November 2024 Monthly Compliance Report

Solid Waste Permit No. 588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-30 | December 10, 2024

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sect	tion			Page
	Intro	duction .		4
1.0	Gas	Collectio	n	4
	1.1	Surface	e and Leachate Collection Emissions	4
		1.1.1	Surface Emissions	4
		1.1.2	Leachate Collection Emissions	5
	1.2	Existing	g Gas Extraction System Performance	6
	1.3	Remote	e Monitoring System	7
		1.3.1	Automated Wellhead Temperature Measurements	7
		1.3.2	Comparison with Manual Temperature Measurements	9
		1.3.3	Monthly Regulatory Wellhead Temperature Measurements	
		1.3.4	LFG Sampling	
	1.4	Large-D	Viameter Dual-Phase Extraction Wells	
	1.5	VDEQ C	concurrence on Wells	12
2.0	Side	wall Odoi	r Mitigation	12
	2.1	Perimet	ter Gas Collection System	12
	2.2	Sidewa	II Odor Mitigation System	13
	2.3	Pilot Sy	stem Construction	
	2.4	Full Sys	tem Construction	13
3.0	Wast	te Tempe	erature Monitoring	
	3.1	Temper	ature Monitoring System Design	
	3.2	Temper	ature Monitoring System Installation	
4.0	Lead	hate Exti	raction and Monitoring	
	4.1	Existing	System Optimization	
		4.1.1	Total LFG Liquids Removal	
	4.2	Samplir	ng and Analysis Plan	
		4.2.1	Sample Collection	
		4.2.1	Quality Assurance and Quality Control	
		4.2.2	Data Validation	
		4.2.3	Laboratory Analytical Results	
5.0	Settl	ement M	lonitoring and Management	
	5.1	Settlem	nent Monitoring and Management Plan	
	5.2	Monthly	y Surveys	
		5.2.1	Topographic Data Collection	

Table of Contents

Sect	ion			Page
		5.2.2	Settlement Plate Surveys	37
6.0	Inter	mediate	Cover and EVOH Cover System	40
	6.1	Interme	ediate Cover Installation	40
	6.2	EVOH C	Cover System Design	41
	6.3	EVOH C	Cover System Procurement	41
	6.4	EVOH C	Cover System Installation	41
7.0	Storr	nwater N	Management	41
	7.1	Stormw	vater Management Plan Development	41
	7.2	Stormw	vater Management Basin Design and Construction	42
	7.3	Stormw	vater Management Plan Implementation	42
	7.4	Long-Te	erm Stormwater Control and Removal	42
	7.5	Stormw	vater Monitoring	42
8.0	Misc	ellaneou	JS	43
	8.1	Cease	Waste Acceptance	43
	8.2	Long-Te	erm Plan	43
	8.3	Monthl	y Compliance Reports	43
	8.4	Commu	unity Outreach Program	

Figures

Figure 1. Average Automated Wellhead Temperatures	8
Figure 2. Automated vs. Manual Temperature Measurements	. 10
Figure 3. CO and H ₂ Concentration Scatter Plot	. 12
Figure 4. Temperature Monitoring Probe Locations	. 14
Figure 5. TP-1 Average Temperatures for the Months of November 2023, February 2024, May	y
2024, August 2024, and November 2024	. 15
Figure 6. TP-2 Average Temperatures for the Months of November 2023, February 2024, May	y
2024, August 2024, and November 2024	. 16
Figure 7. TP-3 Average Temperatures for the Months of November 2023, February 2024, May	y
2024, August 2024, and November 2024	. 17
Figure 8. TP-4 Average Temperatures for the Months November 2023, February 2024, May	
2024, August 2024, and November 2024	. 18
Figure 9. TP-5 Average Temperatures for the Months November 2023, February 2024, May	
2024, August 2024, and November 2024	. 19
Figure 10. TP-6 Average Temperatures for the Months of November 2023, February 2024, Ma	y
2024, August 2024, and November 2024	. 20

Table of Contents

Section	Pc	ge
-	TP-7 Average Temperatures for the Months of November 2023, February 2024, May t 2024, and November 2024	
	TP-8 Average Temperatures for the Months of November 2023, February 2024, May	
2024, Augus	t 2024, and November 2024	. 22
Figure 13.	TP-9 Average Temperatures for the Months of November 2023, February 2024, May	ý
2024, Augus	t 2024, and November 2024	. 23
Figure 14.	Estimated November Dewatering Liquid Removal by Well	. 25
Figure 15.	Estimated Volume of Liquids Removed from Landfill Gas Wells	. 27
Figure 16.	1-Month Elevation Change Map	. 31
Figure 17.	3-Month Elevation Change Map	. 35
Figure 18.	1-Year Elevation Change Map	. 36
Figure 19.	Settlement Plate Locations	
Figure 20.	Elevation Change of Select Settlement Plates Over Time	

Tables

Table 1.	Summary of November Surface Emissions Monitoring	5
Table 2.	Leachate Cleanout Pipe Monitoring Results	6
Table 3.	November Temperature Exceedance Summary	Error! Bookmark not defined.
Table 4.	LFG Wellhead Sampling Summary	Error! Bookmark not defined.
Table 5.	System Averages of Sidewall Wellhead Gas Quality	
Table 6.	Summary Wells Unable to be Sampled for Leachate	
Table 7.	Monthly LFG-EW Leachate Monitoring Event Summary	Error! Bookmark not defined.
Table 8.	Elevation and Strain Data at Settlement Plate Locations	

Appendices

- Appendix A Surface Emissions Monitoring Summary Letters
- Appendix B In-Waste Temperatures on Select Days in November
- Appendix C Daily Wellhead Temperature Averages
- Appendix D Solid Waste Permit 588 Daily Borehole Temperature Averages
- Appendix E Monthly Topography Analysis
- Appendix F Field Logs

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report provides updates regarding the progress towards completion of the items outlined in Appendix A of the Consent Decree between the City and VDEQ. The following sections outline progress during the month of November 2024 related to Solid Waste Permit (SWP) No. 588.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

1.1.1.1 Quarterly SEM

SCS performed the Third Quarter surface emissions monitoring event on September 23, 2024. The results of the Quarterly SEM were summarized in the September 2024 Compliance Report for the SWP No. 588 Landfill. A report outlining the results and exceedance locations will be included in the Semi-Annual Report to be submitted to VDEQ prior to March 1, 2025.

The Fourth Quarter 2024 SEM Event is scheduled to be completed by December 31, 2024.

1.1.1.2 Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, SCS performed additional surface emissions monitoring on November 5, 2024; November 12, 2024; November 19, 2024; and November 26, 2024. These weekly surface emissions monitoring (SEM) events were performed in accordance with item 1.i in Appendix A of the Consent Decree between the City and VDEQ.

The monitoring in November generally conformed to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all applicable surface cover penetrations within the waste footprint.

The Facility submitted letters to VDEQ describing the results of the November monitoring events on November 13, 2024; November 20, 2024; November 26, 2024; and December 4, 2024.

Description	November 5, 2024	November 12, 2024	November 19, 2024	November 26, 2024
Number of Points Sampled	167	167	167	167
Number of Points in Serpentine Route	100	100	100	100
Number of Points at Surface Cover Penetrations	67	67	67	67
Number of Exceedances	7	3	4	7
Number of Serpentine Exceedances	0	0	0	0
Number of Pipe Penetration Exceedances	7	3	4	7

Table 1. Summary of November Surface Emissions Monitoring

During the November monitoring events, no new exceedances were detected on the serpentine route. However, new exceedances were detected at six surface cover pipe penetrations (EW-54, EW-56, EW-75, EW-76, EW-86, and Temperature Probe 9 (TP-9). The new exceedance at EW-75 was likely caused by reducing the vacuum at the wellhead by the Facility as a cautionary action to avoid a SSO event in this vicinity of the landfill. The new exceedances at EW-54, EW-56, EW-76, EW-86, and TP-9 were likely a result of insufficient soil cover at the pipe penetrations.

On November 18, 2024, the City submitted an Alternate Remedy Request for corrective actions for nine exceedance locations where an exceedance was recorded on at least three separate monitoring events throughout the Third Quarter 2024. As of the November 26, 2024 monitoring event, adjustments to vacuum and well dewatering improvements have been successful at reducing methane concentrations below the regulatory threshold at seven of these nine locations. Corrective actions will continue in December 2024 for the two remaining exceedance locations.

The Facility is also taking proactive steps to limit fugitive surface emissions including dewatering activities, additional soil placement, and well tuning to increase gas extraction.

1.1.2 Leachate Collection Emissions

SCS Field Services (SCS-FS) visited the Bristol Landfill on November 25, 2024, and performed monitoring of the leachate, witness zone, northern cleanouts, and gradient control clean-outs at the southern end of the landfill. The results of that monitoring are included in Table 2. Table 2 also lists the cleanout pipe description based on site records and a review of correspondence.

During connection of the other leachate cleanouts to the LFGCCS in 2020, measurements of gas composition in LC07 indicated low levels of landfill gas in this cleanout. Thus, LC07 is not connected to the LFG collection system and is not included in Table 2.

Table 2.	Leachate Cleanout Pipe Monitoring Results

Description	ID#	Record Date	CH4 (% by Vol)	CO2 (% by Vol)	O2 (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H2O)	Adj Static Pressure (in H2O)	System Pressure (in H2O)
Southern Cleanouts		11/25/2024									
Gradient West	LC01	8:29:51 AM	51.9	43.6	0.0	4.5	54.6	54.4	-8.76	-8.67	-15.80
Southern Cleanouts		11/25/2024									
Gradient East	LC02	8:33:15 AM	42.5	44.7	0.0	12.8	54.9	55.0	-8.95	-9.03	-14.66
Southern Cleanouts		11/25/2024									
Leachate Center	LC03	8:35:57 AM	6.9	5.6	19.0	68.5	41.5	41.4	-11.98	-12.12	-15.74
Southern Cleanouts		11/25/2024									
Witness East	LC04	8:11:10 AM	10.0	10.7	16.5	62.9	36.4	36.0	-14.52	-14.81	-15.61
Southern Cleanouts		11/25/2024									
Leachate West	LC05	8:23:18 AM	47.1	43.6	0.0	9.2	65.0	64.9	-10.09	-10.10	-15.13
Southern Cleanouts		11/25/2024									
Gradient Center West	LC06	8:26:23 AM	26.5	19.0	11.3	43.2	40.3	40.0	-15.31	-15.30	-15.24
Southern Cleanouts		11/25/2024									
Leachate East	LC08	8:14:18 AM	39.4	46.0	0.0	14.6	52.0	52.0	-9.12	-9.03	-15.32
Southern Cleanouts		11/25/2024									
Gradient Center East	LC09	8:20:12 AM	9.7	5.2	18.4	66.7	37.1	37.1	-3.98	-3.97	-8.82
Southern Cleanouts		11/25/2024									
Leachate West	LC10	8:16:59 AM	0.1	0.8	21.8	77.3	40.4	39.9	-4.29	-4.27	-8.65
Northern Cleanouts		11/25/2024									
Leachate East	NC01	8:44:24 AM	0.1	0.2	21.9	77.9	39.5	39.5	-2.80	-2.68	0.01
Northern Cleanouts		11/25/2024									
Leachate Center	NC02	8:46:06 AM	0.1	0.1	21.9	77.9	39.6	39.6	-3.46	-3.40	0.01
Northern Cleanouts		11/25/2024									
Leachate West	NC03	8:47:42 AM	0.1	0.1	21.9	78.0	39.9	40.2	-3.25	-3.23	0.01
Northern Cleanouts		11/25/2024									
Witness East	NC04	8:50:17 AM	0.0	0.1	21.9	78.0	40.4	40.5	-6.02	-6.06	0.01
Northern Cleanouts		11/25/2024									
Witness Center	NC05	8:51:57 AM	0.0	0.1	21.9	78.0	40.7	40.6	-5.59	-5.72	0.01
Northern Cleanouts		11/25/2024									
Witness West	NC06	8:53:54 AM	0.0	0.0	22.0	78.0	40.2	40.1	-5.83	-5.72	0.01
Northern Cleanouts		11/25/2024									
Gradient East	NC07	8:55:40 AM	0.0	0.3	21.1	78.6	40.4	40.3	-8.68	-8.51	0.01
Northern Cleanouts		11/25/2024									
Gradient Center East	NC08	8:57:12 AM	0.1	0.2	21.4	78.3	40.2	40.2	-8.62	-8.71	0.01
Northern Cleanouts		11/25/2024									
Gradient Center West	NC09	8:59:34 AM	0.0	0.0	21.9	78.0	40.0	40.0	-5.72	-5.72	0.01
Northern Cleanouts		11/25/2024									
Gradient West	NC10	9:01:02 AM	0.0	0.0	21.9	78.0	40.1	40.2	-8.75	-8.75	0.01

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

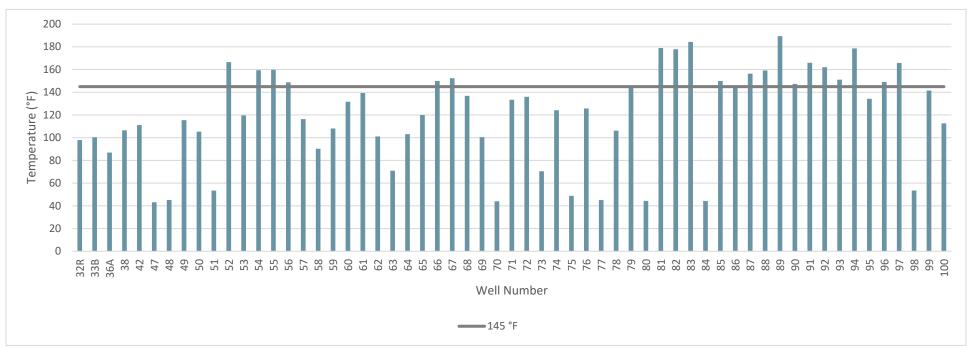
SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in the following sections of this report.

Additional actions taken by SCS-FS include the following:

- Adjustments to LFGCCS
- Maintenance of air lines and pressurized air infrastructure
- Maintenance of wellhead and other gas collection infrastructure

• Removal of liquids from landfill gas headers

1.3 **REMOTE MONITORING SYSTEM**

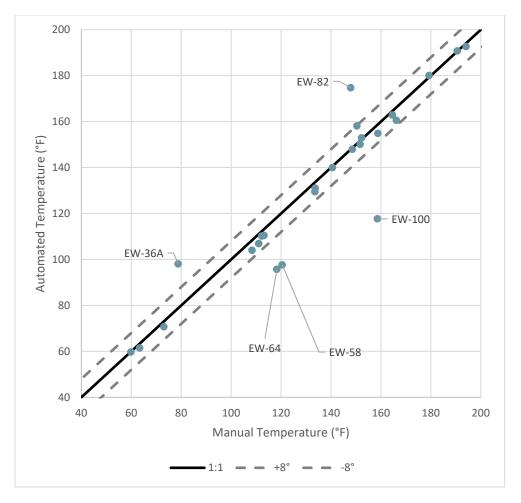

In the Fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas wellheads. The purpose of the sensors is to record and transmit well-head gas temperatures via a cellular connection to a database managed by SCS-RMC.

The City is providing average temperatures recorded by the sensors to VDEQ on a daily basis via email. Average daily temperatures recorded by the remote monitoring system during the month of November are included in Appendix C. In addition, SCS previously prepared semi-monthly status updates to satisfy the conditions of compliance provision no. 2 of the Environmental Protection Agency (EPA) Region III letter, Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility, dated August 23, 2021. On August 2, 2023, VDEQ requested that such updates be included in the monthly compliance reports going forward. Accordingly, this section is a summary of temperature monitoring activities during the monthly monitoring period of November 2024.

1.3.1 Automated Wellhead Temperature Measurements

SCS reviewed the automated hourly temperature measurements from November 2024, and observed the following:

- Newly installed temperature probes: In November 2024, 36 additional temperature probes were added to the automated temperature system, with data collection beginning in waves on 11/19, 11/20, 11/22, and 11/25.
- Temperatures over 145°F in existing probes: Average temperatures at EW-52, 54, 55, 56, 66, and 67 were above the NESHAP AAAA compliance threshold of 145 °F most often throughout the monitoring period. Pumps were replaced in EW-54 and EW-55 in November, which often opens pathways for hotter gas to be collected and may explain the higher temperatures. However, wells EW-49, EW-65, and EW-68 also experienced temperatures greater than 145°F sporadically. The highest average temperature of existing temperature sensors, 166.4°F, was measured at EW-52 (see Figure 1).
- **Temperatures over 145°F in new probes:** Of the newly installed temperature sensors, EW-89 had the highest average temperature, 189.4°F. Average temperatures at 13 of the other new probes were also above the NESHAP AAAA compliance threshold of 145 °F.


Figure 1. Average Automated Wellhead Temperatures

1.3.2 Comparison with Manual Temperature Measurements

Per the approval issued by VDEQ on August 2, 2023, the Facility ceased dedicated daily manual temperature measurements in the Permit No. 588 Landfill. In lieu of these measurements, the City has agreed to compare instantaneous hourly automated temperature measurements with temperatures measured at each wellhead with a handheld sensor during monthly compliance monitoring. These comparisons are shown in Figure 2, with the ± 8 °F deviation goals as prescribed in the VDEQ approval. Temperature comparisons for EW-57 and most newly installed temperature sensors are omitted as automated data was unavailable to compare to the manual readings due to offline periods and the recent installations.

Temperatures outside the ± 8 °F deviation lines were observed at EW-36A, 58, 64 and 100. This disparity has also been observed the past several Monthly Compliance Reports. The disparity between automated and manual temperature measurements at EW-58, 64, and 100 has persisted without evidence of low LFG flow rates, which can cause the automated temperature probes to record lower temperatures than manual measurements. The automated temperature measurement at EW-36A was again outside the ± 8 °F deviation goal this month with automated temperature measurement greater than the manual temperature measurement, unlike the other wells. This has also been observed in the past. The City, SCS, and SCS-RMC are coordinating a test to assess the functionality of all four existing sensors.

The EW-82 automated temperature measurement exceeded the ± 8 °F deviation target this month. The probe was newly installed in November, and SCS plans to reassess the temperature comparison after the December readings.

Figure 2. Automated vs. Manual Temperature Measurements

1.3.3 Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring was conducted on November 4, 2024 to comply with 40 CFR 60.36f(a)(5). During this monitoring period, temperature exceedances were resolved at EW-52, EW-60, EW-68, and EW-81. Table 3 provides the status of all exceedances recorded during this monitoring period.

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 12/1/2024
EW-52	11/4/24	11/18/24 159.6°F	15 days	Resolved within 15-day timeline
EW-55	10/22/24	11/27/24 167.2°F	41 days	Ongoing, within 60-day timeline
EW-56	10/22/24	11/27/24 151.0°F	41 days	Ongoing, within 60-day timeline

Table 2	November	Tomporatura	Evenedance	Summany
Table 3.	november	remperature	Exceedance	Sommary

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 12/1/2024
EW-60	11/4/24	11/7/24 133.7°F	4 days	Resolved within 15-day timeline
EW-65	11/13/24	11/27/24 155.2°F	19 days	Ongoing, within 60-day timeline
EW-68	11/4/24	11/7/24 140.6°F	4 days	Resolved within 15-day timeline
EW-81	11/12/24	11/13/24 140.8°F	2 days	Resolved within 15-day timeline
EW-82	11/18/24	11/27/24 154.1°F	14 days	Ongoing, within 15-day timeline
EW-89	10/22/24	11/27/24 190.6°F	41 days	Ongoing, within 60-day timeline
EW-93	11/18/24	11/27/24 150.4°F	14 days	Ongoing, within 15-day timeline
EW-94	11/4/24	11/27/24 179.3°F	28 days	Ongoing, within 60-day timeline

1.3.4 LFG Sampling

SCS collected weekly LFG samples from wells with temperature exceedances lasting more than seven days using 1.5-L Summa canisters. The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H₂) content. As of December 1, 2024, the City is in possession of lab results for sampling on October 31, November 7, and November 13, 2024 to fulfill the requirement in 40 CFR 63.1961(a)(5). Lab results are summarized in Table 4.

Sample Date		10/31/24	11/7/24	11/13/24
	CO (ppmv)		213	421
EW-52	H2 (Vol. %)		5.79	9.31
	CO (ppmv)	334	297	324
EW-55	H2 (Vol. %)	9.62	9.43	9.98
	CO (ppmv)		178	201
EW-56	H2 (Vol. %)		6.15	7.12
EW 00	CO (ppmv)	1400	1420	1450
EW-89	H2 (Vol. %)	27.7	27.9	28.7
544.04	CO (ppmv)		412	462
EW-94	H2 (Vol. %)		9.31	10.1

Table 4.LFG Wellhead Sampling Summary

The presence of hydrogen in the samples collected during this monitoring period indicates that combustion reactions are unlikely.

As shown in Figure 3, the majority of the carbon monoxide and hydrogen data during this period appear to be consistent with sampling data at other wells collected in 2024. The elevated CO and H_2

found at EW-89 is consistent with other data with greater than 25% hydrogen. This well has exhibited similar carbon monoxide and hydrogen composition in previous sampling events.

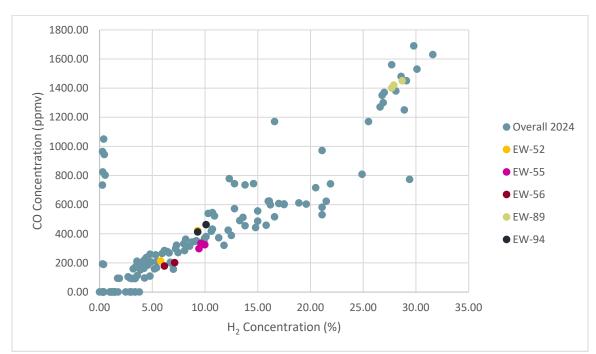


Figure 3. CO and H₂ Concentration Scatter Plot

1.4 LARGE-DIAMETER DUAL-PHASE EXTRACTION WELLS

SCS completed design work on an expansion of the existing GCCS during the month of December 2022. The expansion included at least 5 large diameter dual-phase extraction wells. The wells and supporting infrastructure were completed by October 12, 2023.

1.5 VDEQ CONCURRENCE ON WELLS

As described in previous monthly compliance reports, the City engaged with VDEQ in discussions about the proposed approach for landfill GCCS improvements and expansions. Upon completion of the landfill gas collection system, SCS will submit updated as-built drawings to VDEQ that depict the completed system.

2.0 SIDEWALL ODOR MITIGATION

The City has designed and constructed a system to control fugitive emissions emanating from the quarry sidewalls. Specific aspects of the proposed design features are described in the following sections.

2.1 PERIMETER GAS COLLECTION SYSTEM

SCS's design of the GCCS expansion described in Section 1.4 included perimeter LFG wells. These wells are closer to the sidewall to intercept landfill gas that potentially could migrate to the quarry

wall. These wells supplement the sidewall odor mitigation system described in Section 2.2. As described in the April 2023 Monthly Compliance Report for the SWP No. 588 Landfill, construction of the perimeter gas collection system was completed in April 2023.

2.2 SIDEWALL ODOR MITIGATION SYSTEM

On behalf of the City and in an effort to capture emissions from the quarry sidewall, SCS designed a sidewall odor mitigation system (SOMS) during the month of October 2022. The design of this system was prepared and submitted to VDEQ on November 1, 2022.

2.3 PILOT SYSTEM CONSTRUCTION

SCS-CONS completed substantial construction of Phase 1 of the SOMS during the month of February 2023, SCS-FS began monitoring Phase 1 connected Horizontal Collector (HC) wellheads during the month of March 2023, and SCS-FS continued weekly wellhead monitoring into the month of May 2023. Phase 1 is considered the pilot system portion of the SOMS. SCS submitted a design engineer certification to VDEQ on February 10, 2023 documenting substantial completion of Phase 1 of the SOMS. Details of Phase 1 construction progress and monitoring can be found in the monthly compliance reports for the SWP No. 588 landfill.

2.4 FULL SYSTEM CONSTRUCTION

SCS-CONS substantially completed construction of Phase 2 of the SOMS during the month of June 2023 as Phase 2 was connected to vacuum as of June 14, 2023. Cover soil placement continued into the month of October 2023, and ceased when the construction crew left site on October 12, 2023 upon project final completion.

During the month of November 2024, SCS-FS collected monitoring data at each wellhead under vacuum. A summary of those measurements is shown in Table 5.

Record Date	Average CH₄ [%]	Average CO2 [%]	Average O2 [%]	Average Bal Gas [%]
11/12/2024	4.6	6.1	17.6	71.8
11/25/2024	2.6	3.9	19.4	74.2

Table 5.System Averages of Sidewall Wellhead Gas Quality

The sidewall system average gas composition indicates lower methane content than typical landfill gas collection systems. The gas quality measurements indicate that the SOMS is functioning as designed because landfill gas is being withdrawn and oxygen intrusion is acceptable.

3.0 WASTE TEMPERATURE MONITORING

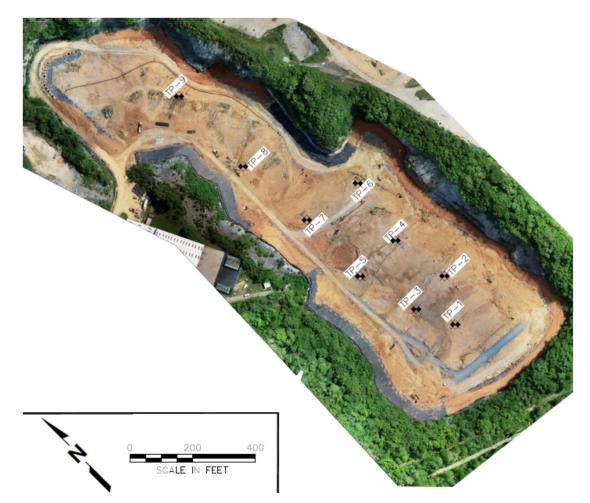
On behalf of the City, SCS designed a temperature monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

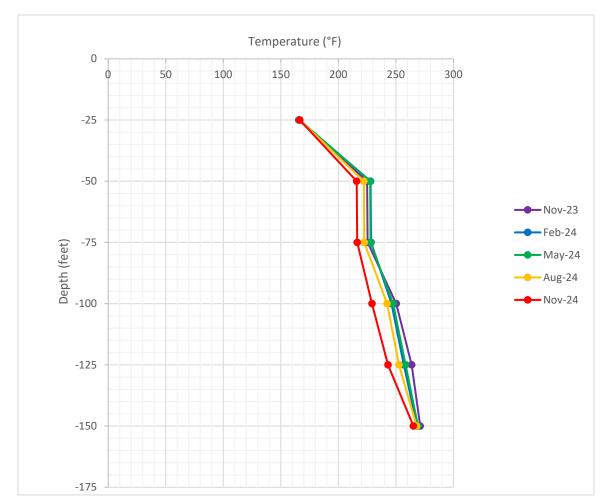
3.1 TEMPERATURE MONITORING SYSTEM DESIGN

The temperature monitoring system consists of nine boreholes drilled into the waste mass. A steel casing was placed in each borehole and the hole was backfilled around the casing with aggregate. A series of temperature sensors was placed inside the steel casing. At the top of each borehole, an IIoT transmitter collects the data from the sensors and transmits it to a cloud-based RMC system. The City submitted design of the temperature monitoring system to VDEQ on November 30, 2022.

3.2 TEMPERATURE MONITORING SYSTEM INSTALLATION

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP No. 588 Landfill. The locations of the temperature probes are shown in Figure 4.




Figure 4. Temperature Monitoring Probe Locations

SCS began collecting temperature data daily on February 15, 2023. The temperature sensors continued to transmit temperature data during the month of November 2024. Average daily temperatures recorded by the sensors for the month of November are included in Appendix D. Each

week the average temperatures from a select day of that week are downloaded and compared to temperatures recorded during the previous week. Average daily temperatures recorded on select days during the month of November are shown in Appendix B. The average temperatures recorded for select months between November 2023 through November 2024 are shown in Figures 5 through 13 on the following pages.

Figure 5 shows daily average temperatures recorded by Temperature Probe 1 (TP-1) during the months of November 2023, February 2024, May 2024, August 2024, and November 2024.

TP-1 was originally drilled to a depth of 180 feet, but the contractor was unable to install the casing beyond a depth of 160 feet. TP-1 did not record temperatures between July 23, 2023 and July 30, 2023 due to a dead battery. The battery was replaced and TP-1 began recording temperatures again on July 31, 2023.

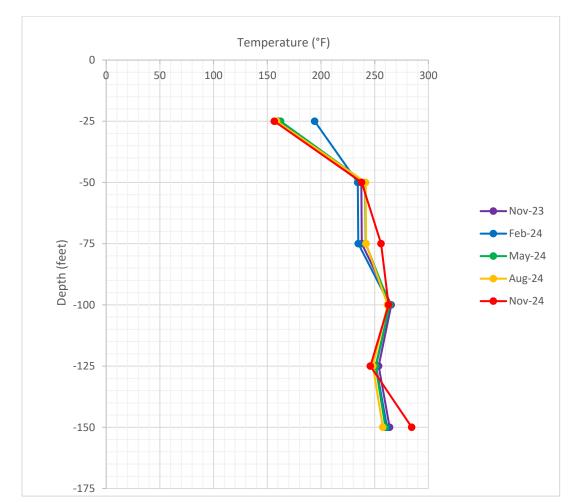



Figure 6 shows daily average temperatures in Temperature Probe 2 (TP-2) during the months of November 2023, February 2024, May 2024, August 2024, and November 2024.

TP-2 was originally drilled to a depth of 160 feet. TP-2 did not record temperatures between August 15, 2023 and September 17, 2023 due to a dead battery. A replacement battery was installed in September of 2023 and TP-2 recording temperatures again on September 18, 2023.

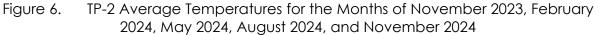


Figure 7 shows daily average temperatures in Temperature Probe 3 (TP-3) during the months of November 2023, February 2024, May 2024, August 2024, and November 2024.

TP-3 began having sensor reading issues at the 150-foot depth at the end of October 2024 and continued through November 2024. Sensor reading issues also began at the 25-foot depth at the end of November. The cause is currently being investigated.

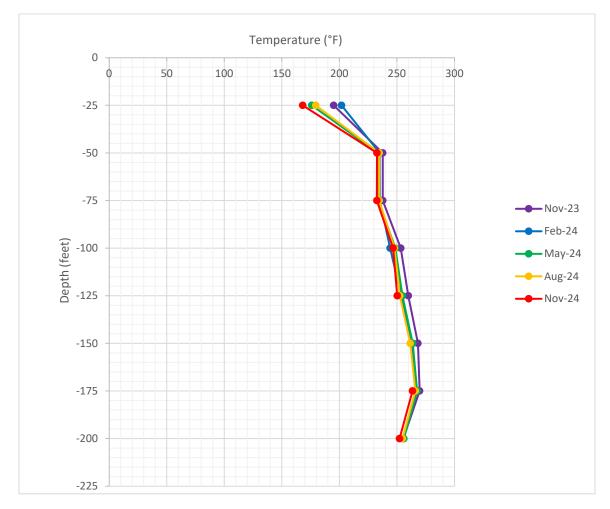


Figure 8 shows daily average temperatures in Temperature Probe 4 (TP-4) during the months of November 2023, February 2024, May 2024, August 2024, and November 2024.

TP-4 stopped recording late on November 20, 2024 due to a sensor failure. SCS-RMC attempted to replace the sensors within the TP-4 steel casing. SCS-RMC's technician was unable to remove the failed sensors indicating an obstruction within the casing. With the old sensor still in place, there was insufficent room to install new sensors. SCS suspects that below grade differential settlement and movement within the waste mass damaged the casing. TP-4 cannot be used for in-waste temperature going forward.

Landfill gas was identified within the TP-4 casing. A wellhead was modified and adapted to extract gas from TP-4. TP-4 will be able to serve as a deep landfill gas extraction well.

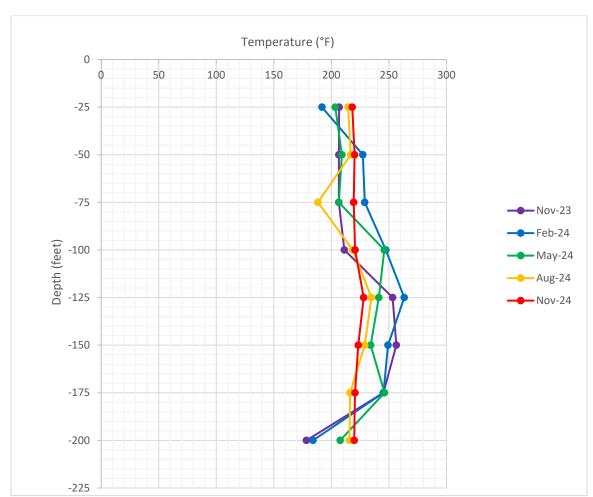


Figure 8. TP-4 Average Temperatures for the Months November 2023, February 2024, May 2024, August 2024, and November 2024 Figure 9 shows daily average temperatures in Temperature Probe 5 (TP-5) during the months of November 2023, February 2024, May 2024, August 2024, and November 2024.

TP-5 was damaged in late October 2023 and the sensors at the 125-foot, 150-foot, 175-foot, and 200-foot depths stopped functioning. SCS completed troubleshooting during the month of November 2023 and the sensors returned to operation later that month. TP-5 appears to have stopped recording temperatures again during the latter half of February 2024 due to a dead battery. The battery for the temperature probe was replaced in early April 2024 and has been in operation since.

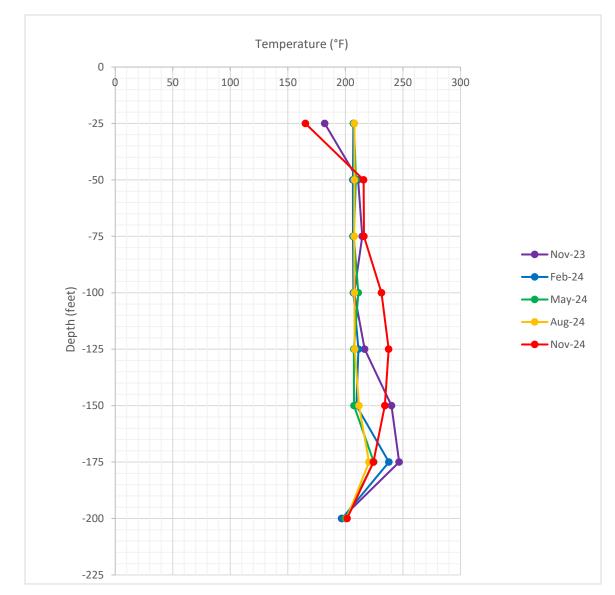
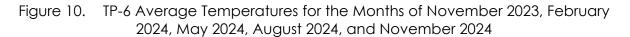



Figure 9. TP-5 Average Temperatures for the Months November 2023, February 2024, May 2024, August 2024, and November 2024 Figure 10 shows daily average temperatures in Temperature Probe 6 (TP-6) during the months of November 2023, February 2024, May 2024, August 2024, and November 2024.

TP-6 was originally drilled to a depth of 208 feet and casing was installed to the full depth. During the installation of the installation of replacement sensors, a blockage within the casing prevented placement of sensors below the 125-foot depth. In June of 2024 the temperature sensor reported unrealistically high temperatures. These readings indicated that the sensor at the 125-foot depth had failed. The City is working with SCS-RMC to identify the cause of this failure and is considering replacement of the sensors. In September of 2024, temperatures returned to the typical operating range based on historical data.

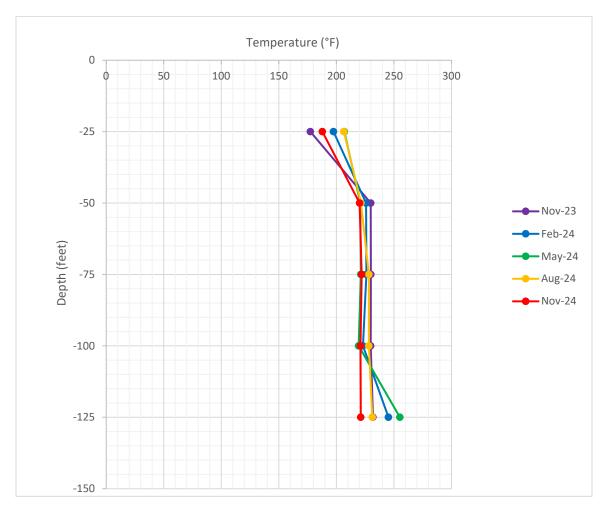
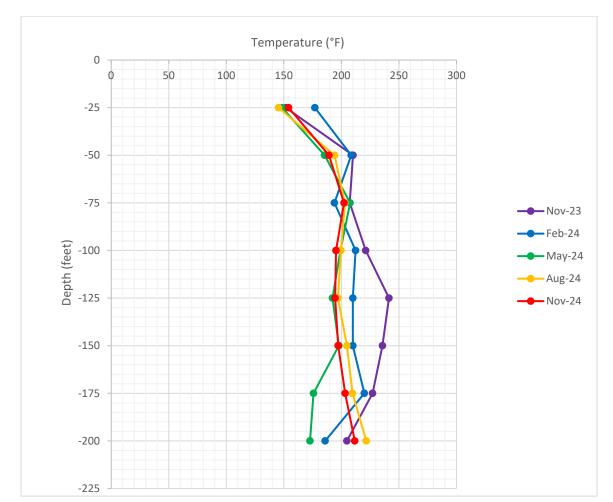



Figure 11 shows daily average temperatures in Temperature Probe 7 (TP-7) during the months of November 2023, February 2024, May 2024, August 2024, and November 2024.

TP-7 did not record temperatures between August 15, 2023 and September 17, 2023 due to a dead battery. A replacement battery was installed in September of 2023 and TP-7 recording temperatures again on September 18, 2023.

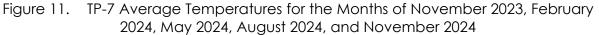


Figure 12 shows daily average temperatures in Temperature Probe 8 (TP-8) during the months of November 2023, February 2024, May 2024, August 2024, and November 2024.

TP-8 did not record temperatures from November 8, 2023 to November 27, 2023 due to a faulty battery which was replaced on November 28, 2023. Recordings from August 30, 2024 to September 6, 2024 indicated sensor failure and sensor reported data again began indicating a sensor failure at the 50-foot depth at the end of October 2024. The sensor began reading again on November 22, 2024. The cause is currently being investigated.

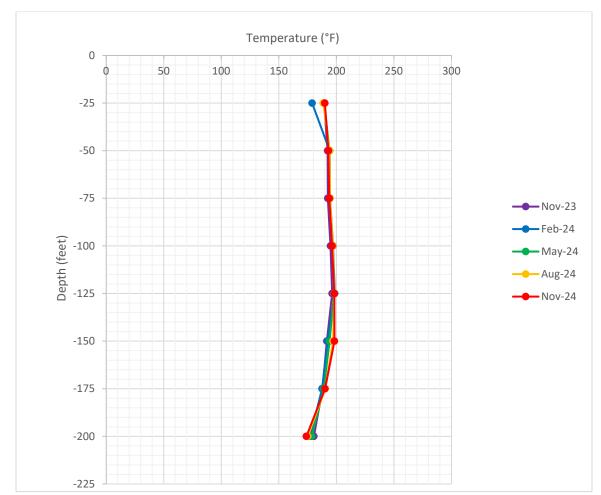
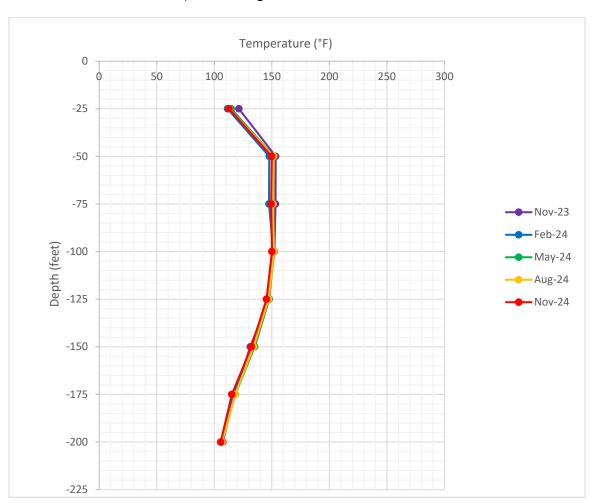
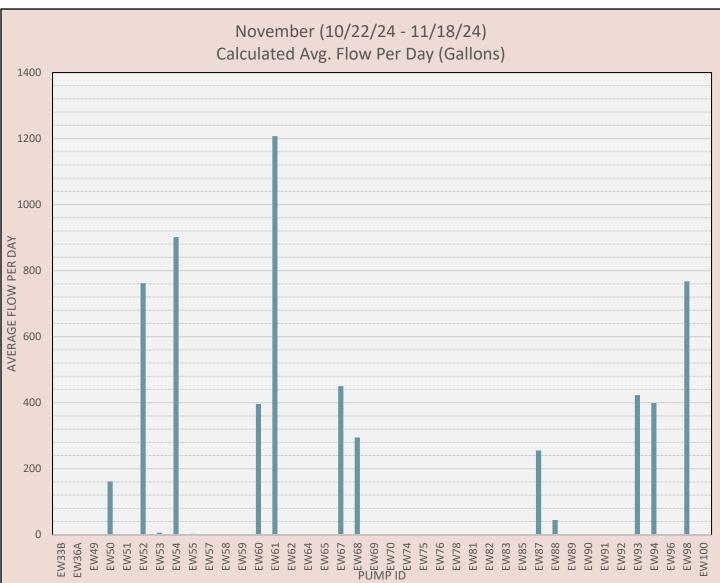



Figure 12. TP-8 Average Temperatures for the Months of November 2023, February 2024, May 2024, August 2024, and November 2024

Figure 13 shows daily average temperatures in Temperature Probe 9 (TP-9) during the months of November 2023, February 2024, May 2024, August 2024, and November 2024.

These data indicate that temperatures within the landfill are generally stable and are typical of those observed at elevated temperature landfills (ETLFs). During the months of May 2023 through September 2023, substantial construction occurred at the landfill including deep dual extraction wells that may have impacted temperatures within the waste mass adjacent to the probes. While quantifying the effect of the construction of addition wells is difficult, changes in wellhead temperature have been observed in existing wells adjacent to newly installed wells. The temperatures recorded are substantially lower than those associated with landfill fires or other combustion processes, which can exceed 1000°F. This further indicates that the elevated temperatures are due to sources other than combustion.


4.0 LEACHATE EXTRACTION AND MONITORING

The City is taking steps to improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals.

4.1 EXISTING SYSTEM OPTIMIZATION

During the monthly liquid depth measurement event, SCS collected stroke counter data from the pumps installed in the GCCS extraction wells. These stroke counts were collected from 40 wells from October 22–November 18, 2024.

Based on this data, SCS can estimate the number of gallons of liquid pumped from each well. SCS assumed that each stroke from a float-style pneumatic pump correlates to approximately 0.3 gallons of liquid removed from the well. Blackhawk piston-style pumps remove approximately 0.11 gallons per stroke. Estimates of the quantities of liquids removed from each well during November are shown in Figure 14.

Figure 14. Estimated November Dewatering Liquid Removal by Well

SCS-FS continues to implement a routine maintenance schedule for landfill gas liquids removal pumps. The pumps at wells EW-52, EW-59, EW-68, EW-87, and EW-98 removed the most liquid in November, according to the stroke count data. Several of the pumps that are not stroking, i.e. wells with no calculated flow in Figure 14, are experiencing a buildup of solids that makes them inoperable, some of which are stuck in the well and SCS-FS is unable to clean and/or replace them. Many pumps have already been replaced and repaired due to experiencing significant wear and tear from ETLF conditions. Listed below are the documented repairs and replacements that occurred for landfill gas liquids removal pumps during the month of November. Most of the pumps with the highest liquids removal in November were those that were cleaned/replaced.

• Week of November 4: Pump pulled and swapped in EW-60 and EW-61; pump replaced in CS-2; pump cleaning, maintenance, and testing

- Week of November 11: Pump pulled and swapped in EW-55 and EW-93; pump cleaning, maintenance, and testing
- Week of November 18: Replaced pump in EW-54, replaced pump in EW-94, replaced tritubing and repaired pump head; attempted to pull pump in EW-53, pump stuck. Pump maintenance, cleaning, and testing.
- Week of November 25: Pulled and swapped pump in EW-93. Pump maintenance, cleaning and testing.

In some cases, low volumes of landfill liquids removed correlate to low measured liquid levels within the gas wells. This was true of well EW-69 in November 2024. When this condition is identified, pumps may be relocated to wells with consistently higher liquid levels.

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations. Pumps require servicing after relatively short intervals. The SWP No. 588 Landfill's float-style pumps are bump-checked daily, and Blackhawk piston drive rods are cleaned routinely each week.

Daily pump checks and maintenance of spare pumps will continue in the coming month along with pump replacements as needed. The City, along with SCS-FS, has determined that the best pumps for the landfill's current conditions are QED pumps designed for high temperature operation. The City received eight additional QED pumps in October; some were installed in different wells and others to swap/replace others. The additional pumps will help with the rotation of field pumps needing maintenance and replacement going forward.

4.1.1 Total LFG Liquids Removal

To improve the accuracy of the total landfill gas liquids flow rate, two flow meters were installed on the landfill gas liquid forcemains in December 2023. One flow meter was installed on the SWP No. 588 primary landfill gas liquid forcemain. The other was installed on the SWP No. 588 alternate landfill gas liquids forcemain, which also serves as the conduit for condensate from the SWP No. 498 landfill gas liquids and the SWP No. 588 stormwater pump. Given the improved accuracy of the flowmeter data compared to flow estimates based on collected stroke counter data, SCS and the City will only use flow rates from the flowmeters to determine total liquids removed. Flow rates from individual pump performance data (e.g., stroke counts) will only be used to evaluate pump performance.

The progress in landfill gas liquids removal over the past eleven months is depicted in Figure 15. The data for September in Fig. 15 are anomalous, as this flow was biased high by stormwater that was used to flush the landfill gas liquids piping in September, resulting in the flow meter reporting a very high flow (i.e., flush water and actual landfill gas liquids).

In November, the total liquids flow recorded by the SWP No. 588 primary landfill gas liquids flowmeter was 53,000 gallons. Dewatering liquids removal were similar in August 2024 and October 2024, and decreased in November. SCS investigated potential causes for the decrease in November and found that the flowmeter did not record flow after November 18, 2024, whereas an analysis of pump stroke counter data suggested that pumps were collecting dewatering liquids. SCS is working with SCS-RMC and the City to discern whether the flowmeter is malfunctioning or if liquid flowrates were simply below the threshold of the flowmeter's totalizer (1,000 gallons per day).

Figure 15. Estimated Volume of Liquids Removed from Landfill Gas Wells

4.2 SAMPLING AND ANALYSIS PLAN

On November 1, 2022, SCS submitted to VDEQ the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan for the Bristol Integrated Solid Waste Management Facility Solid Waste Permit No. 588 Landfill. The plan was subsequently revised on December 1, 2022. Refer to the November 2022 and December 2022 Compliance Reports for the SWP No. 588 Landfill for additional information.

4.2.1 Sample Collection

On November 7, 2024, SCS collected leachate samples from three Dual Phase LFG extraction wells (EW-36A and EW-50). At the time of sample collection dissolved oxygen, oxidation-reduction potential, pH, specific conductance, temperature, and turbidity were measured and recorded at the time of sample collection. The associated field logs are included in **Appendix F**. SCS' field staff were not able to collect samples from select wells as summarized in **Table 6**.

l able 6.	Summary Wells Unable to be Sampled for Leachate	

Wells With Pumps	Wells Without Pumps
 Pump was not running at the time of monitoring for the following wells: EW-51, EW-52, EW-53, EW-60, EW-61, EW-67, EW-68, EW-69, EW-70, EW-78, EW-82, EW-85, EW-89, EW-90, EW-91, EW-93, EW-96, and EW-98. 	 There was no pump at the time of the monitoring for the following wells: EW-55, EW-57, EW-58, EW-66, EW-71, EW-72, EW-73, EW-74, EW-86, EW-95, EW-99, and EW-100.

Table 6.	Summary Wells Unable to be Sampled for Leachate
----------	---

Wells With Pumps	Wells Without Pumps
• Pump was not running at the time of monitoring for the following wells and the liquid level could not be gauged as well was under vacuum thus unsafe to open for water level: EW-33B, EW-49, EW-64, EW-65, EW-81, and EW-83.	• There was no pump at the time of the monitoring for the following wells and the liquid level could not be gauged as well was under vacuum thus unsafe to open for water level: EW-63, EW-75, EW-77, EW-79, EW-80, and EW-84.
• Pump was disconnected or off at the time of monitoring for EW-54, EW-59, EW-62, and EW-87.	• There is no pump and the well appeared dry at the time of monitoring for EW-56.
• Pump was not running for EW-88 and the liquid depth was not measured at the time of monitoring as the well cap could not be removed.	• There was no pump at the time of the monitoring for EW-97 and well was too tall to safely measure the liquid level.
 Pump was not running for EW-92 and well was too tall to safely measure the liquid level. 	 Pump was not running, and the liquid depth was not measured at the time of monitoring for EW-76.
• Pump was not running, and the liquid depth was not measured at the time of monitoring for EW-94.	

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia for analysis. Enthalpy's Virginia Division of Consolidated Laboratory Services (VELAP) certification is provided on the certificate of analysis (COA) included in **Appendix F**. The samples were analyzed for the parameters utilizing the analytical methods described in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan.

At the time of preparation of this report, laboratory analytical results were not available for the November 2024 monitoring event. The November 2024 analytical results will be provided in the December 2024 Monthly Compliance Report.

4.2.1 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for VOC analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analyses. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A summary of each of these is presented below:

- Method Blank The method blank is deionized water subjected to the same reagents and manipulations to which site samples are subjected. Positive results in the method blanks may indicate either contamination of the chemical reagents or the glassware and implements used to store or prepare the sample and resulting solutions.
- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis.
 MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.
- LCS These samples consist of distilled/deionized water injected with the parameters of interest for single parameter methods and selected parameters for multi-parameter methods according to the appropriate analytical method. LCS samples are prepared and analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are like the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

No trip or method blank detects were identified for the November 2024 monitoring event. The laboratory analysis report for the November 2024 monitoring event trip blank is included in **Appendix F**. The November 2024 monitoring event laboratory QA/QC report, including the method blank results, is included in the COA in **Appendix F**.

4.2.2 Data Validation

To identify analytical data that may not represent valid results, data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection Agency (EPA) guidance¹. Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with parameter detections less than five times that of the trip blank, field blank, and/or method blank detection but greater than the laboratory contaminant parameter detections less that 0 times that 10 times that of the trip blank, field blank, and/or

¹ United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. November 2020. United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. November 2020.

method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not validated as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis.

No leachate results were flagged with a "B" qualifier for the November 2024 monitoring event as no detections were identified in the trip or method blanks. The November 2024 detections flagged with a "J" qualifier are shown on **Table 7**.

4.2.3 Laboratory Analytical Results

The analytical results for the November 2024 leachate samples collected from extraction wells EW-36A and EW-50 are summarized in **Table 7**. The associated COA is included in **Appendix F**. Parameter results from November 2024 and previous monitoring events (November 2022 – October 2024) are presented on a table in **Appendix F**. Time-series plots of each VOC for the wells that have historically been sampled are included in **Appendix F**.

Well ID	EW-36A	EW-50		100
Parameter	November 2024 Concentration		LOD	LOQ
Ammonia as N (mg/L)	934	1370	146	200
Biological Oxygen Demand (mg/L)	4760	7360	0.2	2
Chemical Oxygen Demand	9540		1000	1000
(mg/L)		8840	2000	2000
	ND		0.25	1.25
Nitrate as N (mg/L)		ND	0.5	2.5
Nitrita as N (ma(1))	ND		0.25	1.25
Nitrite as N (mg/L)		1.35 J	0.5	2.5
Total Kjeldahl Nitrogen (mg/L)	1070	1610	40	100
Total Recoverable Phenolics	5.22		0.3	0.5
(mg/L)		10.1	1.5	2.5
SEMI-VOLATILE ORGANIC COMPOUN	ND (ug/L)			
Anthracene	ND	ND	50	100
TOTAL METALS (mg/L)				
Arsenic	0.18	0.15	0.005	0.01
Barium	0.262	0.69	0.01	0.05
Cadmium	ND	ND	0.001	0.01
Chromium	0.0797	0.237	0.004	0.01
Copper	0.00569 J	ND	0.003	0.01
Lead	ND	ND	0.01	0.01
Mercury	ND	ND	0.002	0.002
Nickel	0.03879	0.09665	0.01	0.01
Selenium	ND	ND	0.0085	0.01
Silver	ND	ND	0.0006	0.01
Zinc	0.0325 J	0.0367 J	0.025	0.05

Table 7. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-36A	EW-50		100
Parameter	November 2024 Concentration		LOD	LOQ
VOLATILE ORGANIC COMPOUNDS (ug/L)				
2-Butanone (MEK)		4140	60	200
	28800		750	2500
Acetone		8680	350	500
	44400		1750	2500
Benzene	119	512	8	20
Ethylbenzene	14.4 J	135	8	20
Tetrahydrofuran	6620	452	200	200
Toluene	44.6	245	10	20
Xylenes, Total	ND	223	20	60

--- = not applicable

J = Constituent was detected at a concentration above the laboratory's LOD but below the laboratory's LOQ. Concentration is estimated and not validated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

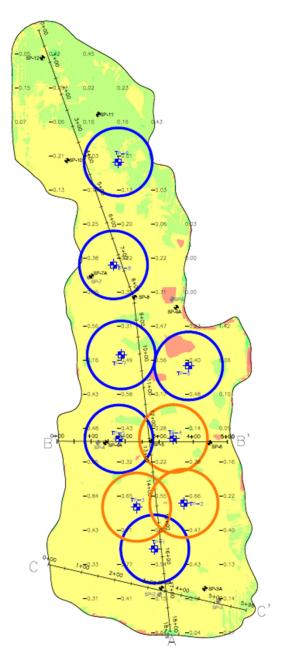
5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

On behalf of the City, SCS submitted a settlement monitoring and management plan to VDEQ on November 15, 2022. Refer to the 2022 November Monthly Compliance Report for the SWP No. 588 Landfill for additional information.

5.2 MONTHLY SURVEYS

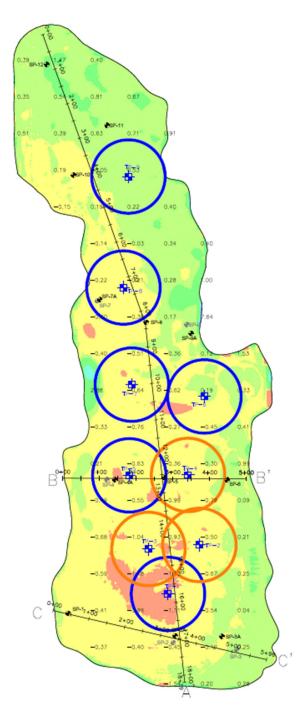

5.2.1 Topographic Data Collection

The City, through SCS, collected topographic data of the Solid Waste Permit No. 588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone). On November 12, 2024 the flight was completed and the topographic data collected. The topographic data collected is shown on Sheet 4 in Appendix E.

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on October 16, 2024. A drawing depicting October 16, 2024 topography is included as Sheet 3 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, the data shows a fill of 1,100 cubic yards throughout the entire site. Fill may have been placed on the site to address differential settlement, surface emissions, and to provide access to landfill gas collection vertical wells. During that same time period, calculations indicate a "cut" volume of approximately 8,500 cubic yards. Cut volumes are typically attributed to settlement. This resulted in a net volume decrease of approximately 7,400 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 16. Areas in yellow, orange, and red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 5 in Appendix E.


Figure 16. 1-Month Elevation Change Map

The locations of in-waste temperature monitoring probes are also shown on Figure 16, Figure 17, and Figure 18. The circles around the probes in each of these figures are indicative of the average borehole temperature. The circles shown are offset from the probes for clarity only and do not necessarily indicate temperatures measured at locations away from the probe. Probes with a blue circle around them typically have an average temperature less than 200°F across the full depth of the probe. Probes with an orange circle around them typically have an average temperature greater than 200°F and less than 250°F across the full depth of the probe. There were no probes measuring average temperatures greater than 250°F and less than 300°F during the month of November 2024.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation decrease between the flyover dates was 0.3 feet.

SCS also compared the topographic data collected in September to the topographic data collected on August 14, 2024. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 8,100 cubic yards. During that same time period calculations indicate approximately 6,800 cubic yards of fill were placed on the landfill, for a net decrease in waste volume of 1,300 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 17. Areas in orange/yellow indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 6 in Appendix E.

Figure 17. 3-Month Elevation Change Map

Based on the area of the landfill and the net volume change, the average elevation decrease was approximately 0.1 feet.

SCS also compared the topographic data collected in November 2024 to the drone topographic data collected on November 16, 2023 by SCS. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 50,000 cubic yards. During that same time period approximately 4,000 cubic yards of

construction-related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction and ongoing maintenance (i.e. filling to compensate for settlement). This resulted in a net volume decrease of approximately 46,000 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 18. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 7 in Appendix E.

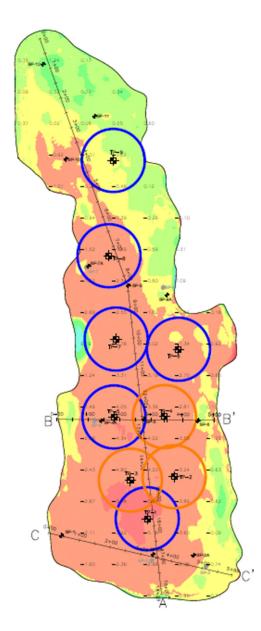


Figure 18. 1-Year Elevation Change Map

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 5 feet or more in some areas. These significant settlement values are typical of elevated temperature landfill conditions. The landfill perimeter exhibited an increase in elevation, likely due to soil placement associated with construction and/or ongoing maintenance of the Sidewall Odor Mitigation System. There were variations in elevation associated with soil stockpiling operations.

Based on the landfill area and the net volume change, the average elevation decrease was approximately 1.6 feet.

SCS will collect topographic data covering the landfill surface again in December using photogrammetric methods via UAV. This data will be compared to the data collected in December 2023, September 2024, and November 2024.


5.2.2 Settlement Plate Surveys

On November 7, 2022 SCS field services installed 12 settlement plates on the Solid Waste Permit No. 588 landfill. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan. The tops of the PVC pipes were painted orange to improve visibility.

Five new settlement plates (SP-2A, SP-3A, SP-4A, SP-7A, and SP-9A) installed during June 2024 are intended to replace non-operational settlement plates. SP-9A was installed due to the existing SP-9's location in a low area which is prone to flooding after rain. The first elevation survey of the new settlement plates was completed on 7/10/24. They have replaced the decommissioned plates in the readings.

The settlement plate locations are depicted in Figure 19 and on Sheet 1 in Appendix E.

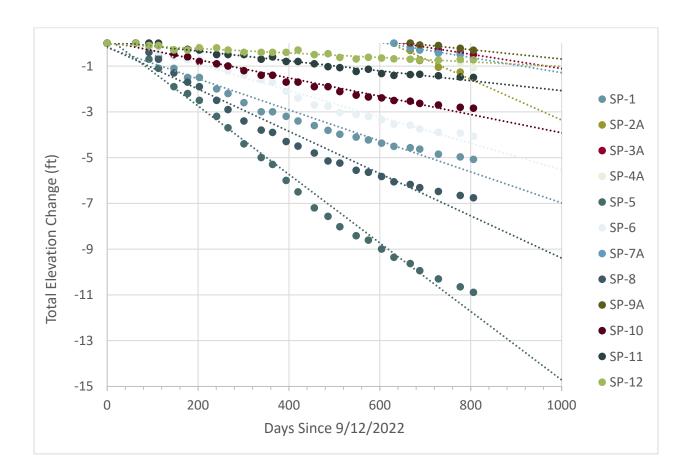
The locations of the settlement plates were surveyed on November 14, 2022. The settlement plates were surveyed again on December 13, 2022; January 3, 2023; February 6, 2023; March 8, 2023; April 3, 2023; May 11, 2023; June 5, 2023; July 10, 2023; August 17, 2023; September 11, 2023; October 11, 2023; November 6, 2023; December 12, 2023; January 11, 2024; February 6, 2024; March 13, 2024; April 9, 2024; May 8, 2024; June 4, 2024; July 10, 2024; July 31, 2024; September 10, 2024; October 28, 2024; and November 26, 2024. The surveyed coordinates² and elevation changes of the settlement plates are shown in Table 8.

² Settlement plate locations and coordinates are based on a local coordinate system.

Settlement Plate	Northing	Easting	Elevation on Nov. 26, 2024	Elevation Change Since Oct. 28, 2024	Strain ³ Since Oct. 28, 2024	Elevation Change Since Installation	Strain/Year
SP-1	3,397,887.5	10,412,080.5	1,829.3	-0.11	-0.2%	-5.1	-2.02%
SP-2A	3,397,822.8	10,412,370.6	1,794.5	-0.21	-0.1%	-1.3	-1.75%
SP-3A	3,397,820.1	10,412,498.3	1,779.7	-0.10	-0.1%	-0.5	-1.26%
SP-4A	3,398,247.1	10,412,206.6	1,804.1	-0.24	-0.1%	-1.1	-1.77%
SP-5	3,398,255.8	10,412,339.5	1,789.9	-0.24	-0.1%	-10.9	-1.19%
SP-6	3,398,248.8	10,412,510.0	1,773.6	-0.14	-0.1%	-4.1	-1.27%
SP-7A	3,398,732.0	10,412,157.8	1,822.9	-0.07	-0.1%	-0.5	-0.67%
SP-8	3,398,678.3	10,412,290.9	1,800.6	-0.10	0.0%	-6.8	-0.51%
SP-9A	3,398,644.3	10,412,416.2	1,788.5	-0.08	-0.1%	-0.3	-1.03%
SP-10	3,399,080.2	10,412,093.2	1,837.4	-0.04	0.0%	-2.8	-0.17%
SP-11	3,399,216.4	10,412,183.9	1,814.8	-0.02	0.0%	-1.5	-0.10%
SP-12	3,399,381.8	10,412,019.6	1,809.9	-0.02	0.0%	-0.7	-0.20%

 Table 8.
 Elevation and Strain Data at Settlement Plate Locations

Prior to April 2024, the City's in-house surveyor read the settlement plate elevations. Starting April 2024, the settlement plate elevations were measured by FEI Civil Engineers and Land Surveyors.


Settlement Plate 1 demonstrated larger settlements than at other locations. Settlement Plate 1 is located in the southern end of the landfill. This area is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions.

The change in elevation at Settlement Plates 8, 10, 11, and 12 was lower and more representative of typical settlement at municipal landfills with waste of similar depth.

The settlement observed at the rest of the settlement plates fell in between these two categories.

Figure 20 shows the changes in elevation of select settlement plates over time. Best-fit lines for these changes in elevation are also shown on the graph. For the purposes of recording data in this figure, times are measured in days since the landfill was required to stop accepting waste.

³ Strain is defined as the change in elevation divided by the estimated waste depth.

Figure 20. Elevation Change of Select Settlement Plates Over Time

The settlement plates will be surveyed again during the month of December 2024. The elevations surveyed will be compared to the elevations surveyed the previous months.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City has taken steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below outline the steps taken by the City.

6.1 INTERMEDIATE COVER INSTALLATION

The City completed hauling and placement of a 12-inch-thick intermediate cover across the entire landfill prior to October 10, 2022. The cover was placed in accordance with 9VAC20-81-140(B)(1)(d). SCS coordinated with the City to dig a series of test holes to verify cover thickness in select locations. Details of these verifications were discussed in the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill.

6.2 EVOH COVER SYSTEM DESIGN

On December 4, 2023, SCS submitted a revised stormwater management plan to submit to VDEQ, including revised drawings and calculations. The revised Stormwater Management Plan includes the three quarry basins, additional stormwater pumps, new stormwater force mains, and the preliminary layout of the new electrical infrastructure along the quarry rim.

On December 18, 2023 SCS and VDEQ met to discuss concerns about the impact of settlement on the proposed EVOH Cover System. The City discussed the appropriate schedule for EVOH deployment with VDEQ given the significant settlement the site is experiencing. An amendment to the Consent Decree was subsequently issued which requires the EVOH deployment no later than December 1, 2026. The amended Consent Decree also requires regular settlement assessments, and the EVOH deployment may occur earlier if settlement rates appear acceptable. The first of these assessments was submitted to VDEQ on April 11, 2024. The most recent assessment was completed on October 11, 2024. The next assessment will be submitted on or before January 13, 2025.

6.3 EVOH COVER SYSTEM PROCUREMENT

Drawings used for the purposes of bidding, procurement and construction of the EVOH cover system will generally conform to the layout and details in the drawings described in section 6.2. SCS also prepared and submitted to VDEQ a specification for the EVOH geomembrane on January 30, 2023 based upon industry standards and discussions with material manufacturers. This specification and drawing set represent the first steps in the procurement process. SCS and the City have coordinated with potential suppliers to specify a product that is not currently anticipated to have long lead times. SCS has received a pro-forma data sheet from one manufacturer which is preparing a customized EVOH product for the No. 588 landfill.

6.4 EVOH COVER SYSTEM INSTALLATION

SCS will prepare regular settlement assessments for VDEQ per the amended Consent Decree. EVOH deployment will commence, with VDEQ's concurrence, if the latest assessment shows acceptable settlement rates. The amended consent decree requires installation of the EVOH cover system by December 1, 2026.

7.0 STORMWATER MANAGEMENT

The City is taking steps to implement a stormwater management plan at the landfill. The sections below outline the steps taken by the City.

7.1 STORMWATER MANAGEMENT PLAN DEVELOPMENT

The initial stormwater management plan (SWMP) was submitted to VDEQ on April 28, 2023.

The revised SWMP was submitted to VDEQ on December 4, 2023. The plan proposes a stormwater pumping system to convey stormwater collected atop the EVOH cover system to an existing discharge point permitted under VPDES permit VAR050053. The proposed system includes the construction of three stormwater collection basins in the quarry and the installation of pairs of skid-mounted stormwater pumps. The stormwater will be conveyed by force main pipes to the existing stormwater basins located west of the quarry.

The plan proposes modifications to the existing stormwater basins west of the quarry to achieve discharge quantity targets. Modifications include increasing the basin depths and installing new outlet riser structures.

7.2 STORMWATER MANAGEMENT BASIN DESIGN AND CONSTRUCTION

The landfill surface will be regraded to form the SWM basins proposed in the stormwater management plan. The earthwork will be completed as the first stage of the interim EVOH cover system installation project. A revised landfill gas management plan is being prepared to facilitate the regrading of the landfill, which will affect existing landfill gas infrastructure. The landfill gas system will be modified to accommodate the earthwork.

Attention is being given to settlement concerns in the vicinity of the stormwater basin or basins. Calculations provided to VDEQ on June 23, 2023 demonstrate the weight of the ponded water should not cause excessive settlement relative to ongoing settlement observed within the quarry. Including additional stormwater basins within the quarry will distribute the weight of ponded water over a wider area relative to the single stormwater basin design.

7.3 STORMWATER MANAGEMENT PLAN IMPLEMENTATION

The stormwater management plan design drawings are being incorporated into the overall construction drawings for the interim EVOH cover system. The interim EVOH cover system installation and stormwater management features will be bid and constructed as one project to facilitate simultaneous progress and completion.

As an interim measure, the City is currently operating a temporary stormwater pump to remove stormwater from the landfill surface.

7.4 LONG-TERM STORMWATER CONTROL AND REMOVAL

The stormwater management plan is designed with resiliency and redundancy to promote long-term operation. Refer to previously submitted compliance reports for details of long-term stormwater control and removal.

7.5 STORMWATER MONITORING

Stormwater monitoring will commence upon initial discharge of stormwater from the quarry stormwater pumping system. As stated in the stormwater management plan drawings, the stormwater shall be monitored in accordance with the facility's VPDES general permit for discharge of stormwater associated with industrial activity. Additional requirements include collecting additional stormwater samples at the discharge pipes for the quarry stormwater pumping system. The stormwater from the quarry basins will be sampled on a monthly basis prior to discharge to the upper stormwater ponds. The Operations Manual will be revised to include these additional requirements.

If the stormwater becomes contaminated or sampling indicates contamination above discharge limits, the stormwater will be diverted to the sanitary sewer system. The diversion to the sanitary sewer system will continue until the source of contamination is identified and resolved. The stormwater discharge pipe alignment will pass adjacent to the existing sanitary sewer manhole. A tee with isolation valves will be used to direct the stormwater to the upper basins or the sanitary sewer manhole.

Stormwater currently pumped from the surface of the landfill is discharged to the sanitary sewer and is sampled with other wastewater discharges in accordance with the facility's industrial wastewater discharge permit.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit No. 588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

SCS submitted the Monitoring, Maintenance, and Repair Plan to VDEQ for the SWP No. 588 landfill on December 30, 2022. Refer to the December 2022 Monthly Compliance Report for the SWP No. 588 Landfill for additional information. The City has taken steps to implement the plan that were detailed in the March 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

8.3 MONTHLY COMPLIANCE REPORTS

As described in the introduction this report is intended to provide comprehensive updates regarding progress towards completion of each item described in Appendix A of the Consent Decree between the City and VDEQ.

