August 2024 Monthly Compliance Report

Solid Waste Permit No. 588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-30 | September 10, 2024

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sec.	tion			Page	
	Intro	duction.		4	
1.0	Gas	Collectio	n	4	
	1.1	Surface	e and Leachate Collection Emissions	4	
		1.1.1	Surface Emissions	4	
		1.1.2	Leachate Collection Emissions	5	
	1.2	Existing	g Gas Extraction System Performance	6	
	1.3	Remote	e Monitoring System	7	
		1.3.1	Automated Wellhead Temperature Measurements	7	
		1.3.2	Comparison with Manual Temperature Measurements	8	
		1.3.3	Monthly Regulatory Wellhead Temperature Measurements	9	
		1.3.4	LFG Sampling	10	
	1.4	Large-D	Diameter Dual-Phase Extraction Wells	12	
	1.5	VDEQ C	Concurrence on Wells	12	
2.0	Side	wall Odo	r Mitigation	12	
	2.1	Perime	ter Gas Collection System	12	
	2.2	Sidewa	III Odor Mitigation System	12	
	2.3	Pilot Sy	stem Construction	12	
	2.4	Full Sys	stem Construction	12	
3.0	Was	te Tempe	erature Monitoring	13	
	3.1	Temper	rature Monitoring System Design	13	
	3.2	Temper	rature Monitoring System Installation	13	
4.0	Lead	hate Ext	raction and Monitoring	25	
	4.1	Existing	g System Optimization	25	
		4.1.1	Total LFG Liquids Removal	27	
	4.2	Sampli	ng and Analysis Plan	28	
		4.2.1	Sample Collection	28	
		4.2.1	Quality Assurance and Quality Control	30	
		4.2.2	Data Validation	30	
		4.2.3	Laboratory Analytical Results	31	
5.0	Settl	ement M	Nonitoring and Management	33	
	5.1 Settlement Monitoring and Management Plan				
	5.2	Monthly	y Surveys	33	
		5.2.1	Topographic Data Collection	33	

Table of Contents

Sect	ion		Page
		5.2.2 Settlement Plate Surveys	39
6.0	Inter	rmediate Cover and EVOH Cover System	42
	6.1	Intermediate Cover Installation	42
	6.2	EVOH Cover System Design	42
	6.3	EVOH Cover System Procurement	42
	6.4	EVOH Cover System Installation	42
7.0	Storr	mwater Management	43
	7.1	Stormwater Management Plan Development	43
	7.2	Stormwater Management Basin Design and Construction	43
	7.3	Stormwater Management Plan Implementation	43
	7.4	Long-Term Stormwater Control and Removal	43
	7.5	Stormwater Monitoring	44
8.0	Misc	cellaneous	44
	8.1	Cease Waste Acceptance	44
	8.2	Long-Term Plan	44
	8.3	Monthly Compliance Reports	44
	8.4	Community Outreach Program	44
		Figures	
Figur	e 1.	Average Automated Wellhead Temperatures	8
Figur		Automated vs. Manual Temperature Measurements	
Figur Figur		CO and H ₂ Concentration at Selected Wells Temperature Monitoring Probe Locations	
Figur	e 5.	TP-1 Average Temperatures for the Months of August 2023, November 2023,	, February
2024 Figur		y 2024, and August 2024 TP-2 Average Temperatures for the Months of August 2023, November 2023,	15
		y 2024, and August 2024	
Figur		TP-3 Average Temperatures for the Months of August 2023, November 2023	
Figur	-	y 2024, and August 2024 TP-4 Average Temperatures for the Months of August 2023, November 2023,	
2024	4, May	y 2024, and August 2024	18
Figur		TP-5 Average Temperatures for the Months August 2023, November 2023, For y 2024, and August 2024	
	+, iviay 'e 10.		, February
		y 2024, and August 2024	

Table of Contents

Section		Page
Figure 12. 2024, May 2 Figure 13.	TP-7 Average Temperatures for the Months of August 2023, November 2023, F. 1024, and August 2024 TP-8 Average Temperatures for the Months of August 2023, November 2023, F. 1024, and August 2024 TP-9 Average Temperatures for the Months of August 2023, November 2023, F. 1024, and August 2024 Estimated August Dewatering Liquid Removal by Well Estimated Volume of Liquids Removed from Landfill Gas Wells 1-Month Elevation Change Map 3-Month Elevation Change Map 1-Year Elevation Change Map Settlement Plate Locations Elevation Change of Select Settlement Plates Over Time	ebruary 23 ebruary 24 26 36 36 38
	Tables	
Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8.	Summary of August Surface Emissions Monitoring	6 10 13 29 31
Appendic	es	
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F	Surface Emissions Monitoring Summary Letters In-Waste Temperatures on Select Days in August Daily Wellhead Temperature Averages Solid Waste Permit 588 Daily Borehole Temperature Averages Monthly Topography Analysis Field Logs	

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report provides updates regarding the progress towards completion of the items outlined in Appendix A of the Consent Decree between the City and VDEQ. The following sections outline progress during the month of August 2024 related to Solid Waste Permit (SWP) No. 588.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

1.1.1.1 Quarterly SEM

SCS performed the Second Quarter surface emissions monitoring event on June 12, 2024. The results of the Quarterly SEM were summarized in the June 2024 Compliance Report for the SWP No. 588 Landfill. A report outlining the results and exceedance locations was included in the Semi-Annual Report that was submitted to VDEQ on August 30, 2024.

The Third Quarter 2024 SEM Event is scheduled to be completed by September 30, 2024.

1.1.1.2 Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, SCS performed additional surface emissions monitoring on August 1, 2024; August 7, 2024; August 15, 2024; August 21, 2024: and August 29, 2024. These weekly surface emissions monitoring (SEM) events were performed in accordance with item 1.i in Appendix A of the Consent Decree between the City and VDEQ.

The monitoring in August generally conformed to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint.

The Facility submitted letters to VDEQ outlining the results of the August monitoring events on August 7, 2024; August 14, 2024; August 21, 2024; August 28, 2024; and September 4, 2024.

Table 1. Summary of August Surface Emissions Monitoring

Description	August 1, 2024	August 7, 2024	August 15, 2024	August 21, 2024	August 29, 2024
Number of Points Sampled	166	165	166	167	167
Number of Points in Serpentine Route	100	100	100	100	100
Number of Points at Surface Cover Penetrations	66	65	66	67	67
Number of Exceedances	9	9	6	7	6
Number of Serpentine Exceedances	0	0	0	1	1
Number of Pipe Penetration Exceedances	9	9	6	6	5

During the August monitoring events, one new exceedance (identified as Tag 61) was detected on the serpentine route. Additionally, new exceedances were detected at nine surface cover pipe penetrations (EW-33B, EW-52, EW-63, EW-64, EW-65, EW-77, EW-91, EW-100, and TP-9). These new exceedances were all identified in the north-central portion of the landfill, where vacuum at these wellheads, or in the case of TP-9 and Tag #61, the surrounding wellheads, has been reduced. Corrective actions to address the ongoing exceedances, likely involving well adjustments to increase vacuum, are planned for the month of September 2024.

An Alternate Remedy Request outlining proposed corrective actions for exceedances at EW-55, EW-67, EW-82, EW-90, and EW-95 was submitted to VDEQ on July 11, 2024 in accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v). Corrective actions at these five wells, which involved installation, or reapplication, of a bentonite seal along the well riser pipe were completed during the week of August 12, 2024. Follow-up monitoring at these locations have indicated that these corrective actions have been successful at reducing methane concentrations below the regulatory threshold.

Furthermore, the Facility is taking proactive steps to limit fugitive surface emissions including placement of additional soil, continued and improved dewatering activities, and well tuning to increase gas extraction.

1.1.2 Leachate Collection Emissions

SCS Field Services (SCS-FS) visited the Bristol Landfill on August 26 and 27, 2024, and performed monitoring of the leachate, witness zone, northern cleanouts, and gradient control clean-outs at the southern end of the landfill. The results of that monitoring are included in Table 2. Table 2 also lists the cleanout pipe description based on site records and a review of correspondence.

Please note that LC07 is not connected to the LFG collection system. During connection of the other leachate cleanouts to the LFGCCS in 2020, measurements of gas composition in LC07 indicated low levels of landfill gas in this cleanout.

Table 2. Leachate Cleanout Pipe Monitoring Results

Description	ID#	Record Date	CH4 (% by Vol)	CO2 (% by Vol)	O2 (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H2O)	Adj Static Pressure (in H2O)	System Pressure (in H2O)
Southern Cleanouts Gradient West	LC01	08/27/24 16:53	55.00	44.4	0.1	0.5	71.1	70.4	-11.11	-11.11	-15.79
Southern Cleanouts Gradient East	LC02	8/27/24 16:58	48.6	47.9	0.0	3.5	70.6	70.6	-11.44	-11.46	-15.64
Southern Cleanouts Leachate Center	LC03	8/27/24 17:01	22.8	16.6	12.3	48.3	94.1	94.5	-15.15	-15.14	-15.46
Southern Cleanouts Witness East	LC04	8/27/24 17:04	5.3	4.4	19.1	71.1	93.3	94.4	-15.48	-15.31	-15.53
Southern Cleanouts Leachate West	LC05	8/27/24 17:10	49.8	47.2	0.1	2.9	67.2	67.2	-11.95	-12.12	-15.75
Southern Cleanouts Gradient Center West	LC06	8/27/24 17:14	20.8	7.8	14.6	56.8	94.7	95.5	-4.56	-4.56	-15.85
Southern Cleanouts Leachate East	LC08	8/27/24 17:07	46.3	49.9	0.2	3.7	70.8	70.7	-11.44	-11.44	-15.88
Southern Cleanouts Gradient Center East	LC09	8/27/24 17:17	11.4	6.0	17.0	65.6	101.6	102.4	-8.75	-8.75	-15.55
Southern Cleanouts Leachate West	LC10	8/27/24 17:20	0.1	0.3	21.2	78.3	95.6	95.7	-8.41	-8.41	-15.67
Northern Cleanouts Leachate East	NC01	8/27/24 16:28	0.7	0.3	21.2	77.8	96.6	97.2	-17.52	-17.52	0.32
Northern Cleanouts Leachate Center	NC02	8/27/24 16:30	0.6	0.2	21.2	78.1	95.0	95.3	-17.53	-17.50	0.32
Northern Cleanouts Leachate West	NC03	8/27/24 16:32	0.4	0.1	21.2	78.3	96.9	97.1	-17.54	-17.54	0.32
Northern Cleanouts Witness East	NC04	8/27/24 16:33	0.2	0.1	21.0	78.8	97.2	97.1	-11.78	-11.78	0.32
Northern Cleanouts Witness Center	NC05	8/27/24 16:35	0.1	0.4	20.5	79.0	94.3	94.7	-11.78	-11.78	0.32
Northern Cleanouts Witness West	NC06	8/27/24 16:36	0.2	0.0	21.1	78.8	95.7	95.0	-11.78	-11.78	0.32
Northern Cleanouts Gradient East	NC07	8/27/24 16:38	27.3	14.0	4.0	54.7	98.6	98.3	-10.82	-10.77	0.32
Northern Cleanouts Gradient Center East	NC08	8/27/24 16:41	21.6	11.4	7.9	59.1	95.2	95.4	-10.95	-10.90	0.32
Northern Cleanouts Gradient Center West	NC09	8/27/24 16:44	22.6	11.8	7.1	58.5	98.2	98.1	-10.80	-10.77	0.32
Northern Cleanouts Gradient West	NC10	8/27/24 16:46	1.1	0.2	20.8	78.0	96.2	95.5	-10.77	-10.78	0.32

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in the following sections of this report.

Additional actions taken by SCS-FS include the following:

- Assistance with removal of existing rental flare
- Adjustments to LFGCCS
- Maintenance of air lines and pressurized air infrastructure

- Maintenance of wellhead and other gas collection infrastructure
- Removal of liquids from landfill gas headers

1.3 REMOTE MONITORING SYSTEM

In the Fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas wellheads. The purpose of the sensors is to record and transmit well-head gas temperatures via a cellular connection to a database managed by SCS-RMC.

The City is providing average temperatures recorded by the sensors to VDEQ on a daily basis via email. Average daily temperatures recorded by the remote monitoring system during the month of August are included in Appendix C. In addition, SCS previously prepared semi-monthly status updates to satisfy the conditions of compliance provision no. 2 of the Environmental Protection Agency (EPA) Region III letter, Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility, dated August 23, 2021. On August 2, 2023, VDEQ requested that such updates be included in the monthly compliance reports going forward. Accordingly, this section is a summary of temperature monitoring activities during the monthly monitoring period of August 2024.

