September 2024 Monthly Compliance Report

Solid Waste Permit No. 588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-30 | October 10, 2024

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sect	tion			Page
	Intro	duction .		4
1.0	Gas	Collection	n	4
	1.1	Surface	and Leachate Collection Emissions	4
		1.1.1	Surface Emissions	4
		1.1.2	Leachate Collection Emissions	5
	1.2	Existing	Gas Extraction System Performance	6
	1.3	Remote	Monitoring System	7
		1.3.1	Automated Wellhead Temperature Measurements	7
		1.3.2	Comparison with Manual Temperature Measurements	8
		1.3.3	Monthly Regulatory Wellhead Temperature Measurements	9
		1.3.4	LFG Sampling	
	1.4	Large-D	iameter Dual-Phase Extraction Wells	
	1.5	VDEQ C	oncurrence on Wells	
2.0	Side	wall Odor	r Mitigation	
	2.1	Perimet	er Gas Collection System	
	2.2	Sidewa	II Odor Mitigation System	
	2.3	Pilot Sy	stem Construction	
	2.4	Full Sys	tem Construction	
3.0	Wast	te Tempe	erature Monitoring	
	3.1	Temper	ature Monitoring System Design	13
	3.2	Temper	ature Monitoring System Installation	
4.0	Lead	hate Extr	raction and Monitoring	25
	4.1	Existing	System Optimization	
		4.1.1	Total LFG Liquids Removal	
	4.2	Samplir	ng and Analysis Plan	
		4.2.1	Sample Collection	
		4.2.1	Quality Assurance and Quality Control	30
		4.2.2	Data Validation	
		4.2.3	Laboratory Analytical Results	
5.0	Settl	ement M	onitoring and Management	
	5.1	Settlem	ent Monitoring and Management Plan	
	5.2	Monthly	/ Surveys	
		5.2.1	Topographic Data Collection	

Table of Contents

Sect	ion			Page
		5.2.2	Settlement Plate Surveys	39
6.0	Inter	mediate	Cover and EVOH Cover System	42
	6.1	Interme	ediate Cover Installation	42
	6.2	EVOH C	Cover System Design	42
	6.3	EVOH C	Cover System Procurement	43
	6.4	EVOH C	Cover System Installation	43
7.0	Storr	nwater N	Vanagement	43
	7.1	Stormw	vater Management Plan Development	43
	7.2	Stormw	vater Management Basin Design and Construction	44
	7.3	Stormw	vater Management Plan Implementation	44
	7.4	Long-Te	erm Stormwater Control and Removal	44
	7.5	Stormw	vater Monitoring	44
8.0	Misc	ellaneou	IS	45
	8.1	Cease	Waste Acceptance	45
	8.2	Long-Te	erm Plan	45
	8.3	Monthl	y Compliance Reports	45
	8.4	Commu	unity Outreach Program	

Figures

Figure 1.	Average Automated Wellhead Temperatures	8
Figure 2.	Automated vs. Manual Temperature Measurements	9
Figure 3.	CO and H ₂ Concentration Scatter Plot	11
Figure 4.	Temperature Monitoring Probe Locations	13
Figure 5.	TP-1 Average Temperatures for the Months of September 2023, December 2023,	
March 2024,	June 2024, and September 2024	15
Figure 6.	TP-2 Average Temperatures for the Months of September 2023, December 2023,	
March 2024,	June 2024, and September 2024	16
Figure 7.	TP-3 Average Temperatures for the Months of September 2023, December 2023,	
March 2024,	June 2024, and September 2024	17
Figure 8.	TP-4 Average Temperatures for the Months of September 2023, December 2023,	
March 2024,	June 2024, and September 2024	18
Figure 9.	TP-5 Average Temperatures for the Months September 2023, December 2023, April	
2024, June 2	2024, and September 2024	19
Figure 10.	TP-6 Average Temperatures for the Months of September 2023, December 2023,	
March 2024,	June 2024, and September 2024	21

Table of Contents

Section	P	age
•	TP-7 Average Temperatures for the Months of September 2023, December 2023, June 2024, and September 2024	22
	TP-8 Average Temperatures for the Months of September 2023, December 2023,	
March 2024,	June 2024, and September 2024	23
Figure 13.	TP-9 Average Temperatures for the Months of September 2023, December 2023,	
-	June 2024, and September 2024	24
	Estimated September Dewatering Liquid Removal by Well	26
Figure 15.	Estimated Volume of Liquids Removed from Landfill Gas Wells	28
Figure 16.	1-Month Elevation Change Map	34
Figure 17.	3-Month Elevation Change Map	
Figure 18.	1-Year Elevation Change Map	38
Figure 19.	Settlement Plate Locations	
Figure 20.	Elevation Change of Select Settlement Plates Over Time	

Tables

Table 1.	Summary of September Surface Emissions Monitoring	5
Table 2.	Leachate Cleanout Pipe Monitoring Results	
Table 3.	September Temperature Exceedance Summary	
Table 4.	LFG Wellhead Sampling Summary	
Table 5.	System Averages of Sidewall Wellhead Gas Quality	
Table 6.	Summary Wells Unable to be Sampled for Leachate	
Table 7.	Monthly LFG-EW Leachate Monitoring Event Summary	
Table 8.	Elevation and Strain Data at Settlement Plate Locations	

Appendices

- Appendix A Surface Emissions Monitoring Summary Letters
- Appendix B In-Waste Temperatures on Select Days in September
- Appendix C Daily Wellhead Temperature Averages
- Appendix D Solid Waste Permit 588 Daily Borehole Temperature Averages
- Appendix E Monthly Topography Analysis
- Appendix F Field Logs

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report provides updates regarding the progress towards completion of the items outlined in Appendix A of the Consent Decree between the City and VDEQ. The following sections outline progress during the month of September 2024 related to Solid Waste Permit (SWP) No. 588.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

1.1.1.1 Quarterly SEM

SCS performed the Third Quarter surface emissions monitoring event on September 23, 2024. The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint outside of the active filling area.

One exceedance was detected during this quarterly monitoring event on the serpentine route, and seven exceedances were detected at surface cover pipe penetrations. This monitoring event also represented the weekly monitoring event for that week. A quarterly SEM report documenting corrective actions and re-monitoring results will be submitted to the VDEQ as part of the Semi-Annual Report. In addition, monitoring results were presented to the VDEQ in a letter dated October 2, 2024.

1.1.1.2 Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, SCS performed additional surface emissions monitoring on September 5, 2024; September 9, 2024; September 16, 2024: and September 23, 2024. These weekly surface emissions monitoring (SEM) events were performed in accordance with item 1.i in Appendix A of the Consent Decree between the City and VDEQ.

The monitoring in September generally conformed to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID)

at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, with the exception of EW-55, which was being cut by SCS-FS on the day of monitoring and could not be accessed.

The Facility submitted letters to VDEQ outlining the results of the September monitoring events on September 11, 2024; September 18, 2024; September 25, 2024; and October 2, 2024.

Description	September 5, 2024	September 9, 2024	September 16, 2024	September 23, 2024 ¹
Number of Points Sampled	167	167	167	166
Number of Points in Serpentine Route	100	100	100	100
Number of Points at Surface Cover Penetrations	67	67	67	66
Number of Exceedances	4	7	8	8
Number of Serpentine Exceedances	0	0	1	1
Number of Pipe Penetration Exceedances	4	7	7	7

Table 1.	Summary of September Surface Emissions Monitoring
----------	---

¹ Third Quarter 2024 SEM Event

During the September monitoring events, no new exceedances were detected on the serpentine route. However, new exceedances were detected at four surface cover pipe penetrations (EW-67, W-75, EW-80, and EW-96). The new exceedances at EW-75 and EW-80 were identified in the north-central portion of the landfill, where vacuum at these wellheads has been reduced. The new exceedances at EW-67 and EW-96 were likely a result of insufficient cover at the surface cover pipe penetration. Corrective actions to address the ongoing exceedances, likely involving well adjustments and/or installation of new vacuum header and laterals to increase vacuum at these locations, as well as additional soil placement are planned for the Fourth Quarter 2024.

Furthermore, the Facility is taking proactive steps to limit fugitive surface emissions including placement of additional soil, continued and improved dewatering activities, and well tuning to increase gas extraction.

1.1.2 Leachate Collection Emissions

SCS Field Services (SCS-FS) visited the Bristol Landfill on September 30, 2024, and performed monitoring of the leachate, witness zone, northern cleanouts, and gradient control clean-outs at the southern end of the landfill. The results of that monitoring are included in Table 2. Table 2 also lists the cleanout pipe description based on site records and a review of correspondence.

Please note that LCO7 is not connected to the LFG collection system. During connection of the other leachate cleanouts to the LFGCCS in 2020, measurements of gas composition in LCO7 indicated low levels of landfill gas in this cleanout.

Table 2.

Leachate Cleanout Pipe Monitoring Results

Description	ID#	Record Date	CH4 (% by Vol)	CO2 (% by Vol)	O2 (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H2O)	Adj Static Pressure (in H2O)	System Pressure (in H2O)
Southern Cleanouts Gradient West	LC01	9/30/2024 8:23:58 AM	51.8	46.2	0.0	2.0	63.4	63.4	-12.82	-12.82	-16.64
Southern Cleanouts Gradient East	LC02	9/30/2024 8:41:51 AM	45.5	44.0	0.0	10.5	63.9	63.9	-13.13	-13.13	-15.72
Southern Cleanouts Leachate Center	LC03	9/30/2024 8:45:29 AM	18.6	13.2	14.1	54.1	64.4	64.4	-16.36	-16.46	-16.64
Southern Cleanouts Witness East	LC04	9/30/2024 8:48:38 AM	9.3	8.7	18.0	64.0	64.9	64.8	-16.49	-16.49	-16.61
Southern Cleanouts Leachate West	LC05	9/30/2024 8:51:59 AM	49.4	45.1	0.0	5.5	64.6	64.6	-13.80	-13.13	-16.59
Southern Cleanouts Gradient Center West	LC06	9/30/2024 8:55:39 AM	50.4	23.3	5.0	21.4	65.3	65.2	-0.83	-2.80	-16.51
Southern Cleanouts Leachate East	LC08	9/30/2024 9:01:14 AM	43.2	45.4	0.0	11.5	63.9	63.9	-13.27	-13.13	-16.69
Southern Cleanouts Gradient Center East	LC09	9/30/2024 9:04:44 AM	14.6	8.9	16.5	60.0	66.2	66.2	-9.79	-9.76	-16.76
Southern Cleanouts Leachate West	LC10	9/30/2024 9:07:22 AM	0.3	0.2	21.8	77.8	67.0	67.0	-8.08	-8.08	-16.59
Northern Cleanouts Leachate East	NC01	9/30/2024 9:26:35 AM	0.1	0.0	21.8	78.2	66.4	66.4	-10.10	-10.10	0.09
Northern Cleanouts Leachate Center	NC02	9/30/2024 9:28:44 AM	0.1	0.0	21.8	78.1	66.8	66.7	-10.10	-10.10	0.10
Northern Cleanouts Leachate West	NC03	9/30/2024 9:31:24 AM	0.3	0.1	21.7	78.0	66.9	66.9	-10.10	-10.10	0.08
Northern Cleanouts Witness East	NC04	9/30/2024 9:32:52 AM	0.0	0.0	21.7	78.3	67.0	66.9	-10.77	-10.77	0.08
Northern Cleanouts Witness Center	NC05	9/30/2024 9:35:32 AM	0.0	0.0	21.8	78.2	67.0	67.0	-10.77	-10.77	0.10
Northern Cleanouts Witness West	NC06	9/30/2024 9:39:40 AM	0.0	0.0	21.8	78.2	67.4	67.3	-10.76	-10.77	0.10
Northern Cleanouts Gradient East	NC07	9/30/2024 9:41:34 AM	0.0	0.0	21.6	78.4	67.4	67.4	-13.13	-13.13	0.10
Northern Cleanouts Gradient Center East	NC08	9/30/2024 9:43:19 AM	8.9	4.2	13.9	73.0	67.9	67.9	-12.86	-12.83	0.10
Northern Cleanouts Gradient Center West	NC09	9/30/2024 9:45:49 AM	18.6	10.4	4.0	67.0	67.5	67.6	-12.82	-12.82	0.09
Northern Cleanouts Gradient West	NC10	9/30/2024 9:48:01 AM	0.4	0.1	21.5	78.0	68.2	68.2	-12.86	-12.87	0.10

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

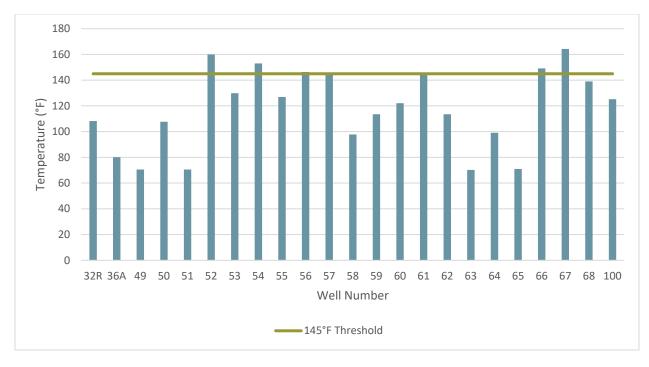
SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in the following sections of this report.

Additional actions taken by SCS-FS include the following:

- Adjustments to LFGCCS
- Maintenance of air lines and pressurized air infrastructure
- Maintenance of wellhead and other gas collection infrastructure

• Removal of liquids from landfill gas headers

1.3 **REMOTE MONITORING SYSTEM**


In the Fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas wellheads. The purpose of the sensors is to record and transmit well-head gas temperatures via a cellular connection to a database managed by SCS-RMC.

The City is providing average temperatures recorded by the sensors to VDEQ on a daily basis via email. Average daily temperatures recorded by the remote monitoring system during the month of September are included in Appendix C. In addition, SCS previously prepared semi-monthly status updates to satisfy the conditions of compliance provision no. 2 of the Environmental Protection Agency (EPA) Region III letter, Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility, dated August 23, 2021. On August 2, 2023, VDEQ requested that such updates be included in the monthly compliance reports going forward. Accordingly, this section is a summary of temperature monitoring activities during the monthly monitoring period of September 2024.

1.3.1 Automated Wellhead Temperature Measurements

SCS reviewed the automated hourly temperature measurements from September 2024, and identified the following trends:

- Temperatures over 145°F: Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded at EW-52, 54, 56, 57, 61, 66, and 67. Average temperatures at EW-52, 54, 56, 66, and 67 were above the compliance threshold throughout the monitoring period. The highest average temperature, 164.2°F, was measured at EW-67 (see Figure 1). The average LFG temperatures recorded by automated wellhead sensors for the month of September were similar to the values measured in August.
- Temperature probes removed at decommissioned wells: Temperature probes at EW-34 and EW-40 were removed in December of 2023 due to the decommissioning of the wells. Additionally, the temperature probe at EW-35 was removed in May 2024, due to the decommissioning of the well. One probe was added to EW-61 in August 2024, and SCS was informed of the City's plans to purchase additional temperature sensors.
- Signal issue at EW-52: EW-52 went offline starting September 21, 2024. SCS-FS reported that the sensor at EW-52 often needs reset, which does temporarily resolve the issue. SCS-RMC staff are working to identify the source of the issue to find a more permanent solution.

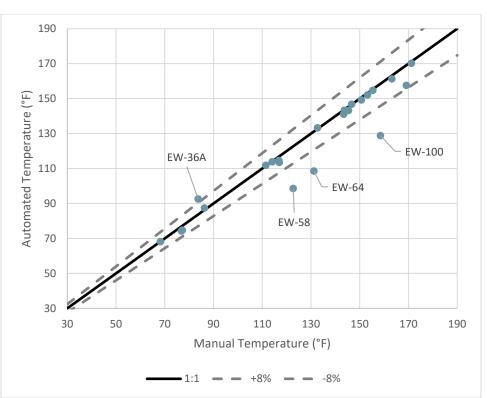


Figure 1. Average Automated Wellhead Temperatures

1.3.2 Comparison with Manual Temperature Measurements

Per the approval issued by VDEQ on August 2, 2023, the Facility ceased dedicated daily manual temperature measurements in the Permit No. 588 Landfill. In lieu of these measurements, the City has agreed to compare instantaneous hourly automated temperature measurements with temperatures measured at each wellhead with a handheld sensor during monthly compliance monitoring. These comparisons are shown in Figure 2, with the $\pm 8\%$ deviation goals as prescribed in the VDEQ approval.

Temperature comparisons outside the $\pm 8\%$ deviation goal lines were found again at EW-58, 64 and 100. The disparity between automated and manual temperature measurements at EW-58, 64, and 100 continued to be significant without evidence of low LFG flow rates, which have sometimes caused the automated temperature probes to record lower temperatures than manual measurements. Additionally, the EW-36A automated temperature measurement was outside the $\pm 8\%$ deviation goal this month. Unlike EW-58, 64, and 100, the automated temperature measurement at EW-36A was greater than manual temperature measurement. SCS investigated whether the automated temperature measurements in the hours surrounding the date/time comparison shown in Figure 2 showed that the well's temperature was changing, which could cause the automated temperature shown at the nearest hour to differ from the manual measurement. However, the surrounding hourly automated measurements did not show much fluctuation.

Figure 2. Automated vs. Manual Temperature Measurements

1.3.3 Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted September 12, 2024. During this monitoring period, temperature exceedances were resolved at EW-49, EW-52, EW-54, EW-82, EW-89, and EW-94. Table 3 provides the status of all exceedances recorded during this monitoring period.

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 9/24/2024
EW-52	9/9/24	9/12/24 156.1°F	4 days	Resolved within 15-day timeline
EW-56	7/29/24	8/22/24 144.0°F	25 days	Resolved within 60-day timeline
EW-56	9/9/24	9/25/24 146.4°F	22 days	Ongoing, within 60-day timeline
EW-60	9/9/24	9/12/24 126.6°F	4 days	Resolved within 15-day timeline
EW-60	9/25/24	9/25/24 162.9°F	6 days	Ongoing, within 15-day timeline
EW-66	5/1/24	9/25/24 151.3°F	140 days	Resolved, HOV approved on 9/18/24

Table 3.	Sontombor	Tamparatura	Exceedance	Summany
TUDIE 3.	September		EXCEEDUICE	SULLINGIA

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 9/24/2024
EW-68	9/9/24	9/12/24 140.0°F	4 days	Resolved within 15-day timeline
EW-87	9/25/24	9/25/24 137.8°F	1 day	Resolved within 15-day timeline
EW-89	9/9/24	9/25/24 189.3°F	22 days	Ongoing, within 60-day timeline
EW-94	8/27/24	9/5/24 133.4°F	9 days	Resolved within 15-day timeline
EW-94	9/25/24	9/25/24 157.4°F	1 day	Ongoing, within 15-day timeline

1.3.4 LFG Sampling

SCS collected weekly LFG samples from wells with temperature exceedances lasting more than seven days using 1.5-L Summa canisters. The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H_2) content. As of October 1, 2024, the City is in possession of lab results for sampling on August 22, August 29, September 5, September 12, and September 19, 2024 to fulfill the requirement in 40 CFR 63.1961(a)(5). Lab results are summarized in Table 4.

Sample Date		8/22/24	8/29/24	9/5/24	9/12/24	9/19/24
EW-56	CO (ppmv)	95.2	104		ND	93.0
	H2 (Vol. %)	2.88	2.71		3.39	3.38
	CO (ppmv)	168	172	196	181	
EW-66	H2 (Vol. %)	5.24	5.07	5.40	5.07	
FW 00	CO (ppmv)	612				
EW-82	H2 (Vol. %)	18.9				
	CO (ppmv)				1210	1270
EW-89	H2 (Vol. %)				25.4	25.7
EW-94	CO (ppmv)		332			
	H2 (Vol. %)		7.99			

Table 4.LFG Wellhead Sampling Summary

The presence of hydrogen in the samples collected during this monitoring period indicates that combustion reactions are unlikely.

As shown in Figure 3, the majority of the carbon monoxide and hydrogen data during this period appear to be consistent with sampling data at other wells collected in 2024. The elevated CO and H₂ found at EW-89 is consistent with other data with greater than 25% hydrogen. This well has exhibited similar carbon monoxide and hydrogen composition in previous samples.

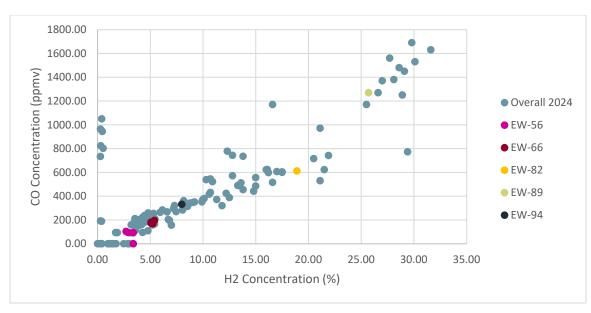


Figure 3. CO and H₂ Concentration Scatter Plot

1.4 LARGE-DIAMETER DUAL-PHASE EXTRACTION WELLS

SCS completed design work on an expansion of the existing GCCS during the month of December 2022. The expansion included at least 5 large diameter dual-phase extraction wells. The wells and supporting infrastructure were completed by October 12, 2023.

1.5 VDEQ CONCURRENCE ON WELLS

As described in previous monthly compliance reports, the City engaged with VDEQ in discussions about the proposed approach for landfill GCCS improvements and expansions. Upon completion of the landfill gas collection system, SCS will submit updated as-built drawings to VDEQ that depict the completed system.

2.0 SIDEWALL ODOR MITIGATION

The City has designed and constructed a system to control fugitive emissions emanating from the quarry sidewalls. Specific aspects of the proposed design features are described in the following sections.

2.1 PERIMETER GAS COLLECTION SYSTEM

SCS's design of the GCCS expansion described in Section 1.4 included perimeter LFG wells. These wells are closer to the sidewall to intercept landfill gas that potentially could migrate to the quarry wall. These wells supplement the sidewall odor mitigation system described in Section 2.2. As described in the April 2023 Monthly Compliance Report for the SWP No. 588 Landfill, construction of the perimeter gas collection system was completed.

2.2 SIDEWALL ODOR MITIGATION SYSTEM

On behalf of the City and in an effort to capture emissions from the quarry sidewall, SCS designed a sidewall odor mitigation system (SOMS) during the month of October 2022. The design of this system was prepared and submitted to VDEQ on November 1, 2022.

2.3 PILOT SYSTEM CONSTRUCTION

SCS-CONS completed substantial construction of Phase 1 of the SOMS during the month of February 2023, SCS-FS began monitoring Phase 1 connected Horizontal Collector (HC) wellheads during the month of March 2023, and SCS-FS continued weekly wellhead monitoring into the month of May 2023. Phase 1 is considered the pilot system portion of the SOMS. SCS submitted a design engineer certification to VDEQ on February 10, 2023 that documented the substantial completion of Phase 1 of the SOMS. Details of Phase 1 construction progress and monitoring can be found in the monthly compliance reports for the SWP No. 588 landfill.

2.4 FULL SYSTEM CONSTRUCTION

SCS-CONS substantially completed construction of Phase 2 of the SOMS during the month of June 2023 as Phase 2 was connected to vacuum as of June 14, 2023. Cover soil placement continued into the month of October 2023, and ceased when the construction crew left site on October 12, 2023 upon project final completion.

During the month of September 2024, SCS-FS collected monitoring data at each wellhead under vacuum. A summary of those measurements is shown in Table 5.

Record Date	Average CH₄ [%]	Average CO2 [%]	Average O2 [%]	Average Bal Gas [%]
9/3/2024	5.3	8.5	16.8	69.4
9/16/2024	4.4	7.5	17.7	70.4

The sidewall system average gas composition indicates lower methane content than typical landfill gas collection systems. The gas quality measurements indicate that the SOMS is functioning as designed because landfill gas is being withdrawn and oxygen intrusion is acceptable.

3.0 WASTE TEMPERATURE MONITORING

On behalf of the City, SCS designed a temperature monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

3.1 TEMPERATURE MONITORING SYSTEM DESIGN

The temperature monitoring system consists of nine boreholes drilled into the waste mass. A steel casing was placed in each borehole and the hole was backfilled around the casing with aggregate. A series of temperature sensors was placed inside the steel casing. At the top of each borehole, an IIoT transmitter collects the data from the sensors and transmits it to a cloud-based RMC system. The City submitted design of the temperature monitoring system to VDEQ on November 30, 2022.

3.2 TEMPERATURE MONITORING SYSTEM INSTALLATION

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP No. 588 Landfill. The locations of the temperature probes are shown in Figure 4.

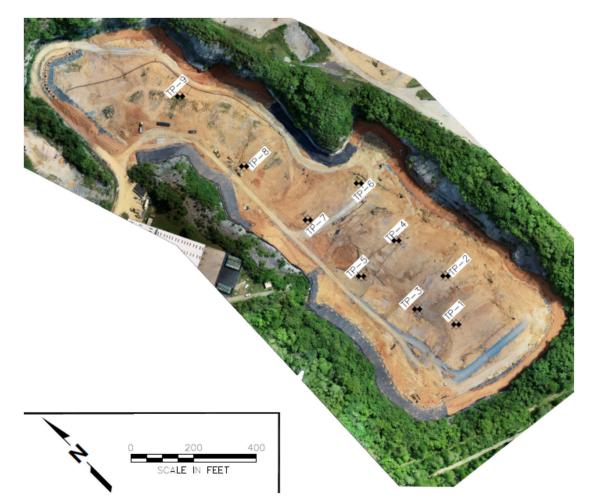


Figure 4. Temperature Monitoring Probe Locations

SCS began collecting temperature data daily on February 15, 2023. The temperature sensors continued to transmit temperature data during the month of September 2024. Average daily temperatures recorded by the sensors for the Month of September are included in Appendix D. Each

week the average temperatures from a select day of that week are downloaded and compared to temperatures recorded during the previous week. Average daily temperatures recorded on select days during the month of September are shown in Appendix B. The average temperatures recorded for select months between September 2023 through September 2024 are shown in Figures 5 through 13 on the following pages.

Figure 5 shows daily average temperatures recorded by Temperature Probe 1 (TP-1) during the months of September 2023, December 2023, March 2024, June 2024, and September 2024. Based on the data, temperatures have stayed generally consistent based on measurements collected in the last year, with some decrease in temperatures between June 2024 and September 2024.

TP-1 was originally drilled to a depth of 180 feet, but the contractor was unable to install the casing beyond a depth of 160 feet. TP-1 did not record temperatures between July 23, 2023 and July 30, 2023 due to a dead battery. The battery was replaced and TP-1 began recording temperatures again on July 31, 2023.

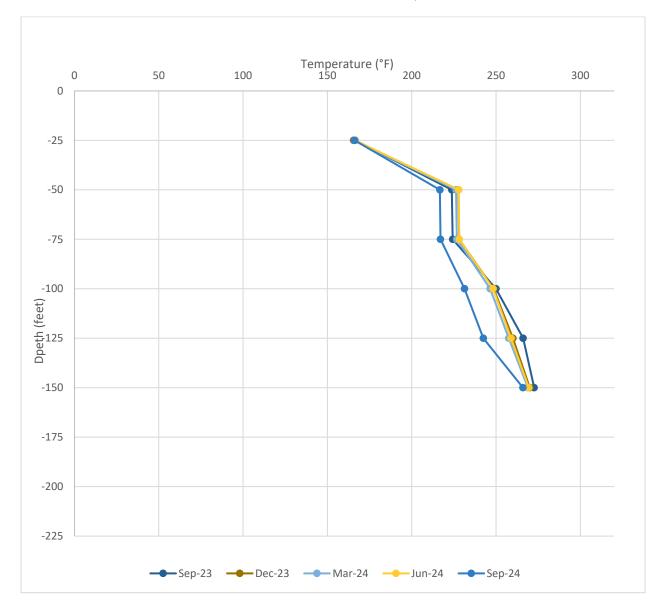
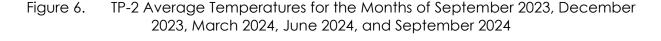



Figure 5. TP-1 Average Temperatures for the Months of September 2023, December 2023, March 2024, June 2024, and September 2024

Figure 6 shows daily average temperatures in Temperature Probe 2 (TP-2) during the months of September 2023, December 2023, March 2024, June 2024, and September 2024. Based on the data, temperatures have been consistent during the last year.

TP-2 was originally drilled to a depth of 160 feet. TP-2 did not record temperatures between August 15, 2023 and September 17, 2023 due to a dead battery. A replacement battery was installed in September of 2023 and TP-2 recording temperatures again on September 18, 2023.

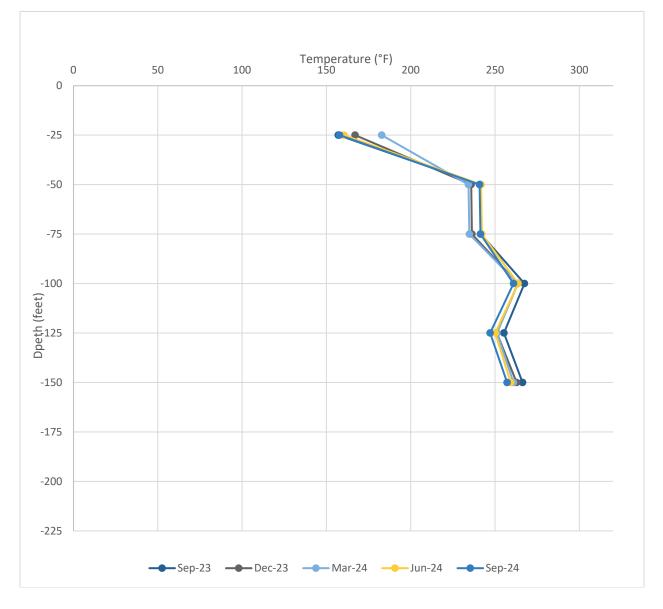
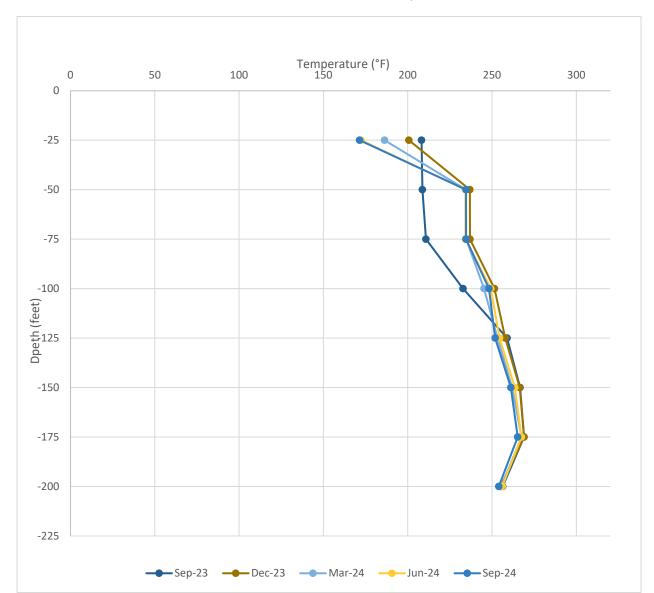
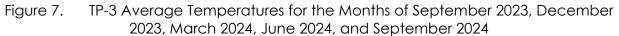
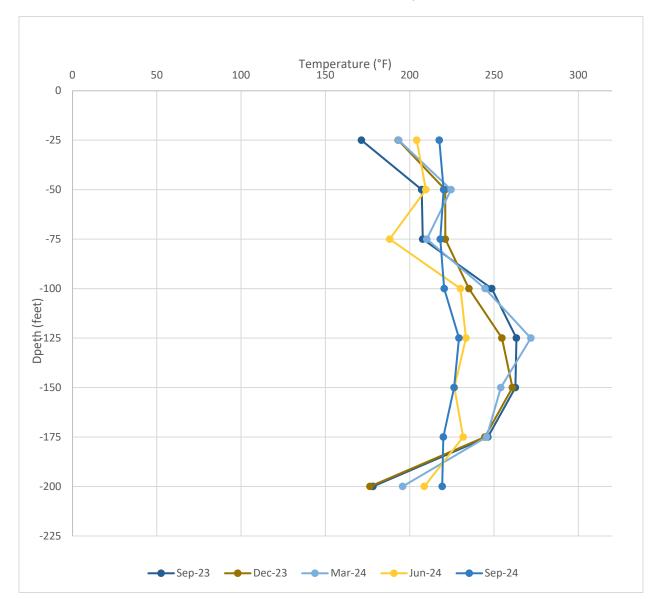



Figure 7 shows daily average temperatures in Temperature Probe 3 (TP-3) during the months of September 2023, December 2023, March 2024, June 2024, and September 2024. Based on the data, temperatures have been generally consistent below the 100-foot depth during the last year. Temperatures above the 100-foot depth dropped between June 2024 to September 2024.

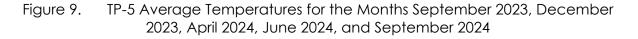

Figure 8 shows daily average temperatures in Temperature Probe 4 (TP-4) during the months of September 2023, December 2023, March 2024, June 2024, and September 2024. The temperatures during this time have been somewhat inconsistent, rising at some depths and lowering at others.

Figure 8. TP-4 Average Temperatures for the Months of September 2023, December 2023, March 2024, June 2024, and September 2024

Figure 9 shows daily average temperatures in Temperature Probe 5 (TP-5) during the months of September 2023, December 2023, April 2024, June 2024, and September 2024. Based on the data, temperatures have been consistent with fluctuations below the 100-foot depth. Between September 2023 and September 2024, temperatures dropped at the 125-foot, 150-foot, and 175-foot levels.

TP-5 was damaged in late October 2023 and the sensors at the 125-foot, 150-foot, 175-foot, and 200-foot depths stopped functioning. SCS completed troubleshooting during the month of November 2023 and the sensors returned to operation later that month. TP-5 appears to have stopped recording temperatures again during the latter half of February 2024 due to a dead battery. The battery for the temperature probe was replaced in early April 2024 and has been in operation since.

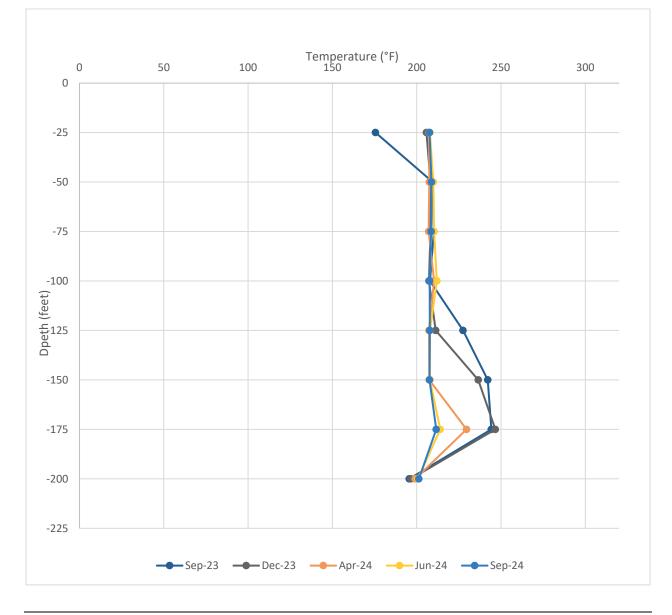


Figure 10 shows daily average temperatures in Temperature Probe 6 (TP-6) during the months of September 2023, December 2023, March 2024, June 2024, and September 2024. In June of 2024 the temperature sensor reported temperature at the 125-foot level exceeding 300 degrees. These readings correlated to decreases in temperature for the sensor at the 100-foot level. SCS believes that these readings are erroneous given the conflicting data from the sensor above. The City is working with SCS-RMC to identify the cause of these errors and is considering replacement of the sensors. In September of 2024 temperatures returned to the typical operating range based on historical data and have even shown some long-term decrease.

TP-6 was originally drilled to a depth of 208 feet and casing was installed to the full depth. During the installation of the installation of replacement sensors, a blockage within the casing prevented placement of sensors below the 125-foot depth.

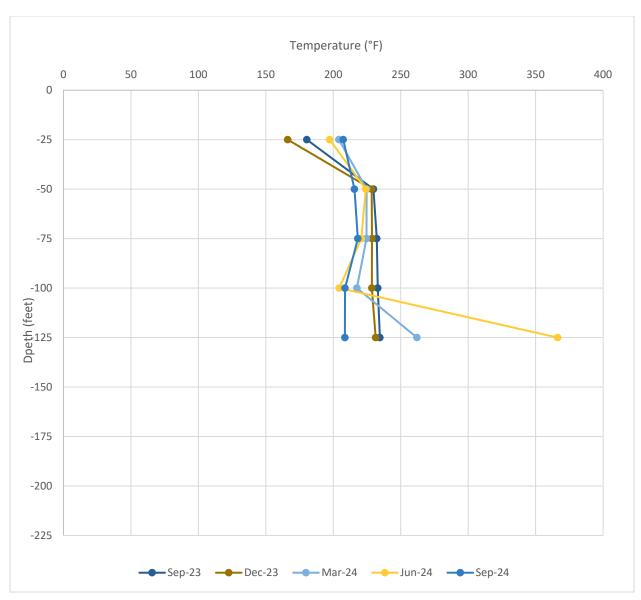
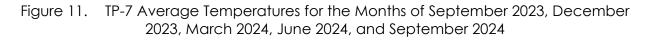



Figure 10. TP-6 Average Temperatures for the Months of September 2023, December 2023, March 2024, June 2024, and September 2024

Figure 11 shows daily average temperatures in Temperature Probe 7 (TP-7) during the months of September 2023, December 2023, March 2024, June 2024, and September 2024. Based on the data, temperatures have fluctuated greatly over the last year, with temperatures at depth dropping. Observations of adjacent wells indicate that there may be below grade settlement of waste occurring in this area.

TP-7 did not record temperatures between August 15, 2023 and September 17, 2023 due to a dead battery. A replacement battery was installed in September of 2023 and TP-7 recording temperatures again on September 18, 2023.

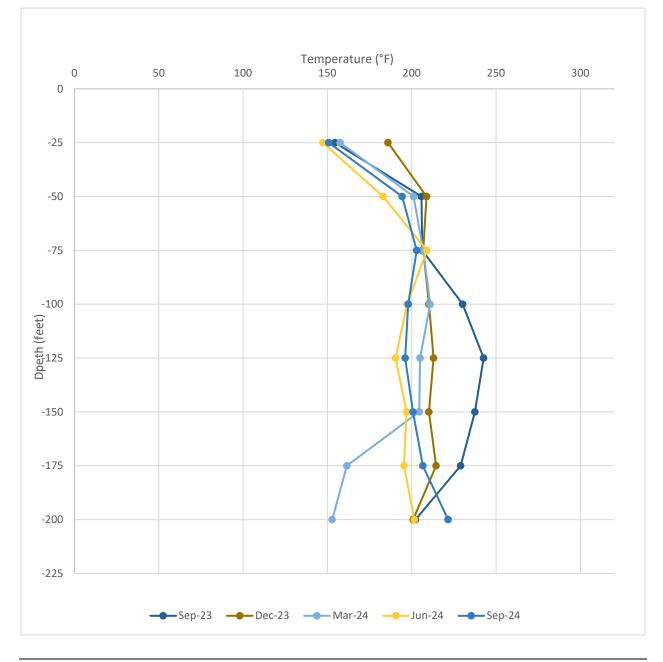
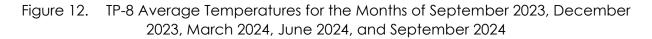



Figure 12 shows daily average temperatures in Temperature Probe 8 (TP-8) during the months of September 2023, December 2023, March 2024, June 2024, and September 2024. Based on the data, temperatures have been consistent over the past year.

TP-8 did not record temperatures from November 8, 2023 to November 27, 2023 due to a faulty battery which was replaced on November 28, 2023. Recordings from August 30, 2024 to September 6, 2024 became inconsistent and the cause is currently being investigated.

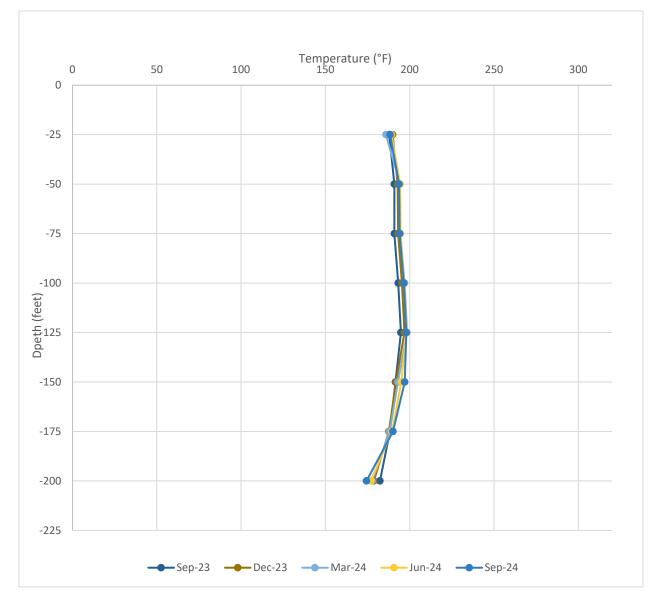
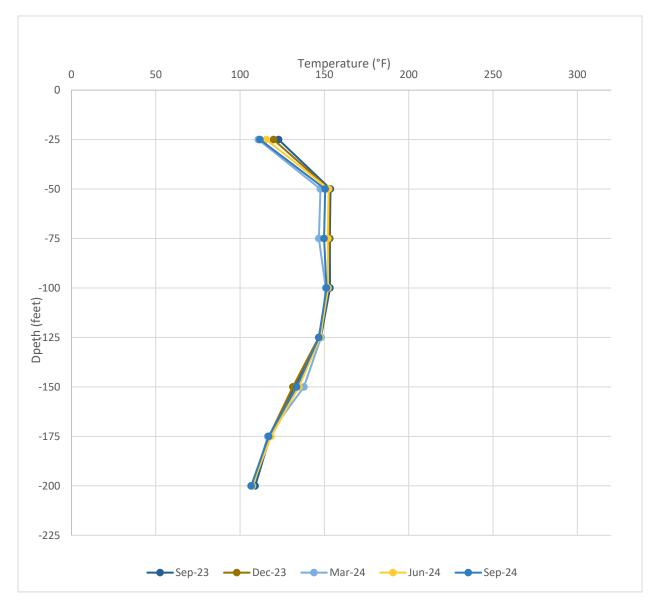
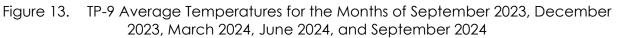
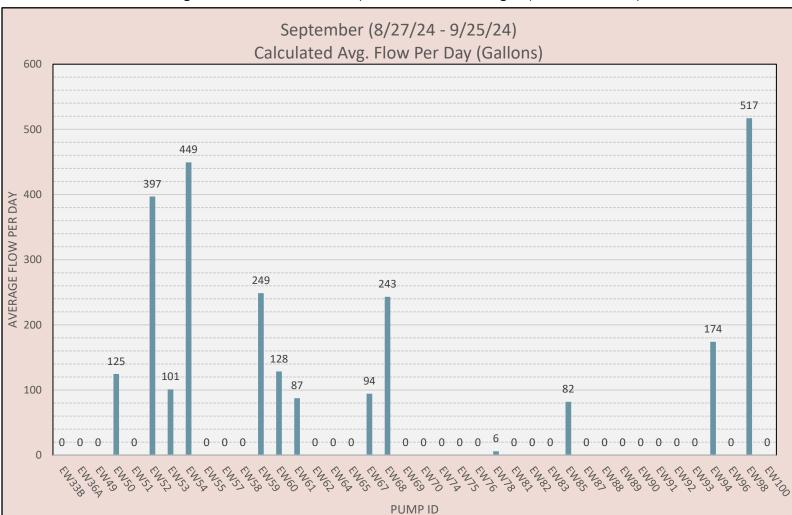




Figure 13 shows daily average temperatures in Temperature Probe 9 (TP-9) during the months of September 2023, December 2023, March 2024, June 2024, and September 2024. Based on the data, temperatures have been consistent during the last year.

This data indicates that temperatures within the landfill are generally stable and are typical of those observed at elevated temperature landfills (ETLFs). During the months of May 2023 through September 2023, substantial construction occurred at the landfill including deep dual extraction wells that may have impacted temperatures within the waste mass adjacent to the probes. While quantifying the effect of the construction of addition wells is difficult, changes in wellhead temperature have been observed in existing wells adjacent to newly installed wells. The temperatures recorded are substantially lower than those associated with landfill fires or other

combustion processes, which can exceed 1000°F. This further indicates that the elevated temperatures are due to sources other than combustion.


4.0 LEACHATE EXTRACTION AND MONITORING

The City is taking steps to improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals.

4.1 EXISTING SYSTEM OPTIMIZATION

During the monthly liquid depth measurement event, SCS also collected stroke counter data from the pumps installed in the GCCS extraction wells. These stroke counts were collected from 40 wells from August 27 – September 25, 2024.

Based on this data, SCS can estimate the number of gallons of liquid pumped from each well. SCS assumed that each stroke from a float-style pneumatic pump correlates to approximately 0.3 gallons of liquid removed from the well. Additionally, Blackhawk piston-style pumps remove approximately 0.11 gallons per stroke recorded. Estimates of the quantities of liquids removed from each well during September are shown in Figure 14.

Figure 14. Estimated September Dewatering Liquid Removal by Well

SCS-FS continues to implement a routine maintenance schedule for landfill gas liquids removal pumps. The pumps at wells EW-52, EW-54, and EW-98 removed the most liquid in September, according to the stroke count data. Several of the pumps that are not stroking, i.e. wells with no calculated flow in Figure 14, are either lodged in wells or are experiencing a buildup of solids that makes them inoperable. Several pumps have already been replaced and repaired due to experiencing significant wear and tear from ETLF conditions. Listed below are the documented repairs and replacements that occurred for landfill gas liquids removal pumps during the month of September:

- Week of September 2: Cleaning and maintenance of spare pumps and parts
- Week of September 9: Pump swapped in EW-53, EW-61, and EW-67; pulled and cleaned ARV-2; replaced check valve at EW-53; pump cleaning and maintenance
- Weeks of September 16 and 23: Pump swapped in EW-85 and EW-88 and replaced tritubing; pump removed from EW-55; pump cleaning and maintenance.

• Week of September 30: Blackhawk representative onsite and worked on the Blackhawk pumps installed in the well field, including pumps at EW-81, EW-36A, EW-82, EW-83, and EW-96 which were all restored to operational status

In some cases, low volumes of landfill liquids removed correlate to low measured liquid levels within the gas wells. This was true of well EW-69 in September 2024. When this condition is identified, pumps may be relocated to wells with consistently higher liquid levels.

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations. Pumps require servicing after relatively short intervals. The SWP No. 588 Landfill's float-style pumps are bump-checked daily, and Blackhawk piston drive rods are cleaned routinely each week.

Daily pump checks and maintenance of spare pumps will continue in the coming month along with pump replacements as needed. The City, along with SCS-FS, has determined that the best pumps for the landfill's current conditions are QED. The City placed an order for an additional eight pumps which are expected in October. The additional pumps will help with the rotation of field pumps needing maintenance and replacement.

4.1.1 Total LFG Liquids Removal

To improve the accuracy of the total landfill gas liquids flow rate, two flow meters were installed on the landfill gas liquid forcemains in December 2023. One flow meter was installed on the SWP No. 588 primary landfill gas liquid forcemain. The other was installed on the SWP No. 588 alternate landfill gas liquids forcemain, which also serves as the conduit for condensate from the temporary perennial flare and the SWP No. 588 stormwater pump. The SWP No. 588 alternate landfill gas liquids forcemain will also serve as the SWP No. 498 landfill gas liquids forcemain in the future.

The progress in landfill gas liquids removal over the past nine months is depicted in Figure 15. Given the improved accuracy of a flowmeter compared to flow estimates based on collected stroke counter data, SCS and the City will only use calculated flow rates to track individual pump performance going forward, not the total liquids removal from the system.

In September, the total liquids flow recorded by the SWP No. 588 primary landfill gas liquids flowmeter was 793,000 gallons. SCS estimates an approximate volume of 695,000 gallons of the liquid recorded by this flowmeter may be attributed to a manual flush of the forcemain pipes by SCS-FS during September, however, cleaning efforts noted in the previous section may also be contributing to the increase in total liquids removal.

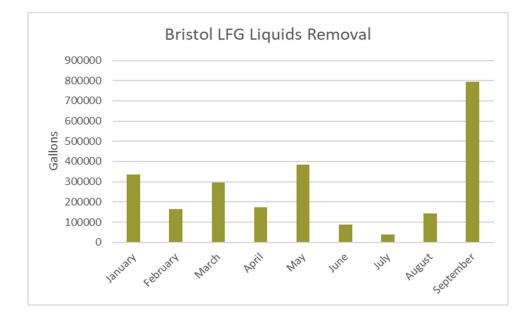


Figure 15. Estimated Volume of Liquids Removed from Landfill Gas Wells

4.2 SAMPLING AND ANALYSIS PLAN

On November 1, 2022, SCS submitted to VDEQ the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan for the Bristol Integrated Solid Waste Management Facility Solid Waste Permit No. 588 Landfill and the plan was subsequently revised on December 1, 2022. Refer to the November 2022 and December 2022 Compliance Reports for the SWP No. 588 Landfill for additional information.

4.2.1 Sample Collection

On September 11, 2024, SCS collected leachate samples from three Dual Phase LFG extraction wells (EW-52, EW-54, and EW-68). At the time of sample collection only oxidation-reduction potential and turbidity were measured and recorded as the meter was displaying an error for dissolved oxygen, pH, specific conductance, and temperature which is likely caused by the temperature being outside of the range of the meter. The associated field logs are included in **Appendix F.** SCS' field staff were not able to collect samples from select wells as summarized in **Table 6**.

Wells With Pumps	Wells Without Pumps
 Pump was not running at the time of monitoring for the following wells: EW-36A, EW-50, EW-59, EW-60, EW-61, EW-62, EW-69, EW-78, EW-85, and EW-98. 	 There was no pump at the time of the monitoring for the following wells: EW-58, EW-66, EW-72, EW-73, EW-74, EW-86, EW-91, EW-92, EW-93, EW-95, EW-97, and EW-99.
 Pump was not running at the time of monitoring for the following wells and the liquid level could not be gauged as well was under vacuum thus unsafe to open for water level: EW-33B, EW-49, EW-64, EW-65, EW-81, and EW-83. 	• There was no pump at the time of the monitoring for the following wells and the liquid level could not be gauged as well was under vacuum thus unsafe to open for water level: EW-63, EW-75,
 Air for pump operation was turned off at the time of monitoring for EW-51 and EW-53. 	 EW-77, EW-79, EW-80, and EW-84. There is no pump and the well appeared dry at the time of monitoring
 Pump was disconnected at the time of monitoring for EW-57, EW-67, EW-82, EW-87, EW-88, EW-90, EW-96, and EW-100. 	 for EW-56. There was no pump at the time of the monitoring for the following wells and liquid level could not be measured due
• Pump was not running for EW-76 and the liquid depths were not measured at the time of monitoring due to a potential blockage.	to potential blockage: EW-71.
• Pump was not running for EW-70 and the liquid depth was not measured at the time of monitoring as there was standing water around the well and not safely accessible.	
• Pump was turned off and forcemain valve was closed for EW-89.	
• Pump was not running, and the liquid depth was not measured at the time of monitoring for EW-94.	

Table 6.Summary Wells Unable to be Sampled for Leachate

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia and Pace Analytical Services, LLC (Pace) in Baton Rouge, Louisiana for analysis. Enthalpy's and Pace's Virginia Division of Consolidated Laboratory Services (VELAP) certification is provided on the certificates of analysis (COAs) included in **Appendix F**. The samples were analyzed for the parameters utilizing the analytical methods described in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan.

4.2.1 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for VOC analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analyses. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A summary of each of these is presented below:

- Method Blank The method blank is deionized water subjected to the same reagents and manipulations to which site samples are subjected. Positive results in the method blanks may indicate either contamination of the chemical reagents or the glassware and implements used to store or prepare the sample and resulting solutions.
- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis. MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.
- LCS These samples consist of distilled/deionized water injected with the parameters of interest for single parameter methods and selected parameters for multi-parameter methods according to the appropriate analytical method. LCS samples are prepared and analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are like the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

No trip or method blank detects were identified for the September 2024 monitoring event. The laboratory analysis report for the September 2024 monitoring event trip blank is included in **Appendix F**. The September 2024 monitoring event laboratory QA/QC reports, including the method blank results, are included in the COA in **Appendix F**.

4.2.2 Data Validation

To identify analytical data that may not represent valid results, data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection

Agency (EPA) guidance¹. Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with parameter detections less than five times that of the trip blank, field blank, and/or method blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Samples with common laboratory contaminant parameter detections less than 10 times that of the trip blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not validated as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis.

No leachate results were flagged with a "B" qualifier for the September 2024 monitoring event as no detections were identified in the trip or method blanks. The September 2024 detections flagged with a "J" qualifier are shown on **Table 6**.

4.2.3 Laboratory Analytical Results

The analytical results for the September 2024 leachate samples collected from extraction wells EW-52, EW-54, and EW-68 are summarized in **Table 7**. The associated COA is included in **Appendix F**. Parameter results from September 2024 and previous monitoring events (November 2022 – August 2024) are presented on a table in **Appendix F**. Time-series plots of each VOC for the wells that have historically been sampled are also included in **Appendix F**.

Well ID	EW-52	EW-54	EW-68		100
Parameter	September 2024 Concentration			LOD	LOQ
Ammonia as N (ma/l)		1440		73.1	100
Ammonia as N (mg/L)	2210		2290	146	200
Biological Oxygen Demand (mg/L)	ND	36100	27400	0.2	2
			26800	4000	4000
Chemical Oxygen Demand (mg/L)		55900		5000	5000
	78300			10000	10000
Nitrata as N (ma(1))	ND	2.42		0.25	1.25
Nitrate as N (mg/L)			ND	5	25
λ_{ii}	ND	ND		0.25	1.25
Nitrite as N (mg/L)			ND	5	25
		2090		50	125
Total Kjeldahl Nitrogen (mg/L)			2650	80	200
	3320			100	250
Total Recoverable Phenolics (mg/L)	39.6	31.6	31.6	3	5

Table 7. Monthly LFG-EW Leachate Monitoring Event Summary

¹ United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. November 2020.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. November 2020.

Well ID	EW-52	EW-54	EW-68	LOD			
Parameter	Septembe	eptember 2024 Concentration			LOQ		
SEMI-VOLATILE ORGANIC COMPOUND (ug/L)							
			ND	100	200		
Anthracene	ND	ND		200	400		
TOTAL METALS (mg/L)			1				
Arsenic	0.27	0.15	0.19	0.005	0.01		
Barium	1.34	1.33	3.65	0.01	0.05		
Cadmium	ND	ND	ND	0.001	0.01		
Chromium	0.948	0.541	0.228	0.004	0.01		
Copper	ND	ND	ND	0.003	0.01		
Lead	0.098	0.057	ND	0.01	0.01		
Mercury	0.00244	ND	ND	0.002	0.002		
Nickel	0.396	0.1138	0.08772	0.01	0.01		
Selenium	ND	ND	ND	0.0085	0.01		
Silver	ND	ND	ND	0.0006	0.01		
7:	0.212			0.0025	0.005		
Zinc		3.68	0.111	0.025	0.05		
VOLATILE FATTY ACIDS (mg/L)	·						
			2950	250			
Acetic Acid		5970		500			
	10400			1250			
Butyric Acid	3550	2060	670	250			
		2550	ND	250			
Lactic Acid	5510			1250			
Propionic Acid	2640	1690	1300	250			
Pyruvic Acid	ND	ND	ND	250			
VOLATILE ORGANIC COMPOUN	IDS (ug/L)						
2 Putanana (MEK)	19000	16600		150	500		
2-Butanone (MEK)			32200	1500	5000		
Acetone	59800	44500	69300	3500	5000		
Benzene	960	727	2710	20	50		
Ethylbenzene	46.5 J	44 J	192	20	50		
Tetrahydrofuran	2950	2730	6640	500	500		
Toluene	80	63.5	226	25	50		
Xylenes, Total	90.5 J	120 J	368	50	150		
= not applicable	LOQ = laboratory's Limit of Quantitation						

Table 7. Monthly LFG-EW Leachate Monitoring Event Summary

 J = Constituent was detected at a concentration above the laboratory's LOD but below the laboratory's LOQ. Concentration is estimated and not validated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter ND = Not Detected

ug/L = micrograms per liter

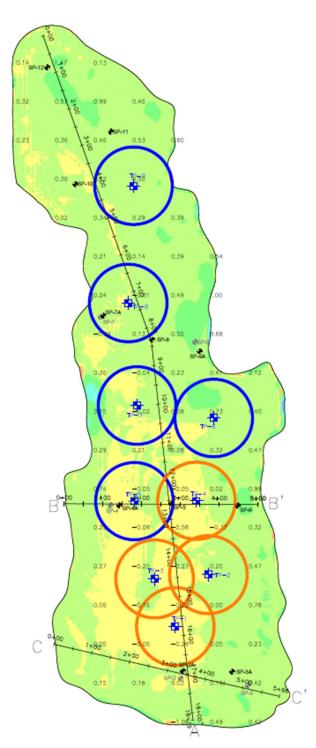
5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

On behalf of the City, SCS submitted a settlement monitoring and management plan to VDEQ on November 15, 2022. Refer to the 2022 November Monthly Compliance Report for the SWP No. 588 Landfill for additional information.

5.2 MONTHLY SURVEYS


5.2.1 Topographic Data Collection

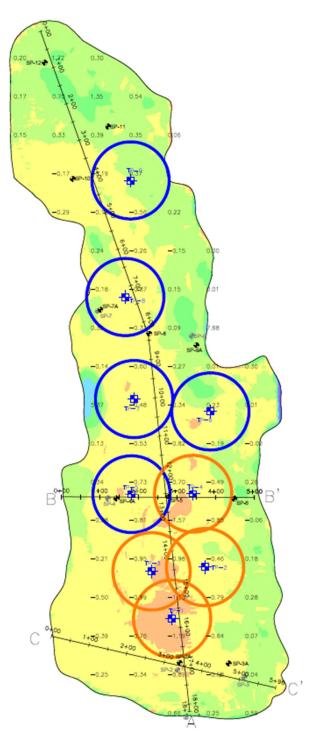
The City, through SCS, collected topographic data of the Solid Waste Permit No. 588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone). On September 23, 2024 the flight was completed and the topographic data collected. The topographic data collected is shown on Sheet 4 in Appendix E.

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on August 14, 2024. A drawing depicting the August 14, 2024 topography is included as Sheet 3 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, the data shows a fill of 10,200 cubic yards throughout the entire site. Fill may have been placed on the site to address differential settlement, in response to surface emissions monitoring results, and to provide access to landfill gas collection vertical wells. During that same time period, calculations indicate a "cut" value of approximately 1,100 cubic yards. Cut volumes are typically attributed to settlement. This resulted in a net volume increase of approximately 9,100 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 16. Areas in yellow, orange, and red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 5 in Appendix E.

Figure 16. 1-Month Elevation Change Map


The locations of in-waste temperature monitoring probes are also shown on Figure 16, Figure 17, and Figure 18. The circles around the probes in each of these figures are indicative of the average borehole temperature. The circles shown are offset from the probes for clarity only and do not necessarily indicate temperatures measured at locations away from the probe. Probes with a blue

circle around them typically have an average temperature less than 200°F across the full depth of the probe. Probes with an orange circle around them typically have an average temperature greater than 200°F and less than 250°F across the full depth of the probe. There were no probes measuring average temperatures greater than 250°F and less than 300°F during the month of September 2024.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation increase between the flyover dates was 0.32 feet.

SCS also compared the topographic data collected in September to the topographic data collected on June 25, 2024. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 8,300 cubic yards. During that same time period calculations indicate approximately 6,100 cubic yards of fill were placed on the landfill, for a net decrease in waste volume of 2,200 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 17. Areas in orange/yellow indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 6 in Appendix E.

Figure 17. 3-Month Elevation Change Map

Based on the area of the landfill and the net volume change, the average elevation decrease was approximately 0.1 feet.

SCS also compared the topographic data collected in September 2024 to the drone topographic data collected on September 15, 2023 by SCS. Based on a comparison of the topographic data

collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 66,400 cubic yards. During that same time period approximately 1,700 cubic yards of construction-related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction and ongoing maintenance (i.e. filling to compensate for settlement). This resulted in a net volume decrease of approximately 64,700 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 18. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 7 in Appendix E.

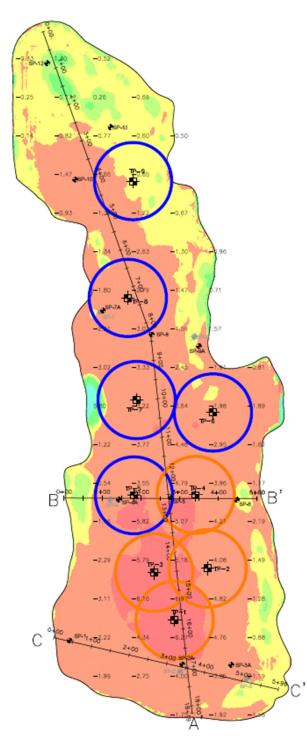


Figure 18. 1-Year Elevation Change Map

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 8 feet or more in some areas. These significant settlement values are typical of elevated temperature landfill conditions. The landfill perimeter exhibited an increase in elevation, likely due to soil placement associated with construction and/or ongoing maintenance of the

Sidewall Odor Mitigation System. There were variations in elevation associated with soil stockpiling operations.