8.4 COMMUNITY OUTREACH PROGRAM

- **Ongoing basis**: Four (4) posts on each the BristalVALandfill.org site and the existing City of Bristol Landfill Notifications and Information page covering important updates including:
 - Progress updates related to remediation efforts and normal maintenance activities at the Quarry Landfill
 - Updates included activities at the quarry landfill such as introduction of a new odor reporting form on each website, prioritized review and adjustments of system operations due to an increase in odor complaints, and voluntary purchase and installation of additional temperature sensors to expand data collected.
- Weekly updates on landing page on Bristolvalandfill.org titled "Air Sampling and Air Monitoring" that includes a summary of the air sampling and monitoring being conducted by Bristol, VA around the quarry landfill.
 - Website now includes weekly air monitoring reports starting with May 15th, 2023 and running through May 19th of 2024. More reports will be posted as the transition to a new air monitoring system is being implemented.
- E-mail communication sent to the list of members of the public signed up through the Bristol, VA website, the BristolVALandfill.org website, or at subsequent Open Houses to receive information via e-mail

- E-mails sent included weekly remediation progress update and links to website updates and latest news articles.

Appendix A

Surface Emissions Monitoring Summary Letters

SCS ENGINEERS

November 13, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – November 5, 2024 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on November 5, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Mr. Jonathan Chapman November 13, 2024 Page 2

Table 1.Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	167
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	67
Number of Exceedances	7
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	7

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	11/5/24 Event	11/5/24 Event Result	Comments
EW-79	7/22/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-63	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-64	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-77	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-33B	8/7/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-65	8/21/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
Tag 61	8/21/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	9/9/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-80	9/16/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-82	10/16/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	10/21/24	2 nd 10-Day Recheck	Passed	Requires 1-Month Recheck

Table 2.Ongoing Weekly SEM Exceedances

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

William J. Fabrie

William J. Fabrie Staff Professional SCS Engineers

LSN/WJF

- cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman

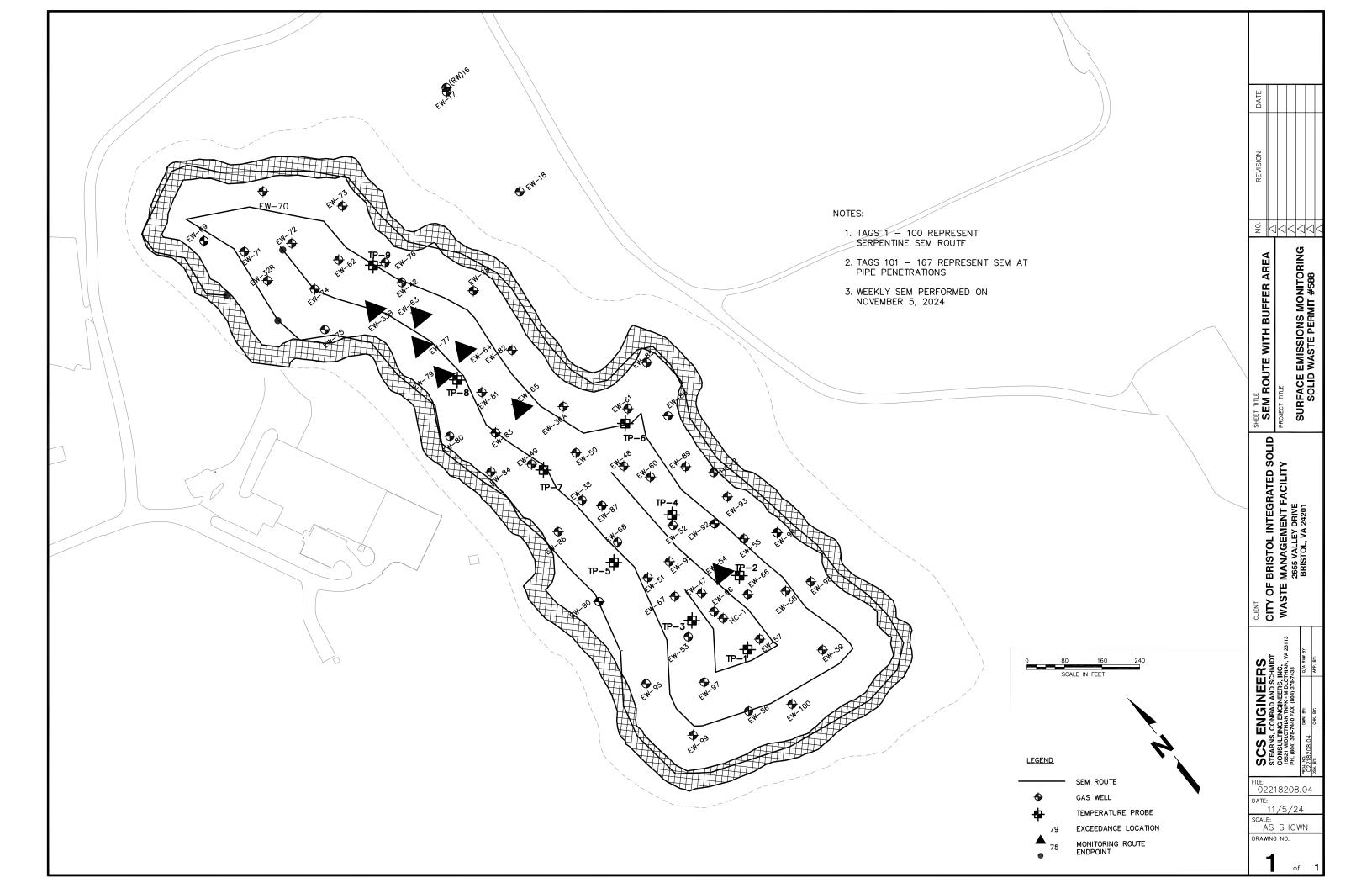

Lucas S. Nachman Senior Project Professional SCS Engineers

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 5, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA						
	Methane		GPS Co	oordinates		
ID #	Concentration	Compliance	Lat.	Long.	Comments	
1	5.9 PPM	OK			Start Serpentine Route	
2	5.2 PPM	OK				
3	3.2 PPM	OK				
4	26.0 PPM	OK				
5	4.4 PPM	OK				
6	2.6 PPM	OK				
7	2.4 PPM	OK				
	2.4 PPM 2.5 PPM					
8		OK				
9	2.0 PPM	OK				
10	8.0 PPM	OK				
11	2.0 PPM	OK				
12	2.6 PPM	OK				
13	2.0 PPM	OK				
14	4.3 PPM	OK				
15	3.6 PPM	OK				
16	2.5 PPM	OK				
17	27.5 PPM	OK				
18	1.7 PPM	OK				
19	1.5 PPM	OK				
20	1.5 PPM	OK				
21	1.6 PPM	OK				
22	2.3 PPM	OK				
23	2.6 PPM	OK				
23 24		OK				
	2.4 PPM					
25	2.0 PPM	OK				
26	3.1 PPM	OK				
27	3.0 PPM	OK				
28	3.0 PPM	OK				
29	8.4 PPM	OK				
30	2.8 PPM	OK				
31	2.9 PPM	OK				
32	7.9 PPM	OK				
33	12.9 PPM	OK				
34	183.0 PPM	OK				
35	9.2 PPM	OK				
36	62.9 PPM	OK				
37	12.3 PPM	OK				
38	62.9 PPM	OK				
39	14.4 PPM	OK				
40	4.5 PPM	OK				
41	1.6 PPM	OK				
42	6.4 PPM	OK				
43	6.8 PPM	OK				
44	4.5 PPM	OK				
45	22.4 PPM	OK				
46	165.0 PPM	OK				
47	183.0 PPM	OK				

WEEKLY MONITORING EVENT - NOVEMBER 5, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA						
	Methane		GPS Co	oordinates		
ID #	Concentration	Compliance	Lat.	Long.	Comments	
48	1.2 PPM	ОК				
49	1.1 PPM	OK				
50	1.8 PPM	OK				
51	2.2 PPM	OK				
52	1.8 PPM	OK				
53	2.2 PPM	OK				
54	2.5 PPM	OK				
55	3.2 PPM	OK				
56	1.8 PPM	OK				
57		OK				
	20.7 PPM					
58	24.0 PPM	OK				
59	87.2 PPM	OK				
60	57.8 PPM	OK				
61	161.0 PPM	OK				
62	30.9 PPM	OK				
63	1.7 PPM	OK				
64	5.4 PPM	OK				
65	1.6 PPM	OK				
66	2.9 PPM	OK				
67	2.4 PPM	OK				
68	1.3 PPM	OK				
69	2.1 PPM	OK				
70	0.9 PPM	OK				
71	0.8 PPM	OK				
72	0.9 PPM	OK				
73	4.7 PPM	OK				
74	81.0 PPM	OK				
75	39.4 PPM	OK				
76	1.9 PPM	OK				
77	2.0 PPM	OK				
78	12.4 PPM	OK				
79	82.6 PPM	OK				
80	62.9 PPM	OK				
81	11.3 PPM	OK				
82	1.2 PPM	OK				
83	2.1 PPM	OK				
84	2.9 PPM	OK				
85	2.1 PPM	OK				
86	2.3 PPM	OK				
87	5.7 PPM	OK				
88	3.0 PPM	OK				
89	2.5 PPM	ОК				
90	14.6 PPM	OK				
91	39.1 PPM	OK				
92	1.7 PPM	OK				
93	34.7 PPM	OK				
94	2.4 PPM	OK				

WEEKLY MONITORING EVENT - NOVEMBER 5, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA							
	Methane		GPS Co	ordinates			
ID #	Concentration	Compliance	Lat.	Long.	Comments		
95	44.1 PPM	ОК					
96	0.7 PPM	OK					
97	0.8 PPM	OK					
98	1.1 PPM	OK					
99	1.1 PPM	OK					
100	13.9 PPM	OK			End Serpentine Route		
101	51.3 PPM	ОК			EW-52		
102	4.9 PPM	OK			TP-4		
102	72.3 PPM	OK			EW-60		
104	4.2 PPM	OK			EW-48		
105	2.5 PPM	OK			TP-6		
106	3.1 PPM	OK			EW-61		
107	1.0 PPM	OK			EW-50		
108	34.3 PPM	OK			EW-67		
109	2.4 PPM	OK			EW-47		
110	916.0 PPM	HIGH_ALRM	36.59866	-82.14742	EW-54		
111	0.9 PPM	OK	00107000	0200 00 02	EW-55		
112	1.8 PPM	OK			EW-92		
113	19.9 PPM	OK			EW-91		
114	2.7 PPM	OK			EW-96		
115	1.1 PPM	OK			TP-2		
116	1.6 PPM	OK			EW-66		
117	1.2 PPM	OK			EW-58		
118	15.9 PPM	OK			EW-57		
119	3.1 PPM	OK			TP-1		
120	5.4 PPM	OK			EW-59		
121	14.3 PPM	OK			EW-100		
122	130.0 PPM	OK			EW-56		
123	2.0 PPM	OK			EW-97		
124	132.0 PPM	OK			EW-53		
125	0.9 PPM	OK			TP-3		
126	29.2 PPM	ОК			EW-51		
127	0.8 PPM	ОК			TP-5		
128	4.3 PPM	OK			EW-68		
129	0.7 PPM	OK			EW-87		
130	1.0 PPM	ОК			EW-38		
131	121.0 PPM	OK			TP-7		
132	3.1 PPM	OK			EW-49		
133	1.4 PPM	ОК			EW-83		
134	1379.0 PPM	HIGH_ALRM	36.60015	-82.14789	EW-65		
135	130.0 PPM	OK			EW-81		
136	5.1 PPM	ОК			TP-8		
137	1338.0 PPM	HIGH_ALRM	36.60056	-82.14796	EW-64		
138	961.0 PPM	HIGH_ALRM	36.60092	-82.14812	EW-63		
139	4.1 PPM	ОК			EW-42		
140	34.6 PPM	OK			EW-76		

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
141	262.0 PPM	OK			TP-9
142	3.8 PPM	OK			EW-62
143	21.8 PPM	OK			EW-74
144	0.6 PPM	OK			EW-32R
145	0.9 PPM	OK			EW-69
146	1.2 PPM	OK			EW-71
147	0.4 PPM	OK			EW-72
148	2.0 PPM	OK			EW-73
149	6.4 PPM	OK			EW-78
150	2.2 PPM	OK			EW-82
151	1.7 PPM	OK			EW-36A
152	0.3 PPM	OK			EW-85
153	0.7 PPM	OK			EW-88
154	1.7 PPM	OK			EW-89
155	2.0 PPM	OK			EW-93
156	3.1 PPM	OK			EW-94
157	0.3 PPM	OK			EW-98
158	2.3 PPM	OK			EW-99
159	32.2 PPM	OK			EW-95
160	58.6 PPM	OK			EW-90
161	2.0 PPM	OK			EW-86
162	51.0 PPM	OK			EW-84
163	218.0 PPM	OK			EW-80
164	4666.0 PPM	HIGH_ALRM	36.60051	-82.14819	EW-79
165	25500.0 PPM	HIGH_ALRM	36.60072	-82.14819	EW-77
166	2800.0 PPM	HIGH_ALRM	36.60105	-82.14831	EW-33B
167	34.1 PPM	OK			EW-75
	Number of le	cations sampled:	167		
		edance locations:	7		
oints 101 thro	h 100 represent serper ugh 167 represent SEA itions: Sunny, 72°F Win	A at Pipe Penetratic	ns		
ampling Calib	pration: Methane - 500	ppm, Zero Air - 0.0) ppm		
11/5/2024	10:51 ZERO		PPM		
11/5/2024	10:53 SPAN	499.0	PPM		
ackground Re 11/5/2024	<u>ading:</u> 10:59 Upwin	d 2.5	PPM		

SCS ENGINEERS

November 20, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – November 12, 2024 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on November 12, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Mr. Jonathan Chapman November 20, 2024 Page 2

Table 1. Summary of Surface Emissions Monito	ring
--	------

Description	Quantity
Number of Points Sampled	167
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	67
Number of Exceedances	3
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	3

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

On November 18, 2024, the City submitted an Alternate Remedy Request for corrective actions for exceedances located at Serpentine Tag #61, and at the surface cover penetration of vertical extraction wells EW-33B, EW-63, EW-64, EW-65, EW-67, EW-77, EW-79, and EW-80. Details regarding the specific proposed corrective actions are outlined in the letter request. As of the monitoring conduced on November 12, 2024, these corrective actions have been successful at reducing methane concentration below the regulatory threshold at six of the nine locations.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	11/12/24 Event	11/12/24 Event Result	Comments
EW-79	7/22/24	N/A	Passed	Alternate Remedy Requested – corrective actions have resolved exceedance
EW-63	8/1/24	N/A	Passed	Alternate Remedy Requested – corrective actions have resolved exceedance
EW-64	8/1/24	N/A	Passed	Alternate Remedy Requested – corrective actions have resolved exceedance
EW-77	8/1/24	N/A	Failed	Alternate Remedy Requested – undergoing corrective actions
EW-33B	8/7/24	N/A	Failed	Alternate Remedy Requested – undergoing corrective actions
EW-65	8/21/24	N/A	Passed	Alternate Remedy Requested – corrective actions have resolved exceedance
Tag 61	8/21/24	N/A	Passed	Alternate Remedy Requested – corrective actions have resolved exceedance
EW-67	9/9/24	N/A	Failed	Alternate Remedy Requested – undergoing corrective actions
EW-80	9/16/24	N/A	Passed	Alternate Remedy Requested – corrective actions have resolved exceedance
EW-82	10/16/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	10/21/24	N/A	Passed	Requires 1-Month Recheck
EW-54	11/5/24	10-Day Recheck	Passed	Requires 1-Month Recheck

Table 2.Ongoing Weekly SEM Exceedances

Mr. Jonathan Chapman November 20, 2024 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

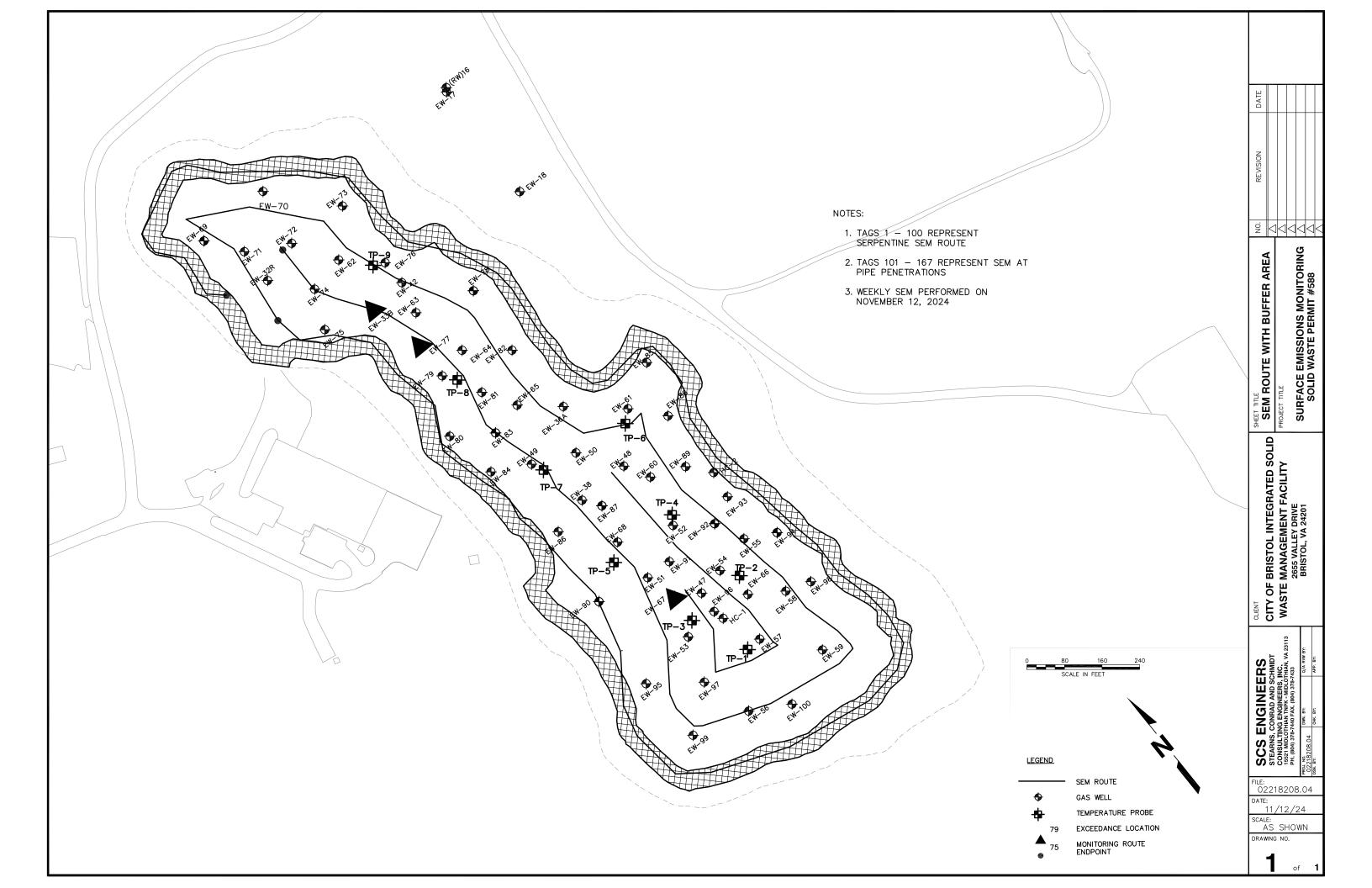
William J. Fabrie

William J. Fabrie Staff Professional SCS Engineers

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

LSN/WJF


- cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Methane		GPS Co	ordinates		
ID #	Concentration	Compliance	Lat.	Long.	Comments	
1	2.3 PPM	ОК			Start Serpentine Route	
2	10.2 PPM	OK				
3	19.6 PPM	OK				
4	9.8 PPM	OK				
5	11.3 PPM	OK				
6	3.9 PPM	OK				
7	4.2 PPM	OK				
8	2.9 PPM	OK				
9	4.5 PPM	OK				
10	2.6 PPM	OK				
11	2.1 PPM	OK				
12	2.3 PPM	OK				
13	2.3 PPM	OK				
14	2.2 PPM	OK				
15	2.3 PPM	OK				
16	2.9 PPM	OK				
17	16.6 PPM	OK				
18	4.9 PPM	OK				
19	3.2 PPM	OK				
20	2.6 PPM	OK				
21	2.4 PPM	OK				
22	5.1 PPM	OK				
23	2.4 PPM	OK				
24	2.4 PPM	OK				
25	30.1 PPM	OK				
26	2.2 PPM	OK				
27	2.1 PPM	OK				
28	2.1 PPM	OK				
29	2.0 PPM	OK				
30	2.2 PPM	OK				
31	180.0 PPM	OK				
32	54.4 PPM	OK				
33	40.8 PPM	OK				
34	98.2 PPM	OK				
35	308.0 PPM	OK				
36	346.0 PPM	OK				
37	60.8 PPM	OK				
38	18.5 PPM	OK				
39	45.3 PPM	OK				
40	3.6 PPM	OK				
41	16.4 PPM	OK				
42	2.1 PPM	OK				
43	5.6 PPM	OK				
44	70.9 PPM	OK				
45	11.6 PPM	OK				
46	40.7 PPM	OK				
47	41.4 PPM	OK				

	Methane	GPS Coordinates			
ID #	Concentration	Compliance	Lat.	Long.	Comments
48	4.8 PPM	OK			
49	1.9 PPM	OK			
50	1.8 PPM	OK			
51	1.8 PPM	OK			
52	1.7 PPM	OK			
53	1.9 PPM	OK			
54	2.9 PPM	OK			
55	3.0 PPM	OK			
56	3.9 PPM	OK			
57	5.3 PPM	OK			
58	3.3 PPM	OK			
59	2.4 PPM	OK			
60	5.0 PPM	OK			
61	2.5 PPM	OK			
62	2.2 PPM	OK			
63	2.0 PPM	OK			
64	2.9 PPM	OK			
65	1.7 PPM	OK			
66	1.7 PPM	OK			
67	8.2 PPM	OK			
68	5.2 PPM	OK			
69	1.8 PPM	OK			
70	1.7 PPM	OK			
71	4.1 PPM	OK			
72	4.7 PPM	OK			
73	3.1 PPM	OK			
74	1.9 PPM	OK			
75	1.7 PPM	OK			
76	56.8 PPM	OK			
77	2.9 PPM	OK			
78	12.9 PPM	OK			
79	26.1 PPM	OK			
80	130.0 PPM	OK			
81	115.0 PPM	OK			
82	72.0 PPM	OK			
83	2.7 PPM	OK			
84	2.2 PPM	OK			
85	1.7 PPM	OK			
86	3.1 PPM	OK			
87	1.7 PPM	OK			
88	3.1 PPM	OK			
89	1.6 PPM	OK			
90	1.9 PPM	OK			
91	1.6 PPM	OK			
92	14.1 PPM	OK			
93	7.3 PPM	OK			
94	29.4 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
95	34.0 PPM	ОК			
96	2.9 PPM	OK			
97	1.8 PPM	OK			
98	2.0 PPM	OK			
99	9.8 PPM	OK			
100	4.2 PPM	OK			End Serpentine Route
101	154.0 PPM	OK			EW-52
102	22.7 PPM	OK			TP-4
103	23.7 PPM	OK			EW-60
104	3.4 PPM	OK			EW-48
105	1.7 PPM	OK			TP-6
106	1.7 PPM	OK			EW-61
107	1.5 PPM	OK			EW-50
108	657.0 PPM	HIGH_ALRM	36.59866	-82.14775	EW-67
109	2.3 PPM	OK			EW-47
110	150.0 PPM	OK			EW-54
111	3.3 PPM	OK			EW-55
112	2.4 PPM	OK			EW-92
113	21.8 PPM	OK			EW-91
114	2.4 PPM	OK			EW-96
115	2.4 PPM	OK			TP-2
116	1.5 PPM	OK			EW-66
117	1.7 PPM	OK			EW-58
118	12.3 PPM	OK			EW-57
119	3.0 PPM	OK			TP-1
120	21.1 PPM	OK			EW-59
121	19.3 PPM	OK			EW-100
122	25.4 PPM	OK			EW-56
123	1.5 PPM	OK			EW-97
124	5.2 PPM	OK			EW-53
125	5.6 PPM	OK			TP-3
126	2.9 PPM	OK			EW-51
127	1.5 PPM	OK			TP-5
128	5.8 PPM	OK			EW-68
129	1.5 PPM	OK			EW-87
130	5.9 PPM	OK			EW-38
131	175.0 PPM	OK			TP-7
132	12.1 PPM	OK			EW-49
133	1.6 PPM	OK			EW-83
134	151.0 PPM	OK			EW-65
135	6.9 PPM	OK			EW-81
136	4.7 PPM	OK			TP-8
137	224.0 PPM	OK			EW-64
138	203.0 PPM	OK			EW-63
139	5.8 PPM	OK			EW-42
140	17.0 PPM	OK			EW-76

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
141	6.8 PPM	OK			TP-9
142	3.0 PPM	OK			EW-62
143	4.6 PPM	OK			EW-74
144	5.4 PPM	OK			EW-32R
145	2.1 PPM	OK			EW-69
146	2.1 PPM	OK			EW-71
147	1.6 PPM	OK			EW-72
148	3.2 PPM	OK			EW-73
149	9.0 PPM	OK			EW-78
150	368.0 PPM	OK			EW-82
151	2.0 PPM	OK			EW-36A
152	1.2 PPM	OK			EW-85
153	3.3 PPM	OK			EW-88
154	1.5 PPM	OK			EW-89
155	1.0 PPM	OK			EW-93
156	11.1 PPM	OK			EW-94
157	0.9 PPM	OK			EW-98
158	2.5 PPM	OK			EW-99
159	213.0 PPM	OK			EW-95
160	23.3 PPM	OK			EW-90
161	3.5 PPM	OK			EW-86
162	166.0 PPM	OK			EW-84
163	401.0 PPM	OK			EW-80
164	8.1 PPM	OK			EW-79
165	2367.0 PPM	HIGH_ALRM	36.60072	-82.14819	EW-77
166	2939.0 PPM	HIGH_ALRM	36.60105	-82.14831	EW-33B
167	369.0 PPM	OK			EW-75
	Number of lo	cations sampled:	167		
	Number of excee	-	3		
]	
oints 101 throu	100 represent serpen 1gh 167 represent SEN tions: Sunny, 64°F Win	\ at Pipe Penetratic	ons		
	ration: Methane - 500		<u>) ppm</u>		
11/12/2024	11:46 ZERO	0.4	PPM		
11/12/2024	11:48 SPAN	502.0	PPM		
	dina				
<u>Background Rec</u> 11/12/2024 11/12/2024	11:51 Upwind 11:56 Downwir		PPM PPM		

SCS ENGINEERS

December 4, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – November 26, 2024 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on November 26, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Mr. Jonathan Chapman December 4, 2024 Page 2

Table 1. Summary of Surface Emissions Monito	bring
--	-------

Description	Quantity
Number of Points Sampled	167
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	67
Number of Exceedances	7
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	7

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

On November 18, 2024, the City submitted an Alternate Remedy Request for corrective actions for exceedances at nine specific locations. Details regarding the specific proposed corrective actions for each location are outlined in the letter request.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	11/26/24 Event	11/26/24 Event Result	Comments
EW-77	8/1/24	N/A	Failed	Alternate Remedy Requested – undergoing corrective actions
EW-33B	8/7/24	N/A	Passed	Alternate Remedy Requested – corrective actions have resolved exceedance
EW-67	9/9/24	N/A	Failed	Alternate Remedy Requested – undergoing corrective actions
EW-82	10/16/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	10/21/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-54	11/5/24	N/A	Passed	Requires 1-Month Recheck

Table 2.	Ongoing Weekly SEM Exceedances

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

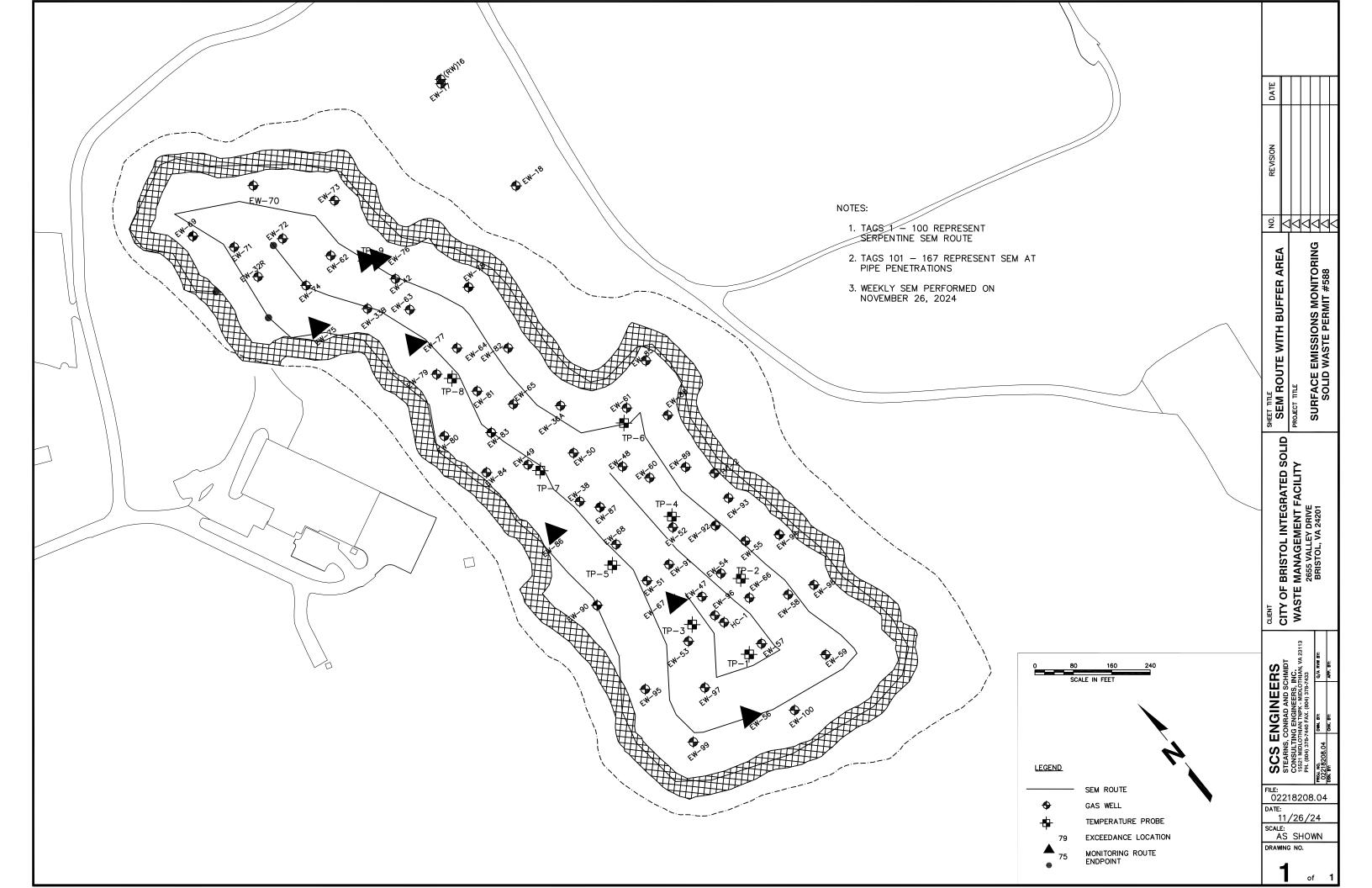
Wylie Hicklin

Wylie R Hicklin Associate Staff Professional SCS Engineers

LSN/WRH

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers


- cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Methane		GPS Cod	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	1.6 PPM	OK			Start Serpentine Route
2	1.0 PPM	OK			
3	1.0 PPM	OK			
4	1.0 PPM	OK			
5	0.8 PPM	OK			
6	0.8 PPM	OK			
7	5.0 PPM	OK			
8	0.7 PPM	OK			
9	0.7 PPM	OK			
10	0.7 PPM	OK			
11	231.0 PPM	OK			
12	1.7 PPM	OK			
13	3.4 PPM	OK			
14	0.8 PPM	OK			
15	0.8 PPM	OK			
16	0.6 PPM	OK			
17	0.7 PPM	OK			
18	0.6 PPM	OK			
19	1.3 PPM	OK			
20	0.6 PPM	OK			
21	0.5 PPM	OK			
22	4.6 PPM	OK			
23	1.2 PPM	OK			
24	0.8 PPM	OK			
25	0.8 PPM	OK			
26	0.8 PPM	OK			
27	2.9 PPM	OK			
28	1.8 PPM	OK			
29	2.3 PPM	OK			
30	117.0 PPM	OK			
31	115.0 PPM	OK			
32	71.6 PPM	OK			
33	134.0 PPM	OK			
34	1.5 PPM	OK			
35	1.9 PPM	OK			
36	0.3 PPM	OK			
37	14.0 PPM	OK			
38	2.6 PPM	OK			
39	3.8 PPM	OK			
40	19.3 PPM	OK			
41	5.6 PPM	OK			
42	0.3 PPM	OK			
43	0.3 PPM	OK			
43	0.1 PPM	OK			
45	0.1 PPM	OK			
45	0.0 PPM	OK			
40	0.0 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
48	0.1 PPM	OK			
49	0.0 PPM	OK			
50	0.0 PPM	OK			
51	0.2 PPM	OK			
52	0.1 PPM	OK			
53	0.0 PPM	OK			
54	0.2 PPM	OK			
55	0.5 PPM	OK			
56	12.5 PPM	OK			
57	1.4 PPM	OK			
58	6.0 PPM	OK			
59	1.2 PPM	OK			
60	0.7 PPM	OK			
61	3.7 PPM	OK			
62	0.8 PPM	OK			
63	0.5 PPM	OK			
64	0.3 PPM	OK			
65	0.2 PPM	OK			
66	0.9 PPM	OK			
67	2.9 PPM	OK			
68	10.7 PPM	OK			
69	24.0 PPM	OK			
70	19.7 PPM	OK			
71	109.0 PPM	OK			
72	163.0 PPM	OK			
73	172.0 PPM	OK			
74	10.7 PPM	OK			
75	2.4 PPM	OK			
76	1.8 PPM	OK			
77	0.4 PPM	OK			
78	1.1 PPM	OK			
79	0.8 PPM	OK			
80	2.2 PPM	OK			
81	5.1 PPM	OK			
82	0.4 PPM	OK			
83	2.6 PPM	OK			
84	1.7 PPM	OK			
85	2.0 PPM	OK			
86	1.5 PPM	OK			
87	0.9 PPM	OK			
88	1.2 PPM	OK			
89	0.0 PPM	OK			
90	0.0 PPM	OK			
91	12.2 PPM	OK			
92	18.8 PPM	OK			
93	2.0 PPM	OK			
94	0.2 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
95	2.2 PPM	ОК			
96	14.9 PPM	OK			
97	0.3 PPM	OK			
98	7.4 PPM	OK			
99	0.0 PPM	OK			
100	0.0 PPM	OK			End Serpentine Route
101	0.0 PPM	OK			EW-69
102	0.0 PPM	OK			EW-71
103	0.0 PPM	OK			EW-72
104	0.0 PPM	OK			EW-62
105	0.0 PPM	OK			EW-74
106	0.0 PPM	OK			EW-32R
107	1960.0 PPM	HIGH_ALRM	36.60106	-82.14828	EW-75
108	0.4 PPM	OK			EW-33B
109	0.8 PPM	OK			EW-63
110	20500.0 PPM	HIGH_ALRM	36.60072	-82.14819	EW-77
111	6.0 PPM	OK			EW-64
112	3.4 PPM	OK			EW-79
113	4.2 PPM	OK			TP-8
114	2.1 PPM	OK			EW-81
115	50.8 PPM	OK			EW-80
116	56.0 PPM	OK			EW-83
117	5.8 PPM	OK			EW-65
118	305.0 PPM	OK			EW-84
119	3.9 PPM	OK			EW-49
120	2.4 PPM	OK			TP-7
121	2.0 PPM	OK			EW-50
122	1.1 PPM	OK			TP-6
123	1.0 PPM	OK			EW-61
124	0.7 PPM	OK			EW-85
125	1.7 PPM	OK			EW-88
126	2.9 PPM	OK			EW-89
127	0.8 PPM	OK			EW-60
128	0.2 PPM	OK			EW-48
129	4.0 PPM	OK			EW-87
130	3.1 PPM	OK			EW-38
131	1293.0 PPM	HIGH_ALRM	36.59937	-82.14819	EW-86
132	0.1 PPM	OK			TP-5
133	3.6 PPM	OK			EW-68
134	0.1 PPM	OK			EW-93
135	3.0 PPM	OK			EW-92
136	0.6 PPM	OK			EW-55
137	0.2 PPM	OK			EW-94
138	15.5 PPM	OK			EW-52
139	6.0 PPM	OK			TP-4
140	1.2 PPM	OK			EW-90

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
141	171.0 PPM	ОК			EW-51
142	193.0 PPM	OK			EW-91
143	65.6 PPM	OK			EW-54
144	0.0 PPM	OK			TP-2
145	0.0 PPM	OK			EW-58
146	0.0 PPM	OK			EW-98
147	18.6 PPM	OK			EW-66
148	41.4 PPM	OK			EW-57
149	18.4 PPM	OK			TP-1
150	0.2 PPM	OK			EW-96
151	1.5 PPM	OK			EW-47
152	34000.0 PPM	HIGH_ALRM	36.59866	-82.14775	EW-67
153	3.8 PPM	OK			TP-3
154	40.5 PPM	OK			EW-53
155	44.8 PPM	OK			EW-95
156	7.7 PPM	OK			EW-97
157	11.2 PPM	OK			EW-99
158	2071.0 PPM	HIGH_ALRM	36.59787	-82.14786	EW-56
159	5.0 PPM	OK			EW-100
160	0.7 PPM	OK			EW-59
161	0.5 PPM	OK			EW-36A
162	41.6 PPM	OK			EW-82
163	1.2 PPM	OK			EW-78
164	3.1 PPM	OK			EW-42
165	5459.0 PPM	HIGH_ALRM	36.60124	-82.14803	EW-76
166	9434.0 PPM	HIGH_ALRM	36.60127	-82.14811	TP-9
167	0.5 PPM	OK			EW-73
	Number of loc	cations sampled:	167		
	Number of excee		7		
oints 101 throu	n 100 represent serpent Jgh 167 represent SEM tions: Partly Sunny, 53°	at Pipe Penetratio	ons		
Sampling Calib	ration: Methane - 500	opm, Zero Air - 0.(<u>) ppm</u>		
11/26/2024	10:21 ZERO	0.0	PPM		
11/26/2024	10:30 SPAN	502.0	PPM		
Background Red 11/26/2024	ading: 10:31 Upwind	2.6	PPM		

SCS ENGINEERS

November 26, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – November 19, 2024 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on November 19, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Mr. Jonathan Chapman November 26, 2024 Page 2

Table 1. Su	ummary of Surface Emission	ns Monitoring
-------------	----------------------------	---------------

Description	Quantity
Number of Points Sampled	167
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	67
Number of Exceedances	4
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	4

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

On November 18, 2024, the City submitted an Alternate Remedy Request for corrective actions for exceedances at nine specific locations. Details regarding the specific proposed corrective actions for each location are outlined in the letter request.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	11/19/24 Event	11/19/24 Event Result	Comments
EW-77	8/1/24	N/A	Failed	Alternate Remedy Requested – undergoing corrective actions
EW-33B	8/7/24	N/A	Failed	Alternate Remedy Requested – undergoing corrective actions
EW-67	9/9/24	N/A	Failed	Alternate Remedy Requested – undergoing corrective actions
EW-82	10/16/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	10/21/24	1-Month Recheck	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-54	11/5/24	N/A	Passed	Requires 1-Month Recheck

Table 2.	Ongoing Weekly SEM Exceedances

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

William J. Fabrie

William J. Fabrie Staff Professional SCS Engineers

LSN/WJF

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

- cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 19, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	2.6 PPM	OK			Start Serpentine Route
2	224.0 PPM	OK			
3	4.6 PPM	OK			
4	2.7 PPM	OK			
5	3.3 PPM	OK			
6	2.2 PPM	OK			
7	2.2 PPM	OK			
8	2.3 PPM	OK			
9	2.6 PPM	OK			
10	2.7 PPM	OK			
11	2.9 PPM	OK			
12	3.2 PPM	OK			
13	14.4 PPM	OK			
14	10.5 PPM	OK			
15	20.6 PPM	OK			
16	7.7 PPM	OK			
17	7.8 PPM	OK			
18	6.4 PPM	OK			
19	6.3 PPM	OK			
20	6.0 PPM	OK			
21	6.5 PPM	OK			
22	8.5 PPM	OK			
23	9.3 PPM	OK			
24	28.5 PPM	OK			
25	12.5 PPM	OK			
26	7.4 PPM	OK			
27	6.6 PPM	OK			
28	8.7 PPM	OK			
29	4.6 PPM	OK			
30	35.2 PPM	OK			
31	8.4 PPM	OK			
32	192.0 PPM	OK			
33	7.2 PPM	OK			
34	277.0 PPM	OK			
35	78.5 PPM	OK			
36	398.0 PPM	OK			
37	61.8 PPM	OK			
38	84.5 PPM	OK			
39	8.7 PPM	OK			
40	72.2 PPM	OK			
41	163.0 PPM	OK			
42	3.6 PPM	OK			
43	6.5 PPM	OK			
44	18.8 PPM	OK			
45	40.7 PPM	OK			
46	13.7 PPM	OK			
47	392.0 PPM	OK			

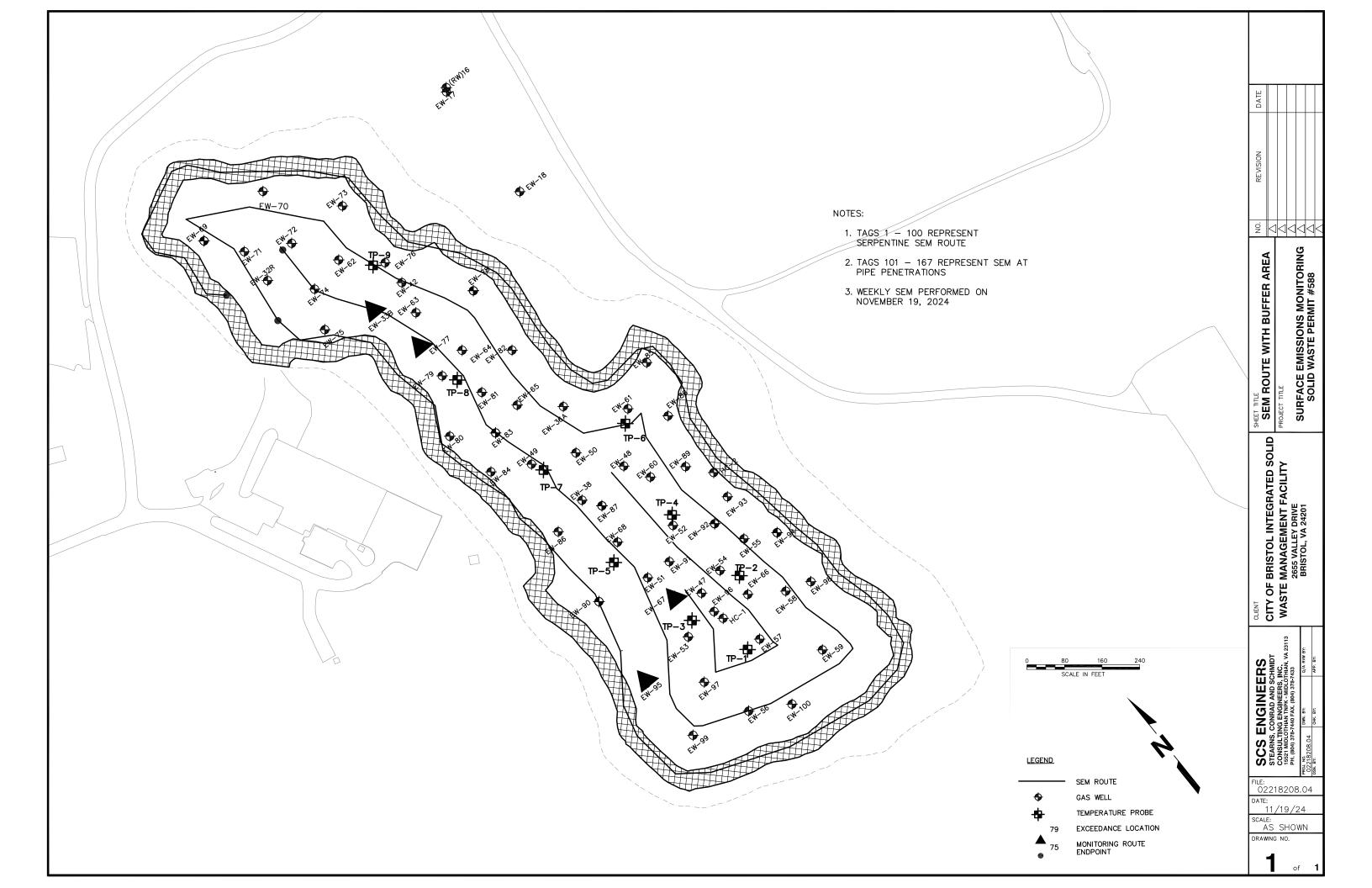
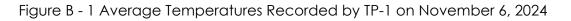

WEEKLY MONITORING EVENT - NOVEMBER 19, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA						
ID #	Methane Concentration	Compliance		ordinates	Commonto	
ID #	Concentration	Compliance	Lat.	Long.	Comments	
48	197.0 PPM	ОК				
49	162.0 PPM	OK				
50	209.0 PPM	OK				
51	146.0 PPM	OK				
52	20.9 PPM	OK				
53	7.8 PPM	OK				
54	7.3 PPM	OK				
55	3.6 PPM	OK				
56	8.4 PPM	OK				
57	3.3 PPM	OK				
57	5.2 PPM	OK				
58	4.7 PPM	OK				
60	4.7 PPM 3.7 PPM	OK				
61	5.4 PPM	OK				
62	4.9 PPM	OK				
63	4.9 PPM	OK				
64	19.8 PPM	OK				
65	38.6 PPM	OK				
66	7.6 PPM	OK				
67	6.7 PPM	OK				
68	6.1 PPM	OK				
69	5.6 PPM	OK				
70	12.3 PPM	OK				
71	64.1 PPM	OK				
72	27.3 PPM	OK				
73	5.4 PPM	OK				
74	6.9 PPM	OK				
75	50.8 PPM	OK				
76	12.0 PPM	OK				
77	7.9 PPM	OK				
78	3.3 PPM	OK				
79	52.4 PPM	OK				
80	17.0 PPM	OK				
81	41.6 PPM	OK				
82	44.7 PPM	OK				
83	84.9 PPM	OK				
84	81.2 PPM	OK				
85	34.9 PPM	OK				
86	8.2 PPM	OK				
87	3.2 PPM	OK				
88	6.0 PPM	OK				
89	4.3 PPM	OK				
90	5.3 PPM	OK				
91	1.7 PPM	OK				
92	18.3 PPM	OK				
93	60.1 PPM	OK				
94	76.9 PPM	OK				

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 19, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane GPS Coordinates				
ID #	Concentration	Compliance	Lat.	Long.	Comments
95	11.6 PPM	ОК			
96	6.0 PPM	OK			
97	3.7 PPM	OK			
98	3.0 PPM	OK			
99	1.6 PPM	OK			
100	6.5 PPM	OK			End Serpentine Route
101	310.0 PPM	OK			EW-52
102	11.1 PPM	OK			TP-4
103	5.2 PPM	OK			EW-60
104	6.6 PPM	OK			EW-48
105	18.0 PPM	OK			TP-6
106	9.5 PPM	OK			EW-61
107	9.4 PPM	OK			EW-50
108	12200.0 PPM	HIGH_ALRM	36.59866	-82.14775	EW-67
109	10.4 PPM	OK			EW-47
110	13.2 PPM	OK			EW-54
111	7.8 PPM	OK			EW-55
112	5.2 PPM	OK			EW-92
113	23.4 PPM	OK			EW-91
114	4.7 PPM	OK			EW-96
115	3.4 PPM	OK			TP-2
116	11.3 PPM	OK			EW-66
117	3.9 PPM	OK			EW-58
118	105.0 PPM	OK			EW-57
119	17.6 PPM	OK			TP-1
120	14.6 PPM	OK			EW-59
121	44.1 PPM	OK			EW-100
122	73.4 PPM	OK			EW-56
123	89.7 PPM	OK			EW-97
124	446.0 PPM	OK			EW-53
125	39.8 PPM	OK			TP-3
126	216.0 PPM	OK			EW-51
127	1.9 PPM	OK			TP-5
128	16.9 PPM	OK			EW-68
129	2.8 PPM	OK			EW-87
130	2.4 PPM	OK			EW-38
131	188.0 PPM	OK			TP-7
132	3.4 PPM	OK			EW-49
133	6.1 PPM	OK			EW-83
134	6.8 PPM	OK			EW-65
135	8.1 PPM	ОК			EW-81
136	34.2 PPM	ОК			TP-8
137	8.6 PPM	ОК			EW-64
138	6.6 PPM	ОК			EW-63
139	10.8 PPM	ОК			EW-42
140	464.0 PPM	OK			EW-76

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 19, 2024 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
141	161.0 PPM	OK			TP-9
142	1.3 PPM	OK			EW-62
143	1.3 PPM	OK			EW-74
144	1.7 PPM	OK			EW-32R
145	1.1 PPM	OK			EW-69
146	1.2 PPM	OK			EW-71
147	1.1 PPM	OK			EW-72
148	15.5 PPM	OK			EW-73
149	14.7 PPM	OK			EW-78
150	5.9 PPM	OK			EW-82
151	2.5 PPM	OK			EW-36A
152	2.8 PPM	OK			EW-85
153	7.7 PPM	OK			EW-88
154	15.3 PPM	OK			EW-89
155	8.2 PPM	OK			EW-93
156	15.4 PPM	OK			EW-94
157	8.2 PPM	OK			EW-98
158	33.7 PPM	OK			EW-99
159	728.0 PPM	HIGH_ALRM	36.59837	-82.14835	EW-95
160	177.0 PPM	OK	00.07007	02.114000	EW-90
161	8.1 PPM	OK			EW-86
162	83.4 PPM	OK			EW-84
163	280.0 PPM	OK			EW-80
164	17.9 PPM	OK			EW-79
165	6544.0 PPM	HIGH_ALRM	36.60072	-82.14819	EW-77
166	1410.0 PPM	HIGH_ALRM	36.60105	-82.14831	EW-33B
167	159.0 PPM	OK	30.00103	-02.14001	EW-355
	Number of le	cations sampled:	167		
	Number of excee	-	4		
Points 101 throu	100 represent serper igh 167 represent SEA tions: Sunny, 64°F Win	\ at Pipe Penetratic	ons		
	ration: Methane - 500				
11/19/2024	11:44 ZERO		PPM PPM		
11/19/2024	11:45 SPAN		PPM		
	dina.				
<u>Background Rec</u> 11/19/2024	11:48 Upwind	d 2.2	PPM		



Appendix B

In-Waste Temperatures on Select Days in November

Appendix B Figures

Figure B - 1 Average Temperatures Recorded by TP-1 on November 6, 2024..... B-3 Figure B - 2 Average Temperatures Recorded by TP-1 on November 13, 2024..... B-3 Figure B - 3 Average Temperatures Recorded by TP-1 on November 20, 2024...... B-4 Figure B - 4 Average Temperatures Recorded by TP-1 on November 27, 2024..... B-4 Figure B - 5 Average Temperatures Recorded by TP-2 on November 6, 2024..... B-5 Figure B - 6 Average Temperatures Recorded by TP-2 on November 13, 2024..... B-5 Figure B - 7 Average Temperatures Recorded by TP-2 on November 20, 2024..... B-6 Figure B - 8 Average Temperatures Recorded by TP-2 on November 27, 2024...... B-6 Figure B - 9 Average Temperatures Recorded by TP-3 on November 6, 2024..... B-7 Figure B - 10 Average Temperatures Recorded by TP-3 on November 13, 2024B-7 Figure B - 11 Average Temperatures Recorded by TP-3 on November 20, 2024 B-8 Figure B - 12 Average Temperatures Recorded by TP-3 on November 27, 2024 B-8 Figure B - 13 Average Temperatures Recorded by TP-4 on November 6, 2024..... B-9 Figure B - 14 Average Temperatures Recorded by TP-4 on November 13, 2024 B-9 Figure B - 15 Average Temperatures Recorded by TP-4 on November 20, 2024 B-10 Figure B - 16 Average Temperatures Recorded by TP-5 on November 6, 2024......B-11 Figure B - 17 Average Temperatures Recorded by TP-5 on November 13, 2024 B-11 Figure B - 19 Average Temperatures Recorded by TP-5 on November 27, 2024 B-12 Figure B - 20 Average Temperatures Recorded by TP-6 on November 6, 2024..... B-13 Figure B - 21 Average Temperatures Recorded by TP-6 on November 13, 2024 B-13 Figure B - 22 Average Temperatures Recorded by TP-6 on November 20, 2024 B-14 Figure B - 23 Average Temperatures Recorded by TP-6 on November 27, 2024 B-14 Figure B - 24 Average Temperatures Recorded by TP-7 on November 6, 2024..... B-15 Figure B - 25 Average Temperatures Recorded by TP-7 on November 13, 2024 B-15 Figure B - 26 Average Temperatures Recorded by TP-7 on November 20, 2024 B-16 Figure B - 27 Average Temperatures Recorded by TP-7 on November 27, 2024 B-16 Figure B - 28 Average Temperatures Recorded by TP-8 on November 6, 2024......B-17 Figure B - 29 Average Temperatures Recorded by TP-8 on November 13, 2024 B-17 Figure B - 30 Average Temperatures Recorded by TP-8 on November 20, 2024 B-18 Figure B - 31 Average Temperatures Recorded by TP-8 on November 27, 2024 B-18 Figure B - 32 Average Temperatures Recorded by TP-9 on November 6, 2024......B-19 Figure B - 33 Average Temperatures Recorded by TP-9 on November 13, 2024 B-19 Figure B - 34 Average Temperatures Recorded by TP-9 on November 20, 2024 B-20 Figure B - 35 Average Temperatures Recorded by TP-9 on November 27, 2024 B-20

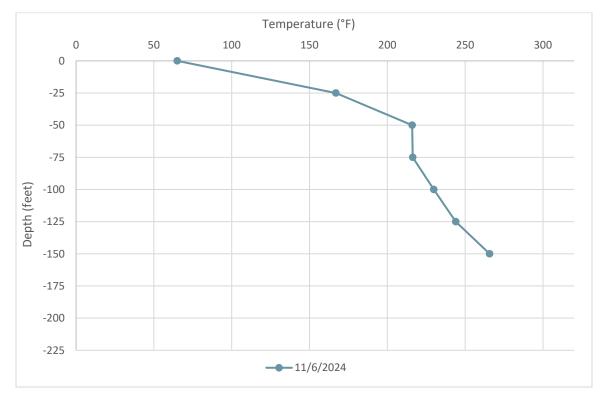
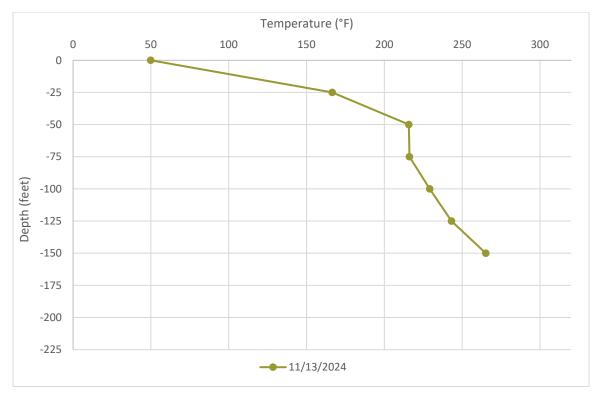



Figure B - 2 Average Temperatures Recorded by TP-1 on November 13, 2024

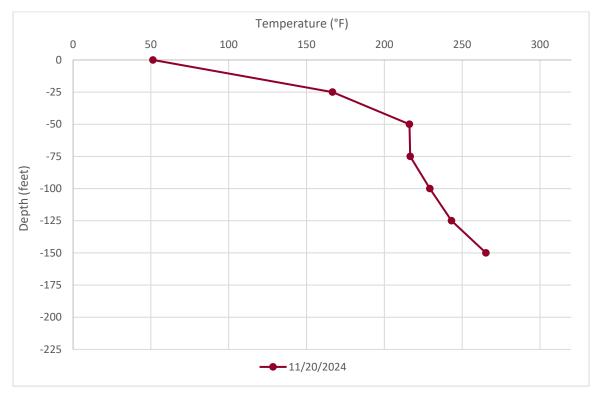
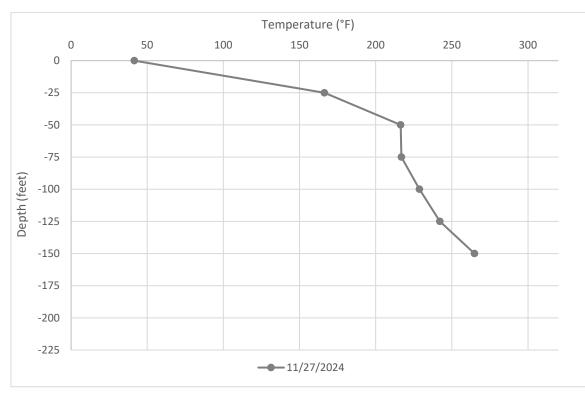



Figure B - 3 Average Temperatures Recorded by TP-1 on November 20, 2024

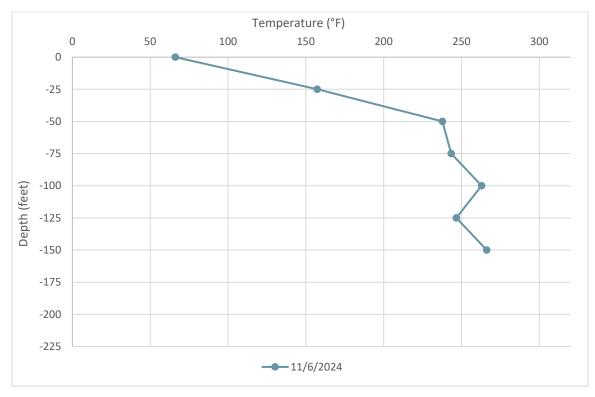
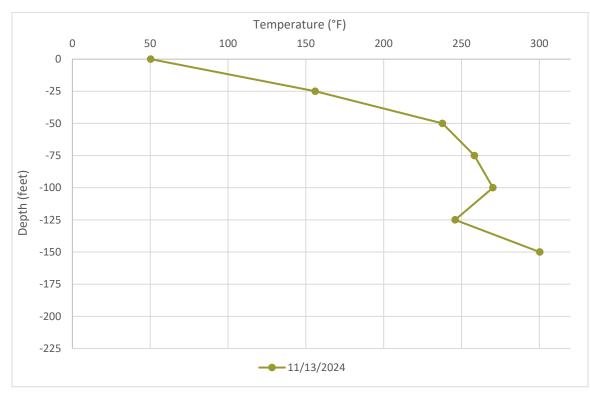



Figure B - 5 Average Temperatures Recorded by TP-2 on November 6, 2024

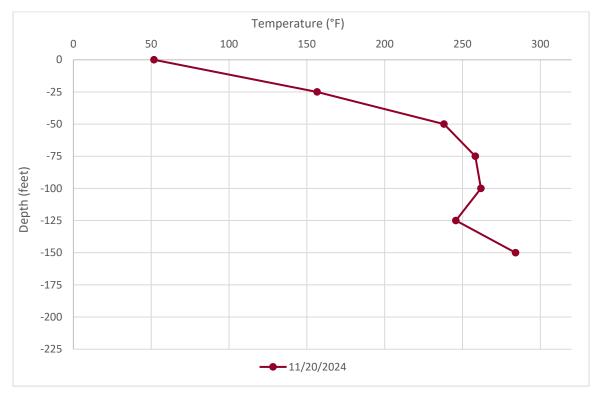
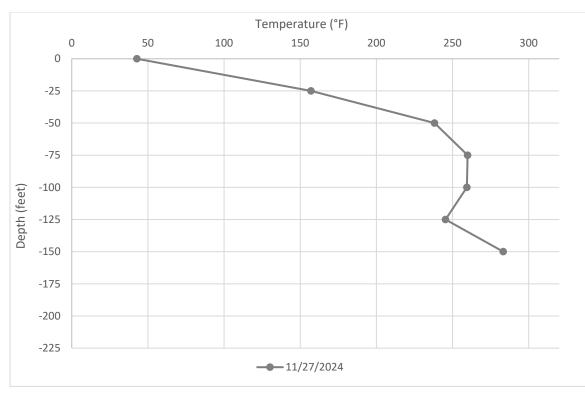



Figure B - 7 Average Temperatures Recorded by TP-2 on November 20, 2024

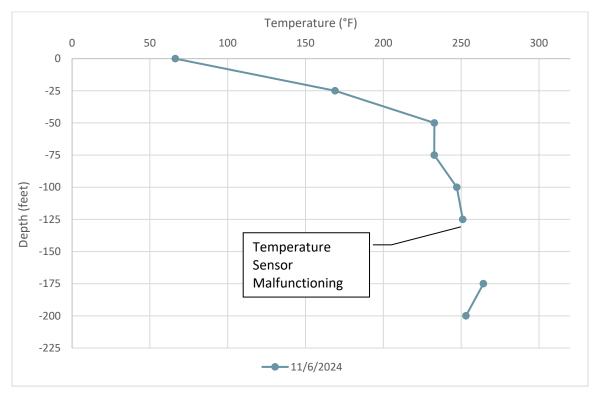
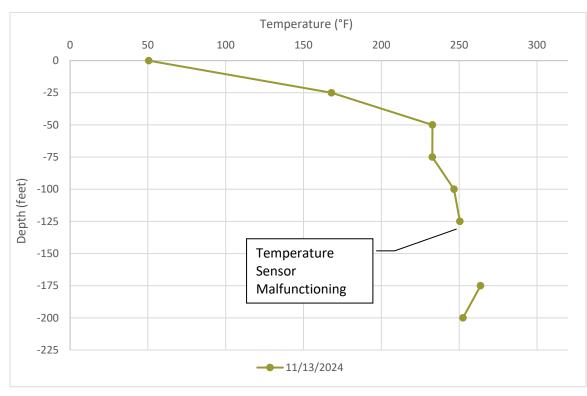



Figure B - 9 Average Temperatures Recorded by TP-3 on November 6, 2024

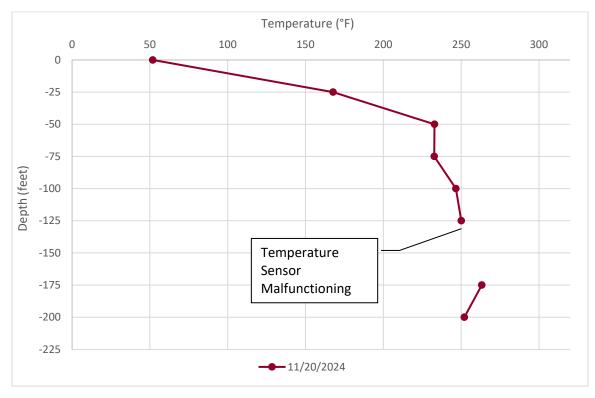
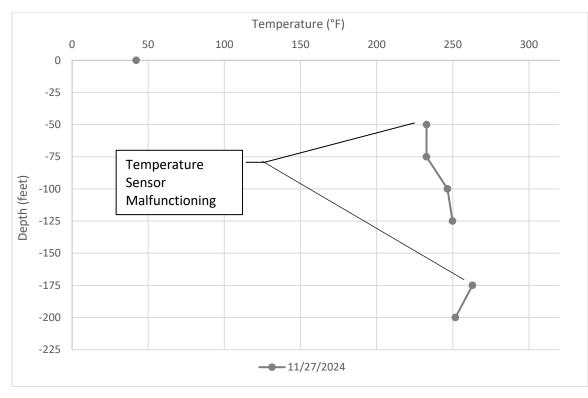



Figure B - 11 Average Temperatures Recorded by TP-3 on November 20, 2024

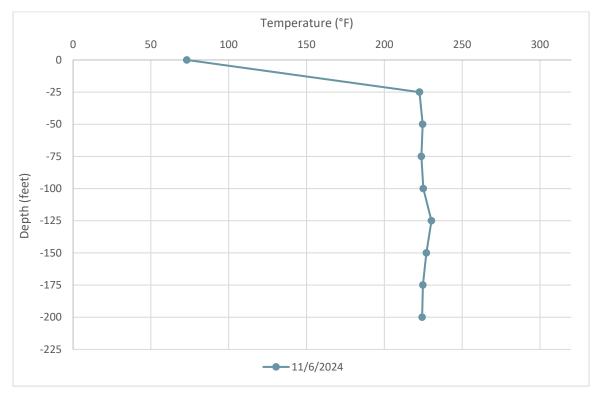
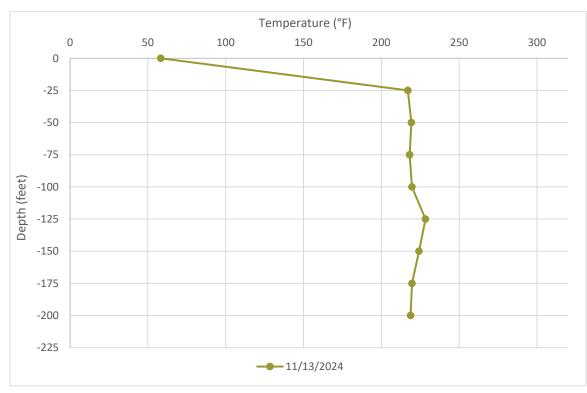



Figure B - 13 Average Temperatures Recorded by TP-4 on November 6, 2024

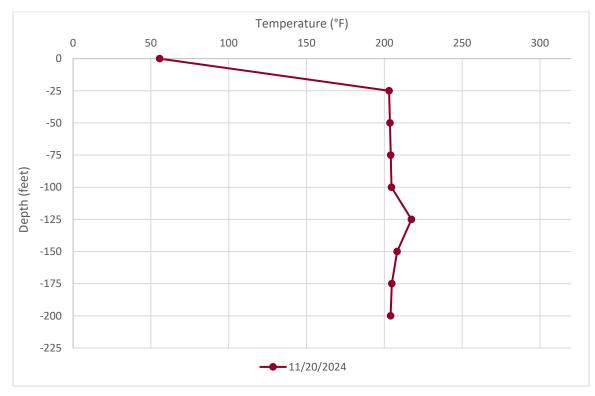


Figure B - 15 Average Temperatures Recorded by TP-4 on November 20, 2024

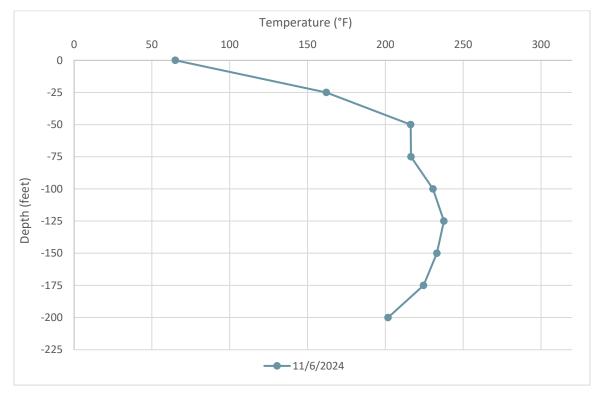
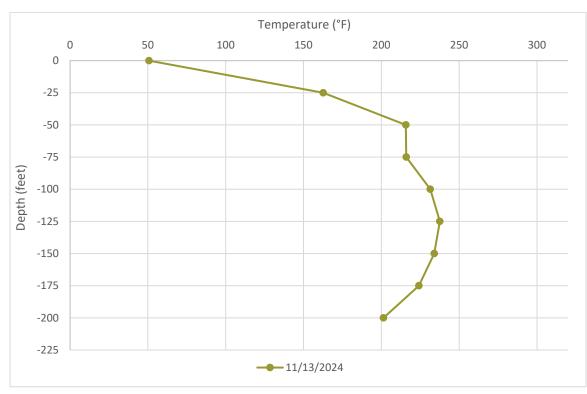



Figure B - 16 Average Temperatures Recorded by TP-5 on November 6, 2024

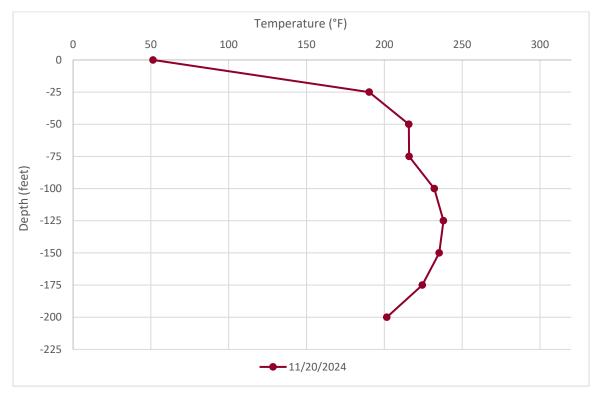
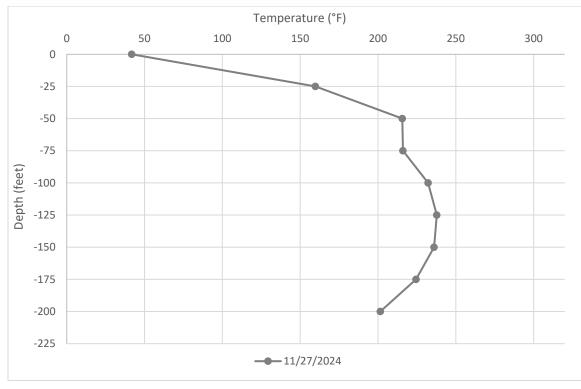



