK40161
BIB0293-MS1	5.00 mL / 5.00 mL	SW8260D	BIB0293	SIB0270	AK40161
BIB0294-BLK1	1.00 g / 10.0 mL	SW8260D	BIB0294	SIB0271	AK40303
BIB0294-BS1	1.00 g / 10.0 mL	SW8260D	BIB0294	SIB0271	AK40303
BIB0294-DUP1	1.02 g / 10.0 mL	SW8260D	BIB0294	SIB0271	AK40303
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EP	A 6000/7000 Series Methods		Preparation Method:	SW7471B	
BIB0498-BLK1	0.532 g / 23.0 mL	SW7471B	BIB0498	SIB0452	AB50196
BIB0498-BS1	0.535 g / 23.0 mL	SW7471B	BIB0498	SIB0452	AB50196
BIB0498-MS1	0.501 g / 23.0 mL	SW7471B	BIB0498	SIB0452	AB50196
BIB0498-MSD1	0.501 g / 23.0 mL	SW7471B	BIB0498	SIB0452	AB50196

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order: 25B0274

Certified Analyses included in this Report

Analyte	Certifications
EPA350.1 R2.0 in Non-Potable Water	
Ammonia as N	VELAP,NCDEQ,PADEP,WVDEP,SCDHEC
EPA350.1 R2.0 in Organic	
Ammonia as N	VELAP
EPA351.2 R2.0 in Non-Potable Water	
TKN as N	VELAP,NCDEQ,WVDEP,SCDHEC
EPA351.2 R2.0 in Organic	
TKN as N	VELAP
SM4500-NO2B-2021 in Non-Potable Water	
Nitrite as N	VELAP,WVDEP,NCDEQ,SCDHEC
SM4500-NO3F-2019 in Non-Potable Water	
Nitrate+Nitrite as N	VELAP,WVDEP,NCDEQ,SCDHEC
SM5210B-2016 in Non-Potable Water	
BOD	VELAP,NCDEQ,WVDEP
SM5220D-2011 in Non-Potable Water	
COD	VELAP,NCDEQ,PADEP,WVDEP,SCDHEC
SW6020B in Non-Potable Water	
Mercury	VELAP
Arsenic	VELAP,WVDEP,NCDEQ,SCDHEC
Barium	VELAP,WVDEP,NCDEQ,SCDHEC
Cadmium	VELAP,WVDEP,NCDEQ,SCDHEC
Chromium	VELAP,WVDEP,NCDEQ,SCDHEC
Copper	VELAP,WVDEP,NCDEQ,SCDHEC
Lead	VELAP,WVDEP,SCDHEC

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Date Issued: 2/26/2025 10:01:59AM

Work Order: 25B0274

Certified Analyses included in this Report

Analyte Certifications

Nickel VELAP,WVDEP,SCDHEC

 Selenium
 VELAP,WVDEP,SCDHEC

 Silver
 VELAP,WVDEP,SCDHEC

 Zinc
 VELAP,WVDEP,SCDHEC

SW6020B in Organic

Client Site I.D.:

Arsenic VELAP,PADEP,NCDEQ
Barium VELAP,PADEP,NCDEQ
Cadmium VELAP,PADEP,NCDEQ
Chromium VELAP,PADEP,NCDEQ
Copper VELAP,PADEP,NCDEQ

 Lead
 VELAP,PADEP

 Nickel
 VELAP,PADEP

 Selenium
 VELAP,PADEP

 Silver
 VELAP,PADEP

 Zinc
 VELAP,PADEP

SW7471B in Organic

Mercury VELAP, PADEP, NCDEQ, WVDEP, SCDHEC

SW8260D in Non-Potable Water

2-Butanone (MEK)

Acetone

NCDEQ,PADEP,VELAP,WVDEP

NCDEQ,PADEP,VELAP,WVDEP

NCDEQ,PADEP,VELAP,WVDEP

NCDEQ,PADEP,VELAP,WVDEP

NCDEQ,PADEP,VELAP,WVDEP

NCDEQ,PADEP,VELAP,WVDEP

NCDEQ,PADEP,VELAP,WVDEP

Xylenes, Total

NCDEQ,PADEP,VELAP,WVDEP

Tetrahydrofuran PADEP,VELAP

SW8260D in Organic

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Total Recoverable Phenolics

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Work Order: 25B0274

Certified Analyses included in this Report

Analyte	Certifications
2-Butanone (MEK)	VELAP,PADEP,NCDEQ,WVDEP,SCDHEC
Acetone	VELAP,PADEP,NCDEQ,WVDEP,SCDHEC
Benzene	VELAP,PADEP,NCDEQ,WVDEP,SCDHEC
Ethylbenzene	VELAP,PADEP,NCDEQ,WVDEP,SCDHEC
Toluene	VELAP,PADEP,NCDEQ,WVDEP,SCDHEC
Xylenes, Total	VELAP,PADEP,NCDEQ,WVDEP,SCDHEC
SW8270E in Non-Potable Water	
Anthracene	NCDEQ,VELAP,PADEP,WVDEP
SW8270E in Solids	
Anthracene	NCDEQ,WVDEP,VELAP,PADEP,SCDHEC
SW9065 in Non-Potable Water	
Total Recoverable Phenolics	VELAP,WVDEP
SW9065 in Organic	

VELAP

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/26/2025 10:01:59AM

Code	Description	Laboratory ID	Expires
DURSC-NCDHHS	NCDHHS Durham Service Center	37918	07/31/2025
MdDOE	Maryland DE Drinking Water	341	12/31/2025
NCDEQ	North Carolina DEQ	495	12/31/2025
NCDHHS	North Carolina Department of Health and Human Services	51714	07/31/2025
NYDOH	New York DOH Drinking Water	12069	04/01/2025
PADEP	NELAP-Pennsylvania Certificate #009	68-03503	10/31/2025
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/14/2025
TXCEQ	Texas Comm on Environmental Quality #T104704576-23-1	T104704576	05/31/2025
VELAP	NELAP-Virginia Certificate #12969	460021	06/14/2025
WVDEP	West Virginia DEP	350	11/30/2025

Certificate of Analysis

Client Name: SCS Engineers - Winchester

LFG-EW Monthly Monitoring

Jennifer Robb Submitted To:

Date Issued:

2/26/2025 10:01:59AM

Work Order:

25B0274

Qualifiers and Definitions

Surrogate concentration reflects a dilution factor. DS

Ε Estimated concentration, outside calibration range

The reported result is an estimated value.

LCS recovery is outside of established acceptance limits

Matrix spike recovery is outside established acceptance limits M

RPD Relative Percent Difference

Qualifers Qual

Client Site I.D.:

-RE Denotes sample was re-analyzed

LOD Limit of Detection, same as Method Detection Limit (MDL) as defined by 40 CFR 136 Appendix B

BLOD Below Limit of Detection, same as Below Method Detection Limit (MDL) as defined by 40 CFR 136 Appendix B

LOQ Limit of Quantitation DF

Dilution Factor

DL Detection Limit, same as MDL as defined by 40 CFR 136 Appendix B

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral

library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations

are estimated and are calculated using an internal standard response factor of 1.

PCBs, Total Total PCBs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

CHAIN OF CUSTODY

PAGE 1 OF 1

							CHAI	IV OI	000		,,,,									PAGE	1 OF 1
COMPANY NAME: SCS Eng	ine	ers			IN'	VOICE TO	:	(City of	Bri	stol, VA		PROJ	ECT	NAM	E/Quo	te#	i .	City	y of Bristol Landfill	#588
CONTACT: Jennifer Robb		1/1			IN'	VOICE CC	NTACT	Jo	n Haye	es			SITE	NAN	ΛE:	LFG-I	EW	Mon	ithly	Monitoring	
ADDRESS: 296 Victory Road.	Wir	nch	este	r, VA	IN'	VOICE AD	DRESS	: 265	5 Valley [Drive	e, Bristol, VA, 2	24201	PROJ	ECT	NUM	BER:	02	2182	208.1	5 Task 3	
PHONE #: 703-471-6150				J.	IN'	VOICE PH	ONE #:	270	6-645-3	378	8		P.O. #	:							
EMAIL: jrobb@scsengineers.com	n'				EN	/AIL: jor	.hayes	@ briste	olva.or	g			Pretre	atm	ent Pro	ogram:					
Is sample for compliance reportin	g?		YE	S NO Re	gulato	ry State:	VA	ls sam	ple fro	m a	a chlorinate	ed supp	oly?	YE	S N	0	PV	VS I.	D. #:		
SAMPLER NAME (PRINT):	TC	sh	Ty	Ker	AL DE	SA	MPLEF	SIGN	IATUR	E:	Land -	Zul	-/1	14	en	Tu	ırn A	Arou	nd Ti	me: 10 Day(s)	
Matrix Codes: WW=Waste Water/Storm Wat					Drinking	Water S=Soi	I/Solids O	R=Orgai	nic A=Aiı	r W	P=Wipe OT=O	ther	100							COMMENT	S
	Π	Π	(s)	0								ANAL	YSIS /	(PR	ESER'	VATIV	E)			Preservative Codes: N=N C=Hydrochloric Acid S=Su	
			Field Filtered (Dissolved Metals)	1			Stop									1	Ť	П	\neg	H=Sodium Hydroxide A= Acid Z=Zinc Acetate T=	
1			Σ				e N				o, ne,		, Ba, se, Zn)		Φ	\$				Thiosulfate M=Meth	anol
			lve	ø	<u> </u>	Ф	Time or Composite			S	nze	8	Se, B		litri	onl					
OLUENT CAMPLE LD			SSO	Dat	Start Time	Dat	du		(se	ine	Per Coll.	09	, As		Ζ.	ne		1 1			
CLIENT SAMPLE I.D.			Ö	art	art	do	ပိ	eq) ode	onte	F, T	po	Ag.		PO)	ace	jë.			Note VOC	
			pa.	St		o St	0 0	erv	e O	Š	eto TH ust	1et	0 T		ate	‡	100			8260 no HC	
		site	ilter	site	site	ate	im	res	(Se	or o	S.Y.O	2	80	lics	Vitra	Ā	Ami				
	Р	l gu	H P	npc	npc	D du	e T	Ф	. <u>×</u>	nbe	S	l JO	Cr	oue	ź	20	0,			PLEASE NOTE PRESERV	
	Grab	Composite	Fiel	Composite Start Date	Composite	Grab Date or Composite Stop Date	Grab Time	Time Preserved	Matrix (See Codes)	Number of Containers	VOCs (Acetone, Benzene, EB, MEK, THF, Toluene, Xylene) Custom List	Mercury Method 6020	Metals 6010 (Ag, As, B Cd, Cr, Cu, Ni, Pb, Se,	Phenolics	TKN, Nitrate (Cd), Nitrite	SVOC (Anthracene only)	COD, Ammonia	BOD		INTERFERENCE CHECKS RATE (L/min)	S or PUMP
1) EW-50	X					2 4 25			ww	9	X	X	×	X	X	X	×	X			
2) EW-85	X					V	8:55		ww	9	X	X	X	X	X	X	X		\perp		
3) EW-61	X		Ш			V	9:10		ww	9	X	X	X	X	X	X	X	X			
4)		_	Н						ww	L		V-166	95.				-	\vdash	-		
5)	-	1	Н						ww	-				_			+	∤ '	1	171 0	n
6)	-	-	Н						ww	-		- 3					+-	Ob	serv	ed Temp °C: 0	-1
7)	-	╀	Н						WW	\vdash			56				+	Cc	C	MITE tion Factor °C: (20
8)	╁	+				-			ww	╁		16	3 %	1			╁	-	5	sealle o	100
9)	~	+				1/27/25	10:10		DI	2		1.5		H			+	- Co	rrect	ted Temp °C:	1
10) Trip Blank RELINQUISHED:	2000		TIME		EDn i	1.101100	10.10	DATE /			C Data Packa								coc		°C
2/ 2m 2/			140		Kedi	XE		, if			2007000	Cus	tody Seal	s use	d and inta	act? (Y/	N)			Received on ice? (Y/I	1)
RELINQUISHED: HELEVE	DAT	TE /	TIME	RECEIVE	1/1/	MA	116	DATE /	TIME	Lev	vel III 🗆	S	CS-W	7				25	B02	274	
RELINQUISHED:	DAT	TE /	TIME	RECEIVI	W.W	X JUP	اراب	DATE /	TIME	Le	vel IV	Br	istol l	LFC	G-EW	Mor	ithl	y N	Ioni	tor	
1	12			1.8		1					150	- R	ecd: 0	2/04	5/202	5 Di	ie:	02/1	9/20	025	
, har												1.0	U	_, 0.				I	v13031	25002	

Sample Preservation Log Form #: F1301 Rev # 15.0 Effective: July 13, 2023 Page 1 of 1