Based on the landfill area and the net volume change, the average elevation decrease was approximately 2.3 feet.

SCS will collect topographic data covering the landfill surface again in October using photogrammetric methods via UAV. This data will be compared to the data collected in October 2023, July 2024, and September 2024.

5.2.2 Settlement Plate Surveys

On November 7, 2022 SCS field services installed 12 settlement plates on the Solid Waste Permit No. 588 landfill. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan. The tops of the PVC pipes were painted orange to improve visibility.

Five new settlement plates (SP-2A, SP-3A, SP-4A, SP-7A, and SP-9A) installed during June 2024 are intended to replace non-operational settlement plates. SP-9A was installed due to the existing SP-9's location in a low area which is prone to flooding after rain. The first elevation survey of the new settlement plates was completed on 7/10/24. They have replaced the decommissioned plates in the readings.

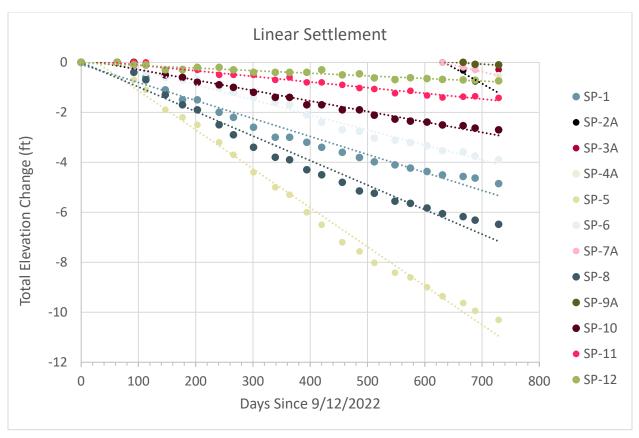
The settlement plate locations are depicted in Figure 19 and on Sheet 1 in Appendix E.

The locations of the settlement plates were surveyed on November 14, 2022. The settlement plates were surveyed again on December 13, 2022; January 3, 2023; February 6, 2023; March 8, 2023; April 3, 2023; May 11, 2023; June 5, 2023; July 10, 2023; August 17, 2023; September 11, 2023; October 11, 2023; November 6, 2023; December 12, 2023; January 11, 2024; February 6, 2024; March 13, 2024; April 9, 2024; May 8, 2024; June 4, 2024; July 10, 2024; July 31, 2024; and September 10, 2024. The surveyed coordinates² and elevation changes of the settlement plates are shown in Table 7.

² Settlement plate locations and coordinates are based on a local coordinate system.

Settlement Plate	Northing	Easting	Elevation on Sept. 10, 2024	Elevation Change Since July 31, 2024	Strain ³ Since July 31, 2024	Elevation Change Since Installation	Strain/Year
SP-1	3,397,887.4	10412080.4	1,829.6	-0.2	-0.3%	-4.9	-3.0%
SP-2A	3,397,822.5	10,412,370.5	1,795.0	-0.4	-0.3%	-0.8	-2.6%
SP-3A	3,397,819.9	10,412,498.3	1,779.9	-0.1	-0.1%	-0.3	-0.9%
SP-4A	3,398,247.1	10,412,206.3	1,804.6	-0.3	-0.2%	-0.5	-1.8%
SP-5	3,398,255.8	10,412,339.4	1,790.5	-0.4	-0.1%	-10.3	-1.3%
SP-6	3,398,248.8	10,412,510.1	1,773.8	-0.1	-0.1%	-3.9	-0.9%
SP-7A	3,398,732.0	10,412,157.7	1,823.1	-0.1	-0.1%	-0.3	-0.7%
SP-8	3,398,678.3	10,412,290.9	1,800.9	-0.2	-0.1%	-6.5	-0.6%
SP-9A	3,398,644.2	10,412,416.2	1,788.7	0.0	0.0%	-0.1	-0.2%
SP-10	3,399,080.2	10,412,093.2	1,837.5	-0.1	0.0%	-2.7	-0.2%
SP-11	3,399,216.3	10,412,183.9	1,814.9	-0.1	0.0%	-1.4	-0.2%
SP-12	3,399,381.7	10,412,019.7	1,809.9	0.0	0.0%	-0.7	-0.2%

Table 8. Elevation and Strain Data at Settlement Plate Locations


Prior to April 2024, the City's in-house surveyor read the settlement plate elevations. Starting April 2024, the settlement plate elevations were measured by FEI Civil Engineers and Land Surveyors.

Settlement Plates 1, 2A, and 4A demonstrated larger settlements than at other locations. Settlement Plates 1, 2A and 4A are located in the southern end of the landfill. This area is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions.

The change in elevation at the rest of the settlement plates was lower and more representative of typical settlement at municipal landfills with waste of similar depth.

Figure 20 shows the changes in elevation of select settlement plates over time. Best-fit lines for these changes in elevation are also shown on the graph. For the purposes of recording data in this figure, times are measured in days since the landfill was required to stop accepting waste.

³ Strain is defined as the change in elevation divided by the estimated waste depth.

Figure 20. Elevation Change of Select Settlement Plates Over Time

The settlement plates will be surveyed again during the month of October 2024. The elevations surveyed will be compared to the elevations surveyed the previous months.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City is taking steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below outline the steps taken by the City.

6.1 INTERMEDIATE COVER INSTALLATION

The City completed hauling and placement of a 12-inch-thick intermediate cover across the entire landfill prior to October 10, 2022. The cover was placed in accordance with 9VAC20-81-140(B)(1)(d). SCS coordinated with the City to dig a series of test holes to verify cover thickness in select locations. Details of these verifications were discussed in the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill.

6.2 EVOH COVER SYSTEM DESIGN

On December 4, 2023, SCS submitted a revised stormwater management plan to submit to VDEQ, including revised drawings and calculations. The revised SWMP includes the three quarry basins,

additional stormwater pumps, new stormwater force mains, and the preliminary layout of the new electrical infrastructure along the quarry rim.

On December 18, 2023 SCS and VDEQ met to discuss concerns about the impact of settlement on the proposed EVOH Cover System. The City discussed the appropriate schedule for EVOH deployment with VDEQ given the significant settlement the site is experiencing. An amendment to the Consent Decree was subsequently issued which requires the EVOH deployment no later than December 1, 2026. The amended Consent Decree also requires regular settlement assessments, and the EVOH deployment may occur earlier if settlement rates appear acceptable. The first of these assessments was submitted to VDEQ on April 11, 2024. The most recent assessment was completed on July 15, 2024. The next assessment will be submitted on or before October 11, 2024.

6.3 EVOH COVER SYSTEM PROCUREMENT

Drawings used for the purposes of bidding, procurement and construction of the EVOH cover system will generally conform to the layout and details in the drawings described in section 6.2. SCS also prepared and submitted to VDEQ a specification for the EVOH geomembrane on January 30, 2023 based upon industry standards and discussions with material manufacturers. This specification and drawing set represent the first steps in the procurement process. SCS and the City have coordinated with potential suppliers to specify a product that is not currently anticipated to have long lead times. SCS has received a pro-forma data sheet from one manufacturer which is preparing a customized EVOH product for the No. 588 landfill.

6.4 EVOH COVER SYSTEM INSTALLATION

SCS will prepare regular settlement assessments for VDEQ per the amended Consent Decree. EVOH deployment will commence, with VDEQ's concurrence, if the latest assessment shows acceptable settlement rates. The amended consent decree requires installation of the EVOH cover system by December 1, 2026.

7.0 STORMWATER MANAGEMENT

The City is taking steps to implement a stormwater management plan at the landfill. The sections below outline the steps taken by the City.

7.1 STORMWATER MANAGEMENT PLAN DEVELOPMENT

The initial stormwater management plan (SWMP) was submitted to VDEQ on April 28, 2023.

The revised SWMP was submitted to VDEQ on December 4, 2023. The plan proposes a stormwater pumping system to convey stormwater collected atop the EVOH cover system to an existing discharge point permitted under VPDES permit VAR050053. The proposed system includes the construction of three stormwater collection basins in the quarry and the installation of pairs of skid-mounted stormwater pumps. The stormwater will be conveyed by force main pipes to the existing stormwater basins located west of the quarry.

The plan proposes modifications to the existing stormwater basins west of the quarry to achieve discharge quantity targets. Modifications include increasing the basin depths and installing new outlet riser structures.

7.2 STORMWATER MANAGEMENT BASIN DESIGN AND CONSTRUCTION

The landfill surface will be regraded to form the SWM basins proposed in the stormwater management plan. The earthwork will be completed as the first stage of the interim EVOH cover system installation project. A revised landfill gas management plan is being prepared to facilitate the regrading of the landfill, which will affect existing landfill gas infrastructure. The landfill gas system will be modified to accommodate the earthwork.

Attention is being given to settlement concerns in the vicinity of the stormwater basin or basins. Calculations provided to VDEQ on June 23, 2023 demonstrate the weight of the ponded water should not cause excessive settlement relative to ongoing settlement observed within the quarry. Including additional stormwater basins within the quarry will distribute the weight of ponded water over a wider area relative to the single stormwater basin design.

7.3 STORMWATER MANAGEMENT PLAN IMPLEMENTATION

The stormwater management plan design drawings are being incorporated into the overall construction drawings for the interim EVOH cover system. The interim EVOH cover system installation and stormwater management features will be bid and constructed as one project to facilitate simultaneous progress and completion.

As an interim measure, the City is currently operating a temporary stormwater pump to remove stormwater from the landfill surface.

7.4 LONG-TERM STORMWATER CONTROL AND REMOVAL

The stormwater management plan is designed with resiliency and redundancy to promote long-term operation. Refer to previously submitted compliance reports for details of long-term stormwater control and removal.

7.5 STORMWATER MONITORING

Stormwater monitoring will commence upon initial discharge of stormwater from the quarry stormwater pumping system. As stated in the stormwater management plan drawings, the stormwater shall be monitored in accordance with the facility's VPDES general permit for discharge of stormwater associated with industrial activity. Additional requirements include collecting additional stormwater samples at the discharge pipes for the quarry stormwater pumping system. The stormwater from the quarry basins will be sampled on a monthly basis prior to discharge to the upper stormwater ponds. The Operations Manual will be revised to include these additional requirements.

If the stormwater becomes contaminated or sampling indicates contamination above discharge limits, the stormwater will be diverted to the sanitary sewer system. The diversion to the sanitary sewer system will continue until the source of contamination is identified and resolved. The stormwater discharge pipe alignment will pass adjacent to the existing sanitary sewer manhole. A tee with isolation valves will be used to direct the stormwater to the upper basins or the sanitary sewer manhole.

Stormwater currently pumped from the surface of the landfill is discharged to the sanitary sewer and is sampled with other wastewater discharges in accordance with the facility's industrial wastewater discharge permit.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit No. 588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

SCS submitted the Monitoring, Maintenance, and Repair Plan to VDEQ for the SWP No. 588 landfill on December 30, 2022. Refer to the December 2022 Monthly Compliance Report for the SWP No. 588 Landfill for additional information. The City has taken steps to implement the plan that were detailed in the March 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

8.3 MONTHLY COMPLIANCE REPORTS

As described in the introduction this report is intended to provide comprehensive updates regarding progress towards completion of each item described in Appendix A of the Consent Decree between the City and VDEQ.

8.4 COMMUNITY OUTREACH PROGRAM

- **Ongoing basis:** Four (4) posts on each the BristalVALandfill.org site and the existing City of Bristol Landfill Notifications and Information page covering important updates including:
 - Progress updates related to remediation efforts and normal maintenance activities at the Quarry Landfill
 - Updates included activities at the quarry landfill such as routine cleaning and rebuilding pumps, publication of a new odor reporting form, minor system adjustments for efficiency, and work to determine the cause of now identified two small sub-surface reactions that previously occurred.
- Weekly updates on landing page on Bristolvalandfill.org titled "Air Sampling and Air Monitoring" that includes a summary of the air sampling and monitoring being conducted by Bristol, VA around the quarry landfill.
 - Website now includes weekly air monitoring reports starting with May 15th, 2023 and running through May 19th of 2024. More reports will be posted as the transition to a new air monitoring system is being implemented.
- E-mail communication sent to the list of members of the public signed up through the Bristol, VA website, the BristolVALandfill.org website, or at subsequent Open Houses to receive information via e-mail
 - E-mails sent included weekly remediation progress update and links to website updates and latest news articles.

Appendix A

Surface Emissions Monitoring Summary Letters

SCS ENGINEERS

September 11, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – September 5, 2024 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on September 5, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Mr. Jonathan Chapman September 11, 2024 Page 2

Table 1.Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	167
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	67
Number of Exceedances	4
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	4

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	9/5/24 Event	9/5/24 Event Result	Comments
EW-79	7/22/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-63	8/1/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-64	8/1/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-77	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-33B	8/7/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
TP-9	8/7/24	1-Month Retest	Failed	Requires 1-Month Follow Up
EW-91	8/15/24	N/A	Passed	Requires 1-Month Retest
Tag 61	8/21/24	2 nd 10-Day Retest	Passed	Requires 1-Month Retest
EW-65	8/21/24	2 nd 10-Day Retest	Passed	Requires 1-Month Retest

Table 2.Ongoing Weekly SEM Exceedances

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylin R Aichlin

Wylie R Hicklin Associate Professional SCS Engineers

LSN/WRH

- cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

	WEEKLY MONITORING EVENT - SEPTEMBER 5, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA							
	Methane		GPS Co	oordinates				
ID #	Concentration	Compliance	Lat.	Long.	Comments			
1	0.3 PPM	ОК			Start Serpentine Route			
2	0.0 PPM	OK						
3	0.0 PPM	OK						
4	0.1 PPM	OK						
5	0.0 PPM	OK						
6	0.0 PPM	OK						
7	0.0 PPM	OK						
8	3.1 PPM	OK						
9	0.6 PPM	OK						
10	1.9 PPM	OK						
11	3.1 PPM	OK						
12	3.6 PPM	OK						
13	3.1 PPM	OK						
14	4.2 PPM	OK						
15	3.3 PPM	OK						
16	8.8 PPM	OK						
17	16.1 PPM	OK						
18	1.0 PPM	OK						
19	0.9 PPM	OK						
20	1.0 PPM	OK						
21	0.7 PPM	OK						
22	2.0 PPM	OK						
23	0.1 PPM	OK						
24	0.1 PPM	OK						
25	0.0 PPM	OK						
26	0.2 PPM	OK						
27	0.0 PPM	OK						
28	0.2 PPM	OK						
29	0.0 PPM	OK						
30	21.7 PPM	OK						
31	95.1 PPM	OK						
31	0.3 PPM	OK						
32								
	0.0 PPM	OK						
34	79.6 PPM	OK						
35	6.2 PPM	OK						
36	5.3 PPM	OK						
37	13.5 PPM	OK						
38	28.5 PPM	OK						
39	75.7 PPM	OK						
40	144.0 PPM	OK						
41	98.6 PPM	OK						
42	0.6 PPM	OK						
43	0.6 PPM	OK						
44	0.0 PPM	OK						
45	0.0 PPM	OK						
46	1.2 PPM	OK						
47	2.1 PPM	OK						

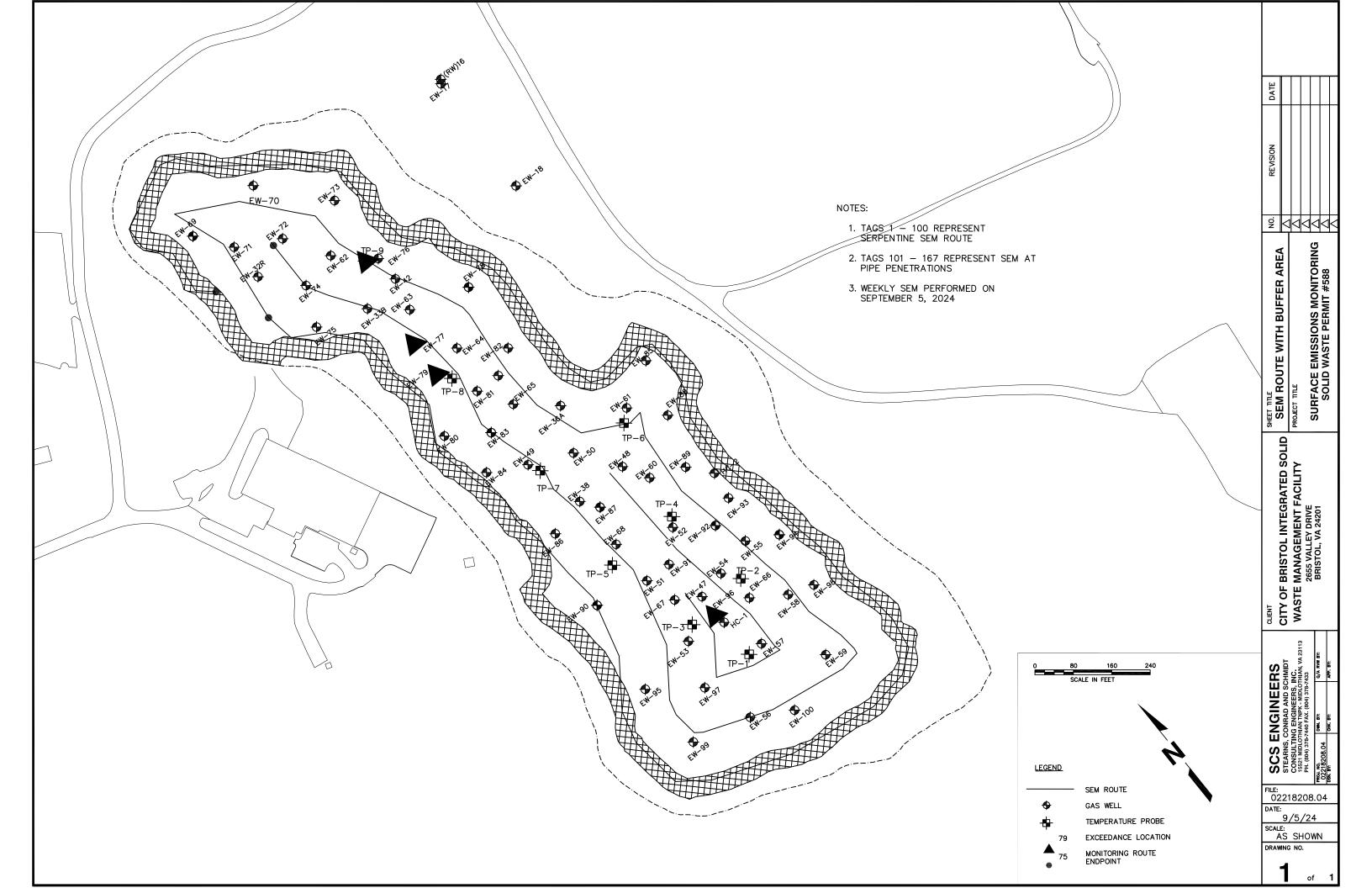

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - SEPTEMBER 5, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA						
	Methane		GPS Co	ordinates		
ID #	Concentration	Compliance	Lat.	Long.	Comments	
48	1.3 PPM	OK				
49	2.5 PPM	OK				
50	116.0 PPM	OK				
51	2.1 PPM	OK				
52	6.4 PPM	OK				
53	459.0 PPM	OK				
54	16.3 PPM	OK				
55	2.1 PPM	OK				
56	1.4 PPM	OK				
57	2.4 PPM	OK				
58	3.7 PPM	OK				
50 59	0.3 PPM	OK				
60	0.0 PPM	OK				
61		OK				
	0.0 PPM					
62 ()	0.5 PPM	OK				
63	223.0 PPM	OK				
64	0.8 PPM	OK				
65	22.6 PPM	OK				
66	0.0 PPM	OK				
67	0.0 PPM	OK				
68	4.3 PPM	OK				
69	0.0 PPM	OK				
70	1.0 PPM	OK				
71	1.9 PPM	OK				
72	5.4 PPM	OK				
73	2.8 PPM	OK				
74	0.3 PPM	OK				
75	5.0 PPM	OK				
76	174.0 PPM	OK				
77	26.3 PPM	OK				
78	16.6 PPM	OK				
79	19.1 PPM	OK				
80	2.8 PPM	OK				
81	0.0 PPM	OK				
82	0.0 PPM	OK				
83	0.5 PPM	OK				
84	2.1 PPM	OK				
85	3.7 PPM	OK				
86	342.0 PPM	OK				
87	89.0 PPM	OK				
88	58.4 PPM	OK				
89	39.7 PPM	OK				
90 01	26.1 PPM	OK				
91 92	7.3 PPM	OK				
92 02	0.7 PPM	OK				
93 94	1.2 PPM 60.5 PPM	OK OK				

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - SEPTEMBER 5, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
95	18.8 PPM	OK			
96	8.0 PPM	OK			
97	6.9 PPM	OK			
98	0.6 PPM	OK			
99	0.6 PPM	OK			
100	0.9 PPM	OK			End Serpentine Route
101	0.0 PPM	OK			EW-69
102	0.3 PPM	OK			EW-71
103	0.0 PPM	OK			EW-32R
104	0.0 PPM	OK			EW-72
105	0.0 PPM	OK			EW-62
106	0.2 PPM	OK			EW-74
107	40.8 PPM	OK			EW-75
108	77.4 PPM	OK			EW-33B
109	47.8 PPM	OK			EW-63
110	8362.0 PPM	HIGH_ALRM	36.60072	-82.14819	EW-77
111	227.0 PPM	OK			EW-64
112	1892.0 PPM	HIGH_ALRM	36.60051	-82.14819	EW-79
113	18.5 PPM	OK			TP-8
114	18.0 PPM	OK			EW-81
115	29.5 PPM	OK			EW-80
116	55.8 PPM	ОК			EW-83
117	255.0 PPM	ОК			EW-84
118	2.9 PPM	OK			EW-49
119	279.0 PPM	OK			TP-7
120	0.6 PPM	OK			EW-50
121	0.8 PPM	OK			TP-6
122	1.0 PPM	OK			EW-61
123	169.0 PPM	OK			EW-60
124	39.9 PPM	OK			EW-48
125	2.5 PPM	OK			EW-87
126	0.5 PPM	OK			EW-38
127	10.8 PPM	OK			EW-86
128	175.0 PPM	OK			EW-90
129	3.4 PPM	OK			TP-5
130	2.5 PPM	OK			EW-68
131	105.0 PPM	OK			TP-4
132	182.0 PPM	OK			EW-52
133	0.0 PPM	OK			EW-92
134	1.9 PPM	OK			EW-55
135	93.9 PPM	OK			EW-54
136	12.3 PPM	OK			EW-47
137	2.5 PPM	OK			EW-67
138	21.5 PPM	OK			EW-91
139	171.0 PPM	OK			EW-51
140	4.6 PPM	OK			EW-53

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - SEPTEMBER 5, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates		
ID #	Concentration	Compliance	Lat.	Long.	Comments	
141	1.7 PPM	ОК			TP-3	
142	653.0 PPM	HIGH_ALRM	36.59845	-82.14763	EW-96	
143	2.6 PPM	OK			TP-2	
144	30.2 PPM	OK			EW-66	
145	1.3 PPM	OK			EW-58	
146	0.0 PPM	OK			EW-98	
147	0.0 PPM	OK			EW-94	
148	0.0 PPM	OK			EW-93	
149	0.0 PPM	OK			EW-59	
150	6.8 PPM	OK			EW-57	
151	0.2 PPM	OK			TP-1	
152	243.0 PPM	OK			EW-100	
153	89.9 PPM	OK			EW-56	
154	3.7 PPM	OK			EW-99	
155	0.3 PPM	OK			EW-97	
156	26.0 PPM	OK			EW-95	
157	0.2 PPM	OK			EW-89	
158	1.0 PPM	OK			EW-88	
159	0.6 PPM	OK			EW-85	
160	0.5 PPM	OK			EW-36A	
161	20.6 PPM	OK			EW-82	
162	337.0 PPM	OK			EW-65	
163	2.7 PPM	OK			EW-78	
164	12.3 PPM	OK			EW-42	
165	199.0 PPM	OK			EW-76	
166	5318.0 PPM	HIGH_ALRM	36.60127	-82.14811	TP-9	
167	17.5 PPM	OK			EW-73	
	Number of loc	ations sampled:	167			
	Number of excee		4			
Points 101 throu	n 100 represent serpent ugh 167 represent SEM	ine SEM route. at Pipe Penetratic				
Sampling Calib	tions: Sunny, 70°F Winc ration: Methane - 500 p	opm, Zero Air - 0.0				
9/5/2024	9:38 ZERO	0.1	PPM			
9/5/2024	9:41 SPAN	503.0	PPM			
7/3/2024						
3 <u>ackground Rec</u> 9/5/2024	ading: 9:44 Upwind	1.1	PPM			

SCS ENGINEERS

October 2, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – September 23, 2024 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on September 23, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Mo	onitoring
--	-----------

Description	Quantity
Number of Points Sampled	166
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	66
Number of Exceedances	8
Number of Serpentine Exceedances	1
Number of Pipe Penetration Exceedances	7

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

The Facility continued to observe an increase of exceedance points during this weekly event, likely due to reduced vacuum at several of the vertical extraction wells. This will be addressed by increasing vacuum at these locations.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	9/23/24 Event	9/23/24 Event Result	Comments
EW-79	7/22/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-63	8/1/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-64	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-77	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-33B	8/7/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-65	8/21/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
Tag 61	8/21/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	9/9/24	2 nd 10-Day Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-96	9/5/24	N/A	Passed	Requires 1-Month Retest
EW-75	9/9/24	N/A	Failed	Requires 2 nd 10-Day Retest
EW-80	9/16/24	10-Day Retest	Passed	Requires 1-Month Retest

Table 2.Ongoing Weekly SEM Exceedances

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

William J. Fabrie

William J. Fabrie Staff Professional SCS Engineers

LSN/WJF

- cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - SEPTEMBER 23, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	71.7 PPM	OK			Start Serpentine Route
2	7.6 PPM	OK			
3	6.4 PPM	OK			
4	4.0 PPM	OK			
5	2.7 PPM	OK			
6	1.6 PPM	OK			
7	3.9 PPM	OK			
8	2.0 PPM	OK			
9	3.3 PPM	OK			
10	2.5 PPM	OK			
11	2.3 PPM	OK			
12	5.9 PPM	OK			
13	3.2 PPM	OK			
14	3.0 PPM	OK			
15	1.8 PPM	OK			
16	3.9 PPM	OK			
17	3.3 PPM	OK			
18	1.1 PPM	OK			
19	2.5 PPM	OK			
20	2.5 PPM	OK			
20	1.5 PPM	OK			
21	2.4 PPM	OK			
22		OK			
23	1.0 PPM 1.2 PPM	OK			
24		OK			
25	1.7 PPM 1.2 PPM	OK			
27	0.9 PPM	OK			
28	1.1 PPM	OK			
29	1.1 PPM	OK			
30	3.3 PPM	OK			
31	9.7 PPM	OK			
32	107.0 PPM	OK			
33	39.1 PPM	OK			
34	7.7 PPM	OK			
35	224.0 PPM	OK			
36	116.0 PPM	OK			
37	38.3 PPM	OK			
38	2.4 PPM	OK			
39	2.7 PPM	OK			
40	1.5 PPM	OK			
41	2.0 PPM	OK			
42	10.8 PPM	OK			
43	15.1 PPM	OK			
44	9.6 PPM	OK			
45	8.2 PPM	OK			
46	130.0 PPM	OK			
47	8.7 PPM	OK			

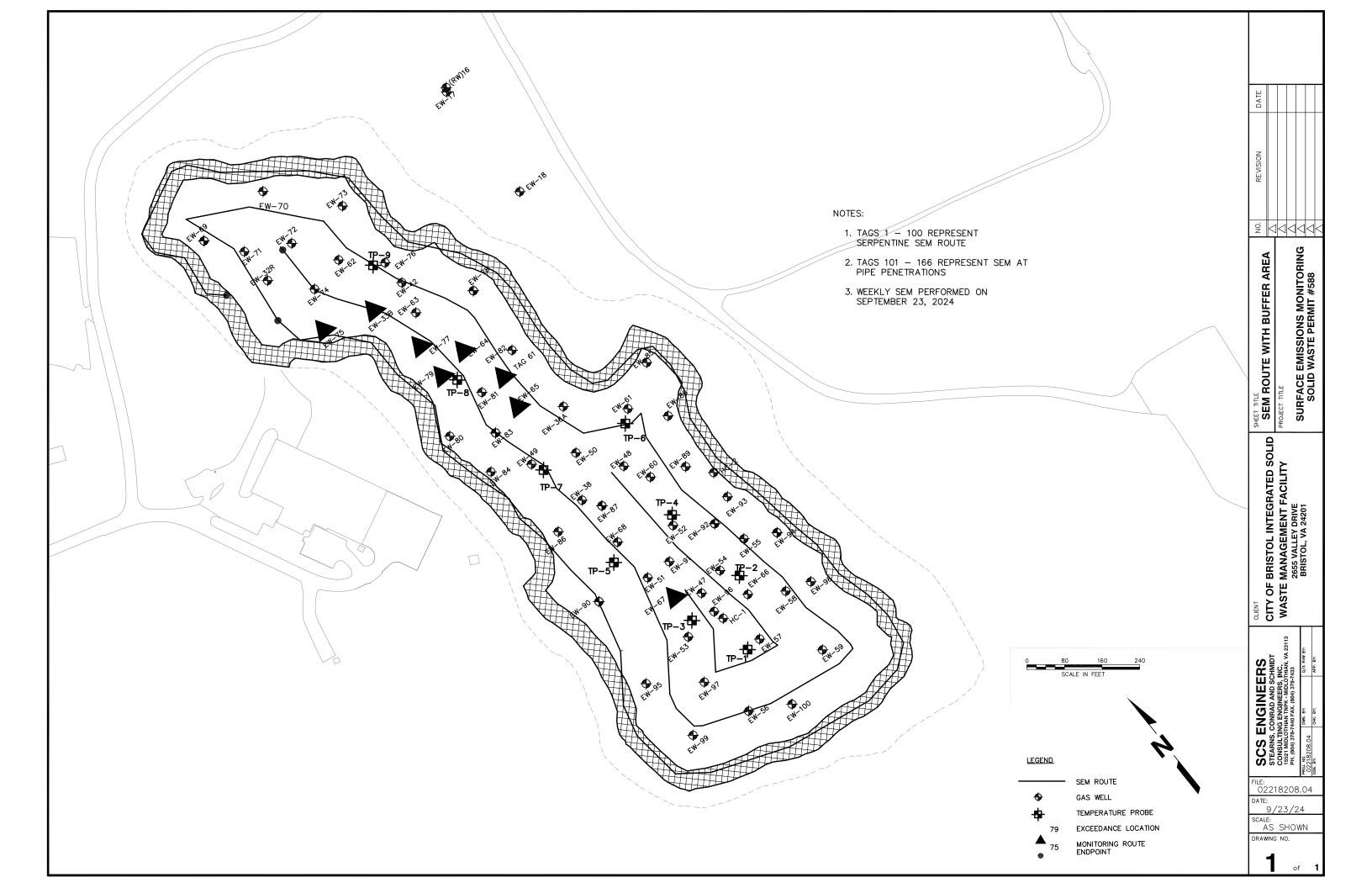

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - SEPTEMBER 23, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA							
Methane GPS Coordinates							
ID #	Concentration	Compliance	Lat.	Long.	Comments		
48	12.6 PPM	OK					
49	3.8 PPM	OK					
50	0.3 PPM	OK					
51	1.3 PPM	OK					
52	1.8 PPM	OK					
53	5.8 PPM	OK					
54	0.4 PPM	OK					
55	8.9 PPM	OK					
56	4.8 PPM	OK					
57	4.1 PPM	OK					
57	14.5 PPM	OK					
59	17.4 PPM	OK					
60	62.3 PPM	OK		001/705			
61	655.0 PPM	HIGH_ALRM	36.60029	-82.14785			
62	14.2 PPM	OK					
63	4.2 PPM	OK					
64	0.4 PPM	OK					
65	2.5 PPM	OK					
66	0.6 PPM	OK					
67	0.2 PPM	OK					
68	0.1 PPM	OK					
69	0.3 PPM	OK					
70	0.0 PPM	OK					
71	0.4 PPM	OK					
72	40.8 PPM	OK					
73	1.3 PPM	OK					
74	1.5 PPM	OK					
75	1.2 PPM	OK					
76	39.3 PPM	OK					
77 79	8.6 PPM	OK					
78 70	35.6 PPM	OK					
79 80	6.5 PPM	OK					
80	3.4 PPM	OK					
81	0.6 PPM	OK					
82	0.4 PPM	OK					
83	0.4 PPM	OK					
84	0.8 PPM	OK					
85	0.4 PPM	OK					
86	1.8 PPM	OK					
87	1.0 PPM	OK					
88	6.3 PPM	OK					
89	6.1 PPM	OK					
90	134.0 PPM	OK					
91	0.9 PPM	OK					
92	88.8 PPM	OK					
93	15.5 PPM	OK					
93 94	2.8 PPM	OK					

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - SEPTEMBER 23, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
95	1.4 PPM	ОК			
96	0.2 PPM	OK			
97	0.3 PPM	OK			
98	3.6 PPM	OK			
99	1.9 PPM	OK			
100	29.8 PPM	OK			End Serpentine Route
101	72.5 PPM	ОК			EW-52
102	15.0 PPM	OK			TP-4
103	4.8 PPM	OK			EW-60
104	31.1 PPM	OK			EW-48
105	2.6 PPM	OK			TP-6
106	0.6 PPM	OK			EW-61
107	0.0 PPM	OK			EW-50
108	6266.0 PPM	HIGH_ALRM	36.59873	-82.14775	EW-67
109	4.8 PPM	OK			EW-47
110	4.2 PPM	OK			EW-54
111	0.1 PPM	OK			EW-92
112	13.1 PPM	OK			EW-91
113	0.0 PPM	OK			EW-96
114	0.0 PPM	OK			TP-2
115	328.0 PPM	OK			EW-66
116	0.0 PPM	OK			EW-58
117	9.8 PPM	OK			EW-57
118	51.0 PPM	OK			TP-1
119	0.5 PPM	OK			EW-59
120	11.3 PPM	OK			EW-100
121	160.0 PPM	OK			EW-56
122	1.6 PPM	OK			EW-97
123	256.0 PPM	OK			EW-53
124	3.5 PPM	OK			TP-3
125	284.0 PPM	OK			EW-51
126	1.1 PPM	OK			TP-5
127	6.5 PPM	OK			EW-68
128	11.3 PPM	OK			EW-87
129	45.3 PPM	OK			EW-38
130	181.0 PPM	OK			TP-7
131	0.6 PPM	OK			EW-49
132	0.8 PPM	OK			EW-83
133	1847.0 PPM	HIGH_ALRM	36.60017	-82.14787	EW-65
134	15.1 PPM	ŌK			EW-81
135	5.6 PPM	OK			TP-8
136	1628.0 PPM	HIGH_ALRM	36.60056	-82.14796	EW-64
137	208.0 PPM	ŌK			EW-63
138	9.9 PPM	OK			EW-42
139	12.3 PPM	OK			EW-76

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - SEPTEMBER 23, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
140	17.6 PPM	ОК			TP-9
141	1.1 PPM	OK			EW-62
142	5.2 PPM	OK			EW-74
143	2.3 PPM	OK			EW-32R
144	0.3 PPM	OK			EW-69
145	1.9 PPM	OK			EW-71
146	4.6 PPM	OK			EW-72
147	3.3 PPM	OK			EW-73
148	10.6 PPM	OK			EW-78
149	229.0 PPM	OK			EW-82
150	1.0 PPM	OK			EW-36A
151	0.0 PPM	OK			EW-85
152	1.5 PPM	OK			EW-88
153	1.2 PPM	OK			EW-89
154	0.2 PPM	OK			EW-93
155	1.8 PPM	OK			EW-94
156	0.0 PPM	OK			EW-98
157	18.9 PPM	OK			EW-99
158	53.3 PPM	OK			EW-95
159	2.3 PPM	OK			EW-90
160	25.7 PPM	OK			EW-86
161	142.0 PPM	OK			EW-84
162	40.8 PPM	OK			EW-80
163	1222.0 PPM	HIGH_ALRM	36.60051	-82.14819	EW-79
164	21900.0 PPM	HIGH_ALRM	36.60072	-82.14819	EW-77
165	1084.0 PPM	HIGH_ALRM	36.60105	-82.14831	EW-33B
166	1111.0 PPM	HIGH_ALRM	36.60106	-82.14828	EW-75
	Number of	ocations sampled:	166		
		edance locations:	8		
-	n 100 represent serpe				
	ugh 166 represent SE tions: Sunny, 82°F Wi		ons		
<u>Sampling Calib</u> 9/23/2024	ration: Methane - 500 10:59 ZERC		<u>ppm</u> PPM		
9/23/2024	11:00 SPAN		PPM		
)	ading:				
<u>backgro</u> una ke					
<u>Background Ree</u> 9/23/2024	11:03 Upwir	nd 1.5	PPM		

SCS ENGINEERS

September 25, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – September 16, 2024 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on September 16, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1.	Summary of Surface Emissions Monitoring
----------	---

Description	Quantity
Number of Points Sampled	167
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	67
Number of Exceedances	8
Number of Serpentine Exceedances	1
Number of Pipe Penetration Exceedances	7

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	9/16/24 Event	9/16/24 Event Result	Comments
EW-79	7/22/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-63	8/1/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-64	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-77	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-33B	8/7/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-65	8/21/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
Tag 61	8/21/24	1-Month Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-96	9/5/24	N/A	Passed	Requires 1-Month Retest
EW-75	9/9/24	10-Day Retest	Passed	Requires 1-Month Retest
EW-67	9/9/24	10-Day Retest	Failed	Requires 2 nd 10-Day Retest

Table 2. Ongoing Weekly SEM Exceedances

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylie R Aichlin

Wylie R Hicklin Associate Professional SCS Engineers

LSN/WRH

- cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - SEPTEMBER 16, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	16.2 PPM	OK			Start Serpentine Route
2	3.6 PPM	OK			
3	5.0 PPM	OK			
4	1.0 PPM	OK			
5	1.5 PPM	OK			
6	1.1 PPM	OK			
7	4.4 PPM	OK			
8	4.2 PPM	OK			
9	5.8 PPM	OK			
10	4.2 PPM	OK			
11	8.0 PPM	OK			
12	2.9 PPM	OK			
13	9.0 PPM	OK			
14	0.9 PPM	OK			
15	2.6 PPM	OK			
16	2.7 PPM	OK			
17	1.3 PPM	OK			
18	2.4 PPM	OK			
19	3.1 PPM	OK			
20	11.9 PPM	OK			
21	3.8 PPM	OK			
22	2.7 PPM	OK			
22	3.2 PPM	OK			
23	1.4 PPM	OK			
25	2.5 PPM	OK			
26	0.4 PPM	OK			
20	2.6 PPM	OK			
28	0.5 PPM	OK			
20	0.4 PPM	OK			
30	0.4 PPM	OK			
31	13.4 PPM	OK			
32	6.6 PPM	OK			
33	9.5 PPM	OK			
34	441.0 PPM	OK			
35	2.0 PPM	OK			
36	0.8 PPM	OK			
37	23.0 PPM	OK			
38	1.4 PPM	OK			
39	18.7 PPM	OK			
40	8.2 PPM	OK			
40	8.2 PPM	OK			
41	34.4 PPM	OK			
42	13.2 PPM	OK			
43	119.0 PPM	OK			
44	33.8 PPM	OK			
45	15.1 PPM	OK			
40	0.4 PPM	OK			

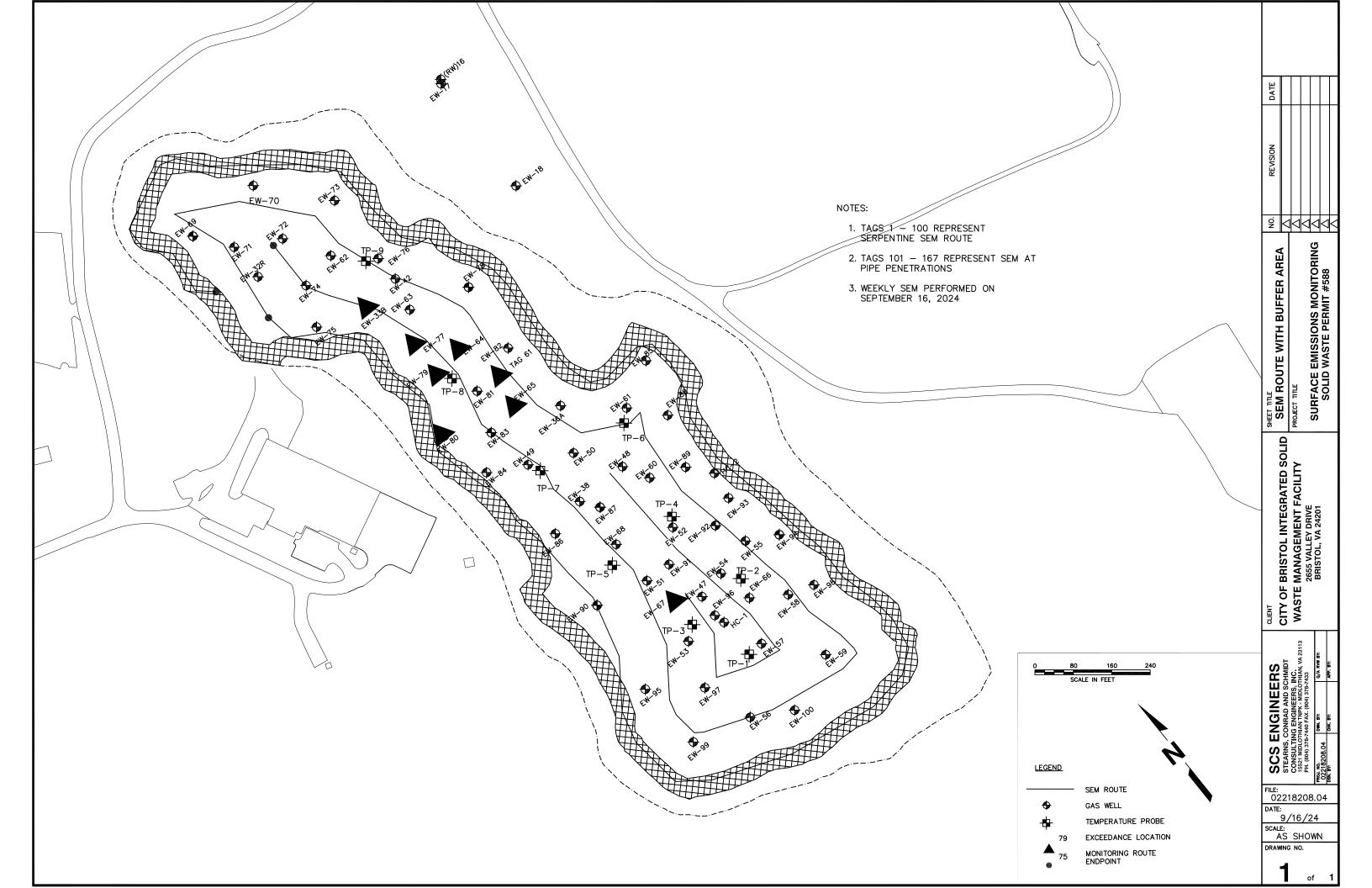

	WEEKLY M	SURFACE EMISSIO ONITORING EVEN ATED SOLID WAST	NT - SEPTEMBE		
	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
48	1.7 PPM	ОК			
49	0.0 PPM	OK			
50	0.0 PPM	OK			
51	0.0 PPM	OK			
52	0.0 PPM	OK			
53	0.8 PPM	OK			
54	0.1 PPM	OK			
55	0.1 PPM	OK			
56	11.7 PPM	OK			
57	0.5 PPM	OK			
58	7.8 PPM	OK			
59	64.9 PPM	OK			
60		OK			
	19.2 PPM		24 4 0 0 0 0	0014705	
61	781.0 PPM	HIGH_ALRM	36.60029	-82.14785	
62	30.6 PPM	OK			
63	25.7 PPM	OK			
64	24.6 PPM	OK			
65	2.1 PPM	OK			
66	4.8 PPM	OK			
67	5.7 PPM	OK			
68	6.3 PPM	OK			
69	2.3 PPM	OK			
70	2.6 PPM	OK			
71	5.6 PPM	OK			
72	109.0 PPM	OK			
73	13.4 PPM	OK			
74	316.0 PPM	OK			
75	2.6 PPM	OK			
76	4.5 PPM	OK			
77	6.2 PPM	OK			
78	183.0 PPM	OK			
79	3.1 PPM	OK			
80	1.9 PPM	OK			
81	3.9 PPM	OK			
82		OK			
	2.7 PPM				
83	6.0 PPM	OK			
84	2.8 PPM	OK			
85	4.4 PPM	OK			
86	5.5 PPM	OK			
87	4.7 PPM	OK			
88	22.5 PPM	OK			
89	53.9 PPM	OK			
90	114.0 PPM	OK			
91	5.4 PPM	OK			
92	2.7 PPM	OK			
93	3.5 PPM	OK			
94	13.1 PPM	OK			

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - SEPTEMBER 16, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
95	118.0 PPM	ОК			
96	46.7 PPM	OK			
97	3.4 PPM	OK			
98	1.6 PPM	OK			
99	1.3 PPM	OK			
100	0.6 PPM	OK			End Serpentine Route
101	105.0 PPM	OK			EW-52
102	197.0 PPM	OK			TP-4
103	39.0 PPM	OK			EW-60
104	40.6 PPM	OK			EW-48
105	4.5 PPM	OK			TP-6
106	6.4 PPM	OK			EW-61
107	2.3 PPM	OK			EW-50
108	1702.0 PPM	HIGH_ALRM	36.59873	-82.14775	EW-67
109	5.9 PPM	OK			EW-47
110	1.5 PPM	OK			EW-54
111	273.0 PPM	OK			EW-55
112	4.4 PPM	OK			EW-92
113	2.2 PPM	OK			EW-91
114	4.2 PPM	OK			EW-96
115	0.9 PPM	OK			TP-2
116	19.9 PPM	OK			EW-66
117	11.2 PPM	OK			EW-58
118	21.6 PPM	OK			EW-57
119	22.4 PPM	OK			TP-1
120	15.5 PPM	OK			EW-59
121	1.8 PPM	OK			EW-100
122	131.0 PPM	OK			EW-56
123	0.4 PPM	OK			EW-97
124	12.9 PPM	OK			EW-53
125	6.2 PPM	OK			TP-3
126	1.9 PPM	ОК			EW-51
127	5.3 PPM	OK			TP-5
128	1.8 PPM	OK			EW-68
129	1.8 PPM	ОК			EW-87
130	2.1 PPM	ОК			EW-38
131	128.0 PPM	ОК			TP-7
132	1.7 PPM	ОК			EW-49
133	23.7 PPM	ОК			EW-83
134	1337.0 PPM	HIGH_ALRM	36.60017	-82.14787	EW-65
135	29.5 PPM	OK			EW-81
136	9.8 PPM	ОК			TP-8
137	5542.0 PPM	HIGH_ALRM	36.60056	-82.14796	EW-64
138	349.0 PPM	ОК			EW-63
139	13.8 PPM	OK			EW-42
140	23.1 PPM	OK			EW-76

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - SEPTEMBER 16, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

ID # 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 1 166 167	Concentration 10.4 PPM 4.6 PPM 3.4 PPM 77.8 PPM 5.8 PPM 1.7 PPM 6.0 PPM 10.7 PPM 14.4 PPM 10.0 PPM 14.4 PPM 10.0 PPM 2.5 PPM 3.9 PPM 5.4 PPM 2.1.1 PPM 2.6 PPM 2.4 PPM 0.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM 1040.0 PPM	Compliance OK OK OK OK OK OK OK OK OK OK OK OK OK	Lat.	Long.	Comments TP-9 EW-62 EW-74 EW-32R EW-69 EW-71 EW-72 EW-73 EW-78 EW-78 EW-78 EW-82 EW-82 EW-85 EW-85 EW-88 EW-89 EW-93 EW-94 EW-99 EW-95 EW-90 EW-86
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 164 165 1	4.6 PPM 3.4 PPM 77.8 PPM 5.8 PPM 1.7 PPM 6.0 PPM 10.7 PPM 10.7 PPM 14.4 PPM 10.0 PPM 1.5 PPM 3.9 PPM 5.4 PPM 21.1 PPM 2.6 PPM 2.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM	OK OK OK OK OK OK OK OK OK OK OK OK OK			EW-62 EW-74 EW-32R EW-69 EW-71 EW-72 EW-73 EW-78 EW-78 EW-82 EW-82 EW-82 EW-85 EW-85 EW-88 EW-89 EW-93 EW-94 EW-94 EW-99 EW-95 EW-90
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 1 166	3.4 PPM 77.8 PPM 5.8 PPM 1.7 PPM 6.0 PPM 10.7 PPM 14.4 PPM 10.0 PPM 1.5 PPM 3.9 PPM 5.4 PPM 21.1 PPM 2.6 PPM 2.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM	OK OK OK OK OK OK OK OK OK OK OK OK			EW-74 EW-32R EW-69 EW-71 EW-72 EW-73 EW-78 EW-78 EW-78 EW-82 EW-82 EW-85 EW-85 EW-85 EW-88 EW-89 EW-93 EW-94 EW-98 EW-99 EW-95 EW-90
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 164 165 1	77.8 PPM 5.8 PPM 1.7 PPM 6.0 PPM 10.7 PPM 14.4 PPM 10.0 PPM 1.5 PPM 3.9 PPM 5.4 PPM 21.1 PPM 2.6 PPM 2.4 PPM 0.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM	OK OK OK OK OK OK OK OK OK OK OK OK			EW-32R EW-69 EW-71 EW-72 EW-73 EW-78 EW-78 EW-82 EW-82 EW-85 EW-85 EW-88 EW-89 EW-93 EW-94 EW-98 EW-99 EW-95 EW-90
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 1 166	5.8 PPM 1.7 PPM 6.0 PPM 10.7 PPM 14.4 PPM 10.0 PPM 1.5 PPM 3.9 PPM 5.4 PPM 21.1 PPM 2.6 PPM 2.6 PPM 11.5 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM	OK OK OK OK OK OK OK OK OK OK OK			EW-69 EW-71 EW-72 EW-73 EW-78 EW-82 EW-82 EW-82 EW-85 EW-85 EW-88 EW-93 EW-93 EW-94 EW-94 EW-98 EW-99 EW-95 EW-90
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 1 166	1.7 PPM 6.0 PPM 10.7 PPM 14.4 PPM 10.0 PPM 1.5 PPM 3.9 PPM 5.4 PPM 21.1 PPM 2.6 PPM 2.6 PPM 2.4 PPM 0.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM	OK OK OK OK OK OK OK OK OK OK			EW-71 EW-72 EW-73 EW-78 EW-82 EW-82 EW-85 EW-85 EW-88 EW-88 EW-93 EW-94 EW-94 EW-98 EW-99 EW-95 EW-90
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 164 165 1	6.0 PPM 10.7 PPM 14.4 PPM 10.0 PPM 1.5 PPM 3.9 PPM 5.4 PPM 21.1 PPM 2.6 PPM 2.4 PPM 0.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM	OK OK OK OK OK OK OK OK OK OK			EW-72 EW-73 EW-78 EW-82 EW-85 EW-85 EW-88 EW-89 EW-93 EW-94 EW-98 EW-99 EW-95 EW-90
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 164 165 166	10.7 PPM 14.4 PPM 10.0 PPM 1.5 PPM 3.9 PPM 5.4 PPM 21.1 PPM 2.6 PPM 2.6 PPM 0.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM	ок ок ок ок ок ок ок ок ок ок			EW-73 EW-78 EW-82 EW-85 EW-85 EW-88 EW-89 EW-93 EW-94 EW-94 EW-98 EW-99 EW-95 EW-90
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 1 165 1	 14.4 PPM 10.0 PPM 1.5 PPM 3.9 PPM 5.4 PPM 21.1 PPM 2.6 PPM 2.4 PPM 0.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM 	ок ок ок ок ок ок ок ок ок			EW-78 EW-82 EW-36A EW-85 EW-88 EW-89 EW-93 EW-94 EW-98 EW-99 EW-95 EW-90
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 1 165 1	10.0 PPM 1.5 PPM 3.9 PPM 5.4 PPM 21.1 PPM 2.6 PPM 2.4 PPM 0.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM	ок ок ок ок ок ок ок ок ок			EW-82 EW-36A EW-85 EW-88 EW-89 EW-93 EW-94 EW-94 EW-98 EW-99 EW-95 EW-90
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 1 165 1 166	1.5 PPM 3.9 PPM 5.4 PPM 21.1 PPM 2.6 PPM 2.4 PPM 0.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM	ок ок ок ок ок ок ок ок			EW-36A EW-85 EW-88 EW-93 EW-94 EW-94 EW-98 EW-99 EW-95 EW-90
152 153 154 155 156 157 158 159 160 161 162 163 164 165 1 165 1 166	3.9 PPM 5.4 PPM 21.1 PPM 2.6 PPM 2.4 PPM 0.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM	ок ок ок ок ок ок ок ок			EW-85 EW-88 EW-93 EW-94 EW-94 EW-98 EW-99 EW-95 EW-90
153 154 155 156 157 158 159 160 161 162 163 164 165 1 165 1 166	5.4 PPM 21.1 PPM 2.6 PPM 2.4 PPM 0.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM	ОК ОК ОК ОК ОК ОК			EW-88 EW-89 EW-93 EW-94 EW-98 EW-99 EW-95 EW-90
154 155 156 157 158 159 160 161 162 163 164 165 1 165 1 166	21.1 PPM 2.6 PPM 2.4 PPM 0.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM	OK OK OK OK OK OK			EW-89 EW-93 EW-94 EW-98 EW-99 EW-95 EW-90
155 156 157 158 159 160 161 162 163 164 165 1 165 1 166	2.6 PPM 2.4 PPM 0.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM	OK OK OK OK OK OK			EW-93 EW-94 EW-98 EW-99 EW-95 EW-90
156 157 158 159 160 161 162 163 164 165 1 166	2.4 PPM 0.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM	OK OK OK OK OK			EW-94 EW-98 EW-99 EW-95 EW-90
157 158 159 160 161 162 163 164 165 1 166	0.6 PPM 11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM	OK OK OK OK			EW-98 EW-99 EW-95 EW-90
158 159 160 161 162 163 164 165 1 166	11.5 PPM 85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM	OK OK OK			EW-99 EW-95 EW-90
159 160 161 162 163 164 165 1 166	85.3 PPM 46.7 PPM 381.0 PPM 130.0 PPM	OK OK OK			EW-95 EW-90
160 161 162 163 164 165 1 166	46.7 PPM 381.0 PPM 130.0 PPM	OK OK			EW-90
161 162 163 164 165 1 166	381.0 PPM 130.0 PPM	OK			
162 163 164 165 1 166	130.0 PPM				EW-86
163 164 165 1 166		OK			
164 165 1 166	1040 0 PPM				EW-84
165 1 166		HIGH_ALRM	36.60021	-82.14845	EW-80
166	1160.0 PPM	HIGH_ALRM	36.60051	-82.14819	EW-79
	18200.0 PPM	HIGH_ALRM	36.60072	-82.14819	EW-77
167	3052.0 PPM	HIGH_ALRM	36.60105	-82.14831	EW-33B
	264.0 PPM	OK			EW-75
	Number of loc	ations sampled:	167		
	Number of exceed		8		
oints 101 through	0 represent serpenti 167 represent SEM s: Light Rain, 77°F W	at Pipe Penetratio	ns	J	
	on: Methane - 500 p				
, ,	1:22 ZERO	0.1	PPM		
9/16/2024 1	1:25 SPAN	501.0	PPM		
ackground Reading		1.0			
9/16/2024 1 9/16/2024 1	1:27 Upwind	1.0 d 1.4	PPM PPM		

SCS ENGINEERS

September 18, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – September 9, 2024 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on September 9, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	167
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	67
Number of Exceedances	7
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	7

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	9/9/24 Event	9/9/24 Event Result	Comments
EW-79	7/22/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-63	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-64	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-77	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-33B	8/7/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-65	8/21/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
TP-9	8/7/24	1-Month Follow Up	Passed	Exceedance Resolved
EW-91	8/15/24	1-Month Retest	Passed	Exceedance Resolved
Tag 61	8/21/24	N/A	Passed	Requires 1-Month Retest
EW-96	9/5/24	10-Day Retest	Passed	Requires 1-Month Retest

Table 2. Ongoing Weekly SEM Exceedances

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylie R Aichlin

Wylie R Hicklin Associate Professional SCS Engineers

LSN/WRH

- cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

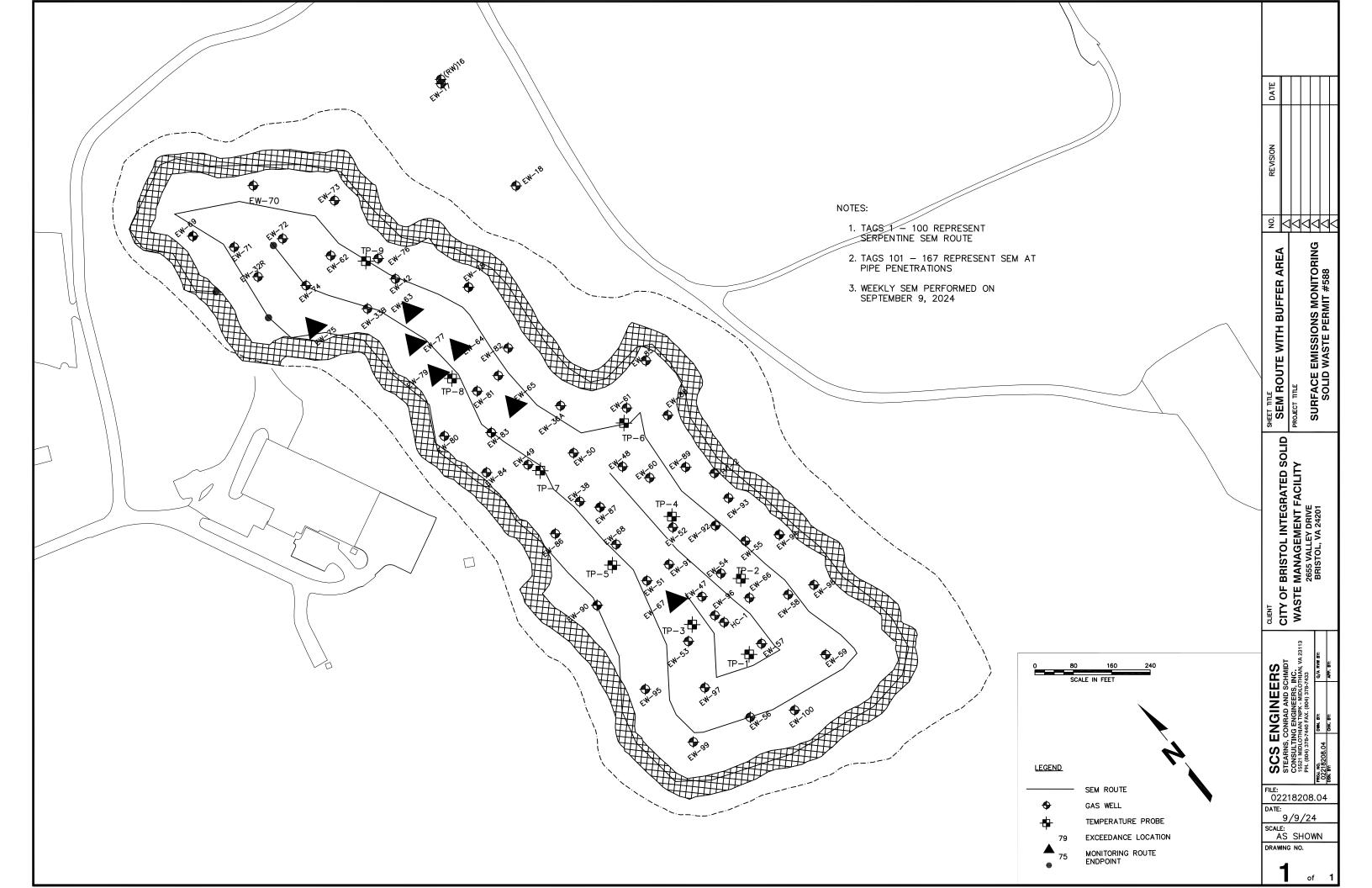
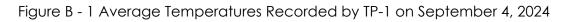

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - SEPTEMBER 9, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA					
	Methane	GPS Coordinates			
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	251.0 PPM	ОК			Start Serpentine Route
2	1.5 PPM	OK			
3	2.1 PPM	OK			
4	4.0 PPM	OK			
5	0.6 PPM	OK			
6	0.6 PPM	OK			
7	0.5 PPM	OK			
8	0.6 PPM	OK			
9	0.5 PPM	OK			
10	1.6 PPM				
		OK			
11	2.4 PPM	OK			
12	1.4 PPM	OK			
13	2.4 PPM	OK			
14	1.8 PPM	OK			
15	1.2 PPM	OK			
16	191.0 PPM	OK			
17	2.3 PPM	OK			
18	1.7 PPM	OK			
19	2.0 PPM	OK			
20	2.3 PPM	OK			
21	0.7 PPM	OK			
22	1.0 PPM	OK			
23	0.5 PPM	OK			
23	3.7 PPM	OK			
25	0.4 PPM	OK			
26	0.1 PPM	OK			
27	0.3 PPM	OK			
28	0.4 PPM	OK			
29	0.2 PPM	OK			
30	0.2 PPM	OK			
31	0.2 PPM	OK			
32	5.3 PPM	OK			
33	52.1 PPM	OK			
34	33.9 PPM	OK			
35	22.0 PPM	OK			
36	171.0 PPM	OK			
37	11.3 PPM	OK			
38	25.5 PPM	OK			
39	28.6 PPM	OK			
40	4.3 PPM	OK			
41	2.6 PPM	OK			
42	2.7 PPM	OK			
43	0.4 PPM	OK			
44	3.9 PPM	OK			
45	5.1 PPM	OK			
46	21.8 PPM	OK			
47	38.0 PPM	OK			