Figure B - 18 Average Temperatures Recorded by TP-5 on November 20, 2024

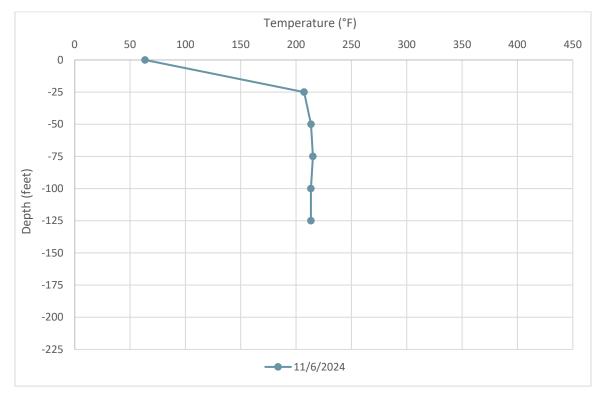
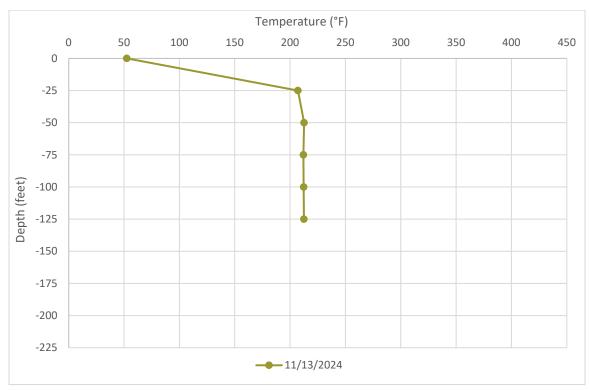



Figure B - 20 Average Temperatures Recorded by TP-6 on November 6, 2024

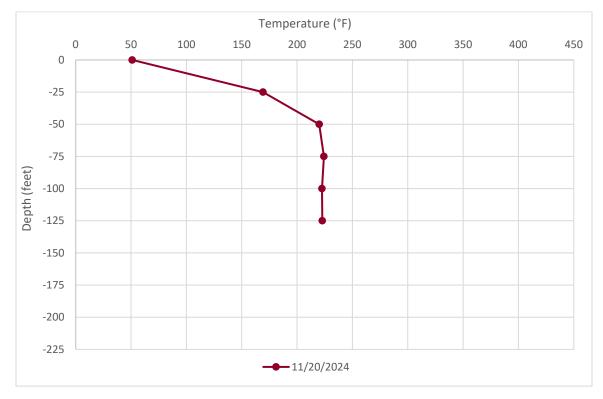
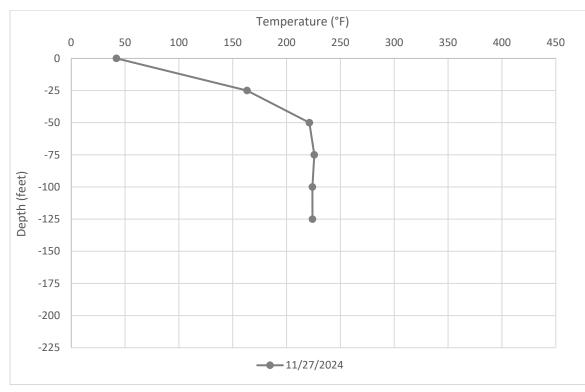



Figure B - 22 Average Temperatures Recorded by TP-6 on November 20, 2024

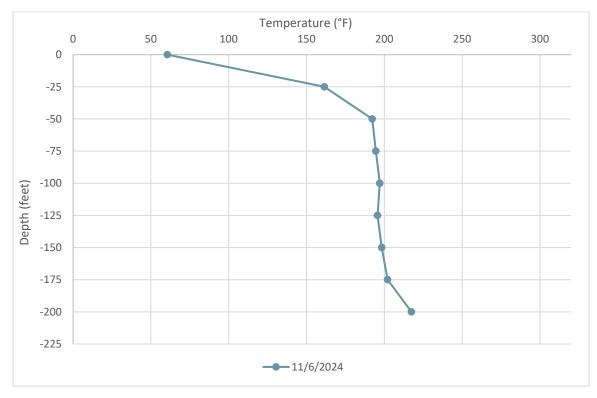
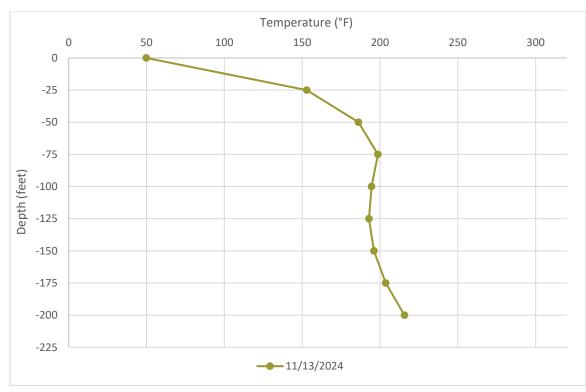



Figure B - 24 Average Temperatures Recorded by TP-7 on November 6, 2024

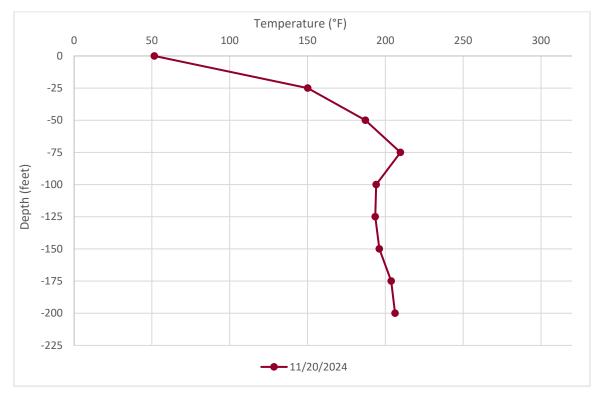
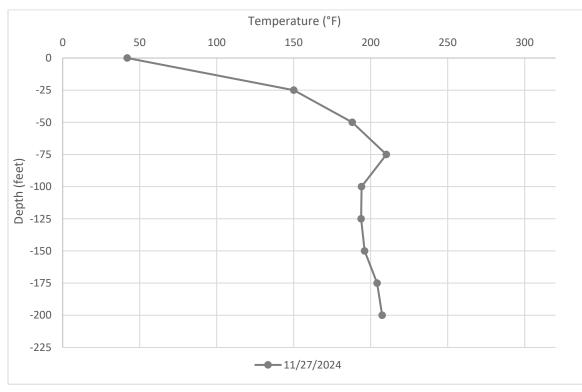



Figure B - 26 Average Temperatures Recorded by TP-7 on November 20, 2024

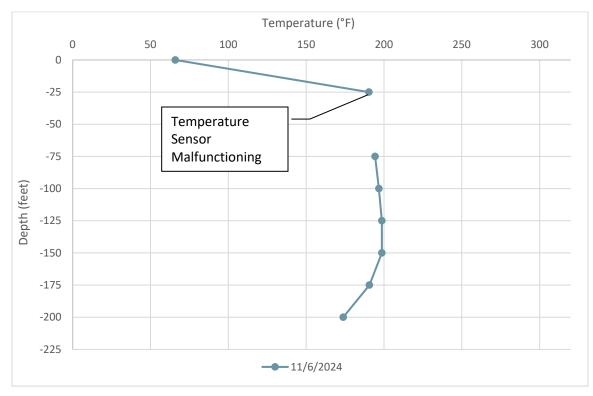
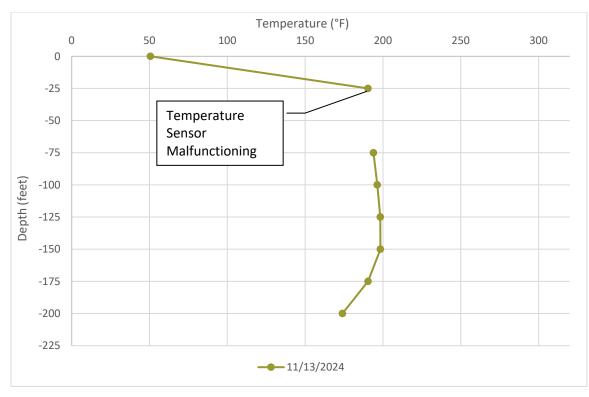



Figure B - 28 Average Temperatures Recorded by TP-8 on November 6, 2024

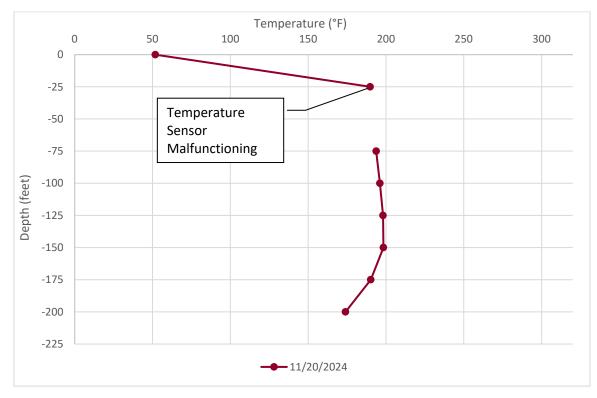
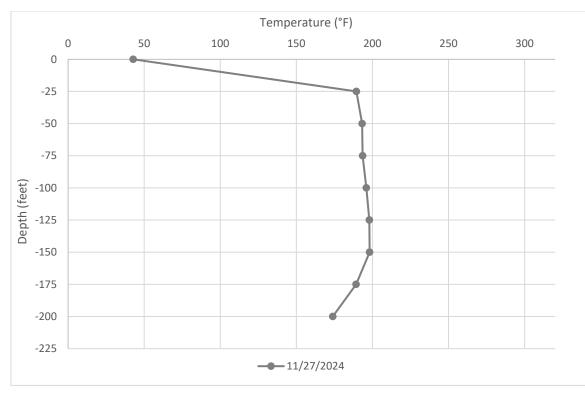



Figure B - 30 Average Temperatures Recorded by TP-8 on November 20, 2024

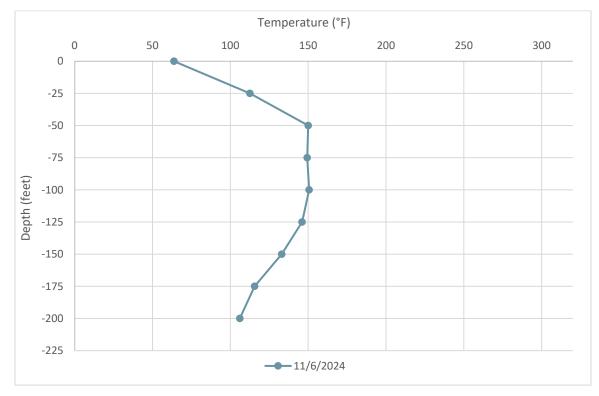
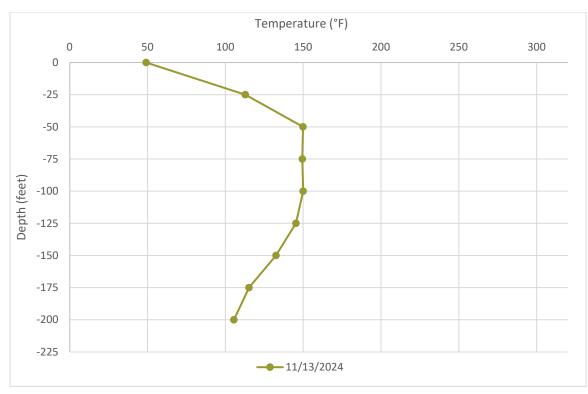



Figure B - 32 Average Temperatures Recorded by TP-9 on November 6, 2024

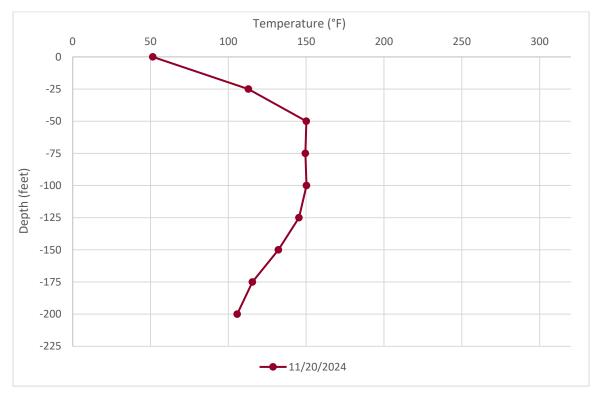
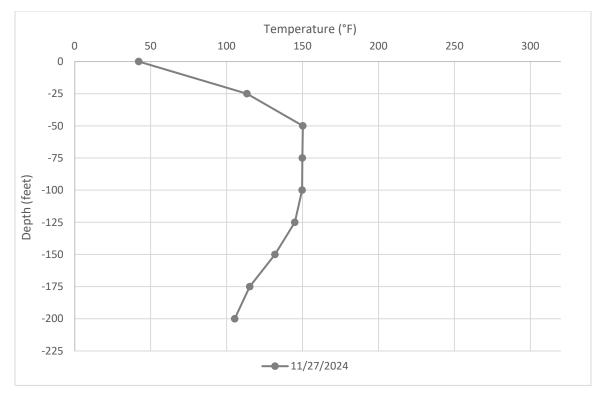



Figure B - 34 Average Temperatures Recorded by TP-9 on November 20, 2024

Appendix C

Daily Wellhead Temperature Averages

The data provided in this report represent initial readings provided by field instrumentation without Validation, analysis, quality assurance review, or context based on operating conditions. This report is subject to revision following quality assurance review and an analysis of operating conditions. SCS will continue to provide a supplemental report with additional information and further analysis on a monthly basis at a minimum.

SCS ENGINEERS

07222143.00 | December 2, 2024

274 Granite Run Drive Lancaster, PA 17601 717-550-6330

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	104.9	102.7	108.1
Nov 2	105.2	100.1	111.8
Nov 3	105.0	99.0	112.1
Nov 4	104.4	98.1	110.6
Nov 5	106.9	103.4	110.2
Nov 6	107.4	103.4	111.0
Nov 7	108.6	104.7	114.5
Nov 8	106.1	101.4	112.1
Nov 9	104.6	98.4	113.0
Nov 10	104.8	100.7	110.7
Nov 11	105.4	102.3	111.1
Nov 12	102.1	97.8	108.3
Nov 13	101.5	93.5	110.1
Nov 14	100.8	98.2	106.7
Nov 15	100.5	98.0	102.5
Nov 16	100.7	96.7	107.7
Nov 17	101.9	96.5	109.7
Nov 18	100.5	96.1	106.6
Nov 19	98.4	93.3	102.5
Nov 20	96.2	85.3	103.8
Nov 21	87.5	80.2	94.3
Nov 22	83.2	80.0	85.9
Nov 23	83.8	79.8	87.8
Nov 24	89.2	81.6	98.7
Nov 25	92.9	81.9	105.2
Nov 26	93.0	87.4	99.3
Nov 27	93.2	85.8	100.8
Nov 28	87.7	81.3	96.2
Nov 29	81.8	77.0	85.3
Summary	98.6	81.8	108.6

		-	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	108.9	105.8	112.0
Nov 20	106.6	95.7	111.6
Nov 21	97.0	89.7	105.1
Nov 22	92.1	88.9	95.0
Nov 23	96.7	92.8	102.5
Nov 24	103.1	98.1	106.8
Nov 25	105.8	97.8	112.7
Nov 26	104.4	98.5	109.9
Nov 27	104.4	97.3	109.9
Nov 28	99.8	94.1	107.7
Nov 29	96.1	88.4	102.3
Summary	38.4	0.0	108.9

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	90.2	85.8	93.2
Nov 2	92.3	83.5	104.8
Nov 3	93.9	86.6	105.1
Nov 4	91.9	86.6	101.6
Nov 5	93.3	89.3	103.0
Nov 6	93.9	87.1	101.4
Nov 7	98.1	93.2	107.8
Nov 8	94.8	89.5	102.3
Nov 9	95.2	86.4	109.3
Nov 10	92.3	88.8	96.9
Nov 11	90.3	86.5	95.5
Nov 12	88.0	82.0	99.2
Nov 13	87.7	80.6	98.6
Nov 14	83.7	78.6	88.4
Nov 15	85.5	83.6	87.8
Nov 16	84.7	79.2	95.7
Nov 17	83.8	74.9	96.1
Nov 18	86.4	76.8	97.1
Nov 19	88.5	84.0	92.3
Nov 20	87.5	76.9	93.0
Nov 21	75.1	67.7	80.8
Nov 22	69.6	65.3	75.0
Nov 23	76.9	69.7	82.3
Nov 24	86.6	76.2	95.2
Nov 25	89.3	80.4	97.8
Nov 26	89.1	83.0	94.0
Nov 27	88.0	80.5	93.8
Nov 28	81.2	75.1	89.4
Nov 29	76.8	68.4	82.2
Summary	87.4	69.6	98.1

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	0.0	0.0	0.0
Nov 21	0.0	0.0	0.0
Nov 22	0.0	0.0	0.0
Nov 23	0.0	0.0	0.0
Nov 24	0.0	0.0	0.0
Nov 25	108.4	106.0	110.3
Nov 26	107.3	105.2	108.8
Nov 27	106.7	103.9	108.9
Nov 28	106.4	105.4	108.2
Nov 29	105.5	104.0	106.7
Summary	18.4	0.0	108.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	115.5	113.9	116.9
Nov 20	114.0	111.6	116.0
Nov 21	110.1	107.4	112.6
Nov 22	108.9	107.8	110.9
Nov 23	110.3	108.5	111.5
Nov 24	112.1	109.9	114.9
Nov 25	113.0	109.9	116.2
Nov 26	112.6	109.9	115.0
Nov 27	112.2	109.4	115.3
Nov 28	110.8	109.3	112.7
Nov 29	109.1	107.1	110.9
Summary	42.4	0.0	115.5

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	17.0	17.4	17.4
Nov 2	17.9	18.4	18.4
Nov 3	19.0	19.5	19.5
Nov 4	20.0	20.5	20.5
Nov 5	21.0	21.5	21.5
Nov 6	22.0	22.5	22.5
Nov 7	23.0	23.5	23.5
Nov 8	24.0	24.4	24.4
Nov 9	24.9	25.4	25.4
Nov 10	25.9	26.4	26.4
Nov 11	26.9	27.4	27.4
Nov 12	27.9	28.4	28.4
Nov 13	28.9	29.4	29.4
Nov 14	29.9	30.4	30.4
Nov 15	30.9	31.4	31.4
Nov 16	31.9	32.4	32.4
Nov 17	32.9	33.4	33.4
Nov 18	33.9	34.4	34.4
Nov 19	34.9	35.4	35.4
Nov 20	35.9	36.4	36.4
Nov 21	36.9	37.4	37.4
Nov 22	38.1	37.3	40.3
Nov 23	41.7	36.1	48.2
Nov 24	42.7	30.7	61.4
Nov 25	49.3	32.0	72.7
Nov 26	52.5	36.0	62.5
Nov 27	45.9	32.4	60.3
Nov 28	45.8	38.3	50.0
Nov 29	36.6	29.9	41.2
Summary	31.7	17.0	52.5

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	52.2	40.8	69.7
Nov 21	41.2	35.5	54.7
Nov 22	39.4	35.5	44.4
Nov 23	44.5	40.0	51.1
Nov 24	46.7	34.6	67.8
Nov 25	51.9	35.7	73.9
Nov 26	55.0	38.9	70.3
Nov 27	49.4	35.6	64.1
Nov 28	48.1	41.2	52.4
Nov 29	38.9	29.9	44.1
Summary	16.1	0.0	55.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	61.5	57.7	64.3
Nov 2	61.9	48.4	82.6
Nov 3	62.5	52.0	83.2
Nov 4	61.3	49.9	75.3
Nov 5	65.8	57.6	79.3
Nov 6	67.0	52.8	83.2
Nov 7	71.2	61.3	91.3
Nov 8	64.9	52.4	79.4
Nov 9	61.9	45.6	83.1
Nov 10	60.0	53.1	66.2
Nov 11	60.2	51.0	71.8
Nov 12	77.6	42.8	111.2
Nov 13	121.0	86.8	144.9
Nov 14	146.5	135.1	153.6
Nov 15	150.1	144.1	154.4
Nov 16	149.9	146.6	153.6
Nov 17	152.3	148.0	155.7
Nov 18	154.2	149.3	157.5
Nov 19	155.0	152.9	157.2
Nov 20	153.6	144.6	157.1
Nov 21	147.6	140.7	153.8
Nov 22	145.2	141.1	148.8
Nov 23	149.1	146.1	153.7
Nov 24	152.9	150.2	155.3
Nov 25	154.1	150.2	157.1
Nov 26	152.7	148.1	156.5
Nov 27	153.6	149.4	156.2
Nov 28	150.2	144.3	155.9
Nov 29	147.4	141.5	153.1
Summary	114.2	60.0	155.0

		. 3	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	107.6	107.1	109.1
Nov 2	107.3	106.0	109.2
Nov 3	107.1	106.1	108.8
Nov 4	107.2	106.1	109.9
Nov 5	107.6	106.6	110.2
Nov 6	108.0	106.4	110.2
Nov 7	106.8	76.5	110.8
Nov 8	107.5	106.2	110.2
Nov 9	107.2	105.8	109.2
Nov 10	106.2	105.1	106.9
Nov 11	107.0	105.6	109.9
Nov 12	105.7	104.2	109.7
Nov 13	105.4	103.3	108.0
Nov 14	104.3	103.4	105.3
Nov 15	105.3	104.0	107.5
Nov 16	104.9	103.8	106.8
Nov 17	104.4	102.6	106.7
Nov 18	105.2	102.8	108.9
Nov 19	105.7	104.2	108.3
Nov 20	105.2	103.3	106.7
Nov 21	103.3	101.7	106.6
Nov 22	102.8	101.5	105.6
Nov 23	103.5	102.5	104.2
Nov 24	103.6	101.8	105.4
Nov 25	104.1	101.9	107.0
Nov 26	104.5	102.6	107.5
Nov 27	103.7	102.0	105.2
Nov 28	103.3	102.6	104.2
Nov 29	102.4	101.3	103.5
Summary	105.4	102.4	108.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	62.5	59.0	66.1
Nov 2	62.5	50.7	81.4
Nov 3	63.3	53.7	83.3
Nov 4	62.0	50.8	79.2
Nov 5	66.0	57.8	78.3
Nov 6	67.5	52.2	84.9
Nov 7	71.7	61.9	91.3
Nov 8	66.2	53.6	83.3
Nov 9	63.6	47.5	89.6
Nov 10	61.1	54.1	67.7
Nov 11	62.1	52.3	76.3
Nov 12	55.1	44.1	76.2
Nov 13	53.8	42.9	71.7
Nov 14	48.8	44.6	54.5
Nov 15	50.9	47.5	56.2
Nov 16	51.6	41.8	70.4
Nov 17	49.8	35.0	74.2
Nov 18	52.4	-12.7	72.8
Nov 19	56.6	48.1	64.8
Nov 20	56.9	39.5	70.5
Nov 21	39.6	34.1	49.6
Nov 22	37.0	33.8	40.6
Nov 23	41.9	35.9	48.6
Nov 24	42.5	29.9	64.7
Nov 25	48.3	30.5	71.8
Nov 26	51.4	34.2	63.4
Nov 27	45.0	30.5	59.9
Nov 28	44.9	37.2	48.9
Nov 29	34.9	25.9	40.7
Summary	54.1	34.9	71.7

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	186.2	186.0	186.5
Nov 2	186.7	186.1	187.7
Nov 3	189.3	186.5	197.7
Nov 4	194.2	189.1	199.1
Nov 5	193.2	188.8	198.8
Nov 6	192.9	183.4	198.9
Nov 7	180.1	166.9	190.9
Nov 8	181.8	169.6	188.7
Nov 9	164.9	162.9	169.2
Nov 10	161.2	159.6	162.7
Nov 11	174.9	158.2	186.7
Nov 12	187.6	186.3	188.9
Nov 13	178.8	164.0	188.6
Nov 14	163.3	162.4	164.5
Nov 15	160.1	158.7	161.8
Nov 16	157.4	156.7	158.7
Nov 17	157.6	156.6	158.5
Nov 18	157.4	156.0	158.0
Nov 19	155.9	154.8	157.0
Nov 20	153.6	139.3	155.1
Nov 21	152.7	151.4	154.7
Nov 22	151.8	151.3	152.5
Nov 23	151.7	151.4	152.0
Nov 24	152.2	151.4	152.9
Nov 25	152.5	151.3	153.5
Nov 26	152.4	151.5	153.2
Nov 27	152.4	151.8	153.1
Nov 28	151.1	150.2	152.6
Nov 29	150.0	149.1	151.1
Summary	167.0	150.0	194.2

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	127.2	121.2	132.3
Nov 2	125.2	115.3	138.4
Nov 3	123.2	112.4	140.0
Nov 4	127.7	114.9	138.4
Nov 5	132.3	126.3	142.0
Nov 6	132.3	120.3	142.0
Nov 7	133.5	127.0	143.1
Nov 8	128.1	127.9	137.0
Nov 9	127.3		
Nov 10		117.3 119.2	140.7
	126.1		132.7
Nov 11	136.9	119.8	173.3
Nov 12	117.9	111.1	133.0
Nov 13	114.7	102.6	127.2
Nov 14	111.7	103.3	116.5
Nov 15	118.4	114.4	121.3
Nov 16	118.9	113.0	130.2
Nov 17	119.6	110.6	131.7
Nov 18	120.1	109.9	131.6
Nov 19	117.6	68.5	122.3
Nov 20	117.7	106.4	126.7
Nov 21	107.7	97.9	117.3
Nov 22	104.2	100.8	108.5
Nov 23	109.4	106.1	113.7
Nov 24	113.4	105.0	123.4
Nov 25	117.7	107.3	130.2
Nov 26	117.1	108.5	124.1
Nov 27	115.9	105.7	123.5
Nov 28	111.1	105.6	122.2
Nov 29	106.6	99.0	114.0
Summary	120.1	104.2	136.9

_			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	174.8	171.9	182.8
Nov 2	169.9	167.0	171.5
Nov 3	165.6	163.2	169.0
Nov 4	162.8	155.7	170.2
Nov 5	161.4	159.0	165.5
Nov 6	160.7	156.6	163.1
Nov 7	160.1	156.5	162.7
Nov 8	157.5	152.5	162.3
Nov 9	155.7	151.9	163.7
Nov 10	154.6	148.2	159.6
Nov 11	155.0	147.9	158.6
Nov 12	153.0	149.1	158.0
Nov 13	150.5	144.8	155.5
Nov 14	148.2	143.5	152.4
Nov 15	150.9	147.0	154.2
Nov 16	151.0	147.2	156.4
Nov 17	150.5	144.6	156.0
Nov 18	158.8	73.2	188.7
Nov 19	189.8	188.2	191.4
Nov 20	178.8	171.7	189.0
Nov 21	165.7	158.7	171.2
Nov 22	158.7	156.3	162.7
Nov 23	158.1	156.3	160.4
Nov 24	159.3	155.2	164.2
Nov 25	160.7	153.7	167.5
Nov 26	159.4	154.4	164.9
Nov 27	157.0	151.3	161.0
Nov 28	153.1	148.6	158.9
Nov 29	150.1	144.4	156.1
Summary	159.7	148.2	189.8

Data			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	174.0	169.1	188.0
Nov 2	168.9	167.0	170.4
Nov 3	166.2	164.8	168.2
Nov 4	163.4	160.1	165.3
Nov 5	162.1	160.3	164.3
Nov 6	161.1	159.8	162.6
Nov 7	161.4	160.0	163.3
Nov 8	160.2	155.7	162.3
Nov 9	160.0	157.2	163.7
Nov 10	159.4	156.4	161.9
Nov 11	158.6	154.9	162.0
Nov 12	159.8	156.5	163.7
Nov 13	159.2	139.3	167.3
Nov 14	156.5	150.9	158.9
Nov 15	156.4	152.3	159.8
Nov 16	155.8	150.5	160.8
Nov 17	158.5	150.6	162.5
Nov 18	161.2	157.0	164.4
Nov 19	162.7	160.4	165.4
Nov 20	159.5	143.6	163.7
Nov 21	148.1	128.9	159.6
Nov 22	145.6	135.5	152.2
Nov 23	151.8	143.6	159.8
Nov 24	160.7	157.2	164.0
Nov 25	162.2	157.1	166.3
Nov 26	160.4	154.5	165.5
Nov 27	164.1	158.3	167.7
Nov 28	160.3	151.5	167.8
Nov 29	155.5	143.0	163.1
Summary	159.8	145.6	174.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	145.9	144.4	147.2
Nov 2	146.1	143.7	148.7
Nov 3	146.9	143.5	150.7
Nov 4	148.6	146.5	150.0
Nov 5	150.5	149.2	151.2
Nov 6	151.0	149.9	152.0
Nov 7	150.9	149.3	152.4
Nov 8	149.7	147.4	151.2
Nov 9	149.5	147.4	152.7
Nov 10	150.1	148.0	152.3
Nov 11	150.2	148.2	152.1
Nov 12	147.7	146.0	150.8
Nov 13	146.6	141.6	149.8
Nov 14	147.8	144.8	149.4
Nov 15	149.3	148.4	150.1
Nov 16	149.3	147.9	150.4
Nov 17	149.2	147.4	150.9
Nov 18	149.4	146.4	152.0
Nov 19	150.3	148.3	151.4
Nov 20	150.3	145.9	151.9
Nov 21	148.1	145.0	150.1
Nov 22	147.4	145.9	148.8
Nov 23	148.6	147.5	149.7
Nov 24	149.3	147.6	150.6
Nov 25	150.3	148.5	152.0
Nov 26	149.1	146.3	151.8
Nov 27	149.2	145.6	151.3
Nov 28	148.1	146.2	150.8
Nov 29	147.1	145.6	148.5
Summary	148.8	145.9	151.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	131.4	131.3	131.3
Nov 2	131.3	131.3	131.3
Nov 3	131.3	131.3	131.3
Nov 4	131.2	131.2	131.2
Nov 5	131.2	131.2	131.2
Nov 6	131.1	131.1	131.1
Nov 7	131.1	131.1	131.1
Nov 8	131.0	131.0	131.0
Nov 9	131.0	131.0	131.0
Nov 10	131.0	130.9	130.9
Nov 11	130.9	130.9	130.9
Nov 12	130.9	130.8	130.8
Nov 13	130.8	130.8	130.8
Nov 14	130.8	130.7	130.7
Nov 15	130.7	130.7	130.7
Nov 16	130.7	130.6	130.6
Nov 17	130.6	130.6	130.6
Nov 18	129.9	126.0	131.2
Nov 19	125.9	120.5	130.4
Nov 20	124.8	108.9	131.5
Nov 21	110.0	93.5	121.6
Nov 22	105.0	98.7	111.4
Nov 23	113.0	108.7	117.6
Nov 24	117.9	109.9	126.2
Nov 25	123.0	110.6	134.0
Nov 26	119.4	102.9	132.2
Nov 27	118.5	102.1	130.0
Nov 28	115.5	106.3	129.4
Nov 29	110.1	98.9	118.5
Summary	125.5	105.0	131.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	95.2	93.0	96.8
Nov 2	94.9	90.7	100.6
Nov 3	95.0	90.8	102.5
Nov 4	94.9	91.1	101.0
Nov 5	97.0	94.4	101.0
Nov 6	97.1	91.5	102.5
Nov 7	98.8	95.5	104.5
Nov 8	96.1	91.4	100.0
Nov 9	95.0	88.5	104.6
Nov 10	95.0	92.1	98.3
Nov 11	93.7	90.2	96.9
Nov 12	91.1	86.8	97.6
Nov 13	90.4	86.9	96.6
Nov 14	87.9	85.3	90.3
Nov 15	89.3	87.3	91.3
Nov 16	89.2	85.9	94.5
Nov 17	88.5	82.3	96.6
Nov 18	90.9	83.5	98.7
Nov 19	92.9	88.2	97.0
Nov 20	91.1	84.2	95.0
Nov 21	81.2	77.8	84.0
Nov 22	79.4	77.3	82.8
Nov 23	83.7	81.8	85.9
Nov 24	85.7	81.1	90.7
Nov 25	89.1	80.6	96.3
Nov 26	89.5	83.1	93.5
Nov 27	88.3	80.9	94.4
Nov 28	85.6	83.3	90.9
Nov 29	80.8	76.5	85.9
Summary	90.6	79.4	98.8

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	111.1	110.3	111.7
Nov 2	110.8	109.3	113.9
Nov 3	110.7	109.5	113.8
Nov 4	110.4	108.8	112.4
Nov 5	111.0	109.8	112.3
Nov 6	111.2	109.1	113.4
Nov 7	111.6	110.3	114.1
Nov 8	110.7	108.9	113.3
Nov 9	110.3	108.3	113.6
Nov 10	110.2	109.2	111.4
Nov 11	109.9	108.6	111.8
Nov 12	108.4	106.5	112.1
Nov 13	108.1	106.2	110.6
Nov 14	107.7	106.7	108.6
Nov 15	108.3	107.6	108.7
Nov 16	107.9	106.4	109.7
Nov 17	107.1	104.3	110.1
Nov 18	107.6	103.9	110.7
Nov 19	108.9	106.9	110.2
Nov 20	108.6	105.9	110.1
Nov 21	104.8	102.6	106.4
Nov 22	104.3	103.0	105.5
Nov 23	105.4	104.7	106.1
Nov 24	105.7	104.0	107.9
Nov 25	106.8	103.4	109.1
Nov 26	106.7	103.2	108.6
Nov 27	106.1	102.2	108.7
Nov 28	105.9	104.7	108.2
Nov 29	103.7	101.3	105.6
Summary	108.3	103.7	111.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	128.3	125.2	131.8
Nov 2	125.8	124.0	128.5
Nov 3	124.5	118.8	128.5
Nov 4	134.7	106.3	161.7
Nov 5	138.9	100.5	165.1
Nov 6	133.0	120.7	156.2
Nov 7	136.4	128.3	159.1
Nov 8	134.4	128.4	155.6
Nov 9	128.3	126.4	131.5
Nov 10	128.1	126.1	141.9
Nov 10	142.3	131.0	160.0
Nov 12	132.5	128.4	154.2
Nov 12	129.1	126.8	131.4
Nov 13	127.8	125.4	128.9
Nov 14	131.6	127.8	149.5
Nov 15	129.3	127.7	132.0
Nov 10	129.4	127.4	132.1
Nov 18	133.9	127.6	158.3
Nov 19	136.8	130.2	153.4
Nov 20	132.7	129.1	135.0
Nov 21	130.9	127.2	148.1
Nov 22	130.6	126.1	154.5
Nov 23	129.2	127.9	130.6
Nov 24	130.6	128.6	132.5
Nov 25	134.2	129.0	154.6
Nov 26	131.8	129.9	133.7
Nov 27	134.2	129.7	153.6
Nov 28	130.8	128.7	136.2
Nov 29	131.8	127.0	153.6
Summary	131.8	124.5	142.3

		•	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	157.4	156.9	156.9
Nov 2	156.5	156.0	156.0
Nov 3	155.5	155.1	155.1
Nov 4	154.6	154.2	154.2
Nov 5	153.7	153.3	153.3
Nov 6	152.8	152.3	152.3
Nov 7	151.9	151.4	151.4
Nov 8	151.0	150.5	150.5
Nov 9	150.1	149.6	149.6
Nov 10	149.2	148.7	148.7
Nov 11	148.3	147.8	147.8
Nov 12	147.4	146.9	146.9
Nov 13	146.4	146.0	146.0
Nov 14	145.5	145.1	145.1
Nov 15	144.6	144.2	144.2
Nov 16	143.7	143.3	143.3
Nov 17	142.8	142.4	142.4
Nov 18	141.8	140.8	141.8
Nov 19	141.1	140.3	142.0
Nov 20	140.5	138.8	141.5
Nov 21	139.0	137.8	139.6
Nov 22	138.5	138.0	139.3
Nov 23	138.5	138.0	139.1
Nov 24	139.3	138.6	140.5
Nov 25	139.8	138.3	141.4
Nov 26	140.0	139.0	140.8
Nov 27	140.3	139.1	141.3
Nov 28	139.2	138.2	140.8
Nov 29	138.0	136.8	138.8
Summary	145.8	138.0	157.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	101.3	98.1	103.6
Nov 2	101.4	94.8	111.7
Nov 3	101.5	93.9	111.8
Nov 4	105.5	92.2	118.2
Nov 5	116.9	114.1	119.9
Nov 6	117.0	114.8	119.2
Nov 7	117.0	114.6	121.3
Nov 8	114.0	110.1	118.4
Nov 9	112.7	108.0	120.4
Nov 10	110.1	106.6	114.0
Nov 11	109.0	104.8	113.4
Nov 12	104.6	98.6	112.2
Nov 13	102.1	94.6	111.1
Nov 14	97.1	93.9	104.0
Nov 15	98.9	96.9	100.6
Nov 16	97.5	93.5	107.7
Nov 17	97.1	90.2	108.1
Nov 18	104.6	89.2	116.3
Nov 19	109.8	106.8	112.6
Nov 20	106.5	99.2	111.1
Nov 21	94.8	86.5	100.7
Nov 22	88.5	86.3	92.0
Nov 23	89.5	86.7	92.6
Nov 24	93.4	85.6	101.6
Nov 25	96.8	86.1	108.6
Nov 26	97.6	90.7	105.5
Nov 27	94.9	87.9	101.8
Nov 28	89.8	84.9	96.9
Nov 29	83.5	78.0	88.4
Summary	101.8	83.5	117.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	61.7	57.8	64.3
Nov 2	61.0	47.8	81.4
Nov 3	61.7	51.1	79.4
Nov 4	61.0	49.3	75.0
Nov 5	65.6	57.2	83.2
Nov 6	66.6	53.0	82.0
Nov 7	70.4	61.7	88.5
Nov 8	64.5	51.4	77.6
Nov 9	61.3	44.4	81.6
Nov 10	59.9	53.4	66.4
Nov 11	64.3	55.3	80.8
Nov 12	60.4	44.8	82.5
Nov 13	70.5	47.3	92.2
Nov 14	75.8	70.0	81.5
Nov 15	82.0	76.0	90.3
Nov 16	83.4	78.3	97.4
Nov 17	83.9	73.6	99.5
Nov 18	85.8	73.9	98.5
Nov 19	86.9	80.3	93.5
Nov 20	84.7	74.9	94.0
Nov 21	70.6	61.9	80.6
Nov 22	65.1	61.1	71.7
Nov 23	69.8	64.6	74.5
Nov 24	75.8	65.6	87.8
Nov 25	79.0	66.9	94.4
Nov 26	80.2	69.9	89.1
Nov 27	76.4	66.4	86.0
Nov 28	72.3	67.7	78.5
Nov 29	64.9	59.5	69.7
Summary	71.2	59.9	86.9

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	88.1	83.4	91.1
Nov 2	89.8	79.4	103.8
Nov 3	89.9	79.6	101.6
Nov 4	88.1	80.8	96.2
Nov 5	91.3	83.7	99.6
Nov 6	94.1	82.4	104.4
Nov 7	96.3	88.4	108.0
Nov 8	90.0	81.0	99.5
Nov 9	89.7	76.1	104.6
Nov 10	86.8	81.0	92.9
Nov 11	101.5	79.1	118.6
Nov 12	113.0	109.6	118.4
Nov 13	114.1	106.2	120.5
Nov 14	112.5	108.8	116.4
Nov 15	113.7	110.0	115.7
Nov 16	113.6	110.7	117.8
Nov 17	113.9	108.1	120.4
Nov 18	115.2	109.3	120.7
Nov 19	116.2	112.0	120.1
Nov 20	114.4	106.9	117.7
Nov 21	104.9	100.0	110.0
Nov 22	101.4	98.4	104.6
Nov 23	104.7	101.9	108.3
Nov 24	108.2	101.5	113.6
Nov 25	110.9	103.2	117.7
Nov 26	111.3	106.4	115.2
Nov 27	110.1	103.5	116.7
Nov 28	107.3	103.6	111.6
Nov 29	102.0	97.5	105.5
Summary	103.2	86.8	116.2

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	61.8	58.4	65.2
Nov 2	62.2	48.6	82.6
Nov 3	62.3	51.5	81.1
Nov 4	61.3	49.4	77.3
Nov 5	65.9	57.1	81.6
Nov 6	67.0	52.9	82.7
Nov 7	71.0	61.4	88.8
Nov 8	65.3	51.8	80.9
Nov 9	62.0	44.7	85.4
Nov 10	60.2	53.5	66.8
Nov 11	92.8	57.3	122.6
Nov 12	135.8	117.0	149.7
Nov 13	151.6	147.3	154.3
Nov 14	152.6	150.7	154.4
Nov 15	153.8	152.7	154.7
Nov 16	153.8	152.7	155.0
Nov 17	154.1	152.3	155.7
Nov 18	154.4	152.4	155.7
Nov 19	154.3	153.2	155.1
Nov 20	153.4	150.5	154.8
Nov 21	150.2	148.2	152.2
Nov 22	149.4	148.1	150.3
Nov 23	150.4	149.2	151.9
Nov 24	151.6	150.4	152.7
Nov 25	152.1	149.9	153.5
Nov 26	151.6	150.1	153.1
Nov 27	151.0	149.7	152.5
Nov 28	149.1	147.1	151.9
Nov 29	147.7	145.2	150.0
Summary	118.9	60.2	154.4

		5	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	151.1	148.5	152.6
Nov 2	151.3	149.2	153.8
Nov 3	150.9	149.2	153.1
Nov 4	150.8	148.9	152.7
Nov 5	151.9	150.4	153.3
Nov 6	151.9	149.8	153.4
Nov 7	152.7	150.9	154.8
Nov 8	151.2	147.1	153.2
Nov 9	151.5	149.4	154.4
Nov 10	151.1	149.2	153.5
Nov 11	150.8	148.3	152.5
Nov 12	149.8	147.5	152.8
Nov 13	149.0	146.4	151.7
Nov 14	148.3	145.2	151.0
Nov 15	150.0	148.1	151.5
Nov 16	149.9	148.0	151.7
Nov 17	149.8	146.5	152.4
Nov 18	150.4	146.3	153.5
Nov 19	151.6	149.4	153.4
Nov 20	151.0	144.5	153.1
Nov 21	145.6	140.3	150.2
Nov 22	145.1	143.3	147.4
Nov 23	147.5	145.6	148.9
Nov 24	148.8	146.8	151.4
Nov 25	150.8	147.1	153.0
Nov 26	150.1	147.7	152.8
Nov 27	150.2	146.1	153.1
Nov 28	148.8	144.1	152.6
Nov 29	146.4	141.2	150.7
Summary	149.9	145.1	152.7

		5	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	182.8	171.2	195.9
Nov 2	164.9	160.5	170.0
Nov 3	155.3	151.7	159.5
Nov 4	158.4	148.5	174.0
Nov 5	177.1	174.1	179.0
Nov 6	179.9	178.0	181.9
Nov 7	170.8	161.5	181.8
Nov 8	158.5	154.0	161.7
Nov 9	153.9	149.8	158.3
Nov 10	151.9	148.5	155.3
Nov 11	152.4	150.2	154.7
Nov 12	150.3	147.7	153.4
Nov 13	147.4	143.4	150.9
Nov 14	147.2	145.7	149.5
Nov 15	147.0	145.3	149.3
Nov 16	147.1	145.9	149.9
Nov 17	147.7	144.7	152.1
Nov 18	149.4	146.3	152.9
Nov 19	150.2	148.2	153.4
Nov 20	147.9	138.7	152.2
Nov 21	141.5	136.7	145.5
Nov 22	140.1	135.4	142.2
Nov 23	141.3	139.0	143.2
Nov 24	144.0	140.1	147.3
Nov 25	146.6	140.8	150.6
Nov 26	146.0	141.7	150.1
Nov 27	146.9	142.2	150.4
Nov 28	144.3	138.9	150.0
Nov 29	140.8	135.3	145.1
Summary	152.8	140.1	182.8

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	142.9	139.5	157.3
Nov 2	138.0	135.7	140.1
Nov 3	132.8	110.3	136.8
Nov 4	108.2	49.7	155.4
Nov 4	129.5	59.4	158.5
Nov 6	125.3	53.1	157.4
Nov 0 Nov 7	143.1	139.8	156.5
Nov 8	142.8	139.4	155.8
Nov 9	138.3	136.3	139.4
Nov 10	134.7	133.1	136.3
Nov 10	142.6	133.1	154.6
Nov 12	143.6	139.1	155.0
Nov 12	143.6	137.6	155.0
Nov 14	137.5	136.4	139.6
Nov 14	140.6	135.9	155.5
Nov 16	137.2	135.8	139.4
Nov 10	135.8	134.7	137.0
Nov 18	139.9	133.8	153.0
Nov 19	142.2	137.3	155.2
Nov 20	138.1	135.7	140.8
Nov 21	139.9	135.5	153.0
Nov 22	140.4	135.5	152.0
Nov 23	137.2	136.1	139.5
Nov 24	135.7	134.9	136.6
Nov 25	139.5	134.0	152.4
Nov 26	134.8	130.7	139.6
Nov 27	139.9	132.1	152.7
Nov 28	137.1	135.3	140.9
Nov 29	134.2	132.7	135.8
Summary	137.1	108.2	143.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	101.6	101.0	102.1
Nov 20	101.1	99.8	102.2
Nov 21	99.2	97.7	101.1
Nov 22	97.9	96.9	98.9
Nov 23	99.6	98.4	100.6
Nov 24	101.2	99.7	103.3
Nov 25	102.0	100.2	104.5
Nov 26	101.9	100.6	102.9
Nov 27	101.1	99.7	102.3
Nov 28	100.0	99.3	101.2
Nov 29	99.7	99.2	100.2
Summary	38.1	0.0	102.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	60.6	56.1	67.6
Nov 20	54.9	36.3	71.1
Nov 21	37.6	31.8	48.4
Nov 22	36.1	32.1	42.8
Nov 23	41.3	34.5	49.4
Nov 24	42.8	30.6	70.1
Nov 25	48.7	31.1	79.2
Nov 26	53.4	35.7	74.3
Nov 27	44.9	31.4	61.9
Nov 28	45.0	37.1	48.9
Nov 29	36.6	29.8	46.0
Summary	17.3	0.0	60.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	134.9	133.5	135.4
Nov 20	134.4	131.5	135.7
Nov 21	131.7	125.5	134.9
Nov 22	130.8	126.7	133.3
Nov 23	133.0	132.0	134.6
Nov 24	134.4	133.3	135.1
Nov 25	135.1	133.5	136.5
Nov 26	134.0	131.7	136.0
Nov 27	134.6	132.3	136.2
Nov 28	133.9	132.0	135.9
Nov 29	132.9	131.0	134.4
Summary	50.7	0.0	135.1

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	138.4	137.2	139.2
Nov 20	137.3	133.7	138.9
Nov 21	134.8	131.8	137.0
Nov 22	133.6	132.2	135.4
Nov 23	134.7	133.4	136.6
Nov 24	136.9	135.4	138.6
Nov 25	137.7	135.6	140.2
Nov 26	137.2	135.7	138.9
Nov 27	137.6	135.3	139.2
Nov 28	136.0	134.5	138.2
Nov 29	134.7	132.1	136.7
Summary	51.7	0.0	138.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	80.3	78.3	82.8
Nov 20	77.0	69.7	83.2
Nov 21	66.7	62.1	72.0
Nov 22	64.3	60.9	70.5
Nov 23	68.1	65.1	72.1
Nov 24	71.7	65.0	82.5
Nov 25	74.5	65.8	86.9
Nov 26	76.1	67.8	85.8
Nov 27	72.6	65.0	80.3
Nov 28	70.5	66.8	74.0
Nov 29	65.2	61.2	70.3
Summary	27.1	0.0	80.3

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	131.3	127.8	133.7
Nov 20	128.4	118.4	132.4
Nov 21	123.0	116.8	128.8
Nov 22	119.3	117.3	121.8
Nov 23	120.3	117.4	123.9
Nov 24	125.2	120.1	128.0
Nov 25	127.4	121.5	133.2
Nov 26	126.5	120.3	131.8
Nov 27	128.9	124.7	134.2
Nov 28	124.7	117.4	131.9
Nov 29	119.9	116.0	124.1
Summary	47.4	0.0	131.3

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	67.1	61.4	71.8
Nov 20	60.7	45.2	79.4
Nov 21	43.7	35.7	60.4
Nov 22	38.3	34.4	45.5
Nov 23	44.2	40.1	52.8
Nov 24	49.7	33.4	76.0
Nov 25	54.5	36.0	85.0
Nov 26	59.0	43.5	73.0
Nov 27	52.4	38.4	68.5
Nov 28	48.1	39.8	55.0
Nov 29	38.2	29.8	46.6
Summary	19.2	0.0	67.1

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	126.3	126.1	126.5
Nov 20	126.1	125.8	126.3
Nov 21	125.6	125.3	125.8
Nov 22	125.4	125.3	125.6
Nov 23	125.6	125.2	125.8
Nov 24	125.9	125.6	126.3
Nov 25	125.9	125.6	126.3
Nov 26	125.9	125.7	126.1
Nov 27	125.9	125.5	126.3
Nov 28	125.7	125.5	126.0
Nov 29	125.5	125.2	125.7
Summary	47.7	0.0	126.3

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	62.2	56.7	68.1
Nov 20	56.5	39.0	72.7
Nov 21	38.7	32.0	52.6
Nov 22	35.9	31.6	41.8
Nov 23	41.3	36.6	48.5
Nov 24	45.4	30.8	69.2
Nov 25	50.8	32.5	77.5
Nov 26	55.6	39.5	72.0
Nov 27	46.8	33.7	61.8
Nov 28	45.5	38.2	49.4
Nov 29	36.6	29.9	46.3
Summary	17.8	0.0	62.2

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	111.2	109.8	113.1
Nov 21	108.3	105.4	111.2
Nov 22	105.2	103.7	108.1
Nov 23	105.8	103.2	110.6
Nov 24	111.5	109.7	114.6
Nov 25	110.0	107.4	114.3
Nov 26	108.5	106.8	111.3
Nov 27	107.2	105.3	110.2
Nov 28	102.3	99.7	107.1
Nov 29	100.0	97.5	102.5
Summary	36.9	0.0	111.5

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	63.1	65.0	65.0
Nov 2	66.8	68.7	68.7
Nov 3	70.6	72.5	72.5
Nov 4	74.3	76.2	76.2
Nov 5	78.0	79.9	79.9
Nov 6	81.7	83.6	83.6
Nov 7	85.4	87.3	87.3
Nov 8	89.1	91.0	91.0
Nov 9	92.8	94.7	94.7
Nov 10	96.5	98.4	98.4
Nov 11	100.2	102.1	102.1
Nov 12	103.9	105.7	105.7
Nov 13	107.6	109.4	109.4
Nov 14	111.3	113.1	113.1
Nov 15	115.0	116.8	116.8
Nov 16	118.7	120.5	120.5
Nov 17	122.4	124.2	124.2
Nov 18	126.1	127.9	127.9
Nov 19	129.8	131.6	131.6
Nov 20	133.4	135.3	135.3
Nov 21	137.1	139.0	139.0
Nov 22	140.8	139.2	144.1
Nov 23	144.4	141.9	147.8
Nov 24	147.4	144.2	149.8
Nov 25	148.2	144.2	150.3
Nov 26	146.6	142.1	150.2
Nov 27	146.9	143.3	149.3
Nov 28	143.7	137.4	148.7
Nov 29	141.4	135.2	146.1
Summary	112.5	63.1	148.2

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	0.0	0.0	0.0
Nov 21	0.0	0.0	0.0
Nov 22	0.0	0.0	0.0
Nov 23	0.0	0.0	0.0
Nov 24	0.0	0.0	0.0
Nov 25	58.0	31.8	76.3
Nov 26	53.2	35.3	69.3
Nov 27	45.5	31.0	62.9
Nov 28	44.5	36.1	48.9
Nov 29	35.4	29.8	44.7
Summary	8.2	0.0	58.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	180.9	177.7	182.4
Nov 21	179.1	176.0	182.2
Nov 22	178.2	176.5	179.2
Nov 23	179.0	177.4	180.8
Nov 24	180.3	179.1	181.6
Nov 25	180.8	179.1	182.1
Nov 26	179.9	176.0	182.0
Nov 27	180.3	178.6	181.8
Nov 28	178.4	175.3	181.4
Nov 29	176.5	172.5	179.0
Summary	61.8	0.0	180.9

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	178.6	175.9	179.8
Nov 21	177.0	173.9	179.7
Nov 22	176.2	173.5	178.1
Nov 23	177.0	174.9	179.3
Nov 24	178.9	177.8	179.8
Nov 25	179.4	177.5	180.4
Nov 26	178.8	177.1	180.4
Nov 27	179.6	178.2	180.6
Nov 28	178.1	174.1	180.6
Nov 29	176.3	172.4	179.1
Summary	61.4	0.0	179.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	185.3	183.1	186.1
Nov 21	184.1	180.8	186.3
Nov 22	183.4	182.4	184.4
Nov 23	184.1	183.3	185.8
Nov 24	185.2	184.0	186.0
Nov 25	185.5	184.6	186.3
Nov 26	184.9	183.3	186.2
Nov 27	185.2	184.1	185.9
Nov 28	184.1	182.1	185.7
Nov 29	183.1	181.0	184.7
Summary	63.6	0.0	185.5

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	0.0	0.0	0.0
Nov 21	0.0	0.0	0.0
Nov 22	0.0	0.0	0.0
Nov 23	0.0	0.0	0.0
Nov 24	0.0	0.0	0.0
Nov 25	57.7	31.3	76.9
Nov 26	52.6	35.4	65.0
Nov 27	46.3	30.7	64.6
Nov 28	45.1	35.8	51.0
Nov 29	35.0	29.8	40.0
Summary	8.2	0.0	57.7

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	149.7	148.8	150.5
Nov 21	149.5	148.0	151.5
Nov 22	149.1	148.4	150.3
Nov 23	149.4	148.7	150.3
Nov 24	150.6	149.8	151.4
Nov 25	150.8	149.9	151.9
Nov 26	150.6	149.1	151.3
Nov 27	151.0	150.2	151.8
Nov 28	149.8	148.8	151.3
Nov 29	149.4	148.5	150.3
Summary	51.7	0.0	151.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	145.8	145.5	146.3
Nov 21	145.7	145.3	146.1
Nov 22	145.5	145.2	145.8
Nov 23	145.6	145.3	145.8
Nov 24	145.9	145.5	146.3
Nov 25	146.2	145.6	147.1
Nov 26	146.3	145.8	146.6
Nov 27	146.6	146.0	147.0
Nov 28	146.3	145.8	146.9
Nov 29	145.9	145.4	146.3
Summary	50.3	0.0	146.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	156.6	144.4	161.1
Nov 21	151.3	139.0	161.2
Nov 22	149.2	141.4	154.5
Nov 23	154.8	150.2	161.3
Nov 24	160.3	157.1	163.3
Nov 25	161.2	158.2	163.7
Nov 26	159.3	152.5	163.1
Nov 27	160.5	156.0	163.1
Nov 28	155.8	146.3	163.0
Nov 29	153.4	143.3	162.1
Summary	53.9	0.0	161.2

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	159.2	158.9	159.9
Nov 21	159.3	158.8	159.6
Nov 22	158.9	158.3	159.7
Nov 23	158.7	158.2	159.1
Nov 24	159.2	158.6	160.0
Nov 25	159.5	158.2	160.4
Nov 26	159.7	159.0	160.3
Nov 27	160.1	159.7	160.7
Nov 28	159.2	158.8	160.3
Nov 29	158.6	158.2	159.0
Summary	54.9	0.0	160.1

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	0.0	0.0	0.0
Nov 21	0.0	0.0	0.0
Nov 22	0.0	0.0	0.0
Nov 23	0.0	0.0	0.0
Nov 24	0.0	0.0	0.0
Nov 25	190.6	189.7	191.5
Nov 26	190.2	189.4	191.1
Nov 27	190.5	189.7	191.3
Nov 28	189.0	188.0	190.3
Nov 29	188.2	186.8	189.5
Summary	32.7	0.0	190.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	0.0	0.0	0.0
Nov 21	0.0	0.0	0.0
Nov 22	0.0	0.0	0.0
Nov 23	0.0	0.0	0.0
Nov 24	0.0	0.0	0.0
Nov 25	147.5	147.0	148.0
Nov 26	147.4	147.0	147.7
Nov 27	147.6	147.1	148.0
Nov 28	147.3	146.8	147.9
Nov 29	147.0	146.7	147.3
Summary	25.4	0.0	147.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	0.0	0.0	0.0
Nov 21	0.0	0.0	0.0
Nov 22	0.0	0.0	0.0
Nov 23	0.0	0.0	0.0
Nov 24	0.0	0.0	0.0
Nov 25	168.0	166.6	168.8
Nov 26	167.2	165.1	168.6
Nov 27	167.2	165.9	168.0
Nov 28	165.0	162.4	167.4
Nov 29	163.9	161.0	165.8
Summary	28.7	0.0	168.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	0.0	0.0	0.0
Nov 21	0.0	0.0	0.0
Nov 22	0.0	0.0	0.0
Nov 23	0.0	0.0	0.0
Nov 24	0.0	0.0	0.0
Nov 25	173.7	164.0	180.4
Nov 26	168.7	151.4	180.5
Nov 27	174.4	167.6	180.5
Nov 28	159.0	135.9	179.8
Nov 29	146.5	112.1	171.5
Summary	28.4	0.0	174.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	0.0	0.0	0.0
Nov 21	0.0	0.0	0.0
Nov 22	0.0	0.0	0.0
Nov 23	0.0	0.0	0.0
Nov 24	0.0	0.0	0.0
Nov 25	161.4	144.1	189.2
Nov 26	158.1	148.4	188.7
Nov 27	157.3	146.3	188.7
Nov 28	147.3	145.1	152.4
Nov 29	143.5	139.9	147.7
Summary	26.5	0.0	161.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	0.0	0.0	0.0
Nov 21	0.0	0.0	0.0
Nov 22	0.0	0.0	0.0
Nov 23	0.0	0.0	0.0
Nov 24	0.0	0.0	0.0
Nov 25	179.8	179.4	180.5
Nov 26	179.5	178.9	180.1
Nov 27	179.7	179.1	180.5
Nov 28	179.4	178.3	180.6
Nov 29	175.1	169.5	179.3
Summary	30.8	0.0	179.8

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	0.0	0.0	0.0
Nov 21	0.0	0.0	0.0
Nov 22	0.0	0.0	0.0
Nov 23	0.0	0.0	0.0
Nov 24	0.0	0.0	0.0
Nov 25	135.1	134.1	135.7
Nov 26	134.4	133.8	135.1
Nov 27	134.3	133.3	135.0
Nov 28	134.2	133.6	134.6
Nov 29	133.9	133.4	134.3
Summary	23.2	0.0	135.1

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	0.0	0.0	0.0
Nov 21	0.0	0.0	0.0
Nov 22	0.0	0.0	0.0
Nov 23	0.0	0.0	0.0
Nov 24	0.0	0.0	0.0
Nov 25	150.3	148.6	150.8
Nov 26	149.2	147.2	150.4
Nov 27	149.7	148.0	150.8
Nov 28	148.7	145.4	151.0
Nov 29	148.0	145.2	149.9
Summary	25.7	0.0	150.3

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	0.0	0.0	0.0
Nov 21	0.0	0.0	0.0
Nov 22	0.0	0.0	0.0
Nov 23	0.0	0.0	0.0
Nov 24	0.0	0.0	0.0
Nov 25	167.8	162.9	169.0
Nov 26	166.3	162.2	169.5
Nov 27	168.9	166.2	170.1
Nov 28	164.7	158.9	169.7
Nov 29	162.4	158.6	165.0
Summary	28.6	0.0	168.9

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	0.0	0.0	0.0
Nov 21	0.0	0.0	0.0
Nov 22	0.0	0.0	0.0
Nov 23	0.0	0.0	0.0
Nov 24	0.0	0.0	0.0
Nov 25	72.7	38.7	121.2
Nov 26	81.8	54.7	135.6
Nov 27	53.3	45.0	66.9
Nov 28	47.8	40.5	52.1
Nov 29	37.6	29.9	43.6
Summary	10.1	0.0	81.8

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	0.0	0.0	0.0
Nov 2	0.0	0.0	0.0
Nov 3	0.0	0.0	0.0
Nov 4	0.0	0.0	0.0
Nov 5	0.0	0.0	0.0
Nov 6	0.0	0.0	0.0
Nov 7	0.0	0.0	0.0
Nov 8	0.0	0.0	0.0
Nov 9	0.0	0.0	0.0
Nov 10	0.0	0.0	0.0
Nov 11	0.0	0.0	0.0
Nov 12	0.0	0.0	0.0
Nov 13	0.0	0.0	0.0
Nov 14	0.0	0.0	0.0
Nov 15	0.0	0.0	0.0
Nov 16	0.0	0.0	0.0
Nov 17	0.0	0.0	0.0
Nov 18	0.0	0.0	0.0
Nov 19	0.0	0.0	0.0
Nov 20	0.0	0.0	0.0
Nov 21	0.0	0.0	0.0
Nov 22	0.0	0.0	0.0
Nov 23	0.0	0.0	0.0
Nov 24	0.0	0.0	0.0
Nov 25	142.4	141.3	143.1
Nov 26	141.8	141.2	142.6
Nov 27	142.1	141.0	142.9
Nov 28	141.3	140.3	142.6
Nov 29	140.7	140.3	141.2
Summary	24.4	0.0	142.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Nov 1	118.1	114.7	119.9
Nov 2	138.0	135.7	140.1
Nov 3	115.4	110.1	120.5
Nov 4	108.2	49.7	155.4
Nov 5	119.5	117.4	122.6
Nov 6	125.3	53.1	157.4
Nov 7	121.4	118.8	125.7
Nov 8	142.8	139.4	155.8
Nov 9	116.0	109.8	123.4
Nov 10	134.7	133.1	136.3
Nov 11	116.7	113.5	119.4
Nov 12	143.6	139.1	155.0
Nov 13	111.2	106.1	116.0
Nov 14	137.5	136.4	139.6
Nov 15	111.6	110.0	113.6
Nov 16	137.2	135.8	139.4
Nov 17	111.8	106.8	118.2
Nov 18	139.9	133.8	153.0
Nov 19	115.4	112.0	119.7
Nov 20	138.1	135.7	140.8
Nov 21	105.0	102.5	108.0
Nov 22	140.4	135.5	152.0
Nov 23	106.6	104.2	109.9
Nov 24	135.7	134.9	136.6
Nov 25	112.5	105.0	118.7
Nov 26	134.8	130.7	139.6
Nov 27	110.9	104.6	115.2
Nov 28	137.1	135.3	140.9
Nov 29	104.4	100.6	108.8
Summary	113.0	103.2	121.4

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

Appendix D Table of Contents

Section Page
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 1 D-3
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 2 D-4
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 3 D-5
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 4 D-6
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 5 D-7
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 6 D-8
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 7 D-9
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 8D-10
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 9D-11

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft				
1-Nov	166.7	215.5	216.0	229.9	243.7	265.4				
2-Nov	166.6	215.6	216.1	230.3	244.8	265.7				
3-Nov	166.8	215.7	216.2	230.0	244.9	265.7				
4-Nov	166.6	215.8	216.1	229.5	243.8	265.5				
5-Nov	166.9	215.9	216.3	229.8	243.8	265.7				
6-Nov	166.9	216.0	216.3	229.9	244.0	265.7				
7-Nov	167.1	216.1	216.5	230.1	244.2	266.0				
8-Nov	166.9	216.0	216.5	229.9	244.0	265.8				
9-Nov	166.8	215.9	216.4	229.7	243.8	265.7				
10-Nov	166.7	215.9	216.3	229.5	243.6	265.4				
11-Nov	166.9	216.0	216.4	229.6	243.8	265.5				
12-Nov	166.5	215.7	216.2	229.3	243.5	265.3				
13-Nov	166.5	215.7	216.2	229.2	243.2	265.2				
14-Nov	166.3	215.5	215.9	228.9	242.9	265.0				
15-Nov	166.4	215.7	216.1	229.1	243.0	265.1				
16-Nov	166.5	215.7	216.3	229.2	243.1	265.2				
17-Nov	166.4	215.8	216.3	229.1	243.0	265.2				
18-Nov	166.5	215.9	216.4	229.2	243.1	265.2				
19-Nov	166.7	216.1	216.5	229.2	243.1	265.3				
20-Nov	166.7	216.2	216.7	229.3	243.2	265.3				
21-Nov	166.1	215.6	216.1	228.6	242.4	264.6				
22-Nov	166.0	215.6	216.1	228.6	242.4	264.6				
23-Nov	166.0	215.8	216.3	228.7	242.5	264.7				
24-Nov	166.2	216.1	216.6	228.8	242.4	264.8				
25-Nov	166.4	216.4	216.9	228.9	242.4	265.0				
26-Nov	166.6	216.7	217.1	229.0	242.5	265.0				
27-Nov	166.3	216.4	216.9	228.8	242.2	264.8				
28-Nov	166.1	216.4	216.9	228.7	242.0	264.8				
29-Nov	165.8	216.2	216.6	228.4	241.5	264.4				
30-Nov	165.7	216.2	216.6	228.4	241.6	264.4				
Average	166.5	215.9	216.4	229.2	243.1	265.2				

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft				
1-Nov	157.1	237.3	244.1	260.2	246.8	264.7				
2-Nov	157.3	237.4	246.3	260.2	246.9	275.7				
3-Nov	157.3	237.4	244.5	261.2	246.8	271.4				
4-Nov	157.2	237.5	244.3	261.5	246.7	270.0				
5-Nov	157.2	237.7	243.1	262.8	246.5	268.2				
6-Nov	157.4	237.7	243.4	262.8	246.7	266.3				
7-Nov	157.2	238.0	243.7	263.9	246.6	268.0				
8-Nov	157.3	237.9	244.3	264.8	246.8	269.8				
9-Nov	156.5	237.7	246.7	265.1	246.6	274.3				
10-Nov	156.4	237.8	248.9	265.8	246.3	278.2				
11-Nov	156.5	237.9	250.0	268.5	246.3	280.8				
12-Nov	156.2	237.7	252.1	269.6	246.1	290.8				
13-Nov	156.1	237.8	258.1	270.3	245.9	300.0				
14-Nov	156.1	237.8	265.4	268.1	246.2	313.7				
15-Nov	156.2	237.9	273.4	267.4	245.7	312.2				
16-Nov	156.2	238.0	276.3	265.3	245.9	307.7				
17-Nov	156.2	238.0	271.4	264.2	245.9	310.6				
18-Nov	156.4	238.0	262.5	262.3	245.8	300.5				
19-Nov	156.6	238.3	259.6	261.0	245.7	287.8				
20-Nov	156.6	238.1	258.2	261.8	245.8	284.1				
21-Nov	156.1	237.8	259.4	261.2	245.4	286.2				
22-Nov	155.9	237.8	260.0	261.7	245.4	287.5				
23-Nov	156.1	237.8	259.3	259.8	245.3	283.8				
24-Nov	156.2	238.1	259.5	259.7	245.5	284.1				
25-Nov	156.5	238.3	258.9	259.8	245.6	283.3				
26-Nov	157.2	238.4	258.6	259.9	245.5	282.7				
27-Nov	157.1	238.2	260.0	259.5	245.4	283.4				
28-Nov	156.3	238.1	258.8	259.5	245.3	280.4				
29-Nov	156.1	238.0	262.7	260.2	245.2	283.2				
30-Nov	156.1	238.0	264.1	259.8	245.3	285.0				
Average	156.6	237.9	255.9	262.9	246.0	284.5				

[Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft		
1-Nov	168.7	231.8	231.6	246.9	250.7	*	264.0	252.7		
2-Nov	168.8	232.3	232.1	247.2	251.1	*	264.4	253.2		
3-Nov	168.8	232.7	232.5	247.2	251.1	*	264.4	253.2		
4-Nov	168.6	232.6	232.5	246.9	250.8	*	264.1	252.8		
5-Nov	168.7	232.8	232.7	247.0	250.9	*	264.2	252.8		
6-Nov	169.0	232.8	232.7	247.2	251.0	*	264.3	253.1		
7-Nov	169.1	232.8	232.7	247.3	251.2	*	264.4	253.2		
8-Nov	168.7	232.7	232.6	247.0	250.9	*	264.1	252.8		
9-Nov	168.6	232.7	232.7	247.0	250.9	*	264.2	252.9		
10-Nov	168.4	232.7	232.6	246.8	250.6	*	263.9	252.5		
11-Nov	168.4	232.9	232.7	246.9	250.6	*	263.9	252.6		
12-Nov	168.3	232.8	232.8	246.8	250.6	*	263.8	252.6		
13-Nov	168.0	232.9	232.8	246.7	250.5	*	263.7	252.5		
14-Nov	167.6	232.5	232.3	246.4	249.9	*	263.2	252.0		
15-Nov	167.6	232.6	232.4	246.4	250.0	*	263.2	252.0		
16-Nov	167.7	232.8	232.7	246.6	250.2	*	263.4	252.2		
17-Nov	167.7	233.0	232.9	246.7	250.5	*	263.7	252.5		
18-Nov	167.8	233.0	232.9	246.8	250.4	*	263.6	252.4		
19-Nov	167.7	232.9	232.7	246.6	250.1	*	263.3	252.1		
20-Nov	167.7	232.9	232.7	246.6	250.1	*	263.3	252.1		
21-Nov	167.0	232.3	232.2	246.2	249.8	*	262.9	251.6		
22-Nov	167.0	232.3	232.1	246.1	249.5	*	262.6	251.4		
23-Nov	*	232.4	232.3	246.2	249.6	*	262.7	251.5		
24-Nov	*	232.9	232.7	246.5	249.9	*	263.0	251.8		
25-Nov	*	232.9	232.8	246.7	250.0	*	263.1	251.9		
26-Nov	*	233.2	232.9	246.8	250.0	*	263.1	251.9		
27-Nov	*	232.8	232.7	246.5	249.8	*	262.9	251.7		
28-Nov	*	232.6	232.4	246.4	249.6	*	262.7	251.5		
29-Nov	*	232.5	232.3	246.2	249.3	*	262.5	251.2		
30-Nov	*	232.7	232.5	246.4	249.6	*	262.6	251.3		
Average	168.2	232.7	232.6	246.7	250.3	N/A	263.5	252.3		