Sample Preservation Log

	Order I	D_1	5	30	17	y				*					[Date	Perfo	orme	ed: _		2	15	5/2	5				_		Anal	yst P	erforr	ning C	heck:			M	4		_			
				Meta		c	Cyani	de	112	Sulfid	le	0.744.0	nmor	nia		TKN			nos,	Tot)3+N	102		DRO	r.	(808) PCE	stici 1/608/ 3 DW c	508)	(525	8VOC /8270/		CrV	* **	s	Pest/P (508) VOC(CB) / 525)	24	Shop	iO	a	OC)
	Sample ID	Container ID	Red	H as ceived	in in	Rec	H as celved	inal	Rece	l as elved	Final pH		ived	Final pH	pH Rece	ived	Final pH	Rec	l as eived Other	inal pH	Reci	i as elved	Final pH	Rec	l as elved	Final pH	Res		final + or -	Rece	. CI	final + or -	Received	Final pH	Re	H as ceived Other	inal pH	Rec	as eived Other	al pH	Rece	as lived Other	Final pH
	Č.	\ \ \ \	< 2	Other 7	47	> 12	Other		> 9	Other		< 2 (other		< 2 (Other		< 2	Other	Ī	< 2	Other		< 2	Other		•	•	\neg	•	•	\dashv			T 2	Other		10	Other		" L	Other	1-2
	Δ	0	H	T	-6								7	4.2	-	7	1.7	Н			H	1	1.7												\dagger							7	12
	M	6	6						Н			H	•	(ra	ı	-	-	H			H	1	. 6									7			t				7	1.7_			1
	07	Λ.	\vdash	5	42	\vdash						H			7			H			Н			Н											†				-	4,50			
	M	D)		Н			Н				5	47		5	11					5	12							\exists					\dagger							5	22
	07	.8,				T							9	100	1	٠	S. S. S.				Н														T				5	12			
	UL	0	t												7																				t								
		T	T						П			H						П			П														\dagger								
			T						П			Н						П			П			П											T								
			T			T																													Ī								
			F			F			Ħ																										T								
			Τ						П			П						П						П											T								
			Г						П			П												П											T								
			T																																T								
									П																																		
	NaOH	ID:							_	HNO	3 ID:	- 5	SA	03	00	8		_													Anal	yst In	itials: _										
	H2SO4	ID:	11	04	5	201			<u> </u>	Na ₂ S	S2O3 I	D: _						_							3 - 9.7																		
	HCL I									Na ₂ S	O3 IE	D:						_	5N N	laOH	ID:				-																		
Page 71 of																										5	th 2		by l	DLJ				H = A n Fe n roc									
of 74	**W.Va o	nly certif	ies DI	SS Cr\	/I and	not T (CrVI as	s an ap	proved	d analy	/te und	der 400	CFR13	36 for v	vaste	water.																						F13	01 Sar	nple P	reserva	ation Lo	og 15_

2/26/2025 10:01:59AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.: LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25B0274

2/26/2025 10:01:59AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.:

LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 25B0274

Laboratory Order ID: 25B0274

Sample Conditions Checklist

Samples Received at:	0.20°C
How were samples received?	FedEx Express
Were Custody Seals used?	Yes
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	Yes
Are all volatile organic and TOX containers free of headspace?	Yes
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	Yes
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis. In addition, field parameters are always received outside holding time and will be marked accordingly.	No

Work Order Comments

The samples were received requiring pH adjustment in the lab to a pH <2. Additionally, due the color of the samples, they were unable to be checked for oxidizing agents in the lab.

Jennifer Robb notified via email

Certificate of Analysis

Client Name: SCS Engineers - Winchester

Client Site I.D.: LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

JNH 2/6/25 1120

Date Issued: 2/26/2025 10:01:59AM

Wel	II ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	100
Parameter	Monitoring Event												Conce	entration												LOD	LOQ
	November-2022										1560		1400			1380										50	50
	December-2022		1700		2280				2110		1410	1310					1150	1780								100	100
	January-2023		1520							936						1330										50	50
											2440															100	100
	February-2023																	1490								100	100
	March-2023									667	1480															73.1	100
	April-2023		1000							1410		1220														73.1	100
	May-2023		1390							1860	2380		0270		0170											146	200
	June-2023										2740		2370		2170				1180							146	100
	July-2023		1570						2260															2350	310	73.1 146	200
	August-2023						1600		1890															2140	222	146	200
																			1720							73.1	100
	September-2023				1250																					146	200
	October-2023							1980											1730			2890				146	200
	November 2022		1260		2490	1830		2070						1170					1800			2590			2000	146	200
	November-2023										2440			1170											2080	183 366	250 500
A	Degender of coop																		1540							73.1	100
Ammonia as N	December-2023				2900													2200								146	200
(mg/L)	January-2024			2160							2400														1610	146	200
	February-2024 March-2024			1900		2600															1780		2380 2280			146	200
	April-2024				2290									928				2140	1800						968	146 146	200
																									898	73.1	100
	May-2024										2550								1620		1950	2660				146	200
	June-2024																		1990		2170				1850	146	200
	July-2024										1860															73.1	100
	JUIY-2024											1950														146	200
	August-2024						1110																			73.1	100
							1440														2130			2550		146 73.1	200 100
	September-2024				2210													2290								146	200
	October-2024	343																		1490						73.1	100
			1370		2180																					146	200
	November-2024	934	1370		1510																				15/0	146	200
	December-2024				1510																0.68				1560	0.005	0.01
	January-2025		1300																		1400					73.1	100
	February-2025												1160													199	199
	November-2022										15700		5860			5140										0.2	2
	December-2022		6440		12500				11400		9240	3330					8360	6770								0.2	2
	January-2023		9920							999	28100					7060										0.2	2
	February-2023																	7230								0.2	2
	March-2023									1570	9190															0.2	2
	April-2023									8430		2860														0.2	2
	May-2023		7350							11900	35300		07400		02100											0.2	2
	June-2023 July-2023		6820						32900		20000		27400		23100				330					31800	937	0.2	2
	August-2023						>33045		>32900															>32805	506	0.2	2
	September-2023				40185.5														659							0.2	2
	October-2023							34600											690			37000				0.2	2
Biological Oxygen	November-2023		1910		30400	27500		32015			29600			3640					480			32135			21500	0.2	2
Demand (mg/L)	December-2023 January-2024			26000	>44105						17100							13700	681						14000	0.2	2 2
	February-2024			23200		26200															21400		34300			0.2	2
	March-2024																						40600		7680	0.2	2
	April-2024				41142									1210				19600	386							0.2	2
	May-2024										25600								448		22200	33400			7750	0.2	2
	June-2024																		421		24400				16200	0.2	2
	July-2024						21000				25800	4750									20000			22400		0.2	2
	August-2024 September-2024				ND		31000 36100											27400			20800			33400		0.2	2
	October-2024	180	6680		140															36100						0.2	2
	November-2024		7360																							0.2	2
I	December-2024				42600																				20300	0.2	2
							I	1	ı	l	I			I	I	I	1		I	I .	22900	1		4	, ,	00	2
	January-2025 February-2025		4420										43418.4								16200					0.2	2

Wel	II ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												Conce	ntration												LOD	LOQ
	November-2022												9790			10800										1000	1000
	November-2022										23500															2000	2000
			7440																							1000	1000
	December-2022										13200	8000					20300	14100								2000	2000
	December-2022								22400																	5000	5000
					86800																					10000	10000
										3630																500	500
	January-2023		14900													8430										2000	2000
											47600															5000	5000
	February-2023																	9210								1000	1000
										1690																500	500
	March-2023										10600															2000	2000
	. "											7370														1000	1000
	April-2023									16800																2000	2000
			7590							18700																2000	2000
	May-2023										44700															4000	4000
													44800													5000	5000
	June-2023										41300				55000											10000	10000
																									2180	500	500
			6480																2460							1000	1000
	July-2023																							41000		5000	5000
									50100																	10000	10000
																									1750	500	500
	August-2023						59000		58600															60600		5000	5000
	Contamb = 2000																		6260							1000	1000
	September-2023				87400																					10000	10000
																			5320							500	500
	October-2023							51000																		5000	5000
																						63600				10000	10000
	-																		4710							1000	1000
	November-2023		6200			48100		57900			43700			5620											37600	2000 5000	2000 5000
Chemical Oxygen					77100	40100					43700											63900				10000	10000
Demand (mg/L)																			4870							1000	10000
	December-2023																	19900								5000	5000
					94200																					10000	10000
	January-2024			48600							59800														38200	5000	5000
	February-2024			42700		51200															48900					5000	5000
	TODIOGIY ZOZA																						68400			10000	10000
	March-2024																								14400	2000	2000
										4	1															10000	10000
	A := ::1 000 A																		4000				75500			1000	1000
	April-2024				1									3110					4200				75500				
																										5000	
					79700									3110					4200 							5000 10000	10000
	11 000											 		3110		 		32400	4200	 				 		5000 10000 1000	10000
	May-2024		 		79700 				 			 	 	3110 	 	 		32400 	4200 4930 		 	 	 	 	 17700	5000 10000 1000 5000	10000 1000 5000
	May-2024		 		79700 	 	 	 	 	 	 48500	 	 	3110 	 	 		32400 	4200 4930 		 43100	 70700	 	 	 17700	5000 10000 1000 5000 10000	10000 1000 5000 10000
	May-2024 June-2024		 	 	79700 	 	 	 	 	 	 48500	 	 	3110 	 	 		32400 	4200 4930 4520	 	 43100	 70700	 	 	 17700 	5000 10000 1000 5000 10000	10000 1000 5000 10000
	June-2024		 	 	79700 	 	 	 	 	 	 48500	 	 	3110 	 	 		 32400 	4200 4930 4520	 	 43100 51400	 70700	 	 	17700 131300	5000 10000 1000 5000 10000 1000 5000	5000 10000 1000 5000 10000 1000 5000
			 	 	79700 	 	 	 	 	 	 48500	 	 	3110 	 	 		32400 	4200 4930 4520	 	 43100	 70700	 	 	 17700 	5000 10000 1000 5000 10000 1000 5000 50	10000 1000 5000 10000 1000 5000 5000
	June-2024 July-2024		 	 	79700 	 	 	 	 	 	 48500 42400	 	 	3110 	 	 		 32400 	4200 4930 4520 	 	 43100 51400	 70700	 		17700 17700 31300	5000 10000 1000 5000 10000 1000 5000 50	10000 1000 5000 10000 1000 5000 5000
	June-2024		 	 	79700 	 	 	 	 	 	 48500 42400	 98500	 	3110 	 	 		 32400 	4200 4930 4520 	 	 43100 51400	70700	 	 	17700 31300	5000 10000 1000 5000 10000 1000 5000 50	10000 1000 5000 10000 1000 5000 5000 10000 5000
	June-2024 July-2024	 		 	79700 	 	 	 	 		48500 42400	 98500	 	3110		 		 32400 	4200 4930 4520 		 43100 51400 48100	70700 		59500	17700 31300 	5000 10000 1000 5000 10000 1000 5000 50	10000 1000 5000 10000
	June-2024 July-2024	 		 	79700		 56600	 			 48500 42400 	 98500		3110		 		32400	4200 4930 4520 		 43100 51400 48100	70700		59500	17700 17700 31300 	5000 10000 1000 5000 10000 5000 5000 10000 5000 10000 4000 5000	10000 1000 5000 10000 5000 5000 10000 4000 5000
	June-2024 — July-2024 — August-2024				79700		 56600				 48500 42400 	98500		3110		 		 32400 26800	4200 4930 4520 		 43100 51400 48100 	70700		59500	17700 17700 31300 	5000 10000 1000 5000 10000 1000 5000 10000 5000 10000 4000 5000 10000	10000 1000 5000 10000 5000 5000 10000 4000 5000
	June-2024 July-2024 August-2024 September-2024	 951			79700		 56600 55900				48500 42400 	98500		3110				 32400 26800	4200 4930 4520 		 43100 51400 48100 	70700		59500	 17700 31300 	5000 10000 1000 5000 10000 5000 5000 10000 4000 5000 10000 4000 5000	10000 1000 5000 10000 5000 5000 10000 4000 5000 10000 5000
	June-2024 — July-2024 — August-2024	 951			79700 78300		 56600 55900				 48500 42400 	98500		3110 				32400 26800	4200 4930 4520		 43100 51400 48100 	70700		59500	17700 31300	5000 10000 1000 5000 10000 1000 5000 10000 5000 10000 4000 5000 10000 5000 2000	10000 1000 5000 10000 5000 5000 10000 4000 5000 10000 5000 2000
	June-2024 July-2024 August-2024 September-2024 October-2024	951			79700 78300 83300		 56600 55900				 48500 42400 	98500		3110				32400 26800	4200 4930 4520		 43100 51400 48100 	70700		59500	17700 17700 31300 	5000 10000 1000 5000 1000 5000 5000 10000 5000 10000 5000 10000 500 10000 500	10000 1000 5000 10000 5000 5000 10000 4000 5000 10000 500 10000
	June-2024 July-2024 August-2024 September-2024	 951 9540			79700 78300 83300		 56600 55900 				48500 42400	98500		3110				32400 26800	4200 4930 4520		43100 51400 48100 	70700		59500	 17700 31300 	5000 10000 1000 5000 1000 5000 5000 10000 5000 10000 4000 5000 10000 500 10000 10000 10000 10000	10000 10000 5000 10000 5000 5000 10000 4000 5000 10000 5000 10000 10000
	June-2024 July-2024 August-2024 September-2024 October-2024 November-2024	951 9540			79700 78300 83300		 56600 55900 				48500 48500 42400 	98500		3110				32400 26800	4200 4930 4520		43100 51400 48100 	70700		59500	17700 31300	5000 10000 10000 5000 10000 5000 5000 10000 5000 10000 4000 5000 10000 500 10000 500 2000 10000 2000	10000 10000 10000 10000 5000 10000 5000 10000 5000 10000 10000 10000 2000
	June-2024 July-2024 August-2024 September-2024 October-2024	 951 9540			79700 78300 83300		56600 55900				48500 42400			3110				32400 26800	4200 4930 4520		43100 51400 48100 	70700		59500	 17700 31300 	5000 10000 10000 10000 10000 10000 5000 10000 5000 10000 4000 5000 10000 5000 10000 5000 10000 5000 10000 5000 10000 5000	10000 10000 5000 10000 5000 5000 10000 4000 5000 10000 500 10000 10000 2000 10000 5000
	June-2024 July-2024 August-2024 September-2024 October-2024 November-2024 December-2024	951 9540			79700 78300 83300		 56600 55900 				48500 48500 42400 	98500		3110				2400 26800 	4200 4930 4520		43100 51400 48100 	70700		59500	17700 17700 31300	5000 10000 10000 10000 10000 10000 5000 10000 5000 10000 5000 10000 5000 10000 5000 10000 5000 10000 10000 10000 10000 10000	10000 1000 5000 10000 5000 5000 10000 4000 5000 10000 5000 10000 10000 5000 10000
	June-2024 July-2024 August-2024 September-2024 October-2024 November-2024	951 9540			79700 78300 83300 81500		56600 55900				48500 42400			3110				32400 26800	4200 4930 4520		43100 51400 48100 	70700		59500	17700 17700 31300	5000 10000 10000 10000 5000 10000 5000 10000 5000 10000 4000 5000 10000 5000 10000 5000 10000 5000 10000 5000 10000 5000 10000 5000 10000 5000 5000 5000 5000 5000 5000	10000 1000 5000 10000 5000 5000 10000 4000 5000 10000 500 10000 10000 5000 10000 5000 10000 5000
	June-2024 July-2024 August-2024 September-2024 October-2024 November-2024 December-2024	951 9540			79700 78300 83300 81500		56600 55900				48500 42400			3110				32400 26800	4200 4930 4520		43100 51400 48100 36800	70700		59500	17700 31300	5000 10000 10000 10000 10000 10000 5000 10000 5000 10000 5000 10000 5000 10000 5000 10000 5000 10000 10000 10000 10000 10000	10000 1000 5000 10000 5000 5000 10000 4000 5000 10000 500 10000 10000 10000 5000