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - SEPTEMBER 9, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA						
Methane GPS Coordinates						
ID #	Concentration	Compliance	Lat.	Long.	Comments	
48	8.2 PPM	OK				
49	1.7 PPM	OK				
50	0.8 PPM	OK				
51	0.2 PPM	OK				
52	0.5 PPM	OK				
53	0.6 PPM	OK				
54	119.0 PPM	OK				
55	2.1 PPM	OK				
56	0.6 PPM	OK				
57	7.9 PPM	OK				
58	10.6 PPM	OK				
59	34.0 PPM	OK				
60	14.6 PPM	OK				
61	330.0 PPM	OK				
62	14.3 PPM	OK				
63	0.4 PPM	OK				
64	1.0 PPM	OK				
65	0.0 PPM	OK				
66	0.1 PPM	OK				
67	0.0 PPM	OK				
68	0.2 PPM	OK				
69	0.0 PPM	OK				
70	0.1 PPM	OK				
71	0.0 PPM	OK				
72	0.0 PPM	OK				
73	0.0 PPM	OK				
74	0.0 PPM	OK				
75	23.1 PPM	OK				
76	0.1 PPM	OK				
77	266.0 PPM	OK				
78	0.2 PPM	OK				
78 79	0.2 PPM	OK				
80	0.2 PPM	OK				
81	1.1 PPM	OK				
82	22.3 PPM	OK				
83	22.3 PPM 2.8 PPM	OK				
84		OK				
	13.1 PPM					
85 84	1.7 PPM	OK OK				
86 87	0.2 PPM					
87	0.2 PPM	OK				
88	0.5 PPM	OK				
89	0.1 PPM	OK				
90 01	13.4 PPM	OK				
91 02	0.2 PPM	OK				
92	4.8 PPM	OK				
93 94	3.4 PPM 2.5 PPM	OK OK				

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - SEPTEMBER 9, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane GPS Coordinates				
ID #	Concentration	Compliance	Lat.	Long.	Comments
95	0.9 PPM	ОК			
96	0.1 PPM	OK			
97	0.1 PPM	OK			
98	11.1 PPM	OK			
99	12.9 PPM	OK			
100	0.3 PPM	OK			End Serpentine Route
101	444.0 PPM	OK			EW-52
102	5.3 PPM	OK			TP-4
103	14.4 PPM	OK			EW-60
104	19.9 PPM	OK			EW-48
105	4.1 PPM	OK			TP-6
106	0.5 PPM	OK			EW-61
107	1.1 PPM	OK			E₩-50
108	9956.0 PPM	HIGH_ALRM	36.59873	-82.14775	EW-67
109	0.9 PPM	OK			EW-47
110	12.2 PPM	OK			EW-54
111	16.8 PPM	OK			EW-55
112	0.6 PPM	OK			EW-92
113	252.0 PPM	OK			EW-91
114	0.5 PPM	OK			EW-96
115	1.3 PPM	OK			TP-2
116	72.9 PPM	OK			EW-66
117	2.0 PPM	OK			EW-58
118	5.9 PPM	OK			EW-57
119	0.1 PPM	OK			TP-1
120	0.4 PPM	OK			EW-59
121	13.5 PPM	OK			EW-100
122	24.7 PPM	OK			EW-56
123	0.3 PPM	OK			EW-97
124	5.5 PPM	OK			E₩-53
125	0.4 PPM	OK			TP-3
126	42.2 PPM	OK			EW-51
127	23.9 PPM	OK			TP-5
128	0.8 PPM	OK			EW-68
129	0.4 PPM	OK			EW-87
130	112.0 PPM	OK			EW-38
131	15.6 PPM	OK			TP-7
132	64.4 PPM	OK			EW-49
133	0.2 PPM	OK			EW-83
134	6138.0 PPM	HIGH_ALRM	36.60017	-82.14787	EW-65
135	60.4 PPM	OK			EW-81
136	3.3 PPM	OK			TP-8
137	4042.0 PPM	HIGH_ALRM	36.60056	-82.14796	EW-64
138	2088.0 PPM	HIGH_ALRM	36.60090	-82.14807	EW-63
139	26.4 PPM	OK			EW-42
140	24.6 PPM	OK			EW-76

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - SEPTEMBER 9, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA



Appendix B

In-Waste Temperatures on Select Days in September

Appendix B Figures

Figure B - 1 Average Temperatures Recorded by TP-1 on September 4, 2024......B-3 Figure B - 2 Average Temperatures Recorded by TP-1 on September 11, 2024..... B-3 Figure B - 3 Average Temperatures Recorded by TP-1 on September 18, 2024...... B-4 Figure B - 4 Average Temperatures Recorded by TP-1 on September 25, 2024..... B-4 Figure B - 5 Average Temperatures Recorded by TP-2 on September 4, 2024...... B-5 Figure B - 6 Average Temperatures Recorded by TP-2 on September 11, 2024...... B-5 Figure B - 7 Average Temperatures Recorded by TP-2 on September 18, 2024..... B-6 Figure B - 8 Average Temperatures Recorded by TP-2 on September 25, 2024...... B-6 Figure B - 9 Average Temperatures Recorded by TP-3 on September 4, 2024..... B-7 Figure B - 10 Average Temperatures Recorded by TP-3 on September 11, 2024B-7 Figure B - 11 Average Temperatures Recorded by TP-3 on September 18, 2024 B-8 Figure B - 12 Average Temperatures Recorded by TP-3 on September 25, 2024 B-8 Figure B - 13 Average Temperatures Recorded by TP-4 on September 4, 2024..... B-9 Figure B - 16 Average Temperatures Recorded by TP-4 on September 25, 2024 B-10 Figure B - 17 Average Temperatures Recorded by TP-5 on September 4, 2024......B-11 Figure B - 20 Average Temperatures Recorded by TP-5 on September 25, 2024 B-12 Figure B - 21 Average Temperatures Recorded by TP-6 on September 4, 2024......B-13 Figure B - 22 Average Temperatures Recorded by TP-6 on September 11, 2024 B-13 Figure B - 24 Average Temperatures Recorded by TP-6 on September 25, 2024 B-14 Figure B - 25 Average Temperatures Recorded by TP-7 on September 4, 2024..... B-15 Figure B - 29 Average Temperatures Recorded by TP-8 on September 4, 2024......B-17 Figure B - 31 Average Temperatures Recorded by TP-8 on September 18, 2024 B-18 Figure B - 33 Average Temperatures Recorded by TP-9 on September 4, 2024..... B-19 Figure B - 35 Average Temperatures Recorded by TP-9 on September 18, 2024 B-20 Figure B - 36 Average Temperatures Recorded by TP-9 on September 25, 2024 B-20

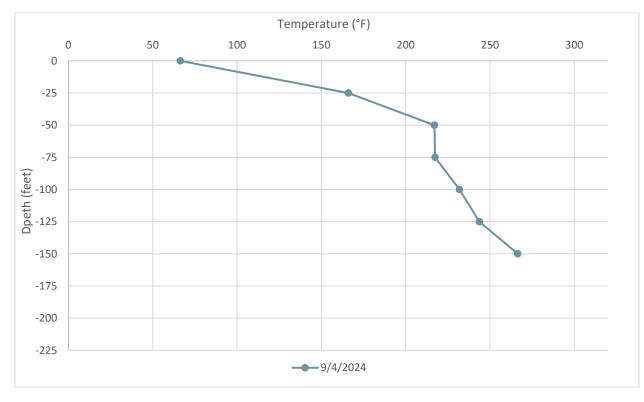
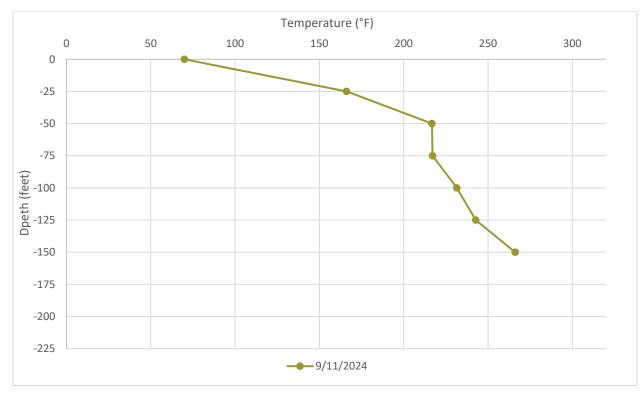



Figure B - 2 Average Temperatures Recorded by TP-1 on September 11, 2024

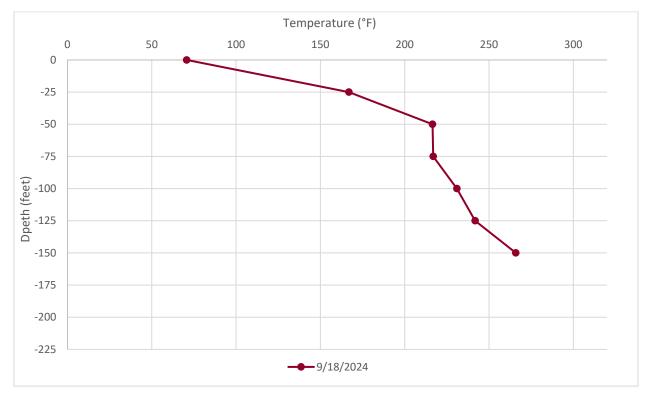
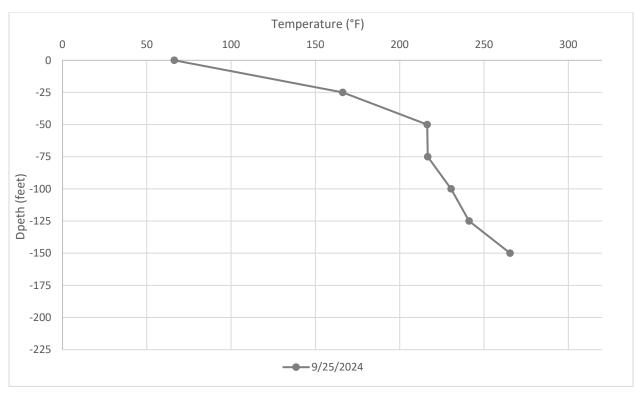



Figure B - 3 Average Temperatures Recorded by TP-1 on September 18, 2024

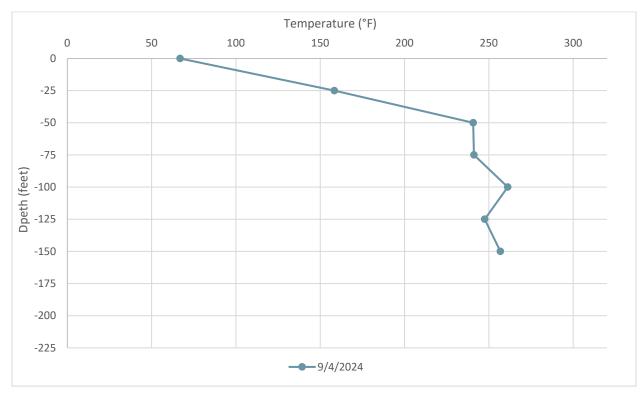
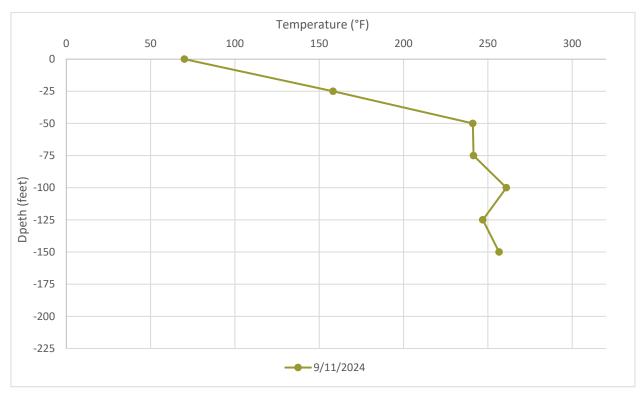



Figure B - 5 Average Temperatures Recorded by TP-2 on September 4, 2024

Figure B - 6 Average Temperatures Recorded by TP-2 on September 11, 2024

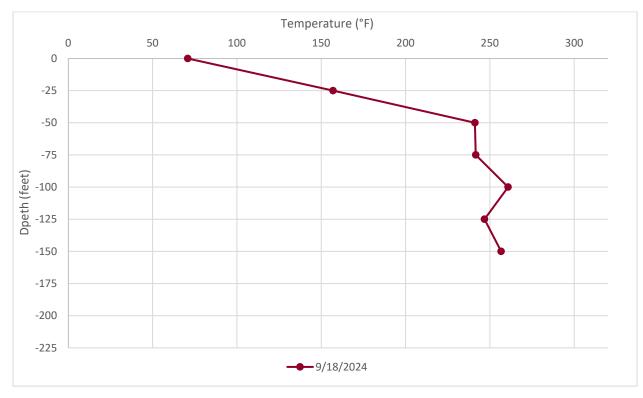
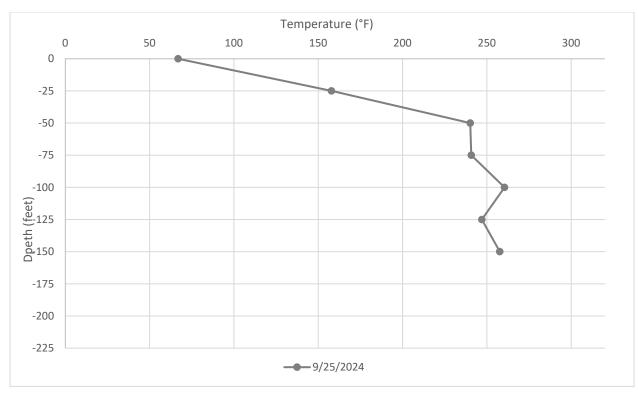
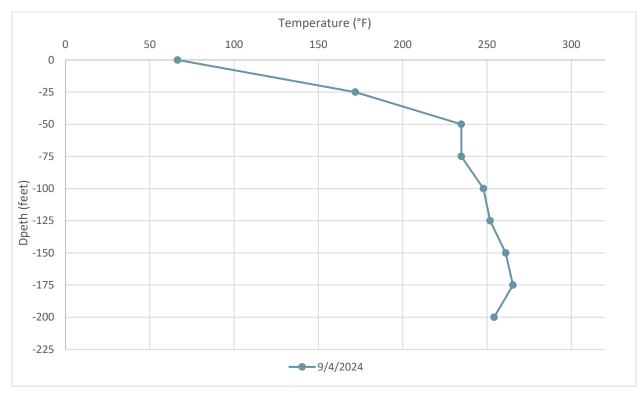



Figure B - 7 Average Temperatures Recorded by TP-2 on September 18, 2024

Figure B - 8 Average Temperatures Recorded by TP-2 on September 25, 2024



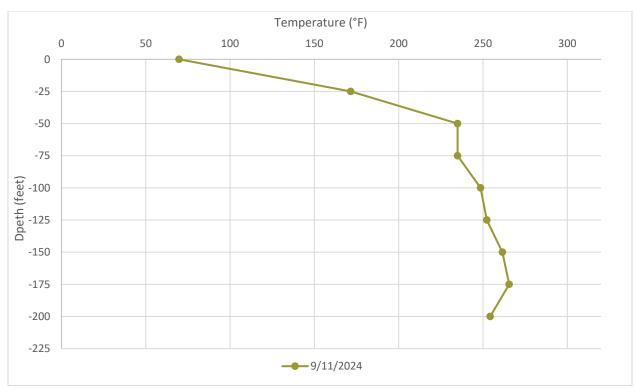


Figure B - 9 Average Temperatures Recorded by TP-3 on September 4, 2024

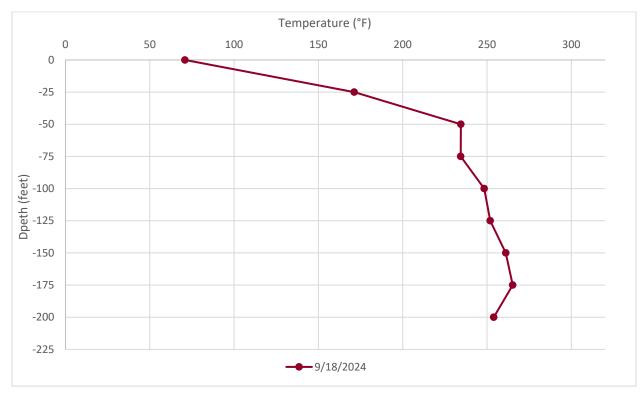
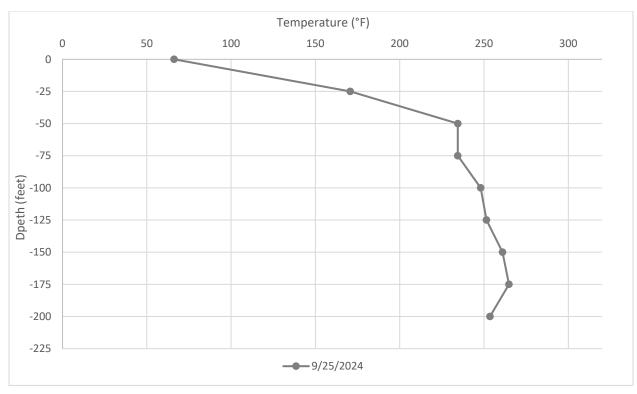



Figure B - 11 Average Temperatures Recorded by TP-3 on September 18, 2024

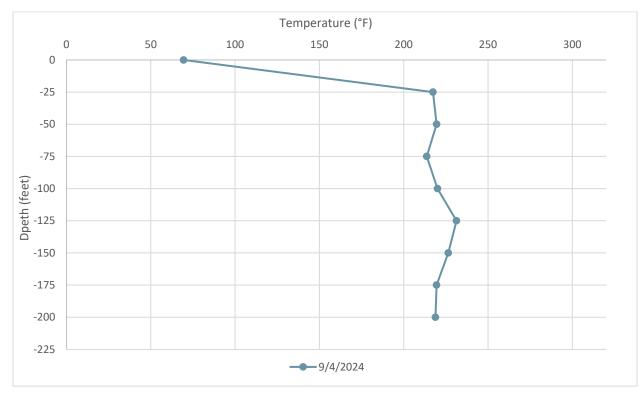
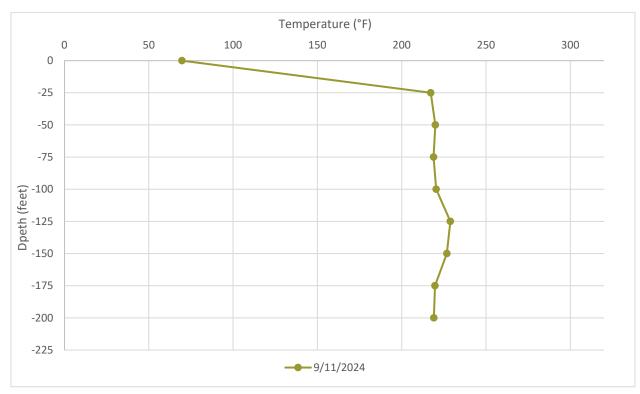



Figure B - 13 Average Temperatures Recorded by TP-4 on September 4, 2024

Figure B - 14 Average Temperatures Recorded by TP-4 on September 11, 2024

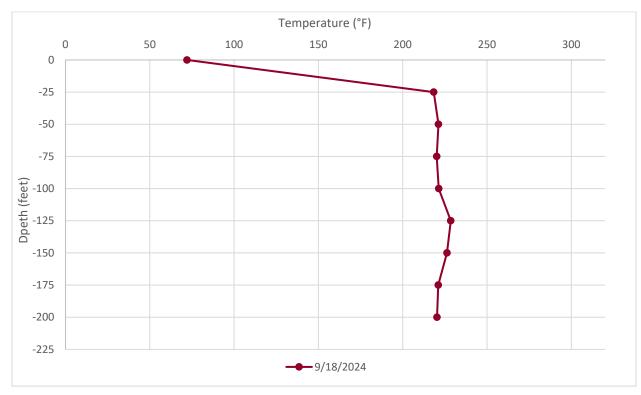
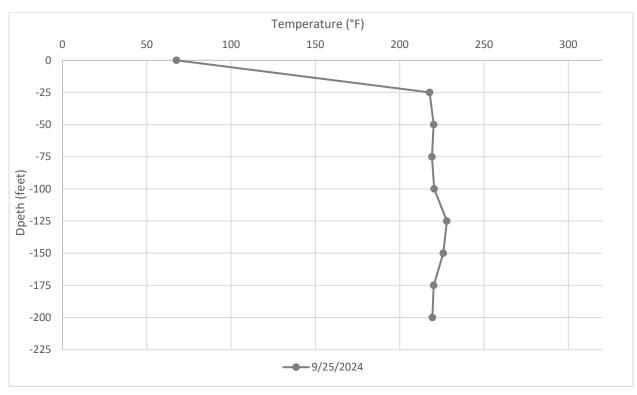



Figure B - 15 Average Temperatures Recorded by TP-4 on September 18, 2024

Figure B - 16 Average Temperatures Recorded by TP-4 on September 25, 2024

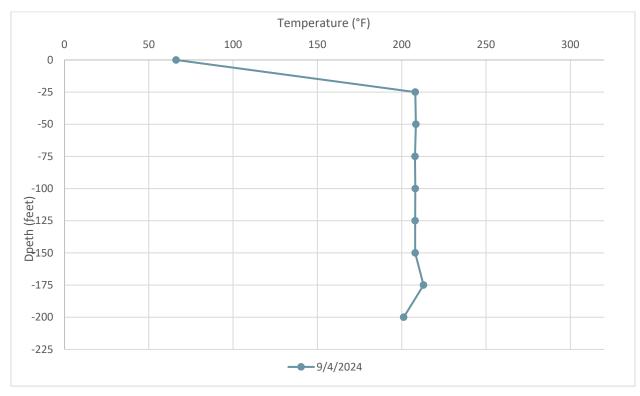
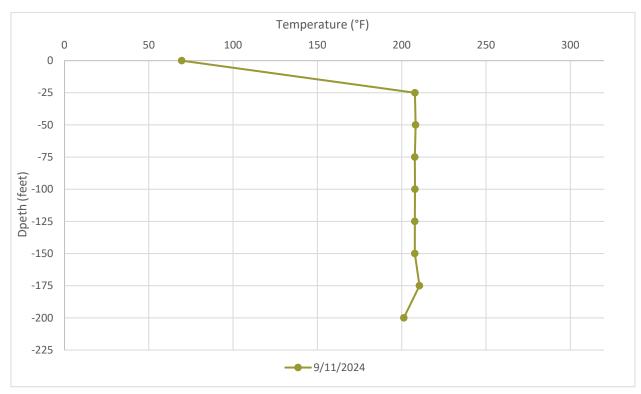



Figure B - 17 Average Temperatures Recorded by TP-5 on September 4, 2024

Figure B - 18 Average Temperatures Recorded by TP-5 on September 11, 2024

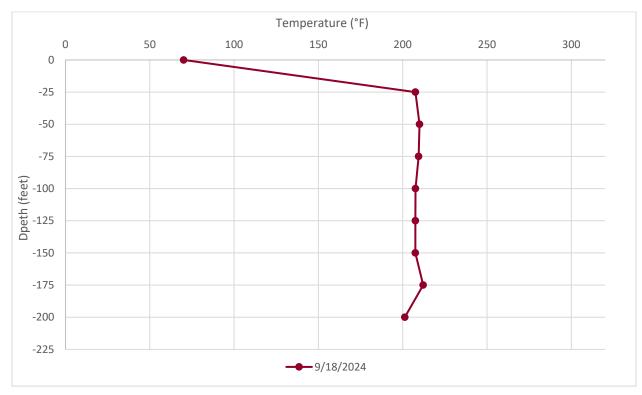
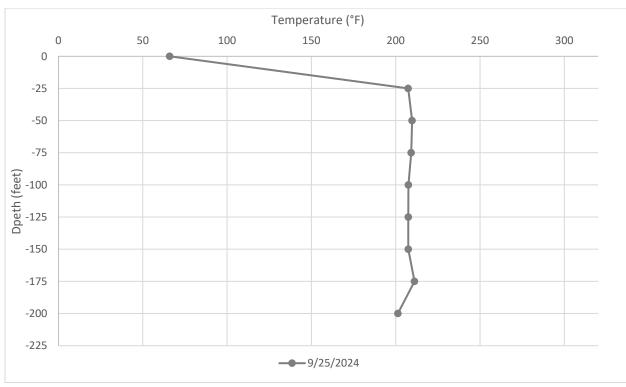



Figure B - 19 Average Temperatures Recorded by TP-5 on September 18, 2024

Figure B - 20 Average Temperatures Recorded by TP-5 on September 25, 2024

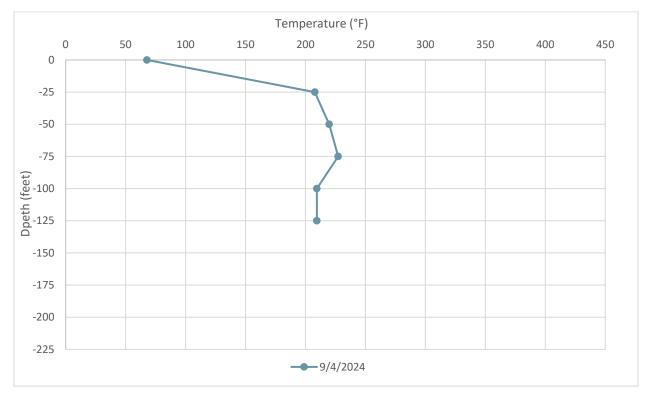
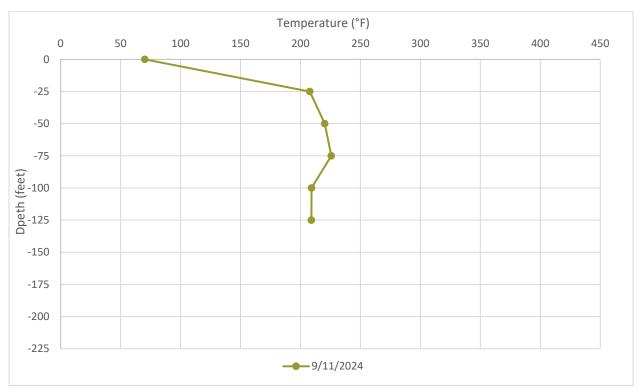



Figure B - 21 Average Temperatures Recorded by TP-6 on September 4, 2024

Figure B - 22 Average Temperatures Recorded by TP-6 on September 11, 2024

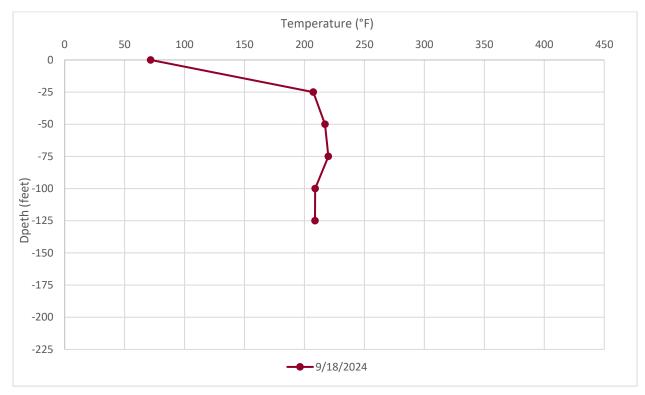
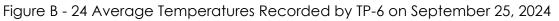
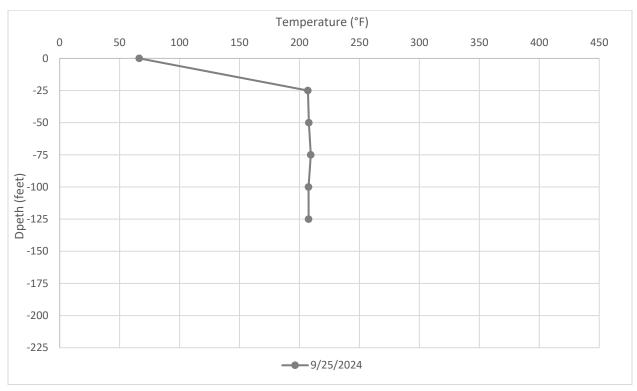




Figure B - 23 Average Temperatures Recorded by TP-6 on September 18, 2024

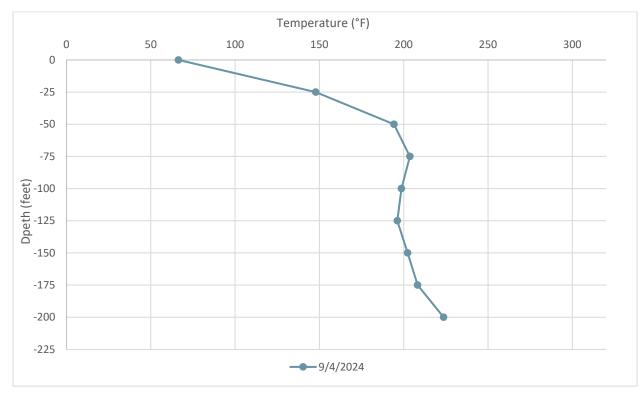
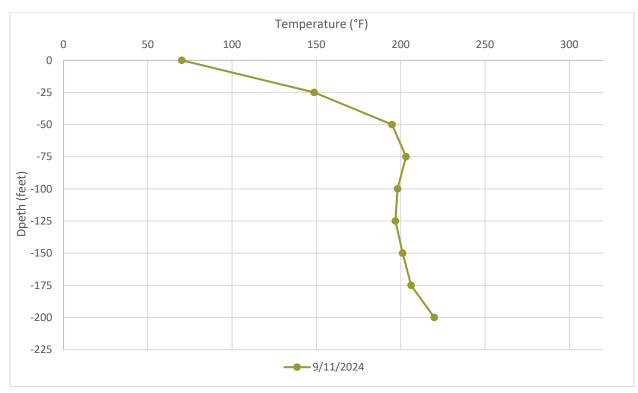



Figure B - 25 Average Temperatures Recorded by TP-7 on September 4, 2024

Figure B - 26 Average Temperatures Recorded by TP-7 on September 11, 2024

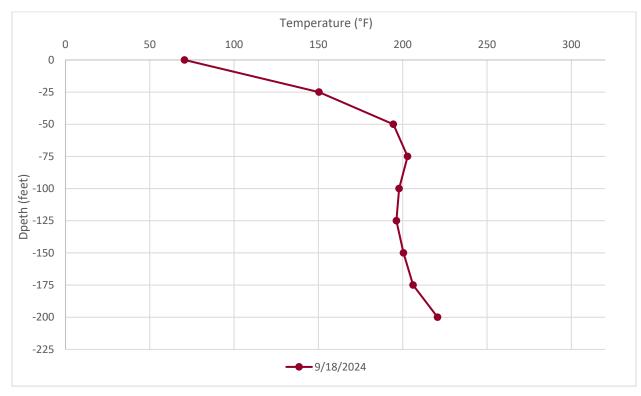
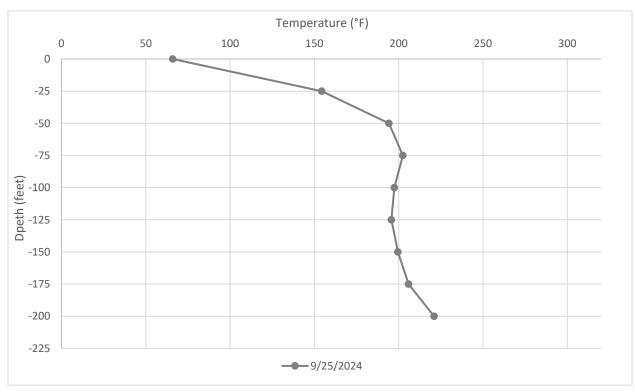



Figure B - 27 Average Temperatures Recorded by TP-7 on September 18, 2024

Figure B - 28 Average Temperatures Recorded by TP-7 on September 25, 2024

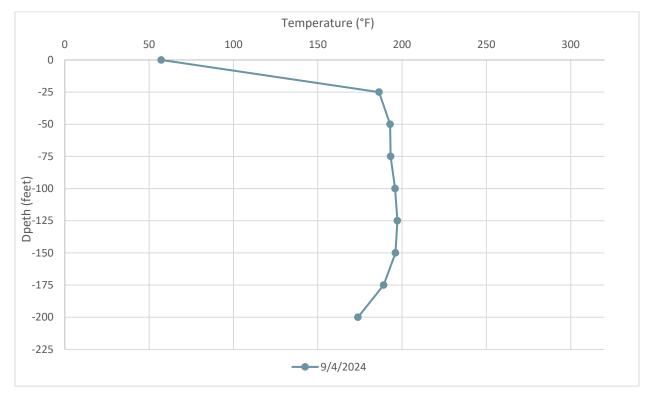
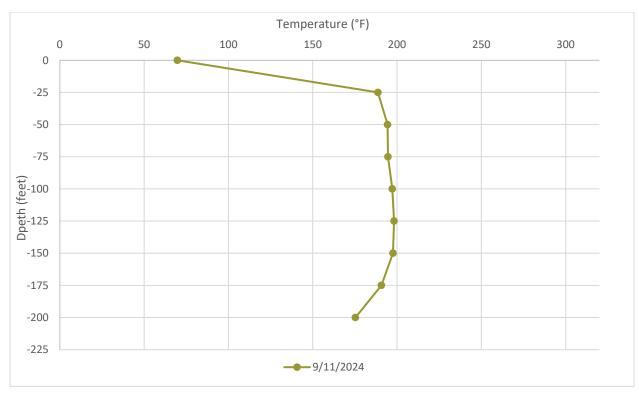



Figure B - 29 Average Temperatures Recorded by TP-8 on September 4, 2024

Figure B - 30 Average Temperatures Recorded by TP-8 on September 11, 2024

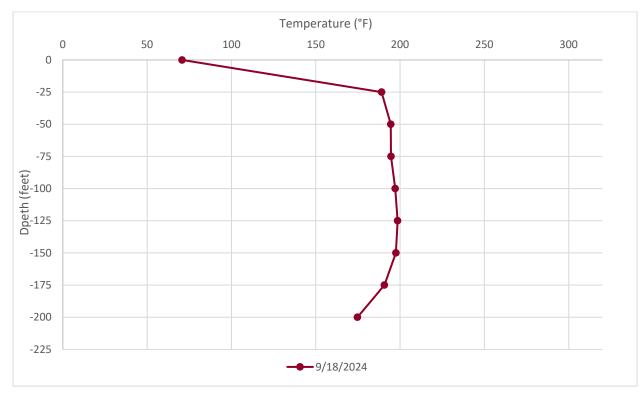
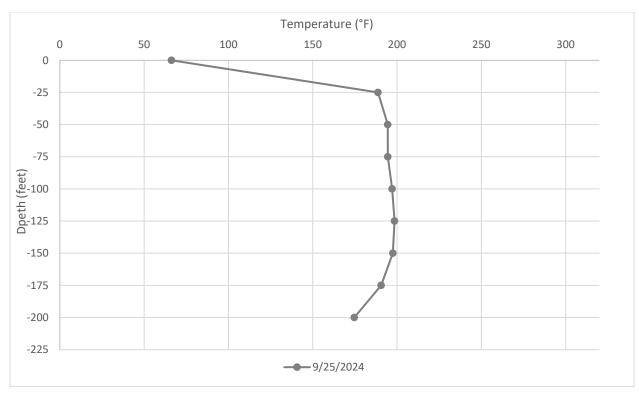



Figure B - 31 Average Temperatures Recorded by TP-8 on September 18, 2024

Figure B - 32 Average Temperatures Recorded by TP-8 on September 25, 2024

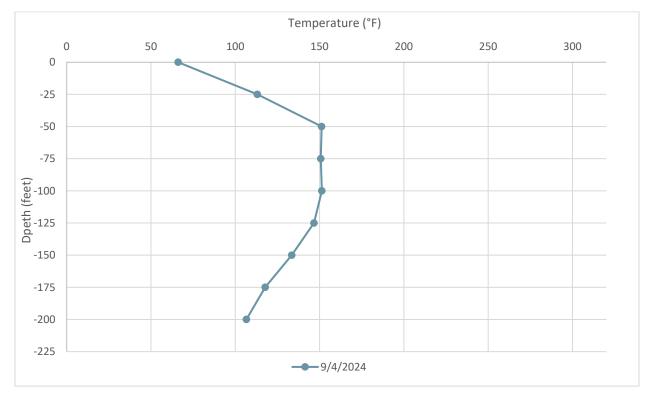
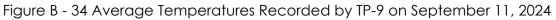
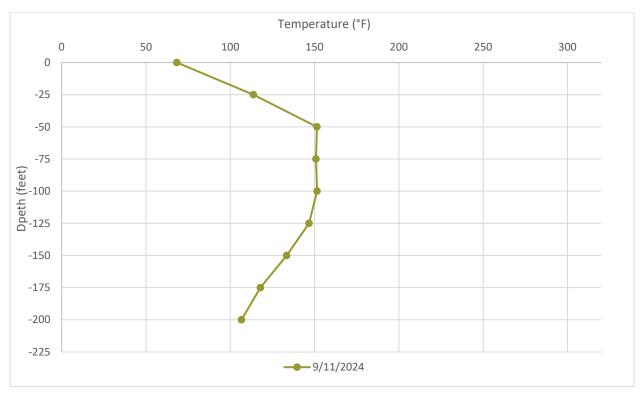




Figure B - 33 Average Temperatures Recorded by TP-9 on September 4, 2024

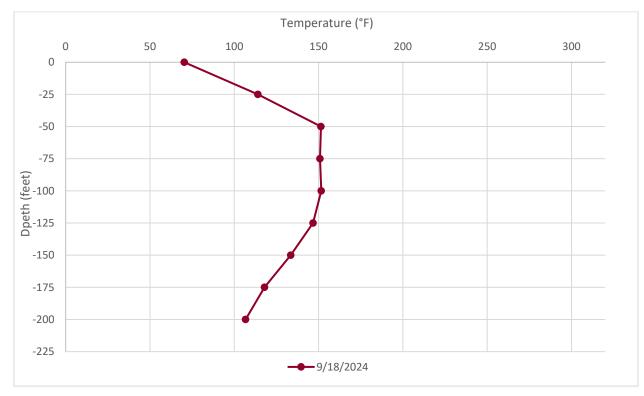
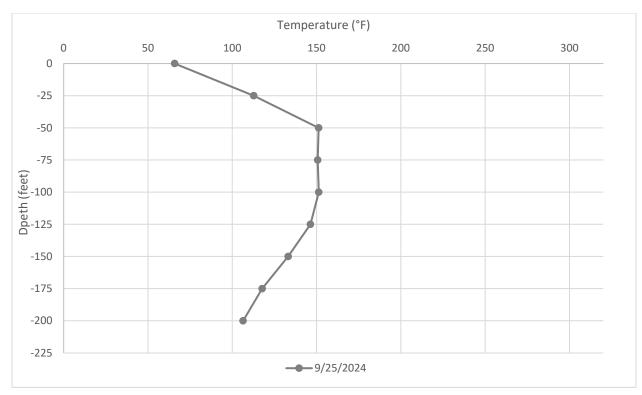



Figure B - 35 Average Temperatures Recorded by TP-9 on September 18, 2024

Figure B - 36 Average Temperatures Recorded by TP-9 on September 25, 2024

Appendix C

Daily Wellhead Temperature Averages

The data provided in this report represent initial readings provided by field instrumentation without Validation, analysis, quality assurance review, or context based on operating conditions. This report is subject to revision following quality assurance review and an analysis of operating conditions. SCS will continue to provide a supplemental report with additional information and further analysis on a monthly basis at a minimum.

SCS ENGINEERS

07222143.00 | October 1, 2024

274 Granite Run Drive Lancaster, PA 17601 717-550-6330

Bristol, Virginia

Data			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	109.8	107.5	114.0
Sep 2	109.0	104.0	113.2
Sep 3	107.3	102.0	114.3
Sep 4	106.7	100.8	113.0
Sep 5	109.4	103.8	116.3
Sep 6	111.3	106.1	117.6
Sep 7	107.9	103.8	112.1
Sep 8	106.4	101.0	114.1
Sep 9	107.6	102.1	114.3
Sep 10	108.5	86.5	117.5
Sep 11	110.0	105.2	117.5
Sep 12	108.6	104.9	112.6
Sep 13	109.6	104.2	115.4
Sep 14	109.6	106.2	114.5
Sep 15	108.8	104.9	115.2
Sep 16	107.5	103.8	111.4
Sep 17	107.7	105.6	110.3
Sep 18	109.9	106.1	114.6
Sep 19	110.8	106.9	116.8
Sep 20	110.9	106.6	117.2
Sep 21	110.7	106.3	116.2
Sep 22	111.7	107.1	117.8
Sep 23	110.7	107.9	116.7
Sep 24	109.2	103.9	114.7
Sep 25	106.2	101.0	113.1
Sep 26	103.5	101.8	105.6
Sep 27	97.2	67.3	113.9
Sep 28	106.4	103.9	110.8
Sep 29	107.0	104.2	110.8
Summary	108.3	97.2	111.7

SCS ENGINEERS

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	81.8	77.0	93.2
Sep 2	83.1	75.5	94.0
Sep 3	81.7	73.2	97.1
Sep 4	79.5	69.3	93.4
Sep 5	83.4	71.1	101.1
Sep 6	83.2	69.7	99.9
Sep 7	76.6	69.6	89.4
Sep 8	75.2	59.8	95.2
Sep 9	76.9	62.2	96.0
Sep 10	79.5	62.4	102.6
Sep 11	80.9	66.5	103.5
Sep 12	77.2	69.4	88.3
Sep 13	80.7	71.7	93.6
Sep 14	82.3	74.6	93.9
Sep 15	80.9	72.1	93.8
Sep 16	76.8	70.5	89.6
Sep 17	76.6	68.9	87.5
Sep 18	82.4	74.1	96.7
Sep 19	84.0	74.9	100.8
Sep 20	85.5	74.0	103.6
Sep 21	84.5	74.6	98.0
Sep 22	87.3	74.8	106.0
Sep 23	85.0	79.4	98.0
Sep 24	82.9	75.2	97.1
Sep 25	78.0	73.2	91.6
Sep 26	72.4	70.2	74.5
Sep 27	76.2	71.3	88.5
Sep 28	76.6	69.3	88.7
Sep 29	75.6	70.1	86.9
Summary	80.2	72.4	87.3

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	72.6	66.9	85.4
Sep 2	73.6	63.6	90.4
Sep 3	71.8	61.5	87.4
Sep 4	68.4	56.3	83.8
Sep 5	72.7	59.2	90.7
Sep 6	73.2	57.2	93.2
Sep 7	65.3	54.1	78.8
Sep 8	62.4	45.0	83.4
Sep 9	66.3	47.8	87.6
Sep 10	68.3	49.2	91.8
Sep 11	71.8	55.1	93.7
Sep 12	68.3	58.4	81.3
Sep 13	72.1	62.3	87.5
Sep 14	73.9	66.7	84.6
Sep 15	71.8	63.0	85.6
Sep 16	65.4	57.7	80.4
Sep 17	65.5	56.0	76.6
Sep 18	71.9	62.6	85.1
Sep 19	73.5	61.7	92.3
Sep 20	74.8	59.8	94.4
Sep 21	74.3	60.3	93.4
Sep 22	76.6	60.8	95.9
Sep 23	74.9	66.4	92.6
Sep 24	72.3	65.0	87.9
Sep 25	67.6	63.1	82.2
Sep 26	64.8	62.7	67.3
Sep 27	71.7	65.4	84.1
Sep 28	71.4	62.3	84.6
Sep 29	69.3	63.8	79.8
Summary	70.6	62.4	76.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	108.0	107.4	109.0
Sep 2	107.8	106.8	109.2
Sep 3	107.9	106.4	110.1
Sep 4	107.6	106.1	111.5
Sep 5	108.3	106.4	110.3
Sep 6	108.4	106.5	110.1
Sep 7	107.4	106.4	108.6
Sep 8	107.0	105.5	109.2
Sep 9	108.0	105.5	111.8
Sep 10	107.3	96.2	112.1
Sep 11	108.4	106.5	112.7
Sep 12	108.0	107.1	111.4
Sep 13	108.4	107.3	111.9
Sep 14	108.0	107.4	108.8
Sep 15	107.8	106.8	109.1
Sep 16	107.7	106.6	110.6
Sep 17	107.8	106.0	110.2
Sep 18	108.9	107.5	111.6
Sep 19	109.1	107.4	112.3
Sep 20	109.0	107.1	110.9
Sep 21	108.5	107.2	110.0
Sep 22	108.6	107.1	110.2
Sep 23	108.8	107.6	110.6
Sep 24	108.1	106.5	109.6
Sep 25	107.7	106.4	112.0
Sep 26	106.5	105.9	107.0
Sep 27	98.5	77.8	108.0
Sep 28	107.4	106.4	108.5
Sep 29	107.4	107.0	108.4
Summary	107.7	98.5	109.1

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	72.6	67.6	84.1
Sep 2	73.5	64.4	87.8
Sep 3	71.6	61.9	87.9
Sep 4	68.2	56.9	86.6
Sep 5	72.2	59.6	91.6
Sep 6	72.7	58.1	95.8
Sep 7	65.6	55.4	79.8
Sep 8	61.8	45.7	85.8
Sep 9	64.5	48.4	86.3
Sep 10	68.2	49.8	95.6
Sep 11	71.7	55.0	93.2
Sep 12	68.8	58.7	81.7
Sep 13	72.4	62.2	87.0
Sep 14	74.1	67.9	85.8
Sep 15	72.3	63.4	87.8
Sep 16	65.6	57.1	77.4
Sep 17	65.6	56.5	75.4
Sep 18	71.7	62.9	87.3
Sep 19	73.1	62.1	92.6
Sep 20	74.3	60.5	97.2
Sep 21	74.0	60.9	94.0
Sep 22	76.6	61.3	99.8
Sep 23	74.8	66.8	96.4
Sep 24	72.2	65.6	86.9
Sep 25	68.0	63.4	84.1
Sep 26	65.0	62.9	67.4
Sep 27	72.0	65.6	86.8
Sep 28	71.0	62.5	83.3
Sep 29	69.2	64.3	78.1
Summary	70.5	61.8	76.6

		-	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	156.0	153.4	159.7
Sep 2	166.5	152.4	179.4
Sep 3	164.8	156.9	180.3
Sep 4	163.1	155.4	179.9
Sep 5	161.8	156.3	177.1
Sep 6	161.6	154.8	178.0
Sep 7	154.1	152.0	156.5
Sep 8	151.5	150.5	152.8
Sep 9	158.2	149.4	174.2
Sep 10	159.6	143.5	176.1
Sep 11	159.9	154.0	176.2
Sep 12	159.5	153.6	177.0
Sep 13	160.4	153.0	177.4
Sep 14	155.6	153.1	157.9
Sep 15	151.5	150.3	152.8
Sep 16	155.2	149.4	172.8
Sep 17	164.4	152.0	178.1
Sep 18	166.4	157.5	180.0
Sep 19	164.4	158.7	181.2
Sep 20	162.8	156.4	178.4
Sep 21	161.1	156.8	175.1
Sep 22	0.0	175.1	175.1
Sep 23	0.0	175.1	175.1
Sep 24	0.0	175.1	175.1
Sep 25	0.0	175.1	175.1
Sep 26	0.0	175.1	175.1
Sep 27	0.0	175.1	175.1
Sep 28	0.0	175.1	175.1
Sep 29	0.0	175.1	175.1
Summary	115.8	0.0	166.5

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	95.7	43.0	137.1
Sep 2	108.8	84.4	140.2
Sep 3	102.1	79.6	140.7
Sep 4	102.5	75.8	143.7
Sep 5	129.2	115.7	144.1
Sep 6	132.5	120.9	145.3
Sep 7	128.5	121.7	136.7
Sep 8	127.0	117.7	140.3
Sep 9	128.2	118.5	141.1
Sep 10	129.8	119.2	144.5
Sep 11	134.9	123.3	152.8
Sep 12	139.1	133.2	146.5
Sep 13	139.8	131.2	148.6
Sep 14	139.9	133.5	147.1
Sep 15	129.4	123.2	139.4
Sep 16	132.3	122.8	142.4
Sep 17	136.3	128.0	142.2
Sep 18	144.8	138.1	149.7
Sep 19	147.2	143.5	153.8
Sep 20	147.6	143.4	154.8
Sep 21	147.0	142.0	153.8
Sep 22	148.6	143.8	155.7
Sep 23	148.0	144.6	154.7
Sep 24	143.2	128.9	152.5
Sep 25	129.8	115.6	142.6
Sep 26	114.5	111.2	117.5
Sep 27	115.4	104.5	122.9
Sep 28	122.7	116.0	131.2
Sep 29	124.8	121.1	129.9
Summary	130.0	95.7	148.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	161.9	156.3	164.5
Sep 2	155.8	151.0	160.5
Sep 3	172.3	146.5	187.4
Sep 4	184.5	171.0	189.1
Sep 5	173.9	165.2	188.2
Sep 6	173.0	163.7	188.4
Sep 7	161.5	157.9	165.4
Sep 8	155.8	152.3	158.9
Sep 9	170.9	148.2	188.4
Sep 10	177.7	165.2	190.5
Sep 11	169.7	161.1	189.8
Sep 12	168.9	160.2	189.0
Sep 13	168.8	157.7	189.3
Sep 14	162.1	158.4	165.6
Sep 15	157.1	153.8	160.3
Sep 16	154.4	150.2	162.1
Sep 17	156.0	145.9	179.8
Sep 18	156.5	152.8	165.7
Sep 19	158.4	151.9	176.9
Sep 20	158.2	151.0	177.6
Sep 21	154.0	150.9	159.8
Sep 22	153.3	150.3	158.5
Sep 23	164.2	149.8	187.3
Sep 24	157.0	150.3	160.9
Sep 25	154.2	148.6	163.6
Sep 26	146.3	141.0	150.3
Sep 27	114.9	82.4	145.3
Sep 28	85.8	75.8	101.2
Sep 29	81.0	75.5	88.0
Summary	155.4	81.0	184.5

_	_		• • • • · · · · ·
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	118.1	109.8	128.9
Sep 2	118.1	106.1	129.8
Sep 3	115.5	108.0	124.0
Sep 4	110.9	103.7	121.6
Sep 5	117.6	108.7	133.7
Sep 6	119.3	105.3	132.6
Sep 7	110.9	97.3	119.9
Sep 8	110.6	95.0	126.9
Sep 9	112.5	95.0	130.5
Sep 10	110.9	94.8	129.7
Sep 11	116.7	104.3	132.0
Sep 12	113.9	106.1	119.8
Sep 13	116.2	108.0	128.9
Sep 14	116.2	105.7	122.3
Sep 15	115.0	106.1	121.6
Sep 16	117.1	109.4	123.2
Sep 17	115.1	105.2	123.1
Sep 18	124.2	117.8	135.0
Sep 19	126.4	120.1	137.9
Sep 20	126.9	118.2	138.9
Sep 21	124.6	115.0	137.3
Sep 22	128.2	116.7	140.9
Sep 23	132.9	38.6	158.8
Sep 24	158.2	133.3	165.8
Sep 25	156.1	137.2	164.8
Sep 26	154.8	150.2	157.7
Sep 27	149.3	137.4	161.2
Sep 28	157.6	152.2	162.8
Sep 29	158.0	154.3	161.5
Summary	125.9	110.6	158.2

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	147.3	144.5	148.1
Sep 2	146.6	144.1	148.8
Sep 3	144.8	142.6	148.7
Sep 4	144.6	142.1	148.0
Sep 5	146.8	139.7	150.6
Sep 6	147.4	144.5	150.0
Sep 7	146.2	144.3	148.3
Sep 8	145.7	143.3	150.0
Sep 9	146.2	144.0	149.5
Sep 10	145.5	117.6	151.1
Sep 11	147.2	144.3	151.0
Sep 12	146.6	145.7	148.8
Sep 13	146.3	143.6	148.5
Sep 14	146.7	144.8	149.1
Sep 15	146.6	143.8	148.9
Sep 16	147.0	145.0	148.8
Sep 17	145.8	143.0	147.5
Sep 18	148.5	146.3	150.8
Sep 19	149.0	147.2	151.9
Sep 20	149.2	147.6	152.4
Sep 21	149.1	146.6	151.2
Sep 22	149.8	147.8	152.5
Sep 23	149.4	148.2	152.0
Sep 24	148.8	145.1	150.6
Sep 25	147.3	142.1	150.9
Sep 26	144.5	142.9	146.2
Sep 27	131.7	106.1	148.0
Sep 28	144.5	142.8	147.1
Sep 29	145.0	143.2	146.3
Summary	146.3	131.7	149.8

Data			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	147.5	140.6	150.7
Sep 2	145.9	138.6	150.4
Sep 3	143.5	139.7	149.8
Sep 4	142.4	136.5	150.1
Sep 5	146.8	141.8	154.6
Sep 6	148.0	142.6	156.1
Sep 7	143.7	136.8	148.4
Sep 8	142.6	135.8	151.9
Sep 9	143.6	136.2	151.6
Sep 10	141.5	107.9	155.8
Sep 11	146.1	141.5	153.5
Sep 12	144.5	141.0	148.9
Sep 13	143.9	140.2	148.7
Sep 14	144.3	140.8	148.9
Sep 15	143.3	137.4	149.8
Sep 16	144.2	139.3	148.5
Sep 17	141.8	134.2	146.7
Sep 18	147.9	140.7	151.6
Sep 19	148.2	130.7	154.1
Sep 20	149.4	144.7	157.5
Sep 21	149.3	146.0	153.8
Sep 22	150.4	145.8	156.8
Sep 23	149.7	139.3	153.2
Sep 24	148.6	139.8	154.6
Sep 25	145.9	136.3	154.6
Sep 26	139.9	128.4	145.6
Sep 27	121.0	76.8	149.0
Sep 28	137.1	133.2	141.8
Sep 29	142.5	140.1	145.3
Summary	144.3	121.0	150.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	98.7	95.7	103.1
Sep 2	98.6	95.4	104.0
Sep 3	97.7	93.9	103.8
Sep 4	96.1	92.0	102.3
Sep 5	98.0	93.7	104.2
Sep 6	98.1	92.2	106.3
Sep 7	94.4	90.6	98.1
Sep 8	92.9	86.0	101.1
Sep 9	94.5	87.3	102.5
Sep 10	95.0	87.9	106.7
Sep 11	97.9	90.7	106.0
Sep 12	97.8	94.4	103.0
Sep 13	99.4	95.2	104.4
Sep 14	100.1	97.1	104.3
Sep 15	98.7	95.1	103.7
Sep 16	97.0	93.2	101.8
Sep 17	96.4	91.7	100.7
Sep 18	99.3	95.8	103.4
Sep 19	100.2	95.7	106.0
Sep 20	100.2	94.2	108.5
Sep 21	99.9	95.0	106.3
Sep 22	100.9	95.0	108.3
Sep 23	100.5	97.6	106.1
Sep 24	99.4	94.6	105.0
Sep 25	97.5	94.4	105.1
Sep 26	95.9	93.6	97.6
Sep 27	89.7	64.8	98.6
Sep 28	99.3	96.3	103.6
Sep 29	99.4	97.5	101.9
Summary	97.7	89.7	100.9

		5	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	113.4	112.0	114.3
Sep 2	114.0	113.2	115.3
Sep 3	113.8	110.8	120.6
Sep 4	113.4	111.0	121.5
Sep 5	115.1	111.5	120.9
Sep 6	114.7	112.7	117.8
Sep 7	113.7	112.6	115.1
Sep 8	113.3	111.2	117.8
Sep 9	113.6	111.6	118.3
Sep 10	112.9	95.4	118.1
Sep 11	114.0	112.1	116.1
Sep 12	114.1	112.5	120.1
Sep 13	113.8	112.3	119.0
Sep 14	113.8	113.1	116.4
Sep 15	113.5	112.5	115.1
Sep 16	113.8	112.5	121.4
Sep 17	114.0	112.0	120.8
Sep 18	115.5	112.9	124.2
Sep 19	115.0	113.1	119.8
Sep 20	114.5	112.7	117.0
Sep 21	113.9	112.7	115.7
Sep 22	114.2	112.6	116.4
Sep 23	114.5	113.2	117.4
Sep 24	113.7	112.3	115.6
Sep 25	113.0	111.2	115.5
Sep 26	111.9	111.3	112.4
Sep 27	100.3	65.8	113.3
Sep 28	113.9	111.9	121.5
Sep 29	113.1	112.4	114.2
Summary	113.4	100.3	115.5

		. 3	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	118.3	115.7	120.8
Sep 2	118.0	116.0	120.9
Sep 3	120.8	115.2	148.6
Sep 4	119.0	114.4	139.4
Sep 5	120.4	115.4	135.9
Sep 6	121.3	115.4	133.6
Sep 7	117.1	114.2	119.4
Sep 8	116.7	113.2	121.3
Sep 9	121.4	113.7	149.2
Sep 10	121.2	107.3	149.8
Sep 11	123.0	116.6	144.5
Sep 12	120.6	117.7	135.1
Sep 13	120.9	117.5	137.0
Sep 14	118.9	117.8	120.9
Sep 15	118.1	116.5	120.3
Sep 16	119.9	117.0	132.2
Sep 17	122.6	115.7	138.4
Sep 18	126.9	119.1	153.9
Sep 19	127.4	120.5	146.8
Sep 20	124.5	120.7	137.9
Sep 21	122.3	120.3	125.2
Sep 22	122.5	119.9	125.7
Sep 23	124.3	120.9	142.7
Sep 24	121.8	118.2	124.9
Sep 25	134.7	119.1	160.9
Sep 26	128.1	126.0	130.2
Sep 27	122.0	93.6	160.6
Sep 28	126.0	123.5	131.4
Sep 29	122.4	120.9	123.6
Summary	122.1	116.7	134.7

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	139.0	137.9	139.8
Sep 2	138.3	137.7	139.2
Sep 3	138.2	137.3	139.7
Sep 4	138.1	137.1	139.7
Sep 5	138.8	137.8	140.7
Sep 6	139.4	138.0	141.2
Sep 7	139.0	138.0	139.8
Sep 8	138.6	137.2	140.6
Sep 9	138.8	137.6	140.3
Sep 10	137.3	101.0	142.8
Sep 11	154.2	138.0	175.5
Sep 12	171.8	171.1	172.4
Sep 13	167.8	152.2	173.5
Sep 14	147.3	144.0	151.3
Sep 15	142.3	141.0	143.7
Sep 16	152.7	139.7	170.9
Sep 17	152.0	143.2	172.5
Sep 18	156.6	143.8	174.1
Sep 19	157.1	145.3	174.3
Sep 20	155.4	145.6	174.0
Sep 21	145.7	144.1	146.9
Sep 22	144.1	143.1	145.7
Sep 23	143.1	142.2	144.2
Sep 24	141.6	139.6	142.8
Sep 25	139.6	137.8	141.0
Sep 26	137.0	136.1	137.8
Sep 27	119.6	83.9	150.0
Sep 28	138.7	137.2	143.1
Sep 29	137.0	136.4	137.3
Summary	144.4	119.6	171.8

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	120.2	116.3	122.6
Sep 2	119.9	117.2	122.9
Sep 3	119.2	116.3	123.0
Sep 4	118.1	114.3	121.6
Sep 5	119.7	115.1	125.0
Sep 6	120.7	117.8	125.0
Sep 7	118.2	115.2	121.5
Sep 8	117.5	113.2	123.7
Sep 9	118.2	113.9	123.0
Sep 10	116.4	88.5	124.4
Sep 11	118.8	115.0	124.8
Sep 12	116.8	114.6	120.0
Sep 13	117.9	112.7	123.7
Sep 14	117.7	113.8	122.3
Sep 15	116.4	112.6	121.4
Sep 16	113.2	110.2	116.4
Sep 17	111.5	104.9	115.8
Sep 18	115.1	111.1	119.9
Sep 19	115.2	111.9	121.2
Sep 20	115.7	110.2	122.7
Sep 21	114.8	110.0	121.1
Sep 22	115.8	110.5	123.3
Sep 23	114.0	111.2	120.9
Sep 24	111.6	104.2	118.3
Sep 25	107.8	100.9	115.8
Sep 26	101.7	99.3	104.7
Sep 27	91.8	65.7	103.9
Sep 28	100.2	96.5	105.9
Sep 29	100.7	97.4	105.8
Summary	114.0	91.8	120.7