* Indicates sensor reading issues

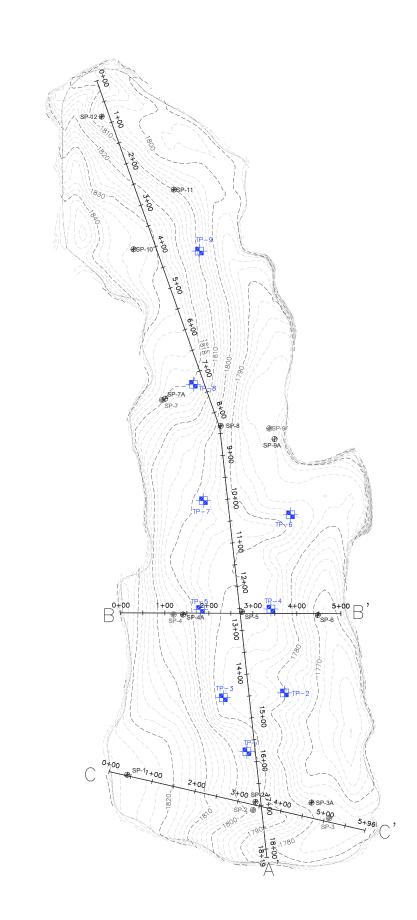
[Depth from Surface										
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft			
1-Nov	222.0	224.0	223.2	224.4	231.8	225.8	224.2	223.7			
2-Nov	221.4	223.5	222.6	223.8	229.1	226.0	223.6	222.9			
3-Nov	217.2	219.3	218.4	219.7	230.1	224.7	219.7	219.0			
4-Nov	218.1	220.3	219.3	220.7	228.0	223.8	220.5	219.8			
5-Nov	222.2	224.6	223.7	224.9	229.5	226.4	224.7	224.1			
6-Nov	222.7	224.7	223.9	225.1	230.3	227.0	224.9	224.4			
7-Nov	218.3	220.6	219.7	221.0	227.0	225.1	220.9	220.3			
8-Nov	216.4	218.9	217.8	219.1	225.1	222.4	219.2	218.4			
9-Nov	215.4	217.6	216.6	218.1	229.8	223.8	218.1	217.3			
10-Nov	217.8	219.9	219.0	220.3	230.2	223.7	220.2	219.5			
11-Nov	220.8	222.7	221.9	223.1	229.8	224.1	222.9	222.2			
12-Nov	221.6	223.7	222.8	224.2	228.3	225.9	224.0	223.3			
13-Nov	217.1	219.4	218.3	219.8	228.3	224.3	219.8	218.9			
14-Nov	214.8	217.1	216.1	217.6	228.3	222.3	217.7	216.6			
15-Nov	216.4	218.5	217.5	219.0	228.4	222.9	219.0	218.1			
16-Nov	219.3	221.3	220.5	221.8	229.0	224.2	221.7	220.8			
17-Nov	220.7	222.8	222.0	223.1	229.6	224.9	223.0	222.3			
18-Nov	222.3	224.6	224.0	224.9	229.2	224.8	224.7	224.3			
19-Nov	215.3	216.8	216.5	217.1	222.5	217.6	217.4	216.8			
20-Nov	203.1	203.6	204.1	204.6	217.4	208.2	204.8	204.0			
21-Nov	*	*	*	*	*	*	*	*			
22-Nov	*	*	*	*	*	*	*	*			
23-Nov	*	*	*	*	*	*	*	*			
24-Nov	*	*	*	*	*	*	*	*			
25-Nov	*	*	*	*	*	*	*	*			
26-Nov	*	*	*	*	*	*	*	*			
27-Nov	*	*	*	*	*	*	*	*			
28-Nov	*	*	*	*	*	*	*	*			
29-Nov	*	*	*	*	*	*	*	*			
30-Nov	*	*	*	*	*	*	*	*			
Average	218.1	220.2	219.4	220.6	228.1	223.4	220.5	219.8			

* Indicates sensor reading issues

[Depth from Surface										
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft			
1-Nov	164.8	216.3	216.5	229.2	236.9	231.4	224.4	201.6			
2-Nov	163.4	216.3	216.4	229.3	237.0	231.7	224.4	201.6			
3-Nov	163.0	216.4	216.6	229.7	237.2	232.2	224.5	201.6			
4-Nov	162.6	216.3	216.5	230.0	237.3	232.5	224.5	201.6			
5-Nov	162.8	216.3	216.5	230.4	237.5	232.9	224.6	201.7			
6-Nov	162.1	216.3	216.5	230.6	237.6	233.1	224.6	201.7			
7-Nov	161.3	216.4	216.6	230.9	237.7	233.4	224.7	201.8			
8-Nov	160.8	216.3	216.5	231.1	237.8	233.6	224.6	201.9			
9-Nov	160.9	216.2	216.4	231.2	237.6	233.6	224.3	201.7			
10-Nov	164.7	216.2	216.5	231.5	237.7	233.8	224.6	201.7			
11-Nov	163.8	216.2	216.5	231.6	237.7	233.9	224.4	201.7			
12-Nov	160.1	215.9	216.1	231.4	237.6	233.8	224.1	201.4			
13-Nov	162.1	215.8	216.0	231.5	237.6	234.0	224.1	201.4			
14-Nov	173.0	215.6	215.9	231.4	237.5	234.0	224.1	201.3			
15-Nov	161.8	215.7	215.9	231.5	237.7	234.3	224.2	201.4			
16-Nov	160.9	215.8	216.0	231.8	237.7	234.4	224.4	201.5			
17-Nov	161.0	215.8	216.0	231.8	237.7	234.6	224.2	201.3			
18-Nov	183.6	215.7	216.0	232.0	237.9	234.9	224.3	201.5			
19-Nov	190.0	215.8	216.0	232.2	237.9	235.1	224.3	201.6			
20-Nov	190.3	215.8	215.9	232.1	238.0	235.3	224.4	201.6			
21-Nov	181.1	215.3	215.5	231.7	237.5	235.0	224.0	201.1			
22-Nov	165.7	215.2	215.5	231.8	237.5	235.2	224.2	201.2			
23-Nov	162.9	215.4	215.6	231.9	237.6	235.4	224.2	201.3			
24-Nov	160.8	215.6	215.9	232.2	237.7	235.7	224.4	201.5			
25-Nov	159.1	215.8	216.0	232.4	237.9	236.0	224.6	201.6			
26-Nov	157.9	215.9	216.2	232.4	237.9	236.1	224.6	201.7			
27-Nov	158.8	215.6	216.0	232.2	237.7	236.0	224.4	201.5			
28-Nov	165.9	215.5	215.9	232.1	237.6	236.0	224.2	201.4			
29-Nov	157.7	215.3	215.8	232.0	237.4	235.9	224.0	201.2			
30-Nov	156.3	215.4	215.8	232.0	237.5	236.1	224.3	201.3			
Average	165.3	215.9	216.1	231.4	237.6	234.3	224.4	201.5			

		Dep	th from Su	rface	
Date	25 ft	50 ft	75 ft	100 ft	125 ft
1-Nov	171.4	213.7	216.3	215.7	214.6
2-Nov	203.7	220.0	220.8	220.2	220.3
3-Nov	207.5	226.7	225.8	226.5	226.9
4-Nov	207.3	215.2	215.6	214.9	215.1
5-Nov	207.2	215.4	215.1	215.1	215.3
6-Nov	207.3	213.4	215.1	213.3	213.4
7-Nov	207.6	215.9	215.0	215.6	216.1
8-Nov	207.5	215.0	214.4	214.7	215.0
9-Nov	207.5	215.1	214.0	214.8	215.0
10-Nov	207.2	214.1	214.6	214.0	214.1
11-Nov	207.0	213.5	214.3	213.3	213.3
12-Nov	207.0	213.4	214.2	213.1	213.3
13-Nov	207.1	212.7	212.1	212.3	212.6
14-Nov	206.6	211.7	211.0	211.2	211.5
15-Nov	206.7	211.6	210.8	211.1	211.5
16-Nov	206.5	212.0	211.6	211.7	211.7
17-Nov	180.9	212.1	217.1	213.7	214.4
18-Nov	173.6	212.3	216.7	214.9	215.0
19-Nov	171.0	212.6	216.9	215.2	215.3
20-Nov	169.3	219.8	224.0	222.3	222.6
21-Nov	167.3	227.5	231.5	229.8	230.1
22-Nov	166.2	238.8	242.1	240.7	240.8
23-Nov	165.5	235.6	239.5	237.4	238.0
24-Nov	165.1	240.4	244.3	242.2	242.7
25-Nov	164.7	247.5	251.0	249.3	250.0
26-Nov	164.1	237.2	240.8	239.2	239.8
27-Nov	163.3	221.3	225.8	224.1	224.2
28-Nov	165.3	221.0	223.4	221.5	222.1
29-Nov	169.0	222.4	225.3	222.5	223.0
30-Nov	173.7	218.3	219.9	218.3	218.5
Average	187.8	220.2	222.0	221.0	221.2

[Depth from Surface										
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft			
1-Nov	159.8	192.2	195.4	196.8	195.3	198.5	202.3	221.1			
2-Nov	159.1	192.6	195.2	197.5	196.1	199.4	203.0	221.1			
3-Nov	159.7	192.5	194.7	197.6	196.0	199.5	203.0	221.2			
4-Nov	159.4	191.6	195.0	197.1	195.7	198.6	202.4	221.2			
5-Nov	159.9	191.7	194.9	196.8	195.3	198.5	202.0	220.2			
6-Nov	161.1	192.0	195.2	197.2	195.5	198.5	202.5	220.0			
7-Nov	160.9	191.1	195.6	196.5	195.0	197.7	201.8	217.3			
8-Nov	160.6	190.0	195.9	195.9	194.6	197.4	201.8	216.6			
9-Nov	159.2	189.8	196.1	196.3	195.1	197.9	202.7	215.9			
10-Nov	157.3	188.8	196.9	195.4	194.4	197.5	202.3	215.9			
11-Nov	156.3	188.8	197.1	195.6	194.1	197.4	202.8	216.0			
12-Nov	154.0	187.2	198.6	194.7	193.2	195.9	202.5	215.4			
13-Nov	152.9	186.2	198.6	194.6	192.9	196.1	203.7	215.7			
14-Nov	152.5	187.9	198.9	195.8	194.6	197.6	204.2	213.7			
15-Nov	152.3	187.7	199.6	196.3	194.5	198.0	206.3	213.2			
16-Nov	152.2	186.4	200.5	195.9	193.7	197.7	208.5	214.0			
17-Nov	151.7	185.7	202.0	195.2	192.6	196.8	208.2	215.8			
18-Nov	151.5	185.5	200.9	194.7	192.5	196.5	206.8	213.5			
19-Nov	151.3	187.4	206.7	194.0	193.8	196.2	203.4	206.6			
20-Nov	150.2	187.2	209.7	194.1	193.6	196.2	203.8	206.2			
21-Nov	150.1	187.7	209.3	194.0	193.3	195.6	204.2	206.9			
22-Nov	150.1	188.3	210.6	194.7	194.3	196.4	204.4	205.2			
23-Nov	150.3	188.0	210.0	193.8	193.9	195.8	202.3	203.6			
24-Nov	150.4	187.8	210.4	194.1	194.0	196.3	203.6	206.1			
25-Nov	150.5	188.6	210.4	194.5	194.5	196.6	203.5	205.5			
26-Nov	150.5	189.6	210.6	194.5	195.2	196.6	202.9	203.6			
27-Nov	150.1	188.1	210.2	194.1	193.8	196.1	204.2	207.4			
28-Nov	149.9	191.2	210.2	194.3	195.8	196.6	201.1	198.5			
29-Nov	149.7	192.1	210.3	194.2	197.0	197.3	199.3	194.7			
30-Nov	149.7	191.8	210.3	194.3	197.5	197.6	199.4	195.3			
Average	154.1	189.2	202.3	195.3	194.6	197.2	203.3	211.6			


	Depth from Surface							
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Nov	190.6	*	194.3	196.7	198.5	198.4	190.5	173.7
2-Nov	190.6	*	194.4	196.8	198.7	198.6	190.7	173.9
3-Nov	190.4	*	194.3	196.9	198.7	198.6	190.6	173.8
4-Nov	190.5	*	194.3	196.7	198.6	198.5	190.5	173.7
5-Nov	190.4	*	194.4	196.8	198.7	198.7	190.7	173.9
6-Nov	190.4	*	194.3	196.8	198.7	198.7	190.7	173.8
7-Nov	190.1	*	194.4	196.9	198.8	198.8	190.8	174.2
8-Nov	190.6	*	194.4	196.8	198.7	198.8	190.8	174.2
9-Nov	190.6	*	194.3	196.8	198.7	198.8	190.8	174.4
10-Nov	190.4	*	194.2	196.6	198.5	198.6	190.7	174.3
11-Nov	190.2	*	194.2	196.6	198.5	198.7	190.8	174.4
12-Nov	190.4	*	194.0	196.4	198.3	198.5	190.6	174.2
13-Nov	190.4	*	193.9	196.4	198.3	198.4	190.4	174.0
14-Nov	190.1	*	193.7	196.1	198.1	198.3	190.3	173.9
15-Nov	190.1	*	193.7	196.2	198.1	198.3	190.4	173.9
16-Nov	190.2	*	193.9	196.3	198.2	198.4	190.5	174.1
17-Nov	189.9	*	193.8	196.3	198.2	198.4	190.2	173.9
18-Nov	189.9	*	193.9	196.3	198.2	198.4	190.1	173.9
19-Nov	189.7	*	193.8	196.2	198.2	198.4	190.2	174.0
20-Nov	189.8	*	193.8	196.1	198.1	198.4	190.3	174.0
21-Nov	189.4	*	193.3	195.6	197.6	197.9	189.8	173.6
22-Nov	189.5	192.4	192.9	195.3	197.2	197.4	189.3	173.1
23-Nov	189.4	193.0	193.3	195.8	197.8	197.9	189.7	173.8
24-Nov	189.6	193.2	193.6	196.0	198.0	198.1	189.6	174.0
25-Nov	189.7	193.4	193.8	196.2	198.2	198.3	189.6	174.3
26-Nov	189.7	193.5	193.8	196.2	198.2	198.4	189.5	174.2
27-Nov	189.4	193.2	193.5	196.0	198.0	198.1	189.2	173.9
28-Nov	189.5	193.1	193.4	195.8	197.8	198.0	189.3	173.9
29-Nov	189.4	193.0	193.3	195.8	197.7	197.9	189.1	173.8
30-Nov	188.9	193.0	193.3	195.8	197.8	197.9	188.7	173.4
Average	190.0	193.1	193.9	196.3	198.2	198.4	190.1	173.9

* Indicates sensor reading issues

]				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Nov	112.1	149.5	148.9	150.5	146.0	133.0	115.3	105.8
2-Nov	112.4	149.8	149.3	150.5	146.0	133.0	115.3	105.9
3-Nov	112.3	149.8	149.3	150.5	146.0	133.1	115.4	105.9
4-Nov	112.3	149.7	149.2	150.4	145.9	133.0	115.3	105.9
5-Nov	112.7	150.1	149.4	150.7	146.1	133.1	115.6	106.1
6-Nov	112.6	150.0	149.4	150.6	146.1	133.0	115.6	106.1
7-Nov	112.8	150.3	149.6	150.8	146.3	133.2	115.8	106.3
8-Nov	112.8	150.2	149.6	150.7	146.1	133.1	115.8	106.1
9-Nov	112.9	150.1	149.6	150.4	145.9	133.1	115.6	105.9
10-Nov	112.9	150.1	149.5	150.3	145.7	133.0	115.5	105.8
11-Nov	112.8	150.1	149.4	150.5	145.8	133.1	115.6	106.0
12-Nov	112.6	149.7	149.3	150.1	145.5	132.8	115.3	105.5
13-Nov	112.9	149.9	149.5	150.0	145.4	132.6	115.2	105.5
14-Nov	112.4	149.7	149.2	149.9	145.2	132.2	115.1	105.3
15-Nov	112.3	149.6	149.0	149.9	145.3	132.2	115.2	105.4
16-Nov	112.9	149.9	149.5	149.9	145.3	132.2	115.3	105.5
17-Nov	112.9	149.9	149.5	149.9	145.2	132.2	115.2	105.4
18-Nov	113.0	150.1	149.6	150.0	145.3	132.2	115.3	105.5
19-Nov	113.0	150.1	149.6	150.1	145.4	132.2	115.4	105.6
20-Nov	112.9	150.2	149.5	150.2	145.4	132.2	115.5	105.7
21-Nov	112.5	149.5	149.0	149.4	144.7	131.4	114.7	104.9
22-Nov	112.3	149.5	149.1	149.4	144.6	131.4	114.8	104.9
23-Nov	112.6	149.6	149.2	149.5	144.7	131.4	114.8	105.0
24-Nov	113.3	150.1	149.8	149.7	144.9	131.6	115.1	105.2
25-Nov	113.4	150.4	150.0	149.9	145.1	131.9	115.4	105.5
26-Nov	113.4	150.4	150.0	150.1	145.2	132.0	115.5	105.6
27-Nov	113.4	150.2	149.9	149.7	144.9	131.9	115.3	105.3
28-Nov	112.7	149.8	149.3	149.7	144.8	131.6	115.1	105.2
29-Nov	112.9	149.8	149.5	149.3	144.4	131.2	114.8	104.9
30-Nov	113.2	150.1	149.8	149.3	144.4	131.2	114.9	105.0
Average	112.8	149.9	149.4	150.1	145.4	132.3	115.3	105.6

Appendix E

Monthly Topography Analysis

NOTES:

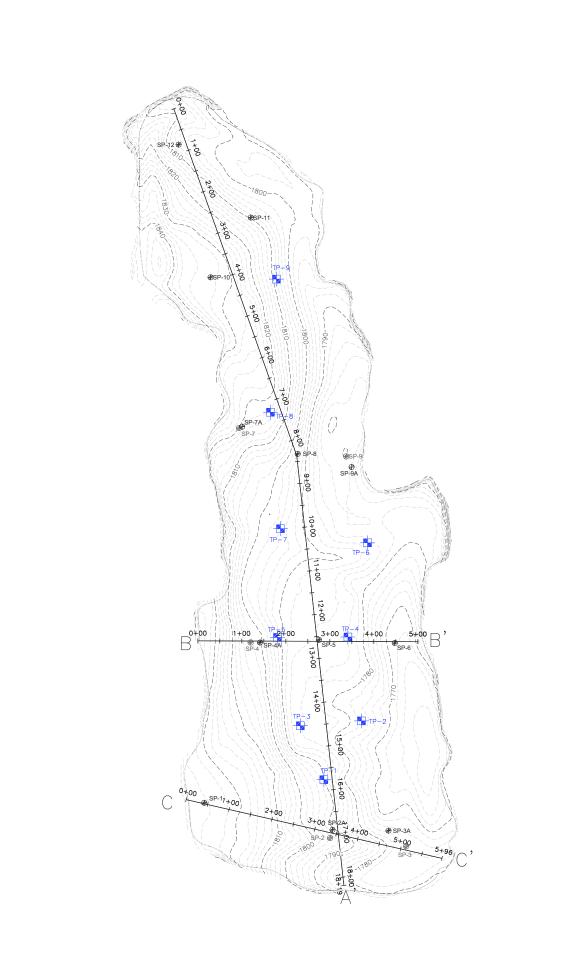
1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON NOVEMBER 16, 2023 BY SCS ENGINEERS.

LEGEND

@SP-8 SETTLEMENT PLATE

- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

_____ MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2') APPROXIMATE SIDEWALL LOCATION

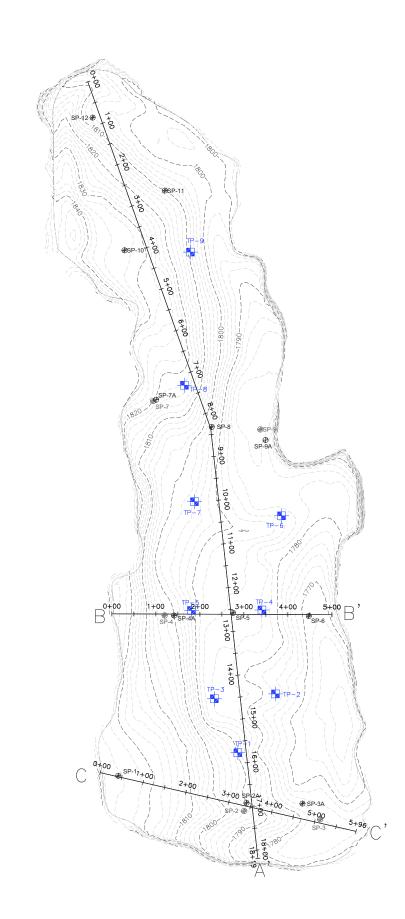

 $\circledast_{\mathsf{SP-9}}$ decommissioned settlement plate TP-3 TEMPERATURE MONITORING PROBE

100 50 100

SCALE: 1"=100'

200

DATE NO Ŕ 2 0000 MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588 NOVEMBER 2023 LANDFILL TOPOGRAPHY TTLE SHEET CITY OF BRISTOL INTEGRATED SOLID WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201 23113 SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS, INC. 15821 MILOTHAN THAR. MILLOTHAN, VA 23 PH, (804) 378-7440 FAX, (804) 378-7440 CADD FILE: SURF COMP DATE: 12/1/2024 SCALE: DRAWING NO. 1 of **8**

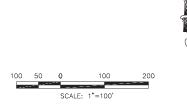


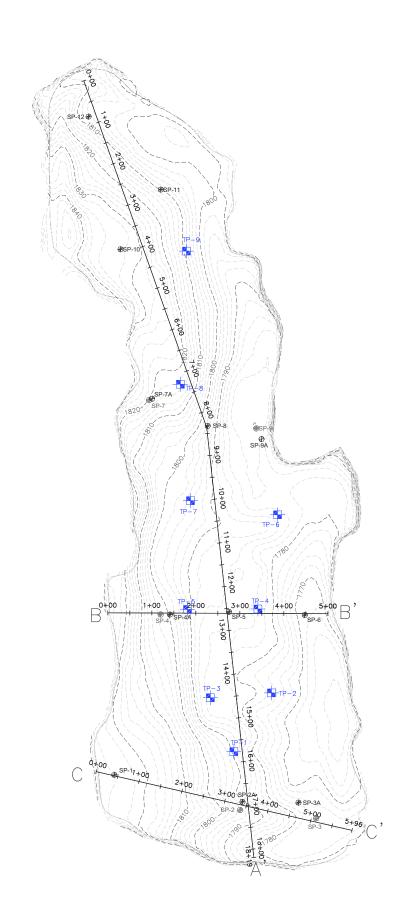
LEGEND MAJOR CONTOURS (EV MINOR CONTOURS (EVE APPROXIMATE SIDEWAL @SP-8 SETTLEMENT PLATE @SP-9 DECOMMISSIONED SETT TP-3 TEMPERATURE MONITOR

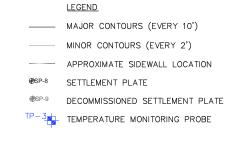
NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHI REPRESENT THE TOPOGRAPHY CAPTURED ON AL
- ANY DETERMINATION OF TOPOGRAPHY OR CONTO PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR INFORMATION ONLY AND SHALL NOT BE USED FO CONSTRUCTION OF IMPROVEMENTS TO REAL PROI DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGIN
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88

EVERY 10') VERY 2') ALL LOCATION	DATE		
TTLEMENT PLATE ORING PROBE	REVISION		
	ov <		
HIN THE PERMIT 588 BOUNDARY AUGUST 14, 2024 BY SCS ENGINEERS. TOURS, OR ANY DEPICTION OF R BOUNDARIES IS FOR GENERAL FOR DESIGN, MODIFICATION, OR ROPERTY OR FLOOD PLAIN SINIA SOUTH ZONE NAD-83 (2011).	SHEET TITLE AUGUST 2024 LANDFILL TOPOGRAPHY	PROJECT TITLE	MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588
38.	CLENT CITY OF BRISTOL INTEGRATED SOLID		BRISTOL, VIRGINIA 24201
	CADD SU DATE: 12 SCALE:	/1/20	Require Development O.A. Reverse Require 02218208.05 Development O.A. Reverse DSN: 0.4.140 Development D.A. Reverse DSN: 0.4.140 D.A. Reverse D.A. Reverse DSN: 0.4.140 D.A. Reverse D.A. Reverse DSN: 0.4.140 D.A. Reverse D.A. Reverse
100 50 0 100 200 SCALE: 1"=100'	DRAWIN		of 8

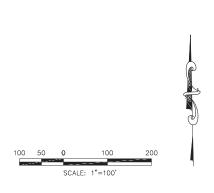


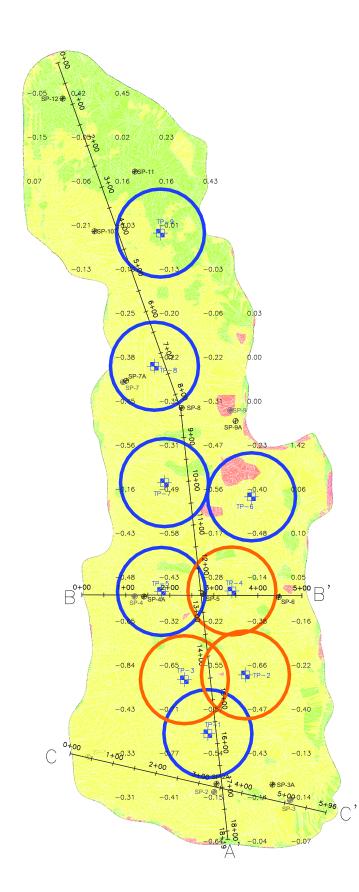

LEGEND — MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2') APPROXIMATE SIDEWALL LOCATION @SP-8 SETTLEMENT PLATE ●SP-9 DECOMMISSIONED SETTLEMENT PLATE TP-3 TEMPERATURE MONITORING PROBE

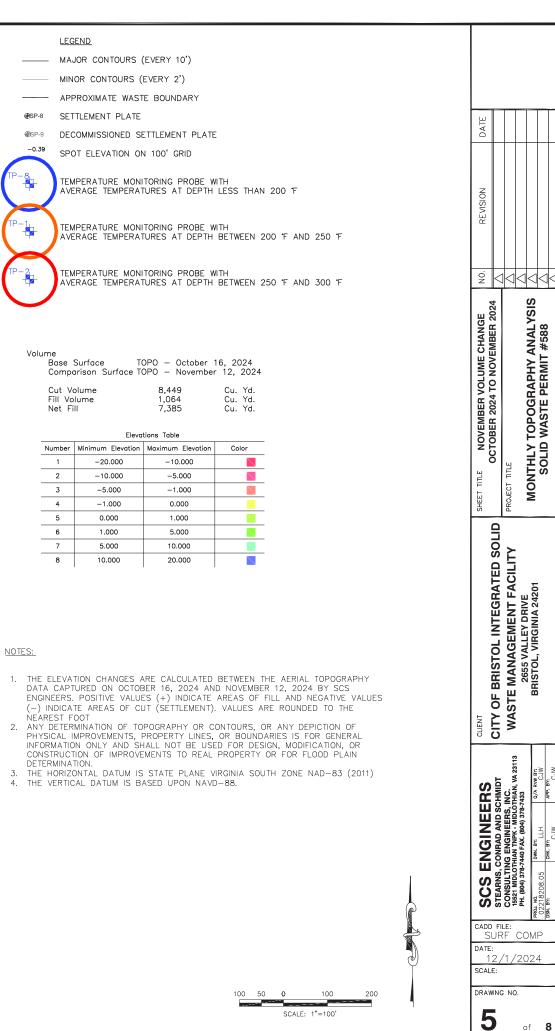

NOTES:

- GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON OCTOBER 16, 2024 BY SCS ENGINEERS.
- ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

NO. REVISION DATE						
		PROJECT TITLE		MONTHLY TOPOGRAPHY ANALYSIS	SOLID WASTE PERMIT #588	
CLIENT	CITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY	2655 VALLEV DRIVE	BRISTOL, VIRGINIA 24201		
SCS ENGINEERS		CONSULTING ENGINEERS, INC.		PROJ. NO. DWN. BY: Q/A RVW BY:	02218208.05 LLLH CUW	CJW
CADD SU DATE: 1: SCALE	JR 2/ =:	′1/	20)M	P 4	
3						

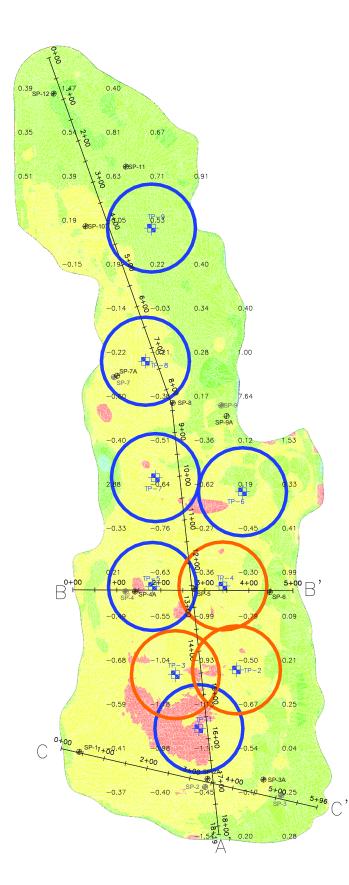





NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON NOVEMBER 12, 2024 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

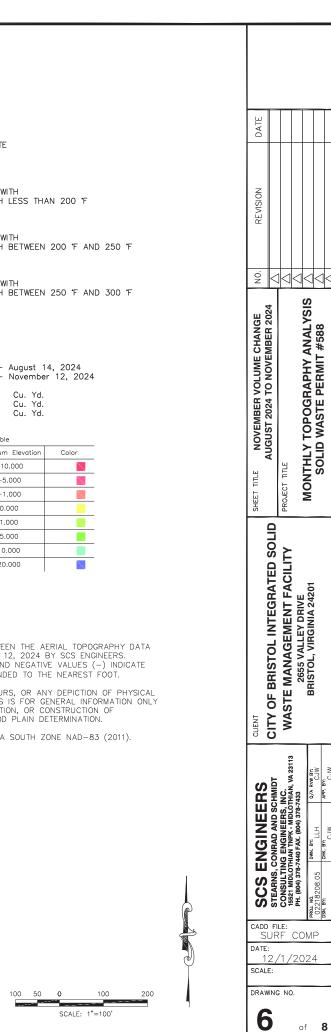
5 . 2 00000 S MONTHLY TOPOGRAPHY ANALYSI SOLID WASTE PERMIT #588 NOVEMBER 2024 LANDFILL TOPOGRAPHY TITLE SHEET CITY OF BRISTOL INTEGRATED SOLID WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201 LIENT SCS ENGINEERS STEARS, CONREAD AND SCHMIDT CONSULTING ENGINEERS, INC. 19521 MIDLOTHIAT TNRY. MIDLOTHIAN, VA 23113 PH. (804) 378-7440 FAX. (804) 378-7443 Q/A RVW NN. CADD FILE: SURF COMP DATE: 12/1/2024 SCALE: DRAWING NO. 4 of **8**

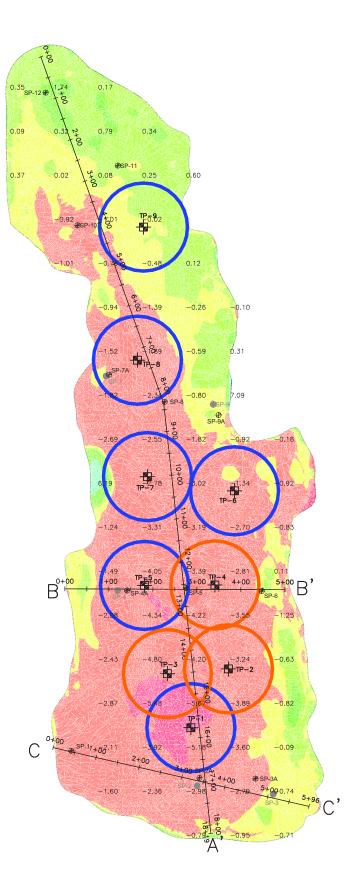


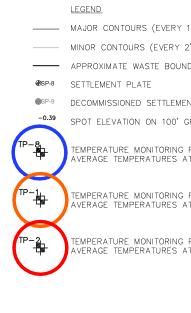
of **8**

ume		
Base Surface	TOPO - October	16, 2
Comparison Surfac	e TOPO – Novemb	er 12,
Cut Volume	8,449	Cu.
Fill Volume	1,064	Cu.

Elevations Table						
Number	Minimum Elevation	Maximum Elevation				
1	-20.000	-10.000				
2	-10.000	-5.000				
3	-5.000	-1.000				
4	-1.000	0.000				
5	0.000	1.000				
6	1.000	5.000				
7	5.000	10.000				
8	10.000	20.000				


	LEGEND
	MAJOR CONTOURS (EVERY 10')
	MINOR CONTOURS (EVERY 2')
	APPROXIMATE WASTE BOUNDARY
€GP-8	SETTLEMENT PLATE
@SP-9	DECOMMISSIONED SETTLEMENT PLATE
-0.39	SPOT ELEVATION ON 100' GRID
₽-8, +	TEMPERATURE MONITORING PROBE WIT AVERAGE TEMPERATURES AT DEPTH L
IP-1	TEMPERATURE MONITORING PROBE WIT AVERAGE TEMPERATURES AT DEPTH B
IP-2	TEMPERATURE MONITORING PROBE WIT AVERAGE TEMPERATURES AT DEPTH B

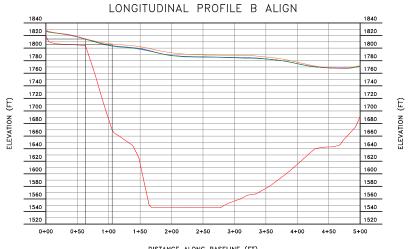

Volur	ne Base Surface Comparison Sur	TOPO – face TOPO –
	Cut Volume Fill Volume Net Cut	8,050 6,752 1,298


	Eleva	tions Table	
Number	Number Minimum Elevation		
1	-20.000	-10	
2	-10.000	-5	
3	-5.000	- 1	
4	-1.000	0.0	
5	0.000	1.0	
6	1.000	5.0	
7	5.000	10.	
8	10.000	20.	

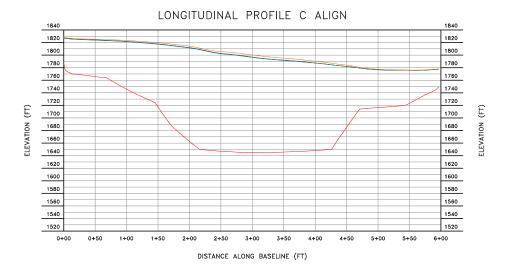
NOTES:

- THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON AUGUST 14, 2024 AND NOVEMBER 12, 2024 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

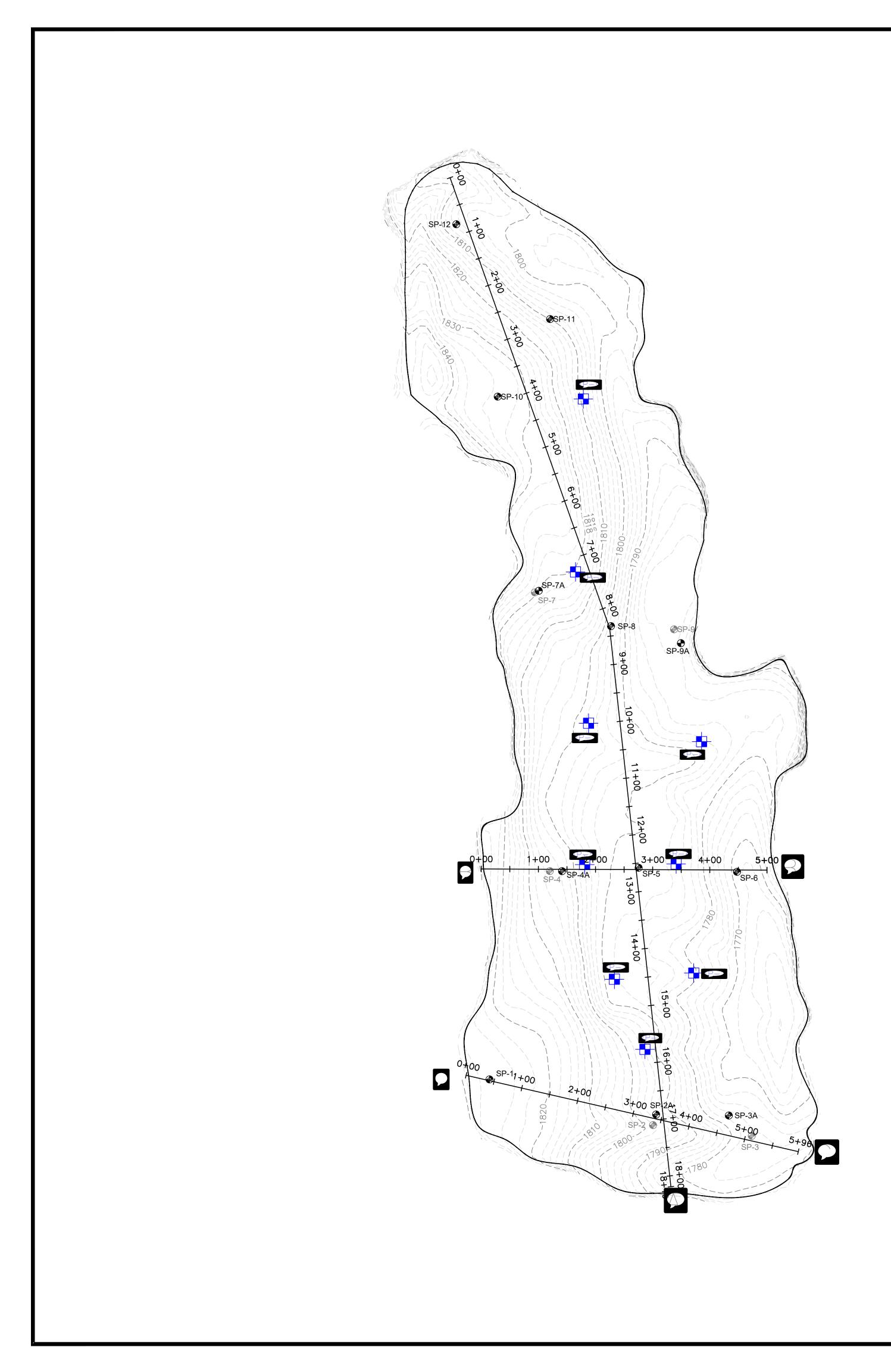

LEGE	<u>ND</u>						
— MAJC	OR CONTOURS (E)	/ERY 10')					
— MINO	R CONTOURS (EV	'ERY 2')					
- APPR	ROXIMATE WASTE	BOUNDARY					
-8 Setti	LEMENT PLATE					П	
-9 DECC	MMISSIONED SET	TLEMENT PLATE			DATE		
³⁹ spot	ELEVATION ON	100' GRID				\mathbb{H}	
		RING PROBE WITH RES AT DEPTH LE	H ESS THAN 200 'F		REVISION		
AVER	AGE TEMPERATU		ETWEEN 200 F AND 25	50 F	R		
		RING PROBE WITH RES AT DEPTH BI	H ETWEEN 250 °F AND 30	00 °F	ġ<	14	
Corr Cut	nparison Surface Volume Volume Cut	TOPO – Novemb TOPO – Novemb 49,906 Cu. Yd 3,512 Cu. Yd 46,394 Cu. Yd ions Toble	er 12, 2024		NOVEMBER VOLUME CHANGE NOVEMBER 2023 TO NOVEMBER 2024		MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588
Number	Minimum Elevation	Maximum Elevation	Color		OVE NO		들던
	-20.000	-10.000				ШЦ	ΗS
2	-10.000	-5.000			JITLE	PROJECT TITLE	NO
4	-1.000	0.000			SHEET	ROJE	Σ
5	0.000	1.000				۵.	
6	1.000	5.000			8		
7	5.000	10.000			l S	≿	
VEMBER 16 (+) INDICA ETTLEMEN [®] ON OF TOP ROPERTY L BE USED F REAL PRI	5, 2023 AND NOV NTE AREAS OF FIL VOGRAPHY OR CON INES, OR BOUNDA OR DESIGN, MODIF OPERTY OR FOR F	EMBER 12, 2024 L AND NEGATIVE COUNDED TO THE NTOURS, OR ANY RIES IS FOR GEN FICATION, OR CON FICATION, OR CON FICOD PLAIN DETE	DEPICTION OF PHYSICAL ERAL INFORMATION ONL STRUCTION OF			WASTE MANAGEMENT FACI	2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201
UM(S) IS	BASED UPON NAV	/D-88.				3113	
					CADD FI SUF DATE:	RF (PH. (804) 378-7446 FAX. (804) 378-7433 PPA. (804) 378-7446 FAX. (804) 378-7433 PPA. MP. PPA. (804) 378-7433 PPA. (804) 378-7433 PPA. (804) 378-7433 PPA. (804) 378-7433 PPA. (804) 378-7433 PPA. (804) 378-7433 PPA. (804) 378-7435 PPA. (804) 378-745 PPA. (804) 37
		100 50	0 100 200 SCALE: 1"=100'			3 NO.	of 8

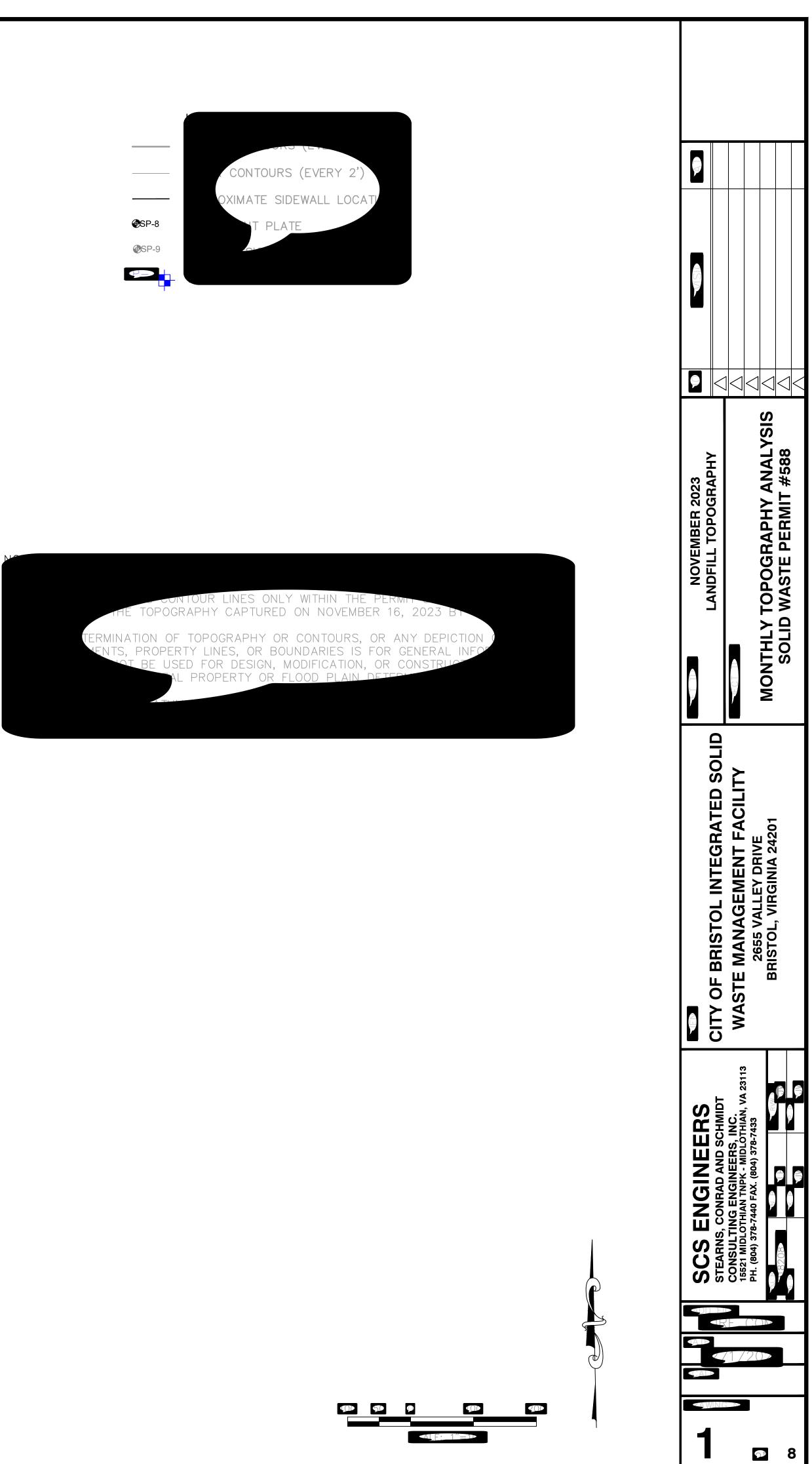

							_
<u>LEGEI</u>	<u>ND</u>						
MAJC	R CONTOURS (E'	VERY 10')					
MINO	R CONTOURS (EV	(ERY 2')					
APPR	OXIMATE WASTE	BOUNDARY					
SETTI	_EMENT PLATE			ш	Π		
DECO	MMISSIONED SET	TLEMENT PLATE		DATE			
SPOT	ELEVATION ON	100' GRID					
AVER	AGE TEMPERATU	DRING PROBE WITH RES AT DEPTH LE DRING PROBE WITH	SS THAN 200 F	REVISION			
			TWEEN 200 F AND 250 F				
		ORING PROBE WITH RES AT DEPTH BE	H Etween 250 °F and 300 °F	őz <			R
				24		S	
Corr Cut	iparison Surface Volume Volume	TOPO – Novemba TOPO – Novemba 49,906 Cu. Yd. 3,512 Cu. Yd. 46,394 Cu. Yd.	er 12, 2024	NOVEMBER VOLUME CHANGE VEMBER 2023 TO NOVEMBER 2024		MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588	
	Eleva	ions Table		NOVEMBER		P	
Number	Minimum Elevation	Maximum Elevation	Color	OVE N		구리	
1	-20.000	-10.000			ШЦ	HT SO	
2	-5.000	-5.000		T TITLE	PROJECT TITLE	NO	
4	-1.000	0.000		SHEET	ROJE	Σ	
5	0.000	1.000			4		-
6	1.000	5.000		Ë			
7	5.000	20.000		so	≿		
IBER 16 INDICA LEMENT OF TOP ERTY L JSED F AL PRO	5, 2023 AND NOV TE AREAS OF FIL (). VALUES ARE F OGRAPHY OR CO INES, OR BOUND/ OR DESIGN, MODI OPERTY OR FOR I	EMBER 12, 2024 E LL AND NEGATIVE ROUNDED TO THE NTOURS, OR ANY	DEPICTION OF PHYSICAL ERAL INFORMATION ONLY STRUCTION OF RMINATION.		WASTE MANAGEMENT FACI	2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201	
(S) IS	BASED UPON NA'		0 100 200	CADD F CONBANDSCHINDT	lle: RF (/1 <i>/:</i>	PHL, (804) 378-7440 FAX, (804) 376-7433 PR01, N0. 02218206.05 Nov. BYL PR02, N0. 02218206.05 Nov. BYL DATA	
			SCALE: 1"=100'	7		of (B

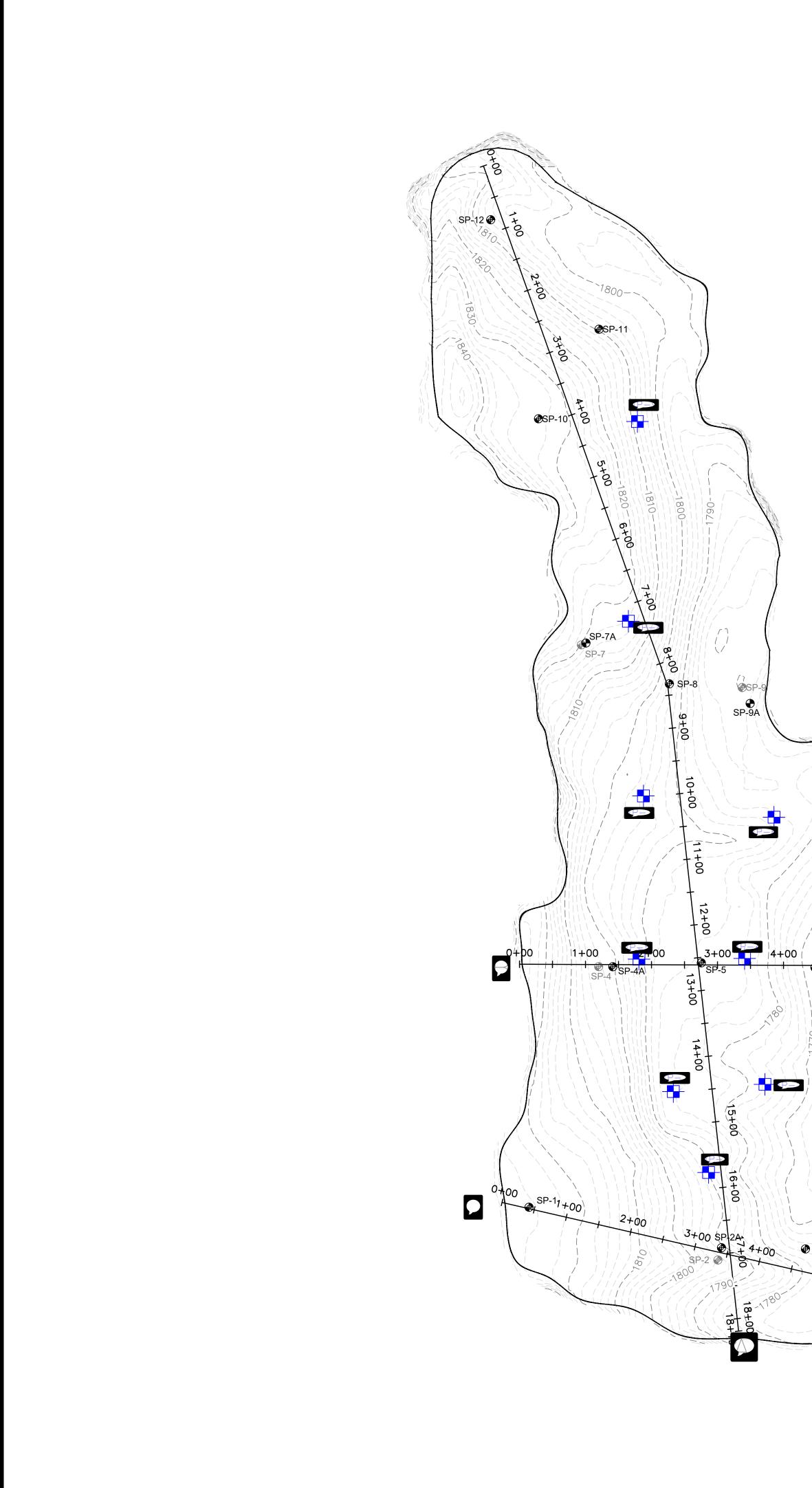
	LEGEN	<u>ND</u>					
	MAJO	R CONTOURS (E)	/ERY 10')				
	MINOF	R CONTOURS (EV	'ERY 2')				
_	APPR	OXIMATE WASTE	BOUNDARY				
-8	SETTL	EMENT PLATE					
-9	DECO	MMISSIONED SET	TLEMENT PLATE		DATE		
39	SPOT	ELEVATION ON	100' GRID				
)			RING PROBE WITI RES AT DEPTH LI	H ESS THAN 200 'F	NO		
)			RING PROBE WITI RES AT DEPTH B	H Etween 200 F and 250 F	REVISION		
5	TEMP						
			RING PROBE WIT RES AT DEPTH B	H ETWEEN 250 °F AND 300 °F	NO.	10	
					54		S
Volu	Base Com Cut	parison Surface Volume /olume	TOPO – Novemb TOPO – Novemb 49,906 Cu. Yd 3,512 Cu. Yd 46,394 Cu. Yd	er 12, 2024	NOVEMBER VOLUME CHANGE /EMBER 2023 TO NOVEMBER 2024		MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588
_		Elevat	ions Table		NOVEMBER		D XO
N	umber 1	Minimum Elevation -20.000	Maximum Elevation -10.000	Color			
	2	-10.000	-5.000			PROJECT TITLE	SC
	3	-5.000	-1.000			ECT	IOI
	4	-1.000	0.000		SHEET	PRO.	2
	5	0.000	1.000				
_	6 7	1.000	5.000				
_	8	10.000	20.000		S S	Ę	
VEME (+) ETTL DN O ROPE BE U REA	ER 16 INDICA EMENT F TOP RTY L SED FC AL PRC	, 2023 AND NOV TE AREAS OF FIL). VALUES ARE F OGRAPHY OR COI INES, OR BOUNDA DR DESIGN, MODIF OPERTY OR FOR F	EMBER 12, 2024 L AND NEGATIVE ROUNDED TO THE NTOURS, OR ANY RIES IS FOR GEN FICATION, OR CON FLOOD PLAIN DETE	DEPICTION OF PHYSICAL ERAL INFORMATION ONLY STRUCTION OF		WASTE MANAGEMENT FACI	2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201
TUM(5) IS I	BASED UPON NA\	/D—88.		VEERS AND SCHMIDT	EERS, INC. - MIDLOTHIAN, VA 23113	004) 378-7433
				· · · · · · · · · · · · · · · · · · ·	cadd f SUF date:	?F	PH. (804) 378-7440 FAX. (804 PPR04. NG 02218208.05 DSN. BY: DSN. BY: DSN. BY: C.UW
			100 50	0 100 200 SCALE: 1"=100'		G NO	of 8


NOTES:

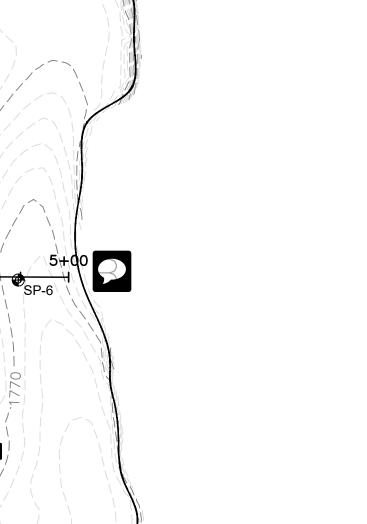
- 1. THE ELEVATION CHA CAPTURED ON NOVE POSITIVE VALUES (+ AREAS OF CUT (SET
- 2. ANY DETERMINATION IMPROVEMENTS, PRO AND SHALL NOT BE IMPROVEMENTS TO F
- 3. THE HORIZONTAL DA
- 4. THE VERTICAL DATU

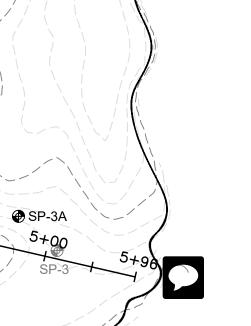

DISTANCE ALONG BASELINE (FT)

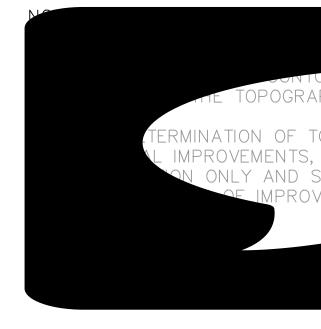


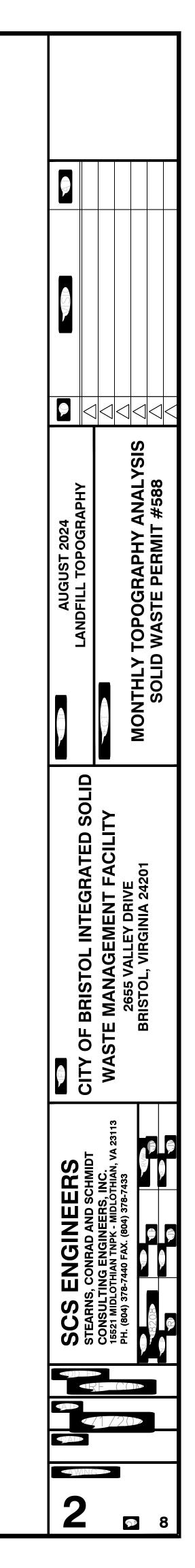

<u>LEGEND</u> BOTTOM LINER ELEVATION NOVEMBER 2023 TOPO

NOVEMBER 2023 TOPO AUGUST 2024 TOPO OCTOBER 2024 TOPO NOVEMBER 2024 TOPO





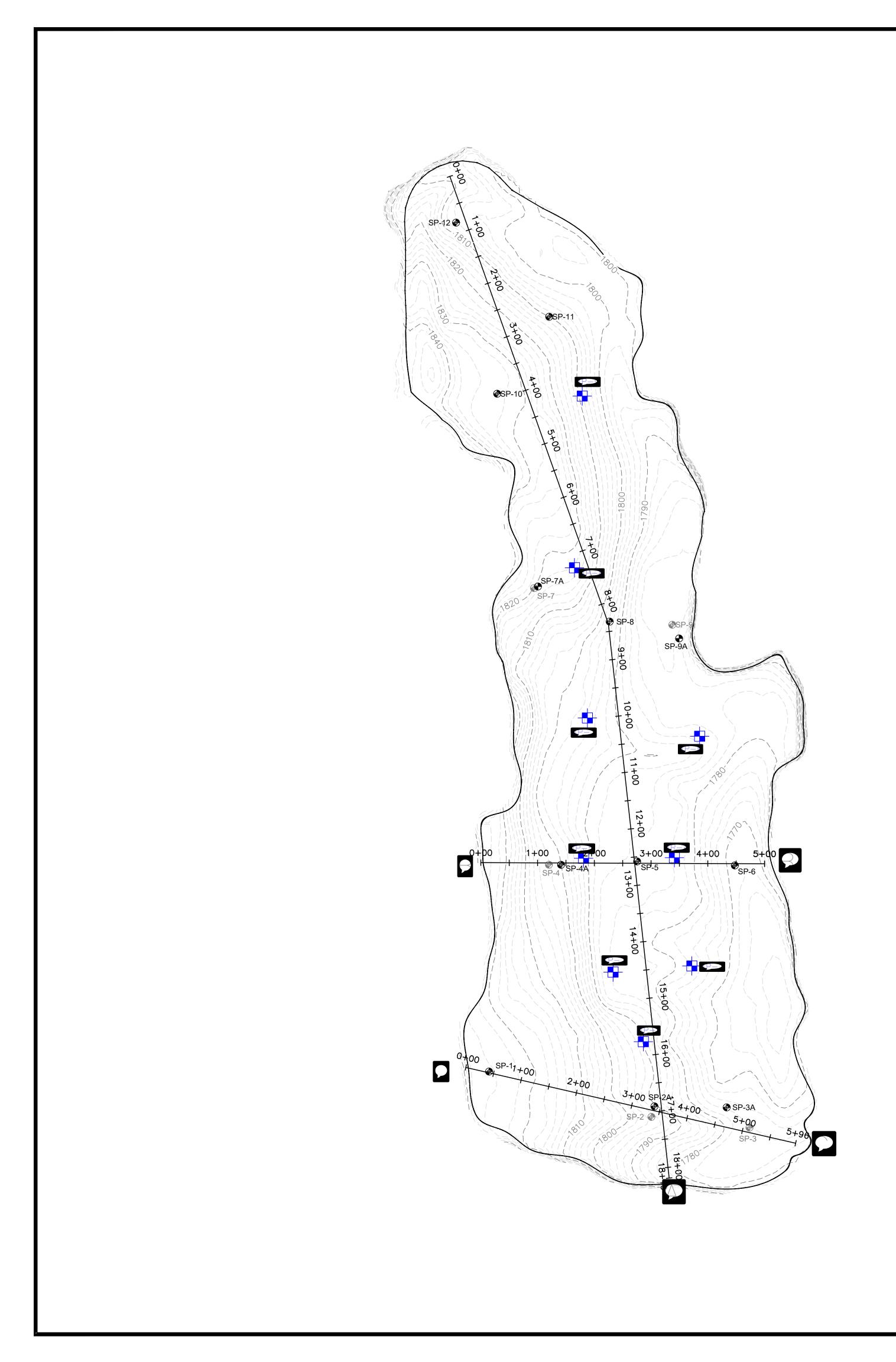



€SP-8

OSP-9

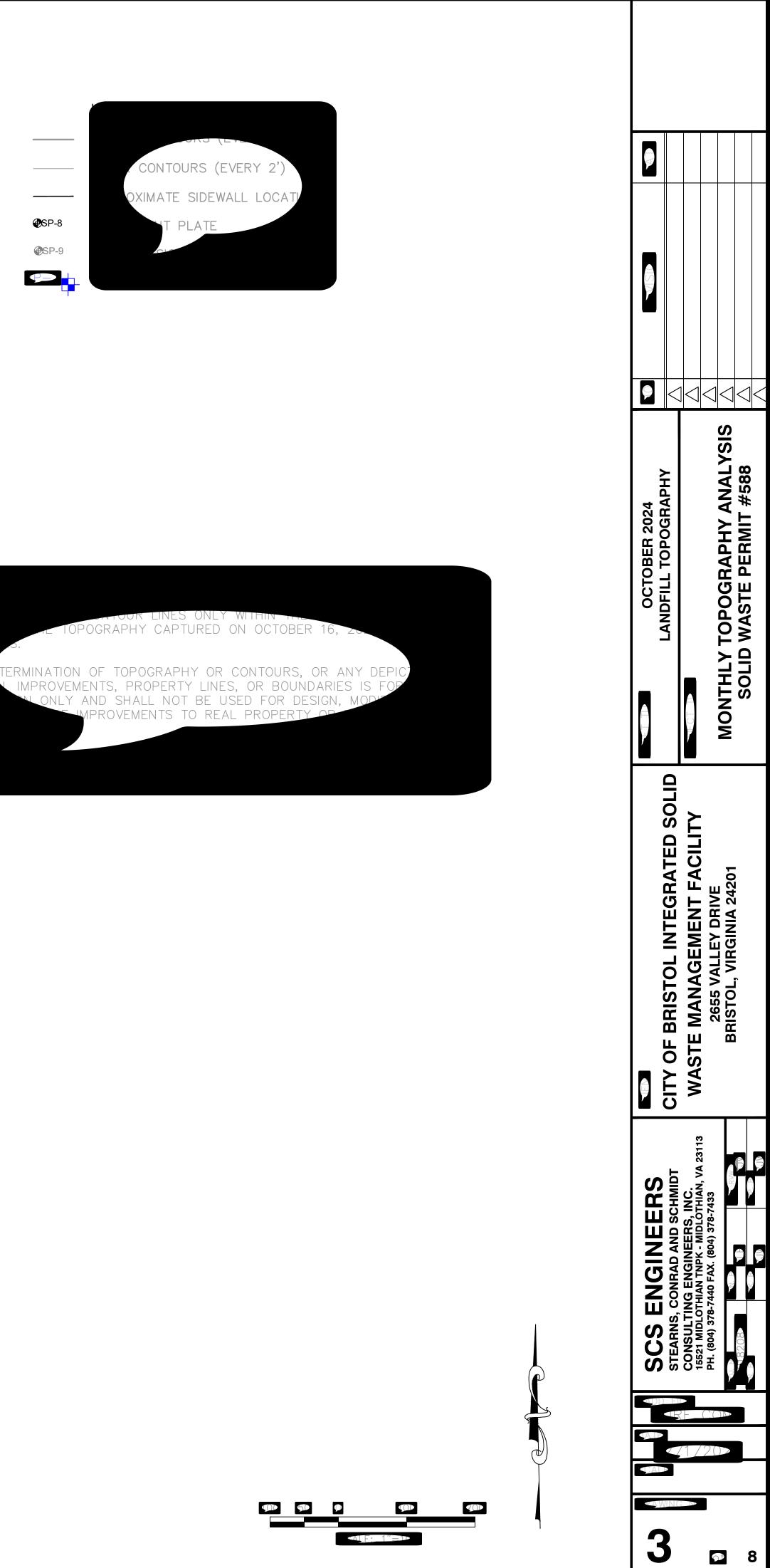
OXIMATE SIDEWALL LOCATI

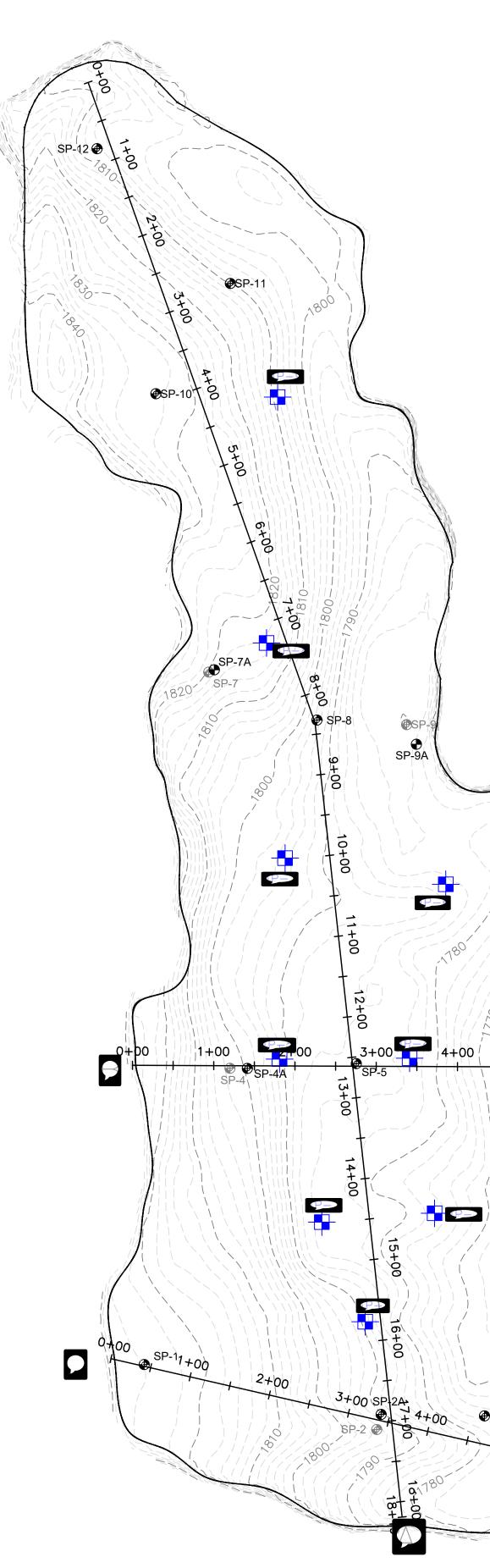
E TOPOGRAPHY CAPTURED ON AUGUST 14, 2024

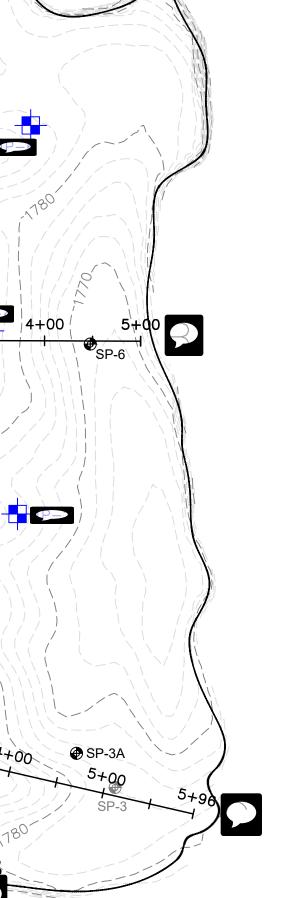

TERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTIO L IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GE ON ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICA-DE IMPROVEMENTS TO REAL PROPERTY OR ELOP