August-202 September-202 October-202 November-202 Nitrate as N (mg/L) December-202 January-202 February-202 March-202 April-202 June-202	ering Event	A EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	105	100
December-202 February-202 March-202 April-202 June-202 August-202 September-202 October-202 November-202 January-202 February-202 February-202 April-202 March-202 January-202 April-202 April-202 April-202 April-202 August-202 August-202 April-202 August-202 August-202 August-202													ntration												LOD	LOQ
January-202 February-202 March-202 April-202 June-202 July-202 September-202 October-202 November-202 January-202 February-202 February-202 April-202 March-202 January-202 April-202 April-202 June-202 April-202 June-202 June-202 August-202 August-202 August-202	1															ND									0.2	0.2
January-202 February-202 March-202 April-202 June-202 July-202 September-202 October-202 November-202 January-202 February-202 February-202 April-202 March-202 January-202 April-202 April-202 June-202 June-202 April-202 June-202 July-202 August-202 August-202	ombor 2022										ND														0.2	0.6
February-202 March-202 April-202 May-202 June-202 July-202 September-202 October-202 November-202 January-202 February-202 April-202 May-202 June-202 April-202 April-202 June-202 April-202 June-202 June-202 April-202 June-202 June-202 June-202 June-202 June-202 July-202 August-202		ND		ND				ND		ND															1.1	5.1
February-202 March-202 April-202 May-202 June-202 July-202 September-202 October-202 November-202 January-202 February-202 April-202 May-202 June-202 April-202 April-202 June-202 June-202 April-202 June-202 June-202 June-202 June-202 June-202 June-202 June-202 June-202 July-202 August-202																	ND								1.5	5.5
February-202 March-202 April-202 May-202 June-202 July-202 September-202 October-202 November-202 January-202 February-202 April-202 May-202 June-202 April-202 April-202 June-202 April-202 June-202 June-202 April-202 June-202 June-202 June-202 June-202 June-202 July-202 August-202									ND																0.35	1.35
February-202 March-202 April-202 May-202 June-202 July-202 September-202 October-202 November-202 January-202 February-202 April-202 May-202 June-202 April-202 April-202 June-202 June-202 April-202 June-202 June-202 June-202 June-202 June-202 June-202 June-202 June-202 July-202 August-202	anuary-2023														ND										1.1	1.1
March-202 April-202 May-202 June-202 July-202 August-202 September-202 October-202 November-202 January-202 February-202 March-202 April-202 May-202 June-202 June-202 April-202 June-202 June-202 June-202 June-202 June-202 June-202 June-202 July-202 August-202		3.9																							2.1	2.1
March-202 April-202 May-202 June-202 July-202 August-202 September-202 October-202 November-202 January-202 February-202 March-202 April-202 May-202 June-202 June-202 April-202 June-202 June-202 June-202 June-202 June-202 July-202 August-202	hruan (2022									ND							ND								0.35	2.2 1.35
April-202 May-202 June-202 August-202 September-202 October-202 Nitrate as N (mg/L) December-202 January-202 February-202 March-202 April-202 June-202 June-202 April-202 June-202 June-202 June-202 June-202 August-202									ND	ND							ND 								1.04	5.1
May-202 June-202 August-202 September-202 October-202 November-202 January-202 February-202 March-202 April-202 June-202 June-202 April-202 June-202 August-202 August-202									ND		ND														0.6	2.6
June-202 August-202 September-202 October-202 November-202 January-202 February-202 April-202 April-202 June-202 June-202 April-202 June-202 July-202 August-202		ND																							1.1	5.1
August-202 September-202 October-202 Nitrate as N (mg/L) December-202 January-202 February-202 April-202 May-202 June-202 July-202 August-202 August-202	May-2023								ND	ND															1.2	5.2
August-202 September-202 October-202 Nitrate as N (mg/L) December-202 January-202 February-202 April-202 May-202 June-202 July-202 August-202 August-202										ND				ND											1.1	5.1
August-202 September-202 October-202 November-202 January-202 February-202 March-202 April-202 June-202 July-202 August-202	June-2023											ND													1.2	5.2
August-202 September-202 October-202 Nitrate as N (mg/L) December-202 January-202 February-202 March-202 April-202 June-202 July-202 August-202																		0.355							0.15	0.35
August-202 September-202 October-202 Nitrate as N (mg/L) December-202 January-202 February-202 March-202 April-202 June-202 July-202 August-202	July-2023																							ND	0.55	0.75
September-202 October-202 November-202 Nitrate as N (mg/L) December-202 January-202 February-202 March-202 April-202 June-202 July-202 August-202		ND																							1	3
September-202 October-202 November-202 Nitrate as N (mg/L) December-202 January-202 February-202 March-202 April-202 June-202 July-202 August-202								ND															ND		1.5	5.5
November-202 Nitrate as N (mg/L) December-202 January-202 February-202 March-202 April-202 June-202 July-202 August-202	August-2023					ND		ND															ND	ND 	0.15 1.5	0.35 3.5
November-202 Nitrate as N (mg/L) December-202 January-202 February-202 March-202 April-202 June-202 July-202 August-202																		ND							0.3	1.1
November-202 Nitrate as N (mg/L) December-202 January-202 February-202 March-202 April-202 June-202 July-202 August-202	ember-2023			ND																					0.7	1.5
November-202 Nitrate as N (mg/L) December-202 January-202 February-202 March-202 April-202 June-202 July-202 August-202																		ND							0.35	1.35
Nitrate as N (mg/L) December-202 January-202 February-202 March-202 April-202 June-202 July-202 August-202							ND																		1	3
Nitrate as N (mg/L) December-202 January-202 February-202 March-202 April-202 June-202 July-202 August-202		ND																ND			ND 				1.5 0.15	3.5 0.35
Nitrate as N (mg/L) December-202 January-202 February-202 March-202 April-202 June-202 July-202 August-202													ND												0.15	1.35
December-202 January-202 February-202 March-202 April-202 June-202 July-202 August-202	ember-2023						ND																		0.75	1.75
December-202 January-202 February-202 March-202 April-202 June-202 July-202 August-202				ND																					1.1	5.1
January-202 February-202 March-202 April-202 May-202 June-202 July-202 August-202					ND					ND											ND			ND	1.5	5.5
February-202 March-202 April-202 May-202 June-202 July-202 August-202	ember-2023			ND 													ND	ND 							1.1	5.1
February-202 March-202 April-202 May-202 June-202 July-202 August-202			2.01							ND														ND	1.5	5.5 5.5
March-202 April-202 May-202 June-202 July-202 August-202			9.1																	ND		ND			1.5	5.5
April-202 May-202 June-202 July-202 August-202					ND																				3.5	7.5
June-202 July-202 August-202																						ND		ND	0.75	1.75
June-202 July-202 August-202	4 pril 2024			ND									ND	 				ND							0.35	0.35
June-202 July-202 August-202	Aprii-2024			ND 													ND								1.5 2.5	5.5 10.5
June-202 July-202 August-202																		ND							0.15	0.35
June-202 July-202 August-202																								ND	0.35	1.35
June-202 July-202 August-202	May-2024																			ND					0.6	2.6
July-202 August-202																					1.9				1	3
July-202 August-202										ND															1.1	5.1
July-202 August-202	lune_2024																	0.692							0.6	2.6
August-202	J011C-2024																			ND				ND	1.5	3.5
	July-2024										ND														0.5	2.5
						1.57				6.66										ND			ND		5 0.25	1.25
september-202	 August-2024			ND		2.42																			0.25	1.25
	August-2024																ND								5	25
	August-2024 ember-2024																								0.1	0.5
October-202	August-2024 ember-2024 ND	ND		ND															ND						10	50
	August-2024 ember-2024 ND ctober-2024			ND 																					10 0.25	1.25
November-202	ember-2024 ember-2024 ND ctober-2024																								0.23	2.5
December-202	ember-2024 ember-2024 ND ctober-2024																								0.5	2.5
January-202	August-2024 ember-2024 ND ctober-2024 ember-2024 ND	ND 		ND																				ND	0.5	
February-202	August-2024 ember-2024 ND ctober-2024 ember-2024 ember-2024	ND																		ND					0.5	1.25
. 35.33.7 202	August-2024 ember-2024 ND ctober-2024 ember-2024 ember-2024 anuary-2025	ND 		ND																						

Wel	I ID E	W-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event													ntration							2 00					LOD	LOQ
i didilielei	Monitoring Lvein											0.12 J			I	I		I		1			I	I		0.1	0.5
	December-2022																	ND.								0.1	0.5
			ND		ND				ND		ND						ND	ND								l 0.05	5
										ND																0.25	1.25
	January-2023															ND										1	1
			ND								ND															2	2
	February-2023																	0.48 J								0.25	1.25
	March-2023									ND	ND															1	5
	April-2023									ND		ND														0.5	2.5
	May-2023		ND							ND	ND															1	5
	June-2023										2 J		ND		ND											1	5
																			ND						ND	0.05	0.25
	July-2023		ND																							0.5	2.5
	,								1.2 J															ND		1	5
																									ND	0.05	0.25
	August-2023						ND		ND															ND		0.5	2.5
	September-2023				ND														ND							0.2	1
																			ND							0.25	1.25
	October-2023							ND														ND				0.5	2.5
			0.06 J																ND							0.05	0.25
	November-2023							ND						ND												0.25	1.25
					ND	ND					ND											ND			ND	1	5
	December-2023				ND													ND	ND							1	5
Nitrite as N (mg/L)	January-2024			1.7 J							ND														ND	1	5
INITIO GS IN (ITIG/L)	February-2024			ND		ND															ND		ND			1	5
	March-2024																						ND		0.25 J	0.25	1.25
														ND					ND							0.25	0.25
	April-2024				ND																					1	5
																		ND								2	10
																			ND							0.05	0.25
	May-2024																								ND	0.25	1.25
	1VIGY-2024																				ND	ND				0.5	2.5
											ND															1	5
	June-2024																		ND		ND				ND	0.5	2.5
	July-2024											ND														0.5	2.5
											ND															5	25
	August-2024						ND														ND			ND		0.25	1.25
	September-2024				ND		ND																			0.25	1.25
	00010111001 2021																	ND								5	25
		ND																								0.1	0.5
	October-2024		ND																	ND						10	5
					ND																					10	50
	November-2024	ND	1 25 1																							0.25	1.25
			1.35 J		ND																				ND	0.5	2.5
	December-2024				ND																ND				ND	0.5	2.5
	January-2025		ND																		ND					0.25	1.25
	February-2025		ND										ND								ND					10	5
													ND													10	50

We	ll ID I	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event													entration			1 211 21									LOD	LOQ
rarameter	Wormoning Eveni												1290			1470										20	50
	November-2022										2110						 										125
	D 0000		1510		2570				1700			1400					1240	1040								50	
	December-2022		1510		3570				1790		1830	1490				1410	1340	1940								200	500
	January-2023		1840							881						1410										20	50
											2970															40	100
	February-2023																	1870								16.8	50
	March-2023									879	1920															33.6	100
	April-2023									1820		1510														16.8	50
	May-2023		1590							1950	2910															40	100
											3080				2750											100	250
	June-2023												2650													200	500
	July-2023		1670						2960										1670					2720	285	40	100
																									279	10	25
	August-2023						2240		2820															2850		100	250
	September-2023				3340														2680							100	250
								1050														1320				40	100
	October-2023																		4630							100	250
								2240																	2120	80	200
	November-2023		1440		3290	2630					2530			1120					2270			3170				100	250
																		1880								80	200
	December-2023				3130														1890							100	250
Total Kjeldahl	January-2024			2450							3020														1810	100	250
Nitrogen (mg/L)	February-2024			2540		2890															2470		2970			100	250
																									1030	50	125
	March-2024																						2980			100	250
														1030					1730							40	100
	April-2024															1	+	2320								50	125
	Aprii-2024			_ 	20/0		 																				
					3260																				1140	100	250
	May-2024																								1140	40	100
	-, -										3120								1780		2470	3280				100	250
	June-2024																		1870						4750	100	250
																					2680					200	500
	July-2024										2840	2680														100	250
	August-2024						1980														1460			3150		100	250
							2090																			50	125
	September-2024																	2650								80	200
					3320																					100	250
	October-2024	351																		1870						40	100
			1360		2850																					100	250
		1070	1610																							40	100
	December-2024				2790																				2210	100	250
	January-2025																				1960					40	100
	February-2025												0.948													0.0398	0.0995
	1 601001y-2023		1190																		1520					100	250