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	72.6	66.9	85.7
Sep 2	73.5	63.8	91.7
Sep 3	71.8	60.6	88.0
Sep 4	68.2	55.6	84.3
Sep 5	71.7	58.6	88.4
Sep 6	71.8	56.7	91.9
Sep 7	65.1	53.5	78.8
Sep 8	61.0	44.7	81.0
Sep 9	64.3	47.6	85.3
Sep 10	67.6	49.3	92.0
Sep 11	71.1	54.5	91.1
Sep 12	68.2	58.4	79.7
Sep 13	72.9	62.1	91.0
Sep 14	74.5	65.2	88.3
Sep 15	71.9	61.3	86.5
Sep 16	64.9	56.9	80.5
Sep 17	65.9	56.0	76.9
Sep 18	72.3	62.1	86.8
Sep 19	73.5	61.6	91.1
Sep 20	74.2	60.0	94.0
Sep 21	73.9	60.4	93.9
Sep 22	76.0	61.0	94.3
Sep 23	74.2	66.2	91.1
Sep 24	71.8	65.0	91.0
Sep 25	67.5	63.2	84.6
Sep 26	65.1	62.9	68.1
Sep 27	71.3	65.4	84.3
Sep 28	71.0	62.6	84.2
Sep 29	69.4	63.7	80.9
Summary	70.3	61.0	76.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	102.7	95.6	109.7
Sep 2	102.8	97.7	113.8
Sep 3	102.0	95.3	110.1
Sep 4	99.6	92.7	108.5
Sep 5	103.0	94.8	112.8
Sep 6	102.8	92.6	114.5
Sep 7	96.8	89.1	105.4
Sep 8	94.4	80.2	108.2
Sep 9	97.6	83.5	110.1
Sep 10	97.4	84.1	113.1
Sep 11	101.4	90.0	112.6
Sep 12	98.2	94.8	104.9
Sep 13	101.3	93.0	110.2
Sep 14	101.9	96.1	111.7
Sep 15	100.6	94.4	107.4
Sep 16	97.3	90.0	108.3
Sep 17	96.3	85.3	104.8
Sep 18	101.7	96.1	108.5
Sep 19	102.6	94.9	112.3
Sep 20	103.9	93.1	115.7
Sep 21	103.0	93.7	113.8
Sep 22	104.7	94.9	116.1
Sep 23	103.4	98.2	112.1
Sep 24	100.1	89.0	115.5
Sep 25	95.3	86.2	108.9
Sep 26	92.2	88.6	96.2
Sep 27	86.8	67.4	97.7
Sep 28	95.2	90.1	104.0
Sep 29	94.4	89.1	100.5
Summary	99.3	86.8	104.7

Date Average (°F) Minimum (°F) Maximum (°F) Sep 1 73.2 67.4 87.4 Sep 2 74.1 63.2 90.3 Sep 3 71.9 61.4 91.3 Sep 4 68.9 56.4 89.2 Sep 5 73.4 59.0 92.8 Sep 6 73.4 57.4 95.1 Sep 7 66.8 54.6 82.2 Sep 8 63.1 45.3 86.8 Sep 9 66.1 48.2 89.4 Sep 10 69.2 49.8 94.3 Sep 11 72.4 55.6 92.4 Sep 12 68.5 58.6 81.1 Sep 13 73.0 62.5 89.3 Sep 14 74.4 66.0 85.9 Sep 15 72.5 62.4 88.9 Sep 16 65.3 57.4 81.6 Sep 17 66.1 56.3 76.7 Sep 18 72.1 62				
Sep 274.163.290.3Sep 371.961.491.3Sep 468.956.489.2Sep 573.459.092.8Sep 673.457.495.1Sep 766.854.682.2Sep 863.145.386.8Sep 966.148.289.4Sep 1069.249.894.3Sep 1172.455.692.4Sep 1268.558.681.1Sep 1373.062.589.3Sep 1474.466.085.9Sep 1572.562.488.9Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.860.794.7Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 371.961.491.3Sep 468.956.489.2Sep 573.459.092.8Sep 673.457.495.1Sep 766.854.682.2Sep 863.145.386.8Sep 966.148.289.4Sep 1069.249.894.3Sep 1172.455.692.4Sep 1268.558.681.1Sep 1373.062.589.3Sep 1474.466.085.9Sep 1572.562.488.9Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.860.794.7Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 1	73.2	67.4	87.4
Sep 468.956.489.2Sep 573.459.092.8Sep 673.457.495.1Sep 766.854.682.2Sep 863.145.386.8Sep 966.148.289.4Sep 1069.249.894.3Sep 1172.455.692.4Sep 1373.062.589.3Sep 1474.466.085.9Sep 1572.562.488.9Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 2075.859.997.0Sep 2174.860.794.7Sep 2277.466.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 2	74.1	63.2	90.3
Sep 573.459.092.8Sep 673.457.495.1Sep 766.854.682.2Sep 863.145.386.8Sep 966.148.289.4Sep 1069.249.894.3Sep 1172.455.692.4Sep 1373.062.589.3Sep 1474.466.085.9Sep 1572.562.488.9Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 2075.859.997.0Sep 2174.860.794.7Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 3	71.9	61.4	91.3
Sep 673.457.495.1Sep 766.854.682.2Sep 863.145.386.8Sep 966.148.289.4Sep 1069.249.894.3Sep 1172.455.692.4Sep 1268.558.681.1Sep 1373.062.589.3Sep 1474.466.085.9Sep 1572.562.488.9Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.860.794.7Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 4	68.9	56.4	89.2
Sep 766.854.682.2Sep 863.145.386.8Sep 966.148.289.4Sep 1069.249.894.3Sep 1172.455.692.4Sep 1268.558.681.1Sep 1373.062.589.3Sep 1474.466.085.9Sep 1572.562.488.9Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.860.794.7Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 5	73.4	59.0	92.8
Sep 863.145.386.8Sep 966.148.289.4Sep 1069.249.894.3Sep 1172.455.692.4Sep 1268.558.681.1Sep 1373.062.589.3Sep 1474.466.085.9Sep 1572.562.488.9Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.860.794.7Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 6	73.4	57.4	95.1
Sep 966.148.289.4Sep 1069.249.894.3Sep 1172.455.692.4Sep 1268.558.681.1Sep 1373.062.589.3Sep 1474.466.085.9Sep 1572.562.488.9Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.860.794.7Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 7	66.8	54.6	82.2
Sep 1069.249.894.3Sep 1172.455.692.4Sep 1268.558.681.1Sep 1373.062.589.3Sep 1474.466.085.9Sep 1572.562.488.9Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.460.998.3Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 8	63.1	45.3	86.8
Sep 1172.455.692.4Sep 1268.558.681.1Sep 1373.062.589.3Sep 1474.466.085.9Sep 1572.562.488.9Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.860.794.7Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 9	66.1	48.2	89.4
Sep 1268.558.681.1Sep 1373.062.589.3Sep 1474.466.085.9Sep 1572.562.488.9Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 2075.859.997.0Sep 2174.860.794.7Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 10	69.2	49.8	94.3
Sep 1373.062.589.3Sep 1474.466.085.9Sep 1572.562.488.9Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.860.794.7Sep 2277.466.694.2Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 11	72.4	55.6	92.4
Sep 1474.466.085.9Sep 1572.562.488.9Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.860.794.7Sep 2277.466.694.2Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 12	68.5	58.6	81.1
Sep 1572.562.488.9Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.860.794.7Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 13	73.0	62.5	89.3
Sep 1665.357.481.6Sep 1766.156.376.7Sep 1872.162.884.4Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.860.794.7Sep 2277.460.998.3Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 14	74.4	66.0	85.9
Sep 1766.156.376.7Sep 1872.162.884.4Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.860.794.7Sep 2277.460.998.3Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 15	72.5	62.4	88.9
Sep 1872.162.884.4Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.860.794.7Sep 2277.460.998.3Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 16	65.3	57.4	81.6
Sep 1973.662.093.0Sep 2075.859.997.0Sep 2174.860.794.7Sep 2277.460.998.3Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 17	66.1	56.3	76.7
Sep 2075.859.997.0Sep 2174.860.794.7Sep 2277.460.998.3Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 18	72.1	62.8	84.4
Sep 2174.860.794.7Sep 2277.460.998.3Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 19	73.6	62.0	93.0
Sep 2277.460.998.3Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 20	75.8	59.9	97.0
Sep 2375.166.694.2Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 21	74.8	60.7	94.7
Sep 2472.765.389.5Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 22	77.4	60.9	98.3
Sep 2568.063.484.2Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 23	75.1	66.6	94.2
Sep 2665.163.168.1Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 24	72.7	65.3	89.5
Sep 2771.965.785.2Sep 2871.462.184.0Sep 2969.564.280.3	Sep 25	68.0	63.4	84.2
Sep 2871.462.184.0Sep 2969.564.280.3	Sep 26	65.1	63.1	68.1
Sep 29 69.5 64.2 80.3	Sep 27	71.9	65.7	85.2
	Sep 28	71.4	62.1	84.0
Summary 71.0 63.1 77.4	Sep 29	69.5	64.2	80.3
	Summary	71.0	63.1	77.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	149.2	145.7	150.8
Sep 2	149.5	146.7	151.2
Sep 3	148.9	147.4	150.0
Sep 4	148.5	146.7	150.8
Sep 5	150.1	147.7	152.5
Sep 6	150.6	148.3	153.3
Sep 7	148.7	145.9	150.5
Sep 8	148.8	146.7	151.9
Sep 9	149.3	146.4	152.5
Sep 10	147.2	117.3	154.1
Sep 11	150.2	148.2	152.8
Sep 12	149.4	146.3	150.7
Sep 13	149.6	147.0	151.6
Sep 14	149.3	146.4	151.2
Sep 15	149.2	146.6	150.7
Sep 16	149.8	147.4	151.7
Sep 17	149.5	145.5	151.4
Sep 18	151.3	150.2	152.8
Sep 19	151.8	150.6	153.9
Sep 20	151.7	149.7	154.5
Sep 21	151.1	149.8	153.2
Sep 22	151.8	149.8	154.0
Sep 23	151.6	150.3	153.2
Sep 24	149.2	136.7	153.1
Sep 25	148.1	144.0	151.6
Sep 26	147.3	144.6	148.9
Sep 27	129.4	94.8	152.1
Sep 28	150.2	145.8	152.1
Sep 29	151.1	148.3	152.2
Summary	149.0	129.4	151.8

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	156.9	146.4	160.5
Sep 2	159.8	155.3	161.7
Sep 3	158.2	155.3	160.5
Sep 4	157.9	154.8	161.0
Sep 5	161.4	156.9	164.4
Sep 6	162.8	159.4	165.4
Sep 7	160.6	156.7	163.6
Sep 8	160.9	157.4	163.7
Sep 9	162.0	157.9	166.2
Sep 10	162.5	157.9	167.0
Sep 11	161.8	120.3	166.2
Sep 12	172.3	161.2	192.5
Sep 13	193.6	192.5	194.5
Sep 14	188.5	183.2	194.4
Sep 15	178.8	174.0	184.3
Sep 16	173.2	171.3	175.1
Sep 17	169.9	167.2	171.4
Sep 18	170.2	168.7	171.7
Sep 19	169.5	168.2	171.1
Sep 20	168.4	166.8	170.4
Sep 21	167.5	166.2	169.4
Sep 22	167.6	166.2	169.9
Sep 23	165.0	148.8	168.7
Sep 24	148.6	96.9	165.0
Sep 25	141.6	117.3	158.9
Sep 26	151.4	144.3	156.0
Sep 27	151.9	144.5	159.0
Sep 28	160.1	158.2	162.4
Sep 29	161.5	159.7	162.7
Summary	164.3	141.6	193.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	136.2	134.8	137.2
Sep 2	134.5	133.6	135.3
Sep 3	138.5	132.4	149.5
Sep 4	139.3	134.2	152.7
Sep 5	141.6	136.4	152.1
Sep 6	142.0	136.9	154.7
Sep 7	136.9	135.5	139.1
Sep 8	135.0	134.2	136.0
Sep 9	139.2	133.3	153.0
Sep 10	140.4	126.1	153.8
Sep 11	142.4	137.5	154.7
Sep 12	142.0	137.4	153.1
Sep 13	141.4	137.2	153.3
Sep 14	137.7	136.0	140.5
Sep 15	135.3	134.7	136.2
Sep 16	138.5	133.7	152.9
Sep 17	143.9	136.8	155.6
Sep 18	147.7	140.4	157.9
Sep 19	145.3	141.6	155.7
Sep 20	144.1	139.0	156.1
Sep 21	139.2	137.9	140.8
Sep 22	137.2	136.1	137.8
Sep 23	141.1	135.8	156.0
Sep 24	137.2	135.1	138.8
Sep 25	140.7	135.1	156.1
Sep 26	133.6	90.5	141.1
Sep 27	124.6	91.6	156.7
Sep 28	141.8	137.9	152.1
Sep 29	136.1	134.7	137.7
Summary	139.1	124.6	147.7

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Sep 1	127.5	122.5	129.9
Sep 2	134.5	133.6	135.3
Sep 3	123.2	120.2	127.6
Sep 4	139.3	134.2	152.7
Sep 4	125.4	121.0	128.3
Sep 6	142.0		
•		136.9	154.7
Sep 7	122.6	119.0	125.3
Sep 8	135.0	134.2	136.0
Sep 9	123.0	116.6	127.1
Sep 10	140.4	126.1	153.8
Sep 11	125.0	120.3	128.9
Sep 12	142.0	137.4	153.1
Sep 13	124.5	122.2	127.3
Sep 14	137.7	136.0	140.5
Sep 15	124.1	120.9	127.0
Sep 16	138.5	133.7	152.9
Sep 17	122.5	117.8	126.4
Sep 18	147.7	140.4	157.9
Sep 19	127.2	125.0	131.2
Sep 20	144.1	139.0	156.1
Sep 21	127.6	124.5	130.3
Sep 22	137.2	136.1	137.8
Sep 23	127.7	122.2	130.8
Sep 24	137.2	135.1	138.8
Sep 25	127.8	123.9	134.3
Sep 26	133.6	90.5	141.1
Sep 27	119.9	104.1	129.6
Sep 28	141.8	137.9	152.1
Sep 29	126.0	124.4	127.6
Summary	125.1	119.9	128.6

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

Appendix D Table of Contents

Section Page
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 1 D-3
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 2 D-4
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 3 D-5
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 4 D-6
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 5 D-7
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 6 D-8
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 7 D-9
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 8D-10
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 9D-11

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft				
1-Sep	166.1	217.9	218.2	233.9	246.8	267.0				
2-Sep	166.3	217.6	217.9	232.8	245.4	267.0				
3-Sep	166.1	217.4	217.7	232.4	244.5	266.7				
4-Sep	166.0	217.1	217.4	231.9	243.7	266.5				
5-Sep	166.3	217.2	217.6	232.0	243.8	266.6				
6-Sep	166.3	217.2	217.6	232.0	243.4	266.6				
7-Sep	166.0	216.8	217.2	231.7	243.0	266.1				
8-Sep	165.8	216.7	217.1	231.7	243.1	266.0				
9-Sep	165.9	216.6	217.1	231.6	243.1	266.0				
10-Sep	166.0	216.7	217.0	231.4	242.8	266.1				
11-Sep	166.1	216.7	217.1	231.5	242.7	266.1				
12-Sep	166.0	216.6	216.9	231.3	242.6	265.8				
13-Sep	166.5	216.7	217.1	231.6	242.7	266.1				
14-Sep	166.7	216.8	217.1	231.5	242.7	266.0				
15-Sep	166.6	216.7	217.0	231.3	242.4	265.9				
16-Sep	166.3	216.3	216.7	231.0	241.8	265.6				
17-Sep	166.5	216.4	216.7	231.1	241.8	265.6				
18-Sep	166.9	216.5	216.9	231.0	241.8	265.9				
19-Sep	166.9	216.4	216.8	230.8	241.7	265.9				
20-Sep	167.0	216.5	216.9	231.0	241.7	266.0				
21-Sep	166.9	216.4	216.8	230.9	241.6	265.8				
22-Sep	167.1	216.6	217.0	231.0	241.7	266.0				
23-Sep	167.0	216.5	216.9	230.9	241.6	265.8				
24-Sep	166.8	216.5	216.8	230.8	241.5	265.7				
25-Sep	166.2	216.3	216.6	230.5	241.2	265.5				
26-Sep	163.7	216.1	216.5	230.2	240.9	265.3				
27-Sep	162.8	216.5	216.9	230.6	241.3	265.6				
28-Sep	164.7	216.4	216.8	230.5	241.0	265.5				
29-Sep	165.7	216.3	216.7	230.4	240.9	265.3				
30-Sep	166.0	216.3	216.7	230.3	240.9	265.4				
Average	166.1	216.7	217.1	231.3	242.5	266.0				

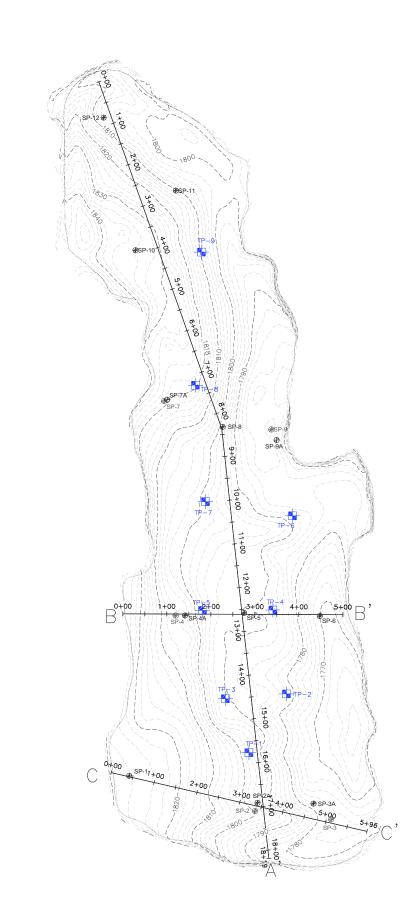
		Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft					
1-Sep	158.6	241.1	241.5	261.3	247.5	256.9					
2-Sep	158.6	241.4	241.8	261.4	247.4	257.0					
3-Sep	158.6	241.2	241.7	261.3	247.3	256.9					
4-Sep	158.4	240.7	241.1	261.3	247.6	256.8					
5-Sep	158.3	241.2	241.7	261.4	247.4	257.0					
6-Sep	158.3	241.2	241.6	261.3	247.2	256.7					
7-Sep	158.2	240.8	241.2	261.2	247.7	256.6					
8-Sep	157.7	241.0	241.3	261.0	247.0	256.6					
9-Sep	158.0	240.9	241.3	260.9	247.0	256.6					
10-Sep	158.1	241.0	241.4	260.9	247.0	256.7					
11-Sep	158.2	241.1	241.5	261.0	247.0	256.7					
12-Sep	158.1	240.9	241.4	260.8	246.8	256.5					
13-Sep	157.9	240.7	241.3	261.1	247.1	256.7					
14-Sep	157.9	240.8	241.4	261.1	247.1	256.8					
15-Sep	158.0	241.1	241.7	260.8	246.9	256.7					
16-Sep	157.5	240.9	241.3	260.5	246.6	256.4					
17-Sep	156.8	241.0	241.4	260.6	246.6	256.4					
18-Sep	157.0	241.2	241.6	260.8	246.8	256.7					
19-Sep	157.0	241.3	241.8	260.8	246.8	256.8					
20-Sep	157.0	241.2	241.8	261.0	246.8	257.1					
21-Sep	157.2	240.7	241.3	261.1	246.9	257.2					
22-Sep	157.3	241.4	242.1	260.9	246.9	257.4					
23-Sep	157.3	241.0	241.7	260.7	246.7	257.0					
24-Sep	157.6	240.5	241.1	260.6	246.8	257.2					
25-Sep	157.9	240.2	240.8	260.5	247.0	257.7					
26-Sep	157.7	240.0	240.6	260.6	247.1	257.7					
27-Sep	157.9	240.2	240.8	260.9	247.4	258.1					
28-Sep	158.1	240.2	240.7	260.9	247.4	258.6					
29-Sep	157.4	240.2	240.8	261.1	247.4	259.3					
30-Sep	157.7	240.1	240.8	261.1	247.5	260.1					
Average	157.8	240.8	241.4	261.0	247.1	257.2					

]	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft		
1-Sep	172.4	234.8	234.8	247.9	252.0	261.3	265.3	254.4		
2-Sep	172.5	235.0	235.0	248.0	252.1	261.3	265.6	254.5		
3-Sep	172.4	235.0	235.0	248.1	252.0	261.2	265.5	254.4		
4-Sep	171.9	234.8	234.8	247.9	251.8	261.1	265.3	254.2		
5-Sep	172.3	235.0	235.0	248.2	252.1	261.3	265.6	254.4		
6-Sep	172.4	234.9	235.0	248.2	252.1	261.5	265.6	254.4		
7-Sep	172.1	234.7	234.6	248.0	251.8	261.0	265.2	254.0		
8-Sep	171.8	234.6	234.6	248.1	251.8	261.1	265.3	254.0		
9-Sep	171.7	234.7	234.7	248.3	251.9	261.1	265.3	254.1		
10-Sep	171.7	234.8	234.8	248.4	252.2	261.3	265.4	254.2		
11-Sep	171.5	234.9	234.9	248.6	252.3	261.5	265.5	254.3		
12-Sep	171.8	234.7	234.7	248.4	252.0	261.3	265.3	254.0		
13-Sep	172.2	234.3	234.3	248.4	252.0	261.3	265.3	254.1		
14-Sep	172.1	233.7	233.8	248.2	251.9	261.3	265.4	254.1		
15-Sep	171.8	233.7	233.7	248.2	251.9	261.1	265.4	254.1		
16-Sep	171.2	233.8	233.7	248.0	251.6	260.9	265.1	253.7		
17-Sep	171.0	234.0	234.0	248.0	251.6	260.9	265.0	253.7		
18-Sep	171.2	234.5	234.4	248.3	251.9	261.1	265.2	254.0		
19-Sep	171.2	234.6	234.7	248.3	252.0	261.4	265.3	254.1		
20-Sep	171.2	234.8	234.7	248.4	252.1	261.4	265.3	254.2		
21-Sep	171.1	234.8	234.7	248.4	251.9	261.3	265.2	254.0		
22-Sep	171.2	234.9	234.8	248.4	252.0	261.4	265.3	254.1		
23-Sep	170.9	234.8	234.7	248.4	251.8	261.3	265.2	253.9		
24-Sep	170.9	234.7	234.6	248.3	251.8	261.2	265.1	253.9		
25-Sep	170.6	234.5	234.4	248.0	251.5	261.0	264.8	253.5		
26-Sep	170.5	234.3	234.3	247.9	251.3	260.8	264.6	253.4		
27-Sep	170.8	234.6	234.5	248.1	251.5	261.0	264.8	253.5		
28-Sep	170.6	234.7	234.7	248.3	251.7	261.0	265.0	253.7		
29-Sep	170.6	234.6	234.5	248.1	251.5	260.8	264.8	253.5		
30-Sep	170.8	234.6	234.5	248.1	251.5	260.7	264.7	253.5		
Average	171.5	234.6	234.6	248.2	251.9	261.2	265.2	254.0		

[Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft		
1-Sep	216.3	218.4	214.3	218.7	231.2	226.1	218.3	217.7		
2-Sep	216.9	219.2	211.2	219.6	231.7	226.6	219.2	218.6		
3-Sep	217.1	219.3	210.4	220.0	231.1	226.1	219.3	218.7		
4-Sep	217.4	219.5	213.8	220.1	231.3	226.4	219.5	218.9		
5-Sep	217.4	219.7	214.3	220.2	230.9	226.1	219.5	219.0		
6-Sep	217.6	220.0	219.0	220.8	230.9	226.3	219.6	219.1		
7-Sep	216.9	219.2	218.3	219.9	230.2	225.7	219.0	218.4		
8-Sep	216.8	219.1	218.2	219.6	229.5	224.6	218.9	218.3		
9-Sep	217.4	219.8	218.8	220.3	230.5	226.3	219.5	218.9		
10-Sep	217.4	220.0	219.0	220.6	228.7	226.7	219.8	219.2		
11-Sep	217.2	219.9	218.9	220.4	228.9	226.8	219.7	219.1		
12-Sep	217.5	220.2	219.0	220.5	228.6	226.7	219.9	219.2		
13-Sep	217.5	220.2	219.1	220.6	228.6	226.5	220.0	219.3		
14-Sep	217.9	220.6	219.4	220.7	228.9	227.2	220.3	219.6		
15-Sep	217.6	220.3	219.2	220.5	228.3	226.3	220.2	219.4		
16-Sep	217.9	220.5	219.5	220.7	228.2	226.2	220.4	219.7		
17-Sep	217.6	220.1	219.1	220.4	227.5	225.1	220.1	219.3		
18-Sep	218.4	221.2	220.2	221.4	228.5	226.3	221.1	220.4		
19-Sep	219.6	222.2	221.2	222.4	229.2	227.4	222.0	221.4		
20-Sep	219.6	222.3	221.3	222.3	228.9	226.9	222.1	221.3		
21-Sep	219.8	222.2	221.3	222.5	229.0	227.2	222.1	221.4		
22-Sep	220.1	222.6	221.7	222.7	228.7	226.7	222.4	221.8		
23-Sep	219.9	222.5	221.7	222.7	228.8	226.8	222.5	221.7		
24-Sep	219.3	221.8	220.7	222.0	228.4	226.4	221.8	221.0		
25-Sep	217.8	220.2	219.2	220.5	228.0	226.0	220.2	219.4		
26-Sep	214.6	218.0	216.5	217.8	228.5	226.1	217.6	217.0		
27-Sep	213.8	217.7	216.1	217.3	228.3	225.8	217.1	216.6		
28-Sep	215.0	217.7	216.5	218.0	227.7	224.8	217.4	216.9		
29-Sep	216.2	218.8	217.5	219.5	228.7	226.4	218.5	218.0		
30-Sep	217.2	219.8	218.6	220.8	228.9	226.9	219.5	219.0		
Average	217.5	220.1	218.1	220.5	229.2	226.3	219.9	219.3		

[Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft		
1-Sep	207.7	208.1	207.6	207.7	207.7	207.7	212.6	201.3		
2-Sep	207.8	208.2	207.6	207.7	207.6	207.7	212.3	201.2		
3-Sep	208.0	208.3	207.8	208.0	207.9	207.9	212.8	201.2		
4-Sep	208.1	208.4	207.9	208.0	208.0	208.0	212.9	201.2		
5-Sep	208.1	208.5	208.0	208.1	208.0	208.0	213.0	201.3		
6-Sep	207.8	207.7	207.7	207.8	207.7	207.7	212.9	201.3		
7-Sep	207.5	207.8	207.4	207.5	207.4	207.5	212.6	201.2		
8-Sep	207.6	207.9	207.5	207.6	207.5	207.5	212.6	201.0		
9-Sep	207.8	208.1	207.7	207.8	207.7	207.7	212.9	201.1		
10-Sep	207.8	208.2	207.7	207.8	207.7	207.7	213.1	201.2		
11-Sep	207.8	208.2	207.8	207.9	207.8	207.8	210.6	201.2		
12-Sep	207.7	208.1	207.7	207.9	207.7	207.7	209.3	201.2		
13-Sep	207.7	208.2	207.8	207.9	207.8	207.8	212.7	201.3		
14-Sep	207.8	208.5	207.8	208.0	207.9	207.9	212.0	201.4		
15-Sep	207.8	208.8	207.9	208.0	208.0	208.0	212.1	201.4		
16-Sep	207.8	209.5	207.9	207.8	207.7	207.7	212.0	201.1		
17-Sep	207.4	209.6	209.0	207.5	207.4	207.4	212.0	201.1		
18-Sep	207.5	210.0	209.4	207.6	207.5	207.5	212.1	201.2		
19-Sep	207.5	209.9	209.4	207.5	207.4	207.4	212.2	201.2		
20-Sep	207.6	208.9	209.4	207.6	207.5	207.4	212.5	201.2		
21-Sep	207.6	207.5	209.6	207.7	207.6	207.5	212.7	201.3		
22-Sep	207.6	207.6	209.3	207.7	207.7	207.6	212.9	201.4		
23-Sep	207.6	207.5	209.5	207.7	207.6	207.6	212.8	201.4		
24-Sep	207.5	208.2	209.5	207.7	207.6	207.5	212.7	201.4		
25-Sep	207.4	209.7	209.3	207.5	207.5	207.5	211.3	201.3		
26-Sep	207.1	210.5	208.3	207.3	207.8	207.3	207.5	201.1		
27-Sep	206.6	210.1	208.2	206.7	208.4	206.7	207.1	201.3		
28-Sep	207.1	210.3	209.3	207.1	208.1	207.1	207.6	201.2		
29-Sep	207.2	210.7	210.5	207.4	207.3	207.3	207.6	201.3		
30-Sep	207.3	210.0	211.9	207.5	209.7	207.4	208.7	201.3		
Average	207.6	208.8	208.5	207.7	207.8	207.6	211.5	201.2		

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft					
1-Sep	207.3	214.7	227.9	212.5	212.6					
2-Sep	207.4	218.9	226.7	209.7	209.5					
3-Sep	207.6	219.0	226.8	209.8	209.7					
4-Sep	207.8	219.8	227.2	209.5	209.5					
5-Sep	207.9	222.1	227.0	208.2	208.1					
6-Sep	207.5	221.9	226.3	207.6	207.5					
7-Sep	207.2	221.4	225.4	208.0	207.9					
8-Sep	207.4	221.7	226.2	208.6	208.5					
9-Sep	207.6	221.8	227.3	209.6	209.5					
10-Sep	207.7	219.3	225.6	208.9	208.8					
11-Sep	207.8	220.1	225.7	209.3	209.1					
12-Sep	207.5	216.1	215.3	209.4	209.2					
13-Sep	207.7	216.7	216.6	209.2	209.0					
14-Sep	207.8	215.5	212.2	209.4	209.2					
15-Sep	207.8	215.5	210.3	209.4	209.3					
16-Sep	207.6	215.4	210.5	209.1	209.0					
17-Sep	207.2	216.4	212.3	208.7	208.6					
18-Sep	207.4	217.2	220.0	208.9	208.8					
19-Sep	207.3	216.0	215.2	209.6	209.6					
20-Sep	207.5	218.8	223.4	209.8	209.8					
21-Sep	207.5	218.6	219.4	209.2	209.1					
22-Sep	207.6	219.9	218.1	208.7	208.7					
23-Sep	207.6	220.0	222.7	208.5	208.5					
24-Sep	207.3	217.1	209.5	208.8	208.8					
25-Sep	207.0	208.0	209.6	207.6	207.7					
26-Sep	206.7	203.2	206.5	206.4	206.4					
27-Sep	206.4	202.1	207.6	206.7	206.6					
28-Sep	206.7	203.8	207.8	206.8	206.7					
29-Sep	206.9	205.1	207.6	206.3	206.1					
30-Sep	207.0	205.3	208.0	206.5	206.2					
Average	207.4	215.7	218.2	208.7	208.6					


[Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft		
1-Sep	147.4	194.9	203.9	199.3	196.9	203.8	208.6	223.7		
2-Sep	147.7	194.6	203.7	199.1	196.7	203.3	208.7	223.8		
3-Sep	147.7	194.3	203.6	198.8	196.4	202.7	208.4	223.6		
4-Sep	147.8	194.2	203.7	198.7	196.2	202.3	208.2	223.7		
5-Sep	148.1	194.5	203.8	198.9	196.4	202.4	208.5	223.5		
6-Sep	148.3	194.5	203.4	198.5	196.3	201.8	207.4	221.9		
7-Sep	148.3	194.2	203.2	198.1	196.1	201.4	207.2	222.1		
8-Sep	148.3	194.2	203.2	198.1	196.2	201.3	207.2	222.1		
9-Sep	148.2	194.4	203.1	198.0	196.3	201.1	206.7	221.1		
10-Sep	148.4	194.5	203.3	197.9	196.3	200.9	206.5	220.8		
11-Sep	148.7	194.9	203.2	198.1	196.9	201.2	206.2	219.9		
12-Sep	148.6	194.5	203.0	197.9	196.5	200.7	206.2	220.4		
13-Sep	149.0	194.8	203.2	198.2	196.6	200.9	206.3	220.3		
14-Sep	149.0	194.8	203.1	198.1	196.7	200.9	206.3	220.6		
15-Sep	149.3	194.9	203.0	198.0	196.9	200.8	206.0	219.7		
16-Sep	149.4	195.3	202.7	197.9	197.2	200.9	205.1	217.8		
17-Sep	149.6	194.9	202.8	197.8	197.0	200.8	205.3	218.5		
18-Sep	150.4	194.5	202.9	197.9	196.3	200.5	206.2	220.7		
19-Sep	151.4	194.2	202.5	197.8	195.9	200.2	206.3	221.4		
20-Sep	152.3	194.3	202.8	197.8	196.0	200.1	206.5	221.6		
21-Sep	152.5	194.4	202.6	197.8	196.1	200.0	206.3	221.3		
22-Sep	153.3	194.6	202.6	197.8	196.3	200.1	206.3	221.2		
23-Sep	154.6	194.6	202.6	197.7	196.1	199.9	205.9	220.7		
24-Sep	154.3	194.5	202.6	197.7	195.9	199.8	206.1	221.2		
25-Sep	154.4	194.2	202.5	197.4	195.7	199.5	205.8	221.0		
26-Sep	154.7	193.8	202.3	197.2	195.4	199.3	205.8	221.6		
27-Sep	168.7	193.2	201.8	196.8	194.6	198.8	205.9	222.4		
28-Sep	159.6	193.2	201.9	196.8	194.7	198.8	205.9	222.6		
29-Sep	148.9	192.8	202.7	196.6	194.3	199.0	205.8	224.5		
30-Sep	144.8	193.2	202.0	197.0	194.7	199.4	206.2	223.0		
Average	150.8	194.3	202.9	197.9	196.1	200.7	206.6	221.6		

[Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Sep	185.5	188.5	190.9	193.5	195.3	194.1	186.4	170.7
2-Sep	179.4	181.4	184.5	186.6	188.1	187.5	179.1	162.9
3-Sep	187.9	193.1	193.4	196.0	197.8	196.6	189.5	174.3
4-Sep	186.3	192.9	193.2	195.8	197.2	196.1	189.1	173.8
5-Sep	189.3	194.6	194.9	197.5	199.0	198.0	191.1	175.9
6-Sep	188.7	194.1	194.4	196.9	198.3	197.3	190.4	175.3
7-Sep	188.2	194.0	194.3	196.8	198.2	197.2	190.4	175.3
8-Sep	188.1	194.0	194.3	196.8	198.2	197.3	190.5	175.1
9-Sep	187.0	194.2	194.4	197.0	198.3	197.3	190.6	175.4
10-Sep	188.0	194.3	194.5	197.1	198.1	197.5	190.6	175.4
11-Sep	188.7	194.4	194.6	197.2	198.2	197.6	190.7	175.3
12-Sep	189.5	194.3	194.5	197.0	198.0	197.5	190.6	175.0
13-Sep	189.3	194.4	194.6	197.1	198.2	197.6	190.7	175.1
14-Sep	189.0	194.5	194.8	197.3	198.6	197.7	190.9	175.2
15-Sep	189.1	194.5	194.7	197.3	198.7	197.6	190.7	175.0
16-Sep	188.8	194.4	194.6	197.1	198.5	197.4	190.5	174.7
17-Sep	188.7	194.5	194.5	197.0	198.4	197.3	190.5	174.6
18-Sep	189.1	194.5	194.6	197.1	198.6	197.5	190.7	174.8
19-Sep	189.0	194.5	194.7	197.2	198.6	197.7	190.8	174.8
20-Sep	189.0	194.5	194.8	197.2	198.7	197.8	190.9	174.9
21-Sep	189.0	194.6	194.8	197.2	198.7	197.8	190.9	174.9
22-Sep	189.2	194.7	194.8	197.4	198.8	197.9	191.0	175.1
23-Sep	188.5	194.7	194.8	197.3	198.7	197.8	190.9	174.9
24-Sep	189.0	194.6	194.7	197.2	198.7	197.7	190.8	174.8
25-Sep	188.7	194.5	194.5	197.1	198.5	197.5	190.6	174.6
26-Sep	188.6	194.3	194.4	196.9	198.3	197.4	190.4	174.4
27-Sep	189.5	194.2	194.4	196.8	198.1	197.7	190.6	174.5
28-Sep	190.1	194.2	194.5	196.9	198.3	197.6	190.7	174.6
29-Sep	189.9	194.4	194.5	197.0	198.4	197.6	190.8	174.6
30-Sep	190.0	194.4	194.5	197.0	198.6	197.7	190.8	174.5
Average	188.4	193.7	194.0	196.5	197.9	197.0	190.1	174.3

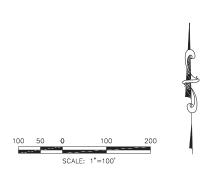
]				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Sep	112.7	151.2	150.4	151.7	147.0	133.7	118.0	106.9
2-Sep	113.0	151.3	150.7	151.7	147.0	133.7	118.0	106.9
3-Sep	113.2	151.2	150.7	151.5	146.8	133.7	117.9	106.8
4-Sep	113.1	151.2	150.7	151.4	146.7	133.5	117.7	106.6
5-Sep	113.3	151.5	151.0	151.6	146.9	133.7	118.0	106.9
6-Sep	113.0	151.3	150.7	151.5	146.8	133.7	117.9	106.7
7-Sep	112.8	151.0	150.4	151.3	146.7	133.5	117.7	106.6
8-Sep	112.8	150.9	150.3	151.1	146.5	133.3	117.6	106.3
9-Sep	113.2	151.1	150.5	151.2	146.5	133.3	117.7	106.4
10-Sep	113.6	151.3	150.8	151.4	146.6	133.4	117.8	106.5
11-Sep	113.8	151.4	150.8	151.5	146.7	133.5	117.9	106.7
12-Sep	113.5	151.2	150.5	151.3	146.5	133.3	117.7	106.4
13-Sep	113.8	151.5	150.9	151.7	146.9	133.6	118.0	106.8
14-Sep	114.0	151.6	151.0	151.7	146.9	133.6	118.0	106.8
15-Sep	114.2	151.5	151.0	151.6	146.7	133.5	117.9	106.7
16-Sep	113.6	151.2	150.6	151.2	146.3	133.1	117.5	106.3
17-Sep	113.6	151.2	150.6	151.4	146.5	133.1	117.7	106.4
18-Sep	114.0	151.4	150.8	151.6	146.7	133.5	118.0	106.7
19-Sep	114.2	151.5	151.0	151.5	146.7	133.5	118.0	106.7
20-Sep	114.2	151.6	151.1	151.6	146.7	133.6	118.0	106.8
21-Sep	114.3	151.7	151.2	151.5	146.7	133.5	118.0	106.8
22-Sep	114.5	151.8	151.3	151.7	146.9	133.7	118.2	106.9
23-Sep	114.4	151.7	151.2	151.6	146.7	133.5	118.0	106.8
24-Sep	114.2	151.7	151.2	151.6	146.6	133.4	118.0	106.7
25-Sep	112.9	151.3	150.7	151.3	146.4	133.2	117.7	106.4
26-Sep	101.8	147.6	145.9	150.8	146.6	133.2	117.2	106.1
27-Sep	95.4	142.0	139.5	148.5	147.4	134.0	111.8	106.9
28-Sep	100.6	145.6	145.1	150.2	146.8	134.0	109.8	106.3
29-Sep	106.8	146.5	145.4	150.4	146.8	134.2	110.9	105.9
30-Sep	108.8	148.1	147.2	150.7	146.9	134.2	111.1	105.9
Average	111.8	150.5	149.8	151.3	146.7	133.6	116.9	106.6

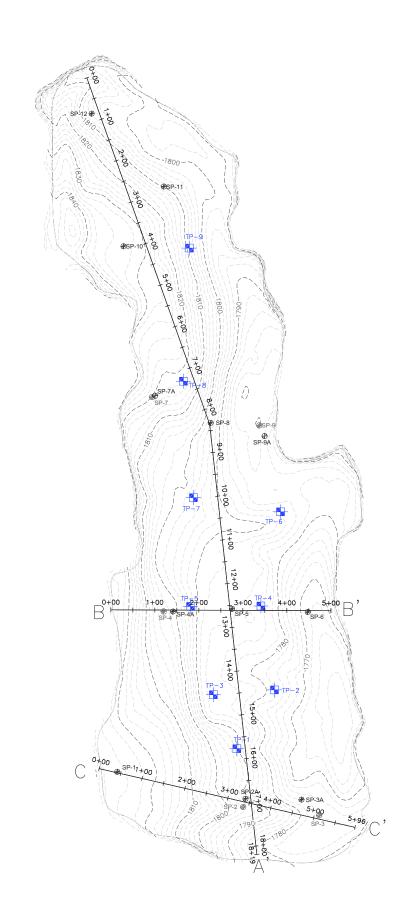
Appendix E

Monthly Topography Analysis

1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON SEPTEMBER 15, 2023 BY SCS ENGINEERS.

LEGEND

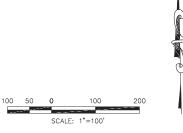

@SP-8 SETTLEMENT PLATE

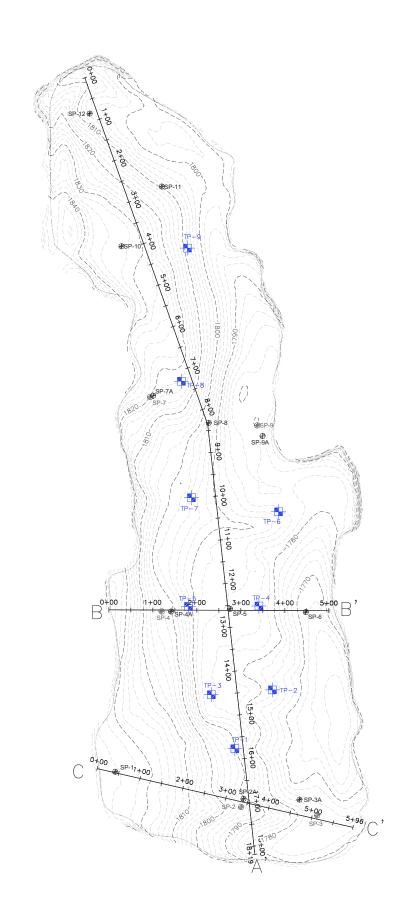

- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

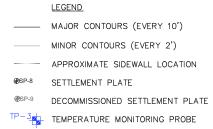
_____ MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2') APPROXIMATE SIDEWALL LOCATION

 $\circledast_{\mathsf{SP-9}}$ decommissioned settlement plate TP-3 TEMPERATURE MONITORING PROBE

DATE NO Ŕ MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588 SEPTEMBER 2023 LANDFILL TOPOGRAPHY TTLE SHEET CITY OF BRISTOL INTEGRATED SOLID WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201 SCS ENGINEERS STEARNS, CONRA AND SCHMIDT CONSULTING ENGINEERS, INC. 15521 MIDLOTHATTNRY, MULCOTHAN, VA 23113 PH, (804) 378-7440 FAX, (804) 378-7443 CADD FILE: SURF COMP DATE: 10/3/2024 SCALE: DRAWING NO. 1 of **8**

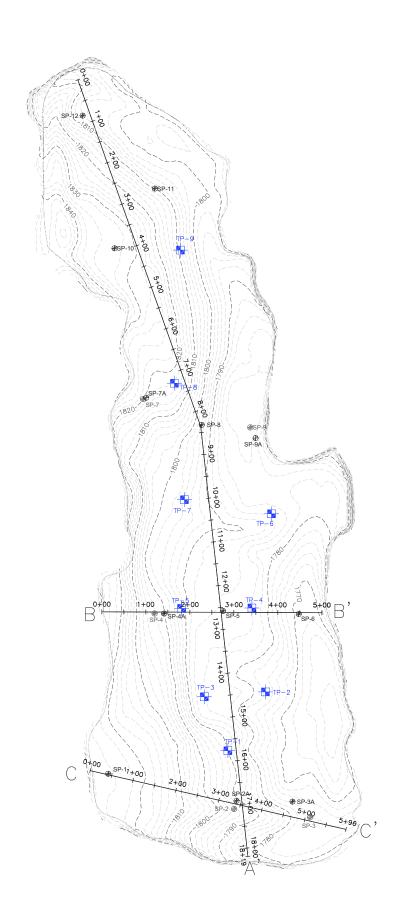

LEGEND ----- MAJOR CONTOURS (EVER MINOR CONTOURS (EVER APPROXIMATE SIDEWALL ₱SP-8 SETTLEMENT PLATE ●SP-9 DECOMMISSIONED SETTLEMENT PLATE TP-3 TEMPERATURE MONITORING PROBE


NOTES:


- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON JUNE 25, 2024 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

ERY 10')	
RY 2')	
L LOCATION	

2	DRAW	DATE 1 SCAL	CADE S DATE		SCS ENGINEERS	RS	CLIENT	SHEET TITLE	JUNE 2024	.ov	REVISION	DATE	
		0/ E:	UR		STEARNS, CONRAD AND SCHMIDT	:HMIDT	CITY OF BRISTOL INTEGRATED SOLID						
	S NC	'3/	LE: ?F		CONSULTING ENGINEERS, INC.	INC. THIAN VA 22113	WASTE MANAGEMENT FACILITY	PROJECT TITLE					
С).	20	сс ,	PH. (804) 378-	PH. (804) 378-7440 FAX. (804) 378-7433	7433				\triangleleft			
f)2		PROJ. NO.	DWN. BY:	Q/A RVW BY:	BRISTOL, VIRGINIA 24201	MONTHLY TOPOGRAPHY ANALYSIS	APHY ANALYSIS	<			
		4	Ρ	02218208.05	H	CUW		SOLID WASTE DEDMIT #588	FEMIT #588	<			
8				dsn. by: SRB	CHK. BY: CJW	APP. BY: CJW				1<			


NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON AUGUST 14, 2024 BY SCS ENGINEERS.
- ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

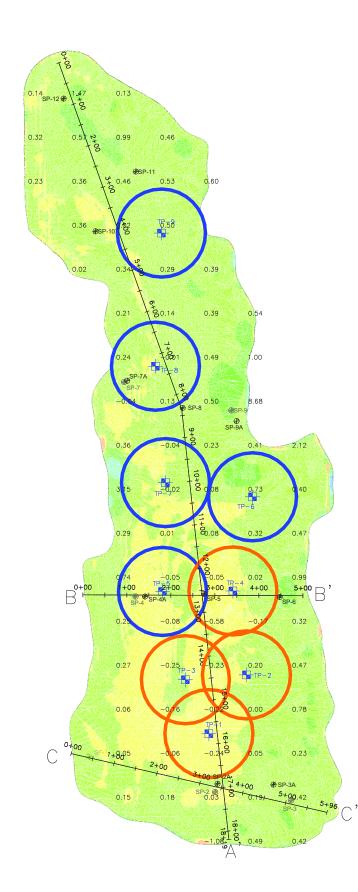
100 50

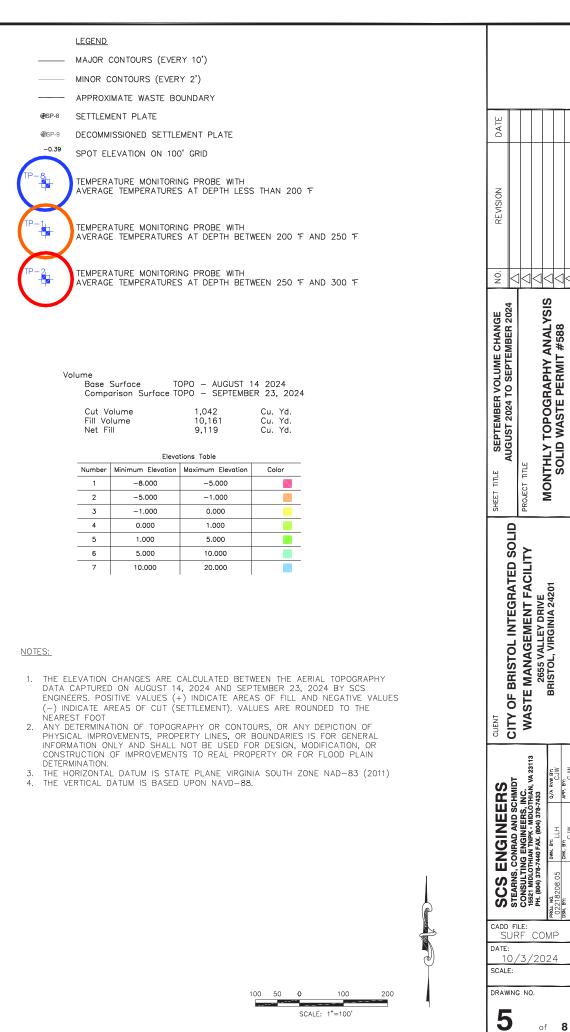
100 SCALE: 1"=100'

DATE						
REVISION						
NO.	\leq	$ \bigcirc$	\triangleleft	\triangleleft	<	1<
AUGUST 2024				MONTHLY TOPOGRAPHY ANALYSIS	SOLID WASTE DERMIT #588	
SHEET TITLE		PROJECT TITLE		MONTH		0
CLIENT	CITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY	2655 VALLEV D	BRISTOL VIRGINIA 24201		
SCS ENGINEERS	•••	CONSULTING ENGINEERS, INC.	PH. (804) 378-7440 FAX. (804) 378-7433	PROJ. NO. DWN. BY: Q/A RVW BY:	3208.05 LLH	DSN. BY: CHK. BY: CJW CJW
CADD SU DATE: 10 SCALE	JR	LE: F	<u>сс</u>			
)2.	4	
DRAW		i NC		of		8

LEGEND MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2') APPROXIMATE SIDEWALL LOCATION €SP-8 SETTLEMENT PLATE @SP-9 DECOMMISSIONED SETTLEMENT PLATE TP-3 TEMPERATURE MONITORING PROBE

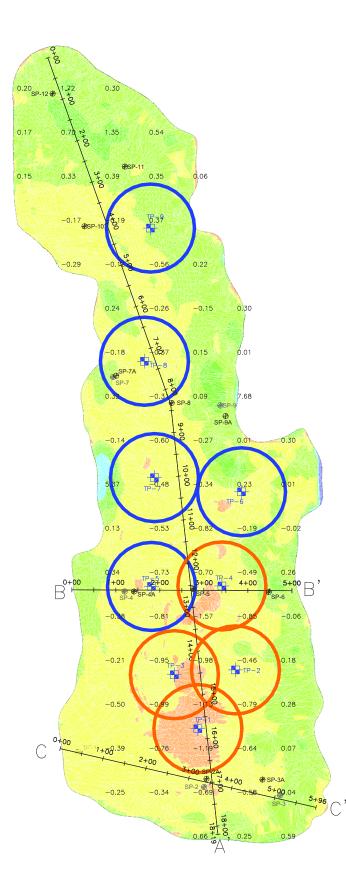
NOTES:

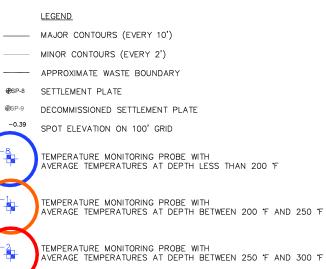

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON SEPTEMBER 23, 2024 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.


100 50 100

SCALE: 1"=100'

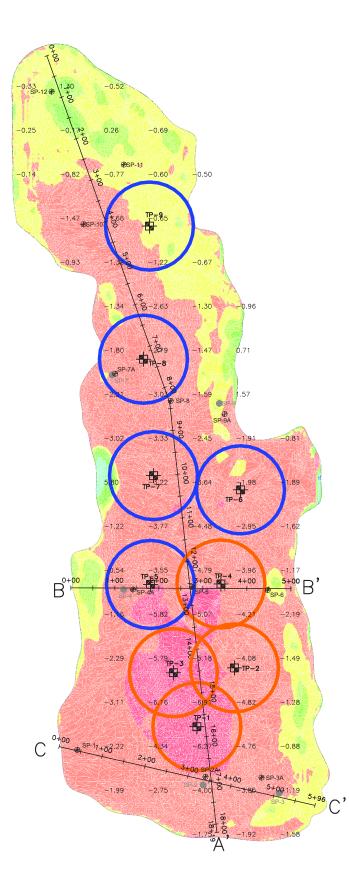
200





	e ase Surfac omparison			AUGUST SEPTEM
Fi	ut Volume ill Volume et Fill	1	,04 0,1 9,1	61

	Elevations Table				
Number	Minimum Elevation	Maximum Elevation			
1	-8.000	-5.000			
2	-5.000	-1.000			
3	-1.000	0.000			
4	0.000	1.000			
5	1.000	5.000			
6	5.000	10.000			
7	10.000	20.000			
	•				

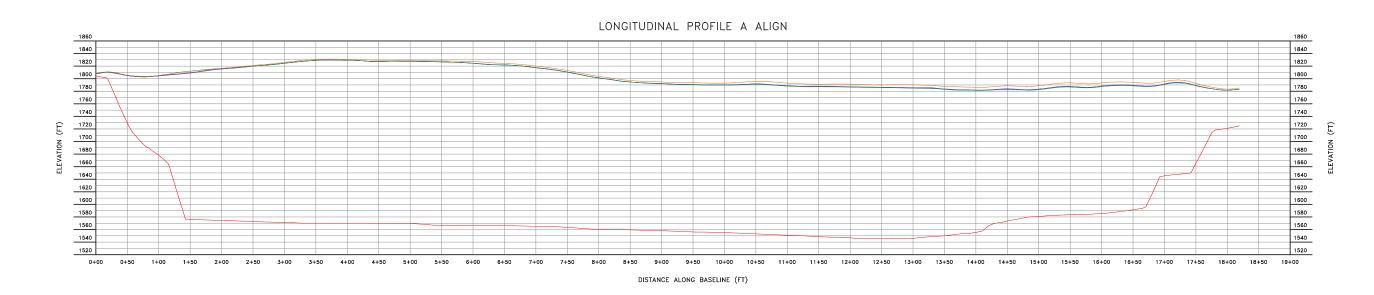

Volume Base Surface Comparison Surface	TOPO – e TOPO –	
Cut Volume	8,286	Cu. Y
Fill Volume	6,050	Cu. Y
Net Cut	2,236	Cu. Y

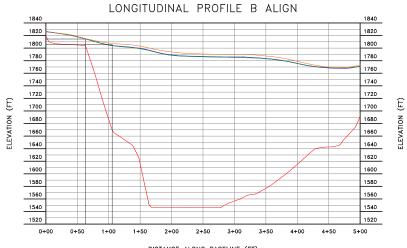
	Elevat	tions Table
Number	Minimum Elevation	Maximum Elevat
1	-10.000	-5.000
2	-5.000	-1.000
3	-1.000	0.000
4	0.000	1.000
5	1.000	5.000
6	5.000	10.000

NOTES:

- THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON JUNE 25, 2024 AND SEPTEMBER 23, 2024 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

ິ TOPOGRAPHY ANALYSI WASTE PERMIT #588 SEPTEMBER VOLUME CHANGE JUNE 2024 TO SEPTEMBER 2024 25, 2024 EMBER 23, 2024 Yd. Yd. Yd. MONTHLY T SOLID V Color ation TITLE \searrow \searrow SHEET CITY OF BRISTOL INTEGRATED SOLID WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201 \searrow \searrow SCS ENGINEERS STEATS, CONRA AND SCHMIDT CONSULTING ENGINEERS, INC. 16221 MOLOTHIAN TIPK- MIDLOTHIAN, VA 23113 PR. (BOA) 378-3406 FAX. (BOA) 378-34013 PR. (BOA) 378-3406 FAX. (BOA) 378-3413 PROJ. (B) 22218208 (D) 2 CADD FILE: SURF COMP DATE: 10/3/2024 SCALE: DRAWING NO. 100 50 100 200 6 SCALE: 1"=100' of **8**


	LEGEND					
	- MAJOR CONTOURS (EVERY 10')				
	- MINOR CONTOURS (E	EVERY 2')				
	- APPROXIMATE WASTI	E BOUNDARY				
@SP-8						
SP-9	DECOMMISSIONED SE	TTLEMENT PLATE			DATE	
-0.39	SPOT ELEVATION ON	100' GRID				
TP-8	TEMPERATURE MONI AVERAGE TEMPERAT	TORING PROBE WITH URES AT DEPTH LESS	S THAN 200 °F		NOI	
	TEMPERATURE MONI AVERAGE TEMPERAT		WEEN 200 F AND 250	F	REVISION	
	TEMPERATURE MONI AVERAGE TEMPERAT		WEEN 250 °F AND 300	۰F	o'z <	
	Volume Base Surface Comparison Surface	TOPO - SEPTEMBEI ∋ TOPO - SEPTEMBEI			SEPTEMBER VOLUME CHANGE SEPTEMBER 2023 TO SEPTEMBER 2024	MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588
	Cut Volume Fill Volume Net Cut	66,405 Cu. Yd. 1,697 Cu. Yd. 64,707 Cu. Yd.			MBER VC ER 2023 T	POGRA \STE PE
	Eleva	ions Table			EPTE	TOI MA
Numb	er Minimum Elevation	Maximum Elevation	Color		SE	E F
1	-16.000	-10.000			TITLE SE	
2	-10.000	-5.000				MONTH SC
3	-5.000	-1.000			SHEET	РКО
4	-1.000	0.000			9	
	0.000	5.000			ATED SOLID	~
	5.000	10.000				ACILIT
TURED ON SEP TIVE VALUES (- AS OF CUT (SE DETERMINATION COVEMENTS, PR SHALL NOT BE COVEMENTS TO	ANGES ARE CALCULATED TEMBER 15, 2023 AND S +) INDICATE AREAS OF F TTLEMENT). VALUES ARE N OF TOPOGRAPHY OR F OPERTY LINES, OR BOUN USED FOR DESIGN, MOI REAL PROPERTY OR FOR ATUM IS STATE PLANE V	EPTEMBER 23, 2024 E ILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER IFICATION, OR CONSTI FLOOD PLAIN DETERM	8Y SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICAL AL INFORMATION ONLY RUCTION OF MINATION.			WASTE MANAGEMENT F 2655 VALLEY DRIVE BRISTOL, VIRGINIA 2421
VERTICAL DATU	JM(S) IS BASED UPON N	AVD-88.				113
					l 🖉 🗄	Program Program <t< td=""></t<>
					SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT	THIAN 7433 APP.
						MDLC 49 378
						ANGINE TNPK - AX. (80 BY: LLH BY: CJW
						THIAN
				1	S ^r ss	HIDLOI
					SCS STEARN	CONSULTI 15521 MIDLO PH. (804) 378 PR04. NO. 02218208.05 DSN. BY.
						PRO DSN
					cadd fi SUF	
					DATE: 107	/3/2024
				Ĭ	SCALE:	
		100 50 0	100 200		DRAWING	G NO.
		sc	CALE: 1"=100'	I	7	
						of 8


	LEGEND							
	MAJOR CONTOURS (EVERY 10')						
	MINOR CONTOURS (E							
	APPROXIMATE WAST	E BOUNDARY						
	SETTLEMENT PLATE				DATE			
	DECOMMISSIONED SE				D/			
	SPOT ELEVATION ON	I 100' GRID						
)	TEMPERATURE MONI AVERAGE TEMPERAT	TORING PROBE WITH URES AT DEPTH LES	S THAN 200 F		REVISION			
	TEMPERATURE MONI AVERAGE TEMPERAT		WEEN 200 F AND 250 F		REV			
	TEMPERATURE MONI AVERAGE TEMPERAT		WEEN 250 °F AND 300 °F		NO.		<	
					Ш.	2024	U U U	0
					IANG		Ň	1
olu	ume Base Surface Comparison Surfac	TOPO – SEPTEMBE e TOPO – SEPTEMBE			SEPTEMBER VOLUME CHANGE		MONTHI V TOBOGBABHY ANALVSIS	
	Cut Volume Fill Volume Net Cut	66,405 Cu. Yd. 1,697 Cu. Yd. 64,707 Cu. Yd.			BER VOL	2023		
	_						ğ	
	1	tions Table	Calar		SEPTEMI) T	
1	Minimum Elevation -16.000	Maximum Elevation	Color				Ē	
		-10.000			U IILE	° ⊒	Ę	
	-10.000	-5.000				PROJECT TITLE	Q	2
	-5.000	-1.000			SHEET	PRC		
	-1.000	0.000				<u>a</u>		
	0.000	1.000				с 2 2		
	1.000	5.000				с Ч	i	
	5.000	10.000				ated solid Acility		2
IM) TL OPE U! E/	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOD AL PROPERTY OR FOR		BY SCS ENGINEERS. ALUES (-) INDICATE EAREST FOOT EPICTION OF PHYSICAL AL INFORMATION ONLY RUCTION OF MINATION.		CLIENT	CITY OF BRISTOL INTEGR. WASTE MANAGEMENT F	2655 VALLEY DRIVE	
4(:	S) IS BASED UPON N	AVD-88.				÷	2	ĺ
					SCS ENGINEERS	STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS, INC. 46531 MINI OTHIAN THER - MINI OTHIAN VA 33443	PH. (804) 378-7440 FAX. (804) 378-7433	
					CADD Sl		CON	
					DATE: 1(:)/3/	/20:	2
				ĭ I	SCALI			
		100 50 0	100 200		DRAW	ING NO).	
		S	CALE: 1"=100'		7	•	of	