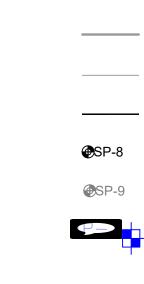
P

d

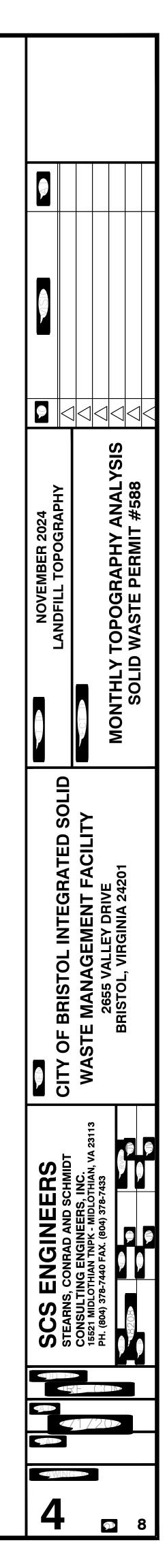

201



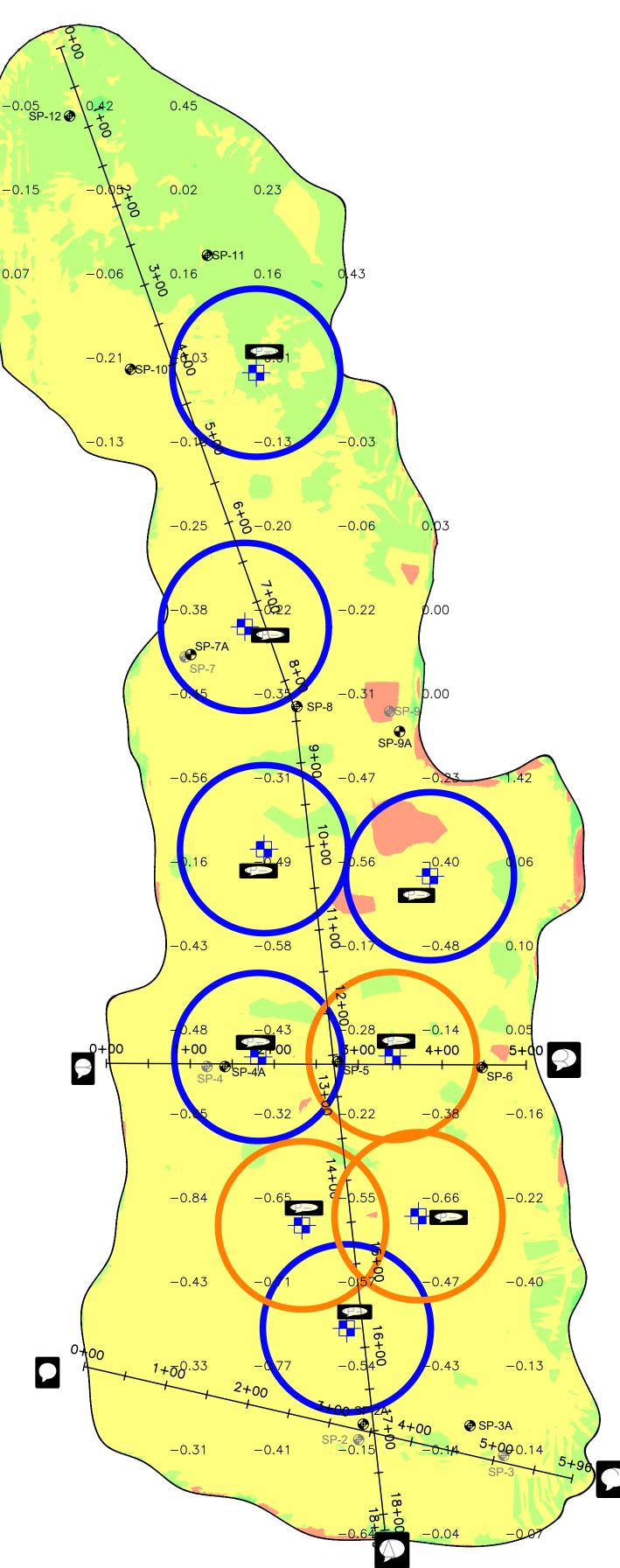

1PROVEMENTS,

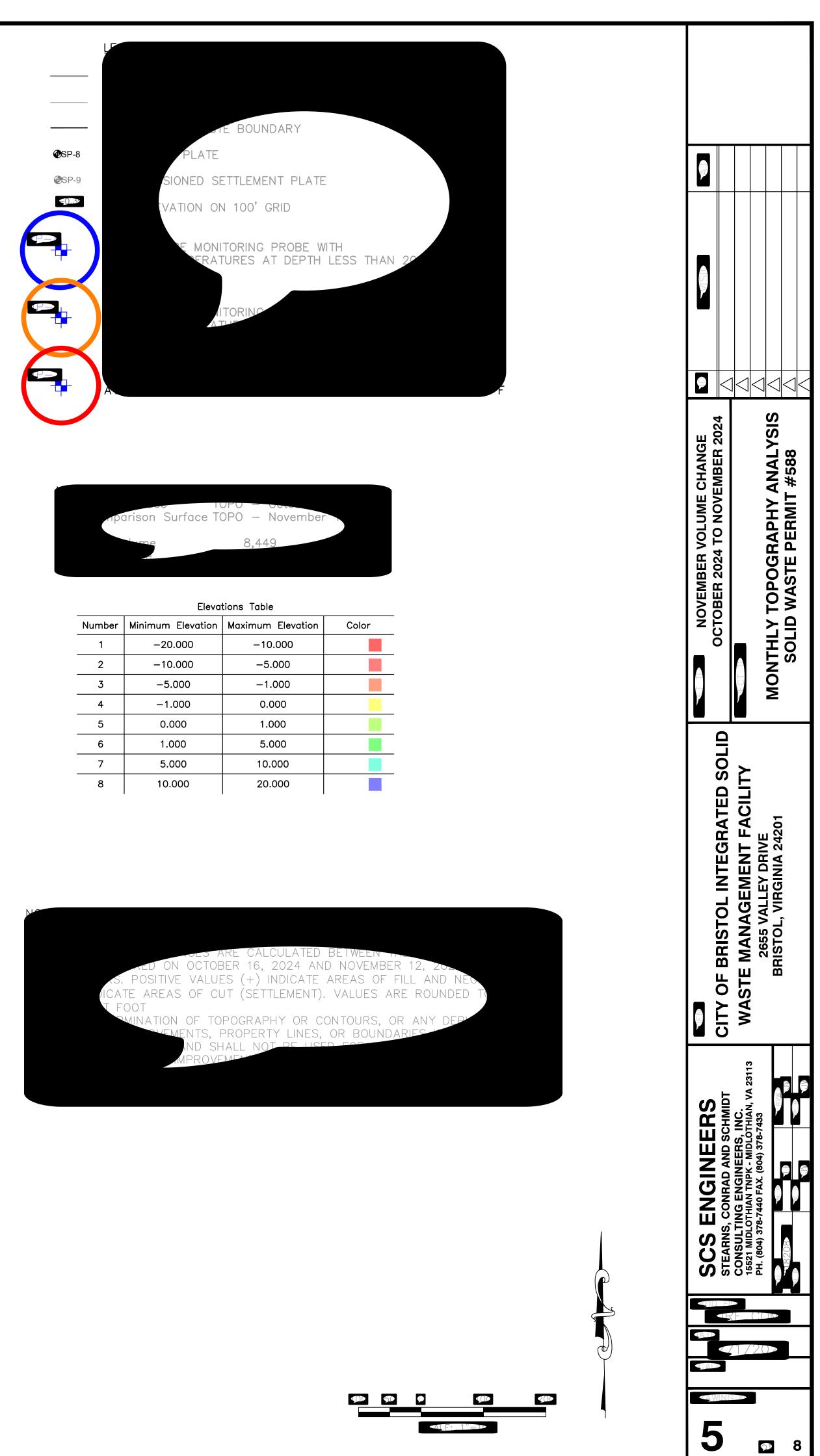


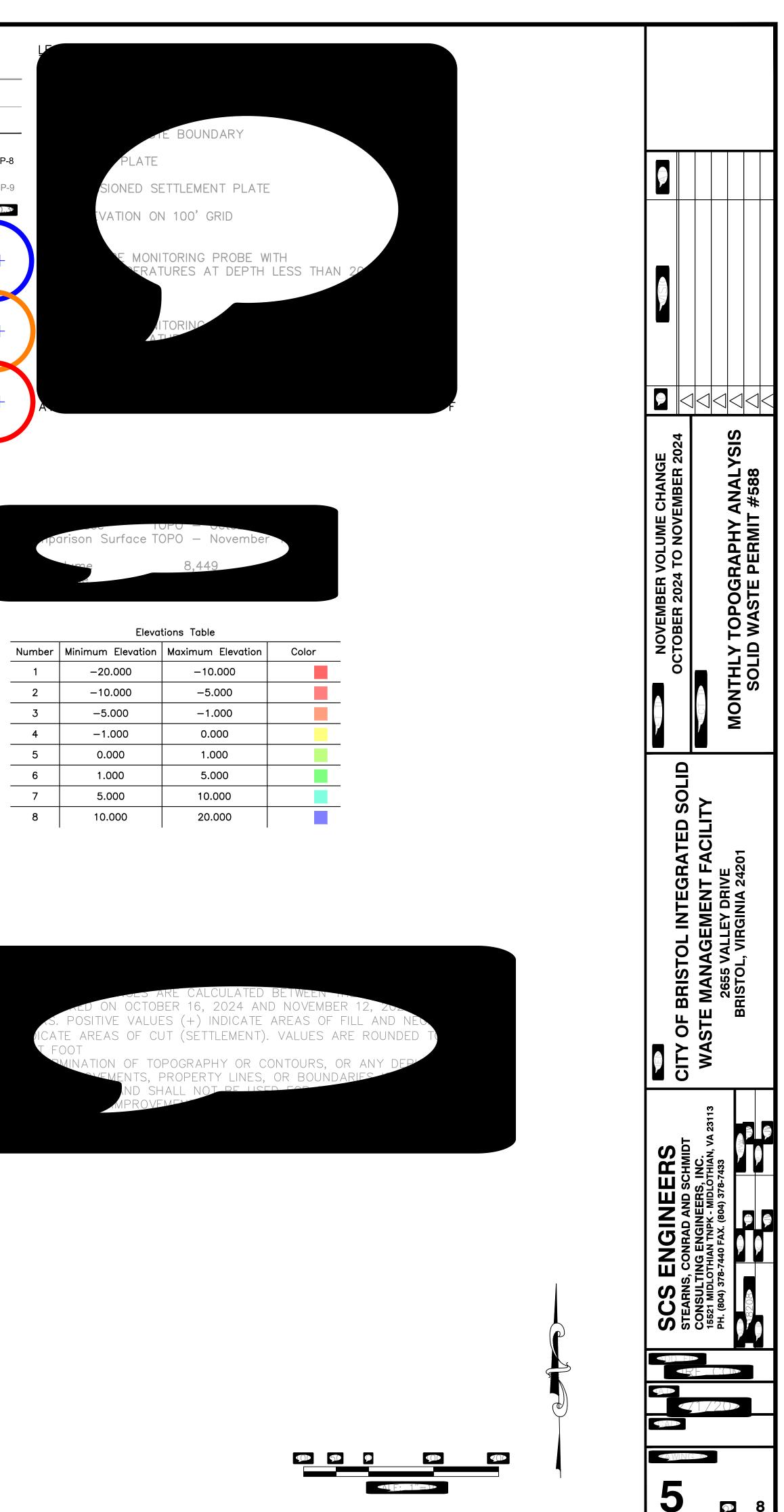
TERMINATION OF SENTS, PROPERT ST. BE USED

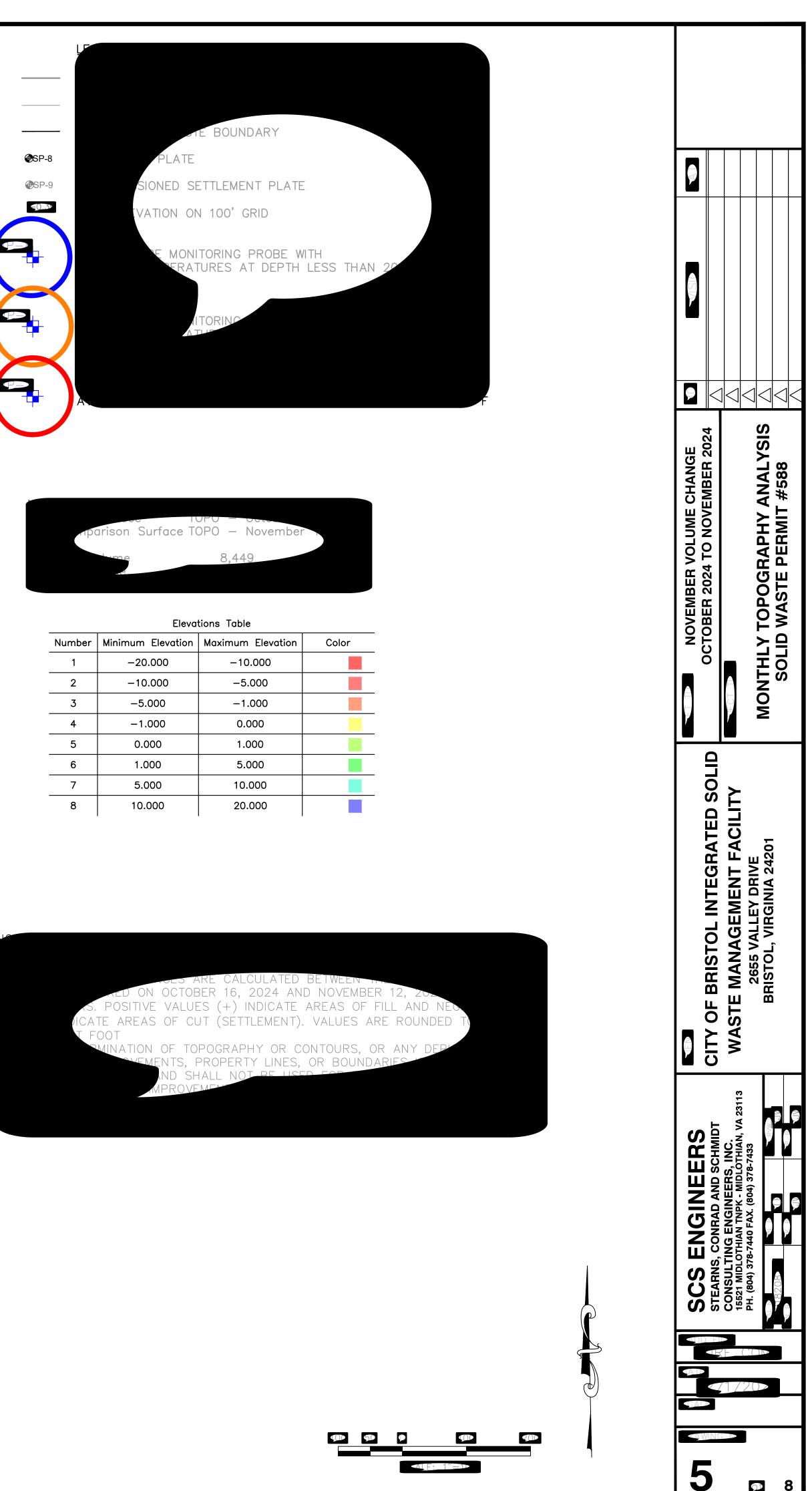


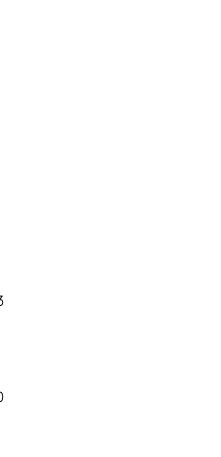
. CONTOURS (EVERY 2') OXIMATE SIDEWALL LOCATI YT PLATE

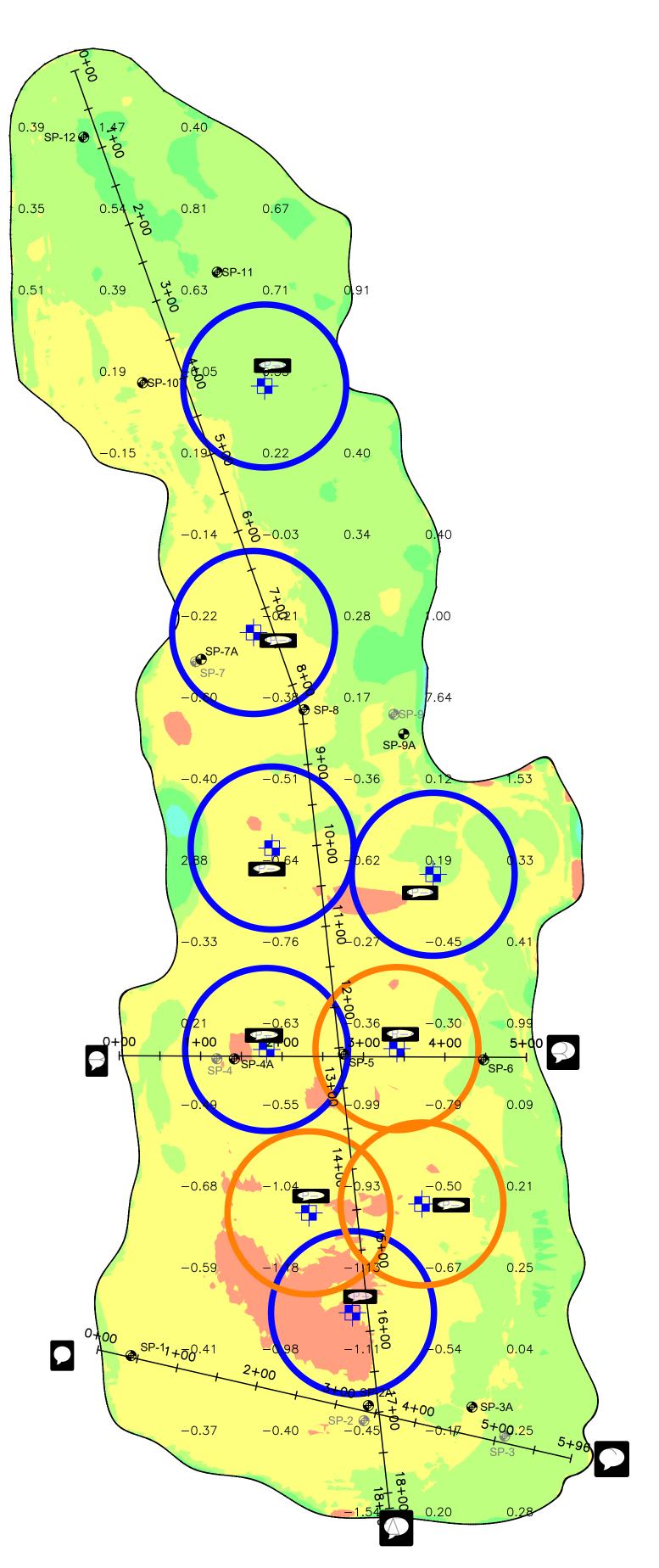

PHY CAPTURED ON NOVEMBER 12, 2024 BY SCS ENGINEER

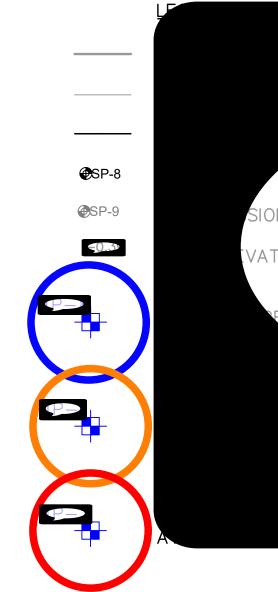

ERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF ENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORM TOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION IN PROPERTY OR FLOOD PLAIN DETERMIN

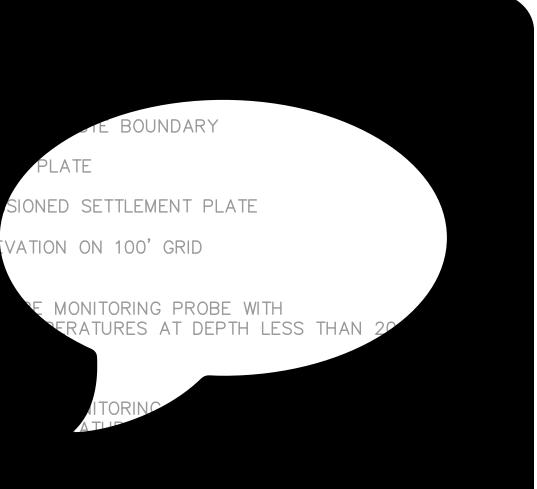

2010

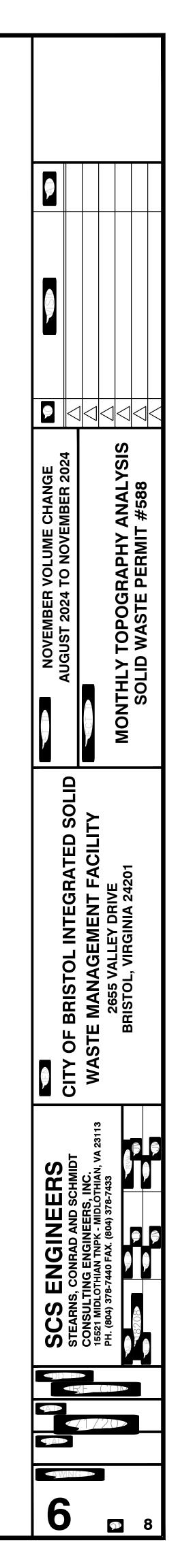

Ċ

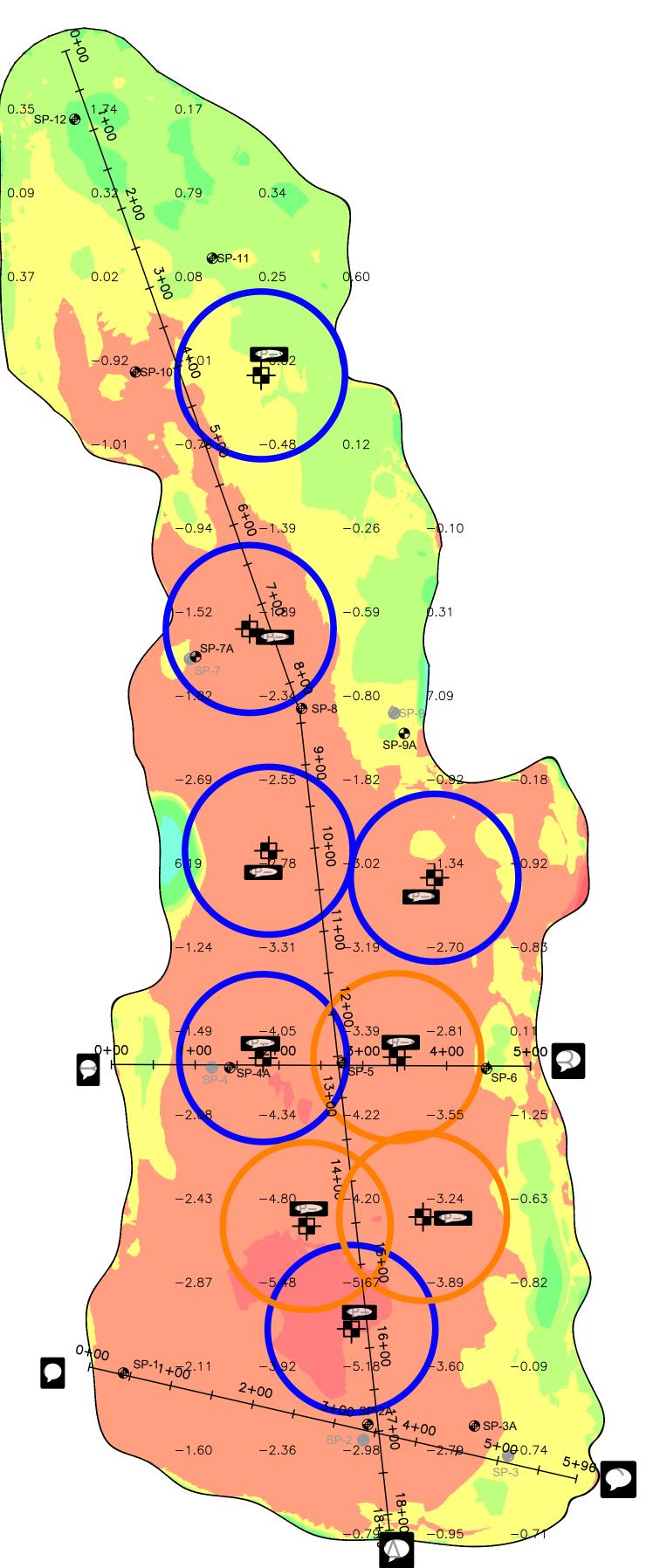


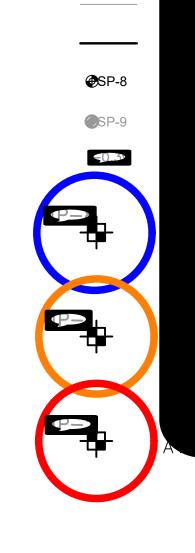



Number	Minimum Elevau
1	-20.000
2	-10.000
3	-5.000
4	-1.000
5	0.000
6	1.000
7	5.000
8	10.000

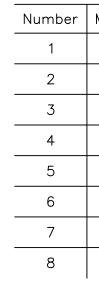


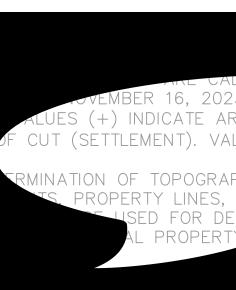

arison Surface TOPO	_	November	
lume 8,050		Cu Ya	

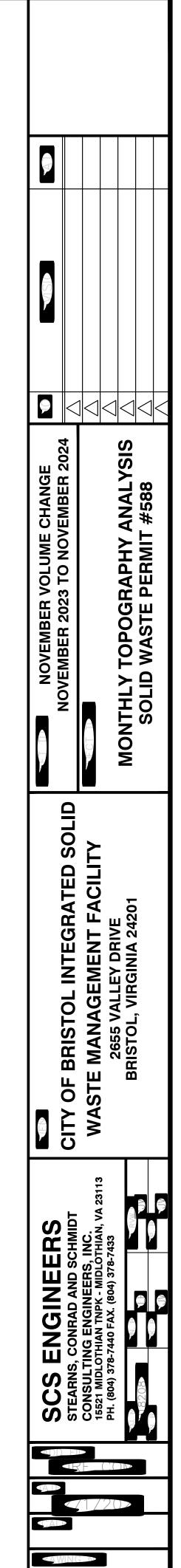

Eleva	tions Table	
Minimum Elevation	Maximum Elevation	Color
-20.000	-10.000	
-10.000	-5.000	
-5.000	-1.000	
-1.000	0.000	
0.000	1.000	
1.000	5.000	
5.000	10.000	
10.000	20.000	



2010


100

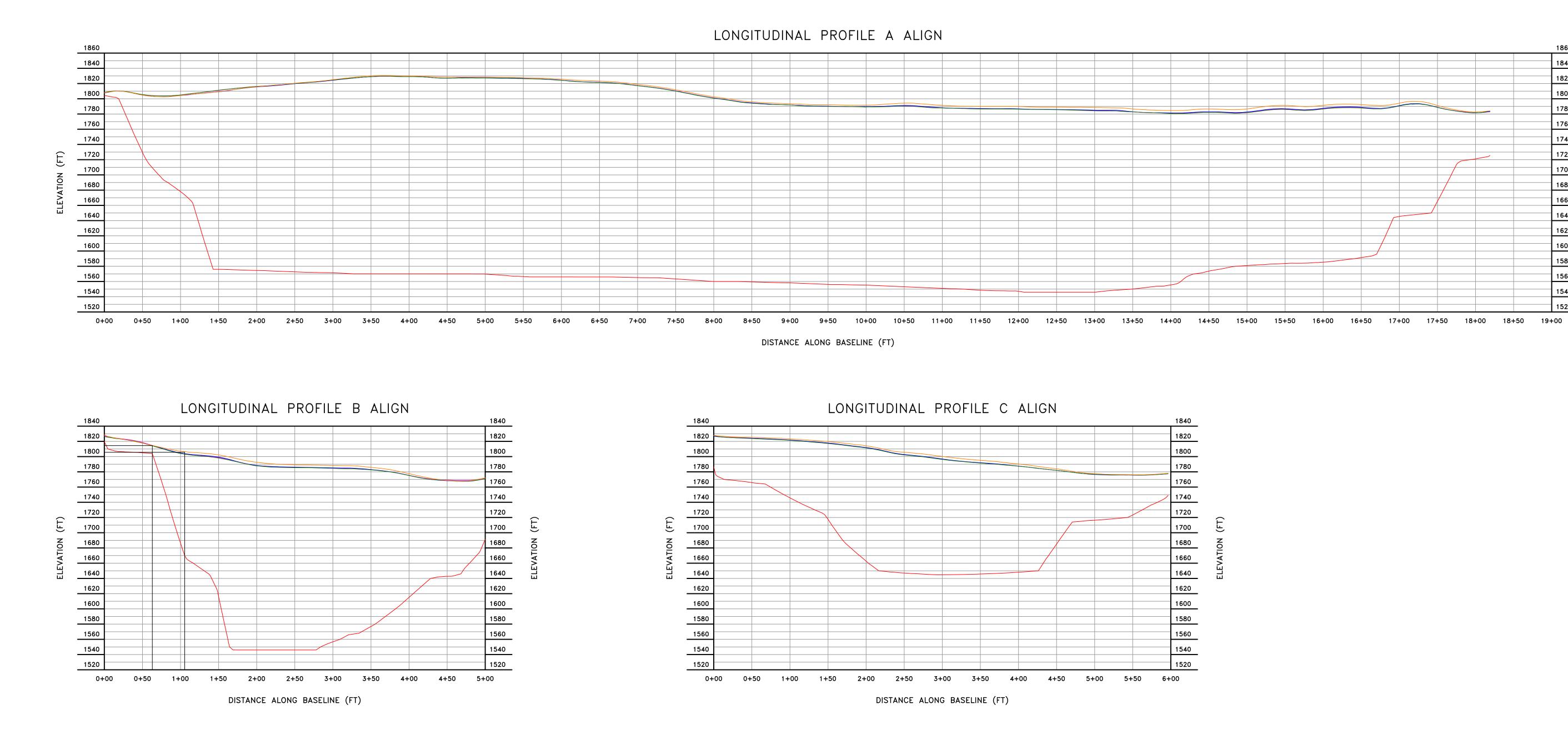


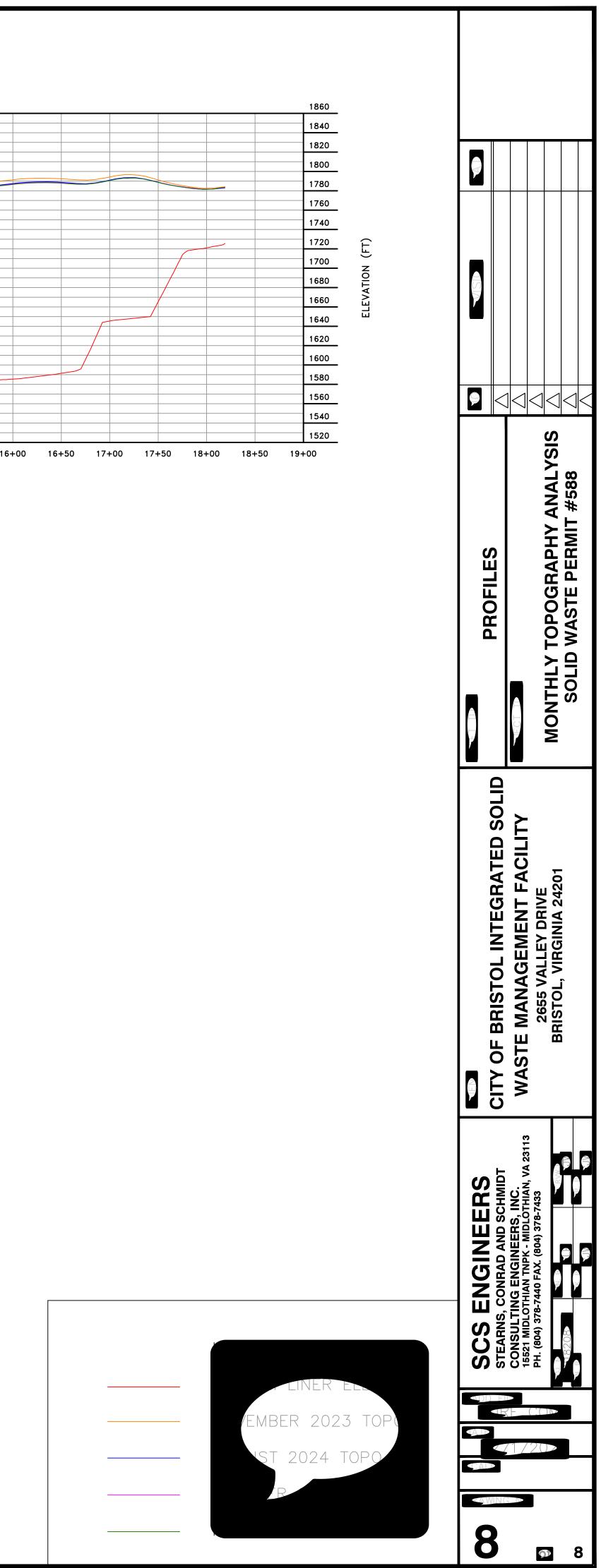

nparison	Surface	TOPO	_	Nove	mber	
hume C		49,90	6	Сц	Ya	
	Eleva	tions To	ıble			

r	Minimum Elevation	Maximum Elevation	Color
	-20.000	-10.000	
	-10.000	-5.000	
	-5.000	-1.000	
	-1.000	0.000	
	0.000	1.000	
	1.000	5.000	
	5.000	10.000	
	10.000	20.000	
		•	

CATE A	23 ANI Areas) nove of fili	EMBER _ AND	12, 2 NEG/	ATIVE	B T Value Neare	
LINES FOR D	, OR B ESIGN,	OUNDA	RIES IS	s fof	r gen	DEPICT IERAL L	

100


200



Ċ

7

۵ ا

Appendix F

Field Logs

Lab Report

Historical LFG-EW Leachate Monitoring Results Summary

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date							1	1/7/2024						
Personnel				L. Tucker,	L. Nelson								L. How	ard
Location ID	Date	Casing Stickup (ft)	Depth to Liquid (ft)	Prior Depth to Liquid (ft)	Cycle Count	Prior Cycle Count (10/01)	Measured Well Casing Depth (ft)	Pump Depth (ft)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Sample Collected	Check/ Photo	Comments
PUMP INSTA	LLED													
EW-33B*							185.00	140						
EW-36A	11/7/2024	5.33	60.72	50.48	81637	488578	180.00	135	129.52	Y	BH	Y	Y	
EW-49*							96.15	90						
EW-50	11/7/2024	3.83	46.73	38.99	1486564	1464410	77.70	83	38.71	Y	80	Y	Y	
EW-51	11/7/2024	4.17	33.10	33.02	180635	180635	92.80	95	59.78	Y	0	N	Y	
EW-52	11/7/2024	3.50	54.10	72.14	972653	894051	98.70	93	26.56	Y	103	N	Y	
EW-53	11/7/2024	4.00	43.89	53.22	3294310	3290412	100.70		47.48	Y	120	N	Y	
EW-54	11/7/2024	4.50	40.98	36.54	1116394	1077260	82.70	75	46.16	Y	0	N	Y	Air disconnected
EW-59	11/7/2024	4.42	42.18	42.51	3475073	3418361	73.40	64	30.89	Y	0	N	Y	Air off
EW-60	11/7/2024	4.75	41.27	41.20	63010	698147	81.80	70	40.60	Y	110	N	Y	
EW-61	11/7/2024	3.17	66.17	68.96	319360	279959	87.80	66	18.84	Y	60	N	Y	
EW-62	11/7/2024	4.92	81.12	72.25	214599	214599	110.60	80	38.35	Y	0	N	Y	Air disconnected
EW-64*							109.00	113						
EW-65*							88.40	50						
EW-67	11/7/2024	3.08	38.16	41.38	170183	102098	107.75	62.5	66.37	Y	100	N	Y	
EW-68	11/7/2024	1.88	49.62	52.45	2576627	2540476	73.57	68	21.12	Y	120	N	Y	
EW-69	11/7/2024	4.42	92.88	93.09	18	18	98.00		4.91	Y	0	N	Y	
EW-70	11/7/2024	2.17	56.41		14		71.00	58		Y	110	N	Y	
EW-74	11/7/2024	6.42	162.08	162.54			184.15	140	21.61	N		N	Y	
EW-78	11/7/2024	3.92	44.38	44.01	130611	130591	57.00	47	12.99	Y	80	N	Y	
EW-81*							151.56	125						
EW-82	11/7/2024	4.33	123.50	119.34	201285	39311	163.26	145	43.92	Y	BH	N	Y	

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date							1	11/7/2024						
Personnel				L. Tucker,	L. Nelson								L. How	vard
Location ID	Date	Casing Stickup (ft)	Depth to Liquid (ft)	Prior Depth to Liquid (ft)	Cycle Count	Prior Cycle Count (10/01)	Measured Well Casing Depth (ft)	Pump Depth (ff)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Sample Collected	Check/ Photo	Comments
EW-83*							167.04	145						
EW-85	11/7/2024	4.58	55.25	54.11	237292	237195	91.00	78.5	36.89	Y	110	N	Y	
EW-87	11/7/2024	5.08	59.83	57.96	340749	276139	149.57	125	91.61	Y	0	N	Y	Air off
EW-88	11/7/2024	4.17	DNM	60.86	254732	199456	100.00	58	39.14	Y	0	N	Y	Crust has sealed well cap
EW-89	11/7/2024	4.75	39.95	42.07			84.57	70	42.50	Y	0	N	Y	
EW-90	11/7/2024	3.92	49.42				114.00	101		Y	0	N	Y	
EW-91	11/7/2024	5.67	50.41	46.35			137.70	115	91.35	Y	0	N	Y	
EW-92	11/7/2024	7.75		50.96			112.99	95	62.03	N		N	Y	Too tall to measure
EW-96	11/7/2024	7.58	64.34	53.63			164.35	145	110.72	Y	BH	N	Y	
EW-98	11/7/2024	4.33	31.84	45.12	1387046	1256797	51.00	43	5.88	Y	120	N	Y	
EW-100	11/7/2024	4.25	72.21	70.84		733311	108.50	96.5	37.66	N		N	Y	
NO PUMP														
EW-55	11/7/2024	3.92	24.86	39.33	55091		90.40	90	51.07	Y	0	N	Y	Well Label Obscured
EW-56	11/7/2024	5.67	Dry	Dry			42.71	58					Y	Hit bottom at 39'
EW-57	11/7/2024	5.17	39.74	85.64			107.40	71	21.76				Y	
EW-58	11/7/2024	3.75	30.05	26.67			84.50	82					Y	
EW-63*							62.10	64						
EW-66	11/7/2024	5.75	38.99	36.27									Y	
EW-71	11/7/2024	5.38	>165	161.40			185.80						Y	Meter max length is 165' did not encounter liquid at 165'
EW-72	11/7/2024	5.00	121.03	125.99			141.21						Y	
EW-73	11/7/2024	3.58	106.16	106.52			116.00						Y	
EW-77*							185.22							
EW-79*							185.64							
EW-80*							149.00							
EW-84*							130.56							

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date							1	1/7/2024						
Personnel				L. Tucker,	L. Nelson								L. How	vard
Location ID	Date	Casing Stickup (ft)	Depth to Liquid (ft)	Prior Depth to Liquid (ft)	Cycle Count	Prior Cycle Count (10/01)	Casing Donth	Pump Depth (ft)	Liquid Column Thickness	Pump (Y/N)	Pump PSI	Sample Collected	Check/ Photo	Comments
EW-86	11/7/2024	3.00	78.70	73.68			153.00						Y	
EW-93	11/7/2024	4.08	41.74	32.68	837901		111.00			Y	93	N	Y	
EW-95	11/7/2024	4.00	59.34	56.61			68.00						Y	
EW-97	11/7/2024	8.08	DNM	DNM			144.50						Y	Too tall to measure
EW-99	11/7/2024	4.17	59.81	36.65			65.00						Y	
MEASURE C	CASING STIC	KUP AND C	YCLE COUN	TER ONLY										
EW-75*	11/7/2024	5.58	DNM	DNM			130.82	140		N				
EW-76	11/7/2024	3.58	DNM	DNM		41	127.00	108		N		N	Y	
EW-94	11/7/2024	3.92	DNM	DNM	576769	502253	50.00	45			90	N	Y	

DNM = Do not measure

* = Unable to get depth to liquid due to damage to forcemain causing wells to be not under vacuum and therefore unsafe to open.

Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (oC)	рН (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-33B									
EW-36A	11/7/2024	10:50	49.20	7.52	12135.00	0.05	-198.20	0.00	Black Opaque
EW-49									
EW-50	11/7/2024	10:25	65.70	7.47	193666.00	0.24	-197.80	15.52	yellow-green
EW-51									
EW-52									
EW-53									
EW-54									
EW-55									
EW-57									
EW-58									
EW-59									
EW-60									
EW-61									
EW-62									
EW-64									
EW-67									
EW-68									
EW-70									
EW-72									

Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (oC)	рН (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-73									
EW-74									
EW-75									
EW-76									
EW-78									
EW-81									
EW-82									
EW-83									
EW-85									
EW-87									
EW-88									
EW-89									
EW-90									
EW-91									
EW-92									
EW-94									
EW-96									
EW-98									
EW-100									
Sampler:		L. Nelson, L. Tu	cker			Sampl	es Shipped By:		
og Checked		L. Howard						: Enthalpy Analy	/tical

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

DRAFT REPORT

Laboratory Order ID 24K0529

Client Name: SCS Engineers-Winchester

296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Client Site I.D.: Bristol Landfill

Date Received:November 8, 20248:00Date Issued:November 22, 202417:20Project Number:0218208.15Purchase Order:

Enclosed are the results of analyses for samples received by the laboratory on 11/08/2024 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

			Analysis Detec	<u>ts Report</u>					
Client Name:	SCS Engineers-Wir	nchester			Date Issued:	11/2	22/2024	5:20:18PM	
	Bristol Landfill								
-	Jennifer Robb								
Laboratory Sample ID:	24K0529-01	Client Sa	mple ID: EW-36A						
Parameter		Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Dil. Factor	Units
Arsenic		01	SW6020B	180		5.0	10	10	ug/L
Barium		01	SW6020B	262		10.0	50.0	10	ug/L
Chromium		01	SW6020B	79.7		4.00	10.0	10	ug/L
Copper		01	SW6020B	5.69	J	3.00	10.0	10	ug/L
Nickel		01	SW6020B	38.79		10.00	10.00	10	ug/L
Zinc		01	SW6020B	32.5	J	25.0	50.0	10	ug/L
2-Butanone (MEK)		01RE1	SW8260D	28800		750	2500	250	ug/L
Acetone		01RE1	SW8260D	44400		1750	2500	250	ug/L
Benzene		01	SW8260D	119		8.00	20.0	20	ug/L
Ethylbenzene		01	SW8260D	14.4	J	8.00	20.0	20	ug/L
Tetrahydrofuran		01	SW8260D	6620		200	200	20	ug/L
Toluene		01	SW8260D	44.6		10.0	20.0	20	ug/L
Ammonia as N		01	EPA350.1 R2.0	934		146	200	2000	mg/l
BOD		01	SM5210B-2016	4760		0.2	2.0	1	mg/l
COD		01	SM5220D-2011	9540		1000	1000	100	mg/l
Cyanide		01	SW9012B	0.09		0.05	0.05	5	mg/l
ΓKN as N		01RE1	EPA351.2 R2.0	1070		40.0	100	200	mg/l
Total Recoverable Phenolic	s	01	SW9065	5.22		0.300	0.500	1	mg/l

			Analysis Detec	<u>ts Report</u>					
Client Name:	SCS Engineers-Wi	nchester			Date Issued:	11/2	22/2024	5:20:18PM	
Client Site ID:	Bristol Landfill								
Submitted To:	Jennifer Robb								
Laboratory Sample ID:	24K0529-02	Client Sa	mple ID: EW-50						
Parameter		Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Dil. Factor	Units
Arsenic		02	SW6020B	150		5.0	10	10	ug/L
Barium		02	SW6020B	690		10.0	50.0	10	ug/L
Chromium		02	SW6020B	237		4.00	10.0	10	ug/L
Nickel		02	SW6020B	96.65		10.00	10.00	10	ug/L
Zinc		02	SW6020B	36.7	J	25.0	50.0	10	ug/L
2-Butanone (MEK)		02	SW8260D	4140		60.0	200	20	ug/L
Acetone		02RE1	SW8260D	8680		350	500	50	ug/L
Benzene		02	SW8260D	512		8.00	20.0	20	ug/L
Ethylbenzene		02	SW8260D	135		8.00	20.0	20	ug/L
Tetrahydrofuran		02	SW8260D	452		200	200	20	ug/L
Toluene		02	SW8260D	245		10.0	20.0	20	ug/L
Xylenes, Total		02	SW8260D	223		20.0	60.0	20	ug/L
Ammonia as N		02	EPA350.1 R2.0	1370		146	200	2000	mg/L
BOD		02	SM5210B-2016	7360		0.2	2.0	1	mg/L
COD		02	SM5220D-2011	8840		2000	2000	200	mg/L
Cyanide		02	SW9012B	0.14	Cl	0.05	0.05	5	mg/L
Nitrite as N		02	SM4500-NO2B-2011	1.35	J	0.50	2.50	50	mg/L
TKN as N		02	EPA351.2 R2.0	1610		40.0	100	200	mg/L
Total Recoverable Phenolic	CS	02	SW9065	10.1		1.50	2.50	1	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

11/07/2024 10:25

		<u>Certificate c</u>	of Analysis	
Client Name:	SCS Engineers-Winchester		Date Issued:	11/22/2024 5:20:18PM
Client Site I.D.:	Bristol Landfill			
Submitted To:	Jennifer Robb		Work Order:	24K0529
		ANALYTICAL REPO	RT FOR SAMPLES	
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-36A	24K0529-01	Ground Water	11/07/2024 10:50	11/08/2024 08:00

 Trip Blank
 24K0529-03
 Non-Potable Water
 10/29/2024 13:16

 Please be advised that due to matrix interference, all samples were diluted per method protocol, causing the MCLs for
 10/29/2024 13:16

Ground Water

24K0529-02

multiple analytes and compounds to be exceeded.

EW-50

11/08/2024 08:00

11/08/2024 08:00

				<u>C</u>	ertificate of	<u>Analysis</u>							
Client Name:	SCS Engin	eers-Winc	hester				Date	e Issued:		11/22/20	24	5:20:18PM	
Client Site I.D.:	Bristol Land	fill											
Submitted To:	Jennifer Rob	b					Wo	rk Order:		24K0529	9		
Client Sample ID:	EW-36A					Laboratory	Sample ID:	24K05	29-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analy
Metals (Total) by EPA	6000/7000 Series	Methods											
Silver		01	7440-22-4	SW6020B	11/12/2024 17:00	11/13/2024 11:53	BLOD		0.600	10.0	10	ug/L	AB
Arsenic		01	7440-38-2	SW6020B	11/12/2024 17:00	11/13/2024 11:53	180		5.0	10	10	ug/L	AB
Barium		01	7440-39-3	SW6020B	11/12/2024 17:00	11/13/2024 11:53	262		10.0	50.0	10	ug/L	AB
Cadmium		01	7440-43-9	SW6020B	11/12/2024 17:00	11/13/2024 11:53	BLOD		1.00	10.0	10	ug/L	AB
Chromium		01	7440-47-3	SW6020B	11/12/2024 17:00	11/13/2024 11:53	79.7		4.00	10.0	10	ug/L	AB
Copper		01	7440-50-8	SW6020B	11/12/2024 17:00	11/13/2024 11:53	5.69	J	3.00	10.0	10	ug/L	AB
Mercury		01	7439-97-6	SW6020B	11/12/2024 17:00	11/13/2024 11:53	BLOD		2.00	2.00	10	ug/L	AB
Nickel		01	7440-02-0	SW6020B	11/12/2024 17:00	11/13/2024 11:53	38.79		10.00	10.00	10	ug/L	AB
Lead		01	7439-92-1	SW6020B	11/12/2024 17:00	11/13/2024 11:53	BLOD		10	10	10	ug/L	AB
Selenium		01	7782-49-2	SW6020B	11/12/2024 17:00	11/13/2024 11:53	BLOD		8.50	10.0	10	ug/L	AB
Zinc		01	7440-66-6	SW6020B	11/12/2024 17:00	11/13/2024 11:53	32.5	J	25.0	50.0	10	ug/L	AB
Volatile Organic Com	pounds by GCMS						Samp	le Qualifier	: p	н			
2-Butanone (MEK)		01RE1	78-93-3	SW8260D	11/14/2024 13:49	11/14/2024 13:49	28800		750	2500	250	ug/L	JWR
Acetone		01RE1	67-64-1	SW8260D	11/14/2024 13:49	11/14/2024 13:49	44400		1750	2500	250	ug/L	JWR
Benzene		01	71-43-2	SW8260D	11/11/2024 16:47	11/11/2024 16:47	119		8.00	20.0	20	ug/L	JWR
Ethylbenzene		01	100-41-4	SW8260D	11/11/2024 16:47	11/11/2024 16:47	14.4	J	8.00	20.0	20	ug/L	JWR
Toluene		01	108-88-3	SW8260D	11/11/2024 16:47	11/11/2024 16:47	44.6		10.0	20.0	20	ug/L	JWR
Xylenes, Total		01	1330-20-7	SW8260D	11/11/2024 16:47	11/11/2024 16:47	BLOD		20.0	60.0	20	ug/L	JWR
Tetrahydrofuran		01	109-99-9	SW8260D	11/11/2024 16:47	11/11/2024 16:47	6620		200	200	20	ug/L	JWR
Surr: 1,2-Dichloroetha	ne-d4 (Surr)	01	99.1	% 70-120	11/11/2024 16:4	47 11/11/2024 16:43	7						
Surr: 4-Bromofluorobe	()	01	96.8		11/11/2024 16:4								
Surr: Dibromofluorome	()	01	99.2		11/11/2024 16:4								
Surr: Toluene-d8 (Surr Surr: 1,2-Dichloroetha		01 01RE1	95.3 125		11/11/2024 16:4 11/14/2024 13:4								s

				<u>C</u>	ertificate of A	<u>nalysis</u>							
Client Name:	SCS Engine	eers-Winc	hester				Dat	e Issued:	:	11/22/20	24 5	5:20:18PM	
Client Site I.D.:	Bristol Landf	ill											
Submitted To:	Jennifer Robl	b					Wa	rk Order	:	24K0529	9		
Client Sample ID:	EW-36A					Laboratory	Sample ID:	24K0	529-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Con	npounds by GCMS						Sam	ole Qualifier	r: p	н			
Surr: 4-Bromofluorob Surr: Dibromofluoron Surr: Toluene-d8 (Su	nethane (Surr)	01RE1 01RE1 01RE1	98.6 114 100	% 70-130	11/14/2024 13:49 11/14/2024 13:49 11/14/2024 13:49	11/14/2024 13:4	19						
Semivolatile Organic	c Compounds by G(CMS											
Anthracene		01	120-12-7	SW8270E	11/11/2024 09:00 1	1/11/2024 20:05	BLOD		50.0	100	10	ug/L	BMS
Surr: 2,4,6-Tribromop	ohenol (Surr)	01	56.4	% 5-136	11/11/2024 09:00	11/11/2024 20:0)5						
Surr: 2-Fluorobiphen	yl (Surr)	01	36.0		11/11/2024 09:00	11/11/2024 20:0	05						
Surr: 2-Fluorophenol	,	01	14.8		11/11/2024 09:00								
Surr: Nitrobenzene-d	()	01	56.2		11/11/2024 09:00		-						
Surr: Phenol-d5 (Sun Surr: p-Terphenyl-d14	,	01 01	11.1 36.1		11/11/2024 09:00 11/11/2024 09:00								
Sun. p-reipnenyr-un		01	50.7	/0 5-141	11/11/2024 09.00	11/11/2024 20.0							

				<u>C</u>	ertificate o	f Analysis							
Client Name:	SCS Engine	ers-Wind	hester				Date	e Issued	:	11/22/20	24 5	:20:18PN	1
Client Site I.D.:	Bristol Landfil	I											
Submitted To:	Jennifer Robb						Wo	rk Order	:	24K0529)		
Client Sample ID:	EW-36A					Laborato	ry Sample ID:	24K0	529-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Wet Chemistry Analy	vsis												
Ammonia as N		01	7664-41-7	EPA350.1 R2.0	11/19/2024 15:37	11/19/2024 15:37	934		146	200	2000	mg/L	MGC
BOD		01	E1640606	SM5210B-20 16	11/08/2024 13:29	11/08/2024 13:29	4760		0.2	2.0	1	mg/L	NBT
Cyanide		01	57-12-5	SW9012B	11/20/2024 15:00	11/20/2024 16:15	0.09		0.05	0.05	5	mg/L	BKR
COD		01	NA	SM5220D-20 11	11/22/2024 13:23	11/22/2024 13:23	9540		1000	1000	100	mg/L	TEG
Nitrate as N		01	14797-55-8	Calc.	11/19/2024 15:42	11/19/2024 15:42	BLOD		0.250	1.25	25	mg/L	KKB
Nitrate+Nitrite as N		01	E701177	SM4500-NO 3F-2016	11/19/2024 15:42	11/19/2024 15:42	BLOD		0.10	0.10	1	mg/L	SPH
Nitrite as N		01	14797-65-0	SM4500-NO 2B-2011	11/08/2024 16:10	11/08/2024 16:10	BLOD		0.25	1.25	25	mg/L	KKB
Total Recoverable Ph	nenolics	01	NA	SW9065	11/15/2024 16:30	11/15/2024 16:30	5.22		0.300	0.500	1	mg/L	SPH
TKN as N		01RE1	E17148461	EPA351.2 R2.0	11/19/2024 11:26	11/19/2024 11:26	1070		40.0	100	200	mg/L	TEG

				C	Certificate of	f Analysis							
Client Name:	SCS Engineers	s-Winch	nester	_			Date	e Issued		11/22/20	24 5	:20:18PN	1
Client Site I.D.:	Bristol Landfill												
Submitted To:	Jennifer Robb						Wo	rk Order	:	24K0529)		
Client Sample ID:	EW-50					Laborato	ry Sample ID:	24K0	529-02				
Parameter	S	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Metals (Total) by EPA	6000/7000 Series Meth	ods											
Silver	02	2	7440-22-4	SW6020B	11/12/2024 17:00	11/13/2024 11:56	BLOD		0.600	10.0	10	ug/L	AB
Arsenic	02	2	7440-38-2	SW6020B	11/12/2024 17:00	11/13/2024 11:56	150		5.0	10	10	ug/L	AB
Barium	02	2	7440-39-3	SW6020B	11/12/2024 17:00	11/13/2024 11:56	690		10.0	50.0	10	ug/L	AB
Cadmium	02	2	7440-43-9	SW6020B	11/12/2024 17:00	11/13/2024 11:56	BLOD		1.00	10.0	10	ug/L	AB
Chromium	02	2	7440-47-3	SW6020B	11/12/2024 17:00	11/13/2024 11:56	237		4.00	10.0	10	ug/L	AB
Copper	02	2	7440-50-8	SW6020B	11/12/2024 17:00	11/13/2024 11:56	BLOD		3.00	10.0	10	ug/L	AB
Mercury	02	2	7439-97-6	SW6020B	11/12/2024 17:00	11/13/2024 11:56	BLOD		2.00	2.00	10	ug/L	AB
Nickel	02	2	7440-02-0	SW6020B	11/12/2024 17:00	11/13/2024 11:56	96.65		10.00	10.00	10	ug/L	AB
Lead	02	2	7439-92-1	SW6020B	11/12/2024 17:00	11/13/2024 11:56	BLOD		10	10	10	ug/L	AB
Selenium	02	2	7782-49-2	SW6020B	11/12/2024 17:00	11/13/2024 11:56	BLOD		8.50	10.0	10	ug/L	AB
Zinc	02	2	7440-66-6	SW6020B	11/12/2024 17:00	11/13/2024 11:56	36.7	J	25.0	50.0	10	ug/L	AB

				<u>C</u>	ertificate of	<u>Analysis</u>							
Client Name:	SCS Engine	ers-Wincl	hester				Date	e Issued:		11/22/20	24	5:20:18PM	
Client Site I.D.:	Bristol Landfi	II											
Submitted To:	Jennifer Robb)					Wo	rk Order:		24K0529	9		
Client Sample ID:	EW-50					Laboratory	Sample ID:	24K052	9-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analy
Volatile Organic Compo	ounds by GCMS						Samp	ble Qualifier:	F	ьН			
2-Butanone (MEK)		02	78-93-3	SW8260D	11/11/2024 17:11	11/11/2024 17:11	4140		60.0	200	20	ug/L	JWF
Acetone		02RE1	67-64-1	SW8260D	11/13/2024 18:52	11/13/2024 18:52	8680		350	500	50	ug/L	TLH
Benzene		02	71-43-2	SW8260D	11/11/2024 17:11	11/11/2024 17:11	512		8.00	20.0	20	ug/L	JWF
Ethylbenzene		02	100-41-4	SW8260D	11/11/2024 17:11	11/11/2024 17:11	135		8.00	20.0	20	ug/L	JWF
Toluene		02	108-88-3	SW8260D	11/11/2024 17:11	11/11/2024 17:11	245		10.0	20.0	20	ug/L	JWF
Xylenes, Total		02	1330-20-7	SW8260D	11/11/2024 17:11	11/11/2024 17:11	223		20.0	60.0	20	ug/L	JWF
Tetrahydrofuran		02	109-99-9	SW8260D	11/11/2024 17:11	11/11/2024 17:11	452		200	200	20	ug/L	JWF
Surr: 1,2-Dichloroethane	e-d4 (Surr)	02	103 9	6 70-120	11/11/2024 17:	11 11/11/2024 17:1	1						
Surr: 4-Bromofluorobenz	. ,	02	96.4 9		11/11/2024 17:		1						
Surr: Dibromofluorometh	hane (Surr)	02	100 9	6 70-130	11/11/2024 17:	11 11/11/2024 17:1:	1						
Surr: Toluene-d8 (Surr)		02	95.5 9	6 70-130	11/11/2024 17:	11 11/11/2024 17:1:	1						
Surr: 1,2-Dichloroethane	e-d4 (Surr)	02RE1	126 9	6 70-120	11/13/2024 18:	52 11/13/2024 18:52	2						S
Surr: 4-Bromofluorobenz	zene (Surr)	02RE1	101 9	6 75-120	11/13/2024 18:	52 11/13/2024 18:52	2						
Surr: Dibromofluorometh	hane (Surr)	02RE1	114 9		11/13/2024 18:								
Surr: Toluene-d8 (Surr)		02RE1	102 9	6 70-130	11/13/2024 18:	52 11/13/2024 18:52	2						
Semivolatile Organic Co	ompounds by GC	MS											
Anthracene		02	120-12-7	SW8270E	11/11/2024 09:00	11/11/2024 20:35	BLOD		50.0	100	10	ug/L	BMS
Surr: 2,4,6-Tribromophe	nol (Surr)	02	54.8 9	6 5-136	11/11/2024 09:0	00 11/11/2024 20:3	5						
Surr: 2-Fluorobiphenyl (,	02	39.3 9	6 9-117	11/11/2024 09:0	00 11/11/2024 20:3	5						
Surr: 2-Fluorophenol (Su	urr)	02	14.9 9		11/11/2024 09:0								
Surr: Nitrobenzene-d5 (Surr)	02	47.2 9		11/11/2024 09:0	00 11/11/2024 20:3	5						
Surr: Phenol-d5 (Surr)		02	17.2 9		11/11/2024 09:0	00 11/11/2024 20:3	5						
Surr: p-Terphenyl-d14 (S	Surr)	02	14.1 9	6 5-141	11/11/2024 09:0	00 11/11/2024 20:3	5						

				<u>C</u>	ertificate o	<u>f Analysis</u>							
Client Name:	SCS Engine	ers-Wind	hester				Date	e Issued	l:	11/22/20	24 5	5:20:18PN	1
Client Site I.D.:	Bristol Landfil	II											
Submitted To:	Jennifer Robb)					Wo	rk Order		24K0529	9		
Client Sample ID:	EW-50					Laborato	ry Sample ID:	24K0	529-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Wet Chemistry Analy	vsis												
Ammonia as N		02	7664-41-7	EPA350.1 R2.0	11/22/2024 14:24	11/22/2024 14:24	1370		146	200	2000	mg/L	KKB
BOD		02	E1640606	SM5210B-20 16	11/08/2024 13:31	11/08/2024 13:31	7360		0.2	2.0	1	mg/L	NBT
Cyanide		02	57-12-5	SW9012B	11/20/2024 15:00	11/20/2024 16:16	0.14	CI	0.05	0.05	5	mg/L	BKR
COD		02	NA	SM5220D-20 11	11/22/2024 13:23	11/22/2024 13:23	8840		2000	2000	200	mg/L	TEG
Nitrate as N		02	14797-55-8	Calc.	11/19/2024 15:42	11/19/2024 15:42	BLOD		0.500	2.50	50	mg/L	KKB
Nitrate+Nitrite as N		02	E701177	SM4500-NO 3F-2016	11/19/2024 15:42	11/19/2024 15:42	BLOD		0.10	0.10	1	mg/L	SPH
Nitrite as N		02	14797-65-0	SM4500-NO 2B-2011	11/08/2024 16:10	11/08/2024 16:10	1.35	J	0.50	2.50	50	mg/L	KKB
Total Recoverable Ph	nenolics	02	NA	SW9065	11/15/2024 16:30	11/15/2024 16:30	10.1		1.50	2.50	1	mg/L	SPH
TKN as N		02	E17148461	EPA351.2 R2.0	11/19/2024 11:11	11/19/2024 11:11	1610		40.0	100	200	mg/L	TEG

				<u>C</u>	ertificate of	<u>Analysis</u>							
Client Name:	SCS Engine	ers-Wincl	hester			-	Date	e Issued:		11/22/20	24	5:20:18PM	
Client Site I.D.: B	Bristol Landfill	l											
Submitted To: Je	ennifer Robb						Woi	rk Order:		24K0529	9		
Client Sample ID: T	rip Blank					Laboratory	Sample ID:	24K05	29-03				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	- Units	Analys
Volatile Organic Compou	nds by GCMS						Samp	le Qualifier:		рН			
2-Butanone (MEK)		03	78-93-3	SW8260D	11/11/2024 15:36	11/11/2024 15:36	BLOD		3.00	10.0	1	ug/L	JWR
Acetone		03	67-64-1	SW8260D	11/11/2024 15:36	11/11/2024 15:36	BLOD		7.00	10.0	1	ug/L	JWR
Benzene		03	71-43-2	SW8260D	11/11/2024 15:36	11/11/2024 15:36	BLOD		0.40	1.00	1	ug/L	JWR
Ethylbenzene		03	100-41-4	SW8260D	11/11/2024 15:36	11/11/2024 15:36	BLOD		0.40	1.00	1	ug/L	JWR
Toluene		03	108-88-3	SW8260D	11/11/2024 15:36	11/11/2024 15:36	BLOD		0.50	1.00	1	ug/L	JWR
Xylenes, Total		03	1330-20-7	SW8260D	11/11/2024 15:36	11/11/2024 15:36	BLOD		1.00	3.00	1	ug/L	JWR
Tetrahydrofuran		03	109-99-9	SW8260D	11/11/2024 15:36	11/11/2024 15:36	BLOD		10.0	10.0	1	ug/L	JWR
Surr: 1,2-Dichloroethane-o	d4 (Surr)	03	99.3	% 70-120	11/11/2024 15:3	6 11/11/2024 15:36	5						
Surr: 4-Bromofluorobenze	ene (Surr)	03	96.2	% 75-120	11/11/2024 15:3	6 11/11/2024 15:36	5						
Surr: Dibromofluorometha	ane (Surr)	03	101		11/11/2024 15:3								
Surr: Toluene-d8 (Surr)		03	94.6	% 70-130	11/11/2024 15:3	6 11/11/2024 15:36	5						

			<u>C</u>	ertificate o	of Analysi	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill									
Submitted To:	Jennifer Robb						Work Ord	er.	24K0529	
		Madala	(T - t - 1)	FDA 0000/7000 0				01.	2410020	
		Metals	(lotal) by	EPA 6000/7000 S		Quality Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0575 - EPA200.	2R2.8/SW3	005A-IC	PMS						
Blank (BHK0575-BLK1)				Prepared: 11/12/2	2024 Analyzed: 1	1/13/2024				
Mercury	ND	0.200	ug/L							
Arsenic	ND	1.0	ug/L							
Barium	ND	5.00	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	1.00	ug/L							
Copper	ND	1.00	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	1.000	ug/L							
Selenium	ND	1.00	ug/L							
Silver Zinc	ND ND	1.00 5.00	ug/L ug/L							
	ND	5.00	ug/L							
LCS (BHK0575-BS1)				Prepared: 11/12/2	2024 Analyzed: 1					
Mercury	1.07	0.200	ug/L	1.00		107	80-120			
Arsenic Barium	50 50.5	1.0 5.00	ug/L	50.0		100	80-120 80-120			
Barium Cadmium	50.5 50.1	5.00 1.00	ug/L ug/L	50.0 50.0		101 100	80-120 80-120			
Chromium	50.6	1.00	ug/L	50.0		100	80-120 80-120			
Copper	50.8	1.00	ug/L	50.0		101	80-120 80-120			
Lead	54	1.00	ug/L	50.0		102	80-120			
Nickel	51.24	1.000	ug/L	50.0		100	80-120			
Selenium	51.5	1.00	ug/L	50.0		103	80-120			
Silver	10.2	1.00	ug/L	10.0		102	80-120			
Zinc	51.5	5.00	ug/L	50.0		103	80-120			
Matrix Spike (BHK0575-I	MS1) Source:	24K0420-03		Prepared: 11/12/2	2024 Analyzed 1	1/13/2024				

				<u>Ce</u>	ertificate o	of Analys	is				
Client Name:	SCS Engineers	s-Wincheste	r					Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Work Ord	or.	24K0529	
			Matala			aniaa Mathaala	Quality Control		CI.	241(0020	
			Metals	(Total) by	EPA 6000/7000 S		Quality Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK	0575 - EPA20	0.2R2.8/SW3	005A-IC	PMS						
Matrix Spike (BHK057	5-MS1)	Sourc	e: 24K0420-0	3	Prepared: 11/12/	2024 Analyzed: 1	1/13/2024				
Mercury		1.05	0.200	ug/L	1.00	BLOD	105	70-130			
Arsenic		52	1.0	ug/L	50.0	2.5	99.9	75-125			
Barium		57.2	5.00	ug/L	50.0	5.36	104	75-125			
Cadmium		52.0	1.00	ug/L	50.0	0.409	103	75-125			
Chromium		53.1	1.00	ug/L	50.0	1.12	104	75-125			
Copper		51.2	1.00	ug/L	50.0	0.413	101	75-125			
Lead		55	1.0	ug/L	50.0	BLOD	110	75-125			
Nickel		55.02	1.000	ug/L	50.0	3.666	103	75-125			
Selenium		49.0	1.00	ug/L	50.0	BLOD	97.9	75-125			
Silver		10.3	1.00	ug/L	10.0	BLOD	103	75-125			
Zinc		54.2	5.00	ug/L	50.0	2.90	103	75-125			
Matrix Spike (BHK057	5-MS2)	Sourc	e: 24K0492-0	3	Prepared: 11/12/	2024 Analyzed: 1	1/13/2024				
Mercury		1.01	0.200	ug/L	1.00	BLOD	101	70-130			
Arsenic		51	1.0	ug/L	50.0	0.92	99.3	75-125			
Barium		61.2	5.00	ug/L	50.0	12.3	97.8	75-125			
Cadmium		49.2	1.00	ug/L	50.0	BLOD	98.4	75-125			
Chromium		49.8	1.00	ug/L	50.0	0.533	98.5	75-125			
Copper		50.9	1.00	ug/L	50.0	2.40	96.9	75-125			
Lead		53	1.0	ug/L	50.0	BLOD	107	75-125			
Nickel		49.86	1.000	ug/L	50.0	1.458	96.8	75-125			
Selenium		49.0	1.00	ug/L	50.0	BLOD	98.0	75-125			
Silver		10.0	1.00	ug/L	10.0	BLOD	100	75-125			
Zinc		70.9	5.00	ug/L	50.0	23.3	95.2	75-125			
Matrix Spike Dup (BH	K0575-MSD1)	Sourc	e: 24K0420-0	3	Prepared: 11/12/	2024 Analvzed: 1	1/13/2024				

				<u>Ce</u>	ertificate o	of Analys	is				
Client Name:	SCS Engineers	-Wincheste	r			-		Date Issu	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Work Orc	ler:	24K0529	
			Motolo	(Total) by	EPA 6000/7000 S	orion Mothodo	Quality Control	Work Ore		2410020	
			Metals	(Total) by			Quality Control				
					Enthalpy A	nalytical					
A		Desult	1.00	1.1	Spike	Source		%REC		RPD	Qual
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BHK	0575 - EPA20	0.2R2.8/SW3	005A-ICI	PMS						
Matrix Spike Dup (BH	K0575-MSD1)	Sourc	e: 24K0420-03		Prepared: 11/12/	2024 Analyzed: 1	1/13/2024				
Mercury		1.05	0.200	ug/L	1.00	BLOD	105	70-130	0.00514	20	
Arsenic		53	1.0	ug/L	50.0	2.5	102	75-125	1.53	20	
Barium		56.4	5.00	ug/L	50.0	5.36	102	75-125	1.50	20	
Cadmium		52.7	1.00	ug/L	50.0	0.409	105	75-125	1.32	20	
Chromium		53.1	1.00	ug/L	50.0	1.12	104	75-125	0.0461	20	
Copper		50.6	1.00	ug/L	50.0	0.413	100	75-125	1.11	20	
Lead		54	1.0	ug/L	50.0	BLOD	107	75-125	3.01	20	
Nickel		56.62	1.000	ug/L	50.0	3.666	106	75-125	2.87	20	
Selenium		50.4	1.00	ug/L	50.0	BLOD	101	75-125	2.80	20	
Silver Zinc		10.4 54.0	1.00 5.00	ug/L	10.0 50.0	BLOD 2.90	104	75-125 75-125	0.799 0.314	20 20	
	KAFZE MODOL			ug/L			102	75-125	0.314	20	
Matrix Spike Dup (BH	KU575-WSD2)	Sourc	e: 24K0492-03 0.200		Prepared: 11/12/ 1.00	BLOD	104	70-130	2.96	20	
Mercury Arsenic		51	1.0	ug/L	50.0	0.92	104	75-125	2.90 1.66	20	
Barium		64.9	5.00	ug/L ug/L	50.0	12.3	101	75-125	5.90	20	
Cadmium		50.2	1.00	ug/L	50.0	BLOD	100	75-125	1.93	20	
Chromium		51.1	1.00	ug/L	50.0	0.533	100	75-125	2.57	20	
Copper		51.7	1.00	ug/L	50.0	2.40	98.7	75-125	1.71	20	
Lead		54	1.0	ug/L	50.0	BLOD	109	75-125	1.74	20	
Nickel		50.96	1.000	ug/L	50.0	1.458	99.0	75-125	2.18	20	
Selenium		50.3	1.00	ug/L	50.0	BLOD	101	75-125	2.62	20	
Silver		10.3	1.00	ug/L	10.0	BLOD	103	75-125	2.20	20	
Zinc		72.2	5.00	ug/L	50.0	23.3	97.8	75-125	1.82	20	