Wel	IID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event	211 0071	211 00	211 01	211 02	211 00	211 0-1	211 00	211 07	211 00	211 07	211 00		entration	211 01	211 00	211 07	211 00	211 70	211 02	211 00	211 01	211 00	211 7-1	211 70	LOD	LOQ
rarameter	Monitoring Event												5.68			3										0.3	0.5
	November-2022										28.8																
												0.04														0.75	1.25
	December-2022											8.94														0.3	0.5
			24.9		54.6				28.3		32						20.2	36								1.5	2.5
	January-2023		27.2							1.3						20.2										0.75	1.25
											56.5															1.5	2.5
	February-2023																	22.4								1.5	2.5
	March-2023									0.4																0.03	0.05
	Widicii-2025										13.9															0.3	0.5
	April-2023									18.7		5.1														0.3	0.5
	May-2023		18.6							20	50															1.5	2.5
	June-2023										39.1		45.6		80.6											1.5	2.5
																			0.7							0.15	0.25
	July-2023																								2.92	0.3	0.5
	301, 2020		11.6						47.9															37.3		1.5	2.5
									4/.7																1.46	0.15	0.25
	August-2023						28.6		31.4															40.4	1.40	1.5	2.5
																			4.58							0.3	0.5
	September-2023				38.2														4.30							3	5
																			4.13							0.15	0.25
	October-2023							37														38.7				0.13	1
																			3.65							0.8	0.25
			7 00			24 A								474													1
	November-2023		7.88		38.8	36.4		47 A						4.76								47 1				0.6 0.75	1.05
								47.4			4/ 0											47.1					1.25
											46.9								2.70						29.1	1.5	2.5
	Docombor 2022																		3.72							0.06	0.1
Total Recoverable	December-2023				24.0													23								0.75	1.25
Phenolics (mg/L)				38	34.2																				22.7	1.5 1.5	2.5
	January-2024										39.2															1.0	2.5
	F - I 000 4			07.0		40.0																	40.1			1.5	0.5
	February-2024			37.3		42.9															50.2		43.1		10.0	1.5	2.5
	March-2024													1.40									46.6		12.8	3	5
	April-2024													1.68					1.16							0.3	0.5
	·				38.4													28.6								1.5	2.5
																			1.06							0.3	0.5
	May-2024																								13.6	1.5	2.5
											36.6										33.6	51				3	5
																			0.82							0.3	0.5
	June-2024																								23.2	1.5	2.5
																					44.8					3	5
	Luby 2004											28.8														0.75	1.25
	July-2024										37.8															3	5
	August-2024						29.2														44.2			39.2		3	5
	September-2024				39.6		31.6											31.6								3	5
		0.376																								0.03	0.05
	004515550004		8.4																							0.3	0.5
	October-2024																			45.1						1.5	2.5
					37.6																					3	5
	Name and a coop of	5.22																								0.3	0.5
	November-2024		10.1																							1.5	2.5
	B 1 222																								26.4	1.5	2.5
	December-2024				37.2																					3	5
	January-2025																				34.4					3	5
	33.1031, 2020		8.15																							0.75	1.25
	February-2025																				20.8					1.5	2.5
	1 351001 7 2020												516													495	495
											I.		510											1		7/5	1 7/3

Parameter	Monitoring Event	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61 Conce	EW-62 entration	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
SEMI-VOLATILE OR	GANIC COMPOUND (ug/L)				I I		I I					115			NB			I					1		11 =	20.5
	November-2022									ND		ND			ND 										46.7 93.5	93.5
										ND	ND						 ND								9.35	9.35
								ND								ND									11.7	11.7
	December-2022			ND																					23.4	23.4
		ND																							485	971
									ND																243	485
	January-2023														ND										253	505
		ND																							490	980
										ND															500	1000
	February-2023							_ 		ND							ND								187	374
	March-2023								ND	ND 															51 117	102 234
									ND																37.4	74.8
	April-2023										ND														38.8	77.7
		ND								ND															93.5	187
	May-2023								ND																467	935
	June-2023									ND				ND											485	971
	J0116-2025											ND													490	980
																								ND	46.7	93.5
	July-2023	ND																							100	200
	, <u></u>																	ND							250	500
								ND															ND 	ND	1000 19.6	2000 39.2
	August-2023					ND		ND															ND		1000	2000
	September-2023			ND														ND							40	80
																					ND				40	80
	October-2023						ND											ND							50	100
		ND											ND												500 20	40
																		ND							50	100
	November-2023																							ND	100	200
					ND		ND			ND											ND				400	800
Anthracene				ND 														ND							1000 50	2000
	December-2023																ND								100	200
				ND																					200	400
			ND																						100	200
	January-2024									ND														ND 	250 1000	500 2000
					ND																				200	400
	February-2024		ND																						250	500
																				ND		ND			400000	800000
	March-2024																							ND	20	40
													ND									ND 			80	160
																		ND							20	40
	April-2024																ND								100	200
				ND																					400	800
	May-2024									ND								ND		ND				ND	10	10
	May-2024																				ND				80	160
	June-2024																	ND							20	40
										ND										ND 				ND 	100	200
	July-2024										ND														80	160
						ND																			400	800
	August-2024																			ND					500	1000
																							ND		1000	2000
	September-2024			ND		ND											ND 								100 200	200 400
	ND	ND																							50	100
	OCTOBER-2024			ND															ND						200	400
	November-2024 ND	ND																							50	100
	December-2024																							ND	200	400
				ND																					400	800
	January-2025	ND																		ND 					100	200
		שואו		+																						400
	February-2025																			ND					200	400

We	II ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	100
Parameter	Monitoring Event												Conce	ntration												LOD	LOQ
TOTAL METALS (mg																											
	November-2022										0.863		0.464			1.3										0.02	0.04
	December-2022		1.02		0.406				0.174		1.69	0.49					0.159	0.574								0.02	0.04
	January-2023		0.285							0.596	0.225					0.846										0.01	0.02
	February-2023																	0.29								0.005	0.01
	March-2023									1.07	1															0.01	0.02
	4 " 0000											0.11														0.0005	0.001
	April-2023									0.36																0.005	0.01
	May-2023		0.26							0.3	0.27															0.0025	0.005
	June-2023										0.26		0.5		0.14											0.0025	0.005
			0.23																0.24					0.19	0.06	0.0005	0.001
	July-2023								0.7																	0.0025	0.005
	A																								0.15	0.0025	0.005
	August-2023						0.32		0.43															0.29		0.005	0.01
	September-2023				0.42														0.25							0.005	0.01
	October-2023																		0.24			0.31				0.0005	0.001
								0.36																		0.001	0.002
	November-2023		0.23		0.33	0.53		0.43			0.35			0.78					0.34			0.27			0.2	0.003	0.003
Arsenic	December-2023				0.4													0.26	0.04							0.0025	0.005
	January-2024			0.47							0.23								0.24						0.18	0.001 0.0025	0.002 0.005
	February-2024			0.68		0.42															0.33		0.23			0.0023	0.003
																									0.12	0.001	0.002
	March-2024																						0.23			0.0025	0.005
	4 1 000 4													0.49					0.18							0.0005	0.001
	April-2024				0.31													0.33								0.004	0.004
	May-2024										0.33								0.2		0.73	0.22			0.22	0.005	0.01
	June-2024																		0.19		0.49				0.14	0.005	0.01
	July-2024										300	0.095														0.0025	0.005
	August-2024						0.18														0.49			0.13		0.005	0.01
	September-2024				0.27		0.15											0.19								0.005	0.01
	October-2024		0.26		0.24															0.18						0.005	0.01
		0.18	0.15																							0.005	0.01
	December-2024				0.28																				0.09	0.005	0.01
	January-2025																				1.88					0.01	0.05
	February-2025		0.17										0.774.1								0.73					0.005	0.01
	<u> </u>												0.774 J													0.465	<u> </u>

\W.	ell ID	FW 2/A	FW 50	F\W E1	FW 50	FW 52	FW FA	F\4/ F.F	FW 57	FW 50	FW 50	FW 70	FW /1	FW /0	F\W / A	FW / F	FW /7	FW /0	FW 70	EW 00	FW 05	FW 07	FW 00	FW 04	FW 00		
		EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event													ntration	1												
	November-2022										0.871		0.485			0.36										0.01	0.02
	December-2022		0.566		0.803				0.978		0.438	0.214					0.856	0.793								0.01	0.02
	January-2023		0.643							0.683	1.92					0.554										0.005	0.01
	February-2023																	1.04								0.01	0.05
	March-2023									0.406	0.683															0.005	0.01
	April-2023									1.21		0.326														0.01	0.05
	·		0.636																							0.005	0.025
	May-2023									1.2	1.83															0.01	0.05
											1.69				1.65											0.005	0.025
	June-2023												3.01													0.01	0.05
																									0.217	0.001	0.005
	July-2023																									0.001	0.003
	July-2023		0.540		_ 				2.20										0.558					1.00			
			0.542						2.28															1.02		0.005	0.025
	August-2023				 		1 / 1		1.50															1.40	0.218	0.005	0.025
	September-2023				0.72		1.61		1.58										0.649					1.48		0.01	0.05
	september-2025																		0.664							0.01	0.03
	October-2023							2.56											U.004 			1.93				0.002	0.01
	November-2023		0.572		0.81	2.28		2.51			1.96			0.418					0.67			2.06			2.84	0.003	0.025
Barium					0.68													1.36								0.005	0.025
	December-2023																		0.672							0.002	0.01
											1.92														1.91	0.005	0.025
	January-2024			3.27																						0.01	0.05
	February-2024			3.03		4.41															2.65		0.925			0.005	0.025
	Marrola 2024																								1.03	0.002	0.01
	March-2024																						1.54			0.005	0.025
	A to vil 2002 4													0.4					0.634							0.001	0.005
	April-2024				1.02													2.15								0.01	0.05
	May-2024										1.79								0.619		2.8	2.06			0.872	0.01	0.05
	June-2024																		0.6		3.44				1.51	0.01	0.05
	July-2024										1.28	2.75														0.005	0.025
	August-2024						1.27														2.39			0.862		0.01	0.05
	September-2024				1.34		1.33											3.65								0.01	0.05
	October-2024	0.26	0.568		1.17															3.33						0.01	0.05
	November-2024	0.262	0.69																							0.01	0.05
	December-2024				2.4																				1.21	0.01	0.05
	January-2025																				1.88					0.01	0.05
	Eobruan, 2025		0.633																		1.48					0.01	0.05
	February-2025												ND													0.465	0.5

W	ell ID EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	100
Parameter	Monitoring Event											Conce	entration												LOD	LOQ
	November-2022									ND		ND			ND										0.004	0.008
	December-2022	ND		0.0104				ND		ND	ND					ND	ND								0.004	0.008
	January-2023	ND							ND	ND					ND										0.002	0.004
	February-2023																0.000297 J								0.0001	0.001
	March-2023								ND	ND															0.002	0.004
	April-2023								0.000158 J		0.000333 J														0.0001	0.001
	May-2023	ND							ND	ND															0.0005	0.005
	June-2023									ND		ND		ND											0.0005	0.005
	July-2023	0.000219 J						0.000156 J										0.000186 J					ND	ND	0.0001	0.001
																								ND	0.0001	0.001
	August-2023					ND		ND															ND		0.001	0.01
	September-2023			ND														ND							0.001	0.01
	October-2023																	0.000171 J			ND				0.0001	0.001
							ND																		0.0002	0.002
	November-2023	ND		ND	ND		ND			ND			ND					ND			ND			ND	0.001	0.003
	December-2023			ND													0.000604 J								0.0005	0.0015
Cadmium																		ND							0.0002	0.002
	January-2024		ND							ND										0.0175				ND	0.0005	0.005
	February-2024		ND		ND															0.0175		ND		ND	0.0005	0.005
	March-2024																					ND		ND	0.0002	0.002
													0.000204 J					0.000195 J							0.0003	0.003
	April-2024			ND													ND								0.001	0.001
	May-2024									ND								ND		0.0483	ND			ND	0.001	0.004
	May-2024 June-2024																	ND		0.0465				ND	0.001	0.01
	July-2024									ND	ND														0.0005	0.005
	August-2024					ND														0.00508 J			0.00247 J		0.000	0.01
	September-2024			ND		ND											ND								0.001	0.01
	October-2024 0.00117 J	ND		ND															ND						0.001	0.01
	November-2024 ND	ND																							0.001	0.01
	December-2024			0.00661 J																				0.00304 J	0.001	0.01
	January-2025																			0.198					0.004	0.01
	February-2025	ND																		0.0101					0.001	0.01
	reblodly-2023											ND													0.186	0.2
	November-2022									0.208		0.112			0.354										0.016	0.02
	December-2022	0.503		1.08				1.76		0.274	0.319					0.499	0.822								0.016	0.02
	January-2023	0.31							0.488	0.178					0.155										0.008	0.01
	February-2023																0.277								0.004	0.01
	March-2023								0.213	0.188															0.008	0.01
											0.142														0.0004	0.001
	April-2023								0.306																0.004	0.01
	May-2023	0.422							0.281	0.237															0.002	0.005
	June-2023									0.251		0.191		0.272											0.002	0.005
	July-2023	0.308						0.535										0.231					0.215	0.0265	0.0004	0.001
																								0.0276	0.002	0.005
	August-2023					0.606		0.449															0.259		0.004	0.01
	September-2023			1.17														0.234							0.004	0.01
	October-2023																	0.144			0.194				0.0004	0.001
							0.273																		0.0008	0.002
		0.391																							0	0.003
	November-2023				0.51													0.251			0.403				0.003	0.003
Chromium				1.04			0.402			0.246			0.343											0.222	0.004	0.01
Critorriiorri	December-2023	 		1.34													0.259								0.002	0.005
			0.17							0.193								0.219						0.128	0.0008	0.002
	January-2024 February-2024		0.17		0.272					0.173										0.203		0.336		0.126	0.002	0.005
																								0.0759	0.002	0.003
	March-2024																					0.414			0.002	0.002
													0.36					0.245							0.0004	0.001
	April-2024			0.836													0.228								0.004	0.01
	May-2024									0.268								0.226		0.183	0.352			0.11	0.004	0.01
	June-2024																	0.226		0.188				0.16	0.004	0.01
1	1.1.0004									0.252	0.246														0.002	0.005
	JUIV-2024					0.549														0.185			0.233		0.004	0.01
																	0.228								0.004	0.01
	1 000 /			0.948		0.541										_										
	August-2024			0.948 0.929		0.541													0.349						0.004	0.01
	August-2024 September-2024																		0.349						0.004	0.01
	August-2024 September-2024 October-2024 0.0873	0.246		0.929												1										_
	August-2024 September-2024 October-2024 0.0873 November-2024 0.0797	0.246 0.237		0.929																					0.004	0.01
	August-2024 September-2024 October-2024 0.0873 November-2024 0.0797 December-2024	0.246 0.237		0.929 0.773																				0.184	0.004 0.004	0.01 0.01