	<u>LEGEND</u>					
	MAJOR CONTOURS (EVERY 10')				
	MINOR CONTOURS (E	EVERY 2')				
	APPROXIMATE WAST	,				
€SP-8	SETTLEMENT PLATE					—
OSP-9	DECOMMISSIONED SE	TTLEMENT PLATE			DATE	
-0.39	SPOT ELEVATION ON					+
3	TEMPERATURE MONI					
\mathbf{k}		URES AT DEPTH LESS	5 THAN 200 F		REVISION	
 	TEMPERATURE MONI AVERAGE TEMPERAT	TORING PROBE WITH URES AT DEPTH BETV	WEEN 200 °F AND 2	250 F	RE	
.2	TEMPERATURE MONI AVERAGE TEMPERAT	TORING PROBE WITH URES AT DEPTH BETV	WEEN 250 °F AND 3	300 °F	ÖN 🗸	
						<u> </u>
					GE B 20	
					MBE	
Volu	ime Base Surface	TOPO - SEPTEMBE	2 15 2023		UME CHANGE SEPTEMBER 2024	
		TOPO – SEPTEMBER e TOPO – SEPTEMBER			SEPTEMBER VOLUME CHANGE TEMBER 2023 TO SEPTEMBER 2	
	Cut Volume Fill Volume	66,405 Cu. Yd. 1,697 Cu. Yd.			R VC 23 TC	
	Net Cut	64,707 Cu. Yd.			SEPTEMBER V SEPTEMBER 2023 LE	
	Eleva	tions Table			ABEF	
lumber	Minimum Elevation	Maximum Elevation	Color		SEF	
1	-16.000	-10.000				ļ
2	-10.000	-5.000				
3	-5.000	-1.000			SHEET TITLE SECT TITLE	
4	-1.000	0.000				
5	0.000	1.000			ATED SOLID	
6	1.000	5.000			{ S	L L
7	5.000	10.000			ATED	Ļ
					<u></u>	- 5
SEPTEM JES (+) T (SETTL IATION O S, PROPE DT BE US S TO REA	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOD L PROPERTY OR FOR	BETWEEN THE AERIAL EPTEMBER 23, 2024 E ILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER. DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE	IY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION ONL RUCTION OF MINATION.	L		
SEPTEM JES (+) T (SETTL IATION O S, PROPE OT BE US S TO REA TAL DATU	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOD L PROPERTY OR FOR	EPTEMBER 23, 2024 E TILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER, DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE I	IY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION ONL RUCTION OF MINATION.	L		WASI
SEPTEM JES (+) T (SETTL IATION O S, PROPE DT BE US S TO REA TAL DATU	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOI AL PROPERTY OR FOR	EPTEMBER 23, 2024 E TILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER, DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE I	IY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION ONL RUCTION OF MINATION.	L		WASI
SEPTEM JES (+) T (SETTL IATION O S, PROPE DT BE US S TO REA TAL DATU	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOI AL PROPERTY OR FOR	EPTEMBER 23, 2024 E TILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER, DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE I	IY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION ONL RUCTION OF MINATION.	L		WASI
SEPTEM IES (+) T (SETTL IATION O S, PROPE DT BE US TO REA TO REA	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOI AL PROPERTY OR FOR	EPTEMBER 23, 2024 E TILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER, DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE I	IY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION ONL RUCTION OF MINATION.	L		WASI
SEPTEM JES (+) T (SETTL IATION O S, PROPE DT BE US S TO REA TAL DATU	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOI AL PROPERTY OR FOR	EPTEMBER 23, 2024 E TILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER, DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE I	IY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION ONL RUCTION OF MINATION.	L		WASI
SEPTEM JES (+) T (SETTL IATION O S, PROPE OT BE US S TO REA TAL DATU	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOI AL PROPERTY OR FOR	EPTEMBER 23, 2024 E TILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER, DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE I	IY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION ONL RUCTION OF MINATION.	L		WASI
SEPTEM IES (+) T (SETTL IATION O S, PROPE DT BE US TO REA TO REA	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOI AL PROPERTY OR FOR	EPTEMBER 23, 2024 E TILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER, DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE I	IY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION ONL RUCTION OF MINATION.	L		WASI
SEPTEM JES (+) T (SETTL IATION O S, PROPE DT BE US S TO REA TAL DATU	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOI AL PROPERTY OR FOR	EPTEMBER 23, 2024 E TILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER, DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE I	IY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION ONL RUCTION OF MINATION.	L		
SEPTEM ES (+) T (SETTL ATION O G, PROPE DT BE US TO REA AL DATU	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOI AL PROPERTY OR FOR	EPTEMBER 23, 2024 E TILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER, DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE I	IY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION ONL RUCTION OF MINATION.	L	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS, INC.	15521 MIDLOTHIAN TNPK - MIDLÓTHIAN, VA 23113 VVAO I PH. (804) 378-7440 FAX. (804) 378-7433
SEPTEM ES (+) I (SETTL ATION O I, PROPE DT BE US I TO REA AL DATU	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOI AL PROPERTY OR FOR	EPTEMBER 23, 2024 E TILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER, DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE I	IY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION ONL RUCTION OF MINATION.	L		15521 MIDLOTHIAN TNPK - MIDLÓTHIAN, VA 23113 VVAO I PH. (804) 378-7440 FAX. (804) 378-7433
SEPTEM ES (+) T (SETTL ATION O , PROPE DT BE US TO REA AL DATU	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOI AL PROPERTY OR FOR	EPTEMBER 23, 2024 E TILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER, DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE I	IY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION ONL RUCTION OF MINATION.	L	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS, INC.	15521 MIDLOTHIAN TNPK - MIDLÓTHIAN, VA 23113 VVAS I PH. (804) 378-7440 FAX. (804) 378-7433
SEPTEM ES (+) T (SETTL ATION O G, PROPE DT BE US TO REA AL DATU	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOI AL PROPERTY OR FOR	EPTEMBER 23, 2024 E TILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER, DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE I	IY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION ONL RUCTION OF MINATION.	L	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS, INC.	15521 MIDLOTHIAN TNPK - MIDLÓTHIAN, VA 23113 VVAS I PH. (804) 378-7440 FAX. (804) 378-7433
SEPTEM IES (+) T (SETTL IATION O S, PROPE DT BE US TO REA TO REA	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOI AL PROPERTY OR FOR	EPTEMBER 23, 2024 E "ILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER. DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE I AVD-88.	YY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION OF UINATION. NAD-83 (2011)	L Y	CADD FILE: CADD FILE: DATE: 10/3 SCALE:	Tiss21 mibLoTHIAN TNPK - MIDLÓTHIAN, VA 23113 VA3 I PH. (804) 378-7440 FAX. (804) 378-7433 VA3 I
SEPTEM JES (+) T (SETTL IATION O S, PROPE OT BE US S TO REA TAL DATU	BER 15, 2023 AND S INDICATE AREAS OF F EMENT). VALUES ARE F TOPOGRAPHY OR C RTY LINES, OR BOUNI SED FOR DESIGN, MOI AL PROPERTY OR FOR	EPTEMBER 23, 2024 E TILL AND NEGATIVE VA ROUNDED TO THE NE ONTOURS, OR ANY DE DARIES IS FOR GENER. DIFICATION, OR CONSTI FLOOD PLAIN DETERN IRGINIA SOUTH ZONE I AVD-88. 100 50 0	IY SCS ENGINEERS. LUES (-) INDICATE AREST FOOT PICTION OF PHYSICA AL INFORMATION ONL RUCTION OF MINATION.	L Y	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS, INC.	7 15521 MIDLOTHIAN TNPK - MIDLOTHIAN, VA 23113 VY 430 I PH, (804) 378-7440 FAX, (804) 378-7433

NOTES:


- 1. THE E CAPTU POSITI AREAS
- 2. ANY D IMPRO' AND S IMPRO'
- 3. THE H
- 4. THE

DISTANCE ALONG BASELINE (FT)

LEGEND BOTTOM LINER ELEVATION SEPTEMBER 2023 TOPO JUNE 2024 TOPO

JUNE 2024 TOPO AUGUST 2024 TOPO SEPTEMBER 2024 TOPO Appendix F

Field Logs

Lab Report

Historical LFG-EW Leachate Monitoring Results Summary

Date								9/10/24-9/12/24						
Personnel				W. Fabrie	, L. Tucker							L. Howard		
Location ID	Date	Casing Stickup (ft)	Depth to Liquid (ft)	Prior Depth to Liquid (ft)	Cycle Count	Prior Cycle Count (8/28)	Measured Well Casing Depth (ft)	Pump Depth (ft)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Sample Collected	Check/Photo	Comments
PUMP INSTALLED	1		I I				I	I			I			
EW-33B*							185.00	140						
EW-36A	9/11/2024	5.67	51.90	50.29	473578	64574	180.00	135	128.10	Y		N	Y	Blackhawk - no pressure gauge
EW-49*							96.15	90						
EW-50	9/10/2024	4.67	43.84	55.58	1450666	1442037	77.70	83	33.86	Y	82	N	Y	
EW-51	9/11/2024	3.83	33.15	32.93	180655	180635	92.80	95	59.65	Y	0	N	Y	Air off
EW-52	9/11/2024	3.00	77.49	47.31	863383	830633	98.70	93	21.21	Y	110	Y	Y	
EW-53	9/11/2024	4.75	52.10	52.24	3278368	3275227	100.70		48.60	Y	0	N	Y	Air off
EW-54	9/11/2024	4.17	43.70	39.5	1063017	1015321	82.70	75	39.00	Y	90	Y	Y	Liquid shot out when opened
EW-55							90.40	90						Too tall, unable to measure
EW-57	9/11/2024	4.83	46.23	45.39	97665	97665	107.40	71	61.17	Y	0	N	Y	Air disconnected
EW-59	9/10/2024	4.67	43.22	59.81	3402356	3377582	73.40	64	30.18	Y	82	N	Y	
EW-60	9/11/2024	4.67	43.68	43.33	687373	678741	81.80	70	38.12	Y	38	Ν	Y	
EW-61	9/10/2024	3.00	61.72	61.11	266520	266507	87.80	66	26.08	Y	100	Ν	Y	
EW-62	9/11/2024	4.33	85.16	84.62	214599	214599	110.60	80	25.44	Y	0	N	Y	
EW-64*							109.00	113						
EW-65*							88.40	50						
EW-67	9/11/2024	2.42	40.28	40.29	71338	65053	107.75	62.5	67.47	Y	0	Ν	Y	Air disconnected
EW-68	9/11/2024	2.25	55.79	45.38	2522274	2510407	73.57	68	17.78	Y	102	Y	Y	
EW-69	9/11/2024	4.58	93.76	93.44	18	18	98.00		4.24	Y	0	N	Y	
EW-70							71.00	58						Standing water, unable to measure
EW-74	9/11/2024	6.25	162.50	162.36			184.15	140	21.65	Ν		N	Y	
EW-78	9/11/2024	3.92	45.63	43.38	130542	128230	57.00	47	11.37	Y		N	Y	Pressure gauge not working
EW-81*							151.56	125						
EW-82	9/11/2024	4.67	121.39	121.95	124501	124501	163.26	145	41.87	Y		N	Y	Blackhawk disconnected
EW-83*							167.04	145						

Date								9/10/24-9/12/24						
Personnel				W. Fabrie	, L. Tucker							L. Howard		
Location ID	Date	Casing Stickup (ft)	Depth to Liquid (ft)	Prior Depth to Liquid (ft)	Cycle Count	Prior Cycle Count (8/28)	Measured Well Casing Depth (ft)	Pump Depth (ft)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Sample Collected	Check/Photo	Comments
EW-85	9/10/2024	4.58	77.53	80.05	225813	204216	91.00	78.5	13.47	Y	100	N	Y	
EW-87	9/10/2024	5.58	59.24	57.80	276121	276118	149.57	125	90.33	Y		N	Y	Air disconnected
EW-88	9/10/2024	4.67	50.57	49.26	171472	171472	100.00	58	49.43	Y	0	N	Y	Air disconnected
EW-89	9/10/2024	3.92	43.15	41.92			84.57	70	41.42	Y		N	Y	Pump off - forcemain valve closed
EW-90	9/10/2024	3.75	90.87	79.67			114.00	101	23.13	Y		N	Y	Air disconnected
EW-91	9/11/2024	5.08	47.26	45.35			137.70	115	90.44	Ν			Y	
EW-92	9/11/2024	6.58	51.06	49.57			112.99	95	61.93	Ν			Y	
EW-96	9/11/2024	6.42	54.53	49.57	606458		164.35	145	109.82	Y		N	Y	Air disconnected
EW-98	9/10/2024	4.50	46.30	55.53	1186505	1155091	51.00	43	4.70	Y	100	N	Y	
EW-100	9/10/2024	4.33	78.28	109.27	733311	733311	108.50	96.5	30.22	Y	0	N	Y	Pump disconnected

Date								9/10/24-9/12/24						
Personnel				W. Fabrie	, L. Tucker							L. Howard		
Location ID	Date	Casing Stickup (ft)	Depth to Liquid (ft)	Prior Depth to Liquid (ft)	Cycle Count	Prior Cycle Count (8/28)	Measured Well Casing Depth (ft)	Pump Depth (ft)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Sample Collected	Check/Photo	Comments
NO PUMP														
EW-56	9/10/2024	4.67	Dry	Dry			42.71	58		N			Y	
EW-58	9/11/2024	3.92	29.24	28.31			84.50	82	55.26	N			Y	
EW-63*							62.10	64						
EW-66	9/11/2024	5.33	37.03	36.81						N			Y	
EW-71	9/11/2024	4.25	>165	165.90			185.80			N			Y	Unable to detect water past 165'
EW-72	9/11/2024	4.83	128.64	131.64			141.21		12.57	N			Y	
EW-73	9/11/2024	3.67	106.15	106.59			116.00		9.85				Y	
EW-77*							185.22							
EW-79*							185.64							
EW-80*							149.00							
EW-84*							130.56							
EW-86	9/10/2024	2.92	75.23	74.90			153.00		77.77	N			Y	
EW-93	9/10/2024	3.83	32.53	32.22			111.00		78.47	N			Y	
EW-95	9/10/2024	3.92	60.03	59.10			68.00		7.97	N			Y	
EW-97	9/10/2024	7.33	94.66	94.12			144.50		49.84	N			Y	
EW-99	9/10/2024	4.17	60.77	60.40			65.00		4.23	N			Y	
MEASURE CASIN	IG STICKUP AND	CYCLE COUNTER (ONLY			·	·	·	·		·	· /		·
EW-76	9/11/2024	3.50	DNM		41	41	127.00	108		Y	80	N	Y	
EW-75*			DNM				130.82	140						
EW-94	9/10/2024	3.58	DNM		475255	434431	50.00	45		Y	80	N	Y	

* = No measurements taken due to damage to forcemain causing wells to be not under vacuum and therefore unsafe to access.

Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (oC)	рН (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-33B									
EW-36A									
EW-49									
EW-50									
EW-51									
EW-52	9/11/2024	8:20					-150.2	9.80	Dark brown, sheen
EW-53									
EW-54	9/11/2024	10:20					-140.4	7.25	Dark brown
EW-55									
EW-57									
EW-58									
EW-59									
EW-60									
EW-61									
EW-62									
EW-64									
EW-67									
EW-68	9/11/2024	8:50					-225.4	8.43	Dark green, foamy
EW-70									
EW-72									

Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (oC)	рН (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations	
EW-73										
EW-74										
EW-75										
EW-76										
EW-78										
EW-81										
EW-82										
EW-83										
EW-85										
EW-87										
EW-88										
EW-89										
EW-90										
EW-91										
EW-92										
EW-94										
EW-96										
EW-98										
EW-100										
			Ibrie			Sampl				
Sampler:L.Tucker, W. FabrieSamples Shipped By: CourierLog Checked By:L. HowardLaboratory: Enthalpy Analytical										

1941 Reymet Road
Richmond, Virginia 23237
Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 24I0652

Client Name: SCS Engineers-Winchester 296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Date Received:September 12, 20248:00Date Issued:September 30, 20249:43Project Number:[none]Purchase Order:

Client Site I.D.: LFG-EW Monthly Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 09/12/2024 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Andrew Bruner Project Manager

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

01

01

01

01

01

Cyanide

Nitrate as N

TKN as N

Nitrate+Nitrite as N

Total Recoverable Phenolics

Enthalpy Analytical 1941 Reymet Road Richmond, VA 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

			Analysis Detec	<u>ts Report</u>					
Client Name:	SCS Engineers-Win	chester			Date Issued:	9/30	0/2024 9:	43:20AM	
Client Site ID:	LFG-EW Monthly M								
	•	onitoring							
Submitted To:	Jennifer Robb								
Laboratory Sample ID	: 2410652-01	Client Sa	mple ID: EW-54						
Parameter		Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Dil. Factor	Units
Arsenic		01	SW6020B	150		5.0	10	10	ug/L
Barium		01	SW6020B	1330		10.0	50.0	10	ug/L
Chromium		01	SW6020B	541		4.00	10.0	10	ug/L
_ead		01	SW6020B	57		10	10	10	ug/L
Nickel		01	SW6020B	113.8		10.00	10.00	10	ug/L
Zinc		01	SW6020B	3680		25.0	50.0	10	ug/L
2-Butanone (MEK)		01	SW8260D	16600		150	500	50	ug/L
Acetone		01RE1	SW8260D	44500		3500	5000	500	ug/L
Benzene		01	SW8260D	727		20.0	50.0	50	ug/L
Ethylbenzene		01	SW8260D	44.0	J	20.0	50.0	50	ug/L
Tetrahydrofuran		01	SW8260D	2730		500	500	50	ug/L
Toluene		01	SW8260D	63.5		25.0	50.0	50	ug/L
Kylenes, Total		01	SW8260D	120	J	50.0	150	50	ug/L
Ammonia as N		01	EPA350.1 R2.0	1440		73.1	100	1000	mg/L
BOD		01	SM5210B-2016	36100		0.2	2.0	1	mg/L
COD		01	SM5220D-2011	55900		5000	5000	500	mg/L

SW9012B

Calc.

SM4500-NO3F-2016

EPA351.2 R2.0

SW9065

0.11

2.42

2.42

2090

31.6

CI

0.05

0.250

0.20

50.0

3.00

0.05

1.25

0.20

125

5.00

5

25

2

250

100

mg/L

mg/L

mg/L

mg/L

mg/L

			Analysis Detec	<u>ts Report</u>					
Client Name:	SCS Engineers-Wi	nchester			Date Issued:	9/3	0/2024 9	:43:20AM	
Client Site ID:	LFG-EW Monthly M	<i>I</i> onitoring							
Submitted To:	Jennifer Robb	5							
Laboratory Sample ID	: 2410652-02	Client Sa	mple ID: EW-52						
Parameter		Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Dil. Factor	Units
Arsenic		02	SW6020B	270		5.0	10	10	ug/L
Barium		02	SW6020B	1340		10.0	50.0	10	ug/L
Chromium		02	SW6020B	948		4.00	10.0	10	ug/L
Lead		02	SW6020B	98		10	10	10	ug/L
Mercury		02	SW6020B	2.44		2.00	2.00	10	ug/L
Nickel		02	SW6020B	396.0		10.00	10.00	10	ug/L
Zinc		02RE1	SW6020B	212		2.50	5.00	1	ug/L
2-Butanone (MEK)		02	SW8260D	19000		150	500	50	ug/L
Acetone		02RE1	SW8260D	59800		3500	5000	500	ug/L
Benzene		02	SW8260D	960		20.0	50.0	50	ug/L
Ethylbenzene		02	SW8260D	46.5	J	20.0	50.0	50	ug/L
Tetrahydrofuran		02	SW8260D	2950		500	500	50	ug/L
Toluene		02	SW8260D	80.0		25.0	50.0	50	ug/L
Xylenes, Total		02	SW8260D	90.5	J	50.0	150	50	ug/L
Ammonia as N		02	EPA350.1 R2.0	2210		146	200	2000	mg/L
BOD		02	SM5210B-2016	>41548.32		0.2	2.0	1	mg/L
COD		02	SM5220D-2011	78300		10000	10000	1000	mg/L
Cyanide		02	SW9012B	0.08	CI	0.05	0.05	5	mg/L
TKN as N		02	EPA351.2 R2.0	3320		100	250	500	mg/L
Total Recoverable Phenol	lics	02	SW9065	39.6		3.00	5.00	100	mg/L

			Analysis Detec	<u>ts Report</u>					
Client Name:	SCS Engineers-Wi	nchester			Date Issued:	9/3	0/2024	9:43:20AM	
	•								
	LFG-EW Monthly N	lonitoring							
Submitted To:	Jennifer Robb								
Laboratory Sample ID:	2410652-03	Client Sa	mple ID: EW-68						
Parameter		Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Dil. Factor	Units
Arsenic		03	SW6020B	190		5.0	10	10	ug/L
Barium		03	SW6020B	3650		10.0	50.0	10	ug/L
Chromium		03	SW6020B	228		4.00	10.0	10	ug/L
Nickel		03	SW6020B	87.72		10.00	10.00	10	ug/L
Zinc		03	SW6020B	111		25.0	50.0	10	ug/L
2-Butanone (MEK)		03RE1	SW8260D	32200		1500	5000	500	ug/L
Acetone		03RE1	SW8260D	69300		3500	5000	500	ug/L
Benzene		03	SW8260D	2710		20.0	50.0	50	ug/L
Ethylbenzene		03	SW8260D	192		20.0	50.0	50	ug/L
Tetrahydrofuran		03	SW8260D	6640		500	500	50	ug/L
Toluene		03	SW8260D	226		25.0	50.0	50	ug/L
Xylenes, Total		03	SW8260D	368		50.0	150	50	ug/L
Ammonia as N		03	EPA350.1 R2.0	2290		146	200	2000	mg/L
BOD		03	SM5210B-2016	27400		0.2	2.0	1	mg/L
COD		03	SM5220D-2011	26800		4000	4000	400	mg/L
Cyanide		03	SW9012B	0.28	Cl	0.05	0.05	5	mg/L
Nitrate+Nitrite as N		03RE1	SM4500-NO3F-2016	0.70		0.50	0.50	25	mg/L
TKN as N		03RE1	EPA351.2 R2.0	2650		80.0	200	400	mg/L
Total Recoverable Phenoli	cs	03	SW9065	31.6		3.00	5.00	100	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

		Certificate of Analysis		
Client Name:	SCS Engineers-Winchester		Date Issued:	9/30/2024 9:43:20AM
Client Site I.D.:	LFG-EW Monthly Monitoring			
Submitted To:	Jennifer Robb		Work Order:	2410652
		ANALYTICAL REPORT FOR SAMPLES		
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Sample ID EW-54	Laboratory ID 2410652-01	Matrix Ground Water	Date Sampled 09/11/2024 10:20	Date Received 09/12/2024 08:00
	·		•	
EW-54	2410652-01	Ground Water	09/11/2024 10:20	09/12/2024 08:00

As requested by Logan Howard on September 30, 2024, the project name and site name have been corrected. These changes are reflected in the following revised report.

				<u>C</u>	ertificate of	<u>FAnalysis</u>							
Client Name:	SCS Engine	ers-Winc	hester				Date	e Issued	:	9/30/202	4 9:4	13:20AM	
Client Site I.D.:	LFG-EW Mor	nthly Mon	itoring										
Submitted To:	Jennifer Robb)					Wo	rk Order	:	2410652			
Client Sample ID:	EW-54					Laborator	y Sample ID:	24106	52-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analy
Metals (Total) by EPA	A 6000/7000 Series N	lethods											
Silver		01	7440-22-4	SW6020B	09/16/2024 09:30	09/18/2024 17:47	BLOD		0.600	10.0	10	ug/L	AB
Arsenic		01	7440-38-2	SW6020B	09/16/2024 09:30	09/18/2024 17:47	150		5.0	10	10	ug/L	AB
Barium		01	7440-39-3	SW6020B	09/16/2024 09:30	09/18/2024 17:47	1330		10.0	50.0	10	ug/L	AB
Cadmium		01	7440-43-9	SW6020B	09/16/2024 09:30	09/18/2024 17:47	BLOD		1.00	10.0	10	ug/L	AB
Chromium		01	7440-47-3	SW6020B	09/16/2024 09:30	09/18/2024 17:47	541		4.00	10.0	10	ug/L	AB
Copper		01	7440-50-8	SW6020B	09/16/2024 09:30	09/18/2024 17:47	BLOD		3.00	10.0	10	ug/L	AB
Mercury		01	7439-97-6	SW6020B	09/16/2024 09:30	09/18/2024 17:47	BLOD		2.00	2.00	10	ug/L	AB
Nickel		01	7440-02-0	SW6020B	09/16/2024 09:30	09/18/2024 17:47	113.8		10.00	10.00	10	ug/L	AB
Lead		01	7439-92-1	SW6020B	09/16/2024 09:30	09/18/2024 17:47	57		10	10	10	ug/L	AB
Selenium		01	7782-49-2	SW6020B	09/16/2024 09:30	09/18/2024 17:47	BLOD		8.50	10.0	10	ug/L	AB
Zinc		01	7440-66-6	SW6020B	09/16/2024 09:30	09/18/2024 17:47	3680		25.0	50.0	10	ug/L	AB
Volatile Organic Com	pounds by GCMS												
2-Butanone (MEK)		01	78-93-3	SW8260D	09/13/2024 17:52	09/13/2024 17:52	16600		150	500	50	ug/L	RJB
Acetone		01RE1	67-64-1	SW8260D	09/13/2024 18:15	09/13/2024 18:15	44500		3500	5000	500	ug/L	RJB
Benzene		01	71-43-2	SW8260D	09/13/2024 17:52	09/13/2024 17:52	727		20.0	50.0	50	ug/L	RJB
Ethylbenzene		01	100-41-4	SW8260D	09/13/2024 17:52	09/13/2024 17:52	44.0	J	20.0	50.0	50	ug/L	RJB
Toluene		01	108-88-3	SW8260D	09/13/2024 17:52	09/13/2024 17:52	63.5		25.0	50.0	50	ug/L	RJB
Xylenes, Total		01	1330-20-7	SW8260D	09/13/2024 17:52	09/13/2024 17:52	120	J	50.0	150	50	ug/L	RJB
Tetrahydrofuran		01	109-99-9	SW8260D	09/13/2024 17:52	09/13/2024 17:52	2730		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroetha	ane-d4 (Surr)	01	94.2	% 70-120	09/13/2024 17	7:52 09/13/2024 17.	52						
Surr: 4-Bromofluorob	enzene (Surr)	01	102		09/13/2024 17	7:52 09/13/2024 17.	52						
Surr: Dibromofluorom	, ,	01	95.2		09/13/2024 17								
Surr: Toluene-d8 (Sur		01	100		09/13/2024 17								
Surr: 1,2-Dichloroetha	ane-d4 (Surr)	01RE1	94.2	% 70-120	09/13/2024 18	3:15 09/13/2024 18.	15						

				<u>C</u>	ertificate of	Analysis							
Client Name:	SCS Engin	eers-Wincl	nester				Date	e Issued	:	9/30/202	4 9:4	43:20AM	
Client Site I.D.:	LFG-EW Ma	onthly Moni	toring										
Submitted To:	Jennifer Rob	b					Wo	rk Order	:	2410652			
Client Sample ID:	EW-54					Laboratory	y Sample ID:	24106	52-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Com	pounds by GCMS												
Surr: 4-Bromofluorob	enzene (Surr)	01RE1	102	% 75-120	09/13/2024 18:1	5 09/13/2024 18:	15						
Surr: Dibromofluorom	nethane (Surr)	01RE1	95.4	% 70-130	09/13/2024 18:1	5 09/13/2024 18:	15						
Surr: Toluene-d8 (Su	rr)	01RE1	100	% 70-130	09/13/2024 18:1	5 09/13/2024 18:	15						
Semivolatile Organic	Compounds by G	смѕ											
Anthracene		01	120-12-7	SW8270E	09/16/2024 08:45	09/16/2024 19:13	BLOD		200	400	10	ug/L	BMS
Surr: 2,4,6-Tribromop	henol (Surr)	01	95.8	% 5-136	09/16/2024 08:4	5 09/16/2024 19:	13						
Surr: 2-Fluorobipheny	yl (Surr)	01	64.8	% 9-117	09/16/2024 08:4	5 09/16/2024 19:	13						
Surr: 2-Fluorophenol	(Surr)	01	28.0	% 5-60	09/16/2024 08:4	5 09/16/2024 19:	13						
Surr: Nitrobenzene-d	5 (Surr)	01	482	% 5-151	09/16/2024 08:4	5 09/16/2024 19:	13						DS
Surr: Phenol-d5 (Surr	り	01	0.200	% 5-60	09/16/2024 08:4	5 09/16/2024 19:	13						DS
Surr: p-Terphenyl-d14	4 (Surr)	01	56.4	% 5-141	09/16/2024 08:4	5 09/16/2024 19:	13						

				C	certificate o	f Analysis							
Client Name:	SCS Engine	ers-Wind	hester				Date	e Issued	:	9/30/202	24 9:4	3:20AM	
Client Site I.D.:	LFG-EW Mor	nthly Mon	itoring										
Submitted To:	Jennifer Robb)					Wo	rk Order	:	2410652			
Client Sample ID:	EW-54					Laborato	ry Sample ID:	24106	52-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Wet Chemistry Analy	vsis												
Ammonia as N		01	7664-41-7	EPA350.1 R2.0	09/18/2024 15:55	09/18/2024 15:55	1440		73.1	100	1000	mg/L	SPH
BOD		01	E1640606	SM5210B-20 16	09/12/2024 13:05	09/12/2024 13:05	36100		0.2	2.0	1	mg/L	CET
Cyanide		01	57-12-5	SW9012B	09/24/2024 10:00	09/24/2024 12:00	0.11	CI	0.05	0.05	5	mg/L	BKR
COD		01	NA	SM5220D-20 11	09/18/2024 16:40	09/18/2024 16:40	55900		5000	5000	500	mg/L	TEG
Nitrate as N		01	14797-55-8	Calc.	09/23/2024 14:57	09/23/2024 14:57	2.42		0.250	1.25	25	mg/L	EEM
Nitrate+Nitrite as N		01	E701177	SM4500-NO 3F-2016	09/23/2024 14:57	09/23/2024 14:57	2.42		0.20	0.20	2	mg/L	BKR
Nitrite as N		01	14797-65-0	SM4500-NO 2B-2011	09/12/2024 16:00	09/12/2024 16:00	BLOD		0.25	1.25	25	mg/L	EEM
Total Recoverable Ph	nenolics	01	NA	SW9065	09/26/2024 18:30	09/26/2024 18:30	31.6		3.00	5.00	100	mg/L	MKS
TKN as N		01	E17148461	EPA351.2 R2.0	09/18/2024 17:00	09/19/2024 12:05	2090		50.0	125	250	mg/L	EEM

				<u>C</u>	ertificate of	<u>f Analysis</u>							
Client Name:	SCS Engin	eers-Winc	hester				Date	e Issued	:	9/30/202	4 9:4	3:20AM	
Client Site I.D.:	LFG-EW Mo	onthly Mon	itoring										
Submitted To:	Jennifer Rob	b					Wo	rk Order	:	2410652			
Client Sample ID:	EW-52					Laboratory	Sample ID:	24106	52-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analy
Metals (Total) by EPA	6000/7000 Series	Methods											
Silver		02	7440-22-4	SW6020B	09/16/2024 09:30	09/18/2024 17:50	BLOD		0.600	10.0	10	ug/L	AB
Arsenic		02	7440-38-2	SW6020B	09/16/2024 09:30	09/18/2024 17:50	270		5.0	10	10	ug/L	AB
Barium		02	7440-39-3	SW6020B	09/16/2024 09:30	09/18/2024 17:50	1340		10.0	50.0	10	ug/L	AB
Cadmium		02	7440-43-9	SW6020B	09/16/2024 09:30	09/18/2024 17:50	BLOD		1.00	10.0	10	ug/L	AB
Chromium		02	7440-47-3	SW6020B	09/16/2024 09:30	09/18/2024 17:50	948		4.00	10.0	10	ug/L	AB
Copper		02	7440-50-8	SW6020B	09/16/2024 09:30	09/18/2024 17:50	BLOD		3.00	10.0	10	ug/L	AB
Mercury		02	7439-97-6	SW6020B	09/16/2024 09:30	09/18/2024 17:50	2.44		2.00	2.00	10	ug/L	AB
Nickel		02	7440-02-0	SW6020B	09/16/2024 09:30	09/18/2024 17:50	396.0		10.00	10.00	10	ug/L	AB
Lead		02	7439-92-1	SW6020B	09/16/2024 09:30	09/18/2024 17:50	98		10	10	10	ug/L	AB
Selenium		02	7782-49-2	SW6020B	09/16/2024 09:30	09/18/2024 17:50	BLOD		8.50	10.0	10	ug/L	AB
Zinc		02RE1	7440-66-6	SW6020B	09/16/2024 09:30	09/16/2024 16:59	212		2.50	5.00	1	ug/L	AB
Volatile Organic Com	pounds by GCMS												
2-Butanone (MEK)		02	78-93-3	SW8260D	09/13/2024 18:39	09/13/2024 18:39	19000		150	500	50	ug/L	RJB
Acetone		02RE1	67-64-1	SW8260D	09/13/2024 19:03	09/13/2024 19:03	59800		3500	5000	500	ug/L	RJB
Benzene		02	71-43-2	SW8260D	09/13/2024 18:39	09/13/2024 18:39	960		20.0	50.0	50	ug/L	RJB
Ethylbenzene		02	100-41-4	SW8260D	09/13/2024 18:39	09/13/2024 18:39	46.5	J	20.0	50.0	50	ug/L	RJB
Toluene		02	108-88-3	SW8260D	09/13/2024 18:39	09/13/2024 18:39	80.0		25.0	50.0	50	ug/L	RJB
Xylenes, Total		02	1330-20-7	SW8260D	09/13/2024 18:39	09/13/2024 18:39	90.5	J	50.0	150	50	ug/L	RJB
Tetrahydrofuran		02	109-99-9	SW8260D	09/13/2024 18:39	09/13/2024 18:39	2950		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroetha	ane-d4 (Surr)	02	94.9	% 70-120	09/13/2024 18	8:39 09/13/2024 18:	39						
Surr: 4-Bromofluorob	enzene (Surr)	02	100	% 75-120	09/13/2024 18		39						
Surr: Dibromofluorom	, ,	02	95.0		09/13/2024 18								
Surr: Toluene-d8 (Sur	,	02	101		09/13/2024 18								
Surr: 1,2-Dichloroetha	ane-d4 (Surr)	02RE1	95.8	% 70-120	09/13/2024 19	9:03 09/13/2024 19:	03						

				<u>c</u>	ertificate of	<u>Analysis</u>							
Client Name:	SCS Engine	eers-Wincl	hester	_			Date	e Issued	:	9/30/202	4 9:	43:20AM	
Client Site I.D.:	LFG-EW Mo	nthly Moni	toring										
Submitted To:	Jennifer Robl	b					Wo	rk Order	:	2410652			
Client Sample ID:	EW-52					Laboratory	Sample ID:	24106	52-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Con	pounds by GCMS												
Surr: 4-Bromofluorob	enzene (Surr)	02RE1	102	% 75-120	09/13/2024 19:0	3 09/13/2024 19:0	03						
Surr: Dibromofluorom	nethane (Surr)	02RE1	96.6	% 70-130	09/13/2024 19:0	3 09/13/2024 19:0	03						
Surr: Toluene-d8 (Su	rr)	02RE1	101	% 70-130	09/13/2024 19:0	3 09/13/2024 19:0	03						
Semivolatile Organic	Compounds by G	CMS											
Anthracene		02	120-12-7	SW8270E	09/16/2024 08:45	09/16/2024 20:11	BLOD		200	400	10	ug/L	BMS
Surr: 2,4,6-Tribromop	henol (Surr)	02	88.4	% 5-136	09/16/2024 08:4	5 09/16/2024 20:1	'1						
Surr: 2-Fluorobipheny	yl (Surr)	02	60.4	% 9-117	09/16/2024 08:4	5 09/16/2024 20:1	1						
Surr: 2-Fluorophenol	(Surr)	02	33.6	% 5-60	09/16/2024 08:4	5 09/16/2024 20:1	'1						
Surr: Nitrobenzene-d	5 (Surr)	02	662	% 5-151	09/16/2024 08:4	5 09/16/2024 20:1	1						DS
Surr: Phenol-d5 (Surr	,	02	15.6	% 5-60	09/16/2024 08:4	5 09/16/2024 20:1	1						
Surr: p-Terphenyl-d14	4 (Surr)	02	42.4	% 5-141	09/16/2024 08:4	5 09/16/2024 20:1	1						

				C	Certificate o	f Analysis							
Client Name:	SCS Eng	ineers-Winc	hester	_			Date	e Issued	:	9/30/202	24 9:4	3:20AM	
Client Site I.D.:	LFG-EW N	Monthly Mon	itoring										
Submitted To:	Jennifer Ro	-	Ū				Wo	rk Order	:	2410652			
Client Sample ID:	EW-52					Laborato	ry Sample ID:	24106	52-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Wet Chemistry Analys	is												
Ammonia as N		02	7664-41-7	EPA350.1 R2.0	09/18/2024 15:55	09/18/2024 15:55	2210		146	200	2000	mg/L	SPH
BOD		02	E1640606	SM5210B-20 16	09/12/2024 13:46	09/12/2024 13:46	>41548.32		0.2	2.0	1	mg/L	CET
BOD		02	E1640606	SM5210B-20 16	09/12/2024 13:46	09/12/2024 13:46	>41548.32		0.2	2.0	1	mg/L	CET
Cyanide		02	57-12-5	SW9012B	09/24/2024 10:00	09/24/2024 12:00	0.08	CI	0.05	0.05	5	mg/L	BKR
COD		02	NA	SM5220D-20 11	09/18/2024 16:40	09/18/2024 16:40	78300		10000	10000	1000	mg/L	TEG
Nitrate as N		02	14797-55-8	Calc.	09/19/2024 16:04	09/19/2024 16:04	BLOD		0.250	1.25	25	mg/L	EEM
Nitrate+Nitrite as N		02	E701177	SM4500-NO 3F-2016	09/19/2024 16:04	09/19/2024 16:04	BLOD		0.10	0.10	5	mg/L	TEG
Nitrite as N		02	14797-65-0	SM4500-NO 2B-2011	09/12/2024 16:00	09/12/2024 16:00	BLOD		0.25	1.25	25	mg/L	EEM
Total Recoverable Phe	enolics	02	NA	SW9065	09/26/2024 18:30	09/26/2024 18:30	39.6		3.00	5.00	100	mg/L	MKS
TKN as N		02	E17148461	EPA351.2 R2.0	09/18/2024 17:00	09/19/2024 12:06	3320		100	250	500	mg/L	EEM

				<u>C</u>	ertificate of	<u>Analysis</u>							
Client Name:	SCS Engir	eers-Winc	hester				Date	e Issued	:	9/30/202	4 9:4	13:20AM	
Client Site I.D.:	LFG-EW Mo	onthly Mon	itoring										
Submitted To:	Jennifer Rot	b					Wo	rk Order	:	2410652			
Client Sample ID:	EW-68					Laborator	y Sample ID:	24106	52-03				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analy
Metals (Total) by EPA	6000/7000 Series	Methods											
Silver		03	7440-22-4	SW6020B	09/16/2024 09:30	09/18/2024 17:53	BLOD		0.600	10.0	10	ug/L	AB
Arsenic		03	7440-38-2	SW6020B	09/16/2024 09:30	09/18/2024 17:53	190		5.0	10	10	ug/L	AB
Barium		03	7440-39-3	SW6020B	09/16/2024 09:30	09/18/2024 17:53	3650		10.0	50.0	10	ug/L	AB
Cadmium		03	7440-43-9	SW6020B	09/16/2024 09:30	09/18/2024 17:53	BLOD		1.00	10.0	10	ug/L	AB
Chromium		03	7440-47-3	SW6020B	09/16/2024 09:30	09/18/2024 17:53	228		4.00	10.0	10	ug/L	AB
Copper		03	7440-50-8	SW6020B	09/16/2024 09:30	09/18/2024 17:53	BLOD		3.00	10.0	10	ug/L	AB
Mercury		03	7439-97-6	SW6020B	09/16/2024 09:30	09/18/2024 17:53	BLOD		2.00	2.00	10	ug/L	AB
Nickel		03	7440-02-0	SW6020B	09/16/2024 09:30	09/18/2024 17:53	87.72		10.00	10.00	10	ug/L	AB
Lead		03	7439-92-1	SW6020B	09/16/2024 09:30	09/18/2024 17:53	BLOD		10	10	10	ug/L	AB
Selenium		03	7782-49-2	SW6020B	09/16/2024 09:30	09/18/2024 17:53	BLOD		8.50	10.0	10	ug/L	AB
Zinc		03	7440-66-6	SW6020B	09/16/2024 09:30	09/18/2024 17:53	111		25.0	50.0	10	ug/L	AB
Volatile Organic Com	pounds by GCMS												
2-Butanone (MEK)		03RE1	78-93-3	SW8260D	09/13/2024 19:50	09/13/2024 19:50	32200		1500	5000	500	ug/L	RJB
Acetone		03RE1	67-64-1	SW8260D	09/13/2024 19:50	09/13/2024 19:50	69300		3500	5000	500	ug/L	RJB
Benzene		03	71-43-2	SW8260D	09/13/2024 19:26	09/13/2024 19:26	2710		20.0	50.0	50	ug/L	RJB
Ethylbenzene		03	100-41-4	SW8260D	09/13/2024 19:26	09/13/2024 19:26	192		20.0	50.0	50	ug/L	RJB
Toluene		03	108-88-3	SW8260D	09/13/2024 19:26	09/13/2024 19:26	226		25.0	50.0	50	ug/L	RJB
Xylenes, Total		03	1330-20-7	SW8260D	09/13/2024 19:26	09/13/2024 19:26	368		50.0	150	50	ug/L	RJB
Tetrahydrofuran		03	109-99-9	SW8260D	09/13/2024 19:26	09/13/2024 19:26	6640		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroetha	ane-d4 (Surr)	03	94.6	% 70-120	09/13/2024 19	0:26 09/13/2024 19	26						
Surr: 4-Bromofluorobe	()	03	101		09/13/2024 19								
Surr: Dibromofluorom	()	03	95.2		09/13/2024 19								
Surr: Toluene-d8 (Sur Surr: 1,2-Dichloroetha	,	03 03RE1	100 94.9		09/13/2024 19 09/13/2024 19								
			34.3	/0 /0-/20	03/13/2024 13								

				С	ertificate of A	Analysis							
Client Name:	SCS Engir	neers-Wincl	nester	<u> </u>		<u>indigoto</u>	Date	e Issued	:	9/30/202	24 9:	43:20AM	
Client Site I.D.:	LFG-EW Mo	onthly Moni	toring										
Submitted To:	Jennifer Rob	b	C C				Wo	rk Order	:	2410652			
Client Sample ID:	EW-68					Laboratory	Sample ID:	24106	52-03				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Com	npounds by GCMS	;											
Surr: 4-Bromofluorob	enzene (Surr)	03RE1	103	% 75-120	09/13/2024 19:5	0 09/13/2024 19:5	50						
Surr: Dibromofluorom	nethane (Surr)	03RE1	95.7	% 70-130	09/13/2024 19:5	0 09/13/2024 19:5	50						
Surr: Toluene-d8 (Su	rr)	03RE1	102	% 70-130	09/13/2024 19:5	0 09/13/2024 19:5	50						
Semivolatile Organic	Compounds by G	GCMS											
Anthracene		03	120-12-7	SW8270E	09/16/2024 08:45	09/16/2024 21:10	BLOD		100	200	10	ug/L	BMS
Surr: 2,4,6-Tribromop	henol (Surr)	03	65.5	% 5-136	09/16/2024 08:4	5 09/16/2024 21:1	10						
Surr: 2-Fluorobipheny	yl (Surr)	03	45.8	% 9-117	09/16/2024 08:4	5 09/16/2024 21:1	10						
Surr: 2-Fluorophenol	(Surr)	03	28.0	% 5-60	09/16/2024 08:4	5 09/16/2024 21:1	10						
Surr: Nitrobenzene-d	5 (Surr)	03	96.2	% 5-151	09/16/2024 08:4	5 09/16/2024 21:1	10						
Surr: Phenol-d5 (Surr	r)	03		% 5-60	09/16/2024 08:4								DS
Surr: p-Terphenyl-d14	4 (Surr)	03	16.6	% 5-141	09/16/2024 08:4	5 09/16/2024 21:1	10						

				<u>c</u>	Certificate o	f Analysis							
Client Name:	SCS Engine	eers-Winc	hester	_			Date	e Issued	:	9/30/202	24 9:4	3:20AM	
Client Site I.D.:	LFG-EW Mo	nthly Mon	itoring										
Submitted To:	Jennifer Robb	D					Wo	rk Order	:	2410652			
Client Sample ID:	EW-68					Laborator	ry Sample ID:	24106	52-03				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Wet Chemistry Analy	sis												
Ammonia as N		03	7664-41-7	EPA350.1 R2.0	09/18/2024 15:55	09/18/2024 15:55	2290		146	200	2000	mg/L	SPH
BOD		03	E1640606	SM5210B-20 16	09/12/2024 13:55	09/12/2024 13:55	27400		0.2	2.0	1	mg/L	CET
Cyanide		03	57-12-5	SW9012B	09/24/2024 10:00	09/24/2024 12:00	0.28	CI	0.05	0.05	5	mg/L	BKR
COD		03	NA	SM5220D-20 11	09/21/2024 15:00	09/21/2024 15:00	26800		4000	4000	400	mg/L	MJRL
Nitrate as N		03	14797-55-8	Calc.	09/19/2024 16:33	09/19/2024 16:33	BLOD		5.00	25.0	500	mg/L	TEG
Nitrate+Nitrite as N		03RE1	E701177	SM4500-NO 3F-2016	09/19/2024 16:33	09/19/2024 16:33	0.70		0.50	0.50	25	mg/L	TEG
Nitrite as N		03	14797-65-0	SM4500-NO 2B-2011	09/12/2024 16:00	09/12/2024 16:00	BLOD		5.00	25.0	500	mg/L	EEM
Total Recoverable Ph	enolics	03	NA	SW9065	09/26/2024 18:30	09/26/2024 18:30	31.6		3.00	5.00	100	mg/L	MKS
TKN as N		03RE1	E17148461	EPA351.2 R2.0	09/23/2024 14:46	09/24/2024 17:35	2650		80.0	200	400	mg/L	SPH

				<u>C</u>	ertificate of	<u>Analysis</u>							
Client Name:	SCS Engine	ers-Winc	hester				Date	e Issued	:	9/30/202	24 9:4	43:20AM	
Client Site I.D.: L	FG-EW Mon	thly Mon	itoring										
Submitted To: Je	ennifer Robb						Wo	rk Order	:	2410652			
Client Sample ID: 1	Frip Blank					Laborato	ry Sample ID:	24106	52-04				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Compou	Inds by GCMS												
2-Butanone (MEK)		04	78-93-3	SW8260D	09/13/2024 15:05	09/13/2024 15:05	BLOD		3.00	10.0	1	ug/L	RJB
Acetone		04	67-64-1	SW8260D	09/13/2024 15:05	09/13/2024 15:05	BLOD		7.00	10.0	1	ug/L	RJB
Benzene		04	71-43-2	SW8260D	09/13/2024 15:05	09/13/2024 15:05	BLOD		0.40	1.00	1	ug/L	RJB
Ethylbenzene		04	100-41-4	SW8260D	09/13/2024 15:05	09/13/2024 15:05	BLOD		0.40	1.00	1	ug/L	RJB
Toluene		04	108-88-3	SW8260D	09/13/2024 15:05	09/13/2024 15:05	BLOD		0.50	1.00	1	ug/L	RJB
Xylenes, Total		04	1330-20-7	SW8260D	09/13/2024 15:05	09/13/2024 15:05	BLOD		1.00	3.00	1	ug/L	RJB
Tetrahydrofuran		04	109-99-9	SW8260D	09/13/2024 15:05	09/13/2024 15:05	BLOD		10.0	10.0	1	ug/L	RJB
Surr: 1,2-Dichloroethane-	d4 (Surr)	04	97.9	% 70-120	09/13/2024 15	:05 09/13/2024 1	5:05						
Surr: 4-Bromofluorobenze	ene (Surr)	04	100	% 75-120	09/13/2024 15	:05 09/13/2024 1	5:05						
Surr: Dibromofluoromethe	ane (Surr)	04	97.3	% 70-130	09/13/2024 15	:05 09/13/2024 1	5:05						
Surr: Toluene-d8 (Surr)		04	100	% 70-130	09/13/2024 15	:05 09/13/2024 1	5:05						

Client Site I.D.: LF	CS Engineers-Winchester G-EW Monthly Monitoring Inifer Robb Result Batch BHI0542 - EPA200.8 ND ND ND ND ND ND ND ND ND ND ND	LOQ	Units	Enthalpy A Spike Level	eries Methods - C nalytical Source Result yzed: 09/16/2024	Quality Control	Date Issue Work Ord		9/30/2024 2410652 RPD Limit	9:43:20AM Qual
Submitted To: Jen Analyte Blank (BHI0542-BLK1) Mercury Arsenic Barium Cadmium Chromium Chromium Copper Lead Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury	Result Batch BHI0542 - EPA200.8 ND ND ND ND ND ND ND ND ND ND ND ND	LOQ R5.4 0.200 1.0 5.00 1.00 1.00 1.00 1.00	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Enthalpy A Spike Level	nalytical Source Result		%REC		RPD	Qual
Submitted To: Jen Analyte Blank (BHI0542-BLK1) Mercury Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury	Result Batch BHI0542 - EPA200.8 ND ND ND ND ND ND ND ND ND ND ND ND	LOQ R5.4 0.200 1.0 5.00 1.00 1.00 1.00 1.00	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Enthalpy A Spike Level	nalytical Source Result		%REC		RPD	Qual
Blank (BHI0542-BLK1) Mercury Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury	Batch BHI0542 - EPA200.8 ND ND ND ND ND ND ND ND	LOQ R5.4 0.200 1.0 5.00 1.00 1.00 1.00 1.00	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Enthalpy A Spike Level	nalytical Source Result		%REC		RPD	Qual
Blank (BHI0542-BLK1) Mercury Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury	Batch BHI0542 - EPA200.8 ND ND ND ND ND ND ND ND	LOQ R5.4 0.200 1.0 5.00 1.00 1.00 1.00 1.00	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Enthalpy A Spike Level	nalytical Source Result			RPD		Qual
Blank (BHI0542-BLK1) Mercury Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury	Batch BHI0542 - EPA200.8 ND ND ND ND ND ND ND ND	0.200 1.0 5.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L	Spike Level	Source Result	%REC		RPD		Qual
Blank (BHI0542-BLK1) Mercury Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury	Batch BHI0542 - EPA200.8 ND ND ND ND ND ND ND ND	0.200 1.0 5.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L	Level	Result	%REC		RPD		Qual
Mercury Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury	ND ND ND ND ND ND ND	0.200 1.0 5.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L	Prepared & Anal	yzed: 09/16/2024					
Mercury Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury	ND ND ND ND ND	1.0 5.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L	Prepared & Anal	yzed: 09/16/2024					
Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury	ND ND ND ND ND	1.0 5.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L							
Barium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury	ND ND ND ND	5.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L							
Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury	ND ND ND ND	1.00 1.00 1.00	ug/L ug/L ug/L							
Chromium Copper Lead Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury	ND ND ND	1.00 1.00	ug/L ug/L							
Copper Lead Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury	ND ND	1.00	ug/L							
Lead Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury	ND									
Nickel Selenium Silver Zinc LCS (BHI0542-BS1) Mercury		1.0	ua/l							
Selenium Silver Zinc LCS (BHI0542-BS1) Mercury										
Silver Zinc LCS (BHI0542-BS1) Mercury	ND	1.000	ug/L							
Zinc LCS (BHI0542-BS1) Mercury	ND	1.00	ug/L							
LCS (BHI0542-BS1) Mercury	ND ND	1.00 5.00	ug/L							
Mercury	ND	5.00	ug/L							
					yzed: 09/16/2024					
Arsenic	1.02	0.200	ug/L	1.00		102	80-120			
D :	51	1.0	ug/L	50.0		103	80-120			
Barium	52.8	5.00	ug/L	50.0		106	80-120			
Cadmium	51.9	1.00	ug/L	50.0		104	80-120			
Chromium	52.2	1.00	ug/L	50.0		104	80-120 80-120			
Copper Lead	52.9 53	1.00 1.0	ug/L	50.0 50.0		106 106	80-120 80-120			
Nickel	53.01	1.000	ug/L ug/L	50.0 50.0		106	80-120 80-120			
Selenium	53.01	1.000	ug/L ug/L	50.0 50.0		106	80-120 80-120			
Silver	10.4	1.00	ug/L ug/L	10.0		104	80-120 80-120			
Zinc	51.8	5.00	ug/L	50.0		104	80-120			
Matrix Spike (BHI0542-MS1)	01.0	2410654-01	ug/L	00.0			00 120			

			<u>Ce</u>	ertificate o	of Analysi	<u>s</u>				
Client Name:	SCS Engineers-Winchester				-		Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.:	LFG-EW Monthly Monitoring									
Submitted To:	Jennifer Robb						Work Ord	.	2410652	
								er.	2410052	
		Metals	(Total) by	EPA 6000/7000 S	eries Methods - C	Quality Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0542 - EPA200.8	R5.4								
Matrix Spike (BHI0542-N	IS1) Source:	2410654-01		Prepared & Analy	yzed: 09/16/2024					
Mercury	0.993	0.200	ug/L	1.00	BLOD	99.3	70-130			
Arsenic	51	1.0	ug/L	50.0	BLOD	103	75-125			
Barium	53.9	5.00	ug/L	50.0	2.20	103	75-125			
Cadmium	51.7	1.00	ug/L	50.0	BLOD	103	75-125			
Chromium	53.7	1.00	ug/L	50.0	0.474	106	75-125			
Copper	53.0	1.00	ug/L	50.0	0.418	105	75-125			
Lead	53	1.0	ug/L	50.0	BLOD	106	75-125			
Nickel	53.07	1.000	ug/L	50.0	BLOD	106	75-125			
Selenium	50.5	1.00	ug/L	50.0	BLOD	101	75-125			
Silver	10.4	1.00	ug/L	10.0	BLOD	104	75-125			
Zinc	52.6	5.00	ug/L	50.0	BLOD	105	75-125			
Matrix Spike (BHI0542-N	IS2) Source:	2410654-07		Prepared & Analy	yzed: 09/16/2024					
Mercury	1.00	0.200	ug/L	1.00	BLOD	100	70-130			
Arsenic	51	1.0	ug/L	50.0	BLOD	103	75-125			
Barium	51.8	5.00	ug/L	50.0	BLOD	104	75-125			
Cadmium	52.1	1.00	ug/L	50.0	BLOD	104	75-125			
Chromium	51.9	1.00	ug/L	50.0	BLOD	104	75-125			
Copper	52.2	1.00	ug/L	50.0	BLOD	104	75-125			
Lead	54	1.0	ug/L	50.0	BLOD	109	75-125			
Nickel	52.14	1.000	ug/L	50.0	BLOD	104	75-125			
Selenium	50.9	1.00	ug/L	50.0	BLOD	102	75-125			
Silver	10.4	1.00	ug/L	10.0	BLOD	104	75-125			
Zinc	52.4	5.00	ug/L	50.0	BLOD	105	75-125			
Matrix Spike Dup (BHI05	542-MSD1) Source:	2410654-01		Prepared & Analy	vzed: 09/16/2024					

			<u>Ce</u>	ertificate c	of Analysi	S				
Client Name:	SCS Engineers-Winchester						Date Issu	ed:	9/30/2024	9:43:20AM
Client Site I.D.:	LFG-EW Monthly Monitoring									
Submitted To:	Jennifer Robb						Work Orc	lor	2410652	
			(- ())						2410032	
		Metals	(lotal) by	EPA 6000/7000 S	eries Methods - C	Juality Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Analyte			Units	Level	Result		LIIIIIto		Liitiit	Quai
	Batch BHI0542 - EPA200.8	R5.4								
Matrix Spike Dup (BHI05	· ·	2410654-01		Prepared & Anal	•					
Mercury	1.01	0.200	ug/L	1.00	BLOD	101	70-130	1.92	20	
Arsenic	52	1.0	ug/L	50.0	BLOD	103	75-125	0.0241	20	
Barium	55.0	5.00	ug/L	50.0	2.20	106	75-125	2.02	20	
Cadmium	52.5	1.00	ug/L	50.0	BLOD	105	75-125	1.37	20	
Chromium	53.0	1.00	ug/L	50.0	0.474	105	75-125	1.30	20	
Copper	52.5	1.00	ug/L	50.0	0.418 BLOD	104	75-125	0.925	20	
Lead	53	1.0	ug/L	50.0	BLOD	107	75-125	0.568	20	
Nickel Selenium	52.38 51.0	1.000 1.00	ug/L ug/L	50.0 50.0	BLOD BLOD	105 102	75-125 75-125	1.31 1.00	20 20	
Silver	10.5	1.00	ug/L ug/L	10.0	BLOD	102	75-125	1.00	20	
Zinc	52.8	5.00	ug/L ug/L	50.0	BLOD	105	75-125	0.478	20	
Matrix Spike Dup (BHI05		2410654-07		Prepared & Anal			10 120	0.470	20	
Mercury	1.00	0.200	ug/L	1.00	BLOD	100	70-130	0.226	20	
Arsenic	51	1.0	ug/L	50.0	BLOD	102	75-125	1.13	20	
Barium	51.8	5.00	ug/L	50.0	BLOD	104	75-125	0.0510	20	
Cadmium	52.0	1.00	ug/L	50.0	BLOD	104	75-125	0.184	20	
Chromium	51.2	1.00	ug/L	50.0	BLOD	102	75-125	1.53	20	
Copper	51.9	1.00	ug/L	50.0	BLOD	104	75-125	0.624	20	
Lead	55	1.0	ug/L	50.0	BLOD	109	75-125	0.534	20	
Nickel	51.86	1.000	ug/L	50.0	BLOD	104	75-125	0.533	20	
Selenium	50.8	1.00	ug/L	50.0	BLOD	102	75-125	0.225	20	
Silver	10.5	1.00	ug/L	10.0	BLOD	105	75-125	1.61	20	
Zinc	51.8	5.00	ug/L	50.0	BLOD	104	75-125	1.06	20	

			<u>Ce</u>	rtificate c	of Analysi	<u>is</u>				
Client Name: SCS	S Engineers-Winchester				-		Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: LFG-	EW Monthly Monitoring									
	fer Robb						Work Ord		2410652	
							WORK OID	er.	2410052	
		```	Volatile Orga	nic Compounds I	oy GCMS - Quali	ty Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
-	Batch BHI0533 - SW5030B-I	MS								
Blank (BHI0533-BLK1)				Prepared & Anal	yzed: 09/13/2024	Ļ				
1,1,1,2-Tetrachloroethane	ND	0.40	ug/L		<b>,</b>					
1,1,1-Trichloroethane	ND	1.00	ug/L							
1,1,2,2-Tetrachloroethane	ND	0.40	ug/L							
1,1,2-Trichloroethane	ND	1.00	ug/L							
1,1-Dichloroethane	ND	1.00	ug/L							
1,1-Dichloroethylene	ND	1.00	ug/L							
1,1-Dichloropropene	ND	1.00	ug/L							
1,2,3-Trichlorobenzene	ND	1.00	ug/L							
1,2,3-Trichloropropane	ND	1.00	ug/L							
1,2,4-Trichlorobenzene	ND	1.00	ug/L							
1,2,4-Trimethylbenzene	ND	1.00	ug/L							
1,2-Dibromo-3-chloropropane	(DBCP) ND	1.00	ug/L							
1,2-Dibromoethane (EDB)	ND	1.00	ug/L							
1,2-Dichlorobenzene	ND	0.50	ug/L							
1,2-Dichloroethane	ND	1.00	ug/L							
1,2-Dichloropropane	ND	0.50	ug/L							
1,3,5-Trimethylbenzene	ND	1.00	ug/L							
1,3-Dichlorobenzene	ND	1.00	ug/L							
1,3-Dichloropropane	ND	1.00	ug/L							
1,4-Dichlorobenzene	ND	1.00	ug/L							
2,2-Dichloropropane	ND	1.00	ug/L							
2-Butanone (MEK)	ND	10.0	ug/L							
2-Chlorotoluene	ND	1.00	ug/L							
2-Hexanone (MBK)	ND	5.00	ug/L							
4-Chlorotoluene	ND	1.00	ug/L							



			<u>Ce</u>	ertificate o	f Analysi	is				
Client Name:	SCS Engineers-Winchester				_		Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.:	LFG-EW Monthly Monitoring									
Submitted To: J	ennifer Robb						Work Ord	or	2410652	
								ei.	2410052	
		```	Volatile Org	anic Compounds b	y GCMS - Quali	ty Control				
				Enthalpy An	alytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0533 - SW5030B	MS								
Blank (BHI0533-BLK1)				Prepared & Analy	/zed: 09/13/2024					
4-Isopropyltoluene	ND	1.00	ug/L	<u> </u>		·				
4-Methyl-2-pentanone (5.00	ug/L							
Acetone	, ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Bromobenzene	ND	1.00	ug/L							
Bromochloromethane	ND	1.00	ug/L							
Bromodichloromethane	ND	0.50	ug/L							
Bromoform	ND	1.00	ug/L							
Bromomethane	ND	1.00	ug/L							
Carbon disulfide	ND	10.0	ug/L							
Carbon tetrachloride	ND	1.00	ug/L							
Chlorobenzene	ND	1.00	ug/L							
Chloroethane	ND	1.00	ug/L							
Chloroform	ND	0.50	ug/L							
Chloromethane	ND	1.00	ug/L							
cis-1,2-Dichloroethylene	e ND	1.00	ug/L							
cis-1,3-Dichloropropene	e ND	1.00	ug/L							
Dibromochloromethane	ND	0.50	ug/L							
Dibromomethane	ND	1.00	ug/L							
Dichlorodifluoromethan		1.00	ug/L							
Di-isopropyl ether (DIPE	E) ND	5.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Hexachlorobutadiene	ND	0.80	ug/L							
lodomethane	ND	10.0	ug/L							
Isopropylbenzene	ND	1.00	ug/L							