			<u>Cer</u>	tificate o	of Analysi	is				
Client Name: SCS En	gineers-Winchester				-		Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bristol La	Indfill									
Submitted To: Jennifer R									0.41/0500	
							Work Ord	er:	24K0529	
		١	/olatile Organ	ic Compounds b	oy GCMS - Qualit	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Ba	tch BHK0546 - SW5030E	S-MS								
Blank (BHK0546-BLK1)			F	Prepared & Analy	/zed: 11/11/2024					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	49.5		ug/L	50.0		99.0	70-120			
Surr: 4-Bromofluorobenzene (Surr)	48.2		ug/L	50.0		96.4	75-120			
Surr: Dibromofluoromethane (Surr)	51.6		ug/L	50.0		103	70-130			
Surr: Toluene-d8 (Surr)	47.4		ug/L	50.0		94.8	70-130			
LCS (BHK0546-BS1)			F	Prepared & Analy	/zed: 11/11/2024					
1,1,1,2-Tetrachloroethane	49.1	0.4	ug/L	50.0		98.2	80-130			
1,1,1-Trichloroethane	63.4	1	ug/L	50.0		127	65-130			
1,1,2,2-Tetrachloroethane	48.8	0.4	ug/L	50.0		97.5	65-130			
1,1,2-Trichloroethane	48.9	1	ug/L	50.0		97.7	75-125			
1,1-Dichloroethane	60.1	1	ug/L	50.0		120	70-135			
1,1-Dichloroethylene	56.1	1	ug/L	50.0		112	70-130			
1,1-Dichloropropene	70.2	1	ug/L	50.0		140	75-135			L
1,2,3-Trichlorobenzene	48.4	1	ug/L	50.0		96.8	55-140			
1,2,3-Trichloropropane	44.9	1	ug/L	50.0		89.7	75-125			
1,2,4-Trichlorobenzene	50.7	1	ug/L	50.0		101	65-135			
1,2,4-Trimethylbenzene	54.1	1	ug/L	50.0		108	75-130			
1,2-Dibromo-3-chloropropane (DBC	CP) 48.5	1	ug/L	50.0		96.9	50-130			
1,2-Dibromoethane (EDB)	48.8	1	ug/L	50.0		97.5	80-120			

			<u>Cer</u>	tificate c	of Analysi	is				
Client Name:	SCS Engineers-Winchester				-		Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill									
Submitted To:	Jennifer Robb						Work Ord		24K0529	
							work Ord	er:	24KU529	
		Ň	Volatile Organ	ic Compounds b	oy GCMS - Quali	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0546 - SW5030E	B-MS								
LCS (BHK0546-BS1)			F	Prepared & Analy	/zed: 11/11/2024					
1,2-Dichlorobenzene	51.6	0.5	ug/L	50.0		103	70-120			
1,2-Dichloroethane	54.0	1	ug/L	50.0		108	70-130			
1,2-Dichloropropane	55.6	0.5	ug/L	50.0		111	75-125			
1,3,5-Trimethylbenzene	e 55.1	1	ug/L	50.0		110	75-125			
1,3-Dichlorobenzene	53.8	1	ug/L	50.0		108	75-125			
1,3-Dichloropropane	47.4	1	ug/L	50.0		94.9	75-125			
1,4-Dichlorobenzene	51.0	1	ug/L	50.0		102	75-125			
2,2-Dichloropropane	63.4	1	ug/L	50.0		127	70-135			
2-Butanone (MEK)	47.7	10	ug/L	50.0		95.4	30-150			
2-Chlorotoluene	53.9	1	ug/L	50.0		108	75-125			
2-Hexanone (MBK)	46.4	5	ug/L	50.0		92.8	55-130			
4-Chlorotoluene	54.4	1	ug/L	50.0		109	75-130			
4-Isopropyltoluene	58.3	1	ug/L	50.0		117	75-130			
4-Methyl-2-pentanone		5	ug/L	50.0		88.1	60-135			
Acetone	44.7	10	ug/L	50.0		89.4	40-140			
Benzene	53.8	1	ug/L	50.0		108	80-120			
Bromobenzene	45.6	1	ug/L	50.0		91.3	75-125			
Bromochloromethane	51.9	1	ug/L	50.0		104	65-130			
Bromodichloromethane		0.5	ug/L	50.0		107	75-120			
Bromoform	47.2	1	ug/L	50.0		94.3	70-130			
Bromomethane	45.6	1	ug/L	50.0		91.2	30-145			
Carbon disulfide	40.7	10	ug/L	50.0		81.5	35-160			
Carbon tetrachloride	60.6	1	ug/L	50.0		121	65-140			
Chlorobenzene	52.8	1	ug/L	50.0		106	80-120			
Chloroethane	51.9	1	ug/L	50.0		104	60-135			

			<u>Cer</u>	tificate c	of Analysi	<u>is</u>				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill									
Submitted To: J	lennifer Robb						Work Ord	or:	24K0529	
		,	(alatila Orecan	ia Camanaun da k		h (Camtual		CI.	241(0020	
		,	volatile Organ		oy GCMS - Quali	ly Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0546 - SW5030E	B-MS								
LCS (BHK0546-BS1)			F	Prepared & Analy	yzed: 11/11/2024					
Chloroform	54.9	0.5	ug/L	50.0		110	65-135			
Chloromethane	58.2	1	ug/L	50.0		116	40-125			
cis-1,2-Dichloroethylene	e 55.0	1	ug/L	50.0		110	70-125			
cis-1,3-Dichloropropene	e 52.8	1	ug/L	50.0		106	70-130			
Dibromochloromethane	48.2	0.5	ug/L	50.0		96.4	60-135			
Dibromomethane	47.4	1	ug/L	50.0		94.7	75-125			
Dichlorodifluoromethan	e 99.7	1	ug/L	50.0		199	30-155			L
Ethylbenzene	54.5	1	ug/L	50.0		109	75-125			
Hexachlorobutadiene	58.0	0.8	ug/L	50.0		116	50-140			
Isopropylbenzene	49.3	1	ug/L	50.0		98.6	75-125			
m+p-Xylenes	107	2	ug/L	100		107	75-130			
Methylene chloride	57.1	4	ug/L	50.0		114	55-140			
Methyl-t-butyl ether (MT		1	ug/L	50.0		99.7	65-125			
Naphthalene	48.3	1	ug/L	50.0		96.7	55-140			
n-Butylbenzene	60.7	1	ug/L	50.0		121	70-135			
n-Propylbenzene	55.6	1	ug/L	50.0		111	70-130			
o-Xylene	51.5	1	ug/L	50.0		103	80-120			
sec-Butylbenzene	60.6	1	ug/L	50.0		121	70-125			
Styrene	49.8	1	ug/L	50.0		99.7	65-135			
tert-Butylbenzene	56.4	1	ug/L	50.0		113	70-130			
Tetrachloroethylene (PC	CE) 76.9	1	ug/L	50.0		154	45-150			L
Toluene	50.9	1	ug/L	50.0		102	75-120			
trans-1,2-Dichloroethyle		1	ug/L	50.0		110	60-140			
trans-1,3-Dichloroprope	ene 54.8	1	ug/L	50.0		110	55-140			
Trichloroethylene	57.0	1	ug/L	50.0		114	70-125			

			<u>Ce</u>	ertificate o	of Analysi	<u>s</u>				
Client Name: SCS Eng	gineers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bristol Lar	ndfill									
Submitted To: Jennifer R	obb						Work Ord	or.	24K0529	
		,	/alatila Ora	anic Compounds I		v Control		01.	2410020	
		1	volatile Org			y Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bat	ch BHK0546 - SW5030I	B-MS								
LCS (BHK0546-BS1)				Prepared & Anal	yzed: 11/11/2024					
Trichlorofluoromethane	65.8	1	ug/L	50.0		132	60-145			
Vinyl chloride	54.7	0.5	ug/L	50.0		109	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	53.1		ug/L	50.0		106	70-120			
Surr: 4-Bromofluorobenzene (Surr)	48.4		ug/L	50.0		96.8	75-120			
Surr: Dibromofluoromethane (Surr)	54.0		ug/L	50.0		108	70-130			
Surr: Toluene-d8 (Surr)	47.2		ug/L	50.0		94.4	70-130			
Matrix Spike (BHK0546-MS1)	Source:	24K0542-0	08	Prepared & Anal	yzed: 11/11/2024					
1,1,1,2-Tetrachloroethane	50.8	0.4	ug/L	50.0	BLOD	102	80-130			
1,1,1-Trichloroethane	62.8	1	ug/L	50.0	BLOD	126	65-130			
1,1,2,2-Tetrachloroethane	50.5	0.4	ug/L	50.0	BLOD	101	65-130			
1,1,2-Trichloroethane	51.8	1	ug/L	50.0	BLOD	104	75-125			
1,1-Dichloroethane	62.4	1	ug/L	50.0	BLOD	125	70-135			
1,1-Dichloroethylene	58.6	1	ug/L	50.0	BLOD	117	50-145			
1,1-Dichloropropene	70.8	1	ug/L	50.0	BLOD	142	75-135			М
1,2,3-Trichlorobenzene	51.3	1	ug/L	50.0	BLOD	103	55-140			
1,2,3-Trichloropropane	47.6	1	ug/L	50.0	BLOD	95.3	75-125			
1,2,4-Trichlorobenzene	53.2	1	ug/L	50.0	BLOD	106	65-135			
1,2,4-Trimethylbenzene	56.5	1	ug/L	50.0	BLOD	113	75-130			
1,2-Dibromo-3-chloropropane (DBCl	P) 50.3	1	ug/L	50.0	BLOD	101	50-130			
1,2-Dibromoethane (EDB)	50.1	1	ug/L	50.0	BLOD	100	80-120			
1,2-Dichlorobenzene	54.1	0.5	ug/L	50.0	BLOD	108	70-120			
1,2-Dichloroethane	55.4	1	ug/L	50.0	BLOD	111	70-130			
1,2-Dichloropropane	56.0	0.5	ug/L	50.0	BLOD	112	75-125			
1,3,5-Trimethylbenzene	57.0	1	ug/L	50.0	BLOD	114	75-124			

			Ce	ertificate o	f Analys	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: B	ristol Landfill									
Submitted To: Je	ennifer Robb						Manda Ond		041/0500	
							Work Ord	er:	24K0529	
		١	Volatile Org	anic Compounds b	y GCMS - Quali	ty Control				
				Enthalpy Ar	alytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0546 - SW5030B	B-MS								
Matrix Spike (BHK0546-MS	1) Source:	24K0542-(08	Prepared & Analy	/zed: 11/11/2024					
1,3-Dichlorobenzene	55.8	1	ug/L	50.0	BLOD	112	75-125			
1,3-Dichloropropane	51.2	1	ug/L	50.0	BLOD	102	75-125			
1,4-Dichlorobenzene	53.0	1	ug/L	50.0	BLOD	106	75-125			
2,2-Dichloropropane	63.6	1	ug/L	50.0	BLOD	127	70-135			
2-Butanone (MEK)	40.4	10	ug/L	50.0	BLOD	80.8	30-150			
2-Chlorotoluene	55.1	1	ug/L	50.0	BLOD	110	75-125			
2-Hexanone (MBK)	49.4	5	ug/L	50.0	BLOD	98.9	55-130			
4-Chlorotoluene	55.6	1	ug/L	50.0	BLOD	111	75-130			
4-Isopropyltoluene	59.0	1	ug/L	50.0	BLOD	118	75-130			
4-Methyl-2-pentanone (M	IIBK) 49.1	5	ug/L	50.0	BLOD	98.3	60-135			
Acetone	51.3	10	ug/L	50.0	BLOD	95.5	40-140			
Benzene	56.1	1	ug/L	50.0	BLOD	112	80-120			
Bromobenzene	46.7	1	ug/L	50.0	BLOD	93.3	75-125			
Bromochloromethane	53.6	1	ug/L	50.0	BLOD	107	65-130			
Bromodichloromethane	52.6	0.5	ug/L	50.0	BLOD	105	75-136			
Bromoform	48.5	1	ug/L	50.0	BLOD	97.0	70-130			
Bromomethane	49.5	1	ug/L	50.0	BLOD	99.1	30-145			
Carbon disulfide	45.3	10	ug/L	50.0	BLOD	90.1	35-160			
Carbon tetrachloride	59.6	1	ug/L	50.0	BLOD	119	65-140			
Chlorobenzene	53.3	1	ug/L	50.0	BLOD	107	80-120			
Chloroethane	52.5	1	ug/L	50.0	BLOD	105	60-135			
Chloroform	55.8	0.5	ug/L	50.0	BLOD	112	65-135			
Chloromethane	60.2	1	ug/L	50.0	BLOD	120	40-125			
cis-1,2-Dichloroethylene	57.4	1	ug/L	50.0	BLOD	115	70-125			
cis-1,3-Dichloropropene	54.7	1	ug/L	50.0	BLOD	109	47-136			

				Ce	ertificate o	of Analys	is				
Client Name: SO	CS Engineers-	Winchester				-		Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bris	stol Landfill										
-	nifer Robb									0.41/0500	
								Work Ord	er:	24K0529	
			Vo	latile Org	anic Compounds b	oy GCMS - Quali	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
, and you				01110	20101	rtooun	, iii CO	Linito		Linit	Quui
		546 - SW5030E	B-MS								
Matrix Spike (BHK0546-MS1)		Source:	24K0542-08		Prepared & Analy	/zed: 11/11/2024					
Dibromochloromethane		50.3	0.5	ug/L	50.0	BLOD	101	60-135			
Dibromomethane		49.6	1	ug/L	50.0	BLOD	99.2	75-125			
Dichlorodifluoromethane		101	1	ug/L	50.0	BLOD	202	30-155			М
Ethylbenzene		54.3	1	ug/L	50.0	BLOD	109	75-125			
Hexachlorobutadiene		57.3	0.8	ug/L	50.0	BLOD	115	50-140			
Isopropylbenzene		49.2	1	ug/L	50.0	BLOD	98.4	75-125			
m+p-Xylenes		106	2	ug/L	100	BLOD	105	75-130			
Methylene chloride		58.7	4	ug/L	50.0	BLOD	117	55-140			
Methyl-t-butyl ether (MTBE))	53.0	1	ug/L	50.0	BLOD	106	65-125			
Naphthalene		52.8	1	ug/L	50.0	BLOD	106	55-140			
n-Butylbenzene		61.2	1	ug/L	50.0	BLOD	122	70-135			
n-Propylbenzene		56.3	1	ug/L	50.0	BLOD	113	70-130			
o-Xylene		51.7	1	ug/L	50.0	BLOD	103	80-120			
sec-Butylbenzene		62.0	1	ug/L	50.0	BLOD	124	70-125			
Styrene		50.8	1	ug/L	50.0	BLOD	102	65-135			
tert-Butylbenzene		56.8	1	ug/L	50.0	BLOD	114	70-130			
Tetrachloroethylene (PCE)		75.7	1	ug/L	50.0	BLOD	151	51-231			
Toluene		52.0	1	ug/L	50.0	BLOD	104	75-120			
trans-1,2-Dichloroethylene		56.4	1	ug/L	50.0	BLOD	113	60-140			
trans-1,3-Dichloropropene		58.2	1	ug/L	50.0	BLOD	116	55-140			
Trichloroethylene		57.0	1	ug/L	50.0	BLOD	114	70-125			
Trichlorofluoromethane		67.7	1	ug/L	50.0	BLOD	135	60-145			
Vinyl chloride		57.5	0.5	ug/L	50.0	BLOD	115	50-145			
Surr: 1,2-Dichloroethane-d4	4 (Surr)	51.8		ug/L	50.0		104	70-120			

				<u>Ce</u>	ertificate c	of Analysi	<u>s</u>				
Client Name:	SCS Engineer	rs-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Work Ord	or	24K0529	
					n i o o nu na da d		Original		сі.	241(0029	
			V	olatile Org	anic Compounds b	by GCMS - Quality	Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BH	K0546 - SW5030	B-MS								
Matrix Spike (BHK0546-N	/IS1)	Source	: 24K0542-0	8	Prepared & Analy	/zed: 11/11/2024					
Surr: 4-Bromofluorobei	nzene (Surr)	48.0		ug/L	50.0		95.9	75-120			
Surr: Dibromofluorome	ethane (Surr)	55.2		ug/L	50.0		110	70-130			
Surr: Toluene-d8 (Surr))	47.3		ug/L	50.0		94.6	70-130			
Matrix Spike Dup (BHK0	546-MSD1)	Source	: 24K0542-0	8	Prepared & Analy	/zed: 11/11/2024					
1,1,1,2-Tetrachloroetha	ane	51.6	0.4	ug/L	50.0	BLOD	103	80-130	1.48	30	
1,1,1-Trichloroethane		63.0	1	ug/L	50.0	BLOD	126	65-130	0.350	30	
1,1,2,2-Tetrachloroetha	ane	51.3	0.4	ug/L	50.0	BLOD	103	65-130	1.49	30	
1,1,2-Trichloroethane		51.9	1	ug/L	50.0	BLOD	104	75-125	0.251	30	
1,1-Dichloroethane		63.5	1	ug/L	50.0	BLOD	127	70-135	1.78	30	
1,1-Dichloroethylene		57.0	1	ug/L	50.0	BLOD	114	50-145	2.82	30	
1,1-Dichloropropene		69.1	1	ug/L	50.0	BLOD	138	75-135	2.47	30	М
1,2,3-Trichlorobenzene		51.5	1	ug/L	50.0	BLOD	103	55-140	0.428	30	
1,2,3-Trichloropropane		49.3	1	ug/L	50.0	BLOD	98.7	75-125	3.48	30	
1,2,4-Trichlorobenzene		53.4	1	ug/L	50.0	BLOD	107	65-135	0.450	30	
1,2,4-Trimethylbenzene		57.5	1	ug/L	50.0	BLOD	115	75-130	1.74	30	
1,2-Dibromo-3-chlorop		52.1	1	ug/L	50.0	BLOD	104	50-130	3.52	30	
1,2-Dibromoethane (El	DB)	50.2	1	ug/L	50.0	BLOD	100	80-120	0.140	30	
1,2-Dichlorobenzene		54.7	0.5	ug/L	50.0	BLOD	109	70-120	1.07	30	
1,2-Dichloroethane		55.3	1	ug/L	50.0	BLOD	111	70-130	0.235	30	
1,2-Dichloropropane		57.8	0.5	ug/L	50.0	BLOD	116	75-125	3.13	30	
1,3,5-Trimethylbenzene	e	58.0	1	ug/L	50.0	BLOD	116	75-124	1.74	30	
1,3-Dichlorobenzene		56.8	1	ug/L	50.0	BLOD	114	75-125	1.94	30	
1,3-Dichloropropane		51.3	1	ug/L	50.0	BLOD	103	75-125	0.0585	30	
1,4-Dichlorobenzene		52.8	1	ug/L	50.0	BLOD	105	75-125	0.378	30	

				<u>Ce</u>	ertificate o	<u>f Analysi</u>	is				
Client Name:	SCS Engineer	s-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Work Ord	ler [.]	24K0529	
				latila Ora	anic Compounds b	WCCME Quality	ty Control			2410020	
			VC	natile Org	anic Compounds L	y GCINS - Quali	ty Control				
					Enthalpy Ar	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI	K0546 - SW5030	0B-MS								
Matrix Spike Dup (BH	K0546-MSD1)	Source	e: 24K0542-08	5	Prepared & Analy	/zed: 11/11/2024					
2,2-Dichloropropane	e	63.1	1	ug/L	50.0	BLOD	126	70-135	0.837	30	
2-Butanone (MEK)		48.9	10	ug/L	50.0	BLOD	97.7	30-150	19.0	30	
2-Chlorotoluene		55.3	1	ug/L	50.0	BLOD	111	75-125	0.290	30	
2-Hexanone (MBK)	1	47.7	5	ug/L	50.0	BLOD	95.3	55-130	3.67	30	
4-Chlorotoluene		57.3	1	ug/L	50.0	BLOD	115	75-130	3.12	30	
4-Isopropyltoluene		60.2	1	ug/L	50.0	BLOD	120	75-130	2.06	30	
4-Methyl-2-pentano	one (MIBK)	46.8	5	ug/L	50.0	BLOD	93.5	60-135	4.98	30	
Acetone		45.2	10	ug/L	50.0	BLOD	83.3	40-140	12.6	30	
Benzene		56.3	1	ug/L	50.0	BLOD	113	80-120	0.302	30	
Bromobenzene		46.3	1	ug/L	50.0	BLOD	92.5	75-125	0.839	30	
Bromochloromethar	ne	54.8	1	ug/L	50.0	BLOD	110	65-130	2.05	30	
Bromodichlorometh	nane	53.9	0.5	ug/L	50.0	BLOD	108	75-136	2.35	30	
Bromoform		49.6	1	ug/L	50.0	BLOD	99.2	70-130	2.26	30	
Bromomethane		47.6	1	ug/L	50.0	BLOD	95.1	30-145	4.08	30	
Carbon disulfide		46.3	10	ug/L	50.0	BLOD	92.2	35-160	2.31	30	
Carbon tetrachloride	e	61.6	1	ug/L	50.0	BLOD	123	65-140	3.27	30	
Chlorobenzene		54.0	1	ug/L	50.0	BLOD	108	80-120	1.42	30	
Chloroethane		51.6	1	ug/L	50.0	BLOD	103	60-135	1.69	30	
Chloroform		56.3	0.5	ug/L	50.0	BLOD	113	65-135	0.910	30	
Chloromethane		60.8	1	ug/L	50.0	BLOD	122	40-125	0.975	30	
cis-1,2-Dichloroethy		55.3	1	ug/L	50.0	BLOD	111	70-125	3.74	30	
cis-1,3-Dichloroprop	pene	55.3	1	ug/L	50.0	BLOD	111	47-136	0.964	30	
Dibromochlorometh	nane	51.7	0.5	ug/L	50.0	BLOD	103	60-135	2.65	30	
Dibromomethane		49.6	1	ug/L	50.0	BLOD	99.2	75-125	0.0202	30	
Dichlorodifluoromet	thane	102	1	ug/L	50.0	BLOD	204	30-155	1.19	30	М

			Ce	ertificate o	of Analys	is				
Client Name: SCS Engine	ers-Winchester				-		Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bristol Landfil	I									
Submitted To: Jennifer Robb									0.41/0500	
Submitted 10. Certimer (Cobb							Work Ord	er:	24K0529	
		Vo	latile Orga	anic Compounds b	oy GCMS - Quali	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Analyte	Result	LUQ	Onits	Level	Result	701120	Linits		Linin	Quai
Batch B	HK0546 - SW5030)B-MS								
Matrix Spike Dup (BHK0546-MSD1)	Source	e: 24K0542-08		Prepared & Anal	yzed: 11/11/2024					
Ethylbenzene	55.4	1	ug/L	50.0	BLOD	111	75-125	2.15	30	
Hexachlorobutadiene	58.1	0.8	ug/L	50.0	BLOD	116	50-140	1.37	30	
Isopropylbenzene	50.2	1	ug/L	50.0	BLOD	100	75-125	2.15	30	
m+p-Xylenes	107	2	ug/L	100	BLOD	107	75-130	1.58	30	
Methylene chloride	57.9	4	ug/L	50.0	BLOD	116	55-140	1.39	30	
Methyl-t-butyl ether (MTBE)	53.7	1	ug/L	50.0	BLOD	107	65-125	1.29	30	
Naphthalene	53.8	1	ug/L	50.0	BLOD	108	55-140	1.95	30	
n-Butylbenzene	62.3	1	ug/L	50.0	BLOD	125	70-135	1.86	30	
n-Propylbenzene	56.3	1	ug/L	50.0	BLOD	113	70-130	0.0178	30	
o-Xylene	52.4	1	ug/L	50.0	BLOD	105	80-120	1.34	30	
sec-Butylbenzene	61.8	1	ug/L	50.0	BLOD	124	70-125	0.452	30	
Styrene	51.1	1	ug/L	50.0	BLOD	102	65-135	0.451	30	
tert-Butylbenzene	58.4	1	ug/L	50.0	BLOD	117	70-130	2.66	30	
Tetrachloroethylene (PCE)	76.4	1	ug/L	50.0	BLOD	153	51-231	0.881	30	
Toluene	52.7	1	ug/L	50.0	BLOD	105	75-120	1.30	30	
trans-1,2-Dichloroethylene	57.2	1	ug/L	50.0	BLOD	114	60-140	1.41	30	
trans-1,3-Dichloropropene	58.0	1	ug/L	50.0	BLOD	116	55-140	0.465	30	
Trichloroethylene	58.0	1	ug/L	50.0	BLOD	116	70-125	1.63	30	
Trichlorofluoromethane	69.7	1	ug/L	50.0	BLOD	139	60-145	2.90	30	
Vinyl chloride	57.1	0.5	ug/L	50.0	BLOD	114	50-145	0.768	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	51.6		ug/L	50.0		103	70-120			
Surr: 4-Bromofluorobenzene (Surr)	48.5		ug/L	50.0		97.0	75-120			
Surr: Dibromofluoromethane (Surr)	54.4		ug/L	50.0		109	70-130			
Surr: Toluene-d8 (Surr)	47.3		ug/L	50.0		94.6	70-130			

			<u>Cer</u>	tificate c	of Analysi	is				
Client Name: SCS E	Engineers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bristol	Landfill									
Submitted To: Jennifer	Robb						Work Ord	or:	24K0529	
		,	lalatila Organ	ia Compoundo k	oy GCMS - Qualit	h Control		CI .	241(0323	
		,	/olatile Organ			ly Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0669 - SW5030E	B-MS								
Blank (BHK0669-BLK1)			F	Prepared & Analy	yzed: 11/13/2024					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 (Sur	rr) 59.1		ug/L	50.0		118	70-120			
Surr: 4-Bromofluorobenzene (Su	rr) 50.3		ug/L	50.0		101	75-120			
Surr: Dibromofluoromethane (Su	rr) 54.4		ug/L	50.0		109	70-130			
Surr: Toluene-d8 (Surr)	51.6		ug/L	50.0		103	70-130			
LCS (BHK0669-BS1)			F	Prepared & Analy	yzed: 11/13/2024					
1,1,1,2-Tetrachloroethane	55.8	0.4	ug/L	50.0		112	80-130			
1,1,1-Trichloroethane	55.7	1	ug/L	50.0		111	65-130			
1,1,2,2-Tetrachloroethane	59.7	0.4	ug/L	50.0		119	65-130			
1,1,2-Trichloroethane	62.2	1	ug/L	50.0		124	75-125			
1,1-Dichloroethane	52.9	1	ug/L	50.0		106	70-135			
1,1-Dichloroethylene	50.6	1	ug/L	50.0		101	70-130			
1,1-Dichloropropene	55.3	1	ug/L	50.0		111	75-135			
1,2,3-Trichlorobenzene	59.3	1	ug/L	50.0		119	55-140			
1,2,3-Trichloropropane	55.1	1	ug/L	50.0		110	75-125			
1,2,4-Trichlorobenzene	56.9	1	ug/L	50.0		114	65-135			
1,2,4-Trimethylbenzene	53.6	1	ug/L	50.0		107	75-130			
1,2-Dibromo-3-chloropropane (D	BCP) 49.2	1	ug/L	50.0		98.3	50-130			
1,2-Dibromoethane (EDB)	58.0	1	ug/L	50.0		116	80-120			

			<u>Cer</u>	tificate c	of Analysi	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: E	Bristol Landfill									
	ennifer Robb						Work Ord	0 F1	24K0529	
								er:	24KU529	
		Ň	Volatile Organ	ic Compounds b	oy GCMS - Qualit	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0669 - SW5030B	-MS								
LCS (BHK0669-BS1)			F	repared & Anal	yzed: 11/13/2024					
1,2-Dichlorobenzene	56.3	0.5	ug/L	50.0		113	70-120			
1,2-Dichloroethane	56.6	1	ug/L	50.0		113	70-130			
1,2-Dichloropropane	57.2	0.5	ug/L	50.0		114	75-125			
1,3,5-Trimethylbenzene	53.7	1	ug/L	50.0		107	75-125			
1,3-Dichlorobenzene	54.6	1	ug/L	50.0		109	75-125			
1,3-Dichloropropane	60.5	1	ug/L	50.0		121	75-125			
1,4-Dichlorobenzene	53.8	1	ug/L	50.0		108	75-125			
2,2-Dichloropropane	60.7	1	ug/L	50.0		121	70-135			
2-Butanone (MEK)	45.2	10	ug/L	50.0		90.4	30-150			
2-Chlorotoluene	52.5	1	ug/L	50.0		105	75-125			
2-Hexanone (MBK)	49.3	5	ug/L	50.0		98.5	55-130			
4-Chlorotoluene	55.2	1	ug/L	50.0		110	75-130			
4-Isopropyltoluene	57.6	1	ug/L	50.0		115	75-130			
4-Methyl-2-pentanone (N	ИВК) 49.0	5	ug/L	50.0		97.9	60-135			
Acetone	41.2	10	ug/L	50.0		82.3	40-140			
Benzene	54.1	1	ug/L	50.0		108	80-120			
Bromobenzene	53.5	1	ug/L	50.0		107	75-125			
Bromochloromethane	54.9	1	ug/L	50.0		110	65-130			
Bromodichloromethane	60.1	0.5	ug/L	50.0		120	75-120			L
Bromoform	50.0	1	ug/L	50.0		100	70-130			
Bromomethane	40.5	1	ug/L	50.0		81.1	30-145			
Carbon disulfide	43.9	10	ug/L	50.0		87.8	35-160			
Carbon tetrachloride	58.8	1	ug/L	50.0		118	65-140			
Chlorobenzene	54.7	1	ug/L	50.0		109	80-120			
Chloroethane	43.6	1	ug/L	50.0		87.2	60-135			

				<u>Cer</u>	tificate o	of Analysi	is is				
Client Name:	SCS Engineers-\	Ninchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Marile Ord	~ ~	241/0520	
Cubinitiou 10.	••••••							Work Ord	er:	24K0529	
			١	/olatile Organ	ic Compounds b	oy GCMS - Qualit	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK00	669 - SW5030B	-MS								
LCS (BHK0669-BS1)				F	Prepared & Analy	/zed: 11/13/2024					
Chloroform		53.1	0.5	ug/L	50.0		106	65-135			
Chloromethane		41.6	1	ug/L	50.0		83.3	40-125			
cis-1,2-Dichloroethyle	ene	52.6	1	ug/L	50.0		105	70-125			
cis-1,3-Dichloroprope	ne	61.8	1	ug/L	50.0		124	70-130			
Dibromochloromethar	ne	64.4	0.5	ug/L	50.0		129	60-135			
Dibromomethane		57.8	1	ug/L	50.0		116	75-125			
Dichlorodifluorometha	ane	57.9	1	ug/L	50.0		116	30-155			
Ethylbenzene		54.4	1	ug/L	50.0		109	75-125			
Hexachlorobutadiene		59.9	0.8	ug/L	50.0		120	50-140			
Isopropylbenzene		47.5	1	ug/L	50.0		95.0	75-125			
m+p-Xylenes		110	2	ug/L	100		110	75-130			
Methylene chloride		49.1	4	ug/L	50.0		98.2	55-140			
Methyl-t-butyl ether (N	MTBE)	60.9	1	ug/L	50.0		122	65-125			
Naphthalene		60.2	1	ug/L	50.0		120	55-140			
n-Butylbenzene		56.7	1	ug/L	50.0		113	70-135			
n-Propylbenzene		56.1	1	ug/L	50.0		112	70-130			
o-Xylene		54.0	1	ug/L	50.0		108	80-120			
sec-Butylbenzene		58.3	1	ug/L	50.0		117	70-125			
Styrene		55.4	1	ug/L	50.0		111	65-135			
tert-Butylbenzene		54.5	1	ug/L	50.0		109	70-130			
Tetrachloroethylene (I	PCE)	80.2	1	ug/L	50.0		160	45-150			L
Toluene		55.7	1	ug/L	50.0		111	75-120			
trans-1,2-Dichloroethy	ylene	53.2	1	ug/L	50.0		106	60-140			
trans-1,3-Dichloropro	pene	53.3	1	ug/L	50.0		107	55-140			
Trichloroethylene		55.7	1	ug/L	50.0		111	70-125			

			<u>Ce</u>	ertificate o	of Analysi	<u>s</u>				
Client Name: SCS Engi	neers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bristol Land	dfill									
Submitted To: Jennifer Rol	bb						Work Ord	er.	24K0529	
		,	/olatilo Ora	anic Compounds b		v Control	Work Ord	01.	2410020	
		,				y Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batcl	h BHK0669 - SW5030I	B-MS								
LCS (BHK0669-BS1)				Prepared & Analy	/zed: 11/13/2024					
Trichlorofluoromethane	53.3	1	ug/L	50.0		107	60-145			
Vinyl chloride	45.6	0.5	ug/L	50.0		91.1	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	54.4		ug/L	50.0		109	70-120			
Surr: 4-Bromofluorobenzene (Surr)	51.2		ug/L	50.0		102	75-120			
Surr: Dibromofluoromethane (Surr)	53.3		ug/L	50.0		107	70-130			
Surr: Toluene-d8 (Surr)	52.8		ug/L	50.0		106	70-130			
Duplicate (BHK0669-DUP1)	Source:	24K0742-0)2	Prepared & Analy	/zed: 11/13/2024					
1,1,1,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,1-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,2-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichloropropane	ND	1.00	ug/L		BLOD			NA	30	
1,2,4-Trichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2,4-Trimethylbenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dibromo-3-chloropropane (DBCP)		1.00	ug/L		BLOD			NA	30	
1,2-Dibromoethane (EDB)	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dichlorobenzene	ND	0.50	ug/L		BLOD			NA	30	
1,2-Dichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dichloropropane	ND	0.50	ug/L		BLOD			NA	30	
1,3,5-Trimethylbenzene	ND	1.00	ug/L		BLOD			NA	30	

			<u>Ce</u>	ertificate o	<u>f Analysi</u>	<u>s</u>				
Client Name:	SCS Engineers-Winchest	er					Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: E	Bristol Landfill									
Submitted To: Je	ennifer Robb						Work Ord	er:	24K0529	
		V	olatile Ora	anic Compounds b	v GCMS - Quality	v Control				
			Siddle Org			y control				
				Enthalpy An	alytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0669 - SW5	030B-MS								
Duplicate (BHK0669-DUP1) Sou	Irce: 24K0742-02	2	Prepared & Analy	zed: 11/13/2024					
1,3-Dichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
1,3-Dichloropropane	ND	1.00	ug/L		BLOD			NA	30	
1,4-Dichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
2,2-Dichloropropane	ND	1.00	ug/L		BLOD			NA	30	
2-Butanone (MEK)	ND	10.0	ug/L		BLOD			NA	30	
2-Chlorotoluene	ND	1.00	ug/L		BLOD			NA	30	
2-Hexanone (MBK)	ND	5.00	ug/L		BLOD			NA	30	
4-Chlorotoluene	ND	1.00	ug/L		BLOD			NA	30	
4-Isopropyltoluene	ND	1.00	ug/L		BLOD			NA	30	
4-Methyl-2-pentanone (N	MIBK) ND	5.00	ug/L		BLOD			NA	30	
Acetone	ND	10.0	ug/L		BLOD			NA	30	
Benzene	ND	1.00	ug/L		BLOD			NA	30	
Bromobenzene	ND	1.00	ug/L		BLOD			NA	30	
Bromochloromethane	ND	1.00	ug/L		BLOD			NA	30	
Bromodichloromethane	ND	0.50	ug/L		BLOD			NA	30	
Bromoform	ND	1.00	ug/L		BLOD			NA	30	
Bromomethane	ND	1.00	ug/L		BLOD			NA	30	
Carbon disulfide	ND	10.0	ug/L		BLOD			NA	30	
Carbon tetrachloride	ND	1.00	ug/L		BLOD			NA	30	
Chlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
Chloroethane	ND	1.00	ug/L		BLOD			NA	30	
Chloroform	ND	0.50	ug/L		BLOD			NA	30	
Chloromethane	ND	1.00	ug/L		BLOD			NA	30	
cis-1,2-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
cis-1,3-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	

				<u>Ce</u>	ertificate o	f Analysi	<u>s</u>				
Client Name:	SCS Engineer	s-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Work Ord	er.	24K0529	
			\/-	latila Ora	ania Cananaunda k		Control	Work Ord	01.	2410020	
			VC	latile Org	anic Compounds b		Control				
					Enthalpy An	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI	K0669 - SW5030E	-MS								
Duplicate (BHK0669-D	DUP1)	Source:	24K0742-02	2	Prepared & Analy	zed: 11/13/2024					
Dibromochlorometh	nane	ND	0.50	ug/L		BLOD			NA	30	
Dibromomethane		ND	1.00	ug/L		BLOD			NA	30	
Dichlorodifluoromet	thane	ND	1.00	ug/L		BLOD			NA	30	
Di-isopropyl ether (I	DIPE)	ND	5.00	ug/L		BLOD			NA	30	
Ethylbenzene		ND	1.00	ug/L		BLOD			NA	30	
Hexachlorobutadier	ne	ND	0.80	ug/L		BLOD			NA	30	
lodomethane		ND	10.0	ug/L		BLOD			NA	30	
Isopropylbenzene		ND	1.00	ug/L		BLOD			NA	30	
m+p-Xylenes		ND	2.00	ug/L		BLOD			NA	30	
Methylene chloride		ND	4.00	ug/L		BLOD			NA	30	
Methyl-t-butyl ether	· (MTBE)	ND	1.00	ug/L		BLOD			NA	30	
Naphthalene		ND	1.00	ug/L		BLOD			NA	30	
n-Butylbenzene		ND	1.00	ug/L		BLOD			NA	30	
n-Propylbenzene		ND	1.00	ug/L		BLOD			NA	30	
o-Xylene		ND	1.00	ug/L		BLOD			NA	30	
sec-Butylbenzene		ND	1.00	ug/L		BLOD			NA	30	
Styrene		ND	1.00	ug/L		BLOD			NA	30	
tert-Butylbenzene		ND	1.00	ug/L		BLOD			NA	30	
Tetrachloroethylene	e (PCE)	ND	1.00	ug/L		BLOD			NA	30	
Toluene		ND	1.00	ug/L		BLOD			NA	30	
trans-1,2-Dichloroet	thylene	ND	1.00	ug/L		BLOD			NA	30	
trans-1,3-Dichlorop	ropene	ND	1.00	ug/L		BLOD			NA	30	
Trichloroethylene		ND	1.00	ug/L		BLOD			NA	30	
Trichlorofluorometh	ane	ND	1.00	ug/L		BLOD			NA	30	
Vinyl acetate		ND	10.0	ug/L		BLOD			NA	30	

			<u>Ce</u>	ertificate o	of Analysi	<u>s</u>				
Client Name: SCS Engine	ers-Winchester	r					Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bristol Landfil	I									
Submitted To: Jennifer Robb							Work Ord	er.	24K0529	
		V	olotilo Ora	anic Compounds I		v Control			2410020	
		V	biatile Org		•	y Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	3HK0669 - SW503	0B-MS								
Duplicate (BHK0669-DUP1)	Sourc	e: 24K0742-0	2	Prepared & Anal	yzed: 11/13/2024					
Vinyl chloride	ND	0.50	ug/L		BLOD			NA	30	
Xylenes, Total	ND	3.00	ug/L		BLOD			NA	30	
Tetrahydrofuran	ND	10.0	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	59.4		ug/L	50.0		119	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.8		ug/L	50.0		99.7	75-120			
Surr: Dibromofluoromethane (Surr)	55.0		ug/L	50.0		110	70-130			
Surr: Toluene-d8 (Surr)	52.6		ug/L	50.0		105	70-130			
Matrix Spike (BHK0669-MS1)	Sourc	e: 24K0742-0 ⁻	1	Prepared & Anal	yzed: 11/13/2024					
1,1,1,2-Tetrachloroethane	52.1	0.4	ug/L	50.0	BLOD	104	80-130			
1,1,1-Trichloroethane	50.9	1	ug/L	50.0	BLOD	102	65-130			
1,1,2,2-Tetrachloroethane	54.5	0.4	ug/L	50.0	BLOD	109	65-130			
1,1,2-Trichloroethane	55.3	1	ug/L	50.0	BLOD	111	75-125			
1,1-Dichloroethane	48.5	1	ug/L	50.0	BLOD	96.9	70-135			
1,1-Dichloroethylene	47.2	1	ug/L	50.0	BLOD	94.4	50-145			
1,1-Dichloropropene	50.4	1	ug/L	50.0	BLOD	101	75-135			
1,2,3-Trichlorobenzene	54.0	1	ug/L	50.0	BLOD	108	55-140			
1,2,3-Trichloropropane	50.0	1	ug/L	50.0	BLOD	100	75-125			
1,2,4-Trichlorobenzene	51.3	1	ug/L	50.0	BLOD	103	65-135			
1,2,4-Trimethylbenzene	47.5	1	ug/L	50.0	BLOD	94.9	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	43.8	1	ug/L	50.0	BLOD	87.5	50-130			
1,2-Dibromoethane (EDB)	54.5	1	ug/L	50.0	BLOD	109	80-120			
1,2-Dichlorobenzene	50.7	0.5	ug/L	50.0	BLOD	101	70-120			
1,2-Dichloroethane	52.5	1	ug/L	50.0	BLOD	105	70-130			
1,2-Dichloropropane	51.3	0.5	ug/L	50.0	BLOD	103	75-125			

			Ce	ertificate o	of Analysi	<u>s</u>				
Client Name:	SCS Engineers-Winchest	er			_		Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bi	ristol Landfill									
Submitted To: Je	nnifer Robb						Work Ord	or.	24K0529	
		,	/alatila Ora			Control		CI .	241(0020	
		,	volatile Org	anic Compounds I		y Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0669 - SW50	30B-MS								
Matrix Spike (BHK0669-MS1	1) Sou	rce: 24K0742-0	01	Prepared & Anal	/zed: 11/13/2024					
1,3,5-Trimethylbenzene	48.5	1	ug/L	50.0	BLOD	97.0	75-124			
1,3-Dichlorobenzene	48.5	1	ug/L	50.0	BLOD	96.9	75-125			
1,3-Dichloropropane	54.5	1	ug/L	50.0	BLOD	109	75-125			
1,4-Dichlorobenzene	47.7	1	ug/L	50.0	BLOD	95.4	75-125			
2,2-Dichloropropane	55.6	1	ug/L	50.0	BLOD	111	70-135			
2-Butanone (MEK)	55.7	10	ug/L	50.0	BLOD	111	30-150			
2-Chlorotoluene	48.1	1	ug/L	50.0	BLOD	96.1	75-125			
2-Hexanone (MBK)	43.9	5	ug/L	50.0	BLOD	87.9	55-130			
4-Chlorotoluene	49.7	1	ug/L	50.0	BLOD	99.4	75-130			
4-Isopropyltoluene	51.3	1	ug/L	50.0	BLOD	103	75-130			
4-Methyl-2-pentanone (M	IBK) 46.6	5	ug/L	50.0	BLOD	93.2	60-135			
Acetone	39.1	10	ug/L	50.0	BLOD	75.5	40-140			
Benzene	48.9	1	ug/L	50.0	BLOD	97.8	80-120			
Bromobenzene	49.8	1	ug/L	50.0	BLOD	99.6	75-125			
Bromochloromethane	50.1	1	ug/L	50.0	BLOD	100	65-130			
Bromodichloromethane	51.2	0.5	ug/L	50.0	BLOD	102	75-136			
Bromoform	45.9	1	ug/L	50.0	BLOD	91.8	70-130			
Bromomethane	43.0	1	ug/L	50.0	BLOD	86.0	30-145			
Carbon disulfide	45.7	10	ug/L	50.0	BLOD	91.5	35-160			
Carbon tetrachloride	53.0	1	ug/L	50.0	BLOD	106	65-140			
Chlorobenzene	51.3	1	ug/L	50.0	BLOD	103	80-120			
Chloroethane	39.9	1	ug/L	50.0	BLOD	79.7	60-135			
Chloroform	47.8	0.5	ug/L	50.0	BLOD	95.5	65-135			
Chloromethane	37.7	1	ug/L	50.0	BLOD	75.4	40-125			
cis-1,2-Dichloroethylene	48.6	1	ug/L	50.0	BLOD	97.2	70-125			

				<u>Ce</u>	ertificate c	of Analys	<u>is</u>				
Client Name:	SCS Engineers	s-Winchester	-			-		Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Work Ord	er.	24K0529	
			V	olatila Ora	anic Compounds I		ty Control		01.	2410020	
			v			•	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK	(0669 - SW503	0B-MS								
Matrix Spike (BHK0669-I	MS1)	Sourc	e: 24K0742-0	1	Prepared & Anal	yzed: 11/13/2024	Ļ				
cis-1,3-Dichloroproper	ne	56.8	1	ug/L	50.0	BLOD	114	47-136			
Dibromochloromethan	e	57.0	0.5	ug/L	50.0	BLOD	114	60-135			
Dibromomethane		51.0	1	ug/L	50.0	BLOD	102	75-125			
Dichlorodifluorometha	ne	53.2	1	ug/L	50.0	BLOD	106	30-155			
Ethylbenzene		50.1	1	ug/L	50.0	BLOD	100	75-125			
Hexachlorobutadiene		54.6	0.8	ug/L	50.0	BLOD	109	50-140			
Isopropylbenzene		45.0	1	ug/L	50.0	BLOD	90.0	75-125			
m+p-Xylenes		102	2	ug/L	100	BLOD	102	75-130			
Methylene chloride		45.8	4	ug/L	50.0	BLOD	90.8	55-140			
Methyl-t-butyl ether (N	1TBE)	56.9	1	ug/L	50.0	BLOD	114	65-125			
Naphthalene		54.7	1	ug/L	50.0	BLOD	109	55-140			
n-Butylbenzene		50.1	1	ug/L	50.0	BLOD	100	70-135			
n-Propylbenzene		51.2	1	ug/L	50.0	BLOD	102	70-130			
o-Xylene		50.0	1	ug/L	50.0	BLOD	100	80-120			
sec-Butylbenzene		51.4	1	ug/L	50.0	BLOD	103	70-125			
Styrene		51.1	1	ug/L	50.0	BLOD	102	65-135			
tert-Butylbenzene		48.8	1	ug/L	50.0	BLOD	97.7	70-130			
Tetrachloroethylene (F	PCE)	73.4	1	ug/L	50.0	BLOD	147	51-231			
Toluene		50.4	1	ug/L	50.0	BLOD	101	75-120			
trans-1,2-Dichloroethy		50.9	1	ug/L	50.0	BLOD	102	60-140			
trans-1,3-Dichloroprop	bene	48.5	1	ug/L	50.0	BLOD	97.0	55-140			
Trichloroethylene		50.0	1	ug/L	50.0	BLOD	100	70-125			
Trichlorofluoromethan	e	49.4	1	ug/L	50.0	BLOD	98.7	60-145			
Vinyl chloride		41.9	0.5	ug/L	50.0	BLOD	83.8	50-145			

			<u>Ce</u>	ertificate c	of Analysi	<u>s</u>				
Client Name: SC	S Engineers-Winc	hester			-		Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Brist	tol Landfill									
Submitted To: Jenn	ifer Robb						Work Ord	er:	24K0529	
			Volatile Ord	anic Compounds t	ov GCMS - Quality	/ Control				
				Enthalpy Ar						
					larytical					
Analyte	Resu	lt LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0669 -	SW5030B-MS								
Matrix Spike (BHK0669-MS1)		Source: 24K0742-	01	Prepared & Analy	yzed: 11/13/2024					
Surr: 1,2-Dichloroethane-d4	(Surr) 56	8	ug/L	50.0		114	70-120			
Surr: 4-Bromofluorobenzene	(Surr) 53	0	ug/L	50.0		106	75-120			
Surr: Dibromofluoromethane	. ,		ug/L	50.0		107	70-130			
Surr: Toluene-d8 (Surr)	52	2	ug/L	50.0		104	70-130			
	Batch BHK0730 -	SW5030B-MS								
Blank (BHK0730-BLK1)				Prepared & Analy	yzed: 11/14/2024					
2-Butanone (MEK)	N		ug/L							
Acetone	N		ug/L							
Benzene	N		ug/L							
Ethylbenzene	N		ug/L							
Toluene Xylenes, Total	N		ug/L							
Surr: 1,2-Dichloroethane-d4			ug/L	50.0		117	70-120			
Surr: 4-Bromofluorobenzene	. ,		ug/L ug/L	50.0 50.0		101	70-120 75-120			
Surr: Dibromofluoromethane	. ,		ug/L	50.0		110	70-130			
Surr: Toluene-d8 (Surr)	51		ug/L	50.0		102	70-130			
LCS (BHK0730-BS1)			0	Prepared & Analy	vzed: 11/14/2024					
1,1,1,2-Tetrachloroethane	53	0 0.4	ug/L	50.0	, .- -	106	80-130			
1,1,1-Trichloroethane	53	0 1	ug/L	50.0		106	65-130			
1,1,2,2-Tetrachloroethane	54	8 0.4	ug/L	50.0		110	65-130			
1,1,2-Trichloroethane	57	4 1	ug/L	50.0		115	75-125			
1,1-Dichloroethane	50	4 1	ug/L	50.0		101	70-135			
1,1-Dichloroethylene	49	0 1	ug/L	50.0		98.1	70-130			

			<u>Cer</u>	tificate c	of Analysi	is				
Client Name: SCS Eng	jineers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bristol Lar	ndfill									
Submitted To: Jennifer Ro	hh								0.41/0500	
							Work Ord	er:	24K0529	
		١	Volatile Organ	ic Compounds b	oy GCMS - Qualit	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bate	ch BHK0730 - SW5030E	B-MS								
LCS (BHK0730-BS1)			F	repared & Analy	yzed: 11/14/2024					
1,1-Dichloropropene	52.2	1	ug/L	50.0		104	75-135			
1,2,3-Trichlorobenzene	55.6	1	ug/L	50.0		111	55-140			
1,2,3-Trichloropropane	50.2	1	ug/L	50.0		100	75-125			
1,2,4-Trichlorobenzene	53.3	1	ug/L	50.0		107	65-135			
1,2,4-Trimethylbenzene	50.5	1	ug/L	50.0		101	75-130			
1,2-Dibromo-3-chloropropane (DBCF	P) 45.3	1	ug/L	50.0		90.7	50-130			
1,2-Dibromoethane (EDB)	54.9	1	ug/L	50.0		110	80-120			
1,2-Dichlorobenzene	53.9	0.5	ug/L	50.0		108	70-120			
1,2-Dichloroethane	53.9	1	ug/L	50.0		108	70-130			
1,2-Dichloropropane	51.8	0.5	ug/L	50.0		104	75-125			
1,3,5-Trimethylbenzene	51.7	1	ug/L	50.0		103	75-125			
1,3-Dichlorobenzene	51.5	1	ug/L	50.0		103	75-125			
1,3-Dichloropropane	55.2	1	ug/L	50.0		110	75-125			
1,4-Dichlorobenzene	50.6	1	ug/L	50.0		101	75-125			
2,2-Dichloropropane	57.1	1	ug/L	50.0		114	70-135			
2-Butanone (MEK)	55.7	10	ug/L	50.0		111	30-150			
2-Chlorotoluene	51.0	1	ug/L	50.0		102	75-125			
2-Hexanone (MBK)	46.6	5	ug/L	50.0		93.2	55-130			
4-Chlorotoluene	52.8	1	ug/L	50.0		106	75-130			
4-Isopropyltoluene	54.6	1	ug/L	50.0		109	75-130			
4-Methyl-2-pentanone (MIBK)	47.6	5	ug/L	50.0		95.1	60-135			
Acetone	37.7	10	ug/L	50.0		75.4	40-140			
Benzene	50.1	1	ug/L	50.0		100	80-120			
Bromobenzene	50.5	1	ug/L	50.0		101	75-125			
Bromochloromethane	53.0	1	ug/L	50.0		106	65-130			

			<u>Cer</u>	tificate c	of Analysi	<u>is</u>				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill									
Submitted To:	Jennifer Robb								041/0500	
oublinitied to.							Work Ord	er:	24K0529	
		١	/olatile Organ	ic Compounds b	oy GCMS - Qualit	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0730 - SW5030E	-MS								
LCS (BHK0730-BS1)			F	Prepared & Analy	/zed: 11/14/2024					
Bromodichloromethane	55.2	0.5	ug/L	50.0		110	75-120			
Bromoform	46.8	1	ug/L	50.0		93.6	70-130			
Bromomethane	39.5	1	ug/L	50.0		79.1	30-145			
Carbon disulfide	44.7	10	ug/L	50.0		89.4	35-160			
Carbon tetrachloride	53.9	1	ug/L	50.0		108	65-140			
Chlorobenzene	51.5	1	ug/L	50.0		103	80-120			
Chloroethane	42.5	1	ug/L	50.0		85.0	60-135			
Chloroform	50.6	0.5	ug/L	50.0		101	65-135			
Chloromethane	38.2	1	ug/L	50.0		76.4	40-125			
cis-1,2-Dichloroethylen	e 49.7	1	ug/L	50.0		99.3	70-125			
cis-1,3-Dichloropropen	e 57.5	1	ug/L	50.0		115	70-130			
Dibromochloromethane	e 58.2	0.5	ug/L	50.0		116	60-135			
Dibromomethane	53.1	1	ug/L	50.0		106	75-125			
Dichlorodifluoromethan	e 55.1	1	ug/L	50.0		110	30-155			
Ethylbenzene	49.9	1	ug/L	50.0		99.7	75-125			
Hexachlorobutadiene	56.4	0.8	ug/L	50.0		113	50-140			
lsopropylbenzene	44.4	1	ug/L	50.0		88.8	75-125			
m+p-Xylenes	102	2	ug/L	100		102	75-130			
Methylene chloride	47.6	4	ug/L	50.0		95.1	55-140			
Methyl-t-butyl ether (M	TBE) 56.8	1	ug/L	50.0		114	65-125			
Naphthalene	54.9	1	ug/L	50.0		110	55-140			
n-Butylbenzene	53.4	1	ug/L	50.0		107	70-135			
n-Propylbenzene	54.6	1	ug/L	50.0		109	70-130			
o-Xylene	50.3	1	ug/L	50.0		101	80-120			
sec-Butylbenzene	54.6	1	ug/L	50.0		109	70-125			

			Ce	rtificate o	of Analysi	S				
Client Name: SCS Engine	ers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bristol Landfi										
Submitted To: Jennifer Robb									0.41/0500	
	•						Work Ord	er:	24K0529	
		V	olatile Orga	inic Compounds b	by GCMS - Quali	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	3HK0730 - SW5030	B-MS								
LCS (BHK0730-BS1)				Prepared & Anal	yzed: 11/14/2024					
Styrene	51.6	1	ug/L	50.0		103	65-135			
tert-Butylbenzene	51.8	1	ug/L	50.0		104	70-130			
Tetrachloroethylene (PCE)	73.8	1	ug/L	50.0		148	45-150			
Toluene	51.0	1	ug/L	50.0		102	75-120			
trans-1,2-Dichloroethylene	46.7	1	ug/L	50.0		93.4	60-140			
trans-1,3-Dichloropropene	48.9	1	ug/L	50.0		97.8	55-140			
Trichloroethylene	51.5	1	ug/L	50.0		103	70-125			
Trichlorofluoromethane	50.9	1	ug/L	50.0		102	60-145			
Vinyl chloride	41.4	0.5	ug/L	50.0		82.8	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	54.7		ug/L	50.0		109	70-120			
Surr: 4-Bromofluorobenzene (Surr)	50.3		ug/L	50.0		101	75-120			
Surr: Dibromofluoromethane (Surr)	53.1		ug/L	50.0		106	70-130			
Surr: Toluene-d8 (Surr)	50.3		ug/L	50.0		101	70-130			
Duplicate (BHK0730-DUP1)	Source	e: 24K0799-0	2	Prepared & Anal	yzed: 11/14/2024					
1,1,1,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,1-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,2-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichloropropane	ND	1.00	ug/L		BLOD			NA	30	
1,2,4-Trichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	

				<u>Ce</u>	ertificate o	<u>f Analysi</u>	<u>s</u>				
Client Name:	SCS Engineers	s-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bi	ristol Landfill										
Submitted To: Je	nnifer Robb							Work Ord	er.	24K0529	
			N/	alatila Ora	anic Compounds b		Control		01.	2410020	
			V	biatile Org			Control				
					Enthalpy An	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK	(0730 - SW5030B	-MS								
Duplicate (BHK0730-DUP1)		Source:	24K0799-02	2	Prepared & Analy	zed: 11/14/2024					
1,2,4-Trimethylbenzene		ND	1.00	ug/L		BLOD			NA	30	
1,2-Dibromo-3-chloroprop	oane (DBCP)	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dibromoethane (EDB	5)	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dichlorobenzene		ND	0.50	ug/L		BLOD			NA	30	
1,2-Dichloroethane		ND	1.00	ug/L		BLOD			NA	30	
1,2-Dichloropropane		ND	0.50	ug/L		BLOD			NA	30	
1,3,5-Trimethylbenzene		ND	1.00	ug/L		BLOD			NA	30	
1,3-Dichlorobenzene		ND	1.00	ug/L		BLOD			NA	30	
1,3-Dichloropropane		ND	1.00	ug/L		BLOD			NA	30	
1,4-Dichlorobenzene		ND	1.00	ug/L		BLOD			NA	30	
2,2-Dichloropropane		ND	1.00	ug/L		BLOD			NA	30	
2-Butanone (MEK)		ND	10.0	ug/L		BLOD			NA	30	
2-Chlorotoluene		ND	1.00	ug/L		BLOD			NA	30	
2-Hexanone (MBK)		ND	5.00	ug/L		BLOD			NA	30	
4-Chlorotoluene		ND	1.00	ug/L		BLOD			NA	30	
4-Isopropyltoluene		ND	1.00	ug/L		BLOD			NA	30	
4-Methyl-2-pentanone (M	IIBK)	ND	5.00	ug/L		BLOD			NA	30	
Acetone		ND	10.0	ug/L		BLOD			NA	30	
Benzene		ND	1.00	ug/L		BLOD			NA	30	
Bromobenzene		ND	1.00	ug/L		BLOD			NA	30	
Bromochloromethane		ND	1.00	ug/L		BLOD			NA	30	
Bromodichloromethane		ND	0.50	ug/L		BLOD			NA	30	
Bromoform		ND	1.00	ug/L		BLOD			NA	30	
Bromomethane		ND	1.00	ug/L		BLOD			NA	30	
Carbon disulfide		ND	10.0	ug/L		BLOD			NA	30	

				<u>Ce</u>	ertificate of	<u>f Analysi</u>	<u>s</u>				
Client Name:	SCS Engineers	s-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Work Ord	or:	24K0529	
									er.	24KU329	
			Vo	olatile Org	anic Compounds by	GCMS - Quality	/ Control				
					Enthalpy Ana	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHM	(0730 - SW5030B	-MS								
Duplicate (BHK0730-D	UP1)	Source:	24K0799-02	2	Prepared & Analyz	zed: 11/14/2024					
Carbon tetrachloride	e	ND	1.00	ug/L		BLOD			NA	30	
Chlorobenzene		ND	1.00	ug/L		BLOD			NA	30	
Chloroethane		ND	1.00	ug/L		BLOD			NA	30	
Chloroform		ND	0.50	ug/L		BLOD			NA	30	
Chloromethane		ND	1.00	ug/L		BLOD			NA	30	
cis-1,2-Dichloroethy	lene	ND	1.00	ug/L		BLOD			NA	30	
cis-1,3-Dichloroprop	pene	ND	1.00	ug/L		BLOD			NA	30	
Dibromochlorometh	ane	ND	0.50	ug/L		BLOD			NA	30	
Dibromomethane		ND	1.00	ug/L		BLOD			NA	30	
Dichlorodifluoromet		ND	1.00	ug/L		BLOD			NA	30	
Di-isopropyl ether ([DIPE)	ND	5.00	ug/L		BLOD			NA	30	
Ethylbenzene		ND	1.00	ug/L		BLOD			NA	30	
Hexachlorobutadien	e	ND	0.80	ug/L		BLOD			NA	30	
lodomethane		ND	10.0	ug/L		BLOD			NA	30	
Isopropylbenzene		ND	1.00	ug/L		BLOD			NA	30	
m+p-Xylenes		ND	2.00	ug/L		BLOD			NA	30	
Methylene chloride		ND	4.00	ug/L		BLOD			NA	30	
Methyl-t-butyl ether	(MTBE)	ND	1.00	ug/L		BLOD			NA	30	
Naphthalene		ND	1.00	ug/L		BLOD			NA	30	
n-Butylbenzene		ND	1.00	ug/L		BLOD			NA	30	
n-Propylbenzene		ND	1.00	ug/L		BLOD			NA	30	
o-Xylene		ND	1.00	ug/L		BLOD			NA	30	
sec-Butylbenzene		ND	1.00	ug/L		BLOD			NA	30	
Styrene		ND	1.00	ug/L		BLOD			NA	30	
tert-Butylbenzene		ND	1.00	ug/L		BLOD			NA	30	