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event													ntration												LOD	LOQ
	November-2022										ND		ND			ND										0.016	0.02
	December-2022		ND		ND				ND		ND	ND					ND	ND								0.016	0.02
	January-2023		ND							0.0127	0.0256					ND										0.008	0.01
	February-2023																	0.00365								0.0003	0.001
	March-2023									ND	ND															0.008	0.01
	April-2023									0.00664		0.00767														0.0003	0.001
	May-2023		ND							ND	ND															0.0015	0.001
	June-2023							 			0.00154 J		0.00362 J		0.00269 J											0.0015	0.005
			0.00124						0.00163										0.00011						0.0027		
	July-2023																		0.00811					ND		0.0003	0.001
	August-2023						0.00343 J		0.0176															ND	ND	0.0013	0.005
	September-2023				ND														0.00407 J							0.003	0.01
	· ·																		0.00361			0.000609 J				0.0003	0.001
	October-2023							0.00806																		0.0006	0.002
	November-2023		0.00607		0.00352	0.0212		0.00756			ND			0.00341					0.00387			ND			ND	0.003	0.003
	December-2023				0.00184													ND								0.0015	0.0015
Copper																			0.0034							0.0006	0.002
	January-2024			ND							0.019														ND	0.0015	0.005
	February-2024			ND		0.00201															ND		ND			0.0015	0.002
	March-2024																						0.00104.1		0.00115 J	0.0006	0.002
														0.00442					0.004				0.00184 J			0.0015	0.005
	April-2024													0.00443				ND.	0.004							0.0003	0.001
	11				ND						ND.							ND	0.00407.1		0.00400.1					0.003	0.004
	May-2024										ND								0.00486 J		0.00688 J	ND			ND	0.003	0.01
	June-2024										0.200								0.00409 J		ND				ND	0.003	0.01
	July-2024 August-2024						ND				0.398	ND 									ND			ND		0.0015	0.005
	September-2024				ND		ND											ND								0.003	0.01
	October-2024		ND		ND															0.00306 J						0.003	0.01
	November-2024		ND																							0.003	0.01
	December-2024				ND																				ND	0.003	0.01
	January-2025																				0.035 J					0.01	0.01
	· ·		ND																		0.00381 J					0.003	0.01
	February-2025												ND													0.0465	0.05
	November-2022										ND		ND			0.017 J										0.012	0.02
	December-2022		ND		0.0381				ND		ND	ND					ND	ND								0.012	0.02
	January-2023		ND							ND	ND					ND										0.006	0.01
	February-2023																	0.006								0.001	0.001
	March-2023									ND	ND															0.006	0.01
	April-2023									0.0022		0.0067														0.001	0.001
	May-2023		ND							ND	ND															0.005	0.005
	June-2023										ND		ND		0.0069											0.005	0.005
	July-2023		0.0014						0.019										0.0092					ND	0.0017	0.001	0.001
																									ND	0.005	0.005
	August-2023						0.014		ND															0.013		0.01	0.01
	September-2023				0.12														ND							0.01	0.01
	October-2023																		0.0036			0.0034				0.001	0.001
								0.0077																		0.002	0.002
	November-2023		ND		0.13	0.0046		0.014			ND			ND					0.0032			0.0043			ND	0.003	0.003
	December-2023																		0.0043							0.002	0.002
Lead				ND	0.16					 	0.0081							0.002							ND	0.0015	0.0015
	January-2024 February-2024			0.0065		0.01															0.051		0.012			0.003	0.003
	,			0.0065																	0.051				ND	0.001	0.002
	March-2024																						0.02			0.002	0.002
														0.0013					0.0025							0.003	0.003
	April-2024				0.13													ND								0.004	0.001
	May-2024										ND								ND		0.11	ND			ND	0.004	0.004
	June-2024																		ND		0.024				ND	0.01	0.01
	July-2024										ND	ND														0.005	0.005
	August-2024						0.031														0.027			ND		0.01	0.00
	September-2024				0.098		0.057											ND								0.01	0.01
	October-2024	ND	ND		0.12															ND						0.01	0.01
	November-2024	ND	ND																							0.01	0.01
					0.18																				ND	0.01	0.01
	December-2024																		1	1							
	January-2025																				ND					0.002	0.002
	January-2025		 ND																		0.02					0.002	0.01
								_									+										

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event													ntration												LOD	LOQ
1 4.4													0.00169			0.00053										0.0004	0.0004
	November-2022										ND															0.0008	0.0008
			0.00051																							0.0004	0.0004
	December-2022								0.00118		ND	0.00588					0.0048	 ND								0.0004	0.0004
	December-2022				ND.						ND																
					ND											ND										0.004	0.004
	January-2023		ND							ND						ND										0.0004	0.0004
	5 1 0000										ND															0.004	0.004
	February-2023																	ND								0.0004	0.0004
	March-2023									ND																0.0002	0.0002
											ND															0.0004	0.0004
	April-2023											0.00128														0.0002	0.0002
	7 (0111 2020									ND																0.0004	0.0004
	May-2023		ND							ND	ND															0.0002	0.0002
	June-2023										ND		ND		ND											0.004	0.004
	ll 0002		0.000306																ND						ND	0.0002	0.0002
	July-2023								0.0107															ND		0.001	0.001
	A																								ND	0.001	0.001
	August-2023						0.00312		0.00397															ND		0.002	0.002
	September-2023				0.00503														ND							0.002	0.002
	October-2023							0.00165											ND			0.00055				0.0004	0.0004
Mercury			ND											ND												0.0000002	
	November-2023																		ND							0.0000004	
					0.00576	0.00606		0.00578			ND											0.00954			ND	0.000004	0.000004
	December-2023				0.00484													ND								0.001	0.001
																			ND							0.0004	0.0004
	January-2024			ND							ND														ND	0.001	0.001
	February-2024			0.00376		0.0115															0.00238		0.00284		0.00104	0.001	0.001
	March-2024																						ND		0.00124	0.0004	0.0004
														0.000201					ND							0.001	0.001
	April-2024		 		0.00202													0.00151	ND								
	14 000 4				0.00382													0.00151								0.0008	0.0008
	May-2024										ND								ND		ND	ND			ND	0.002	0.002
	June-2024											0.00104							ND		0.0119				ND	0.002	0.002
	July-2024						ND				ND	0.00104									0.00471					0.001	0.001
	August-2024 September-2024				0.00244		ND ND											 ND			0.00671			ND		0.002	0.002
	October-2024	ND	ND		ND															0.00254						0.002	0.002
	November-2024	ND ND	ND																							0.002	0.002
	December-2024				0.00213																				ND	0.002	0.002
	January-2025																				0.1047					0.002	0.002
													0.00011								0.1047					0.000009	0.000009
	February-2025		ND																		ND					0.00000	0.00007
		- _	IND				-2-														עאו					0.002	0.002

W€	ell ID EW-3	6A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	100	100
Parameter	Monitoring Event												Conce	ntration												LOD	LOQ
	November-2022										0.0866		0.1344			0.173										0.014	0.02
	December-2022		0.1722		0.5025				0.2989		0.1299	0.287					0.1853	0.346								0.014	0.02
	January-2023		0.1074							0.1442	0.0407					0.0769										0.007	0.01
	February-2023																	0.1726								0.001	0.001
	March-2023									0.1254	0.1033															0.007	0.01
	April-2023									0.1143		0.1732														0.001	0.001
	May-2023		0.113							0.09726	0.05657															0.005	0.005
	June-2023										0.05978		0.05892		0.07161											0.005	0.005
	July-2023	0	0.09872						0.08332										0.1576					0.03074	0.01403	0.001	0.001
		_																							0.02029	0.005	0.005
	August-2023						0.1457		0.09673															0.0513		0.01	0.01
	September-2023				0.5152														0.2387							0.01	0.01
	October-2023																		0.2019			0.09206				0.001	0.001
								0.104																		0.002	0.002
	November-2023		0.1178		0.4227	0.1242		0.07791			0.05944			0.1493					0.2492			0.1332			0.05277	0.01	0.01
	December-2023	_			0.6091													0.1447								0.005	0.005
Nickel		_		0.0/200															0.2127						0.0207	0.002	0.002
	January-2024			0.06308		0.07010					0.04911												0.0/102		0.0326	0.005	0.005
	February-2024			0.07945		0.07013															0.09174		0.06183		0.02232	0.005	0.005
	March-2024																						0.08678		0.02232	0.002	0.002
														0.1319					0.196							0.003	0.003
	April-2024				0.3136													0.1139								0.001	0.001
	May-2024										0.0538								0.2065		0.07835	0.09235			0.02884	0.01	0.01
	June-2024	_																	0.2003		0.07664				0.02884	0.01	0.01
	July-2024	_									0.1917	0.03634														0.005	0.005
	August-2024						0.1008														0.0822			0.02104		0.01	0.01
	September-2024				0.396		0.1138											0.08772								0.01	0.01
	October-2024 0.072	51	0.115		0.3536															0.05751						0.01	0.01
	November-2024 0.038	79 0	0.09665																							0.01	0.01
	December-2024				0.2964																				0.03528	0.01	0.01
	January-2025																				ND					0.0085	0.01
	February-2025	0	0.09275																		0.1021					0.01	0.01
	February-2025												ND													0.0465	0.05

		EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												Conce	entration													
	November-2022										ND		ND			ND										0.08	0.1
	December-2022		ND		ND				ND		ND	ND					ND	ND								0.08	0.1
	January-2023		ND							ND	ND					ND										0.04	0.05
	February-2023																	0.00199								0.00085	0.001
	March-2023									ND	ND															0.04	0.05
	April-2023									0.00189		0.00185														0.00085	0.001
	May-2023		ND							ND	0.00569															0.00425	0.005
	June-2023										ND		ND		ND											0.00425	0.005
	July-2023		0.00101						0.00331										0.00116					0.00251	ND	0.00085	0.001
																									ND	0.00425	0.005
	August-2023						ND		ND															ND		0.0085	0.01
	September-2023				ND														ND							0.0085	0.01
	October-2023																		0.00186			0.0044				0.00085	0.001
								0.00332																		0.0017	0.002
	November-2023		ND		0.00425	0.00314		0.00315			ND			ND					ND			0.0032			ND	0.003	0.003
	December-2023				0.00785													0.00253								0.0015	0.0015
Selenium																			0.00215							0.0017	0.002
	January-2024			ND							ND										0.00571		0.007.21		ND	0.00425	0.005
	February-2024			ND		ND															0.00571		0.00651		ND	0.00425 0.0017	0.005
	March-2024																						0.00627		ND 	0.0017	0.002
														ND					0.000929 J				0.00627			0.00425	0.003
	April-2024 —				ND													ND								0.00085	0.001
	May-2024										ND								ND		ND	ND			ND	0.0085	0.01
	June-2024										ND 								ND		ND ND	ND 			ND ND	0.0085	0.01
	June-2024 July-2024										ND	ND							ND 		ND					0.0085	0.005
	August-2024						ND														ND			ND		0.00423	0.003
	September-2024				ND		ND											ND								0.0085	0.01
	October-2024	ND	ND		ND															ND						0.0085	0.01
	November-2024	ND	ND																							0.0085	0.01
	December-2024				ND																				ND	0.0085	0.01
	January-2025																				ND					0.0006	0.01
			ND																		ND					0.0085	0.01
	February-2025												ND													2.32	2.5
	November-2022										ND		ND			ND										0.01	0.02
	December-2022		ND		0.0187 J				ND		ND	ND					ND	ND								0.01	0.02
	January-2023		ND							ND	ND					ND										0.005	0.01
	February-2023																	ND								0.00006	0.001
	March-2023									ND	ND															0.005	0.01
	April-2023									ND		0.00011 J														0.00006	0.001
	May-2023		ND							ND	ND															0.0003	0.005
	June-2023										ND		ND		ND											0.0003	0.005
	July-2023							+																		0.0003	0.003
			ND 						ND 										ND 					ND 	ND ND	0.0003	0.001
	August-2023						ND		ND															ND		0.0003	0.003
	September-2023				ND														ND							0.0008	0.01
																			ND			ND				0.0006	0.001
	October-2023							ND																		0.00012	0.002
	November-2023		ND		ND	ND		ND			ND			ND					ND			ND			ND	0.0006	0.01
	December-2023				ND													ND								0.00025	0.001
Silver																			ND							0.00012	0.002
	January-2024			ND							ND														ND	0.0003	0.005
	February-2024			ND		ND															ND		ND			0.0003	0.005
	March-2024																								ND	0.00012	0.002
																							ND			0.0003	0.005
	April-2024													ND					ND							0.00006	0.001
					ND													ND								0.0004	0.001
	May-2024										ND								ND		ND	ND			ND	0.0006	0.01
	June-2024																		ND		ND				ND	0.0006	0.01
	July-2024										ND	ND									ND					0.0003	0.0005
	August-2024						ND														ND			ND		0.0006	0.01
	September-2024 October-2024	ND	ND		ND		ND											ND		ND						0.0006	0.01
	November-2024	ND ND	ND ND		ND 															ND 						0.0006	0.01
					ND																				ND	0.0006	0.01
	December-2024																				0.789						
	January-2025		ND																							0.025 0.0006	0.05
	February-2025		ND																		ND					0.0006	0.0025
	1 0010017 2020												ND													()()()()()	