1.3.1 Automated Wellhead Temperature Measurements

SCS reviewed the automated hourly temperature measurements from August 2024, and identified the following trends:

- Temperatures over 145°F: Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded at EW-47, 52, 53, 54, 56, 57, 60, 66, 67, and 100. Average temperatures at EW-52, 56, 66, and 67 were above the compliance threshold throughout the monitoring period. The highest average temperature, 170.3°F, was measured at EW-67 (see Figure 1). The average LFG temperatures recorded by automated wellhead sensors for the month of July were similar to the values measured in June.
- Temperature probes removed at decommissioned wells: Temperature probes at EW-34 and EW-40 were removed in December due to the decommissioning of the wells. Additionally, the temperature probe at EW-35 was removed in May, due to the decommissioning of the well. One probe was added to EW-61 in August 2024, and SCS-FS gathered more information for a quote presented to the City for installation of additional temperature sensors.



Figure 1. Average Automated Wellhead Temperatures

1.3.2 Comparison with Manual Temperature Measurements

Per the approval issued by VDEQ on August 2, 2023, the Facility ceased dedicated daily manual temperature measurements in the Permit No. 588 Landfill. In lieu of these measurements, the City has agreed to compare instantaneous hourly automated temperature measurements with temperatures measured at each wellhead with a handheld sensor during monthly compliance monitoring. These comparisons are shown in Figure 2, with the $\pm 8\%$ deviation goals as prescribed in the VDEQ approval.

Temperature comparisons outside the $\pm 8\%$ deviation goal lines were found again at EW-58, 64 and 100. The disparity between automated and manual temperature measurements at EW-58, 64, and 100 continued to be significant without evidence of low LFG flow rates, which have sometimes caused the automated temperature probes to record lower temperatures than manual measurements.

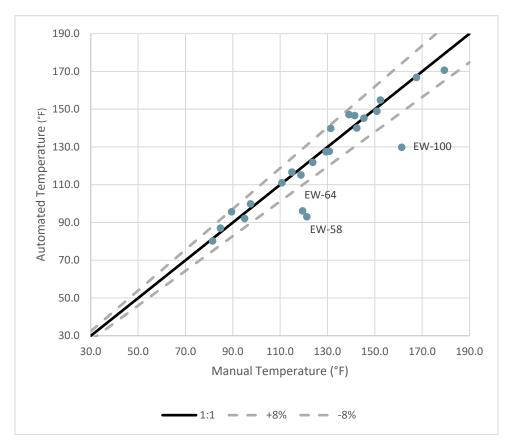


Figure 2. Automated vs. Manual Temperature Measurements

1.3.3 Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted August 26, 2024. During this monitoring period, temperature exceedances were resolved at EW-49, EW-52, EW-54, EW-89, and EW-94. Table 3 provides the status of all exceedances recorded during this monitoring period.

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 8/31/2024
EW-49	5/1/24	8/7/24 97.1°F	98 days	Resolved within 120-day timeline
EW-52	8/12/24	8/15/24 152.3°F	3 days	Resolved within 15-day timeline
EW-52	8/27/24	8/29/24 155.5°F	2 days	Resolved within 15-day timeline
EW-54	8/27/24	8/29/24 179.4°F	2 days	Resolved within 15-day timeline
EW-56	7/29/24	8/22/24 147.1°F	25 days	Ongoing, within 60-day timeline

Table 3. August Temperature Exceedance Summary

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 8/31/2024
EW-66	5/1/24	8/29/24 154.6°F	118 days	Ongoing, HOV Requested on 6/10/24
EW-82	8/13/24	8/27/24 143.2°F	11 days	Resolved within 15-day timeline
EW-89	6/17/24	8/22/24 184.8°F	67 days	Resolved within 120-day timeline
EW-94	7/16/24	8/12/24 96.1°F	28 days	Resolved within 60-day timeline
EW-94	8/27/24	8/29/24 166.6°F	2 days	Ongoing, within 15-day timeline

1.3.4 LFG Sampling

SCS collected weekly LFG samples from wells with temperature exceedances lasting more than seven days using 1.5-L Summa canisters. The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H_2) content. As of September 1, 2024, the City is in possession of lab results for sampling on July 25, August 1, August 7, and August 15, 2024 to fulfill the requirement in 40 CFR 63.1961(a)(5). Lab results are summarized in Table 4.

Table 4. LFG Wellhead Sampling Summary

Sample Da	ite	7/25/24	8/1/24	8/7/24	8/15/24
EW 40	CO (ppmv)	170	174		
EW-49	H2 (Vol. %)	3.49	3.44		
EW EG	CO (ppmv)		ND	91.7	ND
EW-56	H2 (Vol. %)		3.01	3.06	2.87
EW-66	CO (ppmv)	184	284	268	208
EVV-00	H2 (Vol. %)	4.34	6.15	6.60	5.44
EW-82	CO (ppmv)				623
EVV-OZ	H2 (Vol. %)				21.5
EW 80	CO (ppmv)	1560	1530	1380	
EW-89	H2 (Vol. %)	27.7	30.1	28.1	
EW-94	CO (ppmv)	217			
EVV-94	H2 (Vol. %)	4.62			

The presence of hydrogen in the samples collected during this monitoring period indicates that combustion reactions are unlikely.

Carbon monoxide and hydrogen concentrations measured at wells for the last five weeks or more are shown in Figure 3. Both carbon monoxide and hydrogen concentrations had been relatively steady at EW-66, but increased in early August (see Figure 3). SCS reviewed the concentrations of methane, carbon dioxide, oxygen, and balance gas, as well as temperature and gas flow readings from this time and did not discover any correlating changes.

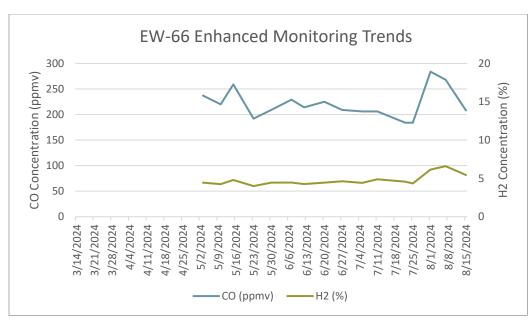


Figure 3. CO and H₂ Concentration at Selected Wells

As shown in Figure 3B, the majority of the carbon monoxide and hydrogen results this period appear to be consistent with sampling results at other wells collected in 2024. The elevated CO and H_2 found at EW-89 continued to follow a different trend, with a steeper slope at the more elevated CO and H_2 concentrations.

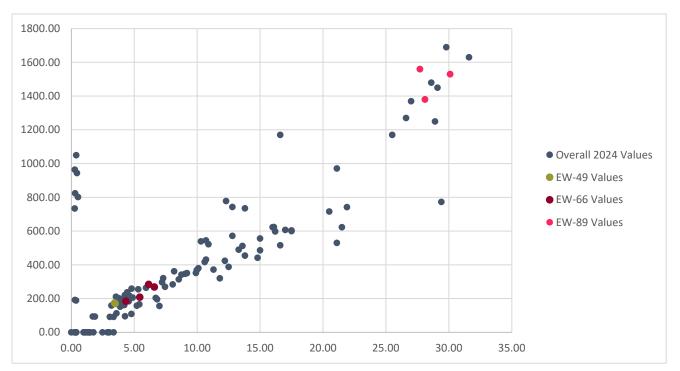


Figure 3B. CO and H₂ Concentration Scatter Plot

1.4 LARGE-DIAMETER DUAL-PHASE EXTRACTION WELLS

SCS completed design work on an expansion of the existing GCCS during the month of December 2022. The expansion included at least 5 large diameter dual-phase extraction wells. The wells and supporting infrastructure were completed by October 12, 2023.

1.5 VDEQ CONCURRENCE ON WELLS

As described in previous monthly compliance reports, the City engaged with VDEQ in discussions about the proposed approach for landfill GCCS improvements and expansions. Upon completion of the landfill gas collection system, SCS will submit updated as-built drawings to VDEQ that depict the completed system.

2.0 SIDEWALL ODOR MITIGATION

The City has designed and constructed a system to control fugitive emissions emanating from the quarry sidewalls. Specific aspects of the proposed design features are described in the following sections.

2.1 PERIMETER GAS COLLECTION SYSTEM

SCS's design of the GCCS expansion described in Section 1.4 included perimeter LFG wells. These wells are closer to the sidewall to intercept landfill gas that potentially could migrate to the quarry wall. These wells supplement the sidewall odor mitigation system described in Section 2.2. As described in the April 2023 Monthly Compliance Report for the SWP No. 588 Landfill, construction of the perimeter gas collection system was completed.

2.2 SIDEWALL ODOR MITIGATION SYSTEM

On behalf of the City and in an effort to capture emissions from the quarry sidewall, SCS designed a sidewall odor mitigation system (SOMS) during the month of October 2022. The design of this system was prepared and submitted to VDEQ on November 1, 2022.

2.3 PILOT SYSTEM CONSTRUCTION

SCS-CONS completed substantial construction of Phase 1 of the SOMS during the month of February 2023, SCS-FS began monitoring Phase 1 connected Horizontal Collector (HC) wellheads during the month of March 2023, and SCS-FS continued weekly wellhead monitoring into the month of May 2023. Phase 1 is considered the pilot system portion of the SOMS. SCS submitted a design engineer certification to VDEQ on February 10, 2023 that documented the substantial completion of Phase 1 of the SOMS. Details of Phase 1 construction progress and monitoring can be found in the monthly compliance reports for the SWP No. 588 landfill.

2.4 FULL SYSTEM CONSTRUCTION

SCS-CONS substantially completed construction of Phase 2 of the SOMS during the month of June 2023 as Phase 2 was connected to vacuum as of June 14, 2023. Cover soil placement continued

into the month of October 2023, and ceased when the construction crew left site on October 12, 2023 upon project final completion.

During the month of August 2024, SCS-FS collected monitoring data at each wellhead under vacuum. A summary of those measurements is shown in Table 5.

Table 5. System Averages of Sidewall Wellhead Gas Quality

Record Date	Average CH4 [%]	Average CO ₂	Average O ₂ [%]	Average Bal Gas [%]
8/5/2024	8.9	12.8	14.3	64.0
8/19/2024	5.9	9.2	16.4	68.6

The sidewall system average gas composition indicates lower methane content than typical landfill gas collection systems. The gas quality measurements indicate that the SOMS is functioning as designed because landfill gas is being withdrawn and oxygen intrusion is acceptable. The wideranged gas composition may indicate that some areas of the landfill may be experiencing higher landfill gas concentrations than areas where methane content is seemingly insignificant. SCS-FS will adjust SOMS wellheads based on gas quality to increase flow from sections of the system with high methane content and reduce flow from sections of the system with low methane content.

3.0 WASTE TEMPERATURE MONITORING

On behalf of the City, SCS designed a temperature monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

3.1 TEMPERATURE MONITORING SYSTEM DESIGN

The temperature monitoring system consists of nine boreholes drilled into the waste mass. A steel casing was placed in each borehole and the hole was backfilled around the casing with aggregate. A series of temperature sensors was placed inside the steel casing. At the top of each borehole, an IIoT transmitter collects the data from the sensors and transmits it to a cloud-based RMC system. The City submitted design of the temperature monitoring system to VDEQ on November 30, 2022.

3.2 TEMPERATURE MONITORING SYSTEM INSTALLATION

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP No. 588 Landfill. The locations of the temperature probes are shown in Figure 4.

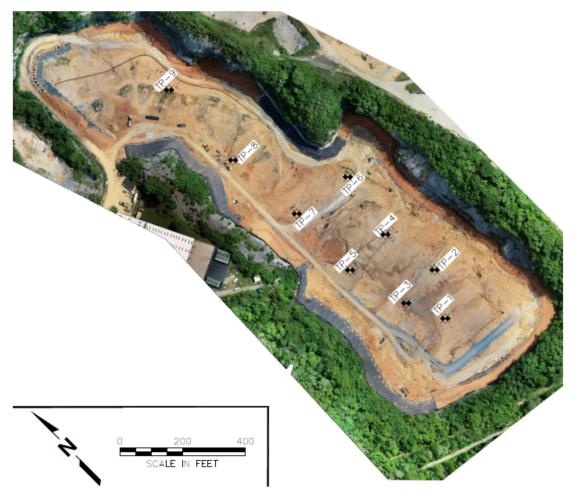


Figure 4. Temperature Monitoring Probe Locations

SCS began collecting temperature data daily on February 15, 2023. The temperature sensors continued to transmit temperature data during the month of August 2024. Average daily temperatures recorded by the sensors for the Month of August are included in Appendix D. Each week the average temperatures from a select day of that week are downloaded and compared to temperatures recorded during the previous week. Average daily temperatures recorded on select days during the month of August are shown in Appendix B. The average temperatures recorded for select months between August 2023 through August 2024 are shown in Figures 5 through 13 on the following pages.

Figure 5 shows daily average temperatures recorded by Temperature Probe 1 (TP-1) during the months of August 2023, November 2023, February 2024, May 2024, and August 2024. Based on the data, temperatures have stayed generally consistent based on measurements collected in the last year.

TP-1 was originally drilled to a depth of 180 feet, but the contractor was unable to install the casing beyond a depth of 160 feet. TP-1 did not record temperatures between July 23, 2023 and July 30, 2023 due to a dead battery. The battery was replaced and TP-1 began recording temperatures again on July 31, 2023.