			<u>Cer</u>	tificate o	of Analysi	is				
Client Name: SCS Engin	eers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: LFG-EW Mo	onthly Monitoring									
Submitted To: Jennifer Rob	U						Work Ord	er:	2410652	
		١	/olatile Organ	ic Compounds b	oy GCMS - Quali	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
			onno	20101	rtooun	,uit20	Linito	14.6	Linit	Quai
	BHI0533 - SW5030B-	MS								
Blank (BHI0533-BLK1)				repared & Analy	yzed: 09/13/2024					
m+p-Xylenes	ND	2.00	ug/L							
Methylene chloride	ND	4.00	ug/L							
Methyl-t-butyl ether (MTBE)	ND	1.00	ug/L							
Naphthalene	ND	1.00	ug/L							
n-Butylbenzene	ND	1.00	ug/L							
n-Propylbenzene	ND	1.00	ug/L							
o-Xylene	ND	1.00	ug/L							
sec-Butylbenzene	ND	1.00	ug/L							
Styrene	ND	1.00	ug/L							
tert-Butylbenzene	ND	1.00	ug/L							
Tetrachloroethylene (PCE)	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
trans-1,2-Dichloroethylene	ND	1.00	ug/L							
trans-1,3-Dichloropropene	ND	1.00	ug/L							
Trichloroethylene	ND	1.00	ug/L							
Trichlorofluoromethane	ND	1.00	ug/L							
Vinyl acetate	ND	10.0	ug/L							
Vinyl chloride	ND	0.50	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	45.4		ug/L	50.0		90.8	70-120			
Surr: 4-Bromofluorobenzene (Surr)	50.4		ug/L	50.0		101	75-120			
Surr: Dibromofluoromethane (Surr)	46.0		ug/L	50.0		92.1	70-130			
Surr: Toluene-d8 (Surr)	49.9		ug/L	50.0		99.9	70-130			
LCS (BHI0533-BS1)				Prenared & Analy	yzed: 09/13/2024	L				

			<u>Cer</u>	tificate o	of Analysi	is				
Client Name: SCS Eng	gineers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: LFG-EW	Monthly Monitoring									
Submitted To: Jennifer R								L	0410050	
							Work Ord	er:	2410652	
		·	Volatile Organ	ic Compounds I	oy GCMS - Qualit	ty Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	tch BHI0533 - SW5030B		-			-				
LCS (BHI0533-BS1)		-1410	F	Prenared & Anal	yzed: 09/13/2024					
1,1,1,2-Tetrachloroethane	49.4	0.4	ug/L	50.0	,204. 00/10/2024	98.7	80-130			
1,1,1-Trichloroethane	46.2	1	ug/L	50.0		92.3	65-130			
1,1,2,2-Tetrachloroethane	53.1	0.4	ug/L	50.0		106	65-130			
1,1,2-Trichloroethane	53.7	1	ug/L	50.0		107	75-125			
1,1-Dichloroethane	50.8	1	ug/L	50.0		102	70-135			
1,1-Dichloroethylene	39.5	1	ug/L	50.0		78.9	70-130			
1,1-Dichloropropene	52.1	1	ug/L	50.0		104	75-135			
1,2,3-Trichlorobenzene	54.0	1	ug/L	50.0		108	55-140			
1,2,3-Trichloropropane	47.9	1	ug/L	50.0		95.8	75-125			
1,2,4-Trichlorobenzene	53.3	1	ug/L	50.0		107	65-135			
1,2,4-Trimethylbenzene	52.4	1	ug/L	50.0		105	75-130			
1,2-Dibromo-3-chloropropane (DBC	P) 46.6	1	ug/L	50.0		93.1	50-130			
1,2-Dibromoethane (EDB)	51.2	1	ug/L	50.0		102	80-120			
1,2-Dichlorobenzene	53.6	0.5	ug/L	50.0		107	70-120			
1,2-Dichloroethane	47.4	1	ug/L	50.0		94.9	70-130			
1,2-Dichloropropane	53.2	0.5	ug/L	50.0		106	75-125			
1,3,5-Trimethylbenzene	52.6	1	ug/L	50.0		105	75-125			
1,3-Dichlorobenzene	53.1	1	ug/L	50.0		106	75-125			
1,3-Dichloropropane	51.8	1	ug/L	50.0		104	75-125			
1,4-Dichlorobenzene	52.8	1	ug/L	50.0		106	75-125			
2,2-Dichloropropane	47.2	1	ug/L	50.0		94.3	70-135			
2-Butanone (MEK)	41.4	10	ug/L	50.0		82.8	30-150			
2-Chlorotoluene	50.3	1	ug/L	50.0		101	75-125			
2-Hexanone (MBK)	51.0	5	ug/L	50.0		102	55-130			
4-Chlorotoluene	51.4	1	ug/L	50.0		103	75-130			

			<u>Cer</u>	tificate c	of Analysi	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: LI	FG-EW Monthly Monitoring									
Submitted To: Je	ennifer Robb								0410650	
							Work Ord	er:	2410652	
		۱ ۱	Volatile Organ	ic Compounds I	oy GCMS - Qualit	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0533 - SW5030B-	MS								
LCS (BHI0533-BS1)			F	Prepared & Analy	yzed: 09/13/2024					
4-Isopropyltoluene	54.9	1	ug/L	50.0		110	75-130			
4-Methyl-2-pentanone (M	IIBK) 52.0	5	ug/L	50.0		104	60-135			
Acetone	38.4	10	ug/L	50.0		76.8	40-140			
Benzene	51.6	1	ug/L	50.0		103	80-120			
Bromobenzene	46.9	1	ug/L	50.0		93.8	75-125			
Bromochloromethane	45.2	1	ug/L	50.0		90.5	65-130			
Bromodichloromethane	48.8	0.5	ug/L	50.0		97.6	75-120			
Bromoform	51.1	1	ug/L	50.0		102	70-130			
Bromomethane	33.7	1	ug/L	50.0		67.5	30-145			
Carbon disulfide	40.3	10	ug/L	50.0		80.6	35-160			
Carbon tetrachloride	50.6	1	ug/L	50.0		101	65-140			
Chlorobenzene	51.5	1	ug/L	50.0		103	80-120			
Chloroethane	39.9	1	ug/L	50.0		79.9	60-135			
Chloroform	49.4	0.5	ug/L	50.0		98.8	65-135			
Chloromethane	58.3	1	ug/L	50.0		117	40-125			
cis-1,2-Dichloroethylene	45.5	1	ug/L	50.0		91.0	70-125			
cis-1,3-Dichloropropene	48.9	1	ug/L	50.0		97.8	70-130			
Dibromochloromethane	48.1	0.5	ug/L	50.0		96.2	60-135			
Dibromomethane	52.0	1	ug/L	50.0		104	75-125			
Dichlorodifluoromethane	67.5	1	ug/L	50.0		135	30-155			
Ethylbenzene	50.7	1	ug/L	50.0		101	75-125			
Hexachlorobutadiene	51.2	0.8	ug/L	50.0		102	50-140			
Isopropylbenzene	45.1	1	ug/L	50.0		90.2	75-125			
m+p-Xylenes	98.0	2	ug/L	100		98.0	75-130			
Methylene chloride	40.7	4	ug/L	50.0		81.3	55-140			

			Cer	tificate c	of Analysi	is				
Client Name: SCS Engi	neers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
·	Ionthly Monitoring									
Submitted To: Jennifer Ro	DD						Work Ord	er:	2410652	
		١	/olatile Organ	ic Compounds b	oy GCMS - Qualit	ty Control				
				Enthalpy Ar	nalvtical					
										
				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batc	h BHI0533 - SW5030B-	MS								
LCS (BHI0533-BS1)			F	Prepared & Analy	yzed: 09/13/2024					
Methyl-t-butyl ether (MTBE)	45.6	1	ug/L	50.0		91.1	65-125			
Naphthalene	54.2	1	ug/L	50.0		108	55-140			
n-Butylbenzene	56.3	1	ug/L	50.0		113	70-135			
n-Propylbenzene	49.8	1	ug/L	50.0		99.7	70-130			
o-Xylene	48.1	1	ug/L	50.0		96.2	80-120			
sec-Butylbenzene	56.0	1	ug/L	50.0		112	70-125			
Styrene	47.5	1	ug/L	50.0		95.0	65-135			
tert-Butylbenzene	51.4	1	ug/L	50.0		103	70-130			
Tetrachloroethylene (PCE)	44.3	1	ug/L	50.0		88.5	45-150			
Toluene	50.6	1	ug/L	50.0		101	75-120			
trans-1,2-Dichloroethylene	43.7	1	ug/L	50.0		87.4	60-140			
trans-1,3-Dichloropropene	52.2	1	ug/L	50.0		104	55-140			
Trichloroethylene	50.7	1	ug/L	50.0		101	70-125			
Trichlorofluoromethane	50.1	1	ug/L	50.0		100	60-145			
Vinyl chloride	54.7	0.5	ug/L	50.0		109	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	45.5		ug/L	50.0		91.0	70-120			
Surr: 4-Bromofluorobenzene (Surr)	50.0		ug/L	50.0		100	75-120			
Surr: Dibromofluoromethane (Surr)	46.5		ug/L	50.0		93.0	70-130			
Surr: Toluene-d8 (Surr)	50.0		ug/L	50.0		99.9	70-130			
LCS (BHI0533-BS2)			F	Prepared & Analy	yzed: 09/13/2024					
1,1,1,2-Tetrachloroethane	50.2	0.4	ug/L	50.0		100	80-130			
1,1,1-Trichloroethane	47.3	1	ug/L	50.0		94.6	65-130			
1,1,2,2-Tetrachloroethane	56.2	0.4	ug/L	50.0		112	65-130			
1,1,2-Trichloroethane	55.7	1	ug/L	50.0		111	75-125			

			<u>Cer</u>	tificate o	of Analysi	S				
Client Name: SCS E	ngineers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: LFG-EV	V Monthly Monitoring									
Submitted To: Jennifer	Robb						Work Ord	or	2410652	
						A <i>i i</i>		er.	2410052	
		\	Volatile Organ	ic Compounds I	oy GCMS - Qualit	y Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
В	atch BHI0533 - SW5030B-	MS								
LCS (BHI0533-BS2)			F	Prepared & Anal	yzed: 09/13/2024					
1,1-Dichloroethane	52.4	1	ug/L	50.0		105	70-135			
1,1-Dichloroethylene	43.6	1	ug/L	50.0		87.1	70-130			
1,1-Dichloropropene	53.9	1	ug/L	50.0		108	75-135			
1,2,3-Trichlorobenzene	57.6	1	ug/L	50.0		115	55-140			
1,2,3-Trichloropropane	50.0	1	ug/L	50.0		99.9	75-125			
1,2,4-Trichlorobenzene	57.3	1	ug/L	50.0		115	65-135			
1,2,4-Trimethylbenzene	55.8	1	ug/L	50.0		112	75-130			
1,2-Dibromo-3-chloropropane (DE	BCP) 50.5	1	ug/L	50.0		101	50-130			
1,2-Dibromoethane (EDB)	52.9	1	ug/L	50.0		106	80-120			
1,2-Dichlorobenzene	56.6	0.5	ug/L	50.0		113	70-120			
1,2-Dichloroethane	49.1	1	ug/L	50.0		98.3	70-130			
1,2-Dichloropropane	55.2	0.5	ug/L	50.0		110	75-125			
1,3,5-Trimethylbenzene	56.1	1	ug/L	50.0		112	75-125			
1,3-Dichlorobenzene	56.2	1	ug/L	50.0		112	75-125			
1,3-Dichloropropane	54.3	1	ug/L	50.0		109	75-125			
1,4-Dichlorobenzene	55.3	1	ug/L	50.0		111	75-125			
2,2-Dichloropropane	48.8	1	ug/L	50.0		97.7	70-135			
2-Butanone (MEK)	40.4	10	ug/L	50.0		80.9	30-150			
2-Chlorotoluene	52.6	1	ug/L	50.0		105	75-125			
2-Hexanone (MBK)	49.7	5	ug/L	50.0		99.4	55-130			
4-Chlorotoluene	54.2	1	ug/L	50.0		108	75-130			
4-Isopropyltoluene	57.6	1	ug/L	50.0		115	75-130			
4-Methyl-2-pentanone (MIBK)	50.6	5	ug/L	50.0		101	60-135			
Acetone	39.6	10	ug/L	50.0		79.2	40-140			
Benzene	53.4	1	ug/L	50.0		107	80-120			

			<u>Cer</u>	tificate c	of Analysi	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: L	FG-EW Monthly Monitoring									
	ennifer Robb									
Submitted to. J							Work Ord	er:	2410652	
		,	Volatile Organ	ic Compounds b	oy GCMS - Qualit	ty Control				
				Enthalpy Ar	nalytical					
				Onika	Cauraa		0/ DEC			
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0533 - SW5030B-	MS								
LCS (BHI0533-BS2)			F	Prepared & Analy	/zed: 09/13/2024					
Bromobenzene	48.9	1	ug/L	50.0	-	97.8	75-125			
Bromochloromethane	47.9	1	ug/L	50.0		95.8	65-130			
Bromodichloromethane	51.0	0.5	ug/L	50.0		102	75-120			
Bromoform	53.2	1	ug/L	50.0		106	70-130			
Bromomethane	50.6	1	ug/L	50.0		101	30-145			
Carbon disulfide	34.4	10	ug/L	50.0		68.7	35-160			
Carbon tetrachloride	52.7	1	ug/L	50.0		105	65-140			
Chlorobenzene	53.3	1	ug/L	50.0		107	80-120			
Chloroethane	42.3	1	ug/L	50.0		84.7	60-135			
Chloroform	51.4	0.5	ug/L	50.0		103	65-135			
Chloromethane	60.6	1	ug/L	50.0		121	40-125			
cis-1,2-Dichloroethylene	e 46.8	1	ug/L	50.0		93.6	70-125			
cis-1,3-Dichloropropene	50.9	1	ug/L	50.0		102	70-130			
Dibromochloromethane	50.1	0.5	ug/L	50.0		100	60-135			
Dibromomethane	53.7	1	ug/L	50.0		107	75-125			
Dichlorodifluoromethane	e 74.6	1	ug/L	50.0		149	30-155			
Ethylbenzene	52.8	1	ug/L	50.0		106	75-125			
Hexachlorobutadiene	54.7	0.8	ug/L	50.0		109	50-140			
Isopropylbenzene	47.0	1	ug/L	50.0		93.9	75-125			
m+p-Xylenes	101	2	ug/L	100		101	75-130			
Methylene chloride	44.6	4	ug/L	50.0		89.3	55-140			
Methyl-t-butyl ether (MT	BE) 47.4	1	ug/L	50.0		94.8	65-125			
Naphthalene	58.2	1	ug/L	50.0		116	55-140			
n-Butylbenzene	59.6	1	ug/L	50.0		119	70-135			
n-Propylbenzene	52.5	1	ug/L	50.0		105	70-130			

			<u>Ce</u>	ertificate o	of Analysi	is				
Client Name: SCS	S Engineers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: LFG-	-EW Monthly Monitoring									
Submitted To: Jenni	fer Robb						Work Ord	or:	2410652	
			(alatila One			h . Cantual		CI.	2410032	
		v	olatile Org	anic Compounds I		ly Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0533 - SW5030B-I	MS								
LCS (BHI0533-BS2)				Prepared & Anal	yzed: 09/13/2024					
o-Xylene	48.9	1	ug/L	50.0		97.8	80-120			
sec-Butylbenzene	59.4	1	ug/L	50.0		119	70-125			
Styrene	49.3	1	ug/L	50.0		98.6	65-135			
tert-Butylbenzene	54.2	1	ug/L	50.0		108	70-130			
Tetrachloroethylene (PCE)	43.0	1	ug/L	50.0		86.0	45-150			
Toluene	52.9	1	ug/L	50.0		106	75-120			
trans-1,2-Dichloroethylene	45.2	1	ug/L	50.0		90.3	60-140			
trans-1,3-Dichloropropene	54.8	1	ug/L	50.0		110	55-140			
Trichloroethylene	53.3	1	ug/L	50.0		107	70-125			
Trichlorofluoromethane	52.3	1	ug/L	50.0		105	60-145			
Vinyl chloride	56.6	0.5	ug/L	50.0		113	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr) 45.7		ug/L	50.0		91.4	70-120			
Surr: 4-Bromofluorobenzene	(Surr) 50.0		ug/L	50.0		99.9	75-120			
Surr: Dibromofluoromethane	(Surr) 46.2		ug/L	50.0		92.4	70-130			
Surr: Toluene-d8 (Surr)	49.6		ug/L	50.0		99.2	70-130			
Matrix Spike (BHI0533-MS1)	Source: 2	410535-01		Prepared & Anal	yzed: 09/13/2024					
1,1,1,2-Tetrachloroethane	45.0	0.4	ug/L	50.0	BLOD	90.1	80-130			
1,1,1-Trichloroethane	42.4	1	ug/L	50.0	BLOD	84.9	65-130			
1,1,2,2-Tetrachloroethane	50.7	0.4	ug/L	50.0	BLOD	101	65-130			
1,1,2-Trichloroethane	50.7	1	ug/L	50.0	BLOD	101	75-125			
1,1-Dichloroethane	48.2	1	ug/L	50.0	BLOD	96.3	70-135			
1,1-Dichloroethylene	36.9	1	ug/L	50.0	BLOD	73.9	50-145			
1,1-Dichloropropene	49.1	1	ug/L	50.0	BLOD	98.2	75-135			
1,2,3-Trichlorobenzene	50.5	1	ug/L	50.0	BLOD	101	55-140			

			Ce	ertificate o	of Analys	is				
Client Name: SCS Eng	gineers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: LFG-EW I	Monthly Monitoring									
	•									
Submitted To: Jennifer R	ddo						Work Ord	er:	2410652	
		Vo	olatile Orga	anic Compounds b	y GCMS - Quali	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bat	ch BHI0533 - SW5030E	3-MS								
Matrix Spike (BHI0533-MS1)		: 2410535-01		Prepared & Analy	/zed: 09/13/2024					
1,2,3-Trichloropropane	45.4	1	ug/L	50.0	BLOD	90.9	75-125			
1,2,4-Trichlorobenzene	49.7	1	ug/L	50.0	BLOD	99.4	65-135			
1,2,4-Trimethylbenzene	49.6	1	ug/L	50.0	BLOD	99.3	75-130			
1,2-Dibromo-3-chloropropane (DBC	P) 44.7	1	ug/L	50.0	BLOD	89.5	50-130			
1,2-Dibromoethane (EDB)	48.1	1	ug/L	50.0	BLOD	96.2	80-120			
1,2-Dichlorobenzene	50.3	0.5	ug/L	50.0	BLOD	101	70-120			
1,2-Dichloroethane	45.2	1	ug/L	50.0	BLOD	90.4	70-130			
1,2-Dichloropropane	50.5	0.5	ug/L	50.0	BLOD	101	75-125			
1,3,5-Trimethylbenzene	49.1	1	ug/L	50.0	BLOD	98.2	75-124			
1,3-Dichlorobenzene	49.6	1	ug/L	50.0	BLOD	99.3	75-125			
1,3-Dichloropropane	48.9	1	ug/L	50.0	BLOD	97.8	75-125			
1,4-Dichlorobenzene	49.2	1	ug/L	50.0	BLOD	98.4	75-125			
2,2-Dichloropropane	44.4	1	ug/L	50.0	BLOD	88.8	70-135			
2-Butanone (MEK)	39.0	10	ug/L	50.0	BLOD	78.0	30-150			
2-Chlorotoluene	47.0	1	ug/L	50.0	BLOD	93.9	75-125			
2-Hexanone (MBK)	47.4	5	ug/L	50.0	BLOD	94.9	55-130			
4-Chlorotoluene	48.1	1	ug/L	50.0	BLOD	96.1	75-130			
4-Isopropyltoluene	51.7	1	ug/L	50.0	BLOD	103	75-130			
4-Methyl-2-pentanone (MIBK)	49.2	5	ug/L	50.0	BLOD	98.3	60-135			
Acetone	282	10	ug/L	50.0	BLOD	557	40-140			М
Benzene	48.5	1	ug/L	50.0	BLOD	96.9	80-120			
Bromobenzene	44.2	1	ug/L	50.0	BLOD	88.5	75-125			
Bromochloromethane	43.1	1	ug/L	50.0	BLOD	86.2	65-130			
Bromodichloromethane	46.7	0.5	ug/L	50.0	BLOD	93.4	75-136			
Bromoform	48.0	1	ug/L	50.0	BLOD	96.0	70-130			

			<u>C</u>	ertificate o	of Analys	<u>is</u>				
Client Name:	SCS Engineers-Wind	hester					Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.:	LFG-EW Monthly Mon	itorina								
Submitted To:	Jennifer Robb									
Submitted 10.							Work Ord	er:	2410652	
		١	/olatile Org	anic Compounds b	oy GCMS - Quali	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Resu	ilt LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0533 - S	W5030B-MS								
Matrix Spike (BHI0533	3-MS1)	Source: 2410535-0 ⁻	1	Prepared & Analy	/zed: 09/13/2024					
Bromomethane	47	.4 1	ug/L	50.0	BLOD	94.9	30-145			
Carbon disulfide	46	.4 10	ug/L	50.0	BLOD	92.2	35-160			
Carbon tetrachlorid	e 47	.7 1	ug/L	50.0	BLOD	95.4	65-140			
Chlorobenzene	48	.6 1	ug/L	50.0	BLOD	97.2	80-120			
Chloroethane	38		ug/L	50.0	BLOD	76.4	60-135			
Chloroform	46	.7 0.5	ug/L	50.0	BLOD	93.4	65-135			
Chloromethane	54		ug/L	50.0	BLOD	109	40-125			
cis-1,2-Dichloroethy	-		ug/L	50.0	BLOD	86.6	70-125			
cis-1,3-Dichloroprop			ug/L	50.0	BLOD	92.2	47-136			
Dibromochlorometh			ug/L	50.0	BLOD	90.2	60-135			
Dibromomethane	49		ug/L	50.0	BLOD	98.4	75-125			
Dichlorodifluoromet			ug/L	50.0	BLOD	193	30-155			М
Ethylbenzene	48		ug/L	50.0	BLOD	96.3	75-125			
Hexachlorobutadier			ug/L	50.0	BLOD	96.4	50-140			
Isopropylbenzene	42		ug/L	50.0	BLOD	85.0	75-125			
m+p-Xylenes	91		ug/L	100	BLOD	91.3	75-130			
Methylene chloride			ug/L	50.0	BLOD	78.1	55-140			
Methyl-t-butyl ether			ug/L	50.0	BLOD	86.7	65-125			
Naphthalene	51		ug/L	50.0	BLOD	103	55-140			
n-Butylbenzene	52		ug/L	50.0	BLOD	106	70-135			
n-Propylbenzene	46		ug/L	50.0	BLOD	92.5	70-130			
o-Xylene	45		ug/L	50.0	BLOD	90.3	80-120			
sec-Butylbenzene	52		ug/L	50.0	BLOD	105	70-125			
Styrene	44		ug/L	50.0	BLOD	89.8	65-135			
tert-Butylbenzene	48	.0 1	ug/L	50.0	BLOD	96.0	70-130			

			Ce	ertificate o	of Analys	<u>is</u>				
Client Name: SCS Enginee	ers-Winchester				-	_	Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: LFG-EW Mon	thly Monitoring									
-	any monitoring									
Submitted To: Jennifer Robb							Work Ord	er:	2410652	
		Vo	latile Org	anic Compounds b	oy GCMS - Quali	ty Control				
				Enthalpy Ar	nalytical					
[-					
A	Descrit		1.1	Spike	Source		%REC		RPD	Qual
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch B	HI0533 - SW5030B-	MS								
Matrix Spike (BHI0533-MS1)	Source: 2	2410535-01		Prepared & Analy	/zed: 09/13/2024	Ļ				
Tetrachloroethylene (PCE)	39.3	1	ug/L	50.0	BLOD	78.6	51-231			
Toluene	47.6	1	ug/L	50.0	BLOD	95.2	75-120			
trans-1,2-Dichloroethylene	39.1	1	ug/L	50.0	BLOD	78.3	60-140			
trans-1,3-Dichloropropene	49.7	1	ug/L	50.0	BLOD	99.5	55-140			
Trichloroethylene	47.9	1	ug/L	50.0	BLOD	95.8	70-125			
Trichlorofluoromethane	48.0	1	ug/L	50.0	BLOD	95.9	60-145			
Vinyl chloride	52.4	0.5	ug/L	50.0	BLOD	105	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	46.8		ug/L	50.0		93.6	70-120			
Surr: 4-Bromofluorobenzene (Surr)	50.2		ug/L	50.0		100	75-120			
Surr: Dibromofluoromethane (Surr)	47.3		ug/L	50.0		94.7	70-130			
Surr: Toluene-d8 (Surr)	50.1		ug/L	50.0		100	70-130			
Matrix Spike Dup (BHI0533-MSD1)	Source: 2	2410535-01		Prepared & Analy	/zed: 09/13/2024	Ļ				
1,1,1,2-Tetrachloroethane	47.2	0.4	ug/L	50.0	BLOD	94.4	80-130	4.68	30	
1,1,1-Trichloroethane	44.8	1	ug/L	50.0	BLOD	89.6	65-130	5.43	30	
1,1,2,2-Tetrachloroethane	53.7	0.4	ug/L	50.0	BLOD	107	65-130	5.73	30	
1,1,2-Trichloroethane	53.5	1	ug/L	50.0	BLOD	107	75-125	5.38	30	
1,1-Dichloroethane	50.0	1	ug/L	50.0	BLOD	100	70-135	3.77	30	
1,1-Dichloroethylene	38.1	1	ug/L	50.0	BLOD	76.2	50-145	3.07	30	
1,1-Dichloropropene	50.6	1	ug/L	50.0	BLOD	101	75-135	2.91	30	
1,2,3-Trichlorobenzene	52.8	1	ug/L	50.0	BLOD	106	55-140	4.35	30	
1,2,3-Trichloropropane	48.1	1	ug/L	50.0	BLOD	96.2	75-125	5.71	30	
1,2,4-Trichlorobenzene	51.8	1	ug/L	50.0	BLOD	104	65-135	4.02	30	
1,2,4-Trimethylbenzene	52.2	1	ug/L	50.0	BLOD	104	75-130	4.93	30	
1,2-Dibromo-3-chloropropane (DBCP)	49.0	1	ug/L	50.0	BLOD	97.9	50-130	9.03	30	

				<u>Ce</u>	ertificate o	of Analys	is				
Client Name:	SCS Enginee	ers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.:	LFG-EW Mont	thly Monitoring									
Submitted To:	Jennifer Robb	, 0								0410050	
oubinitied to.								Work Ord	er:	2410652	
			Vo	olatile Org	anic Compounds b	oy GCMS - Quali	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B	HI0533 - SW5030I	B-MS								
Matrix Spike Dup (BH	10533-MSD1)	Source	: 2410535-01		Prepared & Analy	/zed: 09/13/2024	•				
1,2-Dibromoethane	(EDB)	50.1	1	ug/L	50.0	BLOD	100	80-120	4.15	30	
1,2-Dichlorobenzen	e	52.8	0.5	ug/L	50.0	BLOD	106	70-120	4.75	30	
1,2-Dichloroethane		46.7	1	ug/L	50.0	BLOD	93.4	70-130	3.29	30	
1,2-Dichloropropane	e	52.5	0.5	ug/L	50.0	BLOD	105	75-125	3.83	30	
1,3,5-Trimethylbenz	zene	51.6	1	ug/L	50.0	BLOD	103	75-124	5.06	30	
1,3-Dichlorobenzen	e	52.5	1	ug/L	50.0	BLOD	105	75-125	5.64	30	
1,3-Dichloropropane	e	51.3	1	ug/L	50.0	BLOD	103	75-125	4.75	30	
1,4-Dichlorobenzen	e	51.7	1	ug/L	50.0	BLOD	103	75-125	4.95	30	
2,2-Dichloropropan	e	45.3	1	ug/L	50.0	BLOD	90.6	70-135	2.05	30	
2-Butanone (MEK)		44.0	10	ug/L	50.0	BLOD	88.0	30-150	12.0	30	
2-Chlorotoluene		49.1	1	ug/L	50.0	BLOD	98.2	75-125	4.45	30	
2-Hexanone (MBK)		52.3	5	ug/L	50.0	BLOD	105	55-130	9.71	30	
4-Chlorotoluene		49.8	1	ug/L	50.0	BLOD	99.7	75-130	3.62	30	
4-Isopropyltoluene		53.8	1	ug/L	50.0	BLOD	108	75-130	3.89	30	
4-Methyl-2-pentano	one (MIBK)	54.3	5	ug/L	50.0	BLOD	109	60-135	9.92	30	
Acetone		48.1	10	ug/L	50.0	BLOD	88.0	40-140	142	30	Р
Benzene		50.5	1	ug/L	50.0	BLOD	101	80-120	4.10	30	
Bromobenzene		45.7	1	ug/L	50.0	BLOD	91.4	75-125	3.31	30	
Bromochloromethar		43.9	1	ug/L	50.0	BLOD	87.8	65-130	1.91	30	
Bromodichlorometh	ane	48.9	0.5	ug/L	50.0	BLOD	97.8	75-136	4.64	30	
Bromoform		50.4	1	ug/L	50.0	BLOD	101	70-130	4.96	30	
Bromomethane		48.2	1	ug/L	50.0	BLOD	96.3	30-145	1.51	30	
Carbon disulfide		40.9	10	ug/L	50.0	BLOD	81.2	35-160	12.6	30	
Carbon tetrachloride	e	49.3	1	ug/L	50.0	BLOD	98.6	65-140	3.30	30	
Chlorobenzene		49.8	1	ug/L	50.0	BLOD	99.6	80-120	2.44	30	

				Ce	ertificate o	f Analys	<u>is</u>				
Client Name:	SCS Enginee	rs-Winchester					_	Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.:	LFG-EW Montl	hlv Monitorina									
Submitted To:	Jennifer Robb	, ,								0.410.050	
Submitted 10.								Work Ord	er:	2410652	
			Va	latile Org	anic Compounds b	y GCMS - Quali	ty Control				
					Enthalpy Ar	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BH	110533 - SW50301	B-MS								
Matrix Spike Dup (BH	II0533-MSD1)	Source	: 2410535-01		Prepared & Analy	/zed: 09/13/2024	ـــــــــــــــــــــــــــــــــــــ				
Chloroethane		39.4	1	ug/L	50.0	BLOD	78.9	60-135	3.22	30	
Chloroform		47.8	0.5	ug/L	50.0	BLOD	95.7	65-135	2.43	30	
Chloromethane		56.3	1	ug/L	50.0	BLOD	113	40-125	3.18	30	
cis-1,2-Dichloroethy	ylene	43.4	1	ug/L	50.0	BLOD	86.9	70-125	0.277	30	
cis-1,3-Dichloropro	pene	47.3	1	ug/L	50.0	BLOD	94.5	47-136	2.48	30	
Dibromochlorometh	nane	47.1	0.5	ug/L	50.0	BLOD	94.1	60-135	4.23	30	
Dibromomethane		51.2	1	ug/L	50.0	BLOD	102	75-125	3.95	30	
Dichlorodifluoromet	thane	69.6	1	ug/L	50.0	BLOD	139	30-155	32.5	30	Р
Ethylbenzene		49.1	1	ug/L	50.0	BLOD	98.2	75-125	1.99	30	
Hexachlorobutadier	ne	50.1	0.8	ug/L	50.0	BLOD	100	50-140	3.88	30	
Isopropylbenzene		43.3	1	ug/L	50.0	BLOD	86.6	75-125	1.89	30	
m+p-Xylenes		94.8	2	ug/L	100	BLOD	94.8	75-130	3.69	30	
Methylene chloride		40.7	4	ug/L	50.0	BLOD	81.3	55-140	4.09	30	
Methyl-t-butyl ether	r (MTBE)	45.8	1	ug/L	50.0	BLOD	91.7	65-125	5.65	30	
Naphthalene		55.7	1	ug/L	50.0	BLOD	111	55-140	7.60	30	
n-Butylbenzene		54.9	1	ug/L	50.0	BLOD	110	70-135	3.96	30	
n-Propylbenzene		48.9	1	ug/L	50.0	BLOD	97.7	70-130	5.51	30	
o-Xylene		46.1	1	ug/L	50.0	BLOD	92.2	80-120	2.10	30	
sec-Butylbenzene		54.6	1	ug/L	50.0	BLOD	109	70-125	3.82	30	
Styrene		45.9	1	ug/L	50.0	BLOD	91.7	65-135	2.16	30	
tert-Butylbenzene		51.0	1	ug/L	50.0	BLOD	102	70-130	5.96	30	
Tetrachloroethylene	e (PCE)	40.3	1	ug/L	50.0	BLOD	80.6	51-231	2.51	30	
Toluene		49.8	1	ug/L	50.0	BLOD	99.7	75-120	4.54	30	
trans-1,2-Dichloroe	thylene	42.6	1	ug/L	50.0	BLOD	85.1	60-140	8.37	30	
trans-1,3-Dichlorop	oropene	51.7	1	ug/L	50.0	BLOD	103	55-140	3.81	30	

				<u>Ce</u>	ertificate o	of Analysis	<u>s</u>				
Client Name: S	CS Engineers-	-Wincheste	r			-		Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: LF	G-EW Monthly	Monitoring	a								
	nifer Robb	· · · · ·	-					Work Ord	er:	2410652	
			V	olatile Org	anic Compounds I	by GCMS - Quality	/ Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI08	533 - SW503(0B-MS								
Matrix Spike Dup (BHI0533-I	MSD1)	Sourc	ce: 24l0535-01		Prepared & Anal	yzed: 09/13/2024					
Trichloroethylene		49.9	1	ug/L	50.0	BLOD	99.8	70-125	4.15	30	
Trichlorofluoromethane		49.2	1	ug/L	50.0	BLOD	98.4	60-145	2.51	30	
Vinyl chloride		53.1	0.5	ug/L	50.0	BLOD	106	50-145	1.37	30	
Surr: 1,2-Dichloroethane-c	l4 (Surr)	45.8		ug/L	50.0		91.5	70-120			
Surr: 4-Bromofluorobenze	ne (Surr)	49.2		ug/L	50.0		98.4	75-120			
Surr: Dibromofluorometha	ne (Surr)	46.1		ug/L	50.0		92.2	70-130			
Surr: Toluene-d8 (Surr)		49.7		ug/L	50.0		99.4	70-130			

			Ce	rtificate o	of Analysi	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.:	LFG-EW Monthly Monitoring									
Submitted To:	Jennifer Robb						Work Ord	or:	2410652	
		0				- lite O control		CI.	2410032	
		Sel	mivolatile Org		s by GCMS - Qu	ality Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0573 - SW3510C/	EPA600-	MS							
Blank (BHI0573-BLK1)				Prepared & Anal	yzed: 09/16/2024					
1,2,4,5-Tetrachloroben	zene ND	10.0	ug/L							
1,2,4-Trichlorobenzene	e ND	10.0	ug/L							
1,2-Dichlorobenzene	ND	10.0	ug/L							
1,2-Diphenylhydrazine	ND	10.0	ug/L							
1,3-Dichlorobenzene	ND	10.0	ug/L							
1,3-Dinitrobenzene	ND	2.50	ug/L							
1,4-Dichlorobenzene	ND	10.0	ug/L							
1-Naphthylamine	ND	10.0	ug/L							
2,3,4,6-Tetrachlorophe	nol ND	10.0	ug/L							
2,4,5-Trichlorophenol	ND	10.0	ug/L							
2,4,6-Trichlorophenol	ND	10.0	ug/L							
2,4-Dichlorophenol	ND	10.0	ug/L							
2,4-Dimethylphenol	ND	5.00	ug/L							
2,4-Dinitrophenol	ND	50.0	ug/L							
2,4-Dinitrotoluene	ND	10.0	ug/L							
2,6-Dichlorophenol	ND	10.0	ug/L							
2,6-Dinitrotoluene	ND	10.0	ug/L							
2-Chloronaphthalene	ND	10.0	ug/L							
2-Chlorophenol	ND	10.0	ug/L							
2-Methylnaphthalene	ND	10.0	ug/L							
2-Naphthylamine	ND	10.0	ug/L							
2-Nitroaniline	ND	20.0	ug/L							
2-Nitrophenol	ND	10.0	ug/L							
3,3'-Dichlorobenzidine	ND	10.0	ug/L							
3-Methylcholanthrene	ND	10.0	ug/L							

			<u>Ce</u>	rtificate o	of Analysi	is				
Client Name: S	CS Engineers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: LF	G-EW Monthly Monitoring									
Submitted To: Jen	nifer Robb						Work Ord	ler [.]	2410652	
		Se	mivolatile Orr	nanic Compound	ls by GCMS - Qu	ality Control			2110002	
		00			•					
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0573 - SW3510C/	EPA600-	MS							
Blank (BHI0573-BLK1)			I	Prepared & Anal	yzed: 09/16/2024					
3-Nitroaniline	ND	20.0	ug/L							
4,6-Dinitro-2-methylphenol	ND	50.0	ug/L							
4-Aminobiphenyl	ND	10.0	ug/L							
4-Bromophenyl phenyl ethe	er ND	10.0	ug/L							
4-Chloroaniline	ND	10.0	ug/L							
4-Chlorophenyl phenyl ethe	er ND	10.0	ug/L							
4-Nitroaniline	ND	20.0	ug/L							
4-Nitrophenol	ND	50.0	ug/L							
7,12-Dimethylbenz (a) anth	nracene ND	10.0	ug/L							
Acenaphthene	ND	10.0	ug/L							
Acenaphthylene	ND	10.0	ug/L							
Acetophenone	ND	20.0	ug/L							
Aniline	ND	50.0	ug/L							
Anthracene	ND	10.0	ug/L							
Benzidine	ND	50.0	ug/L							
Benzo (a) anthracene	ND	10.0	ug/L							
Benzo (a) pyrene	ND	10.0	ug/L							
Benzo (b) fluoranthene	ND	10.0	ug/L							
Benzo (g,h,i) perylene	ND	10.0	ug/L							
Benzo (k) fluoranthene	ND	10.0	ug/L							
Benzoic acid	ND	50.0	ug/L							
Benzyl alcohol	ND	20.0	ug/L							
bis (2-Chloroethoxy) metha		10.0	ug/L							
bis (2-Chloroethyl) ether	ND	10.0	ug/L							
2,2'-Oxybis (1-chloropropa	ne) ND	10.0	ug/L							

			<u>Ce</u>	rtificate o	of Analys	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.:	LFG-EW Monthly Monitoring									
Submitted To:	Jennifer Robb						Work Ord	or:	2410652	
		-						CI.	2410032	
		Sei	mivolatile Or		ls by GCMS - Qu	ality Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
, , , , , , , , , , , , , , , , , , ,	Batch BHI0573 - SW3510C/					-				
Blank (BHI0573-BLK1)	Batch BH10575 - 5W3510C/	LFA000-		Prenared & Anal	yzed: 09/16/2024	1				
bis (2-Ethylhexyl) phtha	alate ND	10.0	ug/L		yzed. 03/10/2024	·				
Butyl benzyl phthalate	ND	10.0	ug/L							
Chrysene	ND	10.0	ug/L							
Dibenz (a,h) anthracen		10.0	ug/L							
Dibenz (a,j) acridine	ND	10.0	ug/L							
Dibenzofuran	ND	5.00	ug/L							
Diethyl phthalate	ND	10.0	ug/L							
Dimethyl phthalate	ND	10.0	ug/L							
Di-n-butyl phthalate	ND	10.0	ug/L							
Di-n-octyl phthalate	ND	10.0	ug/L							
Diphenylamine	ND	10.0	ug/L							
Ethyl methanesulfonate	e ND	20.0	ug/L							
Fluoranthene	ND	10.0	ug/L							
Fluorene	ND	10.0	ug/L							
Hexachlorobenzene	ND	1.00	ug/L							
Hexachlorobutadiene	ND	10.0	ug/L							
Hexachlorocyclopentac	diene ND	10.0	ug/L							
Hexachloroethane	ND	10.0	ug/L							
Indeno (1,2,3-cd) pyrer	ne ND	10.0	ug/L							
Isophorone	ND	10.0	ug/L							
m+p-Cresols	ND	10.0	ug/L							
Methyl methanesulfona	ate ND	10.0	ug/L							
Naphthalene	ND	5.00	ug/L							
Nitrobenzene	ND	10.0	ug/L							
n-Nitrosodimethylamine	e ND	10.0	ug/L							

			<u>Cer</u>	tificate c	of Analys	<u>is</u>				
Client Name: S	CS Engineers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: LF	G-EW Monthly Monitoring									
	nifer Robb								0410050	
							Work Ord	er:	2410652	
		Sei	mivolatile Org	anic Compound	s by GCMS - Qu	ality Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0573 - SW3510C/	EPA600-	MS							
Blank (BHI0573-BLK1)			F	Prepared & Anal	yzed: 09/16/2024					
n-Nitrosodi-n-butylamine	ND	10.0	ug/L							
n-Nitrosodi-n-propylamine	ND	10.0	ug/L							
n-Nitrosodiphenylamine	ND	10.0	ug/L							
n-Nitrosopiperidine	ND	10.0	ug/L							
o+m+p-Cresols	ND	10.0	ug/L							
o-Cresol	ND	10.0	ug/L							
p-(Dimethylamino) azoben		2.50	ug/L							
p-Chloro-m-cresol	ND	10.0	ug/L							
Pentachloronitrobenzene (10.0	ug/L							
Pentachlorophenol	ND	20.0	ug/L							
Phenacetin	ND	10.0	ug/L							
Phenanthrene	8.59	10.0	ug/L							В
Phenol	ND	10.0	ug/L							
Pronamide	ND	10.0	ug/L							
Pyrene	ND	10.0	ug/L							
Pyridine	ND	10.0	ug/L							
Surr: 2,4,6-Tribromopheno	. ,		ug/L	100		75.1	5-136			
Surr: 2-Fluorobiphenyl (Su			ug/L	50.0		58.8	9-117			
Surr: 2-Fluorophenol (Surr			ug/L	100		38.4	5-60			
Surr: Nitrobenzene-d5 (Su	rr) 39.1		ug/L	50.0		78.1	5-151			
Surr: Phenol-d5 (Surr)	27.2		ug/L	100		27.2	5-60			
Surr: p-Terphenyl-d14 (Su	rr) 35.6		ug/L	50.0		71.2	5-141			
LCS (BHI0573-BS1)			F		yzed: 09/16/2024					
1,2,4-Trichlorobenzene	33.2	10.0	ug/L	50.0		66.5	57-130			

			<u>Cer</u>	tificate o	of Analys	<u>is</u>				
Client Name:	SCS Engineers-Winchester				-		Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: L	FG-EW Monthly Monitoring									
Submitted To: Je	ennifer Robb						Work Ord	or:	2410652	
		-						CI.	2410032	
		Se	mivolatile Org	anic Compound	ls by GCMS - Qu	ality Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0573 - SW3510C/	EPA600-	MS							
LCS (BHI0573-BS1)			F	Prepared & Anal	yzed: 09/16/2024	ļ.				
1,2-Dichlorobenzene	31.9	10.0	ug/L	50.0		63.9	22-115			
1,3-Dichlorobenzene	31.2	10.0	ug/L	50.0		62.4	22-112			
1,4-Dichlorobenzene	34.4	10.0	ug/L	50.0		68.9	13-112			
2,4,6-Trichlorophenol	39.9	10.0	ug/L	50.0		79.8	52-129			
2,4-Dichlorophenol	36.2	10.0	ug/L	50.0		72.4	53-122			
2,4-Dimethylphenol	39.0	5.00	ug/L	50.0		78.1	42-120			
2,4-Dinitrophenol	39.1	50.0	ug/L	50.0		78.2	48-127			
2,4-Dinitrotoluene	43.3	10.0	ug/L	50.0		86.5	10-173			
2,6-Dinitrotoluene	39.3	10.0	ug/L	50.0		78.5	68-137			
2-Chloronaphthalene	32.6	10.0	ug/L	50.0		65.3	65-120			
2-Chlorophenol	33.3	10.0	ug/L	50.0		66.6	36-120			
2-Nitrophenol	39.6	10.0	ug/L	50.0		79.2	45-167			
3,3'-Dichlorobenzidine	22.5	10.0	ug/L	50.0		45.0	10-213			
4,6-Dinitro-2-methylphen	ol 44.1	50.0	ug/L	50.0		88.2	53-130			
4-Bromophenyl phenyl et	ther 33.5	10.0	ug/L	50.0		67.1	65-120			
4-Chlorophenyl phenyl et	ther 33.6	10.0	ug/L	50.0		67.3	38-145			
4-Nitrophenol	20.0	50.0	ug/L	50.0		40.1	13-129			
Acenaphthene	35.9	10.0	ug/L	50.0		71.8	60-132			
Acenaphthylene	35.4	10.0	ug/L	50.0		70.7	54-126			
Acetophenone	31.7	20.0	ug/L	50.0		63.4	0-200			
Anthracene	34.7	10.0	ug/L	50.0		69.4	43-120			
Benzo (a) anthracene	38.0	10.0	ug/L	50.0		76.1	42-133			
Benzo (a) pyrene	41.8	10.0	ug/L	50.0		83.6	32-148			
Benzo (b) fluoranthene	47.3	10.0	ug/L	50.0		94.7	42-140			
Benzo (g,h,i) perylene	45.1	10.0	ug/L	50.0		90.2	10-195			

			<u>Cer</u>	tificate o	of Analysi	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: L	FG-EW Monthly Monitoring									
	ennifer Robb									
							Work Ord	er:	2410652	
		Sei	mivolatile Org	anic Compound	s by GCMS - Qu	ality Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0573 - SW3510	C/EPA600-	MS							
LCS (BHI0573-BS1)				Prepared & Anal	yzed: 09/16/2024	Ļ				
Benzo (k) fluoranthene	40.0	10.0	ug/L	50.0		80.0	25-146			
bis (2-Chloroethoxy) met	hane 34.8	10.0	ug/L	50.0		69.7	49-165			
bis (2-Chloroethyl) ether		10.0	ug/L	50.0		66.0	43-126			
2,2'-Oxybis (1-chloroprop	bane) 32.8	10.0	ug/L	50.0		65.5	63-139			
bis (2-Ethylhexyl) phthala	ate 40.4	10.0	ug/L	50.0		80.7	29-137			
Butyl benzyl phthalate	38.1	10.0	ug/L	50.0		76.2	10-140			
Chrysene	35.2	10.0	ug/L	50.0		70.3	44-140			
Dibenz (a,h) anthracene	38.2	10.0	ug/L	50.0		76.5	10-200			
Diethyl phthalate	39.2	10.0	ug/L	50.0		78.3	10-120			
Dimethyl phthalate	35.3	10.0	ug/L	50.0		70.6	10-120			
Di-n-butyl phthalate	38.7	10.0	ug/L	50.0		77.4	10-120			
Di-n-octyl phthalate	56.8	10.0	ug/L	50.0		114	19-132			
Fluoranthene	40.6	10.0	ug/L	50.0		81.2	43-121			
Fluorene	36.7	10.0	ug/L	50.0		73.5	70-120			
Hexachlorobenzene	35.6	1.00	ug/L	50.0		71.3	10-142			
Hexachlorobutadiene	40.3	10.0	ug/L	50.0		80.5	38-120			
Hexachlorocyclopentadie	ene 31.5	10.0	ug/L	50.0		63.0	10-76			
Hexachloroethane	39.3	10.0	ug/L	50.0		78.5	55-120			
Indeno (1,2,3-cd) pyrene	41.2	10.0	ug/L	50.0		82.3	10-151			
Isophorone	19.2	10.0	ug/L	50.0		38.4	47-180			L
Naphthalene	33.9	5.00	ug/L	50.0		67.8	36-120			
Nitrobenzene	42.5	10.0	ug/L	50.0		85.1	54-158			
n-Nitrosodimethylamine	23.2	10.0	ug/L	50.0		46.3	10-85			
n-Nitrosodi-n-propylamin	e 36.7	10.0	ug/L	50.0		73.4	14-198			
n-Nitrosodiphenylamine	29.6	10.0	ug/L	50.0		59.1	12-97			

			Cor	tificato	of Analysi	ie				
Oliant Name			Cer		JI Allalys	15	Date Issue	.d.	0/20/2024	9:43:20AM
Client Name: SC	CS Engineers-Winchester						Date Issue	eu.	9/30/2024	9.43.20AM
Client Site I.D.: LFC	G-EW Monthly Monitoring									
Submitted To: Jenr	nifer Robb						Work Ord	er.	2410652	
		Se	mivolatile Oro	anic Compound	ls by GCMS - Qu	ality Control			2110002	
					•					
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0573 - SW35100	/EPA600-	MS							
LCS (BHI0573-BS1)			F	Prepared & Anal	yzed: 09/16/2024					
p-Chloro-m-cresol	38.8	10.0	ug/L	50.0		77.6	10-142			
Pentachloronitrobenzene (q	uintozene) ND	10.0	ug/L				0-200			
Pentachlorophenol	29.5	20.0	ug/L	50.0		59.0	38-152			
Phenanthrene	48.8	10.0	ug/L	50.0		97.7	65-120			
Phenol	16.6	10.0	ug/L	50.5		32.8	17-120			
Pyrene	36.2	10.0	ug/L	50.0		72.3	70-120			
Pyridine	26.3	10.0	ug/L	50.0		52.6	10-103			
Surr: 2,4,6-Tribromophenol	(Surr) 79.5		ug/L	100		79.5	5-136			
Surr: 2-Fluorobiphenyl (Surr) 29.2		ug/L	50.0		58.4	9-117			
Surr: 2-Fluorophenol (Surr)	40.0		ug/L	100		40.0	5-60			
Surr: Nitrobenzene-d5 (Surr) 41.6		ug/L	50.0		83.2	5-151			
Surr: Phenol-d5 (Surr)	28.8		ug/L	100		28.8	5-60			
Surr: p-Terphenyl-d14 (Surr,) 36.4		ug/L	50.0		72.8	5-141			

			C	ertificate o	f Analysis	<u>S</u>				
Client Name:	SCS Engineers-Winchester	r			-	_	Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.:	LFG-EW Monthly Monitoring	l								
Submitted To:	Jennifer Robb						Work Orde	ər:	2410652	
			\M/o	t Chemistry Analysi	e Quality Control	1		51.	2410032	
			vve		-	I				
				Enthalpy An	alytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0448 - No Prep	Wet Chem								
Blank (BHI0448-BLK1)				Prepared & Analy	zed: 09/12/2024					
BOD	ND	2.0	mg/L							
LCS (BHI0448-BS1)				Prepared & Analy	zed: 09/12/2024					
BOD	221	2	mg/L	198		112	84.6-115.4			
Duplicate (BHI0448-DU	P1) Sourc	e: 2410559-03	3	Prepared & Analy	zed: 09/12/2024					
BOD	ND	2.0	mg/L		BLOD			NA	20	
	Batch BHI0449 - No Prep	Wet Chem								
Blank (BHI0449-BLK1)				Prepared & Analy	zed: 09/12/2024					
BOD	ND	2.0	mg/L							
LCS (BHI0449-BS1)				Prepared & Analy	zed: 09/12/2024					
BOD	220	2	mg/L	198		111	84.6-115.4			
Duplicate (BHI0449-DU		e: 2410559-04		Prepared & Analy	zed: 09/12/2024					
BOD	ND	2.0	mg/L		BLOD			NA	20	
	Batch BHI0488 - No Prep	Wet Chem								
Blank (BHI0488-BLK1)				Prepared & Analy	zed: 09/12/2024					
Nitrite as N	ND	0.05	mg/L							
LCS (BHI0488-BS1)				Prepared & Analy	zed: 09/12/2024					
Nitrite as N	0.10	0.05	mg/L	0.100		95.0	80-120			

		<u>Ce</u>	ertificate o	of Analysis	<u>S</u>				
Client Name: SC	S Engineers-Winchester					Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: LFG-	-EW Monthly Monitoring								
Submitted To: Jenni	fer Robb					Work Ord	er.	2410652	
		Wet	Chemistry Analys	is - Quality Control	I	from ord	01.	2110002	
			Enthalpy Ar						
			Ентару А	arytical					
Analyta	Result LOC	Q Units	Spike Level	Source	%REC	%REC Limits	RPD	RPD Limit	Qual
Analyte			Levei	Result	%REC	Limits	RPD	Limit	Quai
	Batch BHI0488 - No Prep Wet Che	em							
Matrix Spike (BHI0488-MS1)	Source: 2410654		Prepared & Analy						
Nitrite as N	0.10 0.0	Ū.	0.100	BLOD	102	80-120			
Matrix Spike Dup (BHI0488-MSI Nitrite as N	D1) Source: 2410654 0.10 0.05	-	Prepared & Analy 0.100	/zed: 09/12/2024 BLOD	102	80-120	0.00	20	
Nume as N		0	0.100	BLOD	102	00-120	0.00	20	
	Batch BHI0735 - No Prep Wet Cho	em							
Blank (BHI0735-BLK1)		• "	Prepared & Anal	/zed: 09/18/2024					
Ammonia as N	ND 0.10	0 mg/L	-						
LCS (BHI0735-BS1) Ammonia as N	1.06 0.7	1 mg/L	Prepared & Analy 1.00	/zed: 09/18/2024	106	90-110			
Matrix Spike (BHI0735-MS1)	Source: 2410654	Ū.		/zed: 09/18/2024	100	90-110			
Ammonia as N	0.93 0.10	-	1.00	BLOD	93.0	89.3-131			
Matrix Spike (BHI0735-MS2)	Source: 2410654	-	Prepared & Anal	/zed: 09/18/2024					
Ammonia as N	0.93 0.10	0 mg/L	1.00	BLOD	92.8	89.3-131			
Matrix Spike Dup (BHI0735-MSI	D1) Source: 2410654	4-01	Prepared & Anal	/zed: 09/18/2024					
Ammonia as N	0.93 0.10	0 mg/L	1.00	BLOD	92.8	89.3-131	0.215	20	
Matrix Spike Dup (BHI0735-MSI		-		/zed: 09/18/2024					
Ammonia as N	0.93 0.10	0 mg/L	1.00	BLOD	93.3	89.3-131	0.537	20	
	Batch BHI0738 - No Prep Wet Che	em							
Blank (BHI0738-BLK1)			Prepared: 09/18/	2024 Analyzed: 09	9/19/2024				
TKN as N	ND 0.50	0 mg/L							

			<u>Ce</u>	ertificate o	of Analysi	s				
Client Name:	SCS Engineers-Winches	ster					Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.:	LFG-EW Monthly Monitor	ing								
Submitted To:	Jennifer Robb	U					Work Ord	or:	2410652	
			10/-1			- 1		er.	2410032	
			vvei	Chemistry Analys	-	OI				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0738 - No P	rep Wet Chem								
LCS (BHI0738-BS1) Prepared: 09/18/2024 Analyzed: 09/19/2024										
TKN as N	5.19	0.5	mg/L	5.00		104	90-110			
Matrix Spike (BHI0738-	-MS1) So	ource: 2410972-01		Prepared: 09/18/	2024 Analyzed: 0	9/19/2024				
TKN as N	6.52	0.50	mg/L	5.00	1.28	105	90-110			
Matrix Spike (BHI0738-	-MS2) So	ource: 2410671-02		Prepared: 09/18/	2024 Analyzed: 0	9/19/2024				
TKN as N	5.94	0.50	mg/L	5.00	0.92	101	90-110			
Matrix Spike Dup (BHI	0738-MSD1) So	ource: 2410972-01		Prepared: 09/18/	2024 Analyzed: 0	9/19/2024				
TKN as N	6.42	0.50	mg/L	5.00	1.28	103	90-110	1.42	20	
Matrix Spike Dup (BHI	0738-MSD2) So	ource: 2410671-02		Prepared: 09/18/	2024 Analyzed: 0	9/19/2024				
TKN as N	6.04	0.50	mg/L	5.00	0.92	102	90-110	1.57	20	
	Batch BHI0744 - No P	rep Wet Chem								
Blank (BHI0744-BLK1)				Prepared & Anal	yzed: 09/18/2024					
COD	ND	10.0	mg/L							
LCS (BHI0744-BS1)				Prepared & Anal	yzed: 09/18/2024					
COD	51.0	10.0	mg/L	50.0		102	88-119			
Matrix Spike (BHI0744		urce: 2410501-07			yzed: 09/18/2024					
COD	49.2	10.0	mg/L	50.0	BLOD	98.5	72.4-130			
Matrix Spike Dup (BHI	,	urce: 2410501-07		Prepared & Anal	•					
COD	52.3	10.0	mg/L	50.0	BLOD	105	72.4-130	6.05	20	

			<u>Ce</u>	ertificate o	f Analysi	<u>s</u>				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.: L	FG-EW Monthly Monitoring									
Submitted To: Je	ennifer Robb						Work Ord	er:	2410652	
			Wet	Chemistry Analysi	s - Quality Contro	I				
				Enthalpy Ar	alytical					
				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BHI0809 - No Prep W	let Chem								
Blank (BHI0809-BLK1)				Prepared & Analy	zed: 09/19/2024					
Nitrate+Nitrite as N	ND	0.10	mg/L							
LCS (BHI0809-BS1)				Prepared & Analy	zed: 09/19/2024					
Nitrate+Nitrite as N	1.01	0.1	mg/L	1.00		101	90-110			
Matrix Spike (BHI0809-MS	•	2410654-01		Prepared & Analy						
Nitrate+Nitrite as N	0.96	0.10	mg/L	1.00	BLOD	95.9	90-120			
Matrix Spike Dup (BHI0809		2410654-01		Prepared & Analy						
Nitrate+Nitrite as N	0.99	0.10	mg/L	1.00	BLOD	98.6	90-120	2.78	20	
	Batch BHI0888 - No Prep W	et Chem								
Blank (BHI0888-BLK1)				Prepared & Analy	zed: 09/21/2024					
COD	ND	10.0	mg/L							
LCS (BHI0888-BS1)				Prepared & Analy	zed: 09/21/2024					
COD	50.3	10.0	mg/L	50.0		101	88-119			
Matrix Spike (BHI0888-MS		2410654-01		Prepared & Analy						
COD	60.5	10.0	mg/L	50.0	11.3	98.4	72.4-130			
Matrix Spike Dup (BHI0888	-	2410654-01		Prepared & Analy						
COD	58.5	10.0	mg/L	50.0	11.3	94.3	72.4-130	3.45	20	
	Batch BHI0928 - No Prep W	let Chem								
Blank (BHI0928-BLK1)				Prepared: 09/23/2	2024 Analyzed: 09	9/24/2024				
TKN as N	ND	0.50	mg/L							

			<u>Ce</u>	ertificate c	of Analysi	i <u>s</u>				
Client Name:	SCS Engineers-Winches	ter					Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.:	LFG-EW Monthly Monitori	ng								
Submitted To:	Jennifer Robb	0					Work Ord	0.51	2410652	
								er.	2410002	
			Wet	Chemistry Analys	•	ol				
				Enthalpy Ar	nalytical					
				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BHI0928 - No Pr	ep Wet Chem								
LCS (BHI0928-BS1)				Prepared: 09/23/	2024 Analyzed: (9/24/2024				
TKN as N	5.09	0.5	mg/L	5.00		102	90-110			
Matrix Spike (BHI0928-	-MS1) Sou	ırce: 2410695-01		Prepared: 09/23/	2024 Analyzed: 0	9/24/2024				
TKN as N	5.59	0.50	mg/L	5.00	0.50	102	90-110			
Matrix Spike (BHI0928-	-MS2) Sou	ırce: 2410750-01		Prepared: 09/23/	2024 Analyzed: 0	9/24/2024				
TKN as N	6.67	0.50	mg/L	5.00	0.98	114	90-110			М
Matrix Spike Dup (BHI	0928-MSD1) Sou	ırce: 2410695-01		Prepared: 09/23/	2024 Analyzed: 0	9/24/2024				
TKN as N	5.13	0.50	mg/L	5.00	0.50	92.5	90-110	8.58	20	
Matrix Spike Dup (BHI	0928-MSD2) Sou	urce: 24I0750-01		Prepared: 09/23/	2024 Analyzed: 0	9/24/2024				
TKN as N	7.65	0.50	mg/L	5.00	0.98	133	90-110	13.6	20	М
	Batch BHI0929 - No Pr	ep Wet Chem								
Blank (BHI0929-BLK1)				Prepared & Analy	yzed: 09/23/2024					
Nitrate+Nitrite as N	ND	0.10	mg/L							
LCS (BHI0929-BS1)				Prepared & Anal	yzed: 09/23/2024					
Nitrate+Nitrite as N	1.02	0.1	mg/L	1.00		102	90-110			
Matrix Spike (BHI0929-	-MS1) Sou	urce: 24I1100-01		Prepared & Anal	yzed: 09/23/2024					
Nitrate+Nitrite as N	1.12	0.10	mg/L	1.00	BLOD	112	90-120			
Matrix Spike Dup (BHI	0929-MSD1) Sou	urce: 24I1100-01		Prepared & Anal	yzed: 09/23/2024					
Nitrate+Nitrite as N	1.16	0.10	mg/L	1.00	BLOD	116	90-120	3.08	20	