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event			🗸 .										entration												LOD	LOQ
rarameter	November-2022										ND		0.032			0.694										0.02	0.02
	December-2022		0.208		29.7				0.162		0.0686	0.75					0.364	0.286								0.02	0.02
	January-2023		0.133							0.15	0.074					0.0752	 									0.02	0.02
																		0.0851									
	February-2023										0.0500							0.0651								0.0025	0.005
	March-2023									0.0689	0.0538															0.01	0.01
	April-2023									0.0539																0.0025	0.005
	·											0.414														0.025	0.05
	May-2023		0.079							0.0635	0.0519															0.0125	0.025
	June-2023										0.0538		0.0253		0.945											0.0125	0.025
	July-2023		0.0488																0.0714					0.354	0.0782	0.0025	0.005
	JUIY-2023								2.03																	0.0125	0.025
																									0.112	0.0125	0.025
	August-2023								1.71															0.914		0.025	0.05
							5.92																			0.05	0.1
	September-2023																		0.0788							0.025	0.05
	3epiember-2023				45																					0.25	0.5
	October-2023																		0.0622							0.0025	0.005
	OC10001 2020							0.203														633				0.005	0.01
	November-2023		0.0471 J			0.0534		0.74			0.053			0.0618					0.0722			0.845			0.0313 J	0.025	0.05
	11010111001 2020				30.4																					0.25	0.5
					52.7																					0.25	0.5
Zinc	December-2023																		0.061							0.005	0.01
	1 0004			0.117							0.0074							0.0462								0.025	0.025
	January-2024			0.117							0.0974										0.475				0.0261	0.0125	0.025
	February-2024			0.0879		0.0554															0.475		0.809		0.0240	0.0125	0.025
	March-2024																						2.00		0.0342	0.005	0.01
														0.0545					0.0530				2.09			0.0125	0.025
	A := :: 1 000 A													0.0565					0.0539							0.0025	0.005
	April-2024																	0.0394								0.02	0.02
					24.7																					0.25	0.5
	May-2024										0.165								0.0568		1.3	1.43			0.0812	0.025	0.05
	June-2024																		0.0505		0.498				ND	0.025	0.05
	July-2024										0.104	0.0451														0.0125	0.025
	August-2024						3.49														0.512			0.417		0.025	0.05
	September-2024				0.212																					0.0025	0.005
	·						3.68											0.111								0.025	0.05
	October-2024	0.266	0.077		20.2															0.342						0.025	0.05
		0 022E I	0.0247.1		20.2																					0.25	0.5
	November-2024		0.0367 J																						0.0404	0.025	0.05
	December-2024																								0.0696	0.025	0.05
					14.3																					0.25	0.5
	January-2025																				ND					0.002	0.002
	February-2025		0.0405 J																		0.527					0.025	0.05
	1 2 2 2 3 3 3 3 7 2 3 2 3												0.136													0.0465	0.05

We	II ID E	W-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	IOD	100
Parameter	Monitoring Event												Conce	ntration												LOD	LOQ
VOLATILE FATTY AC																											
													1600													25	100
	November-2022										3500					150 J										62	250
	December-2022		1800																							62	250
											4400					ND.											
	January-2023		ND							ND	4400					ND											500
	February-2023																	ND									500
	March-2023									ND	640																500
	April-2023									1200		520														370	500
	May-2023		990							1800	3000															370	500
	June-2023										5900		4100		5000											750	1000
																									ND	150	200
	July-2023		ND																ND							370	500
									6100															750		750	1000
	August-2023						3300		5300															4200	ND		500
	September-2023				7400														ND							370	500
	October-2023							3200											720			4100				370	500
	00.000.2020		ND											ND					ND						4160	250	500
	November-2023					4950		6650			5350											7300				500	1000
					9900																					1000	2000
																		660									100
	December-2023																		ND								250
					11200																						1000
	January-2024			4410							5290														3080		250
Acetic Acid	February-2024			3130		3530																					250
ACEIIC ACIG	1 601001y-2024																				3530		6770				500
	March-2024																								2700		200
	March 2024																						46000				1000
														ND					ND								100
	April-2024																	1670									250
					9170																						1250
																			ND		4370				221		250
	May-2024										4950																500
																						6530					1250
	June-2024																		ND								100
																					3890				4450		500
	July-2024										6280	6180															1250
	August-2024						5210														3500			5540			500
																		2950									250
	September-2024						5970																				500
					10400																						1250
		ND																									50
	October-2024		260																	4700							100
																				4780							250
	November 2004				9410																						1250
	November-2024	960	230																								200
	December-2024																								10000		200
					17000																						400
	January-2025																				3500						100

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	IOD	100
Parameter	Monitoring Event													ntration												LOD	LOQ
	November-2022												430													12	100
											830					ND										29	250
	December-2022		ND																							29	250
	January-2023		ND							ND	1800					ND											500
	February-2023																	ND									500
	March-2023									ND	ND																500
	April-2023									ND		ND														330	500
	May-2023		ND							ND	1200															330	500
	June-2023										2500		1500		2900											650	1000
																									ND	130	200
	July-2023		ND																ND							330	500
									2800															650		650	1000
	August-2023						1400		1700															1600	ND		500
	September-2023				3100			1000											ND							330	500
	October-2023		ND			1670		1200 1760			1370			ND					ND			2000 2730			740	330 250	500
	November-2023				3420														ND 			2/30			740	500	500 1000
																		336									100
	December-2023																		ND								250
Butyric Acid					3390																						1000
	January-2024			813							1230														594		250
	February-2024			583		1170																					250
	10010017 2021																				1180		2980				500
	March-2024																								500		20
	771010112021																						2100				200
	April-2024													ND					ND								100
					3120													444									250
	May-2024										1190								ND		984	2370			448		250
	June-2024																		ND		1190				1030		100
	July-2024						1/20				2400	2360							 		1100			1020			250
	August-2024				2550		1630											470			1180			1930			500
	September-2024	ND			3550		2060											670									250 50
			ND																								100
	October-2024																			1630							250
					3070																						1250
	November-2024	480	ND																								200
																									2200		200
	December-2024				4600																						400
	January-2025																				1100						100
													ND													11	100
	November-2022										ND					ND										27	250
	December-2022		90 J																							27	250
			ND			968		1800			969			ND					ND			1170			324	250	500
	November-2023				6030																					500	1000
																		ND									100
	December-2023																		ND								250
					9050																						1000
	January-2024			629							979														256		250
	February-2024			334		180																					250
	10010017 2021																				756		1650				500
	March-2024																								ND		20
																							ND				200
														ND					ND								100
Lactic Acid	April-2024				 5100													ND									250
	14				5120						11/0								ND		1170	1720					1250
	May-2024										1160								ND		1170	1730			ND 244		250
	June-2024										1220	1210							ND		706				246		100
	July-2024 August-2024						2270				1220	1210									593			959			250 500
							2550											 ND						757			250
	September-2024				5510		2550																				1250
		ND																									50
			ND																								100
	October-2024																			2590							250
					5630																						1250
		\ ID	ND					T																			200
	November-2024	ND	ND																								
																									730		200
	November-2024 December-2024																								730		200 400

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												Conce	ntration												LOD	LOQ
	November-2022												620													11	100
	NOVEITIDEI-2022										1600					73 J										27	250
	December-2022		640																							27	250
	January-2023		ND							ND	2000					ND											500
	February-2023																	ND									500
	March-2023									ND	ND																500
	April-2023									600		ND														340	500
	May-2023		520							800	1400															340	500
	June-2023										2900		2000		2900											680	1000
																									ND	140	200
	July-2023		ND																ND							340	500
									3100															680		680	1000
	August-2023						1200		2000															1900	ND		500
	September-2023				1800			1000											ND							340	500
	October-2023		ND			2170		1300 2310			2080			387					ND ND			2000 3350			1420	340 250	500 500
	November-2023				2580			2310																		500	1000
																		996									100
	December-2023																		ND								250
Propionic Acid					2280																						1000
	January-2024			1680							1970														1030		250
	February-2024			1210		1510															1000						250
																					1980		2900		570		500
	March-2024																						2100				20 200
														ND					ND								100
	April-2024				2300													1150									250
	May-2024										1730								ND		1640	2770			647		250
	June-2024																		ND		1870				1400		100
	July-2024										2500	2470															250
	August-2024						1320														1920			2040			500
	September-2024				2640		1690											1300									250
		ND																									50
	October-2024		275																	1470							100 250
					2240																						1250
	November-2024	1300	310																								200
																									3300		200
	December-2024				4200																						400
	January-2025																				1800						100
	November-2022												46 J													12	100
	November-2022										98 J					ND										30	250
	December-2022		ND																							30	250
	November-2023		ND			ND		ND			ND			ND					ND			ND			ND	250	500
	11010111001 2020				ND																					500	1000
	Dogombor 2022																	ND									100
	December-2023				ND														ND 								250 1000
	January-2024			ND							ND														ND		250
				ND		ND																					250
	February-2024																				ND		ND				500
	March-2024																								130		20
	77101011 2024																						460				200
Pyruvic Acid	April-2024													ND					ND								100
,					ND													ND							ND		250
	May-2024 June-2024										ND								ND	_ 	ND 113	ND 			ND		250 100
	June-2024 July-2024										ND	ND							ND 		113				ND		250
	August-2024						ND														ND			ND			500
	September-2024				ND		ND											ND									250
		ND																									50
I			ND																								100
	October-2024																			ND							250
	October-2024																										
					ND																						1250
	October-2024 November-2024		 ND		ND 																						200
		 ND 	 ND 		ND 																				410		200 200
	November-2024		 ND		ND 																						200

Wel	II ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	100
Parameter	Monitoring Event												Conce	entration												LOD	LOQ
OLATILE ORGANIC	C COMPOUNDS (ug/L))																									
											3510					1140										30	100
	November-2022												15600													300	1000
			3140									3390														30	100
	December-2022				26800				27700		5670						21700	7150								300	1000
			3480							632																30	100
	January-2023										7840					5470										300	1000
	February-2023																	14400								600	2000
	March-2023									257	2770															30	100
	April-2023									3420		5530														750	2500
	Aprii-2025		5360							5970																150	500
	May-2023										13600															750	2500
											13800															750	2500
	June-2023												20100		22600											1500	5000
			5860																								200
	luly 2022													_ 					ND						12500	60	_
	July-2023								20400					_ 										21/00	13500	750	2500
									38400															31600	 E0E0	3000	10000
																								7350	5950 	60 150	200 500
	August-2023								3000															7350		750	2500
							25600																			1500	5000
	Camba and a conso																		439							60	200
	September-2023				17500																					750	2500
	October-2023																		211							15	50
	OCIODEI-2023							17800														33400				1500	5000
																			78.8 J							30	100
								17700			10600															150	500
	November-2023		3990		05700																					300	1000
					25700	22300	 							17600								26700			31200	750 1500	2500 5000
	December-2023				13700													7060	ND							1500	500
2-Butanone (MEK)											10800															150	500
	January-2024			34700																					28900	1500	5000
	F = =																				12700					150	500
	February-2024			30500		28900																	17400			1500	5000
	March-2024																						11700			150	500
	Marchizoza																								25200	1500	5000
																			ND							30	100
	April-2024													14600												750	2500
					37200													28700								1500	5000
																			ND							60	200
	May-2024																				7340				18600	150	500
											25700											32700				1500	5000
																			ND							60	200
	June-2024																				13800					150	500
																									33200	15000	25000
	July-2024										15600															150	500
							17700					25400									7240			17000		1500	5000
	August-2024				19000		17700 16600														7260			17900		150 150	500
	September-2024				17000													32200								1500	5000
		28.2																								3	10
	October-2024		2770																							60	200
					13000															10800						150	500
	November-2024		4140																							60	200
	1101611061-2024	28800																								750	2500
	December-2024				658																					150	500
	DCCCITIDGI-2024																								41800	600	2000
	January-2025																				17000					1500	5000
	January 2020																										200
			6930																							60	
	February-2025		6930 										 ND								23900					150 24500	500 24500

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	105	
Parameter	Monitoring Event													entration												LOD	LOQ
																4420										70	100
	November-2022										16100		38300													700	1000
											15600	5170						9800								700	1000
	December-2022		8500																							1750	2500
					53100				49900								45600									3500	5000
										1530																70	100
	January-2023										22200					14000										700	1000
	30110017 2020		8130																							1750	2500
	February-2023																	23900								1400	2000
	1 CD10G1y-2023									375																70	100
	March-2023										6810															700	1000
	April-2023									8290		7560														1750	2500
	Aprii-2023		10700							11700																	500
	May-2023						 				20/00			_ 												350	
							 			_ 	29600			_ 												1750	2500
	June-2023								 		29600		/1000		50000											1750	2500
													61800	 	50800											3500	5000
	-																		1180							140	200
	July-2023		9780																							700	1000
	, ,																								11600	1750	2500
									77200															69700		7000	10000
																									20900	700	1000
	August-2023						70500		18700	 				 										07700		1750	2500
							72500												188 J					87700		3500 140	5000
	September-2023				40100														100 J							1750	200 2500
																			79							35	50
	October-2023							66900														92900				3500	5000
Acetone																			104							70	100
7.001010	Navarahar 2022		5560																							700	1000
	November-2023				64700																					1750	2500
						43100		61100			36800			32800								53900			67800	3500	5000
																		ND								140	200
	December-2023																		ND							350	500
	1			0//00	44300																				47200	1750	2500
	January-2024			96600		70000					22800			_ 							45/00		/2100		47300	3500	5000
	February-2024 March-2024			81600		70200															45600		63100 50800		57600	3500 3500	5000 5000
	MUICTI-2024																		ND							70	100
	April-2024													24300					ND								
	April-2024				95300													55200								1750	2500 5000
																			ND							3500	
	May-2024										42200			_ 					ND		20000	01200			22200	140	200
							 			_ 	63200			_ 					ND		39000	91300			33300	3500	5000
	June-2024																		ND 		94400				84400	140 35000	200
	July-2024										32200	52600									74400				84400	35000 3500	50000
	August-2024						57700				32200										36000			81500		3500	5000
	September-2024				59800		44500											69300								3500	5000
	11,1111100. 2021	30.1																								7	10
	October-2024		5230																							140	200
					49800															40700						3500	5000
	November-2024		8680																							350	500
		44400																								1750	2500
	December-2024				51700																				69700	1400	2000
	January-2025																				65300					3500	5000
			9820																							700	1000
					1																46400					3500	5000
	February-2025												ND								10100					49000	98000