Figure 5. TP-1 Average Temperatures for the Months of August 2023, November 2023, February 2024, May 2024, and August 2024

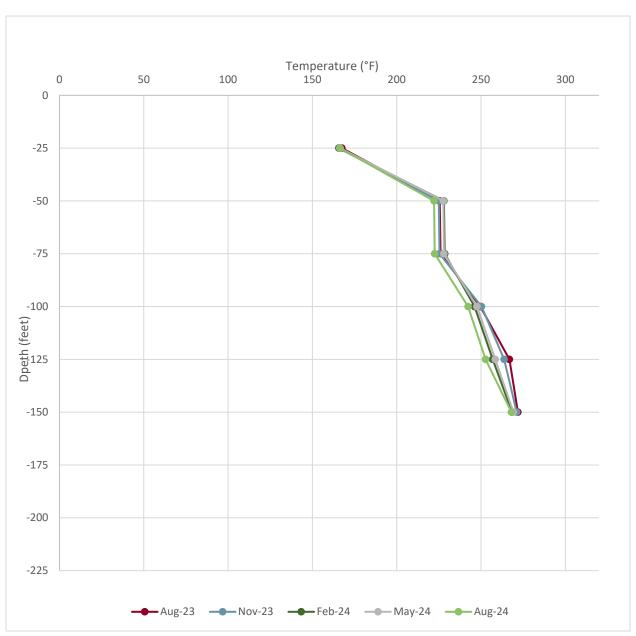


Figure 6 shows daily average temperatures in Temperature Probe 2 (TP-2) during the months of August 2023, November 2023, February 2024, May 2024, and August 2024. Based on the data, temperatures have been consistent during the last year.

TP-2 was originally drilled to a depth of 160 feet. TP-2 did not record temperatures between August 15, 2023 and September 17, 2023 due to a dead battery. A replacement battery was installed in September of 2023 and TP-2 recording temperatures again on September 18, 2023.

Figure 6. TP-2 Average Temperatures for the Months of August 2023, November 2023, February 2024, May 2024, and August 2024

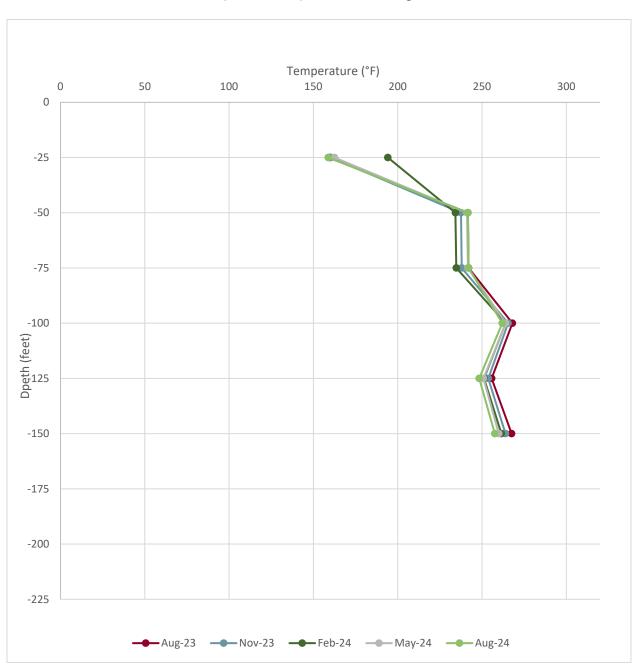


Figure 7 shows daily average temperatures in Temperature Probe 3 (TP-3) during the months of August 2023, November 2023, February 2024, May 2024, and August 2024. Based on the data, temperatures have been generally consistent below the 100-foot depth during the last year. Temperatures above the 100-foot depth fluctuated between August 2023 to November 2023 to where they have been consistent below the 50-foot depth. There was a decrease at the 25-foot depth between the months of February 2024 and May 2024.

Figure 7. TP-3 Average Temperatures for the Months of August 2023, November 2023, February 2024, May 2024, and August 2024

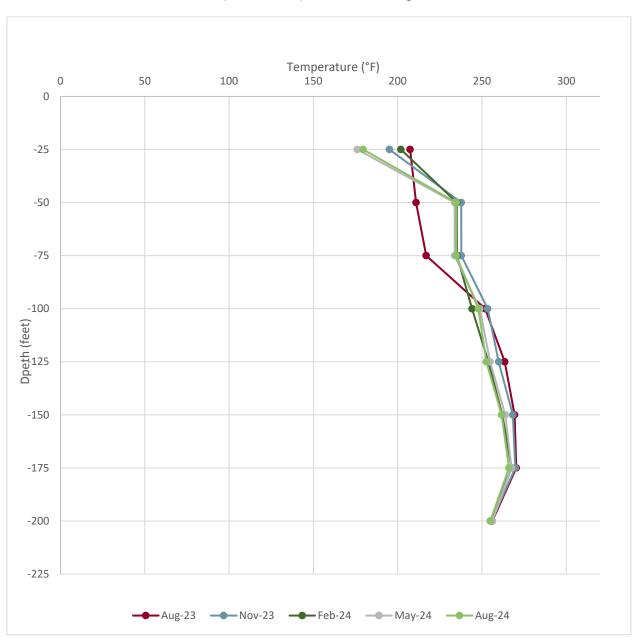


Figure 8 shows daily average temperatures in Temperature Probe 4 (TP-4) during the months of August 2023, November 2023, February 2024, May 2024, and August 2024. The temperatures during this time have been somewhat inconsistent, rising at some depths and lowering at others.

Figure 8. TP-4 Average Temperatures for the Months of August 2023, November 2023, February 2024, May 2024, and August 2024

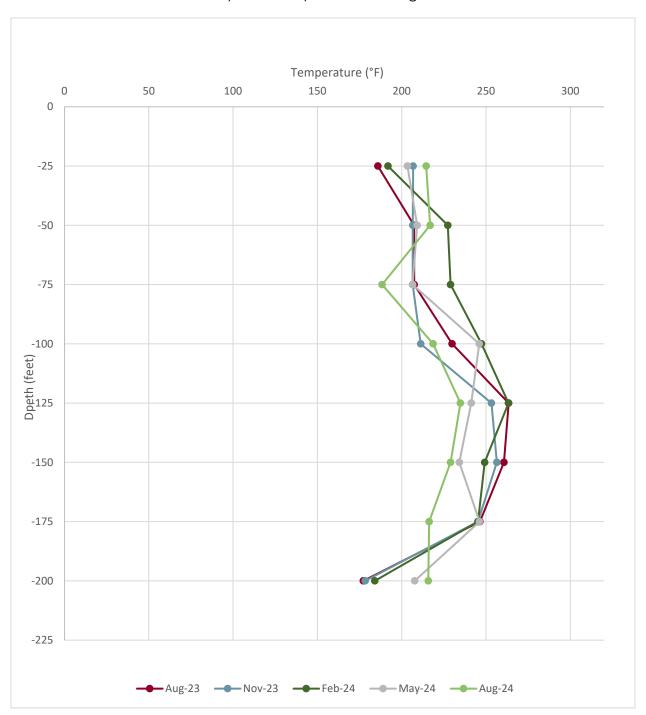


Figure 9 shows daily average temperatures in Temperature Probe 5 (TP-5) during the months of August 2023, November 2023, February 2024, May 2024, and August 2024. Based on the data, temperatures have been consistent with fluctuations at the 25-foot depth. Between November 2023 and May 2024, temperatures dropped at the 125-foot, 150-foot, and 175-foot levels.

TP-5 was damaged in late October 2023 and the sensors at the 125-foot, 150-foot, 175-foot, and 200-foot depths stopped functioning. SCS completed troubleshooting during the month of November 2023 and the sensors returned to operation later that month. TP-5 appears to have stopped recording temperatures again during the latter half of February 2024 due to a dead battery. The battery for the temperature probe was replaced in early April 2024.

Figure 9. TP-5 Average Temperatures for the Months August 2023, November 2023, February 2024, May 2024, and August 2024

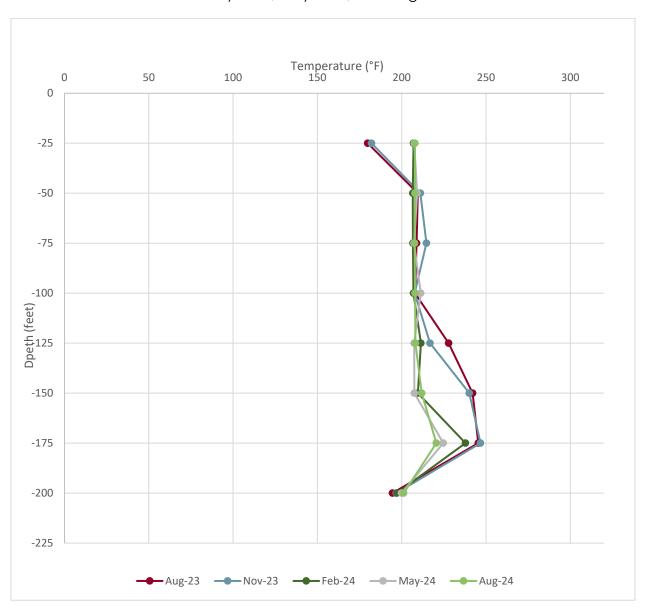
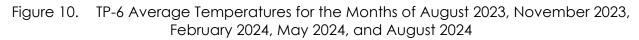



Figure 10 shows daily average temperatures in Temperature Probe 6 (TP-6) during the months of August 2023, November 2023, February 2024, May 2024, and August 2024. Based on the data, temperatures have been generally decreasing since August 2023 up to 100 feet in depth, with some temperature fluctuations occurring at the 25-foot depth. Temperatures rose between May 2024 and August 2024 at 75-foot and 100-foot levels. In April and July 2024, temperatures at the 125-foot depth increased. Further investigation has showed periodic spikes in temperature in mid-June. In August 2024, the City set up high-temperature alarms for the borehole probes, and inserted a wellhead temperature probe at nearby EW-61 to monitor the area more closely. Temperatures rose from 280-200°F to 320-340°F at the start of the month, then dropped on 8/4/24 to around 220°F by 8/6/24 and stayed stable. The City is coordinating with SCS-RMC to have a technician come onsite to evaluate the temperature sensors due to the inconsistent temperature measurements. Depending on the outcome of this additional investigation, the temperature sensors within this borehole may be replaced.

TP-6 was originally drilled to a depth of 208 feet and casing was installed to the full depth. During the installation of the installation of replacement sensors, a blockage within the casing prevented placement of sensors below the 125-foot depth.

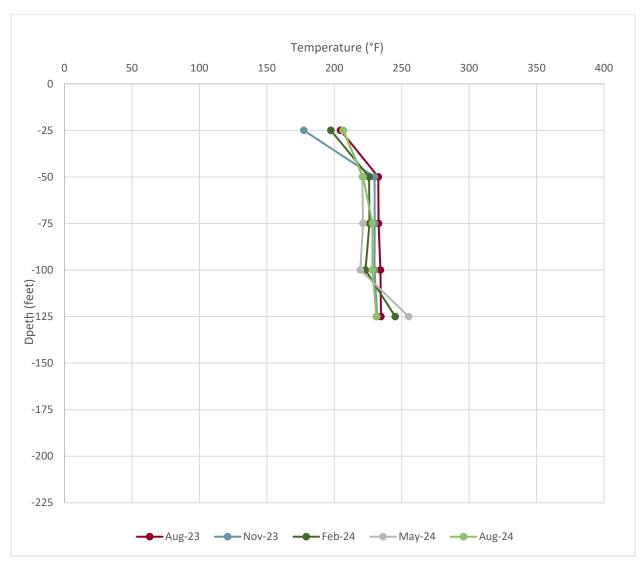


Figure 11 shows daily average temperatures in Temperature Probe 7 (TP-7) during the months of August 2023, November 2023, February 2024, May 2024, and August 2024. Based on the data, temperatures have fluctuated greatly over the last year, with temperatures at depth dropping. Observations of adjacent wells indicate that there may be below grade settlement of waste occurring in this area.

TP-7 did not record temperatures between August 15, 2023 and September 17, 2023 due to a dead battery. A replacement battery was installed in September of 2023 and TP-7 recording temperatures again on September 18, 2023.