			<u>Ce</u>	ertificate o	of Analysis	<u>S</u>				
Client Name: SCS Eng	gineers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bristol La	ndfill									
Submitted To: Jennifer R	lobb						Work Ord	or:	24K0529	
		,	(al atilia Qua	ania Oanna an Ial		Operational		CI.	241(0329	
		```	/olatile Org	•	by GCMS - Quality	Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bat	tch BHK0730 - SW5030	B-MS								
Duplicate (BHK0730-DUP1)	Source	e: 24K0799-(	)2	Prepared & Anal	yzed: 11/14/2024					
Tetrachloroethylene (PCE)	ND	1.00	ug/L		BLOD			NA	30	
Toluene	ND	1.00	ug/L		BLOD			NA	30	
trans-1,2-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
trans-1,3-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	
Trichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
Trichlorofluoromethane	ND	1.00	ug/L		BLOD			NA	30	
Vinyl acetate	ND	10.0	ug/L		BLOD			NA	30	
Vinyl chloride	ND	0.50	ug/L		BLOD			NA	30	
Xylenes, Total	ND	3.00	ug/L		BLOD			NA	30	
Tetrahydrofuran	ND	10.0	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	59.3		ug/L	50.0		119	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.1		ug/L	50.0		98.2	75-120			
Surr: Dibromofluoromethane (Surr)	55.6		ug/L	50.0		111	70-130			
Surr: Toluene-d8 (Surr)	49.8		ug/L	50.0		99.6	70-130			
Matrix Spike (BHK0730-MS1)	Source	: 24K0799-0	01	Prepared & Anal	yzed: 11/14/2024					
1,1,1,2-Tetrachloroethane	49.4	0.4	ug/L	50.0	BLOD	98.9	80-130			
1,1,1-Trichloroethane	48.8	1	ug/L	50.0	BLOD	97.5	65-130			
1,1,2,2-Tetrachloroethane	53.7	0.4	ug/L	50.0	BLOD	107	65-130			
1,1,2-Trichloroethane	55.8	1	ug/L	50.0	BLOD	112	75-125			
1,1-Dichloroethane	47.7	1	ug/L	50.0	BLOD	95.4	70-135			
1,1-Dichloroethylene	45.0	1	ug/L	50.0	BLOD	90.0	50-145			
1,1-Dichloropropene	47.8	1	ug/L	50.0	BLOD	95.6	75-135			
1,2,3-Trichlorobenzene	49.0	1	ug/L	50.0	BLOD	98.1	55-140			
1,2,3-Trichloropropane	48.4	1	ug/L	50.0	BLOD	96.8	75-125			



			Ce	ertificate o	of Analysi	is				
Client Name: SCS Engin	eers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bristol Land	fill									
Submitted To: Jennifer Rob	b						Work Ord	or	24K0529	
								er.	2460329	
		Vo	olatile Org	anic Compounds b	by GCMS - Quali	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BHK0730 - SW5030	B-MS								
Matrix Spike (BHK0730-MS1)	Source	24K0799-01		Prepared & Analy	/zed: 11/14/2024					
1,2,4-Trichlorobenzene	45.0	1	ug/L	50.0	BLOD	90.0	65-135			
1,2,4-Trimethylbenzene	45.2	1	ug/L	50.0	BLOD	90.3	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	42.1	1	ug/L	50.0	BLOD	84.2	50-130			
1,2-Dibromoethane (EDB)	52.8	1	ug/L	50.0	BLOD	106	80-120			
1,2-Dichlorobenzene	49.6	0.5	ug/L	50.0	BLOD	99.2	70-120			
1,2-Dichloroethane	51.6	1	ug/L	50.0	BLOD	103	70-130			
1,2-Dichloropropane	49.1	0.5	ug/L	50.0	BLOD	98.2	75-125			
1,3,5-Trimethylbenzene	45.4	1	ug/L	50.0	BLOD	90.8	75-124			
1,3-Dichlorobenzene	46.4	1	ug/L	50.0	BLOD	92.9	75-125			
1,3-Dichloropropane	53.5	1	ug/L	50.0	BLOD	107	75-125			
1,4-Dichlorobenzene	45.2	1	ug/L	50.0	BLOD	90.5	75-125			
2,2-Dichloropropane	46.8	1	ug/L	50.0	BLOD	93.7	70-135			
2-Butanone (MEK)	48.8	10	ug/L	50.0	BLOD	97.6	30-150			
2-Chlorotoluene	46.5	1	ug/L	50.0	BLOD	93.0	75-125			
2-Hexanone (MBK)	43.3	5	ug/L	50.0	BLOD	86.6	55-130			
4-Chlorotoluene	47.8	1	ug/L	50.0	BLOD	95.7	75-130			
4-Isopropyltoluene	47.5	1	ug/L	50.0	BLOD	95.0	75-130			
4-Methyl-2-pentanone (MIBK)	43.5	5	ug/L	50.0	BLOD	87.0	60-135			
Acetone	37.8	10	ug/L	50.0	BLOD	71.1	40-140			
Benzene	47.1	1	ug/L	50.0	BLOD	94.1	80-120			
Bromobenzene	47.0	1	ug/L	50.0	BLOD	94.0	75-125			
Bromochloromethane	50.0	1	ug/L	50.0	BLOD	99.9	65-130			
Bromodichloromethane	51.9	0.5	ug/L	50.0	BLOD	104	75-136			
Bromoform	44.4	1	ug/L	50.0	BLOD	88.7	70-130			
Bromomethane	38.8	1	ug/L	50.0	BLOD	77.6	30-145			



				<u>Ce</u>	ertificate o	of Analysi	<u>is</u>				
Client Name:	SCS Engineer	s-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Work Ord	or	24K0529	
	-								er.	2460329	
			V	olatile Org	anic Compounds b	oy GCMS - Quali	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BH	K0730 - SW5030	B-MS								
Matrix Spike (BHK073	0-MS1)	Source	24K0799-0	1	Prepared & Analy	/zed: 11/14/2024	-				
Carbon disulfide		50.7	10	ug/L	50.0	BLOD	101	35-160			
Carbon tetrachloride	e	50.2	1	ug/L	50.0	BLOD	100	65-140			
Chlorobenzene		48.9	1	ug/L	50.0	BLOD	97.9	80-120			
Chloroethane		38.4	1	ug/L	50.0	BLOD	76.9	60-135			
Chloroform		47.7	0.5	ug/L	50.0	BLOD	95.3	65-135			
Chloromethane		36.5	1	ug/L	50.0	BLOD	73.1	40-125			
cis-1,2-Dichloroethy	lene	47.5	1	ug/L	50.0	BLOD	94.9	70-125			
cis-1,3-Dichloroprop	bene	52.0	1	ug/L	50.0	BLOD	104	47-136			
Dibromochlorometha	ane	55.0	0.5	ug/L	50.0	BLOD	110	60-135			
Dibromomethane		50.3	1	ug/L	50.0	BLOD	101	75-125			
Dichlorodifluorometh	hane	45.3	1	ug/L	50.0	BLOD	90.6	30-155			
Ethylbenzene		47.2	1	ug/L	50.0	BLOD	94.4	75-125			
Hexachlorobutadien	e	45.6	0.8	ug/L	50.0	BLOD	91.3	50-140			
Isopropylbenzene		41.6	1	ug/L	50.0	BLOD	83.2	75-125			
m+p-Xylenes		95.7	2	ug/L	100	BLOD	95.7	75-130			
Methylene chloride		45.4	4	ug/L	50.0	BLOD	90.2	55-140			
Methyl-t-butyl ether	(MTBE)	52.5	1	ug/L	50.0	BLOD	105	65-125			
Naphthalene		51.7	1	ug/L	50.0	BLOD	103	55-140			
n-Butylbenzene		45.1	1	ug/L	50.0	BLOD	90.1	70-135			
n-Propylbenzene		47.5	1	ug/L	50.0	BLOD	95.0	70-130			
o-Xylene		47.5	1	ug/L	50.0	BLOD	95.1	80-120			
sec-Butylbenzene		48.4	1	ug/L	50.0	BLOD	96.8	70-125			
Styrene		48.4	1	ug/L	50.0	BLOD	96.8	65-135			
tert-Butylbenzene		47.2	1	ug/L	50.0	BLOD	94.3	70-130			
Tetrachloroethylene	(PCE)	66.5	1	ug/L	50.0	BLOD	133	51-231			



				<u>Ce</u>	ertificate c	of Analysi	<u>s</u>				
Client Name: S	CS Engineers	-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bri	stol Landfill										
Submitted To: Jen	nifer Robb							Work Orde	er:	24K0529	
			Vo	olatile Org	anic Compounds b	oy GCMS - Quality	y Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK	0730 - SW5030E	B-MS								
Matrix Spike (BHK0730-MS1)		Source:	24K0799-0 ²	1	Prepared & Analy	/zed: 11/14/2024					
Toluene		48.1	1	ug/L	50.0	BLOD	96.2	75-120			
trans-1,2-Dichloroethylene		43.7	1	ug/L	50.0	BLOD	87.4	60-140			
trans-1,3-Dichloropropene		44.7	1	ug/L	50.0	BLOD	89.3	55-140			
Trichloroethylene		47.4	1	ug/L	50.0	BLOD	94.8	70-125			
Trichlorofluoromethane		45.1	1	ug/L	50.0	BLOD	90.1	60-145			
Vinyl chloride		38.0	0.5	ug/L	50.0	BLOD	76.0	50-145			
Surr: 1,2-Dichloroethane-d	4 (Surr)	56.9		ug/L	50.0		114	70-120			
Surr: 4-Bromofluorobenzer	ne (Surr)	51.6		ug/L	50.0		103	75-120			
Surr: Dibromofluoromethar	ne (Surr)	53.8		ug/L	50.0		108	70-130			
Surr: Toluene-d8 (Surr)		51.4		ug/L	50.0		103	70-130			



			<u>Ce</u>	rtificate c	of Analysi	is				
Client Name:	SCS Engineers-Wincheste	er					Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: B	ristol Landfill									
Submitted To: Je	nnifer Robb						Work Ord	er:	24K0529	
		Sei	mivolatile Oro	nanic Compound	s by GCMS - Qu	ality Control			2	
				Enthalpy Ar	-					
					larytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0500 - SW35	10C/EPA600	-MS							
Blank (BHK0500-BLK1)			I	Prepared & Anal	yzed: 11/11/2024					
Anthracene	ND	10.0	ug/L							
Surr: 2,4,6-Tribromophen	ol (Surr) 68.4		ug/L	200		34.2	5-136			
Surr: 2-Fluorobiphenyl (S	urr) 29.4		ug/L	100		29.4	9-117			
Surr: 2-Fluorophenol (Su	rr) 26.8		ug/L	200		13.4	5-60			
Surr: Nitrobenzene-d5 (S	urr) 33.2		ug/L	100		33.2	5-151			
Surr: Phenol-d5 (Surr)	31.5		ug/L	200		15.8	5-60			
Surr: p-Terphenyl-d14 (Su	urr) 34.2		ug/L	100		34.2	5-141			
Blank (BHK0500-BLK3)			I	Prepared: 11/11/2	2024 Analyzed: 1	1/18/2024				
Anthracene	ND	10.0	ug/L							
Surr: 2,4,6-Tribromophen	ol (Surr) 76.3		ug/L	200		38.1	5-136			
Surr: 2-Fluorobiphenyl (S	urr) 31.7		ug/L	100		31.7	9-117			
Surr: 2-Fluorophenol (Su	r) 41.3		ug/L	200		20.6	5-60			
Surr: Nitrobenzene-d5 (S	urr) 53.0		ug/L	100		53.0	5-151			
Surr: Phenol-d5 (Surr)	32.3		ug/L	200		16.1	5-60			
Surr: p-Terphenyl-d14 (Su	urr) 38.8		ug/L	100		38.8	5-141			
LCS (BHK0500-BS1)				Prepared & Analy	yzed: 11/11/2024					
1,2,4-Trichlorobenzene	21.7	10.0	ug/L	50.0		43.4	57-130			L
1,2-Dichlorobenzene	24.8	10.0	ug/L	50.0		49.7	22-115			
1,3-Dichlorobenzene	24.0	10.0	ug/L	50.0		48.0	22-112			
1,4-Dichlorobenzene	23.0	10.0	ug/L	50.0		46.1	13-112			
2,4,6-Trichlorophenol	28.0	10.0	ug/L	50.0		56.0	52-129			
2,4-Dichlorophenol	29.0	10.0	ug/L	50.0		58.0	53-122			
2,4-Dimethylphenol	32.7	5.00	ug/L	50.0		65.3	42-120			



			<u>Cer</u>	tificate c	of Analysi	is				
Client Name: S	CS Engineers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bri	stol Landfill									
Submitted To: Jen	nifer Robb						Mark Ord	<b>.</b>	241/0520	
							Work Ord	er:	24K0529	
		Sei	mivolatile Org	anic Compound	s by GCMS - Qu	ality Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0500 - SW3510C	/EPA600	-MS							
LCS (BHK0500-BS1)			F	Prepared & Analy	yzed: 11/11/2024					
2,4-Dinitrophenol	28.8	50.0	ug/L	50.0		57.7	48-127			
2,4-Dinitrotoluene	36.2	10.0	ug/L	50.0		72.3	10-173			
2,6-Dinitrotoluene	34.7	10.0	ug/L	50.0		69.3	68-137			
2-Chloronaphthalene	28.9	10.0	ug/L	50.0		57.7	65-120			L
2-Chlorophenol	32.4	10.0	ug/L	50.0		64.7	36-120			
2-Nitrophenol	35.1	10.0	ug/L	50.0		70.3	45-167			
3,3'-Dichlorobenzidine	36.5	10.0	ug/L	50.0		73.0	10-213			
4,6-Dinitro-2-methylphenol	35.5	50.0	ug/L	50.0		70.9	53-130			
4-Bromophenyl phenyl ethe	er 34.1	10.0	ug/L	50.0		68.2	65-120			
4-Chlorophenyl phenyl ethe	er 29.3	10.0	ug/L	50.0		58.7	38-145			
4-Nitrophenol	15.6	50.0	ug/L	50.0		31.2	13-129			
Acenaphthene	33.2	10.0	ug/L	50.0		66.3	60-132			
Acenaphthylene	34.7	10.0	ug/L	50.0		69.4	54-126			
Acetophenone	27.2	20.0	ug/L	50.0		54.3	0-200			
Anthracene	34.7	10.0	ug/L	50.0		69.3	43-120			
Benzo (a) anthracene	35.0	10.0	ug/L	50.0		70.1	42-133			
Benzo (a) pyrene	37.8	10.0	ug/L	50.0		75.6	32-148			
Benzo (b) fluoranthene	34.6	10.0	ug/L	50.0		69.2	42-140			
Benzo (g,h,i) perylene	41.0	10.0	ug/L	50.0		81.9	10-195			
Benzo (k) fluoranthene	34.7	10.0	ug/L	50.0		69.4	25-146			
bis (2-Chloroethoxy) metha	ane 33.9	10.0	ug/L	50.0		67.9	49-165			
bis (2-Chloroethyl) ether	34.8	10.0	ug/L	50.0		69.6	43-126			
2,2'-Oxybis (1-chloropropa		10.0	ug/L	50.0		65.6	63-139			
bis (2-Ethylhexyl) phthalate	39.4	10.0	ug/L	50.0		78.9	29-137			
Butyl benzyl phthalate	43.8	10.0	ug/L	50.0		87.5	10-140			



			<u>Cer</u>	<u>tificate c</u>	of Analysi	is				
Client Name: SCS E	ngineers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bristol L	andfill									
Submitted To: Jennifer							Marile Oral		04//0500	
							Work Ord	er:	24K0529	
		Sei	mivolatile Org	anic Compound	s by GCMS - Qu	ality Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
В	Batch BHK0500 - SW3510C	/EPA600	-MS							
LCS (BHK0500-BS1)			F	repared & Anal	/zed: 11/11/2024					
Chrysene	37.8	10.0	ug/L	50.0		75.5	44-140			
Dibenz (a,h) anthracene	41.3	10.0	ug/L	50.0		82.6	10-200			
Diethyl phthalate	36.2	10.0	ug/L	50.0		72.3	10-120			
Dimethyl phthalate	33.9	10.0	ug/L	50.0		67.7	10-120			
Di-n-butyl phthalate	45.2	10.0	ug/L	50.0		90.3	10-120			
Di-n-octyl phthalate	41.1	10.0	ug/L	50.0		82.2	19-132			
Fluoranthene	36.2	10.0	ug/L	50.0		72.3	43-121			
Fluorene	32.2	10.0	ug/L	50.0		64.3	70-120			L
Hexachlorobenzene	35.1	1.00	ug/L	50.0		70.2	10-142			
Hexachlorobutadiene	20.7	10.0	ug/L	50.0		41.4	38-120			
Hexachlorocyclopentadiene	12.6	10.0	ug/L	50.0		25.3	10-76			
Hexachloroethane	23.7	10.0	ug/L	50.0		47.4	55-120			L
Indeno (1,2,3-cd) pyrene	37.9	10.0	ug/L	50.0		75.8	10-151			
Isophorone	27.7	10.0	ug/L	50.0		55.3	47-180			
Naphthalene	26.2	5.00	ug/L	50.0		52.4	36-120			
Nitrobenzene	30.1	10.0	ug/L	50.0		60.2	54-158			
n-Nitrosodimethylamine	21.3	10.0	ug/L	50.0		42.6	10-85			
n-Nitrosodi-n-propylamine	27.2	10.0	ug/L	50.0		54.4	14-198			
n-Nitrosodiphenylamine	27.1	10.0	ug/L	50.0		54.1	12-97			
p-Chloro-m-cresol	34.0	10.0	ug/L	50.0		68.0	10-142			
Pentachloronitrobenzene (quintoz		10.0	ug/L				0-200			
Pentachlorophenol	30.2	20.0	ug/L	50.0		60.4	38-152			
Phenanthrene	36.7	10.0	ug/L	50.0		73.4	65-120			
Phenol	15.1	10.0	ug/L	50.5		29.9	17-120			
Pyrene	33.2	10.0	ug/L	50.0		66.4	70-120			L



			<u>Ce</u>	ertificate o	of Analysi	S				
Client Name: SCS E	Engineers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bristol	Landfill									
Submitted To: Jennifer	r Robb						Work Ord	er:	24K0529	
		Sem	ivolatile O	rganic Compound	s by GCMS - Qu	ality Control				
		Com		Enthalpy A	-					
<b></b>				Entraipy A	lalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0500 - SW35100	:/EPA600-N	NS							
LCS (BHK0500-BS1)				Prepared & Anal	yzed: 11/11/2024					
Pyridine	18.1	10.0	ug/L	50.0		36.2	10-103			
Surr: 2,4,6-Tribromophenol (Surr	r) 66.3		ug/L	200		33.2	5-136			
Surr: 2-Fluorobiphenyl (Surr)	27.9		ug/L	100		27.9	9-117			
Surr: 2-Fluorophenol (Surr)	42.4		ug/L	200		21.2	5-60			
Surr: Nitrobenzene-d5 (Surr)	30.5		ug/L	100		30.5	5-151			
Surr: Phenol-d5 (Surr)	29.2		ug/L	200		14.6	5-60			
Surr: p-Terphenyl-d14 (Surr)	32.8		ug/L	100		32.8	5-141			
Matrix Spike (BHK0500-MS1)	Source:	24K0289-01		Prepared & Anal	yzed: 11/11/2024					
1,2,4-Trichlorobenzene	18.2	10.0	ug/L	49.0	BLOD	37.1	44-142			М
1,2-Dichlorobenzene	21.3	10.0	ug/L	49.0	BLOD	43.4	22-115			
1,3-Dichlorobenzene	20.7	10.0	ug/L	49.0	BLOD	42.3	22-112			
1,4-Dichlorobenzene	19.9	10.0	ug/L	49.0	BLOD	40.5	13-112			
2,4,6-Trichlorophenol	20.6	10.0	ug/L	49.0	BLOD	42.0	37-144			
2,4-Dichlorophenol	21.0	10.0	ug/L	49.0	BLOD	42.8	39-135			
2,4-Dimethylphenol	22.9	5.00	ug/L	49.0	BLOD	46.6	32-120			
2,4-Dinitrophenol	21.0	50.0	ug/L	49.0	BLOD	42.9	39-139			
2,4-Dinitrotoluene	28.3	10.0	ug/L	49.0	BLOD	57.8	10-191			
2,6-Dinitrotoluene	26.2	10.0	ug/L	49.0	BLOD	53.5	50-158			
2-Chloronaphthalene	22.5	10.0	ug/L	49.0	BLOD	45.8	60-120			М
2-Chlorophenol	24.4	10.0	ug/L	49.0	BLOD	49.7	23-134			
2-Nitrophenol	25.8	10.0	ug/L	49.0	BLOD	52.6	29-182			
3,3'-Dichlorobenzidine	27.9	10.0	ug/L	49.0	BLOD	57.0	10-262			
4,6-Dinitro-2-methylphenol	27.6	50.0	ug/L	49.0	BLOD	56.4	10-181			
4-Bromophenyl phenyl ether	27.3	10.0	ug/L	49.0	BLOD	55.6	53-127			



				Ce	rtificate o	f Analysi	is				
Client Name:	SCS Engineers-V	Vinchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb										
Submitted 10.								Work Ord	er:	24K0529	
			Sem	ivolatile O	rganic Compound	s by GCMS - Qu	ality Control				
					Enthalpy An	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK05	500 - SW3510	C/EPA600-I	MS							
Matrix Spike (BHK050			24K0289-01		Prepared & Analy	zed: 11/11/2024					
4-Chlorophenyl phe	· ·	22.4	10.0	ug/L	49.0	BLOD	45.6	25-158			
4-Nitrophenol		11.9	50.0	ug/L	49.0	BLOD	24.3	10-132			
Acenaphthene		25.1	10.0	ug/L	49.0	BLOD	51.1	47-145			
Acenaphthylene		26.5	10.0	ug/L	49.0	BLOD	54.0	33-145			
Acetophenone		20.6	20.0	ug/L	49.0	BLOD	42.1	0-200			
Anthracene		27.7	10.0	ug/L	49.0	BLOD	56.6	27-133			
Benzo (a) anthracer	ne	28.1	10.0	ug/L	49.0	BLOD	57.4	33-143			
Benzo (a) pyrene		30.8	10.0	ug/L	49.0	BLOD	62.8	17-163			
Benzo (b) fluoranthe	ene	29.9	10.0	ug/L	49.0	BLOD	61.0	24-159			
Benzo (g,h,i) peryle	ne	31.4	10.0	ug/L	49.0	BLOD	64.1	10-219			
Benzo (k) fluoranthe	ene	28.2	10.0	ug/L	49.0	BLOD	57.5	11-162			
bis (2-Chloroethoxy	) methane	24.9	10.0	ug/L	49.0	BLOD	50.8	33-184			
bis (2-Chloroethyl) e	ether	26.4	10.0	ug/L	49.0	BLOD	53.9	12-158			
2,2'-Oxybis (1-chlore	opropane)	25.0	10.0	ug/L	49.0	BLOD	51.0	36-166			
bis (2-Ethylhexyl) pł	hthalate	33.0	10.0	ug/L	49.0	BLOD	67.3	10-158			
Butyl benzyl phthala	ate	36.3	10.0	ug/L	49.0	BLOD	74.1	10-152			
Chrysene		31.4	10.0	ug/L	49.0	BLOD	64.1	17-169			
Dibenz (a,h) anthrac	cene	31.8	10.0	ug/L	49.0	BLOD	64.9	10-227			
Diethyl phthalate		28.5	10.0	ug/L	49.0	BLOD	58.2	10-120			
Dimethyl phthalate		25.8	10.0	ug/L	49.0	BLOD	52.6	10-120			
Di-n-butyl phthalate		37.0	10.0	ug/L	49.0	BLOD	75.5	10-120			
Di-n-octyl phthalate	1	36.0	10.0	ug/L	49.0	BLOD	73.4	10-146			
Fluoranthene		29.7	10.0	ug/L	49.0	BLOD	60.6	26-137			
Fluorene		24.7	10.0	ug/L	49.0	BLOD	50.4	59-121			М
Hexachlorobenzene	e	28.2	1.00	ug/L	49.0	BLOD	57.5	10-152			



			<u>Ce</u>	ertificate o	of Analysi	<u>s</u>				
Client Name: SO	CS Engineers-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bris	stol Landfill									
Submitted To: Jeni	nifer Robb						Work Ord	or:	24K0529	
								ei.	2410029	
		Semi	volatile C	Organic Compound	s by GCMS - Qua	ality Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0500 - SW3510	C/EPA600-N	IS							
Matrix Spike (BHK0500-MS1)	Source	: 24K0289-01		Prepared & Analy	/zed: 11/11/2024					
Hexachlorobutadiene	17.7	10.0	ug/L	49.0	BLOD	36.1	24-120			
Hexachlorocyclopentadiene	9.23	10.0	ug/L	49.0	BLOD	18.8	10-90			
Hexachloroethane	20.7	10.0	ug/L	49.0	BLOD	42.2	40-120			
Indeno (1,2,3-cd) pyrene	29.0	10.0	ug/L	49.0	BLOD	59.2	10-171			
Isophorone	20.1	10.0	ug/L	49.0	BLOD	41.1	21-196			
Naphthalene	21.4	5.00	ug/L	49.0	BLOD	43.6	21-133			
Nitrobenzene	22.9	10.0	ug/L	49.0	BLOD	46.7	35-180			
n-Nitrosodimethylamine	9.87	10.0	ug/L	49.0	BLOD	20.1	10-85			
n-Nitrosodi-n-propylamine	20.6	10.0	ug/L	49.0	BLOD	42.1	10-230			
n-Nitrosodiphenylamine	21.1	10.0	ug/L	49.0	BLOD	43.1	12-111			
p-Chloro-m-cresol	24.2	10.0	ug/L	49.0	BLOD	49.3	10-127			
Pentachloronitrobenzene (q	uintozene) ND	10.0	ug/L		BLOD		0-200			
Pentachlorophenol	23.8	20.0	ug/L	49.0	BLOD	48.5	14-176			
Phenanthrene	29.1	10.0	ug/L	49.0	BLOD	59.3	54-120			
Phenol	10.9	10.0	ug/L	49.5	BLOD	22.1	10-120			
Pyrene	27.5	10.0	ug/L	49.0	BLOD	56.2	52-120			
Pyridine	13.0	10.0	ug/L	49.0	BLOD	26.6	10-110			
Surr: 2,4,6-Tribromophenol	(Surr) 50.2		ug/L	196		25.6	5-136			
Surr: 2-Fluorobiphenyl (Sur	r) 20.6		ug/L	98.0		21.0	9-117			
Surr: 2-Fluorophenol (Surr)	17.1		ug/L	196		8.75	5-60			
Surr: Nitrobenzene-d5 (Sur	7) 22.2		ug/L	98.0		22.6	5-151			
Surr: Phenol-d5 (Surr)	20.9		ug/L	196		10.7	5-60			
Surr: p-Terphenyl-d14 (Surr	) 22.5		ug/L	98.0		22.9	5-141			
Matrix Spike Dup (BHK0500-N	ISD1) Source	: 24K0289-01		Prepared & Analy	/zed: 11/11/2024					



				Ce	ertificate o	of Analys	<u>is</u>				
Client Name:	SCS Engineer	s-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Work Ord	or	24K0529	
			-						er.	2480329	
			Sem	ivolatile C	rganic Compound	s by GCMS - Qu	ality Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI	K0500 - SW3510C	/EPA600-	MS							
Matrix Spike Dup (BH	K0500-MSD1)	Source:	24K0289-0′	1	Prepared & Analy	/zed: 11/11/2024					
1,2,4-Trichlorobenz	ene	21.5	10.0	ug/L	49.0	BLOD	43.8	44-142	16.6	20	М
1,2-Dichlorobenzen	ie	25.3	10.0	ug/L	49.0	BLOD	51.6	22-115	17.1	20	
1,3-Dichlorobenzen	ie	24.7	10.0	ug/L	49.0	BLOD	50.3	22-112	17.5	20	
1,4-Dichlorobenzen	ie	23.8	10.0	ug/L	49.0	BLOD	48.6	13-112	18.1	20	
2,4,6-Trichlorophen	ol	23.2	10.0	ug/L	49.0	BLOD	47.4	37-144	12.0	20	
2,4-Dichlorophenol		24.5	10.0	ug/L	49.0	BLOD	49.9	39-135	15.3	20	
2,4-Dimethylphenol	l	26.2	5.00	ug/L	49.0	BLOD	53.5	32-120	13.7	20	
2,4-Dinitrophenol		27.5	50.0	ug/L	49.0	BLOD	56.0	39-139	26.5	20	Р
2,4-Dinitrotoluene		31.3	10.0	ug/L	49.0	BLOD	63.8	10-191	9.94	20	
2,6-Dinitrotoluene		29.6	10.0	ug/L	49.0	BLOD	60.4	50-158	12.1	20	
2-Chloronaphthaler	ne	25.9	10.0	ug/L	49.0	BLOD	52.8	60-120	14.2	20	М
2-Chlorophenol		27.7	10.0	ug/L	49.0	BLOD	56.5	23-134	12.8	20	
2-Nitrophenol		30.1	10.0	ug/L	49.0	BLOD	61.4	29-182	15.4	20	
3,3'-Dichlorobenzid	ine	29.5	10.0	ug/L	49.0	BLOD	60.2	10-262	5.39	20	
4,6-Dinitro-2-methy	Iphenol	33.3	50.0	ug/L	49.0	BLOD	67.9	10-181	18.5	20	
4-Bromophenyl phe		29.9	10.0	ug/L	49.0	BLOD	61.1	53-127	9.29	20	
4-Chlorophenyl phe	enyl ether	25.2	10.0	ug/L	49.0	BLOD	51.4	25-158	12.0	20	
4-Nitrophenol		13.2	50.0	ug/L	49.0	BLOD	26.9	10-132	10.0	20	
Acenaphthene		28.7	10.0	ug/L	49.0	BLOD	58.6	47-145	13.6	20	
Acenaphthylene		30.3	10.0	ug/L	49.0	BLOD	61.7	33-145	13.4	20	
Acetophenone		23.2	20.0	ug/L	49.0	BLOD	47.2	0-200	11.5	20	
Anthracene		29.9	10.0	ug/L	49.0	BLOD	61.0	27-133	7.49	20	
Benzo (a) anthrace	ne	29.6	10.0	ug/L	49.0	BLOD	60.3	33-143	4.96	20	
Benzo (a) pyrene		31.4	10.0	ug/L	49.0	BLOD	64.1	17-163	2.08	20	
Benzo (b) fluoranth	ene	30.6	10.0	ug/L	49.0	BLOD	62.3	24-159	2.14	20	



				<u>Ce</u>	ertificate o	of Analys	<u>is</u>				
Client Name:	SCS Engineer	s-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Work Ord	0.5	24K0529	
									er.	2450529	
			Sen	nivolatile C	rganic Compound	s by GCMS - Qu	ality Control				
					Enthalpy Ar	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHI	K0500 - SW35100	C/EPA600-	MS							
Matrix Spike Dup (BH	IK0500-MSD1)	Source:	24K0289-0	1	Prepared & Analy	/zed: 11/11/2024					
Benzo (g,h,i) peryle	ene	33.2	10.0	ug/L	49.0	BLOD	67.7	10-219	5.46	20	
Benzo (k) fluoranth	ene	28.5	10.0	ug/L	49.0	BLOD	58.0	11-162	0.935	20	
bis (2-Chloroethoxy	y) methane	28.5	10.0	ug/L	49.0	BLOD	58.1	33-184	13.3	20	
bis (2-Chloroethyl)	ether	29.8	10.0	ug/L	49.0	BLOD	60.9	12-158	12.2	20	
2,2'-Oxybis (1-chlor	ropropane)	28.8	10.0	ug/L	49.0	BLOD	58.8	36-166	14.3	20	
bis (2-Ethylhexyl) p	ohthalate	34.3	10.0	ug/L	49.0	BLOD	69.9	10-158	3.76	20	
Butyl benzyl phthal	ate	37.6	10.0	ug/L	49.0	BLOD	76.7	10-152	3.50	20	
Chrysene		32.4	10.0	ug/L	49.0	BLOD	66.1	17-169	3.07	20	
Dibenz (a,h) anthra	acene	34.0	10.0	ug/L	49.0	BLOD	69.4	10-227	6.79	20	
Diethyl phthalate		31.4	10.0	ug/L	49.0	BLOD	64.1	10-120	9.68	20	
Dimethyl phthalate		28.9	10.0	ug/L	49.0	BLOD	58.9	10-120	11.2	20	
Di-n-butyl phthalate	e	40.1	10.0	ug/L	49.0	BLOD	81.7	10-120	7.91	20	
Di-n-octyl phthalate	9	35.8	10.0	ug/L	49.0	BLOD	73.0	10-146	0.656	20	
Fluoranthene		31.3	10.0	ug/L	49.0	BLOD	63.9	26-137	5.24	20	
Fluorene		27.8	10.0	ug/L	49.0	BLOD	56.6	59-121	11.7	20	М
Hexachlorobenzene	е	30.7	1.00	ug/L	49.0	BLOD	62.7	10-152	8.61	20	
Hexachlorobutadie	ne	21.0	10.0	ug/L	49.0	BLOD	42.8	24-120	16.9	20	
Hexachlorocyclope	entadiene	11.5	10.0	ug/L	49.0	BLOD	23.5	10-90	22.3	20	Р
Hexachloroethane		25.1	10.0	ug/L	49.0	BLOD	51.2	40-120	19.3	20	
Indeno (1,2,3-cd) p	yrene	31.0	10.0	ug/L	49.0	BLOD	63.2	10-171	6.47	20	
Isophorone		22.9	10.0	ug/L	49.0	BLOD	46.7	21-196	12.8	20	
Naphthalene		24.9	5.00	ug/L	49.0	BLOD	50.7	21-133	15.0	20	
Nitrobenzene		26.0	10.0	ug/L	49.0	BLOD	53.1	35-180	12.8	20	
n-Nitrosodimethyla	mine	19.6	10.0	ug/L	49.0	BLOD	40.1	10-85	66.2	20	Р
n-Nitrosodi-n-propy	/lamine	23.2	10.0	ug/L	49.0	BLOD	47.3	10-230	11.7	20	



				<u>Ce</u>	ertificate o	<u>of Analysi</u>	<u>s</u>				
Client Name: S	CS Engineers	-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.: Bri	stol Landfill										
Submitted To: Jen	nifer Robb							Work Ord	er:	24K0529	
			Ser	nivolatile C	rganic Compound	ls by GCMS - Qua	ality Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK	0500 - SW3510	C/EPA600	-MS							
Matrix Spike Dup (BHK0500-	MSD1)	Source	24K0289-0	1	Prepared & Anal	yzed: 11/11/2024					
n-Nitrosodiphenylamine		23.6	10.0	ug/L	49.0	BLOD	48.1	12-111	10.8	20	
p-Chloro-m-cresol		27.7	10.0	ug/L	49.0	BLOD	56.5	10-127	13.6	20	
Pentachloronitrobenzene (	quintozene)	ND	10.0	ug/L		BLOD		0-200		20	
Pentachlorophenol		28.0	20.0	ug/L	49.0	BLOD	57.1	14-176	16.3	20	
Phenanthrene		31.4	10.0	ug/L	49.0	BLOD	64.1	54-120	7.65	20	
Phenol		12.3	10.0	ug/L	49.5	BLOD	24.9	10-120	12.1	20	
Pyrene		29.0	10.0	ug/L	49.0	BLOD	59.3	52-120	5.37	20	
Pyridine		16.3	10.0	ug/L	49.0	BLOD	33.3	10-110	22.5	20	Р
Surr: 2,4,6-Tribromophenol	(Surr)	57.1		ug/L	196		29.1	5-136			
Surr: 2-Fluorobiphenyl (Su	rr)	24.0		ug/L	98.0		24.5	9-117			
Surr: 2-Fluorophenol (Surr)	)	20.5		ug/L	196		10.5	5-60			
Surr: Nitrobenzene-d5 (Sur	rr)	25.6		ug/L	98.0		26.1	5-151			
Surr: Phenol-d5 (Surr)		23.7		ug/L	196		12.1	5-60			
Surr: p-Terphenyl-d14 (Sur	r)	26.6		ug/L	98.0		27.1	5-141			



				Ce	ertificate o	of Analysis	5				
Client Name:	SCS Engineers-W	'inchester					-	Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb									0.41/0500	
Cubinitied 10.								Work Orde	er:	24K0529	
				Wet	Chemistry Analysi	s - Quality Contro					
					Enthalpy An	nalytical					
Analyte	R	lesult	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK039	1 - No Prep	Wet Chem	ı							
Blank (BHK0391-BLK1	1)				Prepared & Analy	/zed: 11/08/2024					
BOD		ND	2.0	mg/L							
LCS (BHK0391-BS1)					Prepared & Analy	/zed: 11/08/2024					
BOD		209	2	mg/L	198		106	84.6-115.4			
Duplicate (BHK0391-D	UP1)	Source	: 24K0472-0	5	Prepared & Analy	/zed: 11/08/2024					
BOD		4.9	2.0	mg/L		5.0			1.21	20	
	Batch BHK044	3 - No Prep	Wet Chem	1							
Blank (BHK0443-BLK1	1)				Prepared & Analy	/zed: 11/08/2024					
Nitrite as N		ND	0.05	mg/L							
LCS (BHK0443-BS1)					Prepared & Analy	/zed: 11/08/2024					
Nitrite as N		0.11	0.05	mg/L	0.100		107	80-120			
Matrix Spike (BHK0443	3-MS1)	Source	: 24K0530-0	1	Prepared & Analy	/zed: 11/08/2024					
Nitrite as N		1.62	0.50	mg/L	1.00	0.65	97.0	80-120			
Matrix Spike Dup (BHK	K0443-MSD1)	Source	: 24K0530-0	1	Prepared & Analy	/zed: 11/08/2024					
Nitrite as N		1.64	0.50	mg/L	1.00	0.65	99.0	80-120	1.23	20	
	Batch BHK083	4 - No Prep	Wet Chem	1							
Blank (BHK0834-BLK1	1)				Prepared & Analy	/zed: 11/15/2024					
Total Recoverable P	Phenolics	ND	0.050	mg/L							



				<u>Ce</u>	ertificate c	of Analysis	<u>S</u>				
Client Name:	SCS Engineers-	Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Work Ord	or:	24K0529	
				10/-4				WORK OIU	er.	241(0529	
				vvei		is - Quality Control					
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK0	834 - No Prep \	Wet Chem	l							
LCS (BHK0834-BS1)					Prepared & Analy	/zed: 11/15/2024					
Total Recoverable Pl	henolics	0.42	0.050	mg/L	0.510		82.0	80-120			
Matrix Spike (BHK0834	4-MS1)	Source:	24K1040-0 ⁻	1	Prepared & Analy	/zed: 11/15/2024					
Total Recoverable Pl	henolics	0.41	0.050	mg/L	0.500	BLOD	82.4	70-130			
Matrix Spike Dup (BHK	(0834-MSD1)	Source:	24K1040-0	1	Prepared & Analy	/zed: 11/15/2024					
Total Recoverable Pl	henolics	0.42	0.050	mg/L	0.500	BLOD	83.6	70-130	1.45	20	
	Batch BHK0	907 - No Prep \	Wet Chem								
Blank (BHK0907-BLK1	)				Prepared & Analy	/zed: 11/19/2024					
TKN as N		ND	0.50	mg/L							
LCS (BHK0907-BS1)					Prepared & Analy	/zed: 11/19/2024					
TKN as N		5.38	0.5	mg/L	5.00		108	90-110			
Matrix Spike (BHK0907	7-MS1)	Source:	24K1111-01	l	Prepared & Analy	/zed: 11/19/2024					
TKN as N		6.52	0.50	mg/L	5.00	1.26	105	90-110			
Matrix Spike (BHK0907-MS2)         Source: 24K1111-02         Prepared & Analyzed: 11/19/2024											
TKN as N		5.94	0.50	mg/L	5.00	0.49	109	90-110			
Matrix Spike Dup (BHK	(0907-MSD1)		24K1111-01		Prepared & Analy						
TKN as N		6.28	0.50	mg/L	5.00	1.26	100	90-110	3.80	20	
Matrix Spike Dup (BHK	(0907-MSD2)		24K1111-02		Prepared & Analy						
TKN as N		5.57	0.50	mg/L	5.00	0.49	102	90-110	6.35	20	



				<u>Ce</u>	ertificate o	f Analysis	<u>5</u>				
Client Name:	SCS Engineers	-Winchester						Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Work Ord	er.	24K0529	
				Wet	Chemistry Analysis	s - Quality Control			01.	2 110020	
					Enthalpy Ana	aiyucai					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK	0948 - No Prep V	Net Chem	ı							
Blank (BHK0948-BLK1)					Prepared & Analyz	zed: 11/19/2024					
Ammonia as N		ND	0.10	mg/L							
LCS (BHK0948-BS1)					Prepared & Analyz	zed: 11/19/2024					
Ammonia as N		1.05	0.1	mg/L	1.00		105	90-110			
Matrix Spike (BHK0948	-MS1)	Source:	24K0915-0	5	Prepared & Analyz	zed: 11/19/2024					
Ammonia as N		0.96	0.1	mg/L	1.00	BLOD	91.4	89.3-131			
Matrix Spike (BHK0948	-MS2)	Source: 2	24K0934-0	5	Prepared & Analyz	zed: 11/19/2024					
Ammonia as N		0.93	0.1	mg/L	1.00	BLOD	88.4	89.3-131			М
Matrix Spike Dup (BHK	0948-MSD1)	Source: 2	24K0915-0	5	Prepared & Analyz	zed: 11/19/2024					
Ammonia as N		0.97	0.1	mg/L	1.00	BLOD	93.0	89.3-131	1.66	20	
Matrix Spike Dup (BHK	0948-MSD2)	Source:	24K0934-0	5	Prepared & Analyz	zed: 11/19/2024					
Ammonia as N		0.94	0.1	mg/L	1.00	BLOD	89.2	89.3-131	0.855	20	М
	Batch BHK	0950 - No Prep V	Net Chem	1							
Blank (BHK0950-BLK1)	l				Prepared & Analyz	zed: 11/19/2024					
Nitrate+Nitrite as N		ND	0.10	mg/L							
LCS (BHK0950-BS1)					Prepared & Analyz	zed: 11/19/2024					
Nitrate+Nitrite as N		1.04	0.1	mg/L	1.00		104	90-110			
Matrix Spike (BHK0950	-MS1)	Source:	24K0884-0	2	Prepared & Analyz	zed: 11/19/2024					
Nitrate+Nitrite as N		1.36	0.10	mg/L	1.00	0.64	71.5	90-120			М



				<u>Ce</u>	ertificate o	of Analysis	<u>S</u>				
Client Name:	SCS Engineers	s-Winchester				-		Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Work Ord	or	24K0529	
							1		er.	241(0529	
				vvei	Chemistry Analysi	•	I				
					Enthalpy An	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK	(0950 - No Prep \	Wet Chen	າ							
Matrix Spike Dup (BHK	(0950-MSD1)	Source:	24K0884-0	2	Prepared & Analy	/zed: 11/19/2024					
Nitrate+Nitrite as N		1.39	0.10	mg/L	1.00	0.64	74.9	90-120	2.47	20	М
	Batch BHM	(1016 - No Prep	Wet Chen	า							
Blank (BHK1016-BLK1	)				Prepared & Analy	/zed: 11/20/2024					
Cyanide		ND	0.01	mg/L							
LCS (BHK1016-BS1)					Prepared & Analy	zed: 11/20/2024					
Cyanide		0.27	0.01	mg/L	0.250		109	80-120			
Matrix Spike (BHK1016	6-MS1)	Source:	24K0876-0	5	Prepared & Analy	zed: 11/20/2024					
Cyanide		0.26	0.01	mg/L	0.250	0.03	95.7	80-120			
Matrix Spike Dup (BHK	K1016-MSD1)	Source:	24K0876-0	5	Prepared & Analy	zed: 11/20/2024					
Cyanide		0.28	0.01	mg/L	0.250	0.03	101	80-120	5.05	20	
	Batch BHM	(1147 - No Prep \	Wet Chem	<u>۱</u>							
Blank (BHK1147-BLK1	)				Prepared & Analy	zed: 11/22/2024					
COD		ND	10.0	mg/L							
LCS (BHK1147-BS1)					Prepared & Analy	zed: 11/22/2024					
COD		48.1	10.0	mg/L	50.0		96.1	88-119			
Matrix Spike (BHK1147	7-MS1)	Source:	24K1250-0	1	Prepared & Analy	zed: 11/22/2024					
COD		47.4	10.0	mg/L	50.0	BLOD	94.8	72.4-130			



				<u>Ce</u>	ertificate o	of Analysis	5				
Client Name:	SCS Engineers	-Winchester				-	_	Date Issue	ed:	11/22/2024	5:20:18PM
Client Site I.D.:	Bristol Landfill										
Submitted To:	Jennifer Robb							Work Ord	er [.]	24K0529	
				Wet	Chemistry Analys	is - Quality Control				2110020	
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHK	(1147 - No Prep	Wet Chem								
Matrix Spike Dup (BHK11	147-MSD1)	Source	e: 24K1250-01		Prepared & Anal	yzed: 11/22/2024					
COD		48.7	10.0	mg/L	50.0	BLOD	97.4	72.4-130	2.66	20	
	Batch BHK	1172 - No Prep	Wet Chem								
Blank (BHK1172-BLK1)					Prepared & Anal	yzed: 11/22/2024					
Ammonia as N		ND	0.10	mg/L							
LCS (BHK1172-BS1)					Prepared & Anal	yzed: 11/22/2024					
Ammonia as N		1.09	0.1	mg/L	1.00		109	90-110			
Matrix Spike (BHK1172-N	IS1)	Source	e: 24K1031-01		Prepared & Anal	yzed: 11/22/2024					
Ammonia as N		1.00	0.10	mg/L	1.00	BLOD	100	89.3-131			
Matrix Spike (BHK1172-N	IS2)	Source	e: 24K1124-01		Prepared & Anal	yzed: 11/22/2024					
Ammonia as N		0.98	0.10	mg/L	1.00	BLOD	98.5	89.3-131			
Matrix Spike Dup (BHK11	I72-MSD1)	Source	e: 24K1031-01		Prepared & Anal	yzed: 11/22/2024					
Ammonia as N		1.02	0.10	mg/L	1.00	BLOD	102	89.3-131	1.49	20	
Matrix Spike Dup (BHK11	172-MSD2)	Source	e: 24K1124-01		Prepared & Anal	yzed: 11/22/2024					
Ammonia as N		1.00	0.10	mg/L	1.00	BLOD	100	89.3-131	1.81	20	



			Certificate	of Analysis		
Client Name:	SCS Engineers-Wind	chester			Date Issued:	11/22/2024 5:20:18PM
Client Site I.D.:	Bristol Landfill					
Submitted To:	Jennifer Robb				Work Order:	24K0529
	Analytical Summary					
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Metals (Total) by EPA 6	000/7000 Series Methods		Preparation Method:	EPA200.2R2.8/SW300	5A-ICPMS	
24K0529-01	50.0 mL / 50.0 mL	SW6020B	BHK0575	SHK0559	AK40222	
24K0529-02	50.0 mL / 50.0 mL	SW6020B	BHK0575	SHK0559	AK40222	
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Wet Chemistry Analysi	S		Preparation Method:	No Prep Wet Chem		
24K0529-01	300 mL / 300 mL	SM5210B-2016	BHK0391	SHK0440		
24K0529-02	300 mL / 300 mL	SM5210B-2016	BHK0391	SHK0440		
24K0529-01	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHK0443	SHK0358	AJ40362	
24K0529-02	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHK0443	SHK0358	AJ40362	
24K0529-01	0.500 mL / 10.0 mL	SW9065	BHK0834	SHK0692	AK40246	
24K0529-02	0.100 mL / 10.0 mL	SW9065	BHK0834	SHK0692	AK40246	
24K0529-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHK0907	SHK0768	AK40260	
24K0529-01RE1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHK0907	SHK0768	AK40260	
24K0529-02	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHK0907	SHK0768	AK40260	
24K0529-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK0948	SHK0792	AK40262	
24K0529-01	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHK0950	SHK0838	AK40270	
24K0529-02	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHK0950	SHK0838	AK40270	
24K0529-01	6.00 mL / 6.00 mL	SW9012B	BHK1016	SHK0855	AK40274	
24K0529-02	6.00 mL / 6.00 mL	SW9012B	BHK1016	SHK0855	AK40274	
24K0529-01	2.00 mL / 2.00 mL	SM5220D-2011	BHK1147	SHK0947	AK40242	
24K0529-02	2.00 mL / 2.00 mL	SM5220D-2011	BHK1147	SHK0947	AK40242	
24K0529-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK1172	SHK0970	AK40292	



			Certificate	of Analysis		
Client Name:	SCS Engineers-W	linchester			Date Issued:	11/22/2024 5:20:18PM
Client Site I.D.:	Bristol Landfill					
Submitted To:	Jennifer Robb				Work Order:	24K0529
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Semivolatile Organic C	Compounds by GCMS		Preparation Method:	SW3510C/EPA60	0-MS	
24K0529-01	500 mL / 0.500 mL	SW8270E	BHK0500	SHK0464	AK40150	
24K0529-02	500 mL / 0.500 mL	SW8270E	BHK0500	SHK0464	AK40150	
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Volatile Organic Comp	ounds by GCMS		Preparation Method:	SW5030B-MS		
24K0529-01	5.00 mL / 5.00 mL	SW8260D	BHK0546	SHK0454	AJ40296	
24K0529-02	5.00 mL / 5.00 mL	SW8260D	BHK0546	SHK0454	AJ40296	
24K0529-03	5.00 mL / 5.00 mL	SW8260D	BHK0546	SHK0454	AJ40296	
24K0529-02RE1	5.00 mL / 5.00 mL	SW8260D	BHK0669	SHK0574	AK40200	
24K0529-01RE1	5.00 mL / 5.00 mL	SW8260D	BHK0730	SHK0626	AK40200	



			Certificate	of Analysis		
Client Name:	SCS Engineers-V	Vinchester			Date Issued:	11/22/2024 5:20:18PM
Client Site I.D.:	Bristol Landfill					
Submitted To:	Jennifer Robb				Work Order:	24K0529
					Work Order.	240020
	QC Analytical Summ	nary —				
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Metals (Total) by EPA	6000/7000 Series Methods		Preparation Method:	EPA200.2R2.8/SW300	05A-ICPMS	
BHK0575-BLK1	50.0 mL / 50.0 mL	SW6020B	BHK0575	SHK0559	AK40222	
BHK0575-BS1	50.0 mL / 50.0 mL	SW6020B	BHK0575	SHK0559	AK40222	
BHK0575-MS1	50.0 mL / 50.0 mL	SW6020B	BHK0575	SHK0559	AK40222	
BHK0575-MS2	50.0 mL / 50.0 mL	SW6020B	BHK0575	SHK0559	AK40222	
BHK0575-MSD1	50.0 mL / 50.0 mL	SW6020B	BHK0575	SHK0559	AK40222	
BHK0575-MSD2	50.0 mL / 50.0 mL	SW6020B	BHK0575	SHK0559	AK40222	
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Wet Chemistry Analys	sis		Preparation Method:	No Prep Wet Chem		
BHK0391-BLK1	300 mL / 300 mL	SM5210B-2016	BHK0391	SHK0440		
BHK0391-BS1	300 mL / 300 mL	SM5210B-2016	BHK0391	SHK0440		
BHK0391-DUP1	300 mL / 300 mL	SM5210B-2016	BHK0391	SHK0440		
BHK0443-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHK0443	SHK0358	AJ40362	
BHK0443-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHK0443	SHK0358	AJ40362	
BHK0443-MRL1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHK0443	SHK0358	AJ40362	
BHK0443-MS1	2.50 mL / 25.0 mL	SM4500-NO2B-2011	BHK0443	SHK0358	AJ40362	
BHK0443-MSD1	2.50 mL / 25.0 mL	SM4500-NO2B-2011	BHK0443	SHK0358	AJ40362	
	5.00 mL / 10.0 mL	SW9065	BHK0834	SHK0692	AK40246	
BHK0834-BLK1	5.00 mL / 10.0 mL	309000				
BHK0834-BLK1 BHK0834-BS1	5.00 mL / 10.0 mL	SW9065	BHK0834	SHK0692	AK40246	
				SHK0692 SHK0692	AK40246 AK40246	
BHK0834-BS1	5.00 mL / 10.0 mL	SW9065	BHK0834			
BHK0834-BS1 BHK0834-MRL1	5.00 mL / 10.0 mL 5.00 mL / 10.0 mL	SW9065 SW9065	BHK0834 BHK0834	SHK0692	AK40246	
BHK0834-BS1 BHK0834-MRL1 BHK0834-MS1	5.00 mL / 10.0 mL 5.00 mL / 10.0 mL 5.00 mL / 10.0 mL	SW9065 SW9065 SW9065	BHK0834 BHK0834 BHK0834	SHK0692 SHK0692	AK40246 AK40246	
BHK0834-BS1 BHK0834-MRL1 BHK0834-MS1 BHK0834-MSD1	5.00 mL / 10.0 mL 5.00 mL / 10.0 mL 5.00 mL / 10.0 mL 5.00 mL / 10.0 mL	SW9065 SW9065 SW9065 SW9065	BHK0834 BHK0834 BHK0834 BHK0834	SHK0692 SHK0692 SHK0692	AK40246 AK40246 AK40246	



			<u>Certificate</u>	of Analysis		
Client Name:	SCS Engineers-V	Vinchester			Date Issued:	11/22/2024 5:20:18PM
Client Site I.D.:	Bristol Landfill					
Submitted To:	Jennifer Robb				Work Order:	24K0529
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Wet Chemistry Analysis	s		Preparation Method:	No Prep Wet Chem		
BHK0907-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHK0907	SHK0768	AK40260	
BHK0907-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHK0907	SHK0768	AK40260	
BHK0907-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHK0907	SHK0768	AK40260	
BHK0907-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHK0907	SHK0768	AK40260	
BHK0948-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK0948	SHK0792	AK40262	
BHK0948-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK0948	SHK0792	AK40262	
BHK0948-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK0948	SHK0792	AK40262	
BHK0948-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK0948	SHK0792	AK40262	
BHK0948-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK0948	SHK0792	AK40262	
BHK0948-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK0948	SHK0792	AK40262	
BHK0950-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHK0950	SHK0838	AK40270	
BHK0950-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHK0950	SHK0838	AK40270	
BHK0950-MS1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BHK0950	SHK0838	AK40270	
BHK0950-MSD1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BHK0950	SHK0838	AK40270	
BHK1016-BLK1	6.00 mL / 6.00 mL	SW9012B	BHK1016	SHK0855	AK40274	
BHK1016-BS1	6.00 mL / 6.00 mL	SW9012B	BHK1016	SHK0855	AK40274	
BHK1016-MRL1	6.00 mL / 6.00 mL	SW9012B	BHK1016	SHK0855	AK40274	
BHK1016-MRL2	6.00 mL / 6.00 mL	SW9012B	BHK1016	SHK0855	AK40274	
BHK1016-MS1	6.00 mL / 6.00 mL	SW9012B	BHK1016	SHK0855	AK40274	
BHK1016-MSD1	6.00 mL / 6.00 mL	SW9012B	BHK1016	SHK0855	AK40274	
BHK1147-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BHK1147	SHK0947	AK40242	
BHK1147-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BHK1147	SHK0947	AK40242	
BHK1147-MRL1	2.00 mL / 2.00 mL	SM5220D-2011	BHK1147	SHK0947	AK40242	
BHK1147-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BHK1147	SHK0947	AK40242	
BHK1147-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BHK1147	SHK0947	AK40242	
BHK1172-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK1172	SHK0970	AK40292	
BHK1172-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK1172	SHK0970	AK40292	
BHK1172-MRL1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK1172	SHK0970	AK40292	

#### Page 60 of 71



			<b>Certificate</b>	of Analysis		
Client Name:	SCS Engineers-V	Vinchester		-	Date Issued:	11/22/2024 5:20:18PI
Client Site I.D.:	Bristol Landfill					
Submitted To:	Jennifer Robb				Work Order:	24K0529
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Wet Chemistry Analysi	s		Preparation Method:	No Prep Wet Chem		
BHK1172-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK1172	SHK0970	AK40292	
BHK1172-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK1172	SHK0970	AK40292	
BHK1172-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK1172	SHK0970	AK40292	
BHK1172-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHK1172	SHK0970	AK40292	
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Semivolatile Organic C	compounds by GCMS		Preparation Method:	SW3510C/EPA600-M	S	
BHK0500-BLK1	1000 mL / 1.00 mL	SW8270E	BHK0500	SHK0464	AK40150	
BHK0500-BLK2		SW8270E	BHK0500	SHK0482	AJ40294	
BHK0500-BLK3	1000 mL / 1.00 mL	SW8270E	BHK0500	SHK0759	AH40174	
BHK0500-BS1	1000 mL / 1.00 mL	SW8270E	BHK0500	SHK0464	AK40150	
BHK0500-MS1	1020 mL / 1.00 mL	SW8270E	BHK0500	SHK0464	AK40150	
BHK0500-MSD1	1020 mL / 1.00 mL	SW8270E	BHK0500	SHK0464	AK40150	
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Volatile Organic Compo	ounds by GCMS		Preparation Method:	SW5030B-MS		
BHK0546-BLK1	5.00 mL / 5.00 mL	SW8260D	BHK0546	SHK0454	AJ40296	
BHK0546-BLK2	5.00 mL / 5.00 mL	SW8260D	BHK0546	SHK0454	AJ40296	
BHK0546-BS1	5.00 mL / 5.00 mL	SW8260D	BHK0546	SHK0454	AJ40296	
BHK0546-BS2	5.00 mL / 5.00 mL	SW8260D	BHK0546	SHK0454	AJ40296	
BHK0546-MS1	5.00 mL / 5.00 mL	SW8260D	BHK0546	SHK0454	AJ40296	
BHK0546-MSD1	5.00 mL / 5.00 mL	SW8260D	BHK0546	SHK0454	AJ40296	
BHK0669-BLK1	5.00 mL / 5.00 mL	SW8260D	BHK0669	SHK0574	AK40200	
BHK0669-BS1	5.00 mL / 5.00 mL	SW8260D	BHK0669	SHK0574	AK40200	
BHK0669-DUP1	5.00 mL / 5.00 mL	SW8260D	BHK0669	SHK0574	AK40200	
BHK0669-MS1	5.00 mL / 5.00 mL	SW8260D	BHK0669	SHK0574	AK40200	
BHK0730-BLK1	5.00 mL / 5.00 mL	SW8260D	BHK0730	SHK0626	AK40200	



			<u>Certificate</u>	of Analysis		
Client Name:	SCS Engineers-	Winchester			Date Issued:	11/22/2024 5:20:18PM
Client Site I.D.:	Bristol Landfill					
Submitted To:	Jennifer Robb				Work Order:	24K0529
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Volatile Organic Compo	ounds by GCMS		Preparation Method:	SW5030B-MS		
BHK0730-BS1	5.00 mL / 5.00 mL	SW8260D	BHK0730	SHK0626	AK40200	
BHK0730-DUP1	5.00 mL / 5.00 mL	SW8260D	BHK0730	SHK0626	AK40200	
BHK0730-MS1	5.00 mL / 5.00 mL	SW8260D	BHK0730	SHK0626	AK40200	



	<b>Certificate of Analysis</b>		
Client Name: SCS Engineers-Winchester		Date Issued:	11/22/2024 5:20:18PM
Client Site I.D.: Bristol Landfill			
Submitted To: Jennifer Robb		Work Order:	24K0529
		work Order.	24K0529
Certified Analyses included in this Report			
Analyte	Certifications		
EPA350.1 R2.0 in Non-Potable Water			
Ammonia as N	VELAP,NCDEQ,PADEP,WVDEP,SCDHEC		
EPA351.2 R2.0 in Non-Potable Water			
TKN as N	VELAP,NCDEQ,WVDEP,SCDHEC		
SM4500-NO2B-2011 in Non-Potable Water			
Nitrite as N	VELAP,WVDEP,NCDEQ,SCDHEC		
SM4500-NO3F-2016 in Non-Potable Water			
Nitrate+Nitrite as N	VELAP,WVDEP,NCDEQ,SCDHEC		
SM5210B-2016 in Non-Potable Water			
BOD	VELAP,NCDEQ,WVDEP		
SM5220D-2011 in Non-Potable Water			
COD	VELAP,NCDEQ,PADEP,WVDEP,SCDHEC		
SW6020B in Non-Potable Water			
Mercury	VELAP		
Arsenic	VELAP,WVDEP,NCDEQ,SCDHEC		
Barium	VELAP,WVDEP,NCDEQ,SCDHEC		
Cadmium	VELAP,WVDEP,NCDEQ,SCDHEC		
Chromium	VELAP,WVDEP,NCDEQ,SCDHEC		
Copper	VELAP,WVDEP,NCDEQ,SCDHEC		
Lead	VELAP,WVDEP,SCDHEC		
Nickel	VELAP,WVDEP,SCDHEC		
Selenium	VELAP,WVDEP,SCDHEC		
Silver	VELAP,WVDEP,SCDHEC		
Zinc	VELAP,WVDEP,SCDHEC		
SW8260D in Non-Potable Water			



		<b>Certificate of Analysis</b>		
Client Name:	SCS Engineers-Winchester		Date Issued:	11/22/2024 5:20:18PM
Client Site I.D.:	Bristol Landfill			
Submitted To:	Jennifer Robb		Work Order:	24K0529
Certified Analys	ses included in this Report			
Analyte		Certifications		
2-Butanone (MEK)		NCDEQ,PADEP,WVDEP,VELAP		
Acetone		NCDEQ,PADEP,WVDEP,VELAP		
Benzene		NCDEQ,PADEP,WVDEP,VELAP		
Ethylbenzene		NCDEQ,PADEP,WVDEP,VELAP		
Toluene		NCDEQ,PADEP,WVDEP,VELAP		
Xylenes, Total		NCDEQ,PADEP,WVDEP,VELAP		
Tetrahydrofuran		PADEP, VELAP		
SW8270E in Non-P	otable Water			
Anthracene		NCDEQ, VELAP, PADEP, WVDEP		
SW9012B in Non-P	Potable Water			
Cyanide		VELAP,WVDEP,NCDEQ		
SW9065 in Non-Po	table Water			
Total Recoverable P	Phenolics	VELAP,WVDEP		



	Cer	tificate of Ana	<u>lysis</u>		
Client Name:	SCS Engineers-Winchester			Date Issued:	11/22/2024 5:20:18PM
Client Site I.D.:	Bristol Landfill				
Submitted To:	Jennifer Robb			Work Order:	24K0529
Code	Description	Laboratory ID	Expires		
MdDOE	Maryland DE Drinking Water	341	12/31/2024		
NCDEQ	North Carolina DEQ	495	12/31/2024		
NCDOH	North Carolina Department of Health	51714	07/31/2025		
NYDOH	New York DOH Drinking Water	12069	04/01/2025		
PADEP	NELAP-Pennsylvania Certificate #009	68-03503	10/31/2025		
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/14/2025		
TXCEQ	Texas Comm on Environmental Quality #T104704576-23-1	T104704576	05/31/2025		
VELAP	NELAP-Virginia Certificate #12969	460021	06/14/2025		
WVDEP	West Virginia DEP	350	11/30/2024		



		<u>Certificate of Analysis</u>		
Client Na	me:	SCS Engineers-Winchester	Date Issued:	11/22/2024 5:20:18PM
Client Sit	e I.D.:	Bristol Landfill		
Submitte	d To:	Jennifer Robb	Work Order:	24K0529
		Qualifiers and Definitions		
CI	Residual C	hlorine or other oxidizing agent was detected in the container used to analyze this sample.		
J	The reporte	ed result is an estimated value.		
L	LCS recove	ery is outside of established acceptance limits		
М	Matrix spike	e recovery is outside established acceptance limits		
Р	Duplicate a	nalysis does not meet the acceptance criteria for precision		
рН	The contair	ner used to analyze this sample had a pH measurement of greater than 2 s.u.		
S	Surrogate r	ecovery was outside acceptance criteria		
RPD		cent Difference		
Qual -RE	Qualifers	nple was re-analyzed		
LOD		nction, same as Method Detection Limit (MDL) as defined by 40 CFR 136 Appendix B		
BLOD		of Detection, same as Below Method Detection Limit (MDL) as defined by 40 CFR 136 Appendix B		
LOQ	Limit of Quar			
DF	Dilution Fact	or		
DL	Detection Lir	nit, same as MDL as defined by 40 CFR 136 Appendix B		
TIC	library. A TIC	dentified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral c spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations d and are calculated using an internal standard response factor of 1.		
PCBs, Total	Total PCBs	s are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.		



#### CHAIN OF CUSTODY

							CHAI	N OF	CUS	TO	DY			*						PAGE 1 OF 1
COMPANY NAME: SCS Eng	inee	ers			IN۱	VOICE TO	: SC	S Res	ton				ł	Project Nam	ne: 24	1-11	Briste	ol L	FG -	EW
CONTACT: Jennifer F	Robl	b			IN\	VOICE CC	NTAC	T: Je	nnifer l	Rob	b		0.	Site Name:	Br	ist	101	L	an	dfill
ADDRESS: 296 Victory Road, Wi	nche	ester	, VA	22602	IN۱	VOICE AD	DRESS	S:					F	PROJECT N	NUMB	ER:	02	.18	120	28.15
PHONE #: (703) 471-6150			23		IN۱	VOICE PH	ONE #	:						P.O. #:						
FAX #: (703) 471-6676			1	EMAIL:	Jrobb(	@scsengir	neers.co	om		201			F	Pretreatmen	nt Prog	gram	:			
Is sample for compliance reporting			ES		1	Is sample			and the second se			s 🚺	10	)			PW	'S I.	D. #:	:
SAMPLER NAME (PRINT):	yar	12	015	on La	SA	MPLER S	IGNAT	URE:	gn	re	~	1-	1.	m L	1	-	Tur	n A	rour	nd Time: 10 Day(s)
Matrix Codes: WW=Waste Water GW=Ground	nd Wa	ater I	DW=D	Drinking Wate	er S=Soil	I/Solids OR=0	Organic A	Air Wi	P=Wipe (	OT=O	ther			1						COMMENTS
			lls)	2								A	NA	LYSIS / (PR	ESEF	RVAT	IVE)	)		Nitrite and
CLIENT SAMPLE I.D. 1) E.N-36A 2) E.N-50 3) 4)	× × Grab	Composite	Field Filtered (Dissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	G G Grab Time or Composite Stop Time	Time Preserved	ZZMatrix (See Codes)			× × VFAs	Phenolics		🖌 🗙 TKN, Nitrate (Cd), Nitrite,	X X COD, Ammonia	X X SVOC (Anthracene only)	🗶 🗡 Cyanide	× × BOD	BOD has 48hr hold  PLEASE NOTE PRESERVATIVE(S), INTERFERENCE CHECKS or PUMP RATE (L/min)
5)																				
6)										11										
7)			_				3		<u> </u>			$ \vdash  $	-							Sealed
8) 9)	$\vdash$	-	-			N.C						+		+						393 10
1 Trin Blank	×		-			10/29/24	13110		DI	2	×							_		(F.D.O
R UUISHED:	DAT		13:?	RECEIVE	N	Sh	11/8	DATE /	TIME 0900		C Data Packa	age L	AE		Y CS-W -11 B					ЕМР <u>0.1</u> °С 24K0529
	DAT	E / 1	TIME	RECEIVE	ED:			DATE /	TIME	Leve				529 Re	cd: 1	1/08	/202	4	Du	e: 11/22/2024 v130325002

Sample Preservation Log Form #: F1301 Rev # 15.0 Effective: July 13, 2023 Page 1 of 1



# **Sample Preservation Log**

Order ID	:		K05	529										Date Performed:											Analyst Performing Check:													
Δ	8	Meta	ils		yanic	te		fide		Amm			тк		Pi	hos, '	•	NC	)3+NC	- I		20	(8 P	081/60 CB DW	8/508)	(525/8			CrV	* **	s	Pest/P (508) VOC(	1	Ċ			Pher	roli
Sample ID	Container l	pH as Received	le li	Rec	as elved Other	Final pH	pH as Receive > 9 Oth			pH as leceived 2 Othe			pH as scelved 2 Othe		Rec	l as elved Other	Final pH	pH Rece < 2 C	lved	a l	pH as Receiva < 2 Oth		Ra F	tes. Cl	_final + or -	Receiv Res. (		inal + or -	Received pH	Finel pH	Re	H as ceived Other	Final pH	pH Roce	ived	Finel pH	pH as Receiv	
01	A		<7									Τ																										
01	D									1	, L	2	16	42				i																	6	<ک		
	Ē																																				1	6
	F																																					
10	M				9	712																																
02	Α	7	-2							Τ																												
02	D									7	×	2	7	-2																					7	-2		
02	E																																				-	7
02	F																																					
	Μ		Γ		9	712	,																															
																									Ţ													
			Τ							Τ																												
										Τ																												
NaOH ID	): <b>_</b>	AO	33:	75	-		H	NO3	ID:	43	1 DL	13	44		_				I date							^	naly	/st In	itials: _									
H2SO4 IE	D:	430	240	16	۱ 		Na	32S2	O3 ID:	:		_			_				i <del>sted b</del> er Sol			9.7			-													
HCL ID:							_ Na	a2SC	)3 ID:						-	5N N	laOH	ID:							(		1		ere r		d		. <b>- U</b>	- <b>7</b>				
_																										wa	is a	dde	d at	1345	on	8 N	love	emb	er 2	024		
<u>υ</u>																										by	AF	ER i	in the	e Log	g-ln ∽		m to	o bri	ing p	)H=	:	
Pane																									i N						~2	•						
F8 of																																						
	v certifie	es DISS Cr	VI and I	not T C	CrVI as	80.801	mved a	nahda	undor		D426																										eservatio	



# Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.:

D.: Bristol Landfill

Submitted To:

Jennifer Robb

Date Issued: 11/22/2024 5:20:18PM

Work Order: 24

24K0529



		Certificate of Analys	<u>sis</u>			
Client Name:	SCS Engineers-Winchester		I	Date Issued:	11/22/2024	5:20:18PM
Client Site I.D	).: Bristol Landfill					
Submitted To:	Jennifer Robb			Work Order:	24K0529	
	Laboratory Order ID:	24K0529				
	Sample Conditions	<u>Checklist</u>				
Sar	nples Received at:		0.10°C			
Hov	v were samples received?		Walk In			
We	re Custody Seals used? If so, were they received intact?		Yes			
Are	the custody papers filled out completely and correctly?		Yes			
Do	all bottle labels agree with custody papers?		Yes			
ls th	ne temperature blank or representative sample within acceptable limits or received	d on ice, and recently taken?	Yes			
Are	all samples within holding time for requested laboratory tests?		Yes			
ls a	sufficient amount of sample provided to perform the tests included?		Yes			
Are	all samples in appropriate containers for the analyses requested?		Yes			
We	re volatile organic containers received?		Yes			
Are	all volatile organic and TOX containers free of headspace?		Yes			
	trip blank provided for each VOC sample set? VOC sample sets include EPA801 48015 GRO, EPA8021, EPA524, and RSK-175.	11, EPA504, EPA8260, EPA624,	Yes			
pre	all samples received appropriately preserved? Note that metals containers do not servation may delay analysis. In addition, field parameters are always received ou ordingly.		No			
	Work Order Comment	<u>ts</u>				
	Jennifer Robb notified via email for all the containers	s received were preserved in the				

lab to the appropriate pH for analysis. HEG 11/11/24 0935



# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.:

Submitted To:

**Bristol Landfill** Jennifer Robb

Date Issued: 11/22/2024 5:20:18PM

Work Order:

24K0529

Wel	ll ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event			• .			• .					••		entration												LOD	LOQ
	November-2022										1560		1400			1380										50	50
	December-2022		1700		2280				2110		1410	1310					1150	1780								100	100
			1520							936						1330										50	50
	January-2023 -										2440															100	100
	February-2023																	1490								100	100
	March-2023									667	1480															73.1	100
	April-2023									1410		1220														73.1	100
	May-2023		1390							1410	2380																200
	June-2023										2380		2370		2170											146	200
	J0116-2023																		1180								
	July-2023 -		1570						2260															2350	310	73.1 146	100 200
	August-2023						1600		1890															2330	222	146	200
																			1720					2140		73.1	100
	September-2023				1250																					146	200
	October-2023							1980											1730			2890				146	200
			1260		2490	1830		2070											1800			2590				146	200
	November-2023													1170											2080	183	250
Ammonia as N											2440															366	500
(mg/L)	December-2023																		1540							73.1	100
					2900													2200								146	200
	January-2024			2160							2400														1610	146	200
	February-2024			1900		2600															1780		2380			146	200
	March-2024																						2280		968	146	200
	April-2024				2290									928				2140	1800							146	200
	May-2024																								898	73.1	100
											2550								1620		1950	2660				146	200
	June-2024																		1990		2170				1850	146	200
	July-2024 -										1860															73.1	100
												1950														146	200
	August-2024						1110																			73.1	100
																					2130			2550		146	200
	September-2024				2210		1440											2290								73.1 146	100 200
		343																		1490						73.1	100
	October-2024		1370		2180																					146	200
	November-2024	934	1370																							146	200
	November-2022										15700		5860			5140										0.2	2
	December-2022		6440		12500				11400		9240	3330					8360	6770								0.2	2
	January-2023		9920							999	28100					7060										0.2	2
	February-2023																	7230								0.2	2
	March-2023									1570	9190															0.2	2
	April-2023									8430		2860														0.2	2
	May-2023		7350							11900	35300															0.2	2
	June-2023										20000		27400		23100											0.2	2
	July-2023		6820						32900										330					31800	937	0.2	2
	August-2023						>33045		>33225															>32805	506	0.2	2
	September-2023				40185.5														659							0.2	2
Biological Oxygen	October-2023							34600											690			37000				0.2	2
Demand (mg/L)	November-2023		1910		30400	27500		32015			29600			3640					480			32135			21500	0.2	2
	December-2023				>44105													13700	681							0.2	2
	January-2024			26000							17100														14000	0.2	2
	February-2024			23200		26200															21400		34300			0.2	2
	March-2024																						40600		7680	0.2	2
	April-2024				41142									1210				19600	386							0.2	2
	May-2024										25600								448		22200	33400			7750	0.2	2
	June-2024																		421		24400				16200	0.2	2
	July-2024										25800	4750														0.2	2
	August-2024						31000														20800			33400		0.2	2
1	September-2024				ND		36100											27400								0.2	2
											1				1					1						~ ~	2
	October-2024 November-2024	180 4760	6680 7360																	36100						0.2	2

Wel	I ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												Conce	ntration												LOD	LOQ
	November-2022												9790			10800										1000	1000
											23500															2000	2000
			7440																							1000	1000
	December-2022										13200	8000					20300	14100								2000	2000
	-								22400																	5000	5000
					86800																					10000	10000
	lanuary 2023		14900							3630						9420										500	500
	January-2023										47600					8430										2000 5000	2000 5000
	February-2023										4/000							9210								1000	1000
	1 EDIOUI y-2023									1690								7210								500	500
	March-2023										10600															2000	2000
												7370														1000	1000
	April-2023									16800																2000	2000
			7590							18700																2000	2000
	May-2023 -										44700															4000	4000
													44800													5000	5000
	June-2023 -										41300				55000											10000	10000
																									2180	500	500
			6480																2460							1000	1000
	July-2023 -																							41000		5000	5000
									50100																	10000	10000
	August-2023																								1750	500	500
	A0g031-2023						59000		58600															60600		5000	5000
	September-2023																		6260							1000	1000
					87400																					10000	10000
	October 2022							 51000											5320							500	500
	October-2023							51000														63600				5000 10000	5000
Chemical Oxygen																			4710							10000	10000
Demand (mg/L)			6200											5620												2000	2000
	November-2023					48100		57900			43700														37600	5000	5000
					77100																	63900				10000	10000
																			4870							1000	1000
	December-2023																	19900								5000	5000
	January-2024			48600	94200						59800														38200	10000 5000	10000
				42700		51200															48900					5000	5000
	February-2024																						68400			10000	10000
																									14400	2000	2000
	March-2024																						75500			10000	10000
														3110					4200							1000	1000
	April-2024																	32400								5000	5000
					79700																					10000	10000
																			4930							1000	1000
	May-2024																								17700	5000	5000
											48500										43100	70700				10000	10000
	June-2024																		4520							1000	1000
											42400										51400				31300	5000 5000	5000 5000
	July-2024 -										42400	98500														10000	10000
																					48100			59500		5000	5000
	August-2024 -						56600																			10000	10000
																		26800								4000	4000
	September-2024						55900																			5000	5000
					78300																					10000	10000
		951																								500	500
	October-2024		10700		92200															42000						2000	2000
		 9540			83300															62000						10000	10000
	November-2024	754U 	8840																							2000	2000
			0070																							2000	
litrate+Nitrite as N	November-2022										2.91		0.16			0.33										0.1	0.1

Wel	I ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event													entration												LOD	LOQ
																	ND									0.2	0.2
	December 2022											ND														0.2	0.6
	December-2022		ND		ND				ND		ND															1.1	5.1
																		ND								1.5	5.5
										ND																0.35	1.35
	January-2023															ND										1.1	1.1
	January 2020		3.9																							2.1	2.1
											ND															2.2	2.2
	February-2023																	ND								0.35	1.35
	March-2023									ND	ND															1.04	5.1
	April-2023									ND		ND														0.6	2.6
	May-2023 -		ND																							1.1	5.1
	,									ND	ND															1.2	5.2
	June-2023										ND				ND											1.1	5.1
													ND													1.2	5.2
																			0.355							0.15	0.35
	July-2023																								ND	0.55	0.75
			ND																							1	3
									ND															ND		1.5 0.15	5.5 0.35
	August-2023						ND		ND															 ND	ND 	1.5	3.5
																			ND							0.3	1.1
	September-2023				ND																					0.7	1.5
																			ND							0.35	1.35
	October-2023							ND																		1	3
																						ND				1.5	3.5
			ND																ND							0.15	0.35
Nitrate as N (mg/L)	Nevrench er 2022													ND												0.35	1.35
	November-2023				ND			ND																		0.75	1.75 5.1
	-					ND					ND											ND			ND	1.5	5.5
					ND														ND							1.1	5.1
	December-2023																	ND								1.5	5.5
	January-2024			2.01							ND														ND	1.5	5.5
	February-2024			9.1																	ND		ND			1.5	5.5
						ND																				3.5	7.5
	March-2024																						ND		ND	0.75	1.75
														ND					ND							0.35	0.35
	April-2024				ND																					1.5	5.5
																		ND								2.5	10.5
	-																		ND							0.15	0.35
	May-2024																								ND	0.35	1.35
	Muy-2024																				ND					0.6	2.6
																						1.9				1 1	5
											ND								0.692							1.1 0.6	5.1 2.6
	June-2024																				ND				ND	1.5	3.5
												ND														0.5	2.5
	July-2024 -										6.66															5	25
	August-2024						1.57														ND			ND		0.25	1.25
	September-2024				ND		2.42																			0.25	1.25
																		ND								5	25
		ND																								0.1	0.5
	October-2024		ND																	ND						10	5
		 ND			ND																					10	50
	November-2024	ND 	ND																							0.25	1.25 2.5
L	I		עיו																							0.5	Z.J

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		100
Parameter	Monitoring Event												1	ntration												LOD	LOQ
												0.12 J														0.1	0.5
	December-2022		ND		ND				ND		ND						ND	ND								1	5
										ND																0.25	1.25
	January-2023															ND										1	1
			ND								ND															2	2
	February-2023																	0.48 J								0.25	1.25
	March-2023									ND	ND															1	5
	April-2023									ND		ND														0.5	2.5
	May-2023		ND							ND	ND															1	5
	June-2023										2 J		ND		ND											1	5
	30110 2020																		ND						ND	0.05	0.25
	July-2023		ND																							0.5	2.5
	JUIY-2023								1.2 J															ND		1	5
									1.2 J 																ND	0.05	0.25
	August-2023						ND		ND															ND		0.5	2.5
	September-2023				ND														ND							0.2	1
																			ND							0.25	1.25
	October-2023							ND														ND				0.5	2.5
			0.06 J																ND							0.05	0.25
	November-2023							ND						ND												0.25	1.25
					ND	ND					ND											ND			ND	1	5
Nitrite as N (mg/L)	December-2023				ND													ND	ND							1	5
	January-2024			1.7 J							ND														ND	1	5
	February-2024			ND		ND															ND		ND			1	5
	March-2024																						ND		0.25 J	0.25	1.25
	A													ND					ND							0.25	0.25
	April-2024				ND																						5
																		ND								2	10
																			ND							0.05	0.25
	May-2024 -																								ND	0.25	1.25
																					ND	ND				0.5	2.5
											ND															1	5
	June-2024																		ND		ND				ND	0.5	2.5
	July-2024											ND														0.5	2.5
	August-2024						ND				ND										ND			ND		5 0.25	25 1.25
					ND		ND																			0.25	1.25
	September-2024																	ND								5	25
		ND																								0.1	0.5
	October-2024		ND																	ND						1	5
					ND																					10	50
	November 2024	ND																								0.25	1.25
	November-2024		1.35 J																							0.5	2.5

We	II ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		100
Parameter	Monitoring Event												Conce	ntration												LOD	LOQ
													1290			1470										20	50
	November-2022										2110															50	125
	December-2022		1510		3570				1790		1830	1490					1340	1940								200	500
			1840							881						1410										20	50
	January-2023										2970															40	100
	February-2023																	1870								16.8	50
	March-2023									879	1920															33.6	100
	April-2023									1820		1510														16.8	50
	May-2023		1590							1950	2910															40	100
	1viuy-2023																										
	June-2023										3080				2750											100	250
													2650													200	500
	July-2023		1670						2960										1670					2720	285	40	100
	August-2023																								279	10	25
							2240		2820															2850		100	250
	September-2023				3340														2680							100	250
	October-2023							1050											4/20			1320				40	100
								2240											4630							100 80	250
	November-2023		1440		3290	2630					2530			1120					2270			3170			2120	100	200 250
otal Kjeldahl											2550							1880								80	200
litrogen (mg/L)	December-2023				3130														1890							100	250
	January-2024			2450							3020														1810	100	250
	February-2024			2540		2890															2470		2970			100	250
																									1030	50	125
	March-2024																						2980			100	250
														1030					1730							40	100
	April-2024																	2320								50	125
					3260																					100	250
																									1140	40	100
	May-2024										3120								1780		2470	3280				100	250
																			1/30						4750	100	250
	June-2024																				2680				4/50	200	500
	July-2024										2840	2680														100	250
	August-2024						1980														1460			3150		100	250
	7.09031 2024						2090																			50	125
	September-2024																	2650								80	200
					3320																					100	250
		351																		1870						40	100
	October-2024		1360		2850																					100	250
	November-2024		1610																							40	100
		1070				1		1		I			1									L		I			100

We	ll ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event													entration												LOD	LOQ
													5.68			3										0.3	0.5
	November-2022										28.8															0.75	1.25
												8.94														0.3	0.5
	December-2022		24.9		54.6				28.3		32						20.2	36								1.5	2.5
			24.7							1.3						20.2										0.75	1.25
	January-2023																										
											56.5															1.5	2.5
	February-2023																	22.4								1.5	2.5
	March-2023									0.4																0.03	0.05
											13.9															0.3	0.5
	April-2023									18.7		5.1														0.3	0.5
	May-2023		18.6							20	50															1.5	2.5
	June-2023										39.1		45.6		80.6											1.5	2.5
																			0.7							0.15	0.25
	July-2023																								2.92	0.3	0.5
			11.6						47.9															37.3		1.5	2.5
	August 2022																								1.46	0.15	0.25
	August-2023						28.6		31.4															40.4		1.5	2.5
	September-2023																		4.58							0.3	0.5
	September-2023				38.2																					3	5