				<u>C</u>	ertificate o	of Analysis	<u>S</u>				
Client Name:	SCS Engineers-Win	chester				_		Date Issue	ed:	9/30/2024	9:43:20AM
Client Site I.D.:	LFG-EW Monthly Mo	nitoring									
Submitted To: J	ennifer Robb							Work Ord	er:	2410652	
				We	t Chemistry Analys	sis - Quality Contro	I				
Enthalpy Analytical											
Analyte	Res	sult	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI0985 -	No Prep Wet	Chem								
LCS (BHI0985-BS1)					Prepared & Ana	lyzed: 09/24/2024					
Cyanide	0	.26	0.01	mg/L	0.250		102	80-120			
Matrix Spike (BHI0985-MS	51)	Source: 24I	0694-03		Prepared & Ana	lyzed: 09/24/2024					
Cyanide	0	.26	0.01	mg/L	0.250	BLOD	104	80-120			
Matrix Spike Dup (BHI098	5-MSD1)	Source: 24I	0694-03		Prepared & Ana	lyzed: 09/24/2024					
Cyanide	0	.26	0.01	mg/L	0.250	BLOD	106	80-120	1.79	20	
	Batch BHI1083 -	No Prep Wet	Chem								
Blank (BHI1083-BLK1)					Prepared & Ana	lyzed: 09/26/2024					
Total Recoverable Phen	nolics	ND (0.050	mg/L	•	-					
LCS (BHI1083-BS1)					Prepared & Ana	lyzed: 09/26/2024					
Total Recoverable Phen	nolics 0	.42 (0.050	mg/L	0.510		81.6	80-120			
Matrix Spike (BHI1083-MS	51)	Source: 24I	0652-03		Prepared & Ana	lyzed: 09/26/2024					
Total Recoverable Phen	nolics 7	7.0	5.00	mg/L	50.0	31.6	90.8	70-130			
Matrix Spike Dup (BHI108	3-MSD1)	Source: 24I	0652-03		Prepared & Ana	lyzed: 09/26/2024					
Total Recoverable Phen	nolics 7	8.0	5.00	mg/L	50.0	31.6	92.8	70-130	1.29	20	

			Certificate of	of Analysis		
Client Name:	SCS Engineers-Win	chester			Date Issued:	9/30/2024 9:43:20AI
Client Site I.D.:	LFG-EW Monthly Mo	nitoring				
Submitted To:	Jennifer Robb	-			Work Order:	2410652
	Analytical Summary					
0410050.04		Culture internet				
2410652-01		Subcontract				
2410652-02		Subcontract				
2410652-03		Subcontract				
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Metals (Total) by EPA	6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4		
2410652-01	50.0 mL / 50.0 mL	SW6020B	BHI0542	SHI0680	AI40247	
2410652-02	50.0 mL / 50.0 mL	SW6020B	BHI0542	SHI0680	AI40247	
24I0652-02RE1	50.0 mL / 50.0 mL	SW6020B	BHI0542	SHI0528	AI40229	
2410652-03	50.0 mL / 50.0 mL	SW6020B	BHI0542	SHI0680	AI40247	
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Wet Chemistry Analys	iis		Preparation Method:	No Prep Wet Chem		
2410652-02	300 mL / 300 mL	SM5210B-2016	BHI0448	SHI0592		
2410652-01	300 mL / 300 mL	SM5210B-2016	BHI0449	SHI0592		
2410652-03	300 mL / 300 mL	SM5210B-2016	BHI0449	SHI0592		
	300 mL / 300 mL 25.0 mL / 25.0 mL	SM5210B-2016 SM4500-NO2B-2011	BHI0449 BHI0488	SHI0592 SHI0455	AD40276	
2410652-01					AD40276 AD40276	
2410652-01 2410652-02	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHI0488	SHI0455		
2410652-01 2410652-02 2410652-03	25.0 mL / 25.0 mL 25.0 mL / 25.0 mL	SM4500-NO2B-2011 SM4500-NO2B-2011	BHI0488 BHI0488	SHI0455 SHI0455	AD40276	
2410652-01 2410652-02 2410652-03 2410652-01	25.0 mL / 25.0 mL 25.0 mL / 25.0 mL 25.0 mL / 25.0 mL	SM4500-NO2B-2011 SM4500-NO2B-2011 SM4500-NO2B-2011	BHI0488 BHI0488 BHI0488	SHI0455 SHI0455 SHI0455	AD40276 AD40276	
2410652-01 2410652-02 2410652-03 2410652-01 2410652-02	25.0 mL / 25.0 mL 25.0 mL / 25.0 mL 25.0 mL / 25.0 mL 6.00 mL / 6.00 mL	SM4500-NO2B-2011 SM4500-NO2B-2011 SM4500-NO2B-2011 EPA350.1 R2.0	BHI0488 BHI0488 BHI0488 BHI0735	SHI0455 SHI0455 SHI0455 SHI0665	AD40276 AD40276 AI40249	
2410652-01 2410652-02 2410652-03 2410652-01 2410652-02 2410652-03	25.0 mL / 25.0 mL 25.0 mL / 25.0 mL 25.0 mL / 25.0 mL 6.00 mL / 6.00 mL 6.00 mL / 6.00 mL	SM4500-NO2B-2011 SM4500-NO2B-2011 SM4500-NO2B-2011 EPA350.1 R2.0 EPA350.1 R2.0	BHI0488 BHI0488 BHI0488 BHI0735 BHI0735	SHI0455 SHI0455 SHI0455 SHI0665 SHI0665	AD40276 AD40276 Al40249 Al40249	
2410652-01 2410652-02 2410652-03 2410652-01 2410652-02 2410652-03 2410652-03	25.0 mL / 25.0 mL 25.0 mL / 25.0 mL 25.0 mL / 25.0 mL 6.00 mL / 6.00 mL 6.00 mL / 6.00 mL 6.00 mL / 6.00 mL	SM4500-NO2B-2011 SM4500-NO2B-2011 SM4500-NO2B-2011 EPA350.1 R2.0 EPA350.1 R2.0 EPA350.1 R2.0	BHI0488 BHI0488 BHI0488 BHI0735 BHI0735 BHI0735	SHI0455 SHI0455 SHI0455 SHI0665 SHI0665 SHI0665	AD40276 AD40276 Al40249 Al40249 Al40249	
2410652-01 2410652-02 2410652-03 2410652-01 2410652-02 2410652-03 2410652-01 2410652-01	25.0 mL / 25.0 mL 25.0 mL / 25.0 mL 25.0 mL / 25.0 mL 6.00 mL / 6.00 mL 6.00 mL / 6.00 mL 6.00 mL / 6.00 mL 25.0 mL / 25.0 mL	SM4500-NO2B-2011 SM4500-NO2B-2011 SM4500-NO2B-2011 EPA350.1 R2.0 EPA350.1 R2.0 EPA350.1 R2.0 EPA351.2 R2.0	BHI0488 BHI0488 BHI0735 BHI0735 BHI0735 BHI0738	SHI0455 SHI0455 SHI0455 SHI0665 SHI0665 SHI0665 SHI0665	AD40276 AD40276 Al40249 Al40249 Al40249 Al40255	
2410652-03 2410652-01 2410652-02 2410652-03 2410652-01 2410652-02 2410652-03 2410652-01 2410652-02 2410652-01 2410652-01 2410652-02	25.0 mL / 25.0 mL 25.0 mL / 25.0 mL 25.0 mL / 25.0 mL 6.00 mL / 6.00 mL 6.00 mL / 6.00 mL 6.00 mL / 6.00 mL 25.0 mL / 25.0 mL	SM4500-NO2B-2011 SM4500-NO2B-2011 SM4500-NO2B-2011 EPA350.1 R2.0 EPA350.1 R2.0 EPA350.1 R2.0 EPA351.2 R2.0 EPA351.2 R2.0	BHI0488 BHI0488 BHI0735 BHI0735 BHI0735 BHI0738 BHI0738	SHI0455 SHI0455 SHI0665 SHI0665 SHI0665 SHI0665 SHI0701 SHI0701	AD40276 AD40276 Al40249 Al40249 Al40249 Al40255 Al40255	

			Certificate of	of Analysis			
Client Name:	SCS Engineers-V	Vinchester			Date Issued:	9/30/2024	9:43:20AM
Client Site I.D.:	LFG-EW Monthly	Monitoring					
Submitted To:	Jennifer Robb	0			Work Order:	2410652	
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID		
Wet Chemistry Analys	is		Preparation Method:	No Prep Wet Chem			
2410652-03	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHI0809	SHI0733	AI40257		
2410652-03RE1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHI0809	SHI0733	AI40257		
2410652-03	2.00 mL / 2.00 mL	SM5220D-2011	BHI0888	SHI0801	AI40245		
2410652-03	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHI0928	SHI0867	AI40282		
2410652-03RE1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHI0928	SHI0867	AI40282		
2410652-01	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHI0929	SHI0840	AI40271		
2410652-01	6.00 mL / 6.00 mL	SW9012B	BHI0985	SHI0898	AI40280		
2410652-02	6.00 mL / 6.00 mL	SW9012B	BHI0985	SHI0898	AI40280		
2410652-03	6.00 mL / 6.00 mL	SW9012B	BHI0985	SHI0898	AI40280		
2410652-01	5.00 mL / 10.0 mL	SW9065	BHI1083	SHI0966	AI40293		
2410652-02	5.00 mL / 10.0 mL	SW9065	BHI1083	SHI0966	AI40293		
2410652-03	5.00 mL / 10.0 mL	SW9065	BHI1083	SHI0966	AI40293		
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID		
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-MS	;		
2410652-01	500 mL / 2.00 mL	SW8270E	BHI0573	SHI0571	AH40297		
2410652-02	500 mL / 2.00 mL	SW8270E	BHI0573	SHI0571	AH40297		
2410652-03	500 mL / 1.00 mL	SW8270E	BHI0573	SHI0571	AH40297		
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID		
Volatile Organic Comp	oounds by GCMS		Preparation Method:	SW5030B-MS			
2410652-01	5.00 mL / 5.00 mL	SW8260D	BHI0533	SHI0494	AH40160		
24I0652-01RE1	5.00 mL / 5.00 mL	SW8260D	BHI0533	SHI0494	AH40160		
2410652-02	5.00 mL / 5.00 mL	SW8260D	BHI0533	SHI0494	AH40160		
24I0652-02RE1	5.00 mL / 5.00 mL	SW8260D	BHI0533	SHI0494	AH40160		
2410652-03	5.00 mL / 5.00 mL	SW8260D	BHI0533	SHI0494	AH40160		

5.00 mL / 5.00 mL

SW8260D

2410652-04

Enthalpy Analytical 1941 Reymet Road Richmond, Virginia 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

			<u>Certificate</u>	of Analysis		
Client Name:	SCS Engineers-	Winchester			Date Issued:	9/30/2024 9:43:20AM
Client Site I.D.:	LFG-EW Monthly	Monitoring				
Submitted To:	Jennifer Robb				Work Order:	2410652
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Volatile Organic Comp	ounds by GCMS		Preparation Method	i: SW5030B-MS		
2410652-03RE1	5.00 mL / 5.00 mL	SW8260D	BHI0533	SHI0494	AH40160	

SHI0494

AH40160

BHI0533

			Certificate	of Analysis	
Client Name:	SCS Engineers-	Winchester			Date Issued:
Client Site I.D.:	LFG-EW Monthly	⁷ Monitoring			
Submitted To:	Jennifer Robb				Work Order:
	QC Analytical Summ	nary —			
ample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
als (Total) by EPA 6	000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
0542-BLK1	50.0 mL / 50.0 mL	SW6020B	BHI0542	SHI0528	AI40229
42-BS1	50.0 mL / 50.0 mL	SW6020B	BHI0542	SHI0528	AI40229
42-MS1	50.0 mL / 50.0 mL	SW6020B	BHI0542	SHI0528	AI40229
542-MS2	50.0 mL / 50.0 mL	SW6020B	BHI0542	SHI0528	AI40229
542-MSD1	50.0 mL / 50.0 mL	SW6020B	BHI0542	SHI0528	AI40229
542-MSD2	50.0 mL / 50.0 mL	SW6020B	BHI0542	SHI0528	AI40229
nple ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Chemistry Analysis	5		Preparation Method:	No Prep Wet Chem	
48-BLK1	300 mL / 300 mL	SM5210B-2016	BHI0448	SHI0592	
48-BS1	300 mL / 300 mL	SM5210B-2016	BHI0448	SHI0592	
148-DUP1	300 mL / 300 mL	SM5210B-2016	BHI0448	SHI0592	
49-BLK1	300 mL / 300 mL	SM5210B-2016	BHI0449	SHI0592	
49-BS1	300 mL / 300 mL	SM5210B-2016	BHI0449	SHI0592	
49-DUP1	300 mL / 300 mL	SM5210B-2016	BHI0449	SHI0592	
8-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHI0488	SHI0455	AD40276
488-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHI0488	SHI0455	AD40276
488-MRL1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHI0488	SHI0455	AD40276
488-MS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHI0488	SHI0455	AD40276
			DI 110 400	SHI0455	AD40276
	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHI0488	3110433	
488-MSD1	25.0 mL / 25.0 mL 6.00 mL / 6.00 mL	SM4500-NO2B-2011 EPA350.1 R2.0	BHI0735	SHI0455	AI40249
88-MSD1 35-BLK1					
488-MSD1 735-BLK1 735-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHI0735	SHI0665	AI40249
0488-MSD1 0735-BLK1 0735-BS1 0735-MS1 0735-MS2	6.00 mL / 6.00 mL 6.00 mL / 6.00 mL	EPA350.1 R2.0 EPA350.1 R2.0	BHI0735 BHI0735	SH10665 SH10665	Al40249 Al40249

Certificate of Analysis 9/30/2024 9:43:20AM Client Name: SCS Engineers-Winchester Date Issued: Client Site I.D.: LFG-EW Monthly Monitoring Submitted To: Jennifer Robb 2410652 Work Order: **Preparation Factors** Batch ID Calibration ID Sample ID Method Sequence ID Initial / Final Wet Chemistry Analysis **Preparation Method:** No Prep Wet Chem AI40249 BHI0735-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHI0735 SHI0665 BHI0738-BLK1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0738 SHI0701 AI40255 BHI0738-BS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0738 SHI0701 AI40255 BHI0738-MRL1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0738 SHI0701 AI40255 BHI0738-MRL2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0738 SHI0701 AI40255 AI40255 BHI0738-MS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0738 SHI0701 BHI0738-MS2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0738 SHI0701 AI40255 AI40255 BHI0738-MSD1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0738 SHI0701 BHI0738-MSD2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0738 SHI0701 AI40255 BHI0744-BLK1 2.00 mL / 2.00 mL SM5220D-2011 BHI0744 SHI0670 AI40245 BHI0744-BS1 2.00 mL / 2.00 mL SM5220D-2011 BHI0744 SHI0670 AI40245 BHI0744-MRL1 2.00 mL / 2.00 mL SM5220D-2011 BHI0744 SHI0670 AI40245 BHI0744-MS1 SM5220D-2011 BHI0744 SHI0670 AI40245 2.00 mL / 2.00 mL BHI0744-MSD1 2.00 mL / 2.00 mL SM5220D-2011 BHI0744 SHI0670 AI40245 BHI0809-BLK1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHI0809 SHI0733 AI40257 BHI0809-BS1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHI0809 SHI0733 AI40257 BHI0809-MS1 10.0 mL / 10.0 mL SM4500-NO3F-2016 BHI0809 SHI0733 AI40257 BHI0809-MSD1 10.0 mL / 10.0 mL SM4500-NO3F-2016 BHI0809 SHI0733 AI40257 AI40245 BHI0888-BLK1 2.00 mL / 2.00 mL SM5220D-2011 BHI0888 SHI0801 BHI0888-BS1 2.00 mL / 2.00 mL SM5220D-2011 BHI0888 SHI0801 AI40245 BHI0888-MRL1 2.00 mL / 2.00 mL SM5220D-2011 BHI0888 SHI0801 AI40245 AI40245 BHI0888-MS1 2.00 mL / 2.00 mL SM5220D-2011 BHI0888 SHI0801 BHI0888-MSD1 2.00 mL / 2.00 mL SM5220D-2011 BHI0888 SHI0801 AI40245 BHI0928-BLK1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0928 SHI0867 AI40282 BHI0928-BS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0928 SHI0867 AI40282 AI40282 BHI0928-MRL1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0928 SHI0867 BHI0928-MRL2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0928 SHI0867 AI40282 AI40282 BHI0928-MS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0928 SHI0867

Page 51 of 77

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 9/30/2024 9:43:20AM Client Site I.D.: LFG-EW Monthly Monitoring Jennifer Robb Submitted To: 2410652 Work Order: **Preparation Factors** Batch ID Calibration ID Sample ID Method Sequence ID Initial / Final Wet Chemistry Analysis **Preparation Method:** No Prep Wet Chem EPA351.2 R2.0 AI40282 BHI0928-MS2 25.0 mL / 25.0 mL BHI0928 SHI0867 BHI0928-MSD1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0928 SHI0867 AI40282 BHI0928-MSD2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHI0928 SHI0867 AI40282 BHI0929-BLK1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHI0929 SHI0840 AI40271 SM4500-NO3F-2016 BHI0929 SHI0840 AI40271 BHI0929-BS1 5.00 mL / 5.00 mL AI40271 BHI0929-MRL1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHI0929 SHI0840 BHI0929-MRL2 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHI0929 SHI0840 AI40271 AI40271 BHI0929-MS1 10.0 mL / 10.0 mL SM4500-NO3F-2016 BHI0929 SHI0840 BHI0929-MSD1 10.0 mL / 10.0 mL BHI0929 SHI0840 AI40271 SM4500-NO3F-2016 BHI0985-BLK1 SW9012B BHI0985 SHI0898 AI40280 BHI0985-BS1 6.00 mL / 6.00 mL SW9012B BHI0985 SHI0898 AI40280 BHI0985-MRL1 6.00 mL / 6.00 mL SW9012B BHI0985 SHI0898 AI40280 BHI0985-MRL2 SW9012B BHI0985 SHI0898 AI40280 6.00 mL / 6.00 mL BHI0985-MS1 6.00 mL / 6.00 mL SW9012B BHI0985 SHI0898 AI40280 SW9012B AI40280 BHI0985-MSD1 6.00 mL / 6.00 mL BHI0985 SHI0898 BHI1083-BLK1 5.00 mL / 10.0 mL SW9065 BHI1083 SHI0966 AI40293 AI40293 BHI1083-BS1 5.00 mL / 10.0 mL SW9065 BHI1083 SHI0966 BHI1083-MRL1 5.00 mL / 10.0 mL SW9065 BHI1083 SHI0966 AI40293 BHI1083-MS1 0.0500 mL / 10.0 mL SW9065 BHI1083 SHI0966 AI40293 BHI1083-MSD1 0.0500 mL / 10.0 mL SW9065 BHI1083 SHI0966 AI40293 **Preparation Factors** Method Batch ID Calibration ID Sample ID Sequence ID Initial / Final SW3510C/EPA600-MS Semivolatile Organic Compounds by GCMS **Preparation Method:** BHI0573-BLK1 1000 mL / 1.00 mL SW8270E BHI0573 SHI0582 AH40174 BHI0573-BLK2 SW8270E BHI0573 SHI0543 AG40237 BHI0573-BS1 1000 mL / 1.00 mL SW8270E BHI0573 SHI0582 AH40174

			Certificate	of Analysis		
Client Name:	SCS Engineers	s-Winchester			Date Issued:	9/30/2024 9:43:20AM
Client Site I.D.:	LFG-EW Monthl	y Monitoring				
Submitted To:	Jennifer Robb				Work Order:	2410652
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Volatile Organic Compo	ounds by GCMS		Preparation Method:	SW5030B-MS		
BHI0533-BLK1	5.00 mL / 5.00 mL	SW8260D	BHI0533	SHI0494	AH40160	
BHI0533-BLK2	5.00 mL / 5.00 mL	SW8260D	BHI0533	SHI0494	AH40160	
BHI0533-BS1	5.00 mL / 5.00 mL	SW8260D	BHI0533	SHI0494	AH40160	
BHI0533-BS2	5.00 mL / 5.00 mL	SW8260D	BHI0533	SHI0494	AH40160	
BHI0533-MS1	5.00 mL / 5.00 mL	SW8260D	BHI0533	SHI0494	AH40160	
BHI0533-MSD1	5.00 mL / 5.00 mL	SW8260D	BHI0533	SHI0494	AH40160	

		Certificate of Analysis		
Client Name:	SCS Engineers-Winchester		Date Issued:	9/30/2024 9:43:20AM
Client Site I.D.:	LFG-EW Monthly Monitoring			
Submitted To:	Jennifer Robb		Work Order:	2410652
Certified Analyse	es included in this Report			
Analyte		Certifications		
EPA350.1 R2.0 in No	on-Potable Water			
Ammonia as N		VELAP,NCDEQ,PADEP,WVDEP		
EPA351.2 R2.0 in No	on-Potable Water			
TKN as N		VELAP,NCDEQ,WVDEP		
SM4500-NO2B-2011	in Non-Potable Water			
Nitrite as N		VELAP,WVDEP,NCDEQ		
SM4500-NO3F-2016	in Non-Potable Water			
Nitrate+Nitrite as N		VELAP,WVDEP,NCDEQ		
SM5210B-2016 in No	on-Potable Water			
BOD		VELAP,NCDEQ,WVDEP		
SM5220D-2011 in No	on-Potable Water			
COD		VELAP,NCDEQ,PADEP,WVDEP		
SW6020B in Non-Po	otable Water			
Mercury		VELAP		
Arsenic		VELAP,WVDEP,NCDEQ		
Barium		VELAP,WVDEP,NCDEQ		
Cadmium		VELAP,WVDEP,NCDEQ		
Chromium		VELAP,WVDEP,NCDEQ		
Copper		VELAP,WVDEP,NCDEQ		
Lead		VELAP,WVDEP		
Nickel		VELAP,WVDEP		
Selenium		VELAP,WVDEP		
Silver		VELAP,WVDEP		
Zinc		VELAP,WVDEP		
SW8260D in Non-Po	otable Water			

		Certificate of Analysis		
Client Name:	SCS Engineers-Winchester		Date Issued:	9/30/2024 9:43:20AM
Client Site I.D.:	LFG-EW Monthly Monitoring			
Submitted To:	Jennifer Robb		Work Order:	2410652
Certified Analys	es included in this Report			
Analyte		Certifications		
2-Butanone (MEK)		VELAP,NCDEQ,PADEP,WVDEP		
Acetone		VELAP,NCDEQ,PADEP,WVDEP		
Benzene		VELAP,NCDEQ,PADEP,WVDEP		
Ethylbenzene		VELAP,NCDEQ,PADEP,WVDEP		
Toluene		VELAP,NCDEQ,PADEP,WVDEP		
Xylenes, Total		VELAP,NCDEQ,PADEP,WVDEP		
Tetrahydrofuran		VELAP,PADEP		
SW8270E in Non-Pe	otable Water			
Anthracene		NCDEQ,WVDEP,VELAP,PADEP		
SW9012B in Non-P	otable Water			
Cyanide		VELAP,WVDEP,NCDEQ		
SW9065 in Non-Pot	table Water			
Total Recoverable P	Phenolics	VELAP,WVDEP		

Certificate of Analysis										
Client Name:	SCS Engineers-Winchester			Date Issued:	9/30/2024 9:43:20AM					
Client Site I.D.:	LFG-EW Monthly Monitoring									
Submitted To:	Jennifer Robb			Work Order:	2410652					
Code	Description	Laboratory ID	Expires							
MdDOE	Maryland DE Drinking Water	341	12/31/2024							
NCDEQ	North Carolina DEQ	495	12/31/2024							
NCDOH	North Carolina Department of Health	51714	07/31/2025							
NYDOH	New York DOH Drinking Water	12069	04/01/2025							
PADEP	NELAP-Pennsylvania Certificate #009	68-03503	10/31/2024							
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	09/14/2024							
TXCEQ	Texas Comm on Environmental Quality #T104704576-23-1	T104704576	05/31/2025							
VELAP	NELAP-Virginia Certificate #12969	460021	06/14/2025							
WVDEP	West Virginia DEP	350	11/30/2024							

		<u>Certificate of Analysis</u>		
Client Na	ame:	SCS Engineers-Winchester	Date Issued:	9/30/2024 9:43:20AM
Client Sit	te I.D.:	LFG-EW Monthly Monitoring		
Submitte	d To:	Jennifer Robb	Work Order:	2410652
		Qualifiers and Definitions		
В	Blank cont	amination. The recorded result is associated with a contaminated blank.		
CI	Residual C	chlorine or other oxidizing agent was detected in the container used to analyze this sample.		
DS	Surrogate	concentration reflects a dilution factor.		
J	The report	ed result is an estimated value.		
L	LCS recov	ery is outside of established acceptance limits		
М	Matrix spik	e recovery is outside established acceptance limits		
Ρ	Duplicate a	analysis does not meet the acceptance criteria for precision		
RPD		rcent Difference		
Qual -RE	Qualifers	nple was re-analyzed		
LOD		npie was re-analyzed ection, same as Method Detection Limit (MDL) as defined by 40 CFR 136 Appendix B		
BLOD		of Detection, same as Below Method Detection Limit (MDL) as defined by 40 CFR 136 Appendix B		
LOQ	Limit of Qua			
DF	Dilution Fac	tor		
DL	Detection Li	mit, same as MDL as defined by 40 CFR 136 Appendix B		
TIC	library. A TIC	dentified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral C spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations and are calculated using an internal standard response factor of 1.		
PCBs, Tota	I Total PCB	s are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.		

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

CHAIN OF CUSTODY

PAGE 1 OF 1

COMPANY NAME: SCS En	gine	ers			IN	VOICE TO	:		S	SAN	E				PF	OJE	СТ	NAM	E/Q	uot	e #:	i	City	of Bristol Landfill #588
CONTACT: Jennifer Robb	-					VOICE CC		Т:					-		SI	TEN	JAM	IE:	24	-08	LFG-			nthly Monitoring
ADDRESS: 296 Victory Road					IN	VOICE AD	DRES	S:							PF	ROJE	ECT	NUM	_					5 Task 2
Winchester, VA 220	502				IN	VOICE PH	ONE #	:								D. #:								
PHONE #: 703-471-6150				EMAIL: ir	obb@	@scsengin	eers.co	m	1						Pre	etrea	atme	ent Pro	ogra	am:				
Is sample for compliance reporti	ng?		YES	S NO Regu	lato	ry State:	VA	Is sam	ple fro	m a	ch	lorir	nate	d su	upply?		YE	S N	0		PWS	I.D.	#:	
SAMPLER NAME (PRINT):		Fra											1	1	1.	-	1-	In	~	Tu	rn Arc	und	Tin	ne: 10 Day(s)
Matrix Codes: WW=Waste Water/Storm Wa)T=0	ther			_							COMMENTS
5 m			Metals)				Stop					—	-	AN.	ALYSI				1		E)	T		Preservative Codes: N=Nitric Acid C=Hydrochloric Acid S=Sulfuric Acid H=Sodium Hydroxide A=Ascorbic Acid Z=Zinc Acetate T=Sodium Thiosulfate M=Methanol
CLIENT SAMPLE I.D.		osite	Field Filtered (Dissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	Time or Composite	Time Preserved	Matrix (See Codes)	Number of Containers	nia - EPA 350.1	- SM22 5210B-2021	- SM22 5220D-2011	de - SW9012	Nitrate SM22 450-NO3F-2011 (report seperatly from Nitrite)	Nitrite SM22 450-NO3F-2011	(Anthracene) 8270	Total Metals (As, Ba, Cd, Cr, Cu, Pb, Ni, Se, Ag, Zn) 6020	TKN - EPA 351.2 R2.0	ry - 6020	Total Recoverable Phenolics - 9065	V. Fatty Acids (See List) 8015	(See List) 8260	Note VOC 8260 no HCI
	Grab	Composite	Field F	Compo		Grab E Compo	Grab T Time	Time F	Matrix		Ammonia	BOD -	COD -	Cyanide -	Nitrate (report s	Nitrite	SVOC	Total N Cu, Pb	TKN -	Mercury	Total	V. Fatty	VOCs	PLEASE NOTE PRESERVATIVE(S INTERFERENCE CHECKS or PUM RATE (L/min)
1)EW-54	X					a/n/24	1020		GW	13	•	-							-					
2) EW-52	X	-					820			13	_	-				-	_						-	
3) EW-68	X	-				Y	850		GW	13	-						_					+	-	
4)	-	-							GW GW	-	-	-	4				-			-		+-	-	
5) 6)	-	-							GW	\vdash	-	+	-				-			-		+	+	
7)	-							.3	GW	-	\vdash											\uparrow		
8)									GW															
9)								9	GW								_						1	OT : 2.1
10) THP Blank	X					914124			DI	2		-	-	-						10	07	+	-	. CF.D.O
RELINQUISHED:	1/21	Н		o te	-	alinful	UN	DATE /	1					age	LAB US Custody	SE OI Seals	NLY usec	The and inta	rm I	D:	593 1)	_ C	:00	LER TEMP 2.4 °C Received on ice? (Y) N)
RELINQUISHED: RELINQUISHED:	10000011000		TIME	RECEIVED RECEIVED	to	9/12/	24	DATE / DATE /			el III el IV				1291.555.55	CS 4-08		/ ristol	LI	FG-	EW	2	241	10652
								•						di la constante da la constant								: 09		5/2024

Sample Preservation Log Form #: F1301 Rev # 15.0 Effective: July 13, 2023 Page 1 of 1

Sample Preservation Log mles lass

Page 59 of

Order IE				52			-		_							Perfe			on h	1.[ว ป	i							_			ming C		Ц	G 7	for	A	R				
Order II						·		r—			-			-	Date	Perf	orme	: _	-11				T		-	Р	estic		1			ming C	heck:		Pest/P		<u>//(</u>	21-				
	e		Meta	Is		yani			Sulfic			nmo	nia		TKN	1		108, '			03+1			DRO)	(80 PC	81/608 B DW	¥508)	(52	SVO 5/8270	C /825)	CrVI	* **	S	(508) VOC(!	1	-	OT	>	phenolics		
Sample ID	Container I		as H selved	Final pH	pł Rec	t as sived	Final pH	pi Rec	H as bevte:	Final pH	pł Rec	l as elved	Final pH	pł Rec	i aa eived	Finel pH	Rec	as elved	Finel pH	P Rei	es H beviec	Finel pH	R	pH as icelved	Finel pH		alvad s. Cl	final + or -		sived s. Cl	final + or -	Received pH	Final pH	Rec	H as ceived	Final pH		i as elved	Finel pH	Rece	as Ived	Hall
Sai		<2	Other	Ë	> 12	Other	Ē	>9	Other	£	< 2	Other	Ē	< 2	Other	Ē	< 2	Other	Ē	< 2	Other	đ	<:	Other	E	·	ŀ		ŀ	·		a.	Ē	<2	Other	Ē	<2	Other	E	12	Other	Ē
1	A		5	-2																																						
1	D											5	12		5	<2					5	<2																5	<2			
1	E					6	>12																																			
1	F										Π																							Γ						\square	6	<2
	G										Π						\square													-				Γ						\square		
2	Å	Γ	5	٢2																Γ			T																			
2	D											5	12		5	<2					5	<2												Γ				5	<2	\square		
2	E	Γ				6	>12																T											\uparrow								
2	F																						T															\square			6	12
2	G			i										Π									T					ļ		-					- ·	<u> </u>	 	1				
3	Â		5	<2																			T															\square				
3	D											5	<u>د</u> 2		5	د2					5	<2	╞					-										5	<2			
3	E					10	>12																┢															1				
3	F																						┢															\vdash			6	12
3	G																						┢						 	-								\vdash				
NaOH II		-		I					HNO	s ID:	46	50	44	55	3	I	I	CrVI	pres	erve	d dai	te/tim				<u> </u>	<u> </u>	<u> </u>	J	Ana	lyst ir	nitials: _	I		I	<u> </u>	I	<u> </u>	L	к В	I	
H2SO4 I		60)41	17 L	ł				Na ₂ S								_		nust b	e adj	lusted	betw	oon	9.3 - 9.7							•	_										
HCL ID:									NazS									5N N					<u> </u>			-				·												

Metals were received with pH = 5 HNO3 was added at 1353 on 12th of September, 2024, by AER in the Log-In room to bring pH= <2.

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: LFG-EW Monthly Monitoring

Submitted To:

Jennifer Robb

Date Issued: 9/30/2024 9:43:20AM

Work Order: 24

2410652

		Certificate of Ana	lysis			
Client Name:	SCS Engineers-Winchester			Date Issued:	9/30/2024	9:43:20AM
Client Site I.D.:	LFG-EW Monthly Monitoring					
Submitted To:	Jennifer Robb			Work Order:	2410652	
	Laboratory Order ID:	2410652				
	Sample Conditions	Checklist				
Samples	Received at:		2.40°C			
How were	e samples received?		Logistics Courier			
Were Cus	stody Seals used? If so, were they received intact?		Yes			
Are the c	ustody papers filled out completely and correctly?		Yes			
Do all bot	ttle labels agree with custody papers?		Yes			
Is the ten	nperature blank or representative sample within acceptable limits or receive	ed on ice, and recently taken?	Yes			
Are all sa	amples within holding time for requested laboratory tests?		Yes			
ls a suffic	cient amount of sample provided to perform the tests included?		Yes			
Are all sa	imples in appropriate containers for the analyses requested?		Yes			
Were vola	atile organic containers received?		Yes			
Are all vo	latile organic and TOX containers free of headspace?		No			
	lank provided for each VOC sample set? VOC sample sets include EPA80 6 GRO, EPA8021, EPA524, and RSK-175.	011, EPA504, EPA8260, EPA624,	Yes			
	Imples received appropriately preserved? Note that metals containers do n tion may delay analysis. In addition, field parameters are always received c gly.		No			
	Jennifer Robb notified via email for the VOAC40ml	_ containers were received with				

headspace and the samples were preserved in the lab to the appropriate pH. HEG 9/12/24 1528

	Certificate of Analysis		
Client Name:	SCS Engineers-Winchester	Date Issued:	9/30/2024 9:43:20AM
Client Site I.D.:	LFG-EW Monthly Monitoring		
Submitted To:	Jennifer Robb	Work Order:	2410652
	Jennifer Robb confirmed via email to proceed with analysis. HEG 9/12/24 1744		

Pace Analytical Services, LLC 7979 Innovation Park Drive Baton Rouge, LA 70820 (225) 769-4900

September 23, 2024

Virginia Thrasher Enthalpy 1941 Reymet Road Richmond, VA 23237

RE: Project: 24I0652/Enthalpy Pace Project No.: 20330045

Dear Virginia Thrasher:

Enclosed are the analytical results for sample(s) received by the laboratory on September 13, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

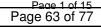
The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Baton Rouge

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Oeven Am Dougal

Devin McDougal devin.mcdougal@pacelabs.com (225) 769-4900 Project Manager


Enclosures

cc: Andrew Bruner, Enthalpy Daniel Elliott, Enthalpy Meghan Meyer, Enthalpy

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical Services, LLC 7979 Innovation Park Drive Baton Rouge, LA 70820 (225) 769-4900

CERTIFICATIONS

Project: 2410652/Enthalpy Pace Project No.: 20330045

Pace Analytical Services Baton Rouge

7979 Innovation Park Drive Ste A, Baton Rouge, LA 70820-7402 Louisiana Dept of Enviromental Quality (NELAC/LELAP): 01979 Florida Dept of Health (NELAC/FELAP): E87854 DoD ELAP (A2LA) #: 6429.01 Alabama DEM #: 41900 Alaska DEC-DW #: LA00024 Alaska DEC CS-LAP #: 21-001 Arkansas DEQ #: 88-0655 California ELAP #: 3063 Georgia DPD #: C050 Hawaii DOH State Laboratories Division Illinois EPA #: 200048 Kansas DoHE #: E-10354 Kentucky DEP UST Branch #: 123054 Louisiana DOH #: LA036 Minnesota DOH #: 2233799 Mississippi State Dept of Health

Montana Department of Environmental Quality Nebraska DHHS #: NE-OS-35.21 Nevada DCNR DEP #: LA00024 New York DOH #: 12149 North Carolina DEQ - WW & GW #: 618 North Dakota DEQ #: R195 Ohio EPA #: 87782 Oklahoma Dept of Environmental Quality #: 9403 Oregon ELAP #: 4168 Pennsylvania Dept of Environmental Protection #: 68-05973 South Carolina DHEC #: 73006001 Texas CEQ #: T104704178-23-15 Utah DOH #: LA00024 Virginia DCLS #: 6460215 Washington Dept of Ecology #: C929 Wisconsin DNR #: 399139510

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: 24I0652/Enthalpy

Pace Project No.: 20330045

Lab ID	Sample ID	Matrix	Date Collected	Date Received
20330045001	24I0652-01: EW-54	Water	09/11/24 10:20	09/13/24 10:45
20330045002	2410652-02: EW-52	Water	09/11/24 08:20	09/13/24 10:45
20330045003	2410652-03: EW-68	Water	09/11/24 08:50	09/13/24 10:45

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: 2410652/Enthalpy Pace Project No.: 20330045

Lab ID	Sample ID	Method	Analysts	Analytes Reported
20330045001	 24I0652-01: EW-54	Pace ENV-SOP-BTRO-0042	 VAM	10
20330045002	2410652-02: EW-52	Pace ENV-SOP-BTRO-0042	VAM	10
20330045003	24I0652-03: EW-68	Pace ENV-SOP-BTRO-0042	VAM	10

PASI-BR = Pace Analytical Services - Baton Rouge

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

PROJECT NARRATIVE

Project: 24I0652/Enthalpy

Pace Project No.: 20330045

Method: Pace ENV-SOP-BTRO-0042

Description:BR AM23G Low Level VFAClient:BR-EnthalpyDate:September 23, 2024

General Information:

3 samples were analyzed for Pace ENV-SOP-BTRO-0042 by Pace Analytical Services Baton Rouge. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 341897

- D4: Sample was diluted due to the presence of high levels of target analytes.
 - 24I0652-01: EW-54 (Lab ID: 20330045001)
 - Lactic Acid
 - 24I0652-03: EW-68 (Lab ID: 20330045003)
 - Lactic Acid

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

- 24I0652-01: EW-54 (Lab ID: 20330045001)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid

PROJECT NARRATIVE

Project: 24I0652/Enthalpy

Pace Project No.: 20330045

Method:	Pace	ENV-SOP-BTRO-0042
weinou.	гасе	ENV-SOF-DIRO-0042

Description:BR AM23G Low Level VFAClient:BR-EnthalpyDate:September 23, 2024

Analyte Comments:

QC Batch: 341897

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

- 24I0652-01: EW-54 (Lab ID: 20330045001)
 - Pentanoic Acid
- 24I0652-02: EW-52 (Lab ID: 20330045002)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- 24I0652-03: EW-68 (Lab ID: 20330045003)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- BLANK (Lab ID: 1642343)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- LCS (Lab ID: 1642344)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- MS (Lab ID: 1642406)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid

 - Pentanoic Acid
- MSD (Lab ID: 1642407)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid

This data package has been reviewed for quality and completeness and is approved for release.

Pa	ae (i∩t	15
Page	68	of	77

ANALYTICAL RESULTS

Project: 24I0652/Enthalpy

Pace Project No.: 20330045

Sample: 2410652-01: EW-54	Lab ID: 203	30045001	Collected: 09/11/2	4 10:20	Received: 0	9/13/24 10:45 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
BR AM23G Low Level VFA	Analytical Met	hod: Pace E	NV-SOP-BTRO-004	2				
	Pace Analytica	al Services -	Baton Rouge					
Pentanoic Acid	ND	mg/L	250	500		09/19/24 01:37	109-52-4	N2
Acetic Acid	5970	mg/L	500	1000		09/20/24 14:39	64-19-7	
Butyric Acid	2060	mg/L	250	500		09/19/24 01:37	107-92-6	
Formic acid	2730	mg/L	250	500		09/19/24 01:37	64-18-6	
Hexanoic Acid	ND	mg/L	250	500		09/19/24 01:37	142-62-1	N2
i-Hexanoic Acid	ND	mg/L	250	500		09/19/24 01:37	646-07-1	N2
Lactic Acid	2550	mg/L	250	500		09/19/24 01:37	50-21-5	D4
i-Pentanoic Acid	258	mg/L	250	500		09/19/24 01:37	503-74-2	N2
Propionic Acid	1690	mg/L	250	500		09/19/24 01:37	79-09-4	
Pyruvic Acid	ND	mg/L	250	500		09/19/24 01:37	127-17-3	
Sample: 24/0652.02.5W/52	Lab ID: 203	20045002	Collected: 09/11/2	4 00.20	Dessived: 0	0/12/24 10:45	Matrix: Water	
Sample: 2410652-02: EW-52	Lab ID: 203	30043002	Collected. 09/11/2	4 06.20	Received: 0	9/13/24 10:45 N	hatrix: water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
BR AM23G Low Level VFA	Analytical Met	hod: Pace E	NV-SOP-BTRO-004	2				
	Pace Analytica	al Services -	Baton Rouge					
Pentanoic Acid	352	mg/L	250	500		09/19/24 02:02	109-52-4	N2
Acetic Acid	10400	mg/L	1250	2500		09/20/24 15:04	64-19-7	
Butyric Acid	3550	mg/L	250	500		09/19/24 02:02	107-92-6	
Formic acid	4230	mg/L	250	500		09/19/24 02:02	64-18-6	
Hexanoic Acid	293	mg/L	250	500		09/19/24 02:02	142-62-1	N2
i-Hexanoic Acid	ND	mg/L	250	500		09/19/24 02:02		N2
Lactic Acid	5510	mg/L	1250	2500		09/20/24 15:04	50-21-5	
i-Pentanoic Acid	341	mg/L	250	500		09/19/24 02:02		N2
Propionic Acid	2640	mg/L	250	500		09/19/24 02:02		
Pyruvic Acid	ND	mg/L	250	500		09/19/24 02:02		
Sample: 2410652-03: EW-68	Lab ID: 203	30045003	Collected: 09/11/2		Received: 0	9/13/24 10:45 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
BR AM23G Low Level VFA	Analytical Met	hod: Pace E	NV-SOP-BTRO-004	2				
	Pace Analytica	al Services -	Baton Rouge					
Pentanoic Acid	ND	mg/L	250	500		09/19/24 02:27	109-52-4	N2
Acetic Acid	2950	mg/L	250	500		09/19/24 02:27	64-19-7	
Butyric Acid	670	mg/L	250	500		09/19/24 02:27	107-92-6	
Formic acid	407	mg/L	250	500		09/19/24 02:27	64-18-6	
Hexanoic Acid	ND	mg/L	250	500		09/19/24 02:27	142-62-1	N2
i-Hexanoic Acid	ND	mg/L	250	500		09/19/24 02:27	646-07-1	N2
Lactic Acid	ND	mg/L	250	500		09/19/24 02:27	50-21-5	D4
i-Pentanoic Acid	251	mg/L	250	500		09/19/24 02:27	503-74-2	N2

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: 24I0652/Enthalpy

Pace Project No.: 20330045

Sample: 24I0652-03: EW-68	Lab ID: 203	30045003	Collected: 09/11/2	4 08:50	Received: 09/	13/24 10:45 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
BR AM23G Low Level VFA	Analytical Met Pace Analytica		NV-SOP-BTRO-004 Baton Rouge	2				
Pyruvic Acid	ND	mg/L	250	500		09/19/24 02:27	127-17-3	

QUALITY CONTROL DATA

			QUALIT	CONTROL	DATA			
Project: Pace Project No.:	2410652/Enthalpy 20330045							
QC Batch:	341897		Analysis	Method:	Pace ENV-SC	P-BTRO-0042	2	
QC Batch Method:	Pace ENV-SOP	-BTRO-0042	Analysis	Description:	BR AM23G L	ow Level VFA		
			Laborato		Pace Analytic	al Services - B	aton Rouge	
Associated Lab San	nples: 2033004	5001, 2033004500						
METHOD BLANK:	1642343		Ma	atrix: Water				
Associated Lab San	nples: 2033004	5001, 2033004500	2, 2033004500	03				
			Blank	Reporting	g			
Param	neter	Units	Result	Limit	Analyz	ed Qua	alifiers	
Acetic Acid		mg/L			0.50 09/18/24	23:03		
Butyric Acid		mg/L			0.50 09/18/24			
Formic acid		mg/L			0.50 09/18/24			
Hexanoic Acid		mg/L			0.50 09/18/24			
i-Hexanoic Acid		mg/L		ND (0.50 09/18/24	23:03 N2		
i-Pentanoic Acid		mg/L		ND (0.50 09/18/24	23:03 N2		
Lactic Acid		mg/L		ND (0.50 09/18/24	23:03		
Pentanoic Acid		mg/L		ND (0.50 09/18/24	23:03 N2		
Propionic Acid		mg/L		ND (0.50 09/18/24	23:03		
Pyruvic Acid		mg/L		ND (0.50 09/18/24	23:03		
LABORATORY CON		1642344						
		10-120-1-1	Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Acetic Acid		mg/L	2	2.0	99	70-13	0	
Butyric Acid		mg/L	2	2.0	98	70-13	0	
Formic acid		mg/L	2	2.0	100	70-13	0	
Hexanoic Acid		mg/L	2	1.9	94	39-11	4 N2	
i-Hexanoic Acid		mg/L	2	1.7	87	39-11	4 N2	
i-Pentanoic Acid		mg/L	2	2.1	105	59-12	1 N2	
Lactic Acid		mg/L	2	1.9	97	70-13	0	
Pentanoic Acid		mg/L	2	1.9	97	59-12		
Propionic Acid		mg/L	2	2.0	98	70-13		
Pyruvic Acid		mg/L	2	2.0	98	70-13	0	
MATRIX SPIKE & M	IATRIX SPIKE DUI	PLICATE: 16424	106	16424	.07			
				1SD	-			
		20330028009	-	nike MS	MSD	MS MS	SD % Rec	Max

Parameter	Units	20330028009 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Acetic Acid	mg/L	1.2U	20	20	20.2	20.1	98	98	70-130	1	30	
Butyric Acid	mg/L	0.58U	20	20	19.8	19.5	99	97	70-130	1	30	
Formic acid	mg/L	1.1U	20	20	20.8	20.8	101	101	70-130	0	30	
Hexanoic Acid	mg/L	2.4U	20	20	19.7	19.5	98	98	39-114	1	30	N2
i-Hexanoic Acid	mg/L	1.1U	20	20	18.6	18.6	93	93	39-114	0	30	N2
i-Pentanoic Acid	mg/L	1.2U	20	20	21.4	20.7	107	103	59-121	3	30	N2
Lactic Acid	mg/L	1.2U	20	20	19.8	19.9	99	100	70-130	0	30	
Pentanoic Acid	mg/L	1.7U	20	20	19.7	19.7	98	99	59-121	0	30	N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: 2410652/Enthalpy Pace Project No.: 20330045

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	ATE: 1642	406		1642407							
	20	0330028009	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Propionic Acid	mg/L	0.53U	20	20	19.8	19.7	99	98	70-130	1	30	
Pyruvic Acid	mg/L	1.2U	20	20	19.7	19.4	98	97	70-130	1	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

•	24I0652/Enthalpy 20330045											
QC Batch:	342240		Analy	sis Metho	d: P	ace ENV-S	OP-BTRO	-0042				
QC Batch Method:	Pace ENV-SOP-	BTRO-0042	,	sis Descri		R AM23G L						
				ratory:		ace Analytic	cal Service	es - Baton	Rouge			
Associated Lab Sam	ples: 20330045	001, 20330045002		,		,			0			
METHOD BLANK:	1644115			Matrix: W	/ater							
Associated Lab Sam	ples: 20330045	001, 20330045002	2									
			Blar	nk	Reporting							
Param	eter	Units	Res	ult	Limit	Analy	zed	Qualifier	S			
					0.50	09/20/24	40.47					
Acetic Acid		ma/L		ND	0.50	09/20/24	13:47					
Acetic Acid Lactic Acid		mg/L mg/L		ND ND	0.50		-					
		-	Spike Conc.		0.50 CS		-		Qualifiers			
Lactic Acid LABORATORY CON Param Acetic Acid		mg/L 1644116 Units mg/L	Conc.	ND 	0.50 CS sult 2.0	LCS % Rec 102	13:47 % Re Limi	ts (70-130	Qualifiers			
Lactic Acid LABORATORY CON Param		mg/L 1644116 Units	Conc.	ND LC Res	0.50 CS sult	0 09/20/24 LCS % Rec	13:47 % Re Limi	ts (Qualifiers	_		
Lactic Acid LABORATORY CON Param Acetic Acid	eter	mg/L 1644116 Units mg/L mg/L	Conc.	ND 	0.50 CS sult 2.0	LCS % Rec 102	13:47 % Re Limi	ts (70-130	Qualifiers	_		
Lactic Acid LABORATORY CON Param Acetic Acid Lactic Acid	eter	mg/L 1644116 Units mg/L mg/L	Conc.	ND 	0.50 Ssult 2.0 2.1	LCS % Rec 102	13:47 % Re Limi	ts (70-130	Qualifiers	_		
Lactic Acid LABORATORY CON Param Acetic Acid Lactic Acid MATRIX SPIKE & M	eter ATRIX SPIKE DUF	mg/L 1644116 Units mg/L mg/L PLICATE: 16441 20330568001	Conc. 172 MS Spike	ND LC Res 2 2 MSD Spike	0.50 cs sult 2.0 2.1 1644173 MS	0 09/20/24 LCS % Rec 102 104 MSD	13:47 % Re Limi 7 7 7 8	ts (70-130) 70-130 70-130 MSD	% Rec	_	Max	
Lactic Acid LABORATORY CON Param Acetic Acid Lactic Acid	eter	mg/L 1644116 Units mg/L mg/L PLICATE: 16441 20330568001	Conc. 172 MS	ND LC 2 2 MSD	0.50 2.5 2.0 2.1 1644173	0 09/20/24 LCS % Rec 102 104	13:47 % Re Limi 7 7	ts (70-130 70-130		RPD	Max RPD	Qual
Lactic Acid LABORATORY CON Param Acetic Acid Lactic Acid MATRIX SPIKE & M	eter ATRIX SPIKE DUF	mg/L 1644116 Units mg/L mg/L PLICATE: 16441 20330568001 Result	Conc. 172 MS Spike	ND LC Res 2 2 MSD Spike	0.50 cs sult 2.0 2.1 1644173 MS	0 09/20/24 LCS % Rec 102 104 MSD	13:47 % Re Limi 7 7 7 8	ts (70-130) 70-130 70-130 MSD	% Rec		RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 24I0652/Enthalpy

Pace Project No.: 20330045

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

ANALYTE QUALIFIERS

- D4 Sample was diluted due to the presence of high levels of target analytes.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2410652/Enthalpy Pace Project No.: 20330045

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
20330045001	24l0652-01: EW-54	Pace ENV-SOP-BTRO- 0042	341897		
20330045001	24I0652-01: EW-54	Pace ENV-SOP-BTRO- 0042	342240		
20330045002	2410652-02: EW-52	Pace ENV-SOP-BTRO- 0042	341897		
20330045002	2410652-02: EW-52	Pace ENV-SOP-BTRO- 0042	342240		
20330045003	2410652-03: EW-68	Pace ENV-SOP-BTRO- 0042	341897		

Pace - Gulf Coast 7979 Innovation Park Dr Baton Rouge, LA 70820

1941 RICHMOND,

WO#:20330045 (804) 3 (80 20330045

CHAIN OF CUSTODY

		_	_																		
COMPANY NAME: Enthalpy					IN	VOICE TO:	Ent	halpy						PROJEC	T NAM	E/Quot	e #:	24106	52		
CONTACT: Dan Elliot					IN	VOICE CON	TACT:							SITE NA	ME: 24	10652					
ADDRESS: 1941 Reymet Rd Richmo	ond V	/A 2	3237		IN	VOICE ADD	RESS:	1941	1 Reymet	Rd Ri	ichmond	VA 23237		PROJEC	T NUN	BER:	24106	552			
PHONE #: (804) 358-8295					IN	VOICE PHC	DNE #:	(804) 3	358-82	95				P.O. #:	To	be	en	nail.	ed		
FAX #:				EMAIL:										Pretreatr	nent Pr	ogram:					
Is sample for compliance reportin	ıg?	Y	ES	NO		Is sample f	from a d	chlorina	ated su	ipply	y?	YES N	10				PWS	3 I.D. #:	-		
SAMPLER NAME (PRINT):Will F	alor	rie/l	_aur	el Tucker	SA	MPLER SIG	GNATU	RE:									Turn	Aroun	d Tim	ne: (🔿)
Matrix Codes: WW=Waste Water/Storm Wate	er G\	W=G	Ground	d Water DW=D	rinking	Water S=Soil/S	olids OR	=Organio	A=Air \	WP=V	Vipe OT	=Other							(COMME	NTS
			ls)									ANA	LY	SIS / (PF	RESER	VATIV	Ξ)			ervative Code	
CLIENT SAMPLE I.D.	Grab	Composite	Field Filtered (Dissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Time Preserved	Matrix (See Codes)	Number of Containers	Volatile Fatty Acid								Hyd Z=2 Th	Sulfuric Acid H droxide A=Asc Zinc Acetate T niosulfate M=M PLEASE NC PRESERVATI ERFERENCE C PUMP RATE (I	TTE /E(S), HECKS or
1) 24I0652-01: EW-54	X					9/11/24	1020		GW	3	Х								1.46		
2) 2410652-02: EW-52	x					9/11/25	0820		GW	3	Х										2
3) 2410652-03: EW-68	х					9/11/26	850		GW	3	Х										3
4)																					
5)																					
6)																					
7)																					
8)																					
9)		5																			
10)																					
RELINQUISHED:	2/20	'U	TIME 16	so ted	546	Express	9/12	- 1	1650	QC Leve		Package L	.AE	B USE O	NLY		COOL	LER TE	MP _		°C
TEGNQUISHED: ¹ Follow 9/13/2					2	52	2	DATE /	M	Leve	el 11										
	DAT	-	TIME	Charles - Charle	D:	100		DATE /	TIME	Leve	el III										
UT CT	1									Leve	el IV									Page 76	of 77

W0#:20330045

PM: DRM Due CLIENT: BR-Enthalpy

Due Date: 09/27/24

Sample Condition Upon R

Workd	order #:
7979 Innovation Park Dr. Baton Rouge, LA 70806	
Cooler Inspected by/date: 56 / 7-73 - 24	
Means of receipt: Pace Client UPS FedEx Other:	
Yes No Were custody seals present on the cooler?	
Yes No NA If custody seals were present, were they intact and unbroken?	ection Factor:°C
Cooler #1 Cooler Temp *C: (Actual/True) Samples of T Cooler #2 Cooler Temp *C: (Actual/True)	No
Cooler #2 Cooler Temp *C: (Actual/True) Method of c	oolant:
Cooler #4 Cooler Temp °C: (Actual/True)	
Tracking #: 7785 5563 9365	
Yes No NA Is a temperature blank present?	
Yes 🔲 No 🔲 NA Was a chain of custody (COC) recieved?	
Yes No NA Was the line and profile number listed on the COC?	· · ·
Yes No NA Were all coolers received at or below 6.0°C? If no, notify Project Manager notified via email.	
Yes No Were proper custody procedures (relinquished/received) followed?	
Yes No NA Is the sampler name and signature on the COC?	
Yes No Were sample IDs listed on the COC and all sample containers?	
Yes No Containers?	
Yes No Did all container label information (ID, date, time) agree with the COC?	
Yes No Were tests to be performed listed on the COC?	
Did all samples arrive in the proper containers for each test	
Yes No and/or in good condition (unbroken, lids on, etc.)?	
Yes No Was adequate sample volume available?	
Were all samples received within % the holding time or 48	
Yes No hours, whichever comes first?	-
Yes No Were all samples containers accounted for? (No missing / excess)	
Were VOA, 8015C (GRO/VPH), and RSK-175 samples free of Yes No No NA bubbles > "pea size" (1/4" or 6mm in diameter) in any of the	
Yes No ANA bubbles > "pea size" (1/4" or 6mm in diameter) in any of the VOA vials?	
Yes No NA Trip blank present?	
Yes No NA Filtered volume received for dissolved tests?	
Yes No A Were all metals/nutrient samples received at a pH of < 2?	If No, was preservative added? Yes No If added, record lots. Dispenser/pipette lot #:
Were all cyanide samples received at a pH > 12 and sulfide	HNO3H2SO4NaOH
Yes No ANA samples received at a pH > 12 and suffice samples received at a pH > 9?	Date: Time:
Comments:	

Page 1 of 1 -

Pace

We		EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	FW/_ 67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event	LW-30	LW-JI	LW-52	LW-33	LW-34	EVV-55	EVV-57	EW-30	LW-J7	L W - 00		ntration	L W-04	EW-05	LW-07	LW-00	LW-70	LW-05	LW-0/	LW-00	L W - 74	LW-70	LOD	LOQ
ruumeiei			1		1					15/0		1 1			1200									50	E0
	November-2022	1700								1560		1400			1380									50	50
	December-2022	1700		2280				2110		1410	1310					1150	1780							100	100
	January-2023	1520							936						1330									50	50
										2440														100	100
	February-2023																1490							100	100
	March-2023								667	1480														73.1	100
	April-2023								1410		1220													73.1	100
	May-2023	1390							1860	2380														146	200
	June-2023									2740		2370		2170										146	200
	July-2023																	1180						73.1	100
	JUIY-2023	1570						2260														2350	310	146	200
	August-2023					1600		1890														2140	222	146	200
	September-2023																	1720						73.1	100
	· · ·			1250																				146	200
	October-2023						1980											1730		2890				146	200
Ammonia as N		1260		2490	1830		2070											1800		2590				146	200
(mg/L)	November-2023												1170										2080	183	250
										2440														366	500
	December-2023																	1540						73.1	100
				2900						2400							2200						1410	146	200
	January-2024		2160							2400													1610	146	200
	February-2024 March-2024		1900		2600														1780		2380 2280		968	146 146	200 200
	April-2024			2290									928				2140	1800						146	200
	April-2024																								
	May-2024 -																						898	73.1	100
	h									2550								1620	1950	2660				146	200
	June-2024																	1990	2170				1850	146 73.1	200
	July-2024 -									1860	1950													146	100 200
						1110																		73.1	100
	August-2024 –																		2130			2550		146	200
						1440																		73.1	100
	September-2024			2210													2290							146	200
	November-2022									15700		5860			5140									0.2	2
	December-2022	6440		12500				11400		9240	3330					8360	6770							0.2	2
	January-2023	9920							999	28100					7060									0.2	2
	February-2023																7230							0.2	2
	March-2023								1570	9190														0.2	2
	April-2023								8430		2860													0.2	2
	May-2023	7350							11900	35300															2
																								0.2	
	June-2023									20000		27400		23100										0.2	2
	July-2023	6820						32900										330				31800	937	0.2	2
Dialogian Organization	August-2023					>33045		>33225														>32805	506	0.2	2
Biological Oxygen	September-2023 October-2023			40185.5			34600											659 690		37000				0.2	2
Demand (mg/L)	November-2023	 1910		30400	27500		32015			29600			3640					480		32135			21500	0.2	2
	December-2023			>44105													13700	681					21500	0.2	2
	January-2024		26000							17100													14000	0.2	2
	February-2024		23200		26200														21400		34300			0.2	2
	March-2024																				40600		7680	0.2	2
	April-2024			41142									1210				19600	386						0.2	2
	May-2024									25600								448	22200	33400			7750	0.2	2
	June-2024																	421	24400				16200	0.2	2
	July-2024									25800	4750													0.2	2
			1		1							1		1											
	August-2024					31000													20800			33400		0.2	2

Well Parameter	Monitoring Event	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57		EW-59	EW-60	EW-61	EW-62	EW-64	EW-65		EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
									EW-58				entration											LOD	LOQ
												9790			10800									1000	1000
	November-2022									23500														2000	2000
		7440																						1000	1000
	-									13200	8000					20300	14100							2000	2000
	December-2022							22400																5000	-
	-																								5000
				86800																				10000	10000
									3630															500	500
	January-2023	14900													8430									2000	2000
										47600														5000	5000
	February-2023																9210							1000	1000
	March-2023								1690															500	500
										10600														2000	2000
	April-2023										7370													1000	1000
	Aprii-2023								16800															2000	2000
		7590							18700															2000	2000
	May-2023 -									44700														4000	4000
												44800												5000	5000
	June-2023 -									41300				55000										10000	10000
																							2180	500	500
	-																								-
	July-2023	6480																2460						1000	1000
	-																					41000		5000	5000
								50100																10000	10000
	August-2023																						1750	500	500
						59000		58600														60600		5000	5000
	September-2023																	6260						1000	1000
				87400																				10000	10000
Chemical Oxygen	October-2023						51000											5320						500	500
Demand (mg/L)	OCIODEI-2023						51000													63600				5000 10000	5000 10000
																		4710						10000	10000
	-	6200											5620											2000	2000
	November-2023				48100		57900			43700													37600	5000	5000
				77100																63900				10000	10000
																		4870						1000	1000
	December-2023																19900							5000	5000
				94200																				10000	10000
	January-2024		48600							59800													38200	5000	5000
			42700		51200														48900					5000	5000
	February-2024																				68400			10000	10000
	March 2004																						14400	2000	2000
	March-2024																				75500			10000	10000
ļ ļ													3110					4200						1000	1000
	April-2024																32400							5000	5000
				79700																				10000	10000
																		4930						1000	1000
	May-2024																						17700	5000	5000
										48500									43100	70700				10000	10000
																		4520						10000	10000
	June-2024																	4520	51400				31300	5000	5000
										42400														5000	5000
	July-2024										98500													10000	10000
																			48100			59500		5000	5000
	August-2024					56600																		10000	10000
																	26800							4000	4000
	September-2024					55900																		5000	5000
				78300																				10000	10000
Nitrate+Nitrite as N																									
	November-2022									2.91		0.16			0.33									0.1	0.1