Figure 11. TP-7 Average Temperatures for the Months of August 2023, November 2023, February 2024, May 2024, and August 2024

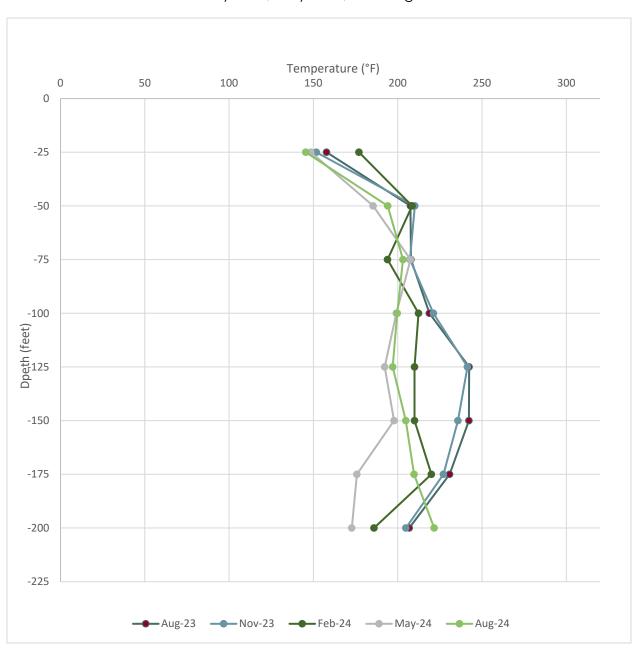


Figure 12 shows daily average temperatures in Temperature Probe 8 (TP-8) during the months of August 2023, November 2023, February 2024, May 2024, and August 2024. Based on the data, temperatures have been consistent over the past year.

TP-8 did not record temperatures from November 8, 2023 to November 27, 2023 due to a faulty battery which was replaced on November 28, 2023. Recordings on August 30, 2024 became inconsistent and the cause is currently being investigated.

Figure 12. TP-8 Average Temperatures for the Months of August 2023, November 2023, February 2024, May 2024, and August 2024

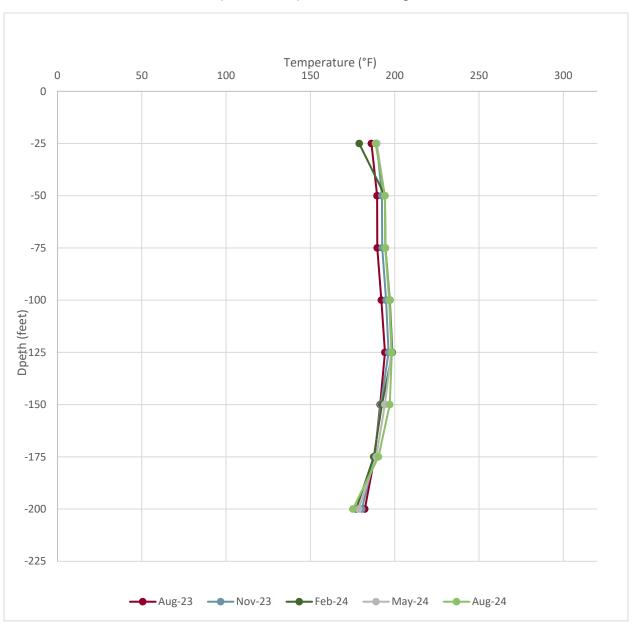
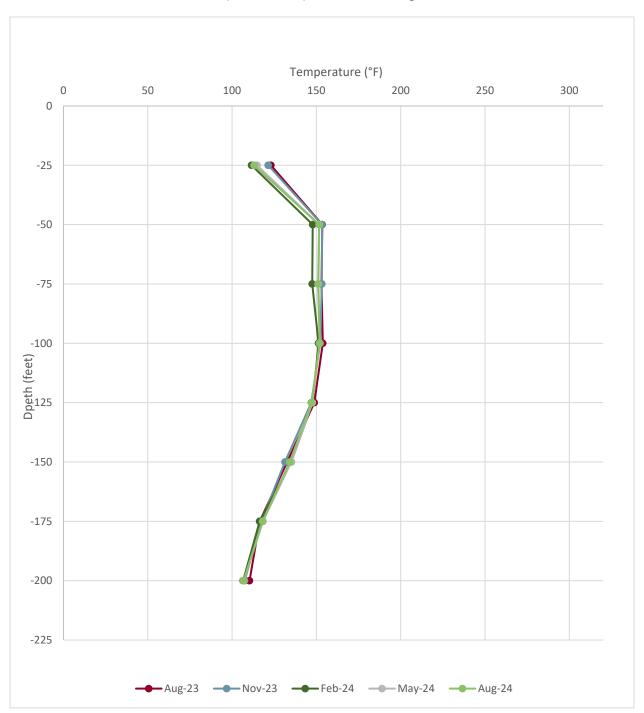



Figure 13 shows daily average temperatures in Temperature Probe 9 (TP-9) during the months of August 2023, November 2023, February 2024, May 2024, and August 2024. Based on the data, temperatures have been consistent during the last year.

Figure 13. TP-9 Average Temperatures for the Months of August 2023, November 2023, February 2024, May 2024, and August 2024

This data indicates that temperatures within the landfill are generally stable and are typical of those observed at elevated temperature landfills (ETLFs). During the months of May 2023 through September 2023, substantial construction occurred at the landfill including deep dual extraction wells that may have impacted temperatures within the waste mass adjacent to the probes. While quantifying the effect of the construction of addition wells is difficult, changes in wellhead temperature have been observed in existing wells adjacent to newly installed wells. The temperatures recorded are substantially lower than those associated with landfill fires or other combustion processes, which can exceed 1000°F. This further indicates that the elevated temperatures are due to sources other than combustion.

4.0 LEACHATE EXTRACTION AND MONITORING

The City is taking steps to improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals.

4.1 EXISTING SYSTEM OPTIMIZATION

During the monthly liquid depth measurement event, SCS also collected stroke counter data from the pumps installed in the GCCS extraction wells. These stroke counts were collected from 40 wells from July 16 – August 12, 2024.

Based on this data, SCS can estimate the number of gallons of liquid pumped from each well. SCS assumed that each stroke from a float-style pneumatic pump correlates to approximately 0.3 gallons of liquid removed from the well. Additionally, Blackhawk piston-style pumps remove approximately 0.11 gallons per stroke recorded. Estimates of the quantities of liquids removed from each well during August are shown in Figure 14.

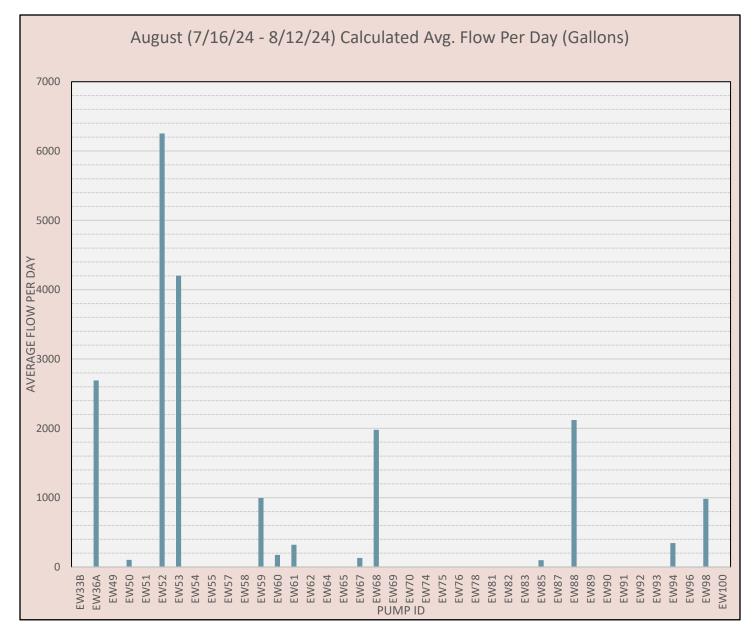


Figure 14. Estimated August Dewatering Liquid Removal by Well

SCS-FS continues to implement a routine maintenance schedule for landfill gas liquids removal pumps. The pumps at wells EW-52 and EW-53 removed the most liquid in August, according to the stroke count data. This suggests that the replacement pumps placed in these wells in the week of August 5 were effective.

In some cases, low volumes of landfill liquids removed correlate to low measured liquid levels within the gas wells. This was true of well EW-69 and EW-100 in August 2024. When this condition is identified, pumps may be relocated to wells with consistently higher liquid levels.

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a

challenging environment for pump operations. Pumps require servicing after relatively short intervals. The SWP No. 588 Landfill's float-style pumps are bump-checked daily, and Blackhawk piston drive rods are cleaned routinely each week.

Several pumps have been replaced and repaired due to experiencing significant wear and tear from ETLF conditions. Listed below are the documented repairs and replacements that occurred for landfill gas liquids removal pumps during the month of August:

- Week of July 22: Replaced air fitting at EW-88
- Week of August 5: Pump replaced in EW-52 and EW-53; tri-tubing replaced in EW-52; bentonite seals installed at EW-55, EW-67, EW-90, and EW-95
- Week of August 12: Pump swapped in EW-53, EW-54, EW-65, EW-67, EW-78, EW-87, EW-94, tri-tubing replaced as needed; bentonite seal installed at EW-82
- Week of August 19: Pump swapped in EW-61; fixed tri-tubing in EW-61

Daily pump checks and maintenance of spare pumps will continue in the coming month along with pump replacements as needed. The City, along with SCS-FS, has determined that the best pumps for the landfill's current conditions are QED. The City placed an order for an additional eight pumps. The additional pumps will help with the rotation of field pumps needing maintenance and replacement.

4.1.1 Total LFG Liquids Removal

To improve the accuracy of the total landfill gas liquids flow rate, two flow meters were installed on the landfill gas liquid forcemains in December 2023. One flow meter was installed on the SWP No. 588 primary landfill gas liquid forcemain. The other was installed on the SWP No. 588 alternate landfill gas liquids forcemain, which also serves as the conduit for condensate from the temporary perennial flare and the SWP No. 588 stormwater pump. The SWP No. 588 alternate landfill gas liquids forcemain will also serve as the SWP No. 498 landfill gas liquids forcemain in the future. In August, the total liquids flow recorded by the SWP No. 588 primary landfill gas liquids flowmeter was 143,000 gallons.

The progress in landfill gas liquids removal over the past seven months is depicted in Figure 15. Given the improved accuracy of a flowmeter compared to flow estimates based on collected stroke counter data, SCS and the City will only use calculated flow rates to track individual pump performance going forward, not the total liquids removal from the system.

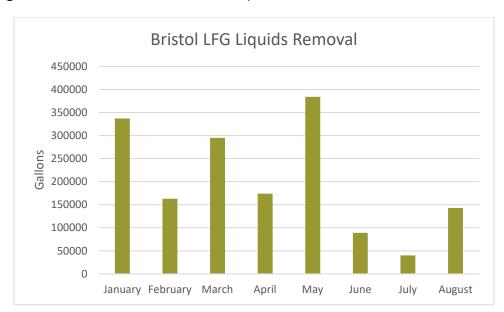


Figure 15. Estimated Volume of Liquids Removed from Landfill Gas Wells

4.2 SAMPLING AND ANALYSIS PLAN

On November 1, 2022, SCS submitted to VDEQ the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan for the Bristol Integrated Solid Waste Management Facility Solid Waste Permit No. 588 Landfill and the plan was subsequently revised on December 1, 2022. Refer to the November 2022 and December 2022 Compliance Reports for the SWP No. 588 Landfill for additional information.

4.2.1 Sample Collection

On August 27 and 28, 2024, SCS collected leachate samples from three Dual Phase LFG extraction wells (EW-54, EW-85, and EW-94). At the time of sample collection only oxidation-reduction potential and turbidity were measured and recorded as the meter was displaying an error for dissolved oxygen, pH, specific conductance, and temperature which is likely caused by the temperature being outside of the range of the meter. The associated field logs are included in **Appendix F**. SCS' field staff were not able to collect samples from select wells as summarized in **Table 6**.

Table 6. Summary Wells Unable to be Sampled for Leachate

Wells With Pumps Wells Without Pumps Pump was not running at the time of There was no pump at the time of the monitoring for the following wells: monitoring for the following wells: EW-36A, EW-52, EW-53, EW-57, EW-59, EW-58, EW-66, EW-71, EW-72, EW-73, EW-60, EW-61, EW-62, EW-67, EW-68, EW-74, EW-86, EW-91, EW-92, EW-93, EW-69, EW-78, EW-82, EW-87, EW-88, EW-95, EW-97, and EW-99. EW-89, EW-90, EW-96, EW-98, and There was no pump at the time of the EW-100. monitoring for the following wells and the liquid level could not be gauged as Pump was not running at the time of monitoring for the following wells and well was under vacuum thus unsafe to the liquid level could not be gauged as open for water level: EW-63, EW-77. well was under vacuum thus unsafe to EW-79, EW-80, and EW-84. open for water level: EW-33B, EW-49, EW-50, EW-64, EW-65, EW-75, EW-81, and There is no pump and the well appeared dry at the time of monitoring EW-83. for FW-56. Pump was not running for EW-51 and EW-76 and the liquid depths were not measured at the time of monitoring due to a potential blockage. Pump was not running for EW-55 and the liquid depth was not measured at the time of monitoring was the well is too tall and not safely accessible. Pump was not running for EW-70 and the liquid depth was not measured at the time of monitoring as there was standing water around the well and not safely accessible.