We	II ID E	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event													entration			1 -11 41									LOD	LOQ
raidifielei	November-2022										7.4 J		2860		I	50.4	T		1	I			T	I		1	10
	November-2022		201		20/0							/00					1750	170								4	
	December-2022		301		2960						6.3 J	622					1750	179								4	10
									6550																	40	100
	January-2023		240							28.7	1620					167										4	10
	February-2023																	1370								4	10
	March-2023									1540	727															4	10
	April-2023									3740		320														4	10
	May-2023		814							4890	3370															20	50
											2630															8	20
	June-2023												1400		1590											20	50
			824																80.8							8	20
	July-2023								4050															1420		20	50
	3017 2020															1									11800	100	250
																									379	8	20
	August-2023						2320		168															ND		20	50
																			193							8	20
	September-2023				468																					100	250
																			399							2	5
	October-2023							576														3100				20	50
			80.8											31.3												2	5
																			323							4	10
	November-2023					1070		654			982											1960			1190	20	50
Benzene					870																					100	250
	December 2002																	932								8	20
	December-2023				1330														463							20	50
	January-2024			1410							662														2900	20	50
	February-2024			906		884															346		484			20	50
	March-2024																						226		8910	20	50
	April-2024													52.1					13.8							4	10
	Aprii-2024				2040													3420								20	50
																			276							8	20
	May-2024										3080										144	818			2990	20	50
																			173							8	20
	June-2024																				210				2740	20	50
	July-2024										1410	1820														20	50
	August-2024						828														162			384		20	50
	September-2024				960		727											2710								20	50
		306																								0.4	1
	October-2024		429																							2	5
					1200															828						20	50
	November-2024	119	512																							8	20
	December-2024				675																				3280	20	50
	January-2025																				588					20	50
			739																							8	20
	February-2025																				443					20	50
	, ,												559000													24500	24500
	•																							-			

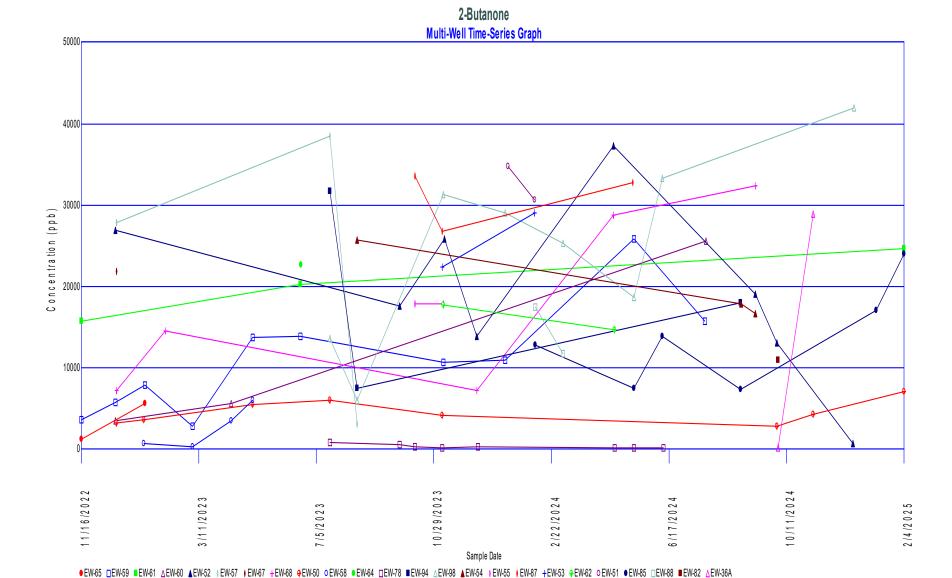
We	III ID EV	W-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event													entration			1 211 21									LOD	LOQ
T di dilliore:	December-2022		67.3		172				287		ND	48.5					108	27.4								4	10
	November-2022										ND		194			16.2										4	10
			65.1							ND	93.9					20.8										4	10
	February-2023																	151								4	10
	March-2023									131	71.5						+									4	10
	April-2023									186		43.4														4	10
			104								144			_ 													
	May-2023		124							276	144															20	50
	June-2023										104															8	20
													98		116											20	50
																									666	4	10
	July-2023		128																82							8	20
									224															87.5		20	50
	August-2023																								16.8 J	8	20
	7 (0 903) 2020						80		ND															ND		20	50
	September-2023																		22.8							8	20
					ND																					100	250
	October-2023							40.5.1						_ 					34.8							2	5
			26.3					42.5 J						45.4								247				20	50
														45.4					26.9							4	10
	November-2023					62		54			76.5											224			60.5	20	50
					ND																					100	250
Ethylbenzene																		46								8	20
	December-2023				69.5														44 J							20	50
	January-2024			99							28 J														248	20	50
	February-2024			51		43 J															31 J		41 J			20	50
	March-2024																						25 J		710	20	50
	April 2024													106					ND							4	10
	April-2024				91.5													186								20	50
	14 0004																		35.4							8	20
	May-2024										146										ND	59			225	20	50
	l 000 4																		23.6							8	20
	June-2024																				ND				142	20	50
	July-2024										76	118														20	50
	August-2024						27.5 J														ND			27 J		20	50
					46.5 J		44 J											192								20	50
		59.6																								0.4	1
	October-2024		112																							2	5
					62.5															76						20	50
		14.4 J	135																							8	20
					52.5																				252	20	50
	January-2025																				54.5					20	50
			164																							8	20
	February-2025																				158					20	50
													2090000													24500	24500

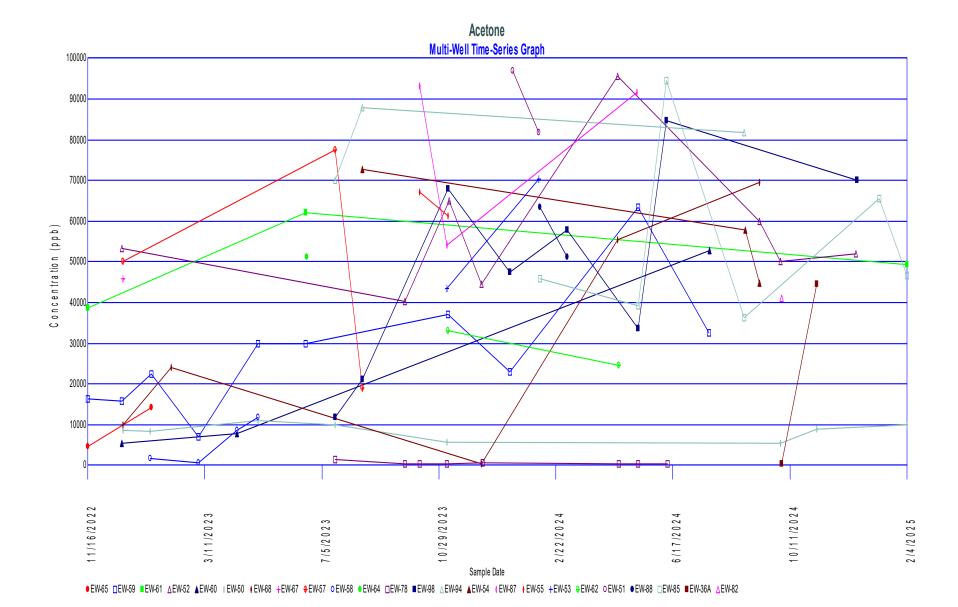
We	II ID EW-3	36A E\	W-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event													ntration												LOD	LOQ
- Tarameter											309					176	[100	100
	November-2022												8530				 										
			1.51								170	1100	6530													1000	1000
	December-2022	-	151								170	1120						663								100	100
					5210				19800								6130									1000	1000
	January-2023	-	183							566	1810					352										100	100
	February-2023	-																3760								2000	2000
	March-2023	-								353	464															100	100
	April-2023	-								2410		4790														100	100
	May-2023	-	ND							2740	2380															500	500
											2100															200	200
	June-2023												7320		6670											500	500
																									2960	100	100
	July-2023	- '	411																616							200	200
		-							8380															5310		500	500
	August-2023	-																							2880	200	200
		-					7370		3210															1200		500	500
	September-2023	-																	343							200	200
		-			ND																					2500	2500
	October-2023	-																	606							50	50
								4870														9140				500	500
		- 1	199											325												50	50
	November-2023	-																	358							100	100
Tetrahydrofuran		-				4780		3320			785											5370			4600	500	500
		-			4620																					2500	2500
	December-2023	-																4240								200	200
		-			2620														502							500	500
	January-2024	-		5160							1040														10900	500	500
	February-2024	-		3500		4580															3520		4910			500	500
	March-2024	-																					3320		8710	500	500
	April-2024	-												697					ND							100	100
		-			7290													7680								500	500
	May-2024	-																	555							200	200
	///dy-2024	-									2660										1880	5860			7640	500	500
	June-2024	-																	568							200	200
	JUNE-2024	-																			3830				13000	500	500
	July-2024	-									1900	4020														500	500
	August-2024	-					3220														2020			4610		500	500
	September-2024	-			2950		2730											6640								500	500
	24	8																								10	10
	October-2024	- ;	318																							50	50
		- [2580															2730						500	500
	November-2024 662	20 4	452																							200	200
	December-2024	-			5660																				17000	500	500
	January-2025	-																			11200					500	500
			020																							200	200
	February-2025																				7490					500	500
													ND													24500	24500
													_ ייי													2 1000	1000

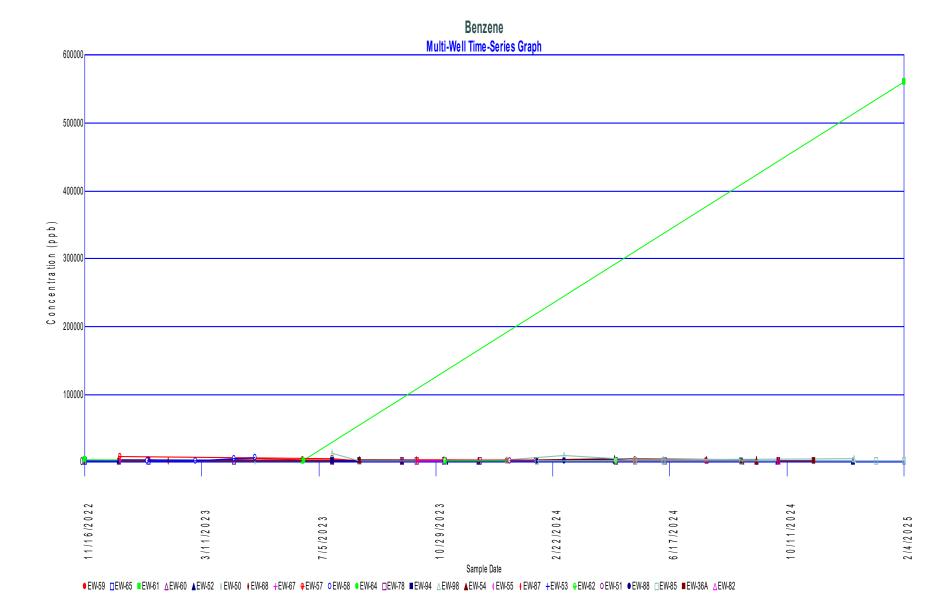
We	ell ID EW-36	A EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event												ntration												LOD	LOQ
1 41 41110101	November-2022									ND		214			32.8										5	10
	December-2022	122		175				195		ND	113					113	48.3								5	10
	January-2023	122							8 J	139					35.3										5	10
	F 1 0000															 	224								5	10
									100	00 1													_ 		5	
	March-2023								182	98.1															5	10
	April-2023								303		94.4														5	10
	May-2023	258							371	239															25	50
	June-2023									165															10	20
												67		212											25	50
																								965	5	10
	July-2023	248																107							10	20
								218															118		25	50
	August-2023																							36.6	10	20
	A09031-2023					105		ND															ND		25	50
	September-2023																	40.6							10	20
	3CD1C111DC1 2020			ND																					125	250
	October-2023																	59.2							2.5	5
							37 J														235				25	50
		47.3											50.4												2.5	5
	November-2023																	48.7							5	10
					62.5		51.5			114											167			114	25	50
Toluene				ND													73.2								125	250
	December-2023			83.5														74.5					_ 		10 25	20 50
	January-2024		95.5							60								74.5						310	25	50
	February-2024		49 J		37 J															ND		30.5 J			25	50
	March-2024																					73		916	25	50
													90.1					ND							5	10
	April-2024			104													263								25	50
					1											 		53.8							10	20
	May-2024									180										ND	62.5		_ 	284		
																		24.4		ND					25	50
	June-2024																	34.6		ND				228	10 25	20 50
	July-2024									97	125														25	50
	August-2024					35 J														ND			25 J		25	50
	September-2024			80		63.5											226								25	50
	55.7																								0.5	1
	October-2024	173																							2.5	5
				65.5															72						25	50
	November-2024 44.6	245																							10	20
	December-2024			42 J																				288	25	50
	January-2025																			36 J					25	50
		271																							10	20
	February-2025																			54.5					25	50
												537000													24500	24500