Wel		EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64		EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
	Monitoring Event	EW-30	EW-51	EW-52	EW-55	EW-34	EW-55	EW-57	LW-30	EW-57	LW-00		entration	LVV-04	LVV-05	LVV-07	L W - 00	LW-70	LW-03	LW-07	L W-00	LVV-74	LVV-70	LOD	LOQ
Parameter	Monitoring Event			1	1										1									0.0	0.0
																ND								0.2	0.2
	December-2022										ND													0.2	0.6
		ND		ND				ND		ND														1.1	5.1
																	ND							1.5	5.5
									ND															0.35	1.35
	January-2023														ND									1.1	1.1
	5011001 y 2020	3.9																						2.1	2.1
										ND														2.2	2.2
	February-2023																ND							0.35	1.35
	March-2023								ND	ND														1.04	5.1
	April-2023								ND		ND													0.6	2.6
	May-2023	ND																						1.1	5.1
	1VIQY-2023								ND	ND														1.2	5.2
	h									ND				ND										1.1	5.1
	June-2023 -											ND												1.2	5.2
																		0.355						0.15	0.35
																							ND	0.55	0.75
	July-2023	ND																						1	3
								ND														ND		1.5	5.5
																							ND	0.15	0.35
	August-2023					ND		ND														ND		1.5	3.5
	<u> </u>																	ND						0.3	1.1
	September-2023			ND																				0.7	1.5
																		ND						0.35	1.35
	October-2023						ND																	1	3
Nitrate as N (mg/L)																				ND				1.5	3.5
		ND																ND						0.15	0.35
													ND											0.35	1.35
	November-2023						ND																	0.75	1.75
				ND																			 ND	1.1	5.1
				ND	ND					ND 								ND		ND 				1.5	5.5 5.1
	December-2023																ND							1.5	5.5
	January-2024		2.01							ND													ND	1.5	5.5
			9.1																ND		ND			1.5	5.5
	February-2024				ND																			3.5	7.5
	March-2024																				ND		ND	0.75	1.75
													ND					ND						0.35	0.35
	April-2024			ND																				1.5	5.5
																	ND							2.5	10.5
																		ND						0.15	0.35
																							ND	0.35	1.35
	May-2024																		ND					0.6	2.6
	,																			1.9				1	3
										ND														1.1	5.1
																		0.692						0.6	2.6
	June-2024																		ND				ND	1.5	3.5
											ND													0.5	2.5
	July-2024									6.66														5	25
	August-2024					1.57													ND			ND		0.25	1.25
	September-2024			ND		2.42																		0.25	1.25
	3001611061-2024																ND							5	25

We	IID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event												entration											LOD	LOQ
											0.12 J													0.1	0.5
	December-2022	ND		ND				ND		ND						ND	ND							1	5
									ND															0.25	1.25
	January-2023														ND									1	1
	3011001 y 2020	ND								ND														2	2
	February-2023																0.48 J							0.25	1.25
	March-2023								ND	ND														1	5
	April-2023								ND		ND													0.5	2.5
	May-2023	ND							ND	ND														1	5
	June-2023									2 J		ND		ND										1	5
	30110 2020																	ND					ND	0.05	0.25
	July-2023																							0.5	2.5
	JUIY-2023							1.2 J														ND		1	5
								1,2 J 															ND	0.05	0.25
	August-2023					ND		ND														ND		0.5	2.5
	September-2023			ND														ND						0.2	1
																		ND						0.25	1.25
	October-2023						ND													ND				0.5	2.5
Nitrite as N (mg/L)		0.06 J																ND						0.05	0.25
	November-2023						ND						ND											0.25	1.25
				ND	ND					ND										ND			ND	1	5
	December-2023			ND													ND	ND						1	5
	January-2024		1.7 J							ND													ND	1	5
	February-2024 March-2024		ND		ND														ND		ND ND		0.25 J	0.25	5
	1///UICI-2024												ND					ND						0.25	0.25
	April-2024			ND																				1	5
-	7,011-2024																ND							2	10
																		ND						0.05	0.25
	-																						ND	0.05	1.25
	May-2024 -																		ND						
	-																			ND				0.5	2.5
	June-2024									ND														0.5	5
											ND							ND	ND				ND 	0.5	2.5 2.5
	July-2024									ND														5	2.5
	August-2024					ND													ND			ND		0.25	1.25
				ND		ND																		0.25	1.25
	September-2024																ND							5	25

J	ry	
	• /	

We	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		100
Parameter	Monitoring Event											Conce	ntration											LOD	LOQ
												1290			1470									20	50
	November-2022									2110														50	125
	December-2022	1510		3570				1790		1830	1490					1340	1940							200	500
		1840							881						1410									20	50
	January-2023									2970														40	100
	February-2023																1870							16.8	50
	March-2023								879	1920														33.6	100
	April-2023								1820		1510													16.8	50
	May-2023	1590							1950	2910														40	100
										3080				2750										100	250
	June-2023											2650												200	500
	July-2023	1670						2960										1670				2720	285	40	100
																							203	10	25
	August-2023					2240		2820														2850		100	250
	September-2023			3340														2680						100	250
							1050													1320				40	100
	October-2023																	4630						100	250
Total Kjeldahl	November-2023						2240																2120	80	200
Nitrogen (mg/L)		1440		3290	2630					2530			1120					2270		3170				100	250
	December-2023																1880							80	200
	Laura 000 (3130						2020								1890						100	250
	January-2024		2450							3020											2970		1810	100	250
	February-2024		2540		2890														2470				1030	100 50	250 125
	March-2024																				2980			100	250
													1030					1730						40	100
	April-2024																2320							50	125
				3260																				100	250
																							1140	40	100
	May-2024									3120								1780	2470	3280				100	250
																		1870					4750	100	250
	June-2024																		2680					200	500
	July-2024									2840	2680													100	250
	August-2024					1980													1460			3150		100	250
						2090																		50	125
	September-2024																2650							80	200
				3320																				100	250

~ ,

We	ll ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	105	100
Parameter	Monitoring Event					1					1		entration											LOD	LOQ
												5.68			3									0.3	0.5
	November-2022									28.8														0.75	1.25
											8.94													0.3	0.5
	December-2022	24.9		54.6				28.3		32						20.2	36							1.5	2.5
		27.2							1.3						20.2									0.75	1.25
	January-2023									56.5														1.5	2.5
	February-2023																22.4							1.5	2.5
									0.4															0.03	0.05
	March-2023									13.9														0.3	0.5
	April-2023								18.7		5.1													0.3	0.5
	May-2023	18.6							20	50														1.5	2.5
	June-2023									39.1		45.6		80.6										1.5	2.5
	30110 2020																	0.7						0.15	0.25
	July-2023																						2.92	0.13	0.25
	JULY 2020	11.6						47.9														37.3		1.5	2.5
																							1.46	0.15	0.25
	August-2023					28.6		31.4														40.4		1.5	2.5
																		4.58						0.3	0.5
	September-2023			38.2																				3	5
	October-2023																	4.13						0.15	0.25
otal Recoverable							37													38.7				0.6	1
																		3.65						0.15	0.25
Total Recoverabl Phenolics (mg/L)	November-2023	7.88			36.4								4.76											0.6	1
				38.8			47.4													47.1				0.75	1.25
										46.9								2 70					29.1	1.5	2.5
	December-2023																23	3.72						0.06	0.1
				34.2																				1.5	2.5
			38																				22.7	1.5	2.5
	January-2024 -									39.2														3	5
	February-2024		37.3		42.9														50.2		43.1			1.5	2.5
	March-2024																				46.6		12.8	3	5
	April-2024												1.68					1.16						0.3	0.5
	April-2024			38.4													28.6							1.5	2.5
																		1.06						0.3	0.5
	May-2024																						13.6	1.5	2.5
										36.6									33.6	51				3	5
																		0.82						0.3	0.5
	June-2024																						23.2	1.5	2.5
																			44.8					3	5
	July-2024 -										28.8													0.75	1.25
										37.8														3	5
	August-2024					29.2													44.2			39.2		3	5
	September-2024			39.6		31.6											31.6							3	5

l	ry
	• /

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	105	100
Parameter	Monitoring Event											Conce	ntration											LOD	LOQ
	GANIC COMPOUND	(ug/L)																							
												ND			ND									46.7	93.5
	November-2022									ND														93.5	187
										ND	ND						ND							9.35	9.35
																								11.7	11.7
	December-2022							ND								ND									
				ND																				23.4	23.4
		ND																						485	971
									ND															243	485
	January-2023														ND									253	505
		ND																						490	980
										ND														500	1000
	February-2023																ND							187	374
										ND														51	102
	March-2023								ND															117	234
									ND															37.4	74.8
	April-2023																							38.8	77.7
											ND														
	May-2023	ND								ND														93.5	187
	· · · · · · · · · · · · · · · · · · ·								ND															467	935
	June-2023									ND				ND										485	971
												ND												490	980
																							ND	46.7	93.5
	h.h. 0000	ND																						100	200
	July-2023																	ND						250	500
								ND														ND		1000	2000
																							ND	19.6	39.2
	August-2023					ND		ND														ND		1000	2000
	September-2023			ND														ND						40	80
																				ND				40	80
	October-2023																	ND						50	100
							ND																	500	1000
Anthracene		ND											ND											20	40
																		ND						50	100
	November-2023																						ND	100	200
					ND		ND			ND										ND				400	800
				ND																				1000	2000
																		ND						50	100
	December-2023																ND							100	200
				ND																				200	400
			ND																					100	200
	January-2024																						ND	250	500
										ND														1000	2000
					ND																			200	400
	February-2024		ND																					250	500
																			ND		ND			400000	800000
	March-2024																						ND	20	40
	1010101-2024																				ND			80	160
													ND											5	10
																		ND						20	40
	April-2024																ND							100	200
				ND																				400	800
										ND								ND	ND				ND	100	10
	May-2024																			ND				80	
																									160
	June-2024																	ND						20	40
																			ND				ND	100	200
	July-2024									ND														40	80
											ND													80	160
	August 2024					ND																		400	800
	August-2024																		ND					500	1000
																						ND		1000	2000
	September-2024																ND							100	200
				ND		ND																		200	400

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		100
Parameter	Monitoring Event											Conce	ntration					-		·				LOD	LOQ
TOTAL METALS (mg	ι/L)																								
	November-2022									0.863		0.464			1.3									0.02	0.04
	December-2022	1.02		0.406				0.174		1.69	0.49					0.159	0.574							0.02	0.04
	January-2023	0.285							0.596	0.225					0.846									0.01	0.02
	February-2023																0.29							0.005	0.01
	March-2023								1.07	1														0.01	0.02
											0.11													0.0005	0.001
	April-2023								0.36															0.005	0.01
	May-2023	0.26							0.3	0.27														0.0025	0.005
	June-2023									0.26		0.5		0.14										0.0025	0.005
		0.23																0.24				0.19	0.06	0.0005	0.001
	July-2023 -							0.7																0.0025	0.005
	August-2023																						0.15	0.0025	0.005
						0.32		0.43														0.29		0.005	0.01
	September-2023			0.42														0.25						0.005	0.01
Arsenic	October-2023																	0.24		0.31				0.0005	0.001
	November-2023	0.23		0.33			0.36 0.43			0.35			0.78					0.34		0.27				0.001	0.002 0.003
	NOVernber-2023	0.23		0.33	0.53		0.43			0.35			0.76				0.26	0.34		0.27			0.2	0.003	0.003
	December-2023																	0.24						0.0025	0.003
	January-2024		0.47							0.23													0.18	0.0025	0.005
	February-2024		0.68		0.42														0.33		0.23			0.002	0.002
	March-2024																						0.12	0.001	0.002
	101CTT-2024																				0.23			0.0025	0.005
	April-2024												0.49					0.18						0.0005	0.001
	7,011 2024			0.31													0.33							0.004	0.004
	May-2024									0.33								0.2	0.73	0.22			0.22	0.005	0.01
	June-2024																	0.19	0.49				0.14	0.005	0.01
	July-2024									300	0.095													0.0025	0.005
	August-2024					0.18													0.49			0.13		0.005	0.01
	September-2024			0.27		0.15											0.19							0.005	0.01

W	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		100
Parameter	Monitoring Event											Conce	entration											LOD	LOQ
	November-2022									0.871		0.485			0.36									0.01	0.02
	December-2022	0.566		0.803				0.978		0.438	0.214					0.856	0.793							0.01	0.02
	January-2023	0.643							0.683	1.92					0.554									0.005	0.01
	February-2023																1.04							0.01	0.05
	March-2023								0.406	0.683														0.005	0.01
	April-2023								1.21		0.326													0.01	0.05
	Mary 2002	0.636																						0.005	0.025
	May-2023								1.2	1.83														0.01	0.05
	huna 2002									1.69				1.65										0.005	0.025
	June-2023											3.01												0.01	0.05
																							0.217	0.001	0.005
	July-2023																	0.558						0.002	0.01
		0.542						2.28														1.02		0.005	0.025
	August-2023																						0.218	0.005	0.025
						1.61		1.58														1.48		0.01	0.05
Barium	September-2023			0.72														0.649						0.01	0.05
	October-2023																	0.664						0.002	0.01
	November-2023	0.572		0.81	2.28		2.56 2.51			1.96			0.418					0.67		1.93 2.06			2.84	0.005	0.025
		0.572		0.68			2.51										1.36			2.00			2.04	0.005	0.025
	December-2023																	0.672						0.003	0.025
	1 000.4									1.92													1.91	0.005	0.025
	January-2024		3.27																					0.01	0.05
	February-2024		3.03		4.41														2.65		0.925			0.005	0.025
	March-2024																						1.03	0.002	0.01
																					1.54			0.005	0.025
	April-2024												0.4					0.634						0.001	0.005
	· · · · · · · · · · · · · · · · · · ·			1.02													2.15							0.01	0.05
	May-2024									1.79								0.619	2.8	2.06			0.872	0.01	0.05
	June-2024																	0.6	3.44				1.51	0.01	0.05
	July-2024									1.28	2.75													0.005	0.025
	August-2024 September-2024			1.34		1.27 1.33											3.65		2.39			0.862		0.01	0.05
	september-2024			1.34		1.33											3.05							0.01	0.05

ľ	ry

W	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		100
Parameter	Monitoring Event												entration											LOD	LOQ
	November-2022									ND		ND			ND									0.004	0.008
	December-2022	ND		0.0104				ND		ND	ND					ND	ND							0.004	0.008
	January-2023	ND							ND	ND					ND									0.002	0.004
	February-2023																0.000297 J	J						0.0001	0.001
	March-2023								ND	ND														0.002	0.004
	April-2023								0.000158 J		0.000333 J													0.0001	0.001
	May-2023	ND							ND	ND														0.0005	0.005
	June-2023									ND		ND		ND										0.0005	0.005
	July-2023	0.000219 J						0.000156 J										0.000186 J	I			ND	ND	0.0001	0.001
	August-2023																						ND	0.0005	0.005
	AUgusi-2023					ND		ND														ND		0.001	0.01
	September-2023			ND														ND						0.001	0.01
	October-2023																	0.000171 J	l	ND				0.0001	0.001
Cadmium							ND																	0.0002	0.002
	November-2023	ND		ND	ND		ND			ND			ND				0.000604 J	ND		ND			ND	0.001	0.003
	December-2023			ND													0.000604 J	ND						0.0005	0.0015
	January-2024		ND							ND													ND	0.0002	0.002
	February-2024		ND		ND														0.0175		ND			0.0005	0.005
																							ND	0.0002	0.002
	March-2024																				ND			0.0005	0.005
													0.000204 J	J				0.000195 J	I					0.0001	0.001
	April-2024 -			ND													ND							0.001	0.004
	May-2024									ND								ND	0.0483	ND			ND	0.001	0.01
	June-2024																	ND	0.0175				ND	0.001	0.01
	July-2024									ND	ND													0.0005	0.005
	August-2024					ND													0.00508 J			0.00247 J		0.001	0.01
	September-2024			ND		ND											ND							0.001	0.01
	November-2022									0.208		0.112			0.354									0.016	0.02
	December-2022	0.503		1.08				1.76		0.274	0.319					0.499	0.822							0.016	0.02
	January-2023	0.31							0.488	0.178					0.155									0.008	0.01
	February-2023																0.277							0.004	0.01
	March-2023								0.213	0.188														0.008	0.01
	April-2023										0.142													0.0004	0.001
	April-2023								0.306															0.004	0.01
	May-2023	0.422							0.281	0.237														0.002	0.005
	June-2023									0.251		0.191		0.272										0.002	0.005
	July-2023	0.308						0.535										0.231				0.215	0.0265	0.0004	0.001
	August-2023																						0.0276	0.002	0.005
	A09031-2023					0.606		0.449														0.259		0.004	0.01
	September-2023			1.17														0.234						0.004	0.01
	October-2023																	0.144		0.194				0.0004	0.001
Chromium							0.273																	0.0008	0.002
	November 2002	0.391																						0	0.003
	November-2023			1.04	0.51		0.402			0.246			0.343					0.251		0.403			0.222	0.003	0.003
				1.04			0.402			0.240			0.343				0.259						0.222	0.004	0.001
	December-2023																	0.219						0.002	0.003
	January-2024		0.17							0.193													0.128	0.000	0.002
	February-2024		0.23		0.272														0.203		0.336			0.002	0.005
																							0.0759	0.0008	0.002
	March-2024																				0.414			0.002	0.005
	April 2004												0.36					0.245						0.0004	0.001
	April-2024 -			0.836													0.228							0.004	0.01
										0.268								0.226	0.183	0.352			0.11	0.004	0.01
	May-2024				1															1					
	May-2024 June-2024																	0.226	0.188				0.16	0.004	0.01
										 0.252	 0.246							0.226	0.188				0.16	0.004	0.01
	June-2024																								

		FW/ 50			FWL F2			F\4/ F7	FW/ 50		FW/ 70		FW/ / 0			F14/ / 7	F)4/ / 0	FW/ 70		FW/ 07	FW/ 00	FW/ 0.4	FW/ 00		
	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-6/	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event			1	1	1						1	entration				1	1							
	November-2022									ND		ND			ND									0.016	0.02
	December-2022	ND		ND				ND		ND	ND					ND	ND							0.016	0.02
	January-2023	ND							0.0127	0.0256					ND									0.008	0.01
	February-2023																0.00365							0.0003	0.001
	March-2023								ND	ND														0.008	0.01
	April-2023								0.00664		0.00767													0.0003	0.001
	May-2023	ND							ND	ND														0.0015	0.005
	June-2023									0.00154 J		0.00362 J		0.00269 J										0.0015	0.005
	July-2023	0.00124		-				0.00163										0.00811				ND	0.0027	0.0003	0.001
	JUIY-2023																							0.0015	0.001
	August-2023					 0.00343 J		0.0176															ND	0.0013	0.003
	September-2023			ND														0.00407 J				ND		0.003	0.01
																		0.00407 J		0.000609 J				0.0003	0.001
Comment	October-2023						0.00806																	0.0003	0.001
Copper	November-2023	0.00607		0.00352			0.00756			ND			0.00341					0.00387		ND			ND	0.0008	0.002
	14076111061-2023			0.00184													ND							0.0015	0.0015
	December-2023																	0.0034						0.0006	0.0013
	January-2024		ND							0.019													ND	0.0015	0.002
	February-2024		ND		0.00201														ND		ND			0.0015	0.003
																							0.00115 J	0.0006	0.002
	March-2024																				0.00184 J			0.0015	0.002
													0.00443					0.004						0.0003	0.001
	April-2024			ND													ND							0.003	0.001
	Many 2024																								
	May-2024									ND								0.00486 J	0.00688 J	ND			ND	0.003	0.01
	June-2024																	0.00409 J	ND				ND	0.003	0.01
	July-2024									0.398	ND													0.0015	0.005
	August-2024 September-2024					ND													ND			ND		0.003	0.01
	· · · ·			ND		ND											ND							0.003	0.01
	November-2022									ND		ND			0.017 J									0.012	0.02
	December-2022	ND		0.0381				ND		ND	ND					ND	ND							0.012	0.02
	January-2023	ND							ND	ND					ND									0.006	0.01
	February-2023																0.006							0.001	0.001
	March-2023								ND	ND														0.006	0.01
	April-2023								0.0022		0.0067													0.001	0.001
	May-2023	ND							ND	ND														0.005	0.005
	June-2023									ND		ND		0.0069										0.005	0.005
	July-2023	0.0014						0.019										0.0092				ND	0.0017	0.001	0.001
																							ND	0.005	0.005
	August-2023					0.014		ND														0.013		0.01	0.01
	September-2023			0.12														ND						0.01	0.01
																		0.0036		0.0034				0.001	0.001
Lead	October-2023						0.0077																	0.001	0.001
	November-2023	ND		0.13	0.0046		0.014			ND			ND					0.0032		0.0043			ND	0.003	0.003
																		0.0043						0.002	0.002
	December-2023			0.16													0.002							0.0015	0.0015
	January-2024		ND							0.0081													ND	0.005	0.005
	February-2024		0.0065		0.01														0.051		0.012			0.001	0.002
	March-2024 -																						ND	0.002	0.002
	///urcn-2024																				0.02			0.005	0.005
													0.0013					0.0025						0.001	0.001
	April-2024 -			0.13													ND							0.004	0.004
	May-2024									ND								ND	0.11	ND			ND	0.01	0.01
	June-2024																	ND	0.024				ND	0.01	0.01
	July-2024									ND	ND								0.024					0.005	0.005
	August-2024					0.031													0.027			ND		0.003	0.003
	September-2024			0.098		0.057											ND		0.027					0.01	0.01
	30016111061-2024			0.070		0.037																		0.01	0.01

X	ry

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	E\A/ 47	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
		EVV-50	EW-31	EVV-5Z	EVV-55	EW-34	EVV-35	EVV-57	EVV-30	EVV-37	EVV-00			EVV-04	EVV-05	EVV-0/	EW-00	EVV-/O	EW-03	EW-0/	E VV-00	EVV-74	EVV-70	LOD	LOQ
Parameter	Monitoring Event		1	1	1		1				1		ntration						1					0.000 /	
	November-2022											0.00169			0.00053									0.0004	0.0004
										ND														0.0008	0.0008
		0.00051																						0.0004	0.0004
	December-2022							0.00118		ND	0.00588					0.0048	ND							0.0008	0.0008
				ND																				0.004	0.004
	January-2023	ND							ND						ND									0.0004	0.0004
	Junuary-2023									ND														0.004	0.004
	February-2023																ND							0.0004	0.0004
	N. 1. 0000								ND															0.0002	0.0002
	March-2023									ND														0.0004	0.0004
											0.00128													0.0002	0.0002
	April-2023								ND															0.0004	0.0004
	May-2023	ND							ND	ND														0.0002	0.0002
	June-2023									ND		ND		ND										0.004	0.004
		0.000306																ND					ND	0.0002	0.0002
	July-2023							0.0107														ND		0.001	0.001
																							ND	0.001	0.001
Mercury	August-2023					0.00312		0.00397														ND		0.001	0.001
	September-2023			0.00503														ND						0.002	0.002
	October-2023						0.00165											ND		0.00055				0.0004	0.0004
		ND											ND											0.0000002	0.0000002
	November-2023																	ND						0.0000004	0.0000004
				0.00576	0.00606		0.00578			ND										0.00954			ND	0.000004	0.000004
	December-2023			0.00484													ND							0.001	0.001
																		ND						0.0004	0.0004
	January-2024		ND							ND													ND	0.001	0.001
	February-2024		0.00376		0.0115														0.00238		0.00284			0.001	0.001
	March-2024																						0.00124	0.0004	0.0004
																					ND			0.001	0.001
	April-2024												0.000201					ND						0.0002	0.0002
				0.00382													0.00151							0.0008	0.0008
	May-2024									ND								ND	ND	ND			ND	0.002	0.002
	June-2024																	ND	0.0119				ND	0.002	0.002
	July-2024									ND	0.00104													0.001	0.001
	August-2024					ND													0.00671			ND		0.002	0.002
	September-2024			0.00244		ND											ND							0.002	0.002

We	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event					• .							ntration											LOD	LOQ
	November-2022									0.0866		0.1344			0.173									0.014	0.02
	December-2022	0.1722		0.5025				0.2989		0.1299	0.287					0.1853	0.346							0.014	0.02
	January-2023	0.1074							0.1442	0.0407					0.0769									0.007	0.01
	February-2023																0.1726							0.001	0.001
	March-2023								0.1254	0.1033														0.007	0.01
	April-2023								0.1143		0.1732													0.001	0.001
	May-2023	0.113							0.09726	0.05657														0.005	0.005
	June-2023									0.05978		0.05892		0.07161										0.005	0.005
	July-2023	0.09872						0.08332										0.1576				0.03074	0.01403	0.001	0.001
	August-2023																						0.02029	0.005	0.005
						0.1457		0.09673														0.0513		0.01	0.01
	September-2023			0.5152														0.2387						0.01	0.01
	October-2023																	0.2019		0.09206				0.001	0.001
Nickel							0.104																	0.002	0.002
	November-2023	0.1178		0.4227	0.1242		0.07791			0.05944			0.1493					0.2492		0.1332			0.05277	0.01	0.01
	December-2023			0.6091													0.1447							0.005	0.005
																		0.2127						0.002	0.002
	January-2024		0.06308							0.04911													0.0326	0.005	0.005
	February-2024		0.07945		0.07013														0.09174		0.06183			0.005	0.005
	March-2024																						0.02232	0.002	0.002
																					0.08678			0.005	0.005
	April-2024			0.3136									0.1319				0.1139	0.196						0.001	0.001
	May-2024									0.0538								0.2065	0.07835	0.09235			0.02884	0.01	0.01
	June-2024 July-2024									0.1917	0.03634							0.211	0.07664				0.03166	0.01	0.01
	August-2024					0.1008													0.0822			0.02104		0.005	0.005
	September-2024			0.396		0.1008											0.08772		0.0622			0.02104		0.01	0.01
	36piembei-2024			0.578		0.1100											0.00772							0.01	0.01

	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	F\W_47	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event	LW-30	LW-31	LW-52	LW-55	LW-34	LW-35	LW-3/	LW-30	LW-37	L 44-00		entration	L W - 04	L##-05	L	L W-00	LVV-/0	LW-05	LW-0/	L W - 00	L VV - 74	L##-70	LOD	LOQ
raiameiei	-															1		1						0.00	0.1
	November-2022									ND		ND			ND									0.08	0.1
	December-2022	ND		ND				ND		ND	ND					ND	ND							0.08	0.1
	January-2023	ND							ND	ND					ND									0.04	0.05
	February-2023																0.00199							0.00085	0.001
	March-2023								ND	ND														0.04	0.05
	April-2023								0.00189		0.00185													0.00085	0.001
	May-2023	ND							ND	0.00569														0.00425	0.005
	June-2023									ND		ND		ND										0.00425	0.005
	July-2023	0.00101						0.00331										0.00116				0.00251	ND	0.00085	0.001
																							ND	0.00425	0.005
	August-2023 -					ND		ND														ND		0.0085	0.01
	September-2023			ND														ND						0.0085	0.01
	October-2023																	0.00186		0.0044				0.00085	0.001
Selenium	OCIODEI-2023						0.00332																	0.0017	0.002
	November-2023	ND		0.00425	0.00314		0.00315			ND			ND					ND		0.0032			ND	0.003	0.003
	December-2023			0.00785													0.00253							0.0015	0.0015
																		0.00215						0.0017	0.002
	January-2024		ND							ND													ND	0.00425	0.005
	February-2024		ND		ND														0.00571		0.00651			0.00425	0.005
	March-2024																						ND	0.0017	0.002
																					0.00627			0.00425	0.005
	April-2024												ND					0.000929 J						0.00085	0.001
	7.011 202 1			ND													ND							0.0085	0.01
	May-2024									ND								ND	ND	ND			ND	0.0085	0.01
	June-2024																	ND	ND				ND	0.0085	0.01
	July-2024									ND	ND													0.00425	0.005
	August-2024					ND													ND			ND		0.0085	0.01
	September-2024			ND		ND											ND							0.0085	0.01
	November-2022									ND		ND			ND									0.01	0.02
	December-2022	ND		0.0187 J				ND		ND	ND					ND	ND							0.01	0.02
	January-2023	ND							ND	ND					ND									0.005	0.01
	February-2023																ND							0.00006	0.001
	March-2023								ND	ND														0.005	0.01
	April-2023								ND		0.00011 J													0.00006	0.001
	May-2023	ND							ND	ND														0.0003	0.005
	June-2023									ND		ND		ND										0.0003	0.005
	July-2023	ND						ND										ND				ND	ND	0.00006	0.001
																							ND	0.0003	0.005
	August-2023					ND		ND														ND		0.0006	0.01
	September-2023			ND														ND						0.0006	0.01
																		ND		ND				0.00006	0.001
Silver	October-2023						ND																	0.00012	
	November-2023	ND		ND	ND		ND			ND			ND					ND		ND			ND	0.0006	0.01
	December-2023			ND													ND							0.00025	0.001
																		ND						0.00012	0.002
	January-2024		ND							ND													ND	0.0003	0.005
	February-2024		ND		ND														ND		ND			0.0003	0.005
	March-2024																						ND	0.00012	0.002
																					ND			0.0003	0.005
	April-2024												ND					ND						0.00006	0.001
				ND													ND							0.0004	0.001
	May-2024									ND								ND	ND	ND			ND	0.0006	0.01
	June-2024																	ND	ND				ND	0.0006	0.01
	July-2024									ND	ND													0.0003	0.0005
	August-2024					ND													ND			ND		0.0006	0.01
	September-2024			ND	1	ND	1		1	1				1			ND	1			1	1	1	0.0006	0.01

J	ry

W	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event											Conce	entration											LOD	LOQ
	November-2022									ND		0.032			0.694									0.02	0.02
	December-2022	0.208		29.7				0.162		0.0686	0.75					0.364	0.286							0.02	0.02
	January-2023	0.133							0.15	0.074					0.0752									0.01	0.01
	February-2023																0.0851							0.0025	0.005
	March-2023								0.0689	0.0538														0.01	0.01
									0.0539															0.0025	0.005
	April-2023 -										0.414													0.025	0.05
	May-2023	0.079							0.0635	0.0519														0.0125	0.025
	June-2023									0.0538		0.0253		0.945										0.0125	0.025
		0.0488																0.0714				0.354	0.0782	0.0025	0.005
	July-2023 -							2.03																0.0125	0.025
																							0.112	0.0125	0.025
	August-2023							1.71														0.914		0.0125	0.020
						5.92																		0.05	0.1
																		0.0788						0.025	0.05
	September-2023			45																				0.25	0.5
	October-2023																	0.0622						0.0025	0.005
nc							0.203													633				0.005	0.01
	November-2023	0.0471 J			0.0534		0.74			0.053			0.0618					0.0722		0.845			0.0313 J	0.025	0.05
				30.4																				0.25	0.5
				52.7																				0.25	0.5
	December-2023																	0.061						0.005	0.01
	January-2024		0.117							0.0974							0.0462						0.0261	0.025 0.0125	0.025
	February-2024		0.0879		0.0554														0.475		0.809			0.0125	0.025
																							0.0342	0.005	0.020
	March-2024																				2.09			0.0125	0.025
													0.0565					0.0539						0.0025	0.005
	April-2024																0.0394							0.02	0.02
				24.7																				0.25	0.5
	May-2024									0.165								0.0568	1.3	1.43			0.0812	0.025	0.05
	June-2024																	0.0505	0.498				ND	0.025	0.05
	July-2024									0.104	0.0451													0.0125	0.025
	August-2024					3.49													0.512			0.417		0.025	0.05
				0.212																				0.0025	0.005
	September-2024					3.68											0.111							0.025	0.05

W	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event										1		ntration	1										LOD	LOQ
VOLATILE FATTY A																							I		
												1600												25	100
	November-2022									3500					150 J									62	250
	December-2022	1800																						62	250
	January-2023	ND							ND	4400					ND										500
	· · · · · ·																								500
	February-2023																ND								
	March-2023								ND	640															500
	April-2023								1200		520													370	500
	May-2023	990							1800	3000														370	500
	June-2023									5900		4100		5000										750	1000
																							ND	150	200
	July-2023	ND																ND						370	500
								6100														750		750	1000
	August-2023					3300		5300														4200	ND		500
	September-2023			7400														ND						370	500
	October-2023						3200											720		4100				370	500
		ND											ND					ND					4160	250	500
	November-2023				4950		6650			5350										7300				500	1000
				9900																				1000	2000
Acetic Acid																	660								100
	December-2023																	ND							250
				11200																					1000
	January-2024		4410							5290													3080		250
	February-2024		3130		3530																				250
																			3530		6770				500
	March-2024																						2700		200
																					46000				1000
	April-2024												ND					ND							100
	Aprii-2024			9170													1670								250 1250
																			4270						
																		ND	4370				221		250
	May-2024									4950															500
																				6530					1250
	June-2024																	ND							100
																			3890				4450		500
	July-2024									6280	6180								2500						1250
	August-2024					5210													3500			5540			500
	September-2024					 5970											2950								250 500
	3601611061-2024			10400		5970																			1250

W	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	FW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event	L11-30	LW-JI	L11-52	LW-30	L11-54	LW-33	LW-57	L11-30	LW-57			entration	L11-04	211-05	LW-07		LW-70	211-03	LW-07	211-00		LW-70	LOD	LOQ
Talameter												430					1							10	100
	November-2022																							12	100
										830					ND									29	250
	December-2022	ND																						29	250
	January-2023	ND							ND	1800					ND										500
	February-2023																ND								500
	March-2023								ND	ND															500
	April-2023								ND		ND													330	500
	May-2023	ND							ND	1200														330	500
	June-2023									2500		1500		2900										650	1000
	30110 2020																						ND	130	200
	July-2023	ND																						330	
	JUIY-2023																	ND							500
								2800														650		650	1000
	August-2023					1400		1700														1600	ND		500
	September-2023			3100														ND						330	500
	October-2023						1200											ND		2000				330	500
Butyric Acid	November-2023	ND			1670		1760			1370			ND					ND		2730			740	250	500
				3420																				500	1000
																	336								100
	December-2023																	ND							250
				3390																					1000
	January-2024		813							1230													594		250
	February-2024		583		1170																				250
	1601001y-2024																		1180		2980				500
	March 2024																						500		20
	March-2024																				2100				200
													ND					ND							100
	April-2024			3120													444								250
	May-2024									1190								ND	984	2370			448		250
	June-2024																	ND	1190				1030		100
	July-2024									2400	2360														250
	August-2024					1630													1180			1930			500
	September-2024			3550		2060											670								250
	3001001-2024											ND												11	100
	November-2022																								
										ND					ND									27	250
	December-2022	90 J																						27	250
	November-2023	ND			968		1800			969			ND					ND		1170			324	250	500
				6030																				500	1000
																	ND								100
	December-2023																	ND							250
				9050																					1000
	January-2024		629							979													256		250
	February-2024		334		180																				250
Lactic Acid																			756		1650				500
	March-2024																						ND		20
	///01011-2024																				ND				200
													ND					ND							100
	April-2024																ND								250
				5120																					1250
	May-2024									1160								ND	1170	1730			ND		250
	June-2024																	ND	706				246		100
																							i i		1
	July-2024									1220	1210								 502			050			250
	August-2024					2270													593			959			500
	September-2024					2550											ND								250
				5510																					1250

٦	rv	
^	• 7	

)A/ -		FW4 50	EVA/ 51	FW/ 50	E \4/ E 0			EN4/ E7	FW/ 50	EW/ 50	FW/ / 0	F)4/ / 7	EW/ 40		E 14/ / E		FW/ / 0	EW/ 70	EW/ 0.5	EW/ 07	EW 00	F14/ 0.4	FW/ 00		
		EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-6/	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event		1	1	1					1		1	entration					1	1		1				100
	November-2022											620												11	100
										1600					73 J									27	250
	December-2022	640																						27	250
	January-2023	ND							ND	2000					ND										500
	February-2023																ND								500
	March-2023								ND	ND															500
	April-2023								600		ND													340	500
	May-2023	520							800	1400														340	500
	June-2023									2900		2000		2900										680	1000
																							ND	140	200
	July-2023	ND																ND						340	500
	, i i i i i i i i i i i i i i i i i i i							3100														680		680	1000
	August-2023					1200		2000														1900	ND		500
	September-2023			1800														ND						340	500
	October-2023						1300											ND		2000				340	500
Propionic Acid		ND			2170		2310			2080			387					ND		3350			1420	250	500
	November-2023			2580																				500	1000
																	996								100
	December-2023																	ND							250
				2280																					1000
	January-2024		1680							1970													1030		250
			1210		1510																				250
	February-2024																		1980		2900				500
																							570		20
	March-2024																				2100				200
	4 1 000 (ND					ND							100
	April-2024 -			2300													1150								250
	May-2024									1730								ND	1640	2770			647		250
	June-2024																	ND	1870				1400		100
	July-2024									2500	2470														250
	August-2024					1320													1920			2040			500
	September-2024			2640		1690											1300								250
	November-2022											46 J												12	100
										98 J					ND									30	250
	December-2022	ND																						30	250
		ND			ND		ND			ND			ND					ND		ND			ND	250	500
	November-2023			ND																				500	1000
																	ND								100
	December-2023																	ND							250
				ND																					1000
	January-2024		ND							ND													ND		250
Pyruvic Acid	February-2024		ND		ND																				250
,																			ND		ND				500
	March-2024																						130		20
																					460				200
	April-2024												ND					ND							100
				ND													ND								250
	May-2024									ND								ND	ND	ND			ND		250
	June-2024																	ND	113				ND		100
	July-2024									ND	ND														250
	August-2024					ND													ND			ND			500
	September-2024			ND		ND											ND								250

l	ry

We	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event		LIII OI	211 02	211 30					LIII O7	211 00		entration											LOD	LOQ
	C COMPOUNDS (ug/l	1										Conce	manon												
VOLATILE ORGANIC		-								2510					1140	1								20	100
	November-2022									3510					1140									30	100
												15600												300	1000
	December-2022	3140									3390													30	100
				26800				27700		5670						21700	7150							300	1000
	January-2023 -	3480							632															30	100
										7840					5470									300	1000
	February-2023																14400							600	2000
	March-2023								257	2770														30	100
	April-2023								3420		5530													750	2500
	Mar. 0000	5360							5970															150	500
	May-2023									13600														750	2500
	1 0000									13800														750	2500
	June-2023 -											20100		22600										1500	5000
		5860																ND						60	200
	July-2023																						13500	750	2500
								38400														31600		3000	10000
																							5950	60	200
																						7350		150	500
	August-2023							3000																750	2500
						25600																		1500	5000
	0 1 1 0000																	439						60	200
	September-2023			17500																				750	2500
	October 2022																	211						15	50
	OCIODEI-2023						17800													33400				1500	5000
2-Butanone (MEK)																		78.8 J						30	100
							17700			10600														150	500
	November-2023	3990																						300	1000
				25700																				750	2500
					22300								17600							26700			31200	1500	5000
	December-2023			13700						10800							7060	ND						150 150	500 500
	January-2024		34700																				28900	1500	5000
																			12700					1500	500
	November-2023 December-2023		30500		28900																17400			1500	5000
																					11700			1500	500
																							25200	1500	5000
																		ND						30	100
													14600											750	2500
				37200													28700							1500	5000
																		ND						60	200
																			7340				18600	150	500
										25700										32700				1500	5000
																									200
																		ND 	13800					60 150	500
																							33200	15000	25000
										15600														150	500
											25400													1500	5000
	August-2024					17700													7260			17900		150	500
				19000		16600																		150	500
1	September-2024											1	1				32200							1500	5000

W	/ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event	211 00	211 01	211 02	211 00	211 04		211 07	111 00		211 00		ntration	211 04	211 00		211 00	211 70		211 07		20074	211 /0	LOD	LOQ
															4420									70	100
	November-2022									16100		38300												700	100
											5170						9800								1000
										15600														700	
	December-2022	8500																						1750	2500
				53100				49900								45600								3500	5000
									1530															70	100
	January-2023									22200					14000									700	1000
		8130																						1750	2500
	February-2023																23900							1400	2000
									375															70	100
	March-2023									6810														700	1000
	April-2023								8290		7560													1750	2500
		10700							11700															350	500
	May-2023 -									29600														1750	2500
	June-2023									29600														1750	2500
												61800		50800										3500	5000
																		1180						140	200
	July-2023 -	9780																						700	1000
	3017 2020																						11600	1750	2500
								77200														69700		7000	10000
																							20900	700	1000
	August-2023							18700																1750	2500
Acetone						72500																87700		3500	5000
	September-2023																	188 J						140	200
	3001001-2023			40100																				1750	2500
	October-2023																	79						35	50
							66900													92900				3500	5000
																		104						70	100
	November-2023	5560																						700	1000
				64700																				1750	2500
					43100		61100			36800			32800							53900			67800	3500	5000
																	ND							140	200
	December-2023																	ND						350	500
			96600	44300						22800													47300	1750 3500	2500 5000
	January-2024																								
	February-2024 March-2024		81600		70200														45600		63100		57400	3500	5000 5000
	/wiurch-2024																				50800		57600	3500	
																		ND						70	100
	April-2024												24300											1750	2500
				95300													55200							3500	5000
	May-2024 -																	ND						140	200
										63200									39000	91300			33300	3500	5000
	June-2024																	ND						140	200
																			94400				84400	35000	50000
	July-2024									32200	52600													3500	5000
	August-2024					57700													36000			81500		3500	5000
	September-2024			59800		44500											69300							3500	5000

l	ry

W	/ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	105	100
Parameter	Monitoring Event											Conce	entration	1										LOD	LOQ
	November-2022									7.4 J		2860			50.4									4	10
		301		2960						6.3 J	622					1750	179							4	10
	December-2022							6550																40	100
	January-2023	240							28.7	1620					167									4	100
	February-2023																1370								10
	March-2023								1540															4	
										727														4	10
	April-2023								3740		320													4	10
	May-2023	814							4890	3370														20	50
	June-2023									2630														8	20
												1400		1590										20	50
		824																80.8						8	20
	July-2023							4050														1420		20	50
																							11800	100	250
	August-2023 -																						379	8	20
	7.090012020					2320		168														ND		20	50
	September-2023																	193						8	20
				468																				100	250
Benzene	October-2023																	399						2	5
		80.8					576						31.3							3100				20 2	50 5
	-																	323						4	10
	November-2023				1070		654			982										1960			1190	20	50
	-			870																				100	250
																	932							8	20
	December-2023			1330														463						20	50
	January-2024		1410							662													2900	20	50
	February-2024		906		884														346		484			20	50
	March-2024																				226		8910	20	50
	April-2024												52.1					13.8						4	10
	Aprii-2024			2040													3420							20	50
																		276						8	20
	May-2024 -									3080									144	818			2990	20	50
	hung 000 f																	173						8	20
	June-2024 -																		210				2740	20	50
	July-2024									1410	1820													20	50
	August-2024					828													162			384		20	50
	September-2024			960		727											2710							20	50

iry	

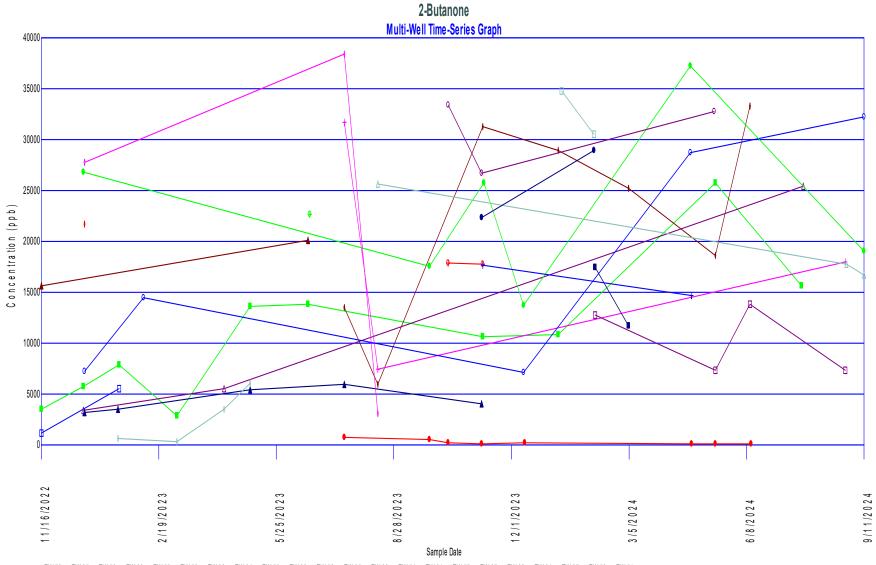
We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		100
Parameter	Monitoring Event												entration	1										LOD	LOQ
	December-2022	67.3		172				287		ND	48.5					108	27.4							4	10
	November-2022									ND		194			16.2									1	10
	January-2023	65.1							ND	93.9					20.8										10
	February-2023															-	151							4	10
																								4	
	March-2023								131	71.5														4	10
	April-2023								186		43.4													4	10
	May-2023	124							276	144														20	50
	June-2023									104														8	20
												98		116										20	50
																							666	4	10
	July-2023	128																82						8	20
								224														87.5		20	50
	August-2023																						16.8 J	8	20
	A09031-2023					80		ND														ND		20	50
	September-2023																	22.8						8	20
				ND																				100	250
	October-2023																	34.8						2	5
Ethylbenzene							42.5 J													247				20	50
		26.3											45.4											2	5
	November-2023																	26.9						4	10
					62		54			76.5										224			60.5	20 100	50 250
				ND 													46							8	230
	December-2023			69.5														44 J						20	50
	January-2024		99							28 J													248	20	50
	February-2024		51		43 J														31 J		41 J			20	50
	March-2024																				25 J		710	20	50
													106					ND						4	10
	April-2024			91.5													186							20	50
																		35.4						8	20
	May-2024									146									ND	59			225	20	50
																		23.6						8	20
	June-2024																		ND				142	20	50
	July-2024									76	118													20	50
	August-2024					27.5 J													ND			27 J		20	50
	September-2024			46.5 J		44 J											192							20	50
			1					I	1	1	1	1	1	1				1	1	1	1	1			

We		EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event	L11-30		LW-52	LW-30	L11=34	LW-33		LW-30				entration	L11-04	LW-05	L11-07	211-00		LW-05					LOD	LOQ
i didinerer	Monitoling Lveni									309					176									100	100
	November-2022											8530												1000	-
		151								170															1000
	December-2022	151								170	1120						663							100	100
				5210				19800								6130								1000	1000
	January-2023	183							566	1810					352									100	100
	February-2023																3760							2000	2000
	March-2023								353	464														100	100
	April-2023								2410		4790													100	100
	May-2023	ND							2740	2380														500	500
	June-2023									2100														200	200
	JULIE-2023											7320		6670										500	500
																							2960	100	100
	July-2023	411																616						200	200
	, · · ·							8380														5310		500	500
																							2880	200	200
	August-2023 -					7370		3210														1200		500	500
	0 1 1 0000																	343						200	200
	September-2023			ND																				2500	2500
Tetrahydrofuran	October 2022																	606						50	50
	October-2023						4870													9140				500	500
		199											325											50	50
	November-2023																	358						100	100
					4780		3320			785										5370			4600	500	500
				4620																				2500	2500
	December-2023																4240							200	200
				2620														502						500	500
	January-2024		5160							1040													10900	500	500
	February-2024		3500		4580														3520		4910			500	500
	March-2024																				3320		8710	500	500
	April-2024 -												697					ND						100	100
	· · · · · · · · · · · · · · · · · · ·			7290													7680							500	500
	May-2024 -																	555						200	200
										2660									1880	5860			7640	500	500
	June-2024 -																	568						200	200
																			3830				13000	500	500
	July-2024									1900	4020													500	500
	August-2024					3220													2020			4610		500	500
	September-2024			2950		2730											6640							500	500

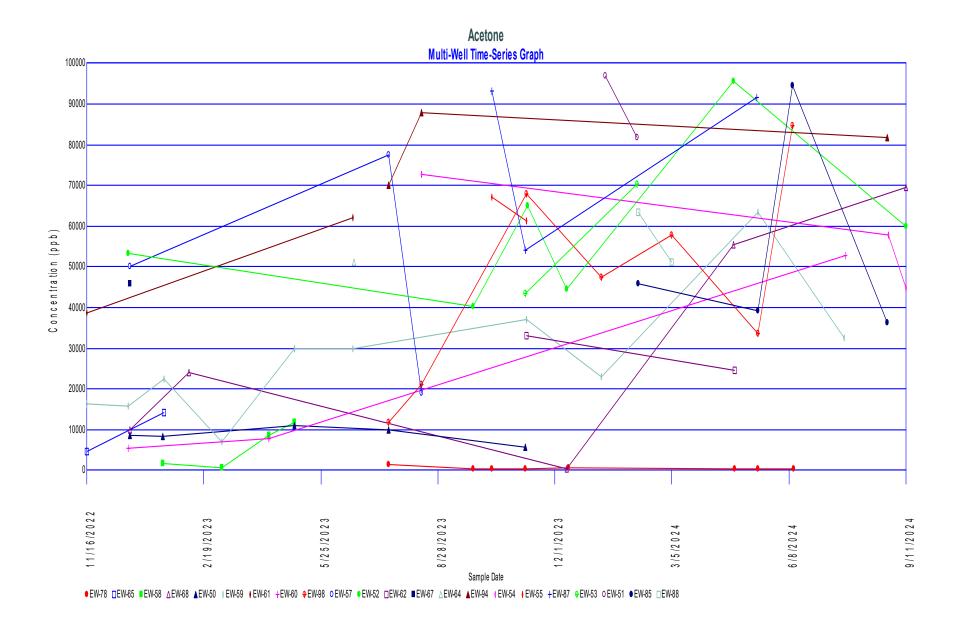
W	Vell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		100
Parameter	Monitoring Event											Conce	entration											LOD	LOQ
	November-2022									ND		214			32.8									5	10
	December-2022	122		175				195		ND	113					113	48.3							5	10
	January-2023	122							8 J	139					35.3									5	10
	February-2023																224							5	10
	March-2023								182	98.1														5	10
	April-2023								303		94.4													5	10
	May-2023	258							371	239														25	50
	Luca 0000									165														10	20
	June-2023 -											67		212										25	50
																							965	5	10
	July-2023	248																107						10	20
								218														118		25	50
	August 2022																						36.6	10	20
	August-2023					105		ND														ND		25	50
	September-2023																	40.6						10	20
				ND																				125	250
	October-2023																	59.2						2.5	5
Toluene							37 J													235				25	50
	-	47.3											50.4											2.5 5	5
	November-2023				62.5		51.5			114								48.7		 167			114	25	10 50
				ND																				125	250
																	73.2							10	200
	December-2023			83.5														74.5						25	50
	January-2024		95.5							60													310	25	50
	February-2024		49 J		37 J														ND		30.5 J			25	50
	March-2024																				73		916	25	50
	April-2024												90.1					ND						5	10
	7,011 2024			104													263							25	50
	May-2024 -																	53.8						10	20
	1viuy-2024									180									ND	62.5			284	25	50
	June-2024																	34.6						10	20
																			ND				228	25	50
	July-2024									97	125													25	50
	August-2024					35 J													ND			25 J		25	50
	September-2024			80		63.5											226							25	50

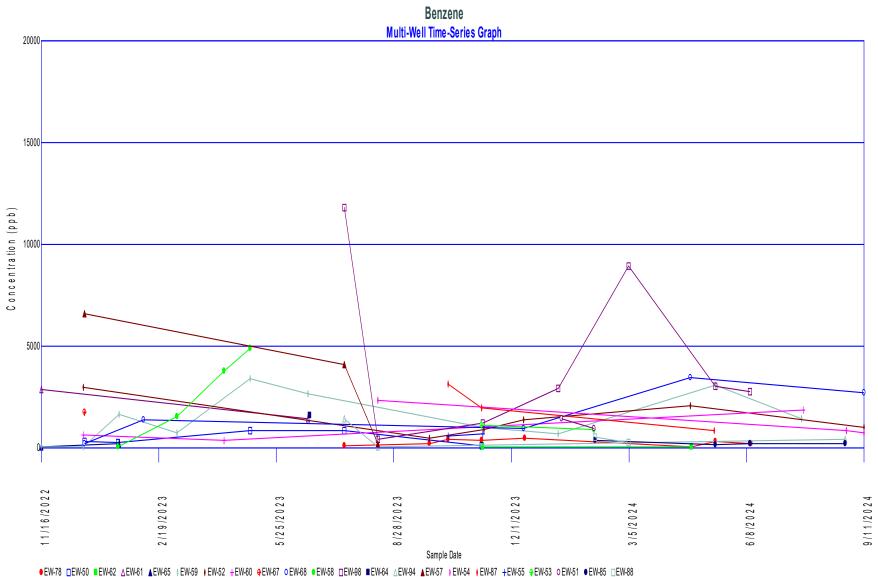
l	ry

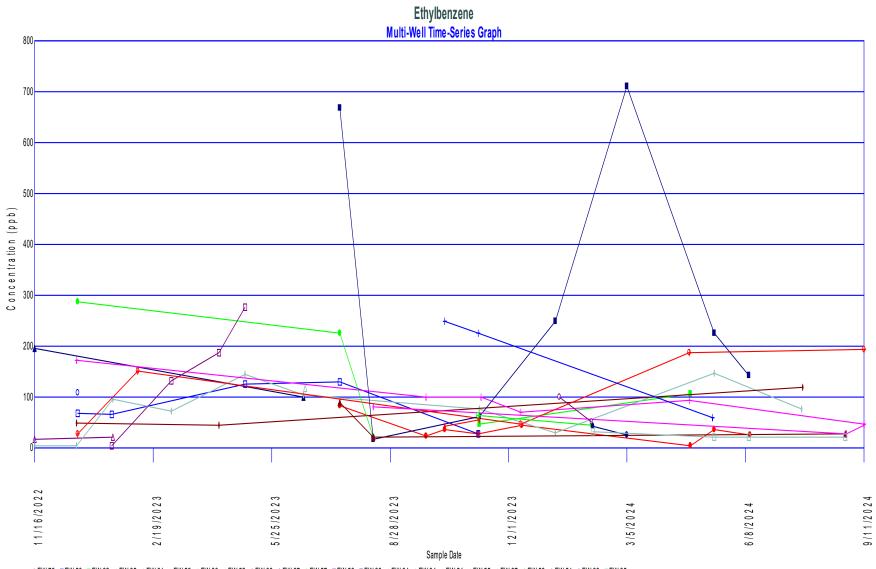
W	/ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOG
Parameter	Monitoring Event										-	Conce	ntration											LOD	LOG
	November-2022									ND		185			37.8									10	30
	December-2022	161		222				186		ND	112					197	59.9							10	30
	January-2023	138							ND	134					38.1									10	30
	February-2023																240							10	30
	March-2023								240	111														10	30
	April-2023								329		97.4													10	30
	May-2023	274							441	230														50	15
										177														20	6
	June-2023											92 J		136 J										50	15
																							1130	10	3
	July-2023	257																74.4						20	6
	3017 2020							230														174		50	1:
																							48.4 J	20	6
	August-2023					180		ND														ND		50	1:
																		ND						20	6
	September-2023			ND																				250	7.
	October-2023																	30.6						5	1
lenes, Total	00100001-2023						134 J													328				50	1.
		56											48											5	1
	November-2023																	25.3 J						10	3
					116 J		104 J			132 J										306			138 J	50	1.
				ND																				250	7.
	December-2023			 224													167	ND						20 50	6
	January-2024		142 J							ND													 534	50	13
	February-2024		63 J		59 J														ND		ND			50	1
	March-2024																				ND		1360	50	1.
													110					ND						10	3
-	April-2024			140 J													352							50	1.
																		31.6 J						20	6
	May-2024									223									ND	105 J			400	50	1.
	1 000.1																	ND						20	e
	June-2024 -																		ND				261	50	1.
	July-2024									125 J	157													50	1
	August-2024					72.5 J													ND			55.5 J		50	1.
	September-2024			90.5 J		120 J											368							50	1

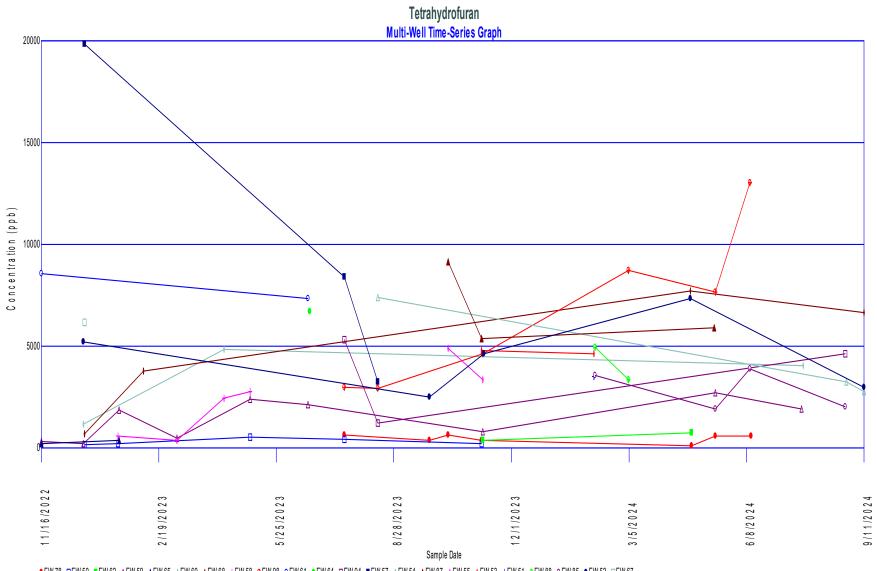

J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.

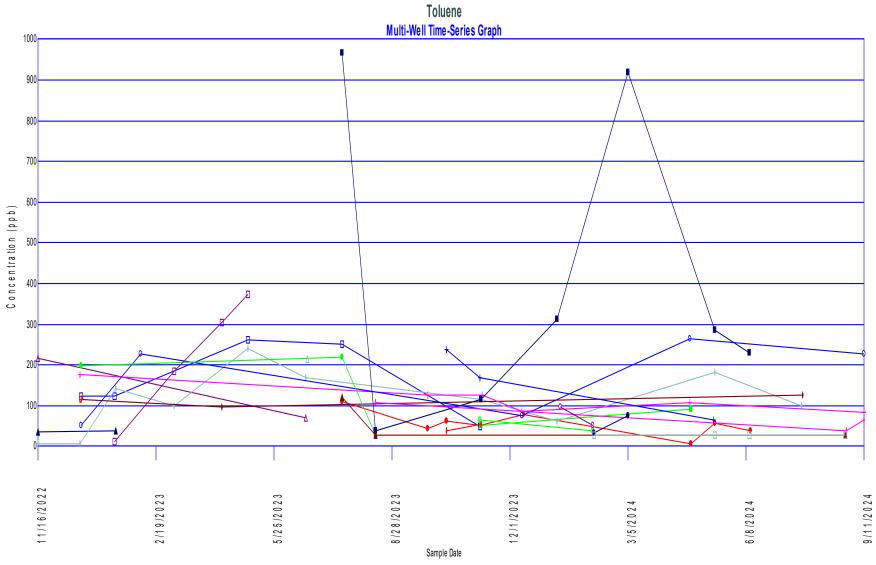
LOD = laboratory's Limit of Detection

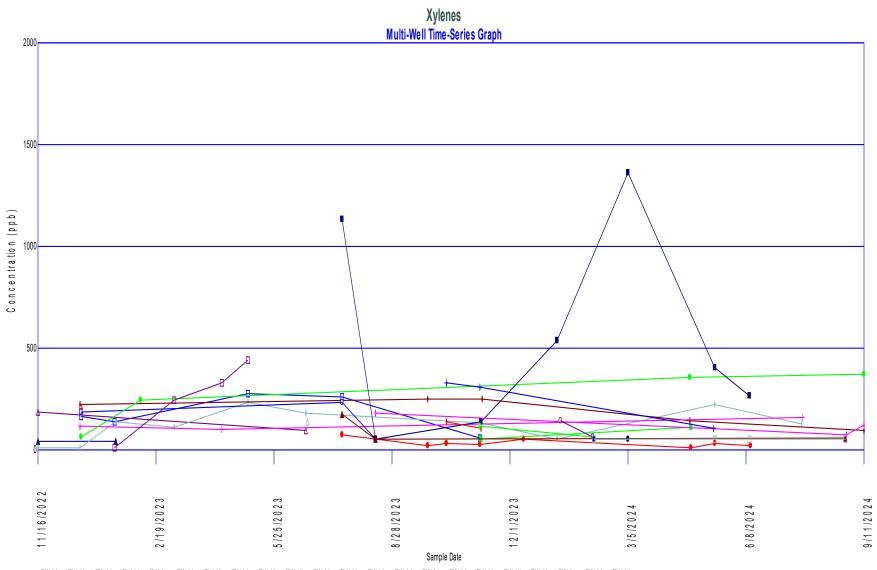

LOQ = laboratory's Limit of Quantitation


ND = Not Detected


ug/L = micrograms per liter


•EW-78 DEW-65 EEW-59 AEW-60 AEW-50 EW-58 EEW-98 +EW-94 •EW-55 0EW-68 •EW-52 DEW-85 EEW-88 AEW-54 AEW-61 EW-57 EEW-67 +EW-62 •EW-64 0EW-87 •EW-53 DEW-51





●EW-78 □EW-50 ■EW-62 △EW-65 ▲EW-61 ↓EW-59 ↓EW-60 +EW-52 ●EW-68 ○EW-67 ●EW-57 □EW-58 ■EW-98 △EW-64 ▲EW-94 ↓EW-55 +EW-87 ●EW-53 ○EW-51 ●EW-88 □EW-85

●EW-78 □EW-50 ■EW-52 △EW-61 ▲EW-55 ↓EW-59 ↓EW-50 +EW-52 ●EW-57 ○EW-68 ●EW-57 □EW-58 ■EW-98 △EW-64 ▲EW-94 ↓EW-54 ↓EW-55 +EW-87 ●EW-53 ○EW-51 ●EW-88 □EW-85

●EW-78 □EW-50 ■EW-52 △EW-61 ▲EW-55 ↓EW-59 ↓EW-52 +EW-60 ⊕EW-67 ○EW-57 ●EW-68 □EW-58 ■EW-98 △EW-64 ▲EW-94 ↓EW-54 ↓EW-55 +EW-87 ⊕EW-53 ○EW-51 ●EW-88 □EW-85