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia and Pace Analytical Services, LLC (Pace) in Baton Rouge, Louisiana for analysis. The Enthalpy's and Pace's Virginia Division of Consolidated Laboratory Services (VELAP) certification is provided on the certificates of analysis (COAs) included in **Appendix F**. The samples were analyzed for the parameters utilizing the analytical methods described in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan.

At the time of preparation of this report, laboratory analytical results were not available for the August 2024 monitoring event. The August 2024 analytical results will be provided in the September 2024 Monthly Compliance Report.

At the time of preparation of the July 2024 Monthly Compliance Report, the laboratory analytical results were not available for the July 2024 monitoring event. Therefore, the July 2024 analytical results are provided in the following subsections.

4.2.1 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for VOC analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analyses. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A summary of each of these is presented below:

- Method Blank The method blank is deionized water subjected to the same reagents and manipulations to which site samples are subjected. Positive results in the method blanks may indicate either contamination of the chemical reagents or the glassware and implements used to store or prepare the sample and resulting solutions.
- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis. MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.
- LCS These samples consist of distilled/deionized water injected with the parameters of
 interest for single parameter methods and selected parameters for multi-parameter
 methods according to the appropriate analytical method. LCS samples are prepared and
 analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to
 monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are like the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

No trip or method blank detects were identified for the July 2024 monitoring event. The laboratory analysis reports for the July 2024 monitoring event trip blanks are included in **Appendix F**. The July 2024 monitoring event laboratory QA/QC reports, including the method blank results, are included in the COAs in **Appendix F**.

4.2.2 Data Validation

To identify analytical data that may not represent valid results, data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection

Agency (EPA) guidance¹. Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with parameter detections less than five times that of the trip blank, field blank, and/or method blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Samples with common laboratory contaminant parameter detections less than 10 times that of the trip blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not validated as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis.

No leachate results were flagged with a "B" qualifier for the July 2024 monitoring event as no detections were identified in the trip or method blanks. The July 2024 detections flagged with a "J" qualifier are shown on **Table 6**.

4.2.3 Laboratory Analytical Results

The analytical results for the July 2024 leachate samples collected from extraction EW-59 and EW-60 are summarized in **Table 7**. The associated COAs are included in **Appendix F**. Parameter results from July 2024 and previous monitoring events (November 2022 – June 2024) are presented on a table in **Appendix F**. Time-series plots of each VOC for the wells that have historically been sampled are also included in **Appendix F**.

Table 7.	Monthly LFG-EW	Leachate Monitoring Event Summary
----------	----------------	-----------------------------------

Well ID	EW-59	EW-60	LOD	100	
Parameter	June 2024 Co	oncentration	LOD	LOQ	
Ammonia as N (ma/l)	1860		73.1	100	
Ammonia as N (mg/L)		1950	146	200	
Biological Oxygen Demand (mg/L)	25800	4750	0.2	2	
Chamical Owigon Domand (mg/l)	42400		5000	5000	
Chemical Oxygen Demand (mg/L)		98500	10000	10000	
Nitrato as N. (ma/L)		ND	0.5	2.5	
Nitrate as N (mg/L)	6.66		5	25	
Nitrito as N (may)		ND	0.5	2.5	
Nitrite as N (mg/L)	ND		5	25	
Total Kjeldahl Nitrogen (mg/L)	2840	2680	100	250	
Total Bassycrable Bhandies (mg/L)		28.8	0.75	1.25	
Total Recoverable Phenolics (mg/L)	37.8		3	5	

August 2024 Monthly Compliance Report

SWP No. 588

¹ United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. November 2020. United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. November 2020.

Table 7. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-59	EW-60	LOD	100				
Parameter	June 2024 C	oncentration	LOD	LOQ				
SEMI-VOLATILE ORGANIC COMPOUND (ug/L)								
Anthropono	ND		40	80				
Anthracene		ND	80	160				
TOTAL METALS (mg/L)								
Arsenic	300	0.095	0.0025	0.005				
Barium	1.28	2.75	0.005	0.025				
Cadmium	ND	ND	0.0005	0.005				
Chromium	0.252	0.246	0.002	0.005				
Copper	0.398	ND	0.0015	0.005				
Lead	ND	ND	0.005	0.005				
Mercury	ND	0.00104	0.001	0.001				
Nickel	0.1917	0.03634	0.005	0.005				
Selenium	ND	ND	0.00425	0.005				
Silver	ND	ND	0.0003	0.0005				
Zinc	0.104	0.0451	0.0125	0.025				
VOLATILE FATTY ACIDS (mg/L)								
Acetic Acid	6280	6180		1250				
Butyric Acid	2400	2360		250				
Lactic Acid	1220	1210		250				
Propionic Acid	2500	2470		250				
Pyruvic Acid	ND	ND		250				
VOLATILE ORGANIC COMPOUN	IDS (ug/L)							
2-Butanone (MEK)	15600		150	500				
2-Buildhorie (MEK)		25400	1500	5000				
Acetone	32200	52600	3500	5000				
Benzene	1410	1820	20	50				
Ethylbenzene	76	118	20	50				
Tetrahydrofuran	1900	4020	500	500				
Toluene	97	125	25	50				
Xylenes, Total	125 J	157	50	150				
= not applicable	·							

^{--- =} not applicable

J = Constituent was detected at a concentration above the laboratory's LOD but below the laboratory's

LOQ. Concentration is estimated and not validated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

On behalf of the City, SCS submitted a settlement monitoring and management plan to VDEQ on November 15, 2022. Refer to the 2022 November Monthly Compliance Report for the SWP No. 588 Landfill for additional information.

5.2 MONTHLY SURVEYS

5.2.1 Topographic Data Collection

The City, through SCS, collected topographic data of the Solid Waste Permit No. 588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone). On August 14, 2024 the flight was completed and the topographic data collected. The topographic data collected is shown on Sheet 4 in Appendix E.

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on July 16, 2024. A drawing depicting the July 16, 2024 topography is included as Sheet 3 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, the data shows a fill of 400 cubic yards throughout the entire site. During that same time period, calculations indicate a "cut" value of approximately 12,400 cubic yards. Cut volumes are typically attributed to settlement. This resulted in a net volume decrease of approximately 12,000 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 16. Areas in yellow, orange, and red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 5 in Appendix E.

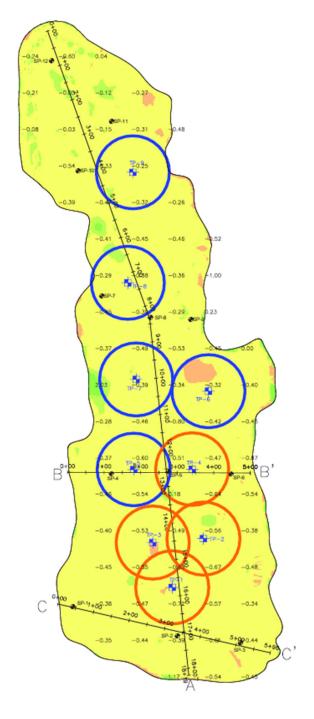


Figure 16. 1-Month Elevation Change Map

The locations of in-waste temperature monitoring probes are also shown on Figure 16, Figure 17, and Figure 18. The circles around the probes in each of these figures are indicative of the average borehole temperature. The circles shown are offset from the probes for clarity only and do not necessarily indicate temperatures measured at locations away from the probe. Probes with a blue circle around them typically have an average temperature less than 200°F across the full depth of

the probe. Probes with an orange circle around them typically have an average temperature greater than 200°F and less than 250°F across the full depth of the probe. There were no probes measuring average temperatures greater than 250°F and less than 300°F during the month of August 2024.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation decrease for the month of August was 0.42.

SCS also compared the topographic data collected in August to the topographic data collected on May 21, 2024. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 17,900 cubic yards. During that same time period calculations indicate approximately 700 cubic yards of fill were placed on the landfill, for a net decrease in waste volume of 7,200 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 17. Areas in orange/yellow indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 6 in Appendix E.

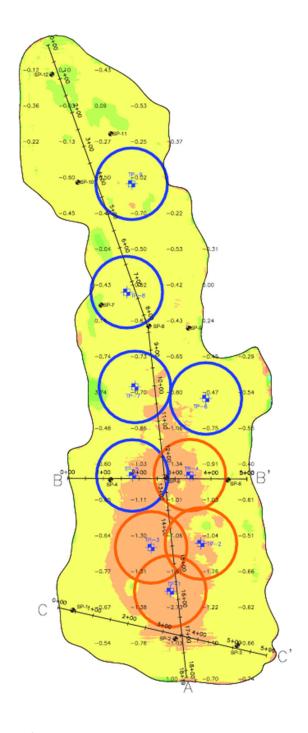


Figure 17. 3-Month Elevation Change Map

Based on the area of the landfill and the net volume change, the average elevation decrease was approximately 0.60 feet.

SCS also compared the topographic data collected in August to the drone topographic data collected on August 2, 2023 by SCS. Based on a comparison of the topographic data collected on those two

dates, settlement occurred that reduced the volume of waste in the landfill by approximately 69,000 cubic yards. During that same time period approximately 500 cubic yards of construction-related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 68,500 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 18. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 7 in Appendix E.

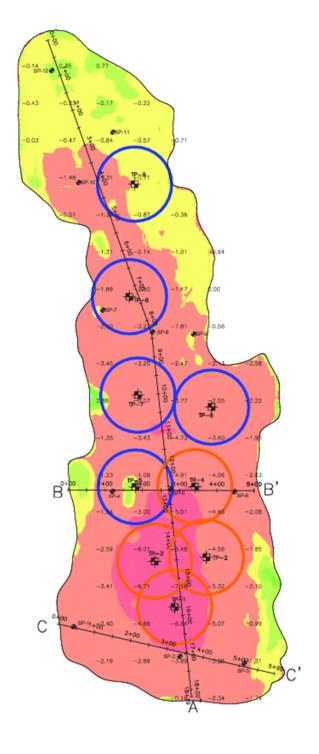


Figure 18. 1-Year Elevation Change Map

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 7 feet or more in some areas. These significant settlement values are typical of elevated temperature landfill conditions. The landfill perimeter exhibited an increase in elevation,

likely due to soil placement associated with construction of the Sidewall Odor Mitigation System. There were variations in elevation associated with soil stockpiling operations.

Based on the landfill area and the net volume change, the average elevation decrease was approximately 2.4 feet.

SCS will collect topographic data covering the landfill surface again in September using photogrammetric methods via UAV. This data will be compared to the data collected in September 2023, June 2024, and August 2024.

5.2.2 Settlement Plate Surveys

On November 7, 2022 SCS field services installed 12 settlement plates on the Solid Waste Permit No. 588 landfill. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan. The tops of the PVC pipes were painted orange to improve visibility. The settlement plate locations are depicted in Figure 19 and on Sheet 1 in Appendix E.

Figure 19. Settlement Plate Locations

The locations of the settlement plates were surveyed by the City's surveyor on November 14, 2022. The settlement plates were surveyed again on December 13, 2022; January 3, 2023; February 6, 2023; March 8, 2023; April 3, 2023; May 11, 2023; June 5, 2023; July 10, 2023; August 17, 2023; September 11, 2023; October 11, 2023; November 6, 2023; December 12, 2023; January 11, 2024; February 6, 2024; March 13, 2024; April 9, 2024; May 8, 2024; June 4, 2024; July 10, 2024; and July 31, 2024. The surveyed coordinates² and elevation changes of the settlement plates are shown in Table 7.

Flevation and Strain Data at Settlement Plate Locations Table 8.

Settlement Plate	Northing	Easting	Elevation on July 31, 2024	Elevation Change Since July 10, 2024	Strain ³ Since July 10, 2024	Elevation Change Since Installation	Strain/Year
SP-1	3,397,887.4	10412080.3	1,829.8	-0.1	-0.1%	-4.6	-1.6%
SP-2A	3,397,822.4	10,412,370.5	1,795.4	-0.3	-0.2%	-0.3	-3.7%
SP-3A	3,397,819.7	10,412,498.3	1,780.0	-0.2	-0.2%	-0.2	-3.2%
SP-4A	3,398,247.1	10,412,206.1	1,804.9	-0.2	-0.1%	-0.2	-2.0%
SP-5	3,398,255.8	10,412,339.3	1,790.8	-0.3	-0.1%	-9.9	-2.1%
SP-6	3,398,248.8	10,412,510.1	1,773.9	-0.2	-0.1%	-3.8	-2.2%
SP-7A	3,398,732.1	10,412,157.6	1,823.2	-0.2	-0.2%	-0.2	-2.6%
SP-8	3,398,678.3	10,412,290.9	1,801.0	-0.1	-0.1%	-6.3	-1.0%
SP-9A	3,398,644.3	10,412,416.2	1,788.7	-0.1	-0.1%	-0.1	-1.3%
SP-10	3,399,080.2	10,412,093.1	1,837.6	-0.1	0.0%	-2.6	-0.6%
SP-11	3,399,216.3	10,412,183.8	1,815.0	0.0	0.0%	-1.4	0.1%
SP-12	3,399,381.7	10,412,019.6	1,809.9	0.0	0.0%	-0.7	-0.2%

Prior to April 2024, the City's in-house surveyor read the settlement plate elevations. Starting April 2024, the settlement plate elevations were measured by FEI Civil Engineers and Land Surveyors.