Historical LFG-EW Leachate Monitoring Results Summary

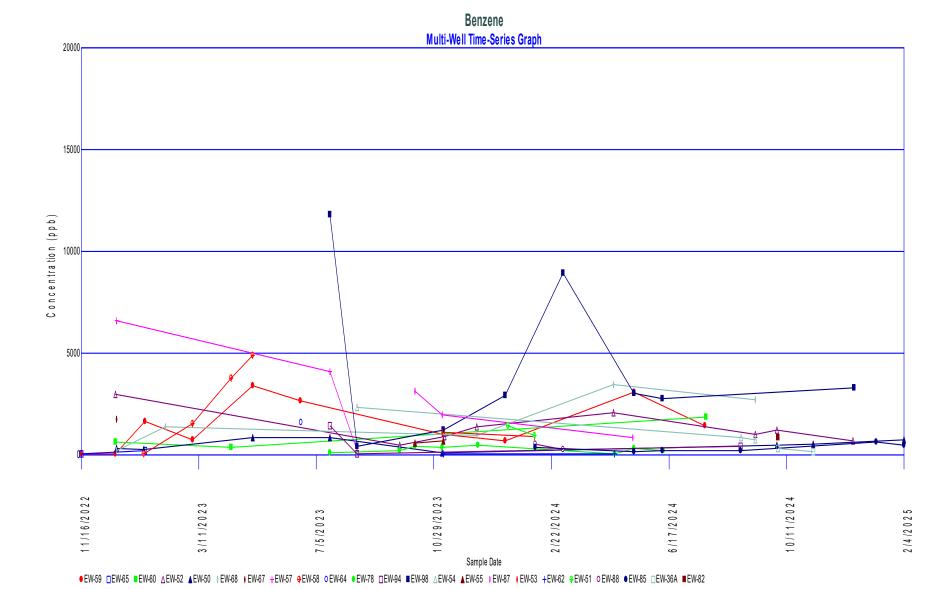
We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												Conce	ntration												LOD	LUQ
	November-2022										ND		185			37.8										10	30
	December-2022		161		222				186		ND	112					197	59.9								10	30
	January-2023		138							ND	134					38.1										10	30
	February-2023																	240								10	30
	March-2023									240	111															10	30
	April-2023									329		97.4														10	30
	May-2023		274							441	230															50	150
	1VIGY 2020										177															20	60
	June-2023												92 J		136 J											50	150
																						 			1130		
	July 2022		257																74.4			 				10	30
	July-2023		257																74.4					174		20	60
									230															174	40.4.1	50	150
	August-2023						100																		48.4 J	20	60
							180		ND															ND		50	150
	September-2023				ND														ND							20 250	60 750
																			30.6							5	15
	October-2023							134 J														328				50	150
			56											48												5	15
																			25.3 J							10	30
	November-2023					116 J		104 J			132 J											306			138 J	50	150
					ND																					250	750
Xylenes, Total	December-2023																	167								20	60
	December-2023				224														ND							50	150
	January-2024			142 J							ND														534	50	150
	February-2024			63 J		59 J															ND		ND			50	150
	March-2024																						ND		1360	50	150
	April-2024													110					ND							10	30
	7 (DIII 2024				140 J													352								50	150
	May-2024																		31.6 J							20	60
	May-2024										223										ND	105 J			400	50	150
	June-2024																		ND							20	60
																					ND				261	50	150
	July-2024										125 J	157														50	150
	August-2024						72.5 J														ND			55.5 J		50	150
	September-2024				90.5 J		120 J											368								50	150
	0-1-1- 0001	54.3																									3
	October-2024		201		144 1															75.5.1						5	15
	November-2024	ND.	222		144 J															75.5 J						50	150
			223		00 5 1																				497	20	60
	December-2024				98.5 J																	 			487	50	150
	January-2025		0/7																		82 J					50	150
	Fobruary 2005		267																		254	 				20	60
	February-2025												4240000								354					50 24500	150 24500
= not applicable/a	7.11												4260000													24500 mg/L = millic	

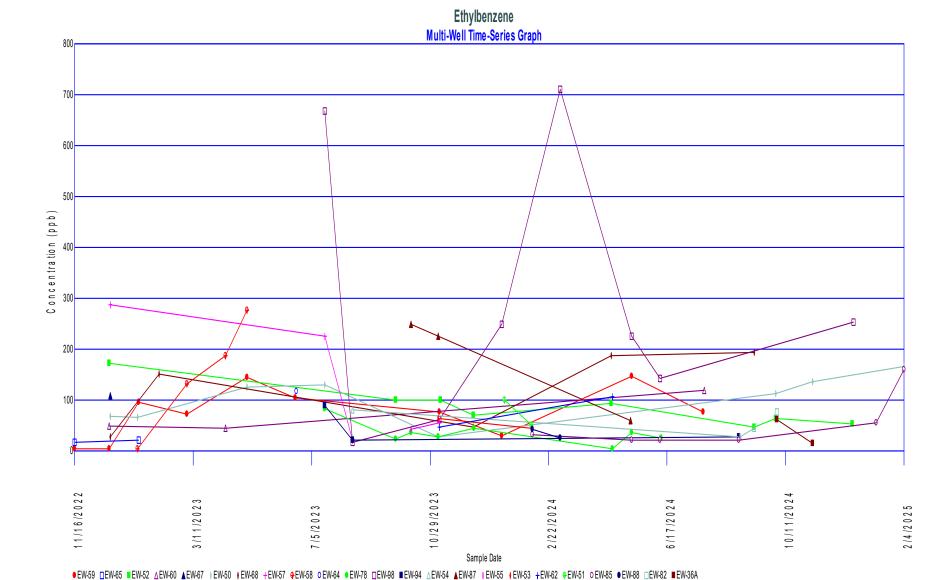

^{--- =} not applicable/available

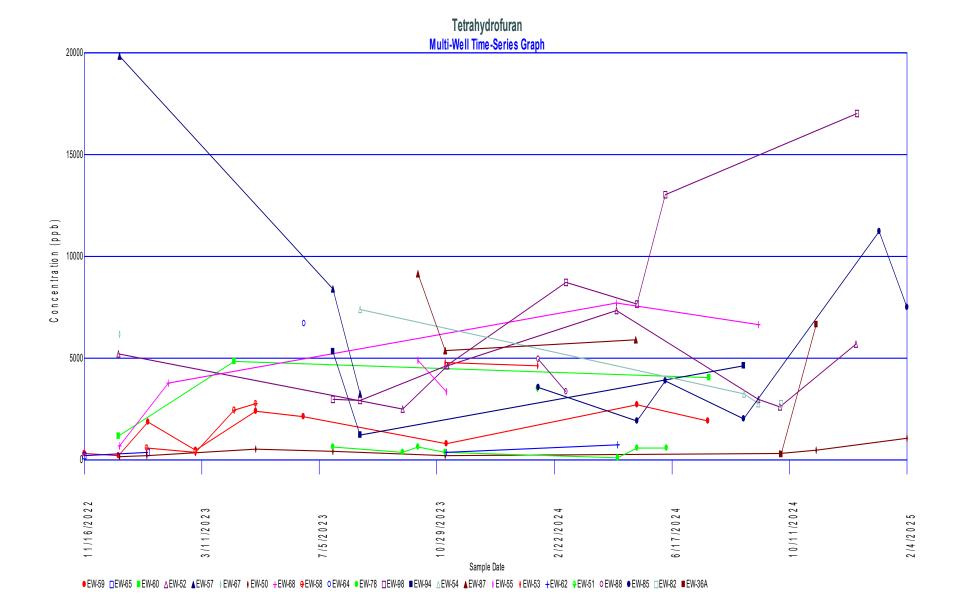

mg/L = milligrams per liter ND = Not Detected ug/L = micrograms per liter

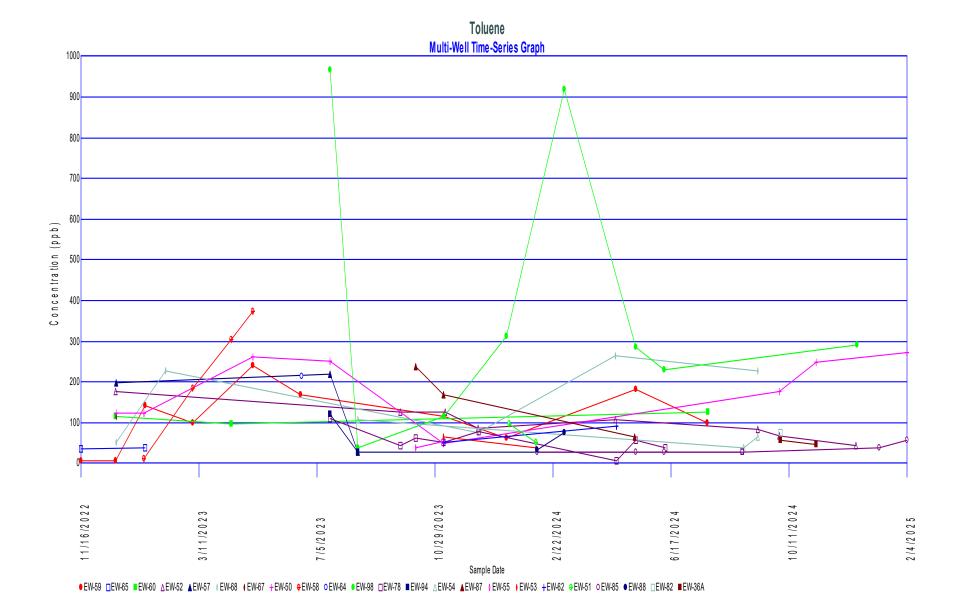

J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.

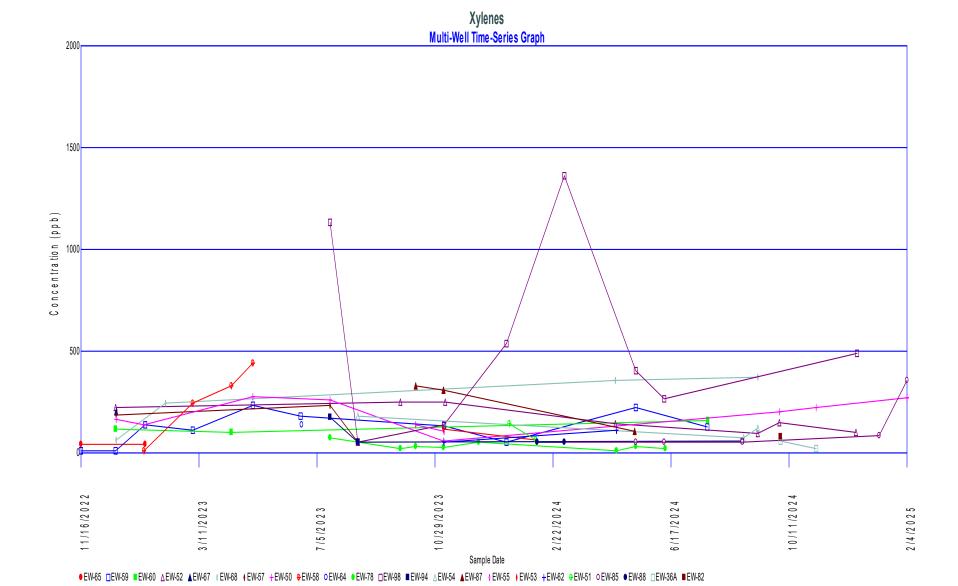
LOD = laboratory's Limit of Detection


LOQ = laboratory's Limit of Quantitation




Page 3


Page 4


Page 5

Page 6

Page 7

Page 8

Appendix G

LFG Dewatering Pump Stroke Counter Data Analysis

Stroke Counter Data Analysis

During the monthly liquid depth measurement event and during LFG monitoring, SCS collected stroke counter data from the pumps installed in the GCCS extraction wells. These stroke counts were collected from 40 wells from January 27, 2025 to February 25, 2025. The recorded stroke count data from each well during February are included in Table G-1.

Based on the number of strokes in each well, SCS can estimate the number of gallons of liquid pumped from each well to assess pump performance. SCS assumed that each stroke from a float-style pneumatic pump correlates to approximately 0.3 gallons of liquid removed from the well. Blackhawk piston-style pumps remove approximately 0.11 gallons per stroke.

Table G - 1 Summary of Dual Extraction Well Pump Stroke Counter Data

Well	1/27/2025	2/10/2025	2/25/2025	# of strokes between measurements	Estimated liquid removed (gallons)
EW33B					
EW36A					
EW49		79565	79565	-	0
EW50	1523134	1529426	1534516	11,382	3,415
EW51				-	0
EW52	1233665	1234243	1234839	1,174	352
EW53		3294343	3294343	-	0
EW54					
EW55	73305	73361	73374	69	21
EW57					
EW59	3499376	3536776	3536795	37,419	11,226
EW60	105445	108078	120738	15,293	4,588
EW61	467510	476589	477303	9,793	2,938
EW62		214599		-	0
EW64					
EW65		77155		-	0
EW67	288743	288743	288743	-	0
EW68	2640375	2641127	2641281	906	272
EW69					
EW70					
EW74					
EW75					
EW76					
EW78		5335		2,360	264
EW81					
EW82					
EW83					
EW85	267294	279026	288416	21,122	2,366

Well	1/27/2025	2/10/2025	2/25/2025	# of strokes between measurements	Estimated liquid removed (gallons)
EW87		340749	340749	-	0
EW88		254736	254736	-	0
EW89					
EW90					
EW91					
EW92					
EW93	973173	1089912	1265449	292,276	32,735
EW94	778897	838099	963390	184,493	20,663
EW96					
EW98	1522107		1621752	99,645	29,894
	Т	otal Estimate	d Liquid Rem	oval	108,732