	October-2023																		4.13							0.15	0.25
	OC10DEI-2023							37														38.7				0.6	1
																			3.65							0.15	0.25
	November-2023		7.88			36.4								4.76												0.6	1
otal Recoverable	NOVember-2023				38.8			47.4														47.1				0.75	1.25
											46.9														29.1	1.5	2.5
henolics (mg/L)																			3.72							0.06	0.1
	December-2023																	23								0.75	1.25
					34.2																					1.5	2.5
	January-2024			38																					22.7	1.5	2.5
	Junuary-2024										39.2															3	5
	February-2024			37.3		42.9															50.2		43.1			1.5	2.5
	March-2024																						46.6		12.8	3	5
														1.68					1.16							0.3	0.5
	April-2024 -				38.4													28.6								1.5	2.5
																			1.06							0.3	0.5
	May-2024																								13.6	1.5	2.5
											36.6										33.6	51				3	5
																			0.82							0.3	0.5
	June-2024																								23.2	1.5	2.5
	JULIE-2024																				44.8					3	5
												28.8														0.75	1.25
	July-2024 -										37.8															3	5
	August-2024						29.2														44.2			39.2		3	5
	September-2024				39.6		31.6											31.6								3	5
	30010001-2024	0 374																									
		0.376	9.4																							0.03	0.05
	October-2024		8.4																	 A5 1						0.3	0.5
																				45.1						1.5	2.5
		 5 00			37.6																					3	5
	November-2024	5.22																								0.3	0.5
			10.1																							1.5	2.5

W	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												Conce	ntration												100	LUQ
SEMI-VOLATILE OF	RGANIC COMPOUND	(ug/L)		1		1	1													1							
	November-2022												ND			ND										46.7	93.5
											ND															93.5	187
											ND	ND						ND								9.35	9.35
	December-2022				ND				ND								ND									11.7 23.4	11.7 23.4
	-		 ND																							485	971
										ND																243	485
																ND										253	505
	January-2023		ND																							490	980
											ND															500	1000
	February-2023																	ND								187	374
	March-2023										ND															51	102
	March-2023									ND																117	234
	April-2023 -									ND																37.4	74.8
	7 (0111 2020											ND														38.8	77.7
	May-2023 -		ND								ND															93.5	187
	,									ND																467	935
	June-2023										ND				ND											485	971
													ND													490	980
																									ND	46.7	93.5
	July-2023		ND																ND							100 250	200 500
	-								ND															ND		1000	2000
																									ND	19.6	39.2
	August-2023						ND		ND															ND		1000	2000
	September-2023				ND														ND							40	80
																						ND				40	80
	October-2023																		ND							50	100
								ND																		500	1000
	-		ND											ND												20 50	40
nthracene	November-2023																		ND						ND	100	200
						ND		ND			ND											ND				400	800
					ND																					1000	2000
																			ND							50	100
	December-2023																	ND								100	200
				 ND	ND																					200	400
	January-2024			ND																					ND	100 250	200 500
	Junioury-2024										ND															1000	2000
						ND																				200	400
	February-2024			ND																						250	500
																					ND		ND			400000	800000
	March-2024																								ND	20	40
																							ND			80	160
														ND												5	10
	April-2024 -																	ND	ND							20 100	40 200
					ND																					400	800
											ND								ND		ND				ND	10	10
	May-2024 -																					ND				80	160
																			ND							20	40
	June-2024 -																				ND				ND	100	200
	July-2024										ND															40	80
	JUIY-2024											ND														80	160
							ND																			400	800
	August-2024																				ND			 ND		500	1000 2000
																		ND						ND		1000	2000
	September-2024				ND		ND																			200	400
		ND	ND																							50	100
	October-2024 -				ND															ND						200	400
	November-2024	ND	ND																							50	100

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	100	
Parameter	Monitoring Event												Conce	entration												LOD	LC
AL METALS (mg	g/L)																										
	November-2022										0.863		0.464			1.3										0.02	0
	December-2022		1.02		0.406				0.174		1.69	0.49					0.159	0.574								0.02	(
	January-2023		0.285							0.596	0.225					0.846										0.01	(
	February-2023																	0.29								0.005	
	March-2023									1.07	1															0.01	
												0.11														0.0005	
	April-2023									0.36																0.005	-
	May-2023		0.26							0.3	0.27															0.0025	
	June-2023										0.26		0.5		0.14											0.0025	-
			0.23																0.24					0.19	0.06	0.0005	+
	July-2023								0.7																	0.0025	+
																									0.15	0.0025	+
	August-2023						0.32		0.43															0.29		0.005	+
	September-2023				0.42														0.25							0.005	$\uparrow$
	· · · · · · · · · · · · · · · · · · ·																		0.24			0.31				0.0005	T
С	October-2023							0.36																		0.001	T
	November-2023		0.23		0.33	0.53		0.43			0.35			0.78					0.34			0.27			0.2	0.003	$\Box$
	December-2023				0.4													0.26								0.0025	
																			0.24							0.001	
	January-2024			0.47							0.23														0.18	0.0025	
	February-2024			0.68		0.42															0.33		0.23			0.002	_
	March-2024																								0.12	0.001	+
																							0.23			0.0025	+
	April-2024													0.49					0.18							0.0005	+
					0.31													0.33								0.004	_
	May-2024										0.33								0.2		0.73	0.22			0.22	0.005	_
	June-2024																		0.19		0.49				0.14	0.005	+
	July-2024										300	0.095														0.0025	+
	August-2024						0.18														0.49			0.13		0.005	+
	September-2024				0.27		0.15											0.19								0.005	+
	October-2024		0.26		0.24															0.18						0.005	+
	November-2024	0.18	0.15																							0.005	

W	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		100
Parameter	Monitoring Event												Conce	ntration												LOD	LOQ
	November-2022										0.871		0.485			0.36										0.01	0.02
	December-2022		0.566		0.803				0.978		0.438	0.214					0.856	0.793								0.01	0.02
	January-2023		0.643							0.683	1.92					0.554										0.005	0.01
	February-2023																	1.04								0.000	0.05
	March-2023									0.406	0.683															0.005	0.01
	April-2023									1.21		0.326														0.000	0.05
	April-2023		0.636																							0.005	0.025
	May-2023									1.2	1.83															0.003	0.023
																											-
	June-2023										1.69				1.65											0.005	0.025
													3.01													0.01	0.05
																									0.217	0.001	0.005
	July-2023																		0.558							0.002	0.01
			0.542						2.28															1.02		0.005	0.025
	August-2023																								0.218	0.005	0.025
							1.61		1.58															1.48		0.01	0.05
	September-2023				0.72														0.649							0.01	0.05
Barium	October-2023																		0.664							0.002	0.01
	November 2022		0.572					2.56						0 410								1.93				0.005	0.025
	November-2023				0.81	2.28		2.51			1.96			0.418				1.36	0.67			2.06			2.84	0.01	0.025
	December-2023				0.68													1.30	0.672							0.003	0.023
											1.92														1.91	0.002	0.025
	January-2024			3.27																						0.01	0.05
	February-2024			3.03		4.41															2.65		0.925			0.005	0.025
																									1.03	0.002	0.01
	March-2024																						1.54			0.005	0.025
														0.4					0.634							0.001	0.005
	April-2024				1.02													2.15								0.01	0.05
	May-2024										1.79								0.619		2.8	2.06			0.872	0.01	0.05
	June-2024																		0.6		3.44				1.51	0.01	0.05
	July-2024										1.28	2.75														0.005	0.025
	August-2024						1.27														2.39			0.862		0.01	0.05
	September-2024				1.34		1.33											3.65								0.01	0.05
	October-2024	0.26	0.568		1.17															3.33						0.01	0.05
			0.69																							0.01	0.05

W	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event													ntration												LOD	LOQ
	November-2022										ND		ND			ND										0.004	0.008
	December-2022		ND		0.0104				ND		ND	ND					ND	ND								0.004	0.008
	January-2023		ND							ND	ND					ND										0.002	0.004
	February-2023																	0.000297 J								0.0001	0.001
	March-2023									ND	ND															0.002	0.004
	April-2023									0.000158 J		0.000333 J														0.0001	0.004
	May-2023		ND																							0.0001	0.001
										ND	ND																
	June-2023										ND		ND		ND											0.0005	0.005
	July-2023		0.000219 J						0.000156 J										0.000186 J					ND	ND	0.0001	0.001
	August-2023																								ND	0.0005	0.005
							ND		ND															ND		0.001	0.01
	September-2023				ND														ND							0.001	0.01
	October-2023																		0.000171 J			ND				0.0001	0.001
	Neverals ar 0000							ND																		0.0002	0.002
Cadmium	November-2023		ND		ND	ND		ND			ND			ND					ND			ND			ND	0.001	0.003
	December-2023				ND													0.000604 J								0.0005	0.0015
																			ND							0.0002	0.002
	January-2024			ND							ND														ND	0.0005	0.005
	February-2024			ND		ND															0.0175		ND			0.0005	0.005
	March-2024																								ND	0.0002	0.002
																							ND			0.0005	0.005
	April-2024													0.000204 J					0.000195 J							0.0001	0.001
					ND													ND								0.001	0.004
	May-2024										ND								ND		0.0483	ND			ND	0.001	0.01
	June-2024																		ND		0.0175				ND	0.001	0.01
	July-2024										ND	ND														0.0005	0.005
	August-2024						ND														0.00508 J			0.00247 J		0.001	0.01
	September-2024				ND		ND											ND								0.001	0.01
	October-2024	0.00117 J	ND		ND															ND						0.001	0.01
	November-2024	ND	ND																							0.001	0.01
	November-2022										0.208		0.112			0.354										0.016	0.02
	December-2022		0.503		1.08				1.76		0.274	0.319					0.499	0.822								0.016	0.02
	January-2023		0.31							0.488	0.178					0.155										0.008	0.01
	February-2023																	0.277								0.004	0.01
	March-2023									0.213	0.188															0.008	0.01
	April-2023											0.142														0.0004	0.001
										0.306																0.004	0.01
	May-2023		0.422							0.281	0.237															0.002	0.005
	June-2023										0.251		0.191		0.272											0.002	0.005
	July-2023		0.308						0.535										0.231					0.215	0.0265	0.0004	0.001
																									0.0276	0.002	0.005
	August-2023						0.606		0.449															0.259		0.004	0.01
	September-2023				1.17														0.234							0.004	0.01
																			0.144			0.194				0.0004	0.001
	October-2023							0.273																		0.0008	0.002
			0.391																							0	0.003
Chromium	November-2023					0.51													0.251			0.403				0.003	0.003
					1.04			0.402			0.246			0.343											0.222	0.004	0.01
					1.34													0.259								0.002	0.005
	December-2023																		0.219							0.0002	0.002
	January-2024			0.17							0.193														0.128	0.0008	0.002
				0.17		0.272															0.203		0.336			0.002	0.005
				0.25		0.272															0.203				0.0759	0.002	0.003
	February-2024																						0.414			0.0008	0.002
														0.36					0.245				1			0.002	0.003
	February-2024										1			0.30					0.243							0.0004	1 U.UUI
	February-2024																1	0.000									
	February-2024 March-2024 April-2024																	0.228								0.004	0.01
	February-2024 March-2024 April-2024 May-2024																	0.228	0.226		 0.183				 0.11	0.004 0.004	0.01
	February-2024 March-2024 April-2024 May-2024 June-2024	  			0.836						 0.268 															0.004 0.004 0.004	0.01 0.01 0.01
	February-2024 March-2024 April-2024 May-2024 June-2024 July-2024				 0.836 		  				 0.268								0.226		 0.183	 0.352			 0.11	0.004 0.004 0.004 0.002	0.01 0.01 0.01 0.005
	February-2024 March-2024 April-2024 May-2024 June-2024	  	   	 	 0.836  						 0.268 								0.226 0.226		 0.183 0.188	0.352		 	 0.11 0.16	0.004 0.004 0.004	0.01 0.01 0.01
	February-2024 March-2024 April-2024 May-2024 June-2024 July-2024	    	    	  	 0.836  		  			  	0.268  0.252	  0.246							0.226 0.226 		 0.183 0.188 	 0.352  		  	 0.11 0.16 	0.004 0.004 0.004 0.002	0.01 0.01 0.01 0.005
	February-2024 March-2024 April-2024 May-2024 June-2024 July-2024 August-2024	     	     	  	 0.836   	  	   0.549	  	  	  	0.268  0.252 	  0.246 	  	   	  	  	  	  	0.226 0.226 	  	 0.183 0.188  0.185	 0.352  	  	  0.233	 0.11 0.16 	0.004 0.004 0.004 0.002 0.004	0.01 0.01 0.01 0.005 0.01

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event	I											Conce	entration												LOD	LOQ
	November-2022										ND		ND			ND										0.016	0.02
	December-2022		ND		ND				ND		ND	ND					ND	ND								0.016	0.02
	January-2023		ND							0.0127	0.0256					ND										0.008	0.01
	February-2023																	0.00365								0.0003	0.001
	March-2023									ND	ND															0.008	0.01
	April-2023									0.00664		0.00767														0.0003	0.001
	May-2023		ND							ND	ND															0.0015	0.005
	June-2023										0.00154 J		0.00362 J		0.00269 J											0.0015	0.005
	July-2023		0.00124						0.00163										0.00811					ND	0.0027	0.0003	0.001
																									ND	0.0005	0.001
	August-2023						0.00343 J		0.0176															ND		0.0013	0.003
	September-2023				ND														0.00407 J							0.003	0.01
	· · · · · · · · · · · · · · · · · · ·																		0.00361			0.000609 J				0.0003	0.001
	October-2023							0.00806																		0.0006	0.002
Copper	November-2023		0.00607		0.00352	0.0212		0.00756			ND			0.00341					0.00387			ND			ND	0.003	0.003
сорры					0.00184													ND								0.0015	0.0015
	December-2023																		0.0034							0.0006	0.002
	January-2024			ND							0.019														ND	0.0015	0.005
	February-2024			ND		0.00201															ND		ND			0.0015	0.002
	March-2024																								0.00115 J	0.0006	0.002
	/MUICTI-2024																						0.00184 J			0.0015	0.005
	April-2024 -													0.00443					0.004							0.0003	0.001
	April-2024				ND													ND								0.003	0.004
	May-2024										ND								0.00486 J		0.00688 J	ND			ND	0.003	0.01
	June-2024																		0.00409 J		ND				ND	0.003	0.01
	July-2024										0.398	ND														0.0015	0.005
	August-2024						ND														ND			ND		0.003	0.01
	September-2024				ND		ND											ND								0.003	0.01
	October-2024	0.00612 J	ND		ND															0.00306 J						0.003	0.01
	November-2024	0.00569 J	ND																							0.003	0.01
	November-2022										ND		ND			0.017 J										0.012	0.02
	December-2022		ND		0.0381				ND		ND	ND					ND	ND								0.012	0.02
	January-2023		ND							ND	ND					ND										0.006	0.01
	February-2023																	0.006								0.001	0.001
	March-2023									ND	ND															0.006	0.01
	April-2023									0.0022		0.0067														0.001	0.001
	May-2023		ND							ND	ND															0.001	0.001
	June-2023														0.0069											0.005	0.005
											ND		ND														
	July-2023		0.0014						0.019										0.0092					ND	0.0017	0.001	0.001
	August-2023																								ND	0.005	0.005
	September-2023				0.12		0.014		ND										ND					0.013		0.01	0.01
																			0.0036			0.0034				0.001	0.001
	October-2023							0.0077																		0.001	0.001
	November-2023		ND		0.13	0.0046		0.014			ND			ND					0.0032			0.0043			ND	0.002	0.002
Lead																			0.0043							0.002	0.002
	December-2023				0.16													0.002								0.0015	0.0015
	January-2024			ND							0.0081														ND	0.005	0.005
	February-2024			0.0065		0.01															0.051		0.012			0.001	0.002
																									ND	0.002	0.002
	March-2024																						0.02			0.005	0.005
														0.0013					0.0025							0.001	0.001
	April-2024 -				0.13													ND								0.004	0.004
	May-2024										ND								ND		0.11	ND			ND	0.004	0.004
	June-2024																				0.11				ND	0.01	0.01
	July-2024																		ND							0.005	0.01
											ND	ND									0.027			 ND			
	August-2024				0.098		0.031											 ND			0.027			ND		0.01	0.01
	September-2024		 ND		0.098		0.057											ND								0.01	0.01
	October-2024 November-2024	ND ND	ND ND		0.12															ND						0.01	0.01

W	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		100
Parameter	Monitoring Event												Conce	ntration												LOD	LOQ
													0.00169			0.00053										0.0004	0.0004
	November-2022										ND															0.0008	0.0008
			0.00051																							0.0004	0.0004
	December-2022								0.00118		ND	0.00588					0.0048	ND								0.0004	0.0008
					ND																					0.004	0.004
			ND							ND						ND										0.0004	0.004
	January-2023										ND					-										0.0004	0.004
	February-2023																									0.0004	0.004
	rebiblity-2023																	ND									
	March-2023									ND																0.0002	0.0002
											ND															0.0004	0.0004
	April-2023											0.00128														0.0002	0.0002
										ND																0.0004	0.0004
	May-2023		ND							ND	ND															0.0002	0.0002
	June-2023										ND		ND		ND											0.004	0.004
	July-2023		0.000306																ND						ND	0.0002	0.0002
	3017 2020								0.0107															ND		0.001	0.001
	August-2023																								ND	0.001	0.001
							0.00312		0.00397															ND		0.002	0.002
Mercury	September-2023				0.00503														ND							0.002	0.002
	October-2023							0.00165											ND			0.00055				0.0004	0.0004
			ND											ND												0.0000002	0.0000002
	November-2023																		ND							0.0000004	
					0.00576	0.00606		0.00578			ND											0.00954			ND	0.000004	0.000004
	December-2023				0.00484													ND								0.001	0.001
	January-2024			ND							ND								ND						ND	0.0004	0.0004
	February-2024			0.00376		0.0115															0.00238		0.00284			0.001	0.001
																									0.00124	0.0004	0.0004
	March-2024																						ND			0.0004	0.0004
														0.000201					ND							0.0002	0.0002
	April-2024				0.00382													0.00151								0.0002	0.0002
	May-2024										ND								ND		ND	ND			ND	0.000	0.000
	June-2024																		ND		0.0119				ND	0.002	0.002
	July-2024										ND	0.00104														0.002	0.002
	August-2024						ND														0.00671			ND		0.001	0.001
	September-2024				0.00244		ND											ND								0.002	0.002
	October-2024		ND		ND															0.00254						0.002	0.002
	November-2024		ND																							0.002	0.002
						1		1	1		1	1	1	1	1			<u> </u>	1	1			1	1		0.002	0.002

Wel	ll ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		100
Parameter	Monitoring Event												Conce	ntration											·	LOD	LOQ
	November-2022										0.0866		0.1344			0.173										0.014	0.02
	December-2022		0.1722		0.5025				0.2989		0.1299	0.287					0.1853	0.346								0.014	0.02
	January-2023		0.1074							0.1442	0.0407					0.0769										0.007	0.01
	February-2023																	0.1726								0.001	0.001
	March-2023									0.1254	0.1033															0.007	0.01
	April-2023									0.1143		0.1732														0.001	0.001
	May-2023		0.113							0.09726	0.05657															0.005	0.005
	June-2023										0.05978		0.05892		0.07161											0.005	0.005
	July-2023		0.09872						0.08332										0.1576					0.03074	0.01403	0.001	0.001
																									0.02029	0.005	0.005
	August-2023						0.1457		0.09673															0.0513		0.01	0.01
	September-2023				0.5152														0.2387							0.01	0.01
	October-2023																		0.2019			0.09206				0.001	0.001
	OC10061-2023							0.104																		0.002	0.002
Nickel	November-2023		0.1178		0.4227	0.1242		0.07791			0.05944			0.1493					0.2492			0.1332			0.05277	0.01	0.01
	December-2023				0.6091													0.1447								0.005	0.005
																			0.2127							0.002	0.002
	January-2024			0.06308							0.04911														0.0326	0.005	0.005
	February-2024			0.07945		0.07013															0.09174		0.06183			0.005	0.005
	March-2024																								0.02232	0.002	0.002
																							0.08678			0.005	0.005
	April-2024 -													0.1319					0.196							0.001	0.001
					0.3136													0.1139								0.01	0.01
	May-2024										0.0538								0.2065		0.07835	0.09235			0.02884	0.01	0.01
	June-2024																		0.211		0.07664				0.03166	0.01	0.01
	July-2024 August-2024						0.1008				0.1917	0.03634									0.0822			0.02104		0.005	0.005
	September-2024				0.396		0.1008											0.08772			0.0022			0.02104		0.01	0.01
	October-2024		0.115		0.3536															0.05751						0.01	0.01
	November-2024		0.09665																							0.01	0.01

	Monitoring Event November-2022 December-2022 January-2023 February-2023 March-2023 April-2023 June-2023 June-2023 July-2023 September-2023 October-2023 November-2023 December-2023	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57 ND 0.00331	EW-58 ND ND 0.00189 ND	EW-59 ND ND  ND  0.00569 ND	EW-60  ND   0.00185 	EW-61 Conce ND   	EW-62 entration    	EW-64	EW-65 ND  ND 	EW-67	EW-68  ND  0.00199	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD 0.08 0.08 0.04 0.00085 0.04 0.00085	LOQ 0.1 0.05 0.001 0.05
	November-2022           December-2022           January-2023           February-2023           March-2023           April-2023           June-2023           June-2023           June-2023           June-2023           June-2023           September-2023           October-2023           November-2023           December-2023           January-2024	 	ND ND  ND  0.00101  0.00101   	        	ND       ND	      	      ND		ND     0.00331	 ND  ND 0.00189 ND  	ND ND  ND  0.00569 ND	ND   0.00185 	ND    	  		 ND	ND 	ND 						 		0.08 0.04 0.00085 0.04	0.1 0.05 0.001 0.05
	December-2022 January-2023 February-2023 March-2023 April-2023 June-2023 June-2023 July-2023 August-2023 September-2023 October-2023 November-2023 December-2023	 	ND ND  ND  0.00101  0.00101   	        	ND       ND	      	      ND		ND     0.00331	 ND  ND 0.00189 ND  	ND ND  ND  0.00569 ND	ND   0.00185 	  			 ND	ND 	ND 						 		0.08 0.04 0.00085 0.04	0.1 0.05 0.001 0.05
	January-2023 February-2023 March-2023 April-2023 June-2023 July-2023 August-2023 September-2023 October-2023 November-2023 December-2023	 	ND  ND  0.00101    	       	      ND	    	     ND	     	    0.00331	ND  ND 0.00189 ND 	ND  ND  0.00569 ND	  0.00185 				ND										0.04 0.00085 0.04	0.05 0.001 0.05
	February-2023         March-2023         April-2023         June-2023         June-2023         July-2023         August-2023         September-2023         October-2023         November-2023         December-2023         January-2024	 	 ND  0.00101    	      	     ND	    	    ND	   	   0.00331	 ND 0.00189 ND 	 ND  0.00569 ND	  0.00185 														0.00085 0.04	0.001
	March-2023 April-2023 May-2023 June-2023 July-2023 August-2023 September-2023 October-2023 November-2023 December-2023 January-2024	       	 ND  0.00101    	      	    ND	   	    ND	   	   0.00331	ND 0.00189 ND 	ND  0.00569 ND	 0.00185 														0.04	0.05
	April-2023 May-2023 June-2023 July-2023 August-2023 September-2023 October-2023 November-2023 December-2023 January-2024	             	 ND  0.00101   	     	   ND	  	   ND	  	  0.00331	0.00189 ND 	0.00569 ND	0.00185															
	May-2023 June-2023 July-2023 August-2023 September-2023 October-2023 November-2023 December-2023 January-2024	     	ND  0.00101    	    	   ND	  	   ND	  	  0.00331	ND 	0.00569 ND															0.00065	0.001
	June-2023 July-2023 August-2023 September-2023 October-2023 November-2023 December-2023 January-2024	         	 0.00101    	   	   ND	  	  ND	 	 0.00331		ND															0.00405	
	July-2023 August-2023 September-2023 October-2023 November-2023 December-2023 January-2024	    	0.00101    	  	  ND		  ND		0.00331																	0.00425	0.005
	August-2023 September-2023 October-2023 November-2023 December-2023 January-2024	   	   	  	  ND		 ND						ND		ND											0.00425	0.005
	September-2023 October-2023 November-2023 December-2023 January-2024	  	  		 ND		ND												0.00116					0.00251	ND	0.00085	0.001
	September-2023 October-2023 November-2023 December-2023 January-2024	 			ND				NID.																ND	0.00425	0.005
	October-2023 - November-2023 December-2023 - January-2024								ND															ND		0.0085	0.01
Selenium	November-2023 December-2023 January-2024																		ND							0.0085	0.01
Selenium	December-2023 - January-2024							0.00332											0.00186			0.0044				0.00085	0.001
Selenium	December-2023 - January-2024		ND		0.00425	0.00314		0.00332														0.0032				0.0017	0.002
-	January-2024				0.00425						ND			ND				0.00253	ND						ND	0.003	0.003
-																		0.00255	0.00215							0.0013	0.0013
[				ND							ND														ND	0.00425	0.002
. L	February-2024			ND		ND															0.00571		0.00651			0.00425	0.005
1																									ND	0.00423	0.003
	March-2024																						0.00627			0.00425	0.002
-														ND					0.000929 J							0.000425	0.000
	April-2024 -				ND													ND								0.0085	0.001
-	Mary 2024																										
-	May-2024										ND								ND		ND	ND			ND	0.0085	0.01
-	June-2024																		ND		ND				ND	0.0085	0.01
-	July-2024										ND	ND														0.00425	0.005
-	August-2024						ND														ND			ND		0.0085	0.01
-	September-2024 October-2024				ND		ND											ND								0.0085	0.01
-	November-2024	ND ND	ND ND		ND															ND						0.0085	0.01
-	November-2022										ND		ND			ND										0.01	0.02
	December-2022		ND		0.0187 J				ND		ND	ND					ND	ND								0.01	0.02
-	January-2023		ND							ND	ND					ND										0.005	0.01
-	February-2023																	ND								0.00006	0.001
	March-2023									ND	ND															0.005	0.01
	April-2023									ND		0.00011 J														0.00006	0.001
	May-2023		ND							ND	ND															0.0003	0.005
	June-2023										ND		ND		ND											0.0003	0.005
	July-2023		ND						ND										ND					ND	ND	0.00006	0.001
	August-2023																								ND	0.0003	0.005
	A09031-2023						ND		ND															ND		0.0006	0.01
	September-2023				ND														ND							0.0006	0.01
	October-2023																		ND			ND				0.00006	0.001
								ND																		0.00012	0.002
Silver	November-2023		ND		ND	ND		ND			ND			ND					ND			ND			ND	0.0006	0.01
	December-2023				ND													ND								0.00025	0.001
																			ND							0.00012	0.002
	January-2024			ND							ND														ND	0.0003	0.005
	February-2024			ND		ND															ND		ND			0.0003	0.005
	March-2024																								ND	0.00012	0.002
.																							ND			0.0003	0.005
	April-2024 -													ND					ND							0.00006	0.001
					ND													ND								0.0004	0.001
	May-2024										ND								ND		ND	ND			ND	0.0006	0.01
[	June-2024																		ND		ND				ND	0.0006	0.01
[ Γ	July-2024										ND	ND														0.0003	0.0005
[ Γ	August-2024						ND														ND			ND		0.0006	0.01
[ [	September-2024				ND		ND											ND								0.0006	0.01
[ Γ	October-2024	ND	ND		ND															ND						0.0006	0.01
	November-2024	ND	ND																							0.0006	0.01

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		100
Parameter	Monitoring Event												Conce	ntration			·									LOD	LOQ
	November-2022										ND		0.032			0.694										0.02	0.02
	December-2022		0.208		29.7				0.162		0.0686	0.75					0.364	0.286								0.02	0.02
	January-2023		0.133							0.15	0.074					0.0752										0.01	0.01
	February-2023																	0.0851								0.0025	0.005
	March-2023									0.0689	0.0538															0.01	0.01
										0.0539																0.0025	0.005
	April-2023 -											0.414														0.025	0.05
	May-2023		0.079							0.0635	0.0519															0.0125	0.025
	June-2023										0.0538		0.0253		0.945											0.0125	0.025
	i i i		0.0488																0.0714					0.354	0.0782	0.0025	0.025
	July-2023 -								2.03																	0.0125	0.005
																									0.112	0.0125	0.025
	August-2023								1.71															0.914		0.025	0.025
	7 10 9031 2020						5.92																			0.020	0.00
																			0.0788							0.025	0.05
	September-2023				45																					0.25	0.5
	0.444																		0.0622							0.0025	0.005
	October-2023							0.203														633				0.005	0.01
	November-2023		0.0471 J			0.0534		0.74			0.053			0.0618					0.0722			0.845			0.0313 J	0.025	0.05
Zinc	NOVEITIDEI-2023				30.4																					0.25	0.5
					52.7																					0.25	0.5
	December-2023																		0.061							0.005	0.01
																		0.0462								0.025	0.025
	January-2024			0.117							0.0974														0.0261	0.0125	0.025
	February-2024			0.0879		0.0554															0.475		0.809			0.0125	0.025
	March-2024																								0.0342	0.005	0.01
																							2.09			0.0125	0.025
														0.0565					0.0539							0.0025	
	April-2024																	0.0394								0.02	0.02
	h ( ) 000 (				24.7																					0.25	0.5
	May-2024										0.165								0.0568		1.3	1.43			0.0812	0.025	0.05
	June-2024																		0.0505		0.498				ND	0.025	0.05
	July-2024						2.40				0.104	0.0451														0.0125	0.025
	August-2024				0.212		3.49														0.512			0.417		0.025	0.05
	September-2024						3.68											0.111								0.0025	0.005
		0.266	0.077																	0.342						0.025	0.05
	October-2024	0.200			20.2																					0.025	0.05
	November-2024		0.0367 J																							0.025	0.05
	11010110012024	5.0020 J	0.0007.3				1			1		1									1					0.020	0.00

		EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												Conce	entration												100	100
OLATILE FATTY AC	CIDS (mg/L)																										
	November-2022												1600													25	100
											3500					150 J										62	250
	December-2022		1800																							62	250
	January-2023		ND							ND	4400					ND											500
	February-2023																	ND									500
	March-2023									ND	640																500
	April-2023									1200		520														370	500
	May-2023		990							1800	3000															370	500
	June-2023										5900		4100		5000											750	1000
	30116-2023																									150	200
	Luby 2022																								ND		
	July-2023		ND																ND							370	500
									6100															750		750	1000
	August-2023						3300		5300															4200	ND		500
	September-2023				7400														ND							370	500
	October-2023							3200											720			4100				370	500
			ND											ND					ND						4160	250	500
	November-2023					4950		6650			5350											7300				500	1000
					9900																					1000	2000
																		660									100
	December-2023																		ND								250
cetic Acid					11200						 5000																1000
	January-2024			4410							5290														3080		250
	February-2024			3130		3530															3530		6770				250 500
																									2700		200
	March-2024																						46000				1000
														ND					ND								1000
	April-2024																	1670									250
					9170																						1250
																			ND		4370				221		250
	May-2024										4950										1						500
	Muy-2024																										
																						6530					1250
	June-2024																		ND								100
	huby 2024											/100									3890				4450		500
	July-2024						 5010				6280	6180									2500						1250
	August-2024						5210											2950			3500			5540			500 250
	September-2024						 5970																				500
					10400																						1250
		ND																									50
	-		260																								
	October-2024		260																	4780							100 250
					 9410															4/00							1250

We		EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												Conce	ntration												100	LUQ
	November-2022												430													12	100
	NOVEITIDEI-2022										830					ND										29	250
	December-2022		ND																							29	250
	January-2023		ND							ND	1800					ND											500
	February-2023																	ND									500
	March-2023									ND	ND																500
	April-2023									ND		ND														330	500
	May-2023		ND							ND	1200															330	500
	June-2023										2500		1500		2900											650	1000
	JUNE-2023										1																
	hub / 0002																								ND	130	200
	July-2023		ND																ND							330	500
									2800															650		650	1000
	August-2023						1400		1700															1600	ND		500
	September-2023				3100														ND							330	500
	October-2023							1200											ND			2000				330	500
	November-2023		ND			1670		1760			1370			ND					ND			2730			740	250	500
					3420																					500	1000
Butyric Acid																		336									100
	December-2023																		ND								250
					3390																						1000
	January-2024			813							1230														594		250
	February-2024			583		1170																					250
																					1180		2980				500
	March-2024																								500		20
																							2100				200
	April-2024 -													ND					ND								100
					3120													444									250
	May-2024										1190								ND		984	2370			448		250
	June-2024																		ND		1190				1030		100
	July-2024										2400	2360															250
	August-2024						1630														1180			1930			500
	September-2024				3550		2060											670									250
		ND																									50
	October-2024		ND																								100
																				1630							250
					3070																						1250
	November-2022												ND													11	100
											ND					ND										27	250
	December-2022		90 J																							27	250
	November-2023		ND			968		1800			969			ND					ND			1170			324	250	500
					6030																					500	1000
																		ND									100
	December-2023																		ND								250
					9050																						1000
	January-2024			629							979														256		250
	February-2024			334		180																					250
	,																				756		1650				500
	March-2024																								ND		20
Lactic Acid																							ND				200
														ND					ND								100
	April-2024																	ND									250
					5120																						1250
	May-2024										1160								ND		1170	1730			ND		250
	June-2024																		ND		706				246		100
	July-2024										1220	1210															250
	August-2024						2270														593			959			500
	September-2024						2550											ND									250
					5510																						1250
		ND																									50
	October-2024		ND																								100
																				2590							250
					5630																						1250

Propionic Acid Propionic Acid April- Propionic Acid April- Propionic Acid April- Propionic Acid April- Propionic Acid April-	nitoring Event ovember-2022 January-2023 February-2023 March-2023 May-2023 June-2023 July-2023 August-2023 ptember-2023	     	EW-50  640 ND   520	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61 Conce	EW-62 Intration	EW-64	EW-65	 EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Propionic Acid Propionic Acid Propio	ovember-2022 January-2023 February-2023 March-2023 April-2023 June-2023 July-2023 August-2023 ptember-2023	      	 640 ND  	 							1															
Propionic Acid Propionic Acid Pecember January February July August September October January February November December November Poctober Poctober January February August September July August September December November Pecember November Pecember	ecember-2022 January-2023 February-2023 March-2023 April-2023 June-2023 July-2023 August-2023 ptember-2023	      	640 ND  										620				 								11	100
Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Pecember January February February March March June July August September October October November December November Poctober Poctober Poctober December November Poctober	January-2023 February-2023 March-2023 April-2023 June-2023 July-2023 August-2023 ptember-2023	     	ND  								1600					73 J	 								27	250
Propionic Acid Propionic Acid Pecember January February February March March March June July August September October December November Poctober Poctober December November Per Propionic Acid April	January-2023 February-2023 March-2023 April-2023 June-2023 July-2023 August-2023 ptember-2023	     	ND  		\												 								27	250
Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Pecember- October- January- February- March- January- February- June- July- August September- October- November- December- November- November- Per- Per- September- December- November- Per- November- December- November- Per- November- December- November- Per- November- December- November- December- November- November- December- November- December- November- November- December- November- December- November- November- December- November- December- November- December- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- No	February-2023 March-2023 April-2023 June-2023 July-2023 August-2023 ptember-2023	   	 		/					ND	2000					ND	 									500
Propionic Acid March- April- May- June- June- Juny- September- October- November- December- January- February- March- March- March- March- September- October- November- October- November- December- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December-	March-2023 April-2023 June-2023 July-2023 August-2023 ptember-2023	   															 ND									500
Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Pecember January February March April May June July August September October October November December November Perprovic Acid March April August September December November Perprovic Acid April August September December November December November	April-2023 May-2023 June-2023 July-2023 August-2023 ptember-2023	  								ND	ND						 									500
Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Pecember- January- February- March- January- February- July- August- September- October- October- November- December- November- December- November- Pyruvic Acid March- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- November-	May-2023 June-2023 July-2023 August-2023 ptember-2023	  								600		ND					 								340	500
Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid December January February March May June July August September October October November December November Pyruvic Acid March April	June-2023 July-2023 August-2023 ptember-2023		520								1400						 									500
Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Pecember- January February- June- June- June- June- June- June- June- June- December- November- November- November- November- Pecember- November- Pecember- November- Pecember- November- December- November- December- November- December- November- December- November- December- November- November- December- November- November- November- December- November- December- November- December- November- November- December- November- December- November- December- November- November- December- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November-	July-2023 August-2023 ptember-2023									800							 								340	
Propionic Acid Propionic Acid Propionic Acid Propionic Acid Pecember January February March May June July August September October October October December November December November Pyruvic Acid March	August-2023 ptember-2023										2900		2000		2900		 								680	1000
Propionic Acid Propionic Acid Propionic Acid Propionic Acid Pecember January February March May June July August September October October October December November December November Pyruvic Acid March	August-2023 ptember-2023																 							ND	140	200
Propionic Acid Propionic Acid Propionic Acid Propionic Acid December- January- February- March- May- June- July- August- September- October- October- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- November- December- November- December- November- December- November- November- December- November- November- November- December- November- December- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November-	ptember-2023		ND														 	ND							340	500
Propionic Acid Propionic Acid Propionic Acid Propionic Acid December- January- February- March- May- June- July- August- September- October- October- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- November- December- November- December- November- December- November- December- November- November- December- November- December- November- December- November- December- November- November- December- November- December- November- December- November- December- November- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November- November-	ptember-2023								3100								 						680		680	1000
Propionic Acid Propionic Acid December January February February March March May June July August September October October November December November Pyruvic Acid March April May June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June June December November							1200		2000								 						1900	ND		500
Propionic Acid Propionic Acid December- January- February- February- March- May- July- August- September- October- October- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- November- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- December- Decemb	October-2023				1800												 	ND							340	500
Propionic Acid December January February March March May June July August September October October November December November November Pyruvic Acid March								1300									 	ND			2000				340	500
Propionic Acid December January February March March May June July August September October October November December November November Pyruvic Acid March	ovember-2023		ND			2170		2310			2080			387			 	ND			3350			1420	250	500
Pyruvic Acid Marcha December- January- February- February- March- May- July- August- September- December- November- December- January- February- February- March- March- May- July- August- September- December- November- December- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March- March-					2580												 								500	1000
JanuaryFebruaryFebruaryMarchAprilMayJuneJulyJulyAugustSeptemberOctoberOctoberDecemberNovemberDecemberNovemberDecemberNovemberDecemberNovemberDecemberNovemberDecemberNovemberDecemberNovemberDecemberMarchJanuaryFebruaryFebruaryPyruvic AcidMarchApril																	 996									100
FebruaryMarchAprilAprilMayJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneOctoberOctoberDecemberNovemberDecemberJanuaryFebruaryFebruaryPyruvic AcidMarchApril	ecember-2023																 	ND								250
FebruaryMarchAprilAprilMayJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneJuneOctoberOctoberDecemberNovemberDecemberJanuaryFebruaryFebruaryPyruvic AcidMarchApril					2280												 									1000
April March- April May- July- July- August- September- October- October- December- November- December- November- December- November- December- November- December- November- December- November- December- April- March- April- April-	January-2024			1680 1210		1510					1970						 							1030		250 250
April- May- June- July- August- September- October- October- December- November- December- November- Pyruvic Acid March- April-	February-2024																 			 1980		2900				500
April- May- June- July- August- September- October- October- December- November- December- November- Pyruvic Acid March- April-																	 							570		20
May- June- July- August- September- October- October- December- November- December- January- February- Pyruvic Acid March-	March-2024																 									
May- June- July- August- September- October- October- December- November- December- January- February- Pyruvic Acid March-																	 					2100				200
June- July- August- September- October- October- December- November- December- December- Pyruvic Acid March- April-	April-2024													ND			 1150	ND								100
June- July- August- September- October- October- December- November- December- December- Pyruvic Acid March- April-	Mary 2004				2300						1720						 1150			1/40						250
July-         August-         September-         October-         October-         December-         December-         November-         December-         January-         February-         Pyruvic Acid         March-         April-											1730						 	ND		1640	2770			647		250
August- September- October- Doctober- December- November- December- December- Sanuary- February- Pyruvic Acid March- April-	July-2024										2500	2470					 	ND		1870				1400		100 250
September October November December November December December Pyruvic Acid March April	August-2024						1320										 			1920			2040			500
October- November- December- November- December- January- February- Pyruvic Acid March- April-					2640		1690										 1300									250
November       December       November       December       December       January       February       February       April		ND															 									50
November       December       November       December       December       January       February       February       April			275														 									100
December- November- December- January- February- Pyruvic Acid March- April-	October-2024																 		1470							250
December- November- December- January- February- Pyruvic Acid March- April-					2240												 									1250
December- November- December- January- February- Pyruvic Acid March- April-													46 J				 								12	100
November- December- January- February- Pyruvic Acid March- April-	ovember-2022										98 J					ND	 								30	250
November- December- January- February- Pyruvic Acid March- April-	$a_{cember} = 2022$		ND														 								30	250
Pyruvic Acid March- April-			ND			ND		ND			ND			ND			 	ND			ND			ND	250	500
Pyruvic Acid March- April-	ovember-2023				ND												 								500	1000
Pyruvic Acid March- April-																	 ND									1000
Pyruvic Acid March- April-	ecember-2023																 	ND								250
Pyruvic Acid March- April-					ND												 									1000
Pyruvic Acid March- April-	January-2024			ND							ND						 							ND		250
Pyruvic Acid March-				ND		ND											 									250
April																	 			ND		ND				500
April	March 0004																 							130		20
	March-2024																 					460				200
														ND			 	ND								100
					ND												 ND									250
May-	April-2024										ND						 	ND		ND	ND			ND		250
	April-2024 May-2024																 	ND		113				ND		100
											ND	ND					 									250
	May-2024						ND										 			ND			ND			500
	May-2024 June-2024				ND		ND										 ND									250
	May-2024 June-2024 July-2024																 									50
	May-2024 June-2024 July-2024 August-2024	 ND															 									100
CTODE-	May-2024 June-2024 July-2024 August-2024 ptember-2024		ND			+																				250
	May-2024 June-2024 July-2024 August-2024	ND	ND 														 		ND							

Wel	ll ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event		1										Conce											I		LOD	LOQ
	C COMPOUNDS (ug/	/1)																									
VOLAILL OKGANIC											2510					1140			1	1						20	100
	November-2022										3510					1140										30	100
													15600													300	1000
	December-2022		3140									3390														30	100
					26800				27700		5670						21700	7150								300	1000
			3480							632																30	100
	January-2023 -										7840					5470										300	1000
	February-2023																	14400								600	2000
	March-2023									257	2770															30	100
	April-2023									3420		5530														750	2500
	Aprii-2023																										+
	May-2023		5360							5970																150	500
											13600															750	2500
	June-2023										13800															750	2500
	30110 2020												20100		22600											1500	5000
			5860																ND							60	200
	July-2023																								13500	750	2500
									38400															31600		3000	10000
																									5950	60	200
																								7350		150	500
	August-2023								3000																	750	2500
							25600																			1500	5000
																			439							60	200
	September-2023				17500																					750	2500
																			211							15	50
	October-2023							17800														33400				1500	5000
																			 78.8 J								100
								17700																		30	
	November-2023		3990					17700			10600															150	500
2-Butanone (MEK)	November-2023				25700																					300	1000
					25700									17/00											21000	750	2500
					10700	22300								17600								26700			31200	1500	5000
	December-2023				13700													7060	ND							150	500
	January-2024										10800															150	500
	· · · · ·			34700																					28900	1500	5000
	February-2024																				12700					150	500
				30500		28900																	17400			1500	5000
	March-2024																						11700			150	500
																									25200	1500	5000
																			ND							30	100
	April-2024													14600												750	2500
					37200													28700								1500	5000
																			ND							60	200
	May-2024																				7340				18600	150	500
											25700											32700				1500	5000
																			ND							60	200
	June-2024																				13800					150	500
	30110 2024																								33200	15000	25000
											15600															150	500
	July-2024		1									25400							1							1500	5000
	August-2024						17700														7260			17900		1500	500
					19000		16600														/200					150	500
	September-2024																	32200									
																										1500	5000
	October 2004	28.2																								3	10
	October-2024		2770		12000																					60	200
					13000															10800						150	500
	November-2024	28800	4140																							60 750	200 2500
																											1 1 5 1 ( )

We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event						-						1	entration										1		LOD	LOQ
																4420										70	100
	November-2022																										
											16100		38300													700	1000
											15600	5170						9800								700	1000
	December-2022		8500																							1750	2500
					53100				49900								45600									3500	5000
										1530																70	100
	January-2023										22200					14000										700	1000
			8130																							1750	2500
	February-2023																	23900								1400	2000
	March-2023									375																70	100
											6810															700	1000
	April-2023									8290		7560														1750	2500
	May-2023 -		10700							11700																350	500
	1viuy-2023										29600															1750	2500
											29600															1750	2500
	June-2023 -												61800		50800											3500	5000
																			1180							140	200
			9780																								
	July-2023		7780																							700	1000
																									11600	1750	2500
									77200															69700		7000	10000
																									20900	700	1000
	August-2023								18700																	1750	2500
							72500																	87700		3500	5000
	September-2023																		188 J							140	200
	September-2023				40100																					1750	2500
cetone	October-2023																		79							35	50
	OCIODEI-2023							66900														92900				3500	5000
																			104							70	100
	Nevrande er 2002		5560																							700	1000
	November-2023				64700																					1750	2500
						43100		61100			36800			32800								53900			67800	3500	5000
																		ND								140	200
	December-2023																		ND							350	500
					44300																					1750	2500
	January-2024			96600							22800														47300	3500	5000
	February-2024			81600		70200															45600		63100			3500	5000
	March-2024																						50800		57600	3500	5000
																			ND							70	100
	April-2024													24300												1750	2500
	Αρπ-2024																										
					95300													55200								3500	5000
	May-2024 -																		ND							140	200
											63200										39000	91300			33300	3500	5000
																			ND							140	200
	June-2024 -																				94400				84400	35000	50000
	July-2024										32200	52600														3500	5000
	August-2024						57700														36000			81500		3500	5000
	September-2024				59800		44500											69300								3500	5000
		30.1																								7	10
	October-2024		5230																							140	200
					49800															40700						3500	5000
			8680																							350	500
	November-2024	44400																								1750	2500
		44400																								1750	

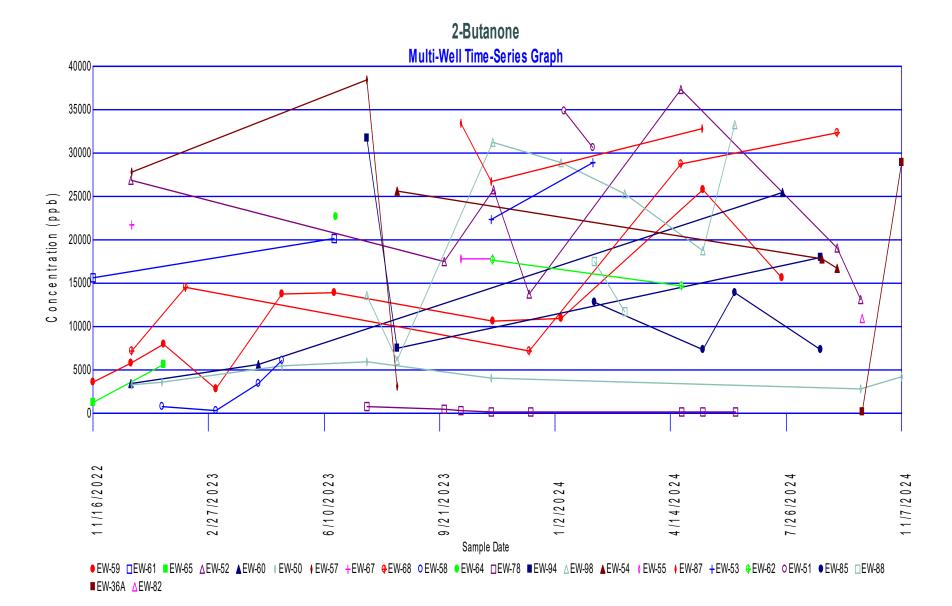
We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												Conce	ntration												LOD	LOQ
	November-2022										7.4 J		2860			50.4										4	10
	D		301		2960						6.3 J	622					1750	179								4	10
	December-2022								6550																	40	100
	January-2023		240							28.7	1620					167										4	10
	February-2023																	1370								4	10
	March-2023									1540	727															4	10
	April-2023									3740		320														4	10
	May-2023		814							4890	3370															20	50
											2630															8	20
	June-2023 -												1400		1590											20	50
			824																80.8							8	20
	July-2023								4050															1420		20	50
	, ,																								11800	100	250
																									379	8	20
	August-2023						2320		168															ND		20	50
	Santanahar 2002																		193							8	20
	September-2023				468																					100	250
	October-2023																		399							2	5
	OCIODEI-2023							576														3100				20	50
enzene			80.8											31.3												2	5
	November-2023																		323							4	10
						1070		654			982											1960			1190	20	50
					870																					100	250
	December-2023																	932								8	20
				1410	1330														463							20	50
	January-2024 February-2024			906		884					662										346		484		2900	20 20	50 50
	March-2024																						226		8910	20	50
														52.1					13.8							4	10
	April-2024				2040													3420								20	50
																		0420	276							8	20
	May-2024										3080										144	818			2990	20	50
																			173							8	20
	June-2024																				210				2740	20	50
	July-2024										1410	1820														20	50
	August-2024						828														162			384		20	50
	September-2024				960		727											2710								20	50
		306																								0.4	1
	October-2024		429																							2	5
					1200															828						20	50
	November-2024	119	512																							8	20

W	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	100
Parameter	Monitoring Event												Conce	entration												LOD	LOQ
	December-2022		67.3		172				287		ND	48.5					108	27.4								4	10
	November-2022										ND		194			16.2										4	10
	January-2023		65.1							ND	93.9					20.8										4	10
	February-2023																	151								4	10
	March-2023									131	71.5															4	10
	April-2023									186		43.4														4	10
	May-2023		124							276	144															20	50
											104															8	20
	June-2023 -												98		116											20	50
																									666	4	10
	July-2023		128																82							8	20
	,								224															87.5		20	50
																									16.8 J	8	20
	August-2023						80		ND															ND		20	50
	September-2023																		22.8							8	20
	September-2023				ND																					100	250
	October-2023																		34.8							2	5
								42.5 J														247				20	50
			26.3											45.4												2	5
thylbenzene	November-2023																		26.9							4	10
						62		54			76.5											224			60.5	20	50
					ND													46								100 8	250 20
	December-2023				69.5													40	 44 J							20	50
	January-2024			99							28 J														248	20	50
	February-2024			51		43 J															31 J		41 J			20	50
	March-2024																						25 J		710	20	50
														106					ND							4	10
	April-2024 -				91.5													186								20	50
	14																		35.4							8	20
	May-2024										146										ND	59			225	20	50
	luna 2024																		23.6							8	20
	June-2024 -																				ND				142	20	50
	July-2024										76	118														20	50
	August-2024						27.5 J														ND			27 J		20	50
	September-2024				46.5 J		44 J											192								20	50
		59.6																								0.4	1
	October-2024		112																							2	5
					62.5															76						20	50
	November-2024	14.4 J	135																							8	20

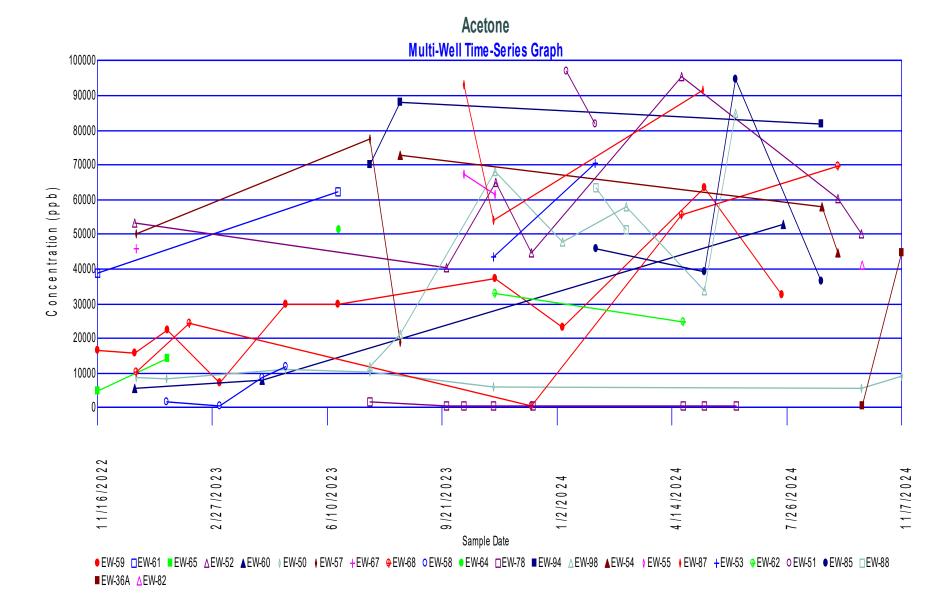
We	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event												Conce	entration												LOD	LOG
	Neverals ar 0000										309					176										100	100
	November-2022												8530													1000	1000
	Dana da conce		151								170	1120						663								100	100
	December-2022				5210				19800								6130									1000	1000
	January-2023		183							566	1810					352										100	100
	February-2023																	3760								2000	2000
	March-2023									353	464															100	100
	April-2023									2410		4790														100	100
	May-2023		ND							2740	2380															500	500
											2100															200	200
	June-2023 -												7320		6670											500	500
																									2960	100	100
	July-2023		411																616							200	200
									8380															5310		500	500
																									2880	200	200
	August-2023						7370		3210															1200		500	500
	C																		343							200	200
	September-2023				ND																					2500	2500
	October-2023																		606							50	50
	OCIODel-2023							4870														9140				500	500
etrahydrofuran			199											325												50	50
	November-2023																		358							100	100
	14046111061-2023					4780		3320			785											5370			4600	500	500
					4620																					2500	2500
	December-2023																	4240								200	200
					2620														502							500	500
	January-2024			5160							1040														10900	500	500
	February-2024			3500		4580															3520		4910			500	500
	March-2024																						3320		8710	500	500
	April-2024													697					ND							100	100
					7290													7680								500	500
	May-2024 -																		555							200	200
											2660										1880	5860			7640	500	500
	June-2024																		568							200	200
																					3830				13000	500	500
	July-2024										1900	4020														500	500
	August-2024						3220														2020			4610		500	500
	September-2024				2950		2730											6640								500	500
		248																								10	10
	October-2024		318																							50	50
	November 0004				2580															2730						500	500
	November-2024	0020	452																							200	200

W	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event								-				Conce	ntration	-									2		LOD	LOQ
	November-2022										ND		214			32.8										5	10
	December-2022		122		175				195		ND	113					113	48.3								5	10
	January-2023		122							8 J	139					35.3										5	10
	February-2023																	224								5	10
	March-2023									182	98.1															5	10
	April-2023									303		94.4														5	10
	May-2023		258							371	239															25	50
											165															10	20
	June-2023 -												67		212											25	50
																									965	5	10
	July-2023		248																107							10	20
	, ,								218															118		25	50
	A																								36.6	10	20
	August-2023						105		ND															ND		25	50
	September-2023																		40.6							10	20
	September-2023				ND																					125	250
	October-2023																		59.2							2.5	5
								37 J														235				25	50
			47.3											50.4												2.5	5
oluene	November-2023																		48.7							5	10
						62.5		51.5			114											167			114	25	50
					ND													73.2								125 10	250
	December-2023				83.5														74.5							25	20 50
	January-2024			95.5							60														310	25	50
	February-2024			49 J		37 J															ND		30.5 J			25	50
	March-2024																						73		916	25	50
														90.1					ND							5	10
	April-2024				104													263								25	50
																			53.8							10	20
	May-2024										180										ND	62.5			284	25	50
																			34.6							10	20
	June-2024																				ND				228	25	50
	July-2024										97	125														25	50
	August-2024						35 J														ND			25 J		25	50
	September-2024				80		63.5											226								25	50
		55.7																								0.5	1
	October-2024		173																							2.5	5
					65.5															72						25	50
	November-2024	44.6	245																							10	20

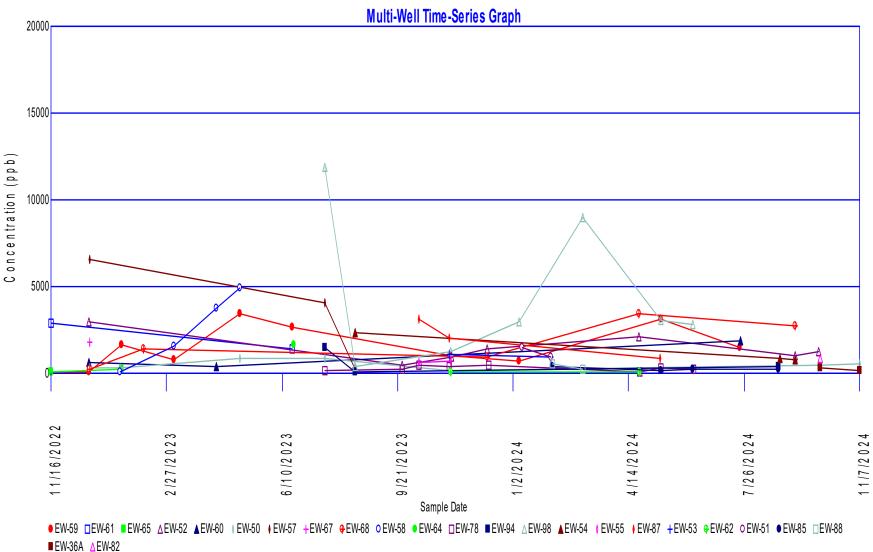
W	ell ID	EW-36A	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-82	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	100
Parameter	Monitoring Event										<u>.</u>		Conce	ntration			·									LOD	LOQ
	November-2022										ND		185			37.8										10	30
	December-2022		161		222				186		ND	112					197	59.9								10	30
	January-2023		138							ND	134					38.1										10	30
	February-2023																	240								10	30
	March-2023									240	111															10	30
	April-2023									329		97.4														10	30
	May-2023		274							441	230															50	150
											177															20	60
	June-2023												92 J		136 J											50	150
																									1130	10	30
	July-2023		257																74.4								1
	JUIY-2023								230															174		20 50	60 150
																									 48.4 J	20	
	August-2023						180		 ND															ND	40.4 J 	50	60 150
																			ND							20	60
	September-2023				ND																					250	750
																			30.6							5	15
	October-2023							134 J														328				50	150
			56											48												5	15
Xylenes, Total	November-2023																		25.3 J							10	30
	NOVEITIDEI-2023					116 J		104 J			132 J											306			138 J	50	150
					ND																					250	750
	December-2023																	167								20	60
					224														ND							50	150
	January-2024			142 J							ND														534	50	150
	February-2024			63 J		59 J															ND		ND			50	150
	March-2024																						ND		1360	50	150
	April-2024 -													110					ND							10	30
					140 J													352								50	150
	May-2024																		31.6 J							20	60
	,										223										ND	105 J			400	50	150
	June-2024																		ND							20	60
																					ND				261	50	150
	July-2024						70.5 1				125 J	157														50	150
	August-2024				 90.5 J		72.5 J 120 J											368			ND			55.5 J		50	150
	September-2024	 54.3																								50	150
	October-2024		201																							5	15
					144 J															75.5 J						50	150
	November-2024		223																							20	60
= not applicable/a				1	1	1	1			I		I	1						1	1	1	1	1	1			igrams per lit


--- = not applicable/available J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.

LOD = laboratory's Limit of Detection


LOQ = laboratory's Limit of Quantitation

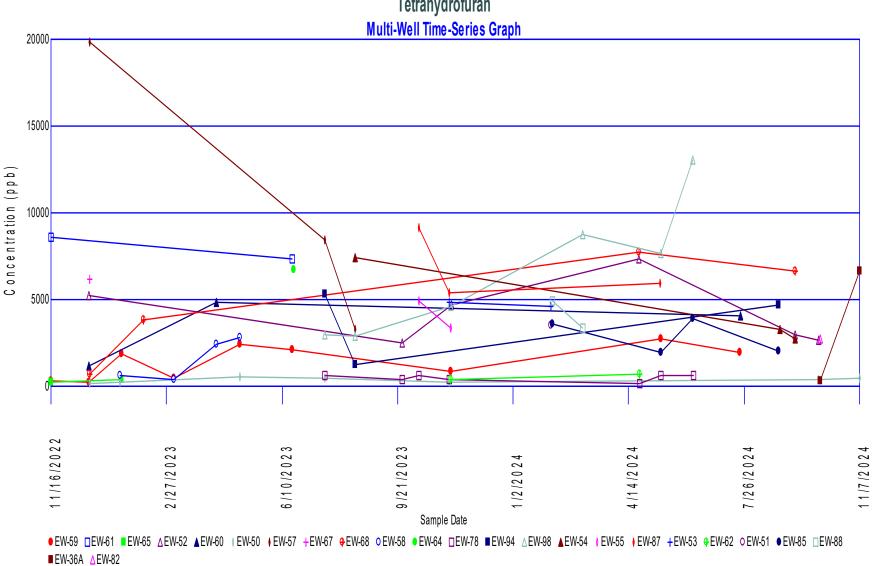
mg/L = milligrams per liter ND = Not Detected


ug/L = micrograms per liter



Page 1

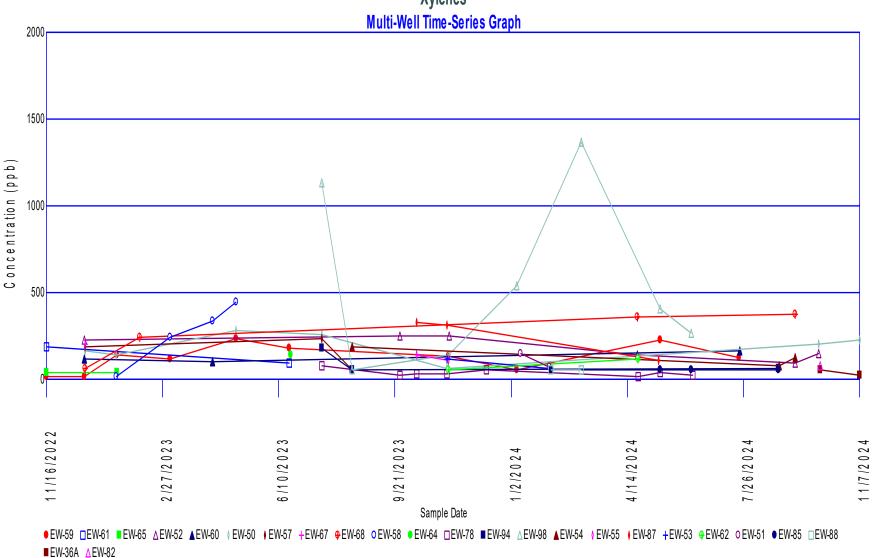



Page 2



Benzene Iulti-Well Time-Series Graph

800			Multi-Well Time-	Series Graph			
700		۵			A		
600				/	/ \		
(q. 500				/			
a tion (p							
Concentration (ppb)		2	K				
200 100 0							
11/16/2022	2 /2 7 /2 0 2 3	6 /1 0 /2 0 2 3	9/21/2023	1/2/2024	4 /1 4 /2 0 2 4	7 /2 6 /2 0 2 4	1 1 / 7 / 2 0 2 4
	1 ■EW-65 △EW-52 ▲EW-60	€W-50 ↓EW-57 +EW-67 ♀	Sample [	Date			]EW-88


Ethylbenzene



Tetrahydrofuran

100	0			Multi-Well Time-Se	eries Graph							
90			A		/	A						
80												
70												
(qd)	0											
Concentration (ppb) 05 09 03 09	0				/							
e ntra	0	0										
0 U C 30	0											
20				K K			\$					
10												
		I	I			I						
	022	23	23	2 3	4	2 4	2 4	2 4				
	1 1 / 1 6 / 2 0 2 2	2   2 7   2 0 2 3	6 /1 0 /2 0 2 3	9 /2 1 /2 0 2 3	1 /2 /2 0 2 4	4 /1 4 /2 0 2 4	7 /2 6 /2 0 2 4	1 1 / 7 / 2 0 2 4				
	- -	21	6 /	Sample Da		4	12	<del>.</del>				
	● EW-59 □EW-61 ■ EW-65 ■ EW-36A △ EW-82	5 ∆EW-52 ▲EW-60 ≬EW-5	50 ♦EW-57 +EW-67 �E	EW-68 ○EW-58 ●EW-64 □EW	/-78 ∎EW-94 ∆EW-98 ▲EW-5	4 ≬EW-55 ≬EW-87 +EW-53	⊕EW-62 ○EW-51 ●EW-85	EW-88				

Toluene ulti-Well Time-Series Graph



Xylenes