Settlement Plates 2, 4, and 5 demonstrated larger settlements than at other locations. Settlement Plates 4 and 7 are damaged during construction operations. Settlement Plates 2 and 5 are located in the southern end of the landfill. This area is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions.

The change in elevation at the rest of the settlement plates (other than SP-11) was lower and more representative of typical settlement at municipal landfills with waste of similar depth. Settlement plate SP-11 exhibited an increase in elevation, however the elevation measured in May was equal to the elevation measured in July. The elevation has likely not changed between May and July. Settlement Plate 3 was damaged and unable to be measured since September 2023. Settlement

² Settlement plate locations and coordinates are based on a local coordinate system.

³ Strain is defined as the change in elevation divided by the estimated waste depth.

Plate 9 was located in standing water and was unable to be read between December 2023 and March 2024.

Figure 20 shows the changes in elevation of select settlement plates over time. Best-fit lines for these changes in elevation are also shown on the graph. Currently settlement rates are represented well by linear trend lines. For the purposes of recording data in this figure, times are measured in days since the landfill was required to stop accepting waste.

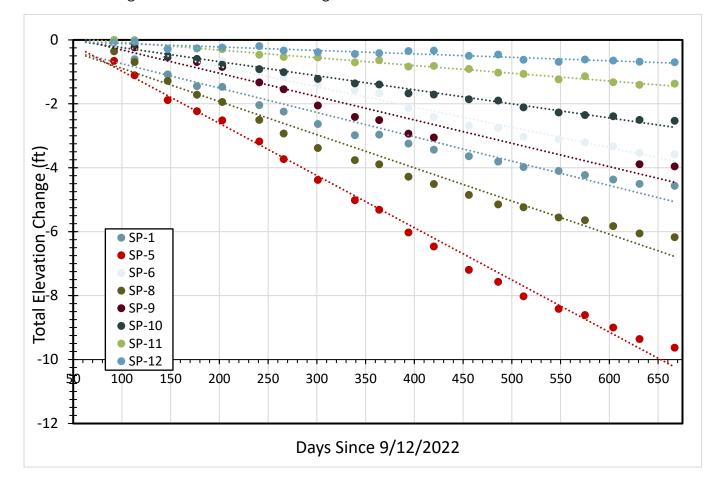


Figure 20. Elevation Change of Select Settlement Plates Over Time

The settlement plates will be surveyed again during the month of August 2024. The elevations surveyed will be compared to the elevations surveyed the previous months.

5.2.2.1 Newly installed settlement plates

Five new settlement plates (SP-2A, SP-3A, SP-4A, SP-7A, and SP-9A) installed during June 2024 are intended to replace non-operational settlement plates. SP-9A was installed due to the existing SP-9's location in a low area which is prone to flooding after rain. The first elevation survey of the new settlement plates was completed on 7/10/24. They replaced the non-operational plates in the 7/31/24 readings.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City is taking steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below outline the steps taken by the City.

6.1 INTERMEDIATE COVER INSTALLATION

The City completed hauling and placement of a 12-inch-thick intermediate cover across the entire landfill prior to October 10, 2022. The cover was placed in accordance with 9VAC20-81-140(B)(1)(d). SCS coordinated with the City to dig a series of test holes to verify cover thickness in select locations. Details of these verifications were discussed in the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill.

6.2 EVOH COVER SYSTEM DESIGN

On December 4, 2023, SCS submitted a revised stormwater management plan to submit to VDEQ, including revised drawings and calculations. The revised SWMP includes the three quarry basins, additional stormwater pumps, new stormwater force mains, and the preliminary layout of the new electrical infrastructure along the quarry rim.

On December 18, 2023 SCS and VDEQ met to discuss concerns about the impact of settlement on the proposed EVOH Cover System. The City discussed the appropriate schedule for EVOH deployment with VDEQ given the significant settlement the site is experiencing. An amendment to the Consent Decree was subsequently issued which requires the EVOH deployment no later than December 1, 2026. The amended Consent Decree also requires regular settlement assessments, and the EVOH deployment may occur earlier if settlement rates appear acceptable. The first of these assessments was submitted to VDEQ on April 11, 2024. The most recent assessment was completed on July 15, 2024.

6.3 EVOH COVER SYSTEM PROCUREMENT

Drawings used for the purposes of bidding, procurement and construction of the EVOH cover system will generally conform to the layout and details in the drawings described in section 6.2. SCS also prepared and submitted to VDEQ a specification for the EVOH geomembrane on January 30, 2023 based upon industry standards and discussions with material manufacturers. This specification and drawing set represent the first steps in the procurement process. SCS and the City have coordinated with potential suppliers to specify a product that is not currently anticipated to have long lead times. SCS has received a pro-forma data sheet from one manufacturer which is preparing a customized EVOH product for the No. 588 landfill.

6.4 EVOH COVER SYSTEM INSTALLATION

SCS will prepare regular settlement assessments for VDEQ per the amended Consent Decree. EVOH deployment will commence, with VDEQ's concurrence, if the latest assessment shows acceptable settlement rates. The amended consent decree requires installation of the EVOH cover system by December 1, 2026.

7.0 STORMWATER MANAGEMENT

The City is taking steps to implement a stormwater management plan at the landfill. The sections below outline the steps taken by the City.

7.1 STORMWATER MANAGEMENT PLAN DEVELOPMENT

The initial stormwater management plan (SWMP) was submitted to VDEQ on April 28, 2023.

The revised SWMP was submitted to VDEQ on December 4, 2023. The plan proposes a stormwater pumping system to convey stormwater collected atop the EVOH cover system to an existing discharge point permitted under VPDES permit VAR050053. The proposed system includes the construction of three stormwater collection basins in the quarry and the installation of pairs of skid-mounted stormwater pumps. The stormwater will be conveyed by force main pipes to the existing stormwater basins located west of the quarry.

The plan proposes modifications to the existing stormwater basins west of the quarry to achieve discharge quantity targets. Modifications include increasing the basin depths and installing new outlet riser structures.

7.2 STORMWATER MANAGEMENT BASIN DESIGN AND CONSTRUCTION

The landfill surface will be regraded to form the SWM basins proposed in the stormwater management plan. The earthwork will be completed as the first stage of the interim EVOH cover system installation project. A revised landfill gas management plan is being prepared to facilitate the regrading of the landfill, which will affect existing landfill gas infrastructure. The landfill gas system will be modified to accommodate the earthwork.

Attention is being given to settlement concerns in the vicinity of the stormwater basin or basins. Calculations provided to VDEQ on June 23, 2023 demonstrate the weight of the ponded water should not cause excessive settlement relative to ongoing settlement observed within the quarry. Including additional stormwater basins within the quarry will distribute the weight of ponded water over a wider area relative to the single stormwater basin design.

7.3 STORMWATER MANAGEMENT PLAN IMPLEMENTATION

The stormwater management plan design drawings are being incorporated into the overall construction drawings for the interim EVOH cover system. The interim EVOH cover system installation and stormwater management features will be bid and constructed as one project to facilitate simultaneous progress and completion.

As an interim measure, the City is currently operating a temporary stormwater pump to remove stormwater from the landfill surface.

7.4 LONG-TERM STORMWATER CONTROL AND REMOVAL

The stormwater management plan is designed with resiliency and redundancy to promote long-term operation. Refer to previously submitted compliance reports for details of long-term stormwater control and removal.

7.5 STORMWATER MONITORING

Stormwater monitoring will commence upon initial discharge of stormwater from the quarry stormwater pumping system. As stated in the stormwater management plan drawings, the stormwater shall be monitored in accordance with the facility's VPDES general permit for discharge of stormwater associated with industrial activity. Additional requirements include collecting additional stormwater samples at the discharge pipes for the quarry stormwater pumping system. The stormwater from the quarry basins will be sampled on a monthly basis prior to discharge to the upper stormwater ponds. The Operations Manual will be revised to include these additional requirements.

If the stormwater becomes contaminated or sampling indicates contamination above discharge limits, the stormwater will be diverted to the sanitary sewer system. The diversion to the sanitary sewer system will continue until the source of contamination is identified and resolved. The stormwater discharge pipe alignment will pass adjacent to the existing sanitary sewer manhole. A tee with isolation valves will be used to direct the stormwater to the upper basins or the sanitary sewer manhole.

Stormwater currently pumped from the surface of the landfill is discharged to the sanitary sewer and is sampled with other wastewater discharges in accordance with the facility's industrial wastewater discharge permit.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit No. 588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

SCS submitted the Monitoring, Maintenance, and Repair Plan to VDEQ for the SWP No. 588 landfill on December 30, 2022. Refer to the December 2022 Monthly Compliance Report for the SWP No. 588 Landfill for additional information. The City has taken steps to implement the plan that were detailed in the March 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

8.3 MONTHLY COMPLIANCE REPORTS

As described in the introduction this report is intended to provide comprehensive updates regarding progress towards completion of each item described in Appendix A of the Consent Decree between the City and VDEQ.

8.4 COMMUNITY OUTREACH PROGRAM

- **Ongoing basis**: Five (5) posts on each the BristalVALandfill.org site and the existing City of Bristol Landfill Notifications and Information page covering important updates including:
 - Progress updates related to remediation efforts and normal maintenance activities at the Quarry Landfill

- Updates included activities at the quarry landfill such as the unannounced visit by the Environmental Protection Agency (EPA) that resulted in no elevated emissions being observed, separately, the determination that some temperature probes are inaccurately reporting temperatures and the work to replace those, as well as other routine actions such as cleaning and rebuilding pumps, collecting readings, and system adjustments for maximum efficiency.
- Weekly updates on landing page on Bristolvalandfill.org titled "Air Sampling and Air Monitoring" that includes a summary of the air sampling and monitoring being conducted by Bristol, VA around the quarry landfill.
 - Website now includes weekly air monitoring reports starting with May 15th, 2023 and running through May 19th of 2024. More reports will be posted as the transition to a new air monitoring system is being implemented.
- E-mail communication sent to the list of members of the public signed up through the Bristol, VA website, the BristolVALandfill.org website, or at subsequent Open Houses to receive information via e-mail
 - E-mails sent included weekly remediation progress update and links to website updates and latest news articles.

Appendix A

Surface Emissions Monitoring Summary Letters

SCS ENGINEERS

August 7, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – August 1, 2024

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on August 1, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	166
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	66
Number of Exceedances	9
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	9

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

An Alternate Remedy Request outlining proposed corrective actions for exceedances at EW-55, EW-67, EW-82, EW-90, and EW-95 was submitted to VDEQ on July 11, 2024 in accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v). The corrective actions at these five wells will involve installation, or reapplication, of a bentonite seal along the well riser pipe. Completion of these corrective actions is anticipated to be completed in the upcoming weeks.

The increase of exceedance points documented during this weekly event was likely due to reduced vacuum at several of the vertical extraction wells where exceedances were documented. This issue is being addressed and it is anticipated that restoration of normal levels of vacuum at these locations will result in reduced surface emissions.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	8/1/24 Event	8/1/24 Event Result	Comments
EW-90	4/2/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	4/11/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-82	5/3/24	N/A	NM¹	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	5/3/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-55	6/4/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-75	7/22/24	10-Day Retest	Passed	Requires 30-Day Retest
EW-79	7/22/24	10-Day Retest	Failed	Requires 2 nd 10-Day Retest
EW-80	7/22/24	10-Day Retest	Passed	Requires 30-Day Retest

^{1:} EW-82 was unable to be monitored due to ponding water

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylie R Hicklin Associate Professional **SCS** Engineers

Wylin R Aichlin

Lucas S. Nachman Senior Project Professional SCS Engineers

Lucus D. Nachman

LSN/WRH

cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ

Surface Emissions Monitoring Results Encl.

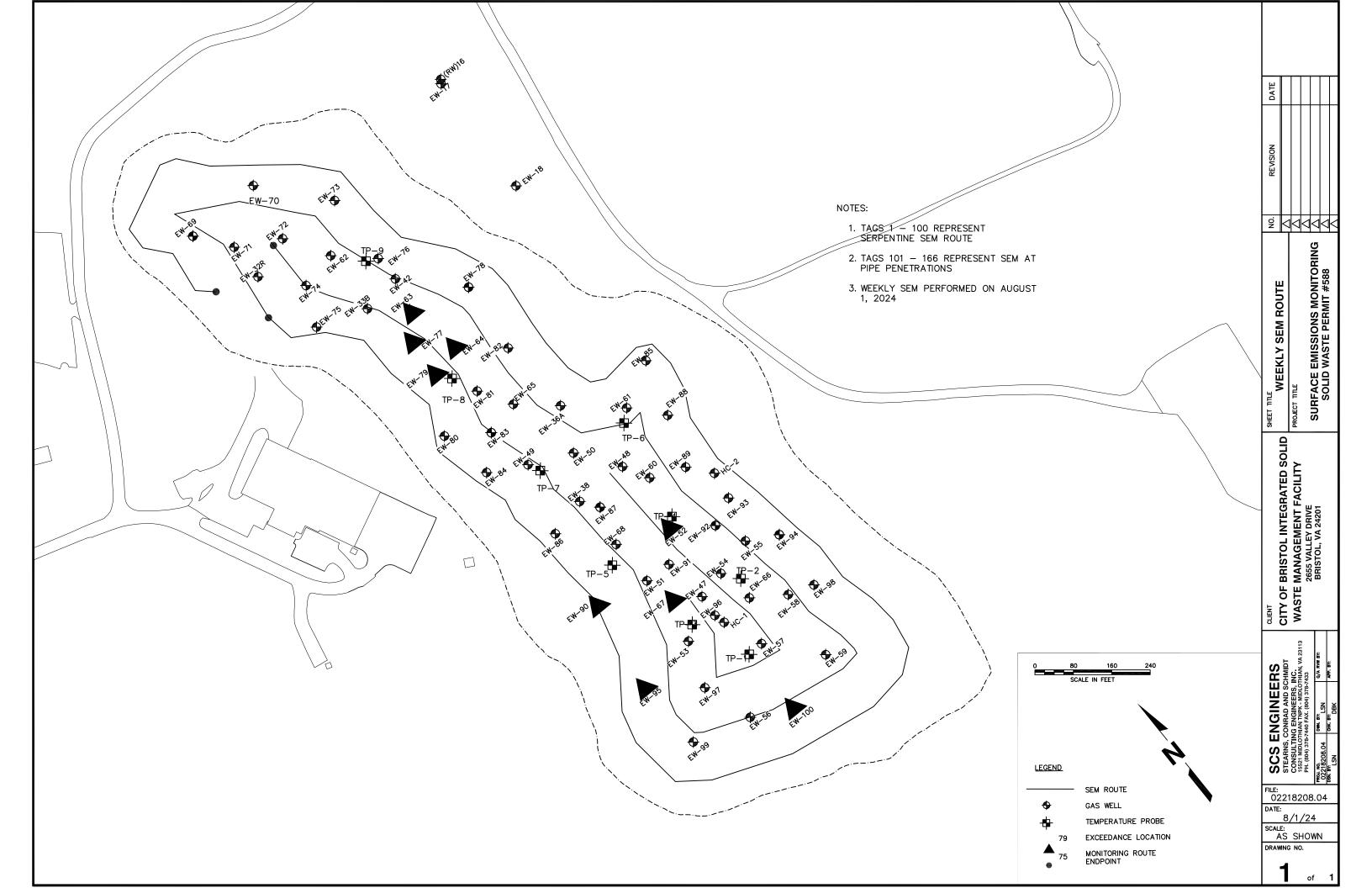
Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	4.9 PPM	OK			Start Serpentine Route
2	376.0 PPM	OK			
3	8.6 PPM	OK			
4	3.2 PPM	OK			
5	1.7 PPM	OK			
6	2.0 PPM	OK			
7	1.2 PPM	OK			
8	0.8 PPM	OK			
9	1.3 PPM	OK			
10	1.2 PPM	OK			
11	0.7 PPM	OK			
12	0.7 PPM	OK			
13	0.9 PPM	OK			
14	0.9 PPM	OK			
15	18.2 PPM	OK			
16	24.3 PPM	OK			
17	0.9 PPM	OK			
18	0.5 PPM	OK			
19	0.7 PPM	OK OK			
20	0.6 PPM	OK OK			
21	0.6 PPM	OK OK			
22		OK OK			
23	0.5 PPM				
	0.5 PPM	OK			
24	1.5 PPM	OK			
25	0.7 PPM	OK			
26	0.3 PPM	OK			
27	0.3 PPM	OK			
28	0.2 PPM	OK			
29	0.2 PPM	OK			
30	0.4 PPM	OK			
31	3.4 PPM	OK			
32	2.2 PPM	OK			
33	6.8 PPM	OK			
34	6.9 PPM	OK			
35	7.6 PPM	OK			
36	87.7 PPM	OK			
37	0.6 PPM	OK			
38	12.3 PPM	OK			
39	1.0 PPM	OK			
40	0.8 PPM	OK			
41	2.0 PPM	OK			
42	3.2 PPM	OK			
43	1.5 PPM	OK			
44	0.5 PPM	OK			
45	4.2 PPM	OK			
46	1 <i>74</i> .0 PPM	OK			
47	221.0 PPM	OK			

	Methane GPS Coordinates				
ID#	Concentration	on Compliance	Lat.	Long.	Comments
48	7.8 PPM	OK			
49	6.8 PPM	OK			
50	5.7 PPM	OK			
51	4.3 PPM	OK			
52	4.7 PPM	OK			
53	1.8 PPM	OK			
54	1.2 PPM	OK			
55	0.1 PPM	OK			
56	9.4 PPM	OK			
57	0.1 PPM	OK			
58	1.5 PPM	OK			
59	1.5 PPM	OK			
60	1.2 PPM	OK			
61	1.5 PPM	OK			
62	2.3 PPM	OK			
63	0.6 PPM	OK			
64	0.2 PPM	OK			
65	0.3 PPM	OK			
66	0.6 PPM	OK			
67	0.3 PPM	OK			
68	0.3 PPM	OK			
69	0.3 PPM	OK			
70	0.0 PPM	OK			
<i>7</i> 1	0.0 PPM	OK			
72	0.0 PPM	OK			
73	0.2 PPM	OK			
74	6.3 PPM	OK			
75	6.1 PPM	OK			
76	4.5 PPM	OK			
77	20.7 PPM	OK			
78	0.3 PPM	OK			
79	20.2 PPM	OK			
80	4.1 PPM	OK			
81	21.2 PPM	OK			
82	6.8 PPM	OK			
83	2.1 PPM	OK			
84	1.1 PPM	OK			
85	1.7 PPM	OK			
86	4.5 PPM	OK			
87	0.2 PPM	OK			
88	0.4 PPM	OK			
89	0.5 PPM	OK			
90	55.2 PPM	OK			
91	6.3 PPM	OK			
92	7.3 PPM	OK			
93	13.6 PPM	OK			
94	0.7 PPM	OK			

		Methane		GPS Co		
ID:	#	Concentration	Compliance	Lat.	Long.	Comments
95	5	0.3 PPM	OK			
96	6	12.8 PPM	OK			
97	7	0.1 PPM	OK			
98	8	3.9 PPM	OK			
99	9	5.4 PPM	OK			
10	00	2.4 PPM	OK			End Serpentine Route
10)1	2.4 PPM	OK			EW-69
10		1.7 PPM	OK			EW-71
10		6.6 PPM	OK			EW-32R
10		1.2 PPM	OK			EW-72
10		5.8 PPM	OK			EW-62
10		6.5 PPM	OK			EW-74
10		75.6 PPM	OK			EW-33B
10		692.0 PPM	HIGH_ALRM	36.60090	-82.14807	EW-63
10		103600.0 PPM	HIGH_ALRM	36.60072	-82.14819	EW-77
11		2389.0 PPM	HIGH_ALRM	36.60063	-82.14796	EW-64
11		22200.0 PPM	HIGH_ALRM	36.60094	-82.14824	EW-79
11		89.5 PPM	OK			TP-8
11		45.8 PPM	OK			EW-80
11		23.7 PPM	OK			EW-81
11		1 <i>7</i> .1 PPM	OK			EW-65
11		17.0 PPM	OK			EW-83
11		16.6 PPM	OK			EW-84
11		10.8 PPM	OK			EW-49
11	9	42.8 PPM	OK			TP-7
12	20	16.6 PPM	OK			EW-50
12	21	70.8 PPM	OK			EW-86
12	22	16.3 PPM	OK			EW-38
12	23	123.0 PPM	OK			EW-87
12	24	35.8 PPM	OK			EW-48
12	25	284.0 PPM	OK			EW-60
12	26	6.6 PPM	OK			EW-89
12	27	6.2 PPM	OK			TP-4
12	28	858.0 PPM	HIGH_ALRM	36.59903	-82.14766	EW-52
12	9	3.2 PPM	OK			EW-92
13	80	28.2 PPM	OK			EW-68
13	31	7.3 PPM	OK			TP-5
13	32	1487.0 PPM	HIGH_ALRM	36.59893	-82.14826	EW-90
13	3	308.0 PPM	OK			EW-51
13	34	235.0 PPM	OK			EW-91
13	35	753.0 PPM	HIGH_ALRM	36.59873	-82.1 <i>4775</i>	EW-67
13	86	3.4 PPM	OK			EW-47
13	37	4.8 PPM	OK			EW-54
13	88	0.7 PPM	OK			EW-55
13	9	1.0 PPM	OK			TP-2
14	10	1.2 PPM	OK			EW-66

	Methane		GPS Co	GPS Coordinates		
ID#	Concentration	Compliance	Lat.	Long.	Comments	
141	6.8 PPM	OK			EW-96	
142	1.3 PPM	OK			TP-3	
143	1.4 PPM	OK			EW-53	
144	1420.0 PPM	HIGH_ALRM	36.59907	-82.1 <i>4777</i>	EW-95	
145	1.6 PPM	OK			EW-97	
146	1.6 PPM	OK			EW-99	
1 <i>47</i>	87.9 PPM	OK			EW-56	
148	1357.0 PPM	HIGH_ALRM	36.59776	-82.14790	EW-100	
149	3.2 PPM	OK			TP-1	
150	2.4 PPM	OK			EW-57	
151	2.9 PPM	OK			EW-59	
152	0.7 PPM	OK			EW-58	
153	0.4 PPM	OK			EW-98	
154	1.2 PPM	OK			EW-94	
155	0.2 PPM	OK			EW-93	
156	0.7 PPM	OK			EW-88	
1 <i>57</i>	1.2 PPM	OK			EW-85	
158	3.8 PPM	OK			EW-61	
159	9.8 PPM	OK			TP-6	
160	5.8 PPM	OK			EW-36A	
161	11.6 PPM	OK			EW-78	
162	8.9 PPM	OK			EW-42	
163	52.8 PPM	OK			EW-76	
164	218.0 PPM	OK			TP-9	
165	0.0 PPM	OK			EW-73	
166	84.0 PPM	OK			EW-75	
	Number of loc	ations sampled:	166			
	Number of exceed	dance locations:	9			


NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 166 represent SEM at Pipe Penetrations

Weather Conditions: Mostly Cloudy, 72°F Wind: None

Sampling Calibr	ration: Meth	<u> 1ane - 500 ppm,</u>	Zero Air - 0.0	ppm
8/1/2024	9:24	ZERO	504.0	PPM
8/1/2024	9:25	SPAN	2.2	PPM
Background Rec	ading:			
8/1/2024	9:36	Upwind	5.1	PPM
8/1/2024	9:38	Downwind	13.8	PPM

SCS ENGINEERS

August 14, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – August 7, 2024

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on August 7, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	165
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	65
Number of Exceedances	9
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	9

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

An Alternate Remedy Request outlining proposed corrective actions for exceedances at EW-55, EW-67, EW-82, EW-90, and EW-95 was submitted to VDEQ on July 11, 2024 in accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v). The corrective actions at these five wells will involve installation, or reapplication, of a bentonite seal along the well riser pipe. These corrective actions were ongoing at the time of this monitoring event and are anticipated to be completed in the next couple of weeks.

The Facility continued to observe an increase of exceedance points during this weekly event, likely due to reduced vacuum at several of the vertical extraction wells where exceedances were documented. This issue is being addressed and it is anticipated that restoration of normal levels of vacuum at these locations will result in reduced surface emissions.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	8/7/24 Event	8/7/24 Event Result	Comments
EW-90	4/2/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	4/11/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-82	5/3/24	N/A	NM¹	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	5/3/24	N/A	NM ²	Subject to 40 CFR 63.1960(c)(4)(v)
EW-55	6/4/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-79	7/22/24	2 nd 10-Day Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-75	7/22/24	N/A	Failed	Requires 2 nd 10-Day Retest
EW-80	7/22/24	N/A	Failed	Requires 2 nd 10-Day Retest
EW-52	8/1/24	10-Day Retest	Passed	Requires 1-month Retest
EW-63	8/1/24	10-Day Retest	Failed	Requires 2 nd 10-Day Retest
EW-64	8/1/24	10-Day Retest	Failed	Requires 2 nd 10-Day Retest
EW-77	8/1/24	10-Day Retest	Failed	Requires 2 nd 10-Day Retest
EW-100	8/1/24	10-Day Retest	Passed	Requires 30-Day Retest

 $^{1\!\!:}$ EW-82 was unable to be monitored due to ponding water

 $^{2\!\!:}$ EW-95 was unable to be monitored due to ongoing construction

Mr. Jonathan Chapman August 14, 2024 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylie R Hicklin Associate Professional SCS Engineers

Wylin R Dicklin

Lucas S. Nachman Senior Project Professional SCS Engineers

Lucus D. Nachman

LSN/WRH

cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

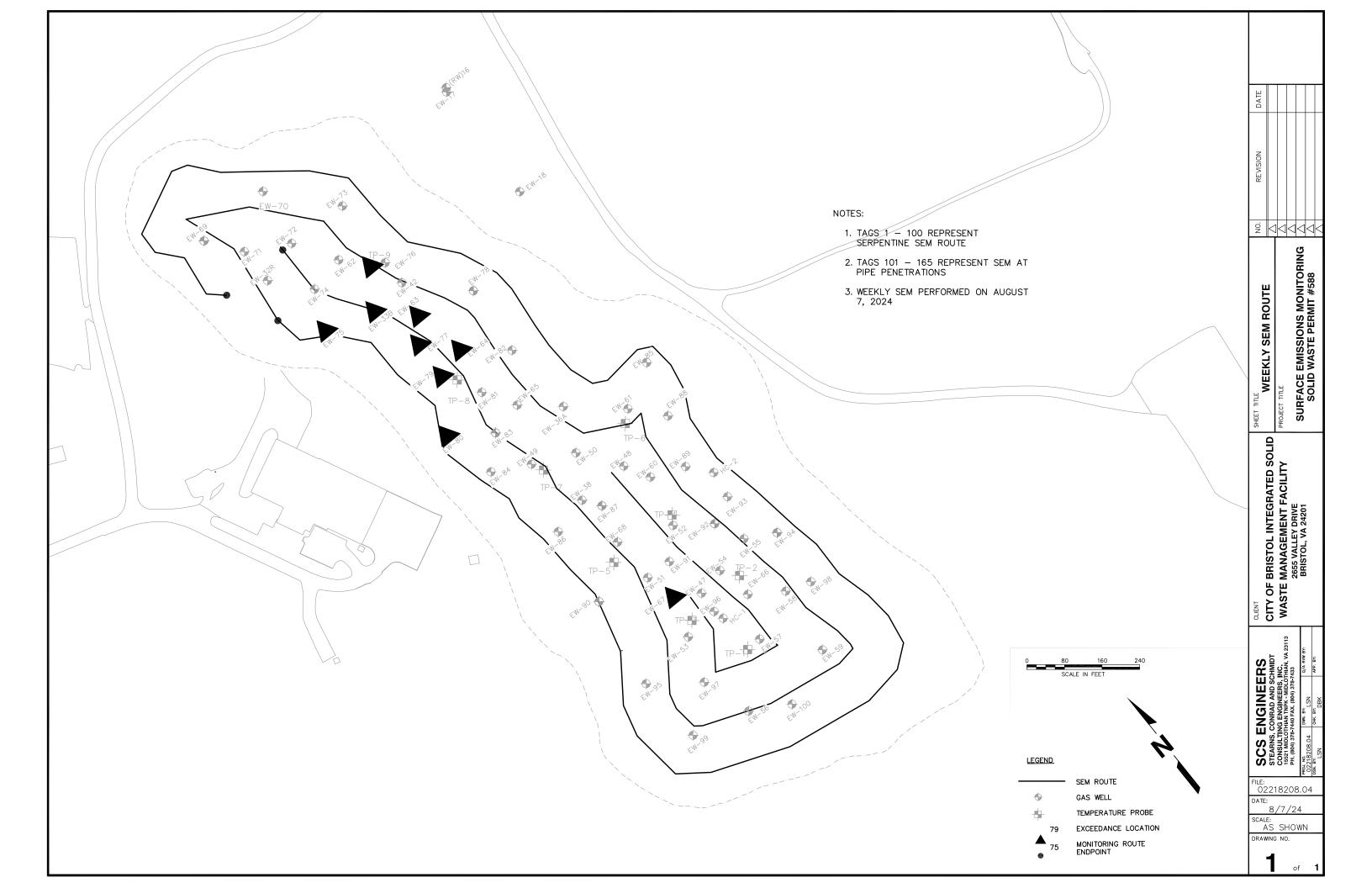
Bristol SEM Route Drawing

		Methane		GPS Co		
II	D #	Concentration	Compliance	Lat.	Long.	Comments
	1	1.4 PPM	OK			Start Serpentine Route
	2	4.0 PPM	OK			
	3	1.3 PPM	OK			
	4	1.2 PPM	OK			
	5	1.1 PPM	OK			
	6	1.2 PPM	OK			
	7	1.2 PPM	OK			
	8	3.2 PPM	OK			
	9	1.3 PPM	OK			
	10	1.1 PPM	OK			
	11	1.3 PPM	OK			
	12	3.9 PPM	OK			
	13	2.8 PPM	OK			
	14	3.6 PPM	OK			
	15	12.7 PPM	OK			
	16	2.3 PPM	OK			
	1 <i>7</i>	2.1 PPM	OK			
	18	2.0 PPM	OK			
	19	2.0 PPM	OK			
	20	5.0 PPM	OK OK			
	21	2.2 PPM	OK OK			
	21	3.5 PPM				
			OK			
	23	8.2 PPM	OK			
	24 25	4.8 PPM	OK			
	25	2.1 PPM	OK			
	26	4.3 PPM	OK			
	27	1.0 PPM	OK			
	28	1.9 PPM	OK			
	29	10.2 PPM	OK			
	30	128.0 PPM	OK			
	31	5.3 PPM	OK			
	32	7.2 PPM	OK			
	33	271.0 PPM	OK			
	34	20.7 PPM	OK			
	35	205.0 PPM	OK			
	36	95.5 PPM	OK			
	37	1.9 PPM	OK			
	38	60.7 PPM	OK			
	39	31.3 PPM	OK			
	40	2.1 PPM	OK			
	41	196.0 PPM	OK			
	42	8.1 PPM	OK			
	43	1.2 PPM	OK			
	44	18.5 PPM	OK			
	45	181.0 PPM	OK			
	46	35.3 PPM	OK			
	47	46.1 PPM	OK			

	Meth	ane	GPS C	oordinates	
ID#	Concen	tration Complia	nce Lat.	Long.	Comments
48	90.5	PPM OK			
49	4.0				
50	2.6 1				
51	0.5 1				
52	1.1				
53	0.8 (
54	1.0				
55	1.3 I				
56	0.4 1				
57	5.0 1				
58	9.7				
59	77.5				
60	3.9 1				
61	2.1 1				
62	3.6 1				
63	4.6 1				
64	25.3				
65	6.9 1				
66	8.7 1				
67	16.2				
68	3.3				
69	2.6				
70	1.4				
70 71					
72	2.2				
	27.0				
73	20.1				
74	297.0				
75	12.1				
76	2.6				
77	0.3				
78	12.0				
79	0.8				
80	42.9				
81	10.2				
82	3.4				
83	1.1				
84	1.4				
85	3.7				
86	3.2				
87	2.5				
88	2.4				
89	12.2				
90	74.9				
91	3.1 1				
92	0.8 I				
93	34.8 ।				
94	6.2	PPM OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
95	61.4 PPM	OK			
96	47.4 PPM	OK			
97	0.4 PPM	OK			
98	1.0 PPM	OK			
99	0.2 PPM	OK			
100	O.1 PPM	OK			End Serpentine Route
101	79.4 PPM	OK			EW-52
102	152.0 PPM	OK			TP-4
103	159.0 PPM	OK			EW-60
104	58.4 PPM	OK			EW-48
105	8.8 PPM	OK			TP-6
106	4.8 PPM	OK			EW-61
107	0.6 PPM	OK			EW-50
108	780.0 PPM	HIGH_ALRM	36.59873	-82.14775	EW-67
109	3.3 PPM	OK			EW-47
110	31.7 PPM	OK			EW-54
111	73.4 PPM	OK			EW-55
112	28.4 PPM	OK			EW-92
113	78.8 PPM	OK			EW-91
114	15.7 PPM	OK			EW-96
115	0.8 PPM	OK			TP-2
116	0.8 PPM	OK			EW-66
11 <i>7</i>	1.8 PPM	OK			EW-58
118	4.7 PPM	OK			EW-57
119	1.1 PPM	OK			TP-1
120	16.8 PPM	OK			EW-59
121	6.7 PPM	OK			EW-100
122	25.5 PPM	OK			EW-56
123	3.1 PPM	OK			EW-97
124	5.0 PPM	OK			EW-53
125	7.5 PPM	OK			TP-3
126	84.4 PPM	OK			EW-51
127	2.0 PPM	OK			TP-5
128	0.8 PPM	OK			EW-68
129	0.6 PPM	OK			EW-87
130	17.1 PPM	OK			EW-38
131	30.1 PPM	OK			TP-7
132	5.6 PPM	OK			EW-49
133	6.0 PPM	OK			EW-83
134	4.8 PPM	OK			EW-65
135	19.9 PPM	OK			EW-81
136	123.0 PPM	OK			TP-8
137	1223.0 PPM	HIGH_ALRM	36.60063	-82.14796	EW-64
138	1437.0 PPM	HIGH_ALRM	36.60090	-82.14807	EW-63
139	17.8 PPM	OK			EW-42
140	47.0 PPM	OK			EW-76

	Methane			GPS Coordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
141	651.0 PPM	HIGH_ALRM	36.60126	-82.14801	TP-9
142	4.1 PPM	OK			EW-62
143	8.0 PPM	OK			EW-74
144	2.3 PPM	OK			EW-32R
145	1.5 PPM	OK			EW-69
146	1.6 PPM	OK			EW-71
147	3.0 PPM	OK			EW-72
148	5.5 PPM	OK			EW-73
149	9.6 PPM	OK			EW-78
150	6.0 PPM	OK			EW-36A
151	1.1 PPM	OK			EW-85
152	0.9 PPM	OK			EW-88
153	2.5 PPM	OK			EW-89
154	3.6 PPM	OK			EW-93
155	1.0 PPM	OK			EW-94
156	0.0 PPM	OK			EW-98
1 <i>57</i>	3.1 PPM	OK			EW-99
158	50.7 PPM	OK			EW-90
159	101.0 PPM	OK			EW-86
160	12.6 PPM	OK			EW-84
161	1673.0 PPM	HIGH_ALRM	36.60017	-82.14845	EW-80
162	2784.0 PPM	HIGH_ALRM	36.60017	-82.14847	EW-79
163	8481.0 PPM	HIGH_ALRM	36.60053	-82.14828	EW-77
164	686.0 PPM	HIGH_ALRM	36.60088	-82.14829	EW-33B
165	1207.0 PPM	HIGH_ALRM	36.60118	-82.14856	EW-75


Number of locations sampled: 165
Number of exceedance locations: 9

NOTES:

Points 1 through 100 represent serpentine SEM route.
Points 101 through 165 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, 88°F Wind: 7 MPH E

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm							
8/7/2024	11:03	ZERO	0.2	PPM			
8/7/2024	11:06	SPAN	501.0	PPM			
<u>Background Rec</u>	ading:						
8/7/2024	11:09	Upwind	2.0	PPM			
8/7/2024	11:17	Downwind	6.0	PPM			

SCS ENGINEERS

August 21, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – August 15, 2024

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on August 15, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	166
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	66
Number of Exceedances	6
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	6

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

An Alternate Remedy Request outlining proposed corrective actions for exceedances at EW-55, EW-67, EW-82, EW-90, and EW-95 was submitted to VDEQ on July 11, 2024 in accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v). Corrective actions at these five wells, which involved, installation, or reapplication, of a bentonite seal along the well riser pipe, were completed during the week of 8/12/24. Therefore, since the Alternate Remedy has been completed at these five locations, the exceedances have been resolved.

The Facility continued to observe an increase of exceedance points during this weekly event, likely due to reduced vacuum at several of the vertical extraction wells where exceedances were documented. This issue is being addressed and it is anticipated that restoration of normal levels of vacuum at these locations will result in reduced surface emissions.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	8/15/24 Event	8/15/24 Event Result	Comments
EW-90	4/2/24	N/A	Passed	Alternate Remedy Completed - Exceedance Resolved
EW-67	4/11/24	N/A	Passed	Alternate Remedy Completed - Exceedance Resolved
EW-82	5/3/24	N/A	NM¹	Alternate Remedy Completed - Exceedance Resolved
EW-95	5/3/24	N/A	Passed	Alternate Remedy Completed - Exceedance Resolved
EW-55	6/4/24	N/A	Passed	Alternate Remedy Completed - Exceedance Resolved
EW-79	7/22/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-63	8/1/24	2 nd 10-Day Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-64	8/1/24	2 nd 10-Day Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-77	8/1/24	2 nd 10-Day Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-75	7/22/24	2 nd 10-Day Retest	Passed	Requires 1-Month Retest
EW-80	7/22/24	2 nd 10-Day Retest	Passed	Requires 1-Month Retest
EW-52	8/1/24	N/A	Passed	Requires 1-Month Retest
EW-100	8/1/24	N/A	Passed	Requires 1-Month Retest
EW-33B	8/7/24	10-Day Retest	Failed	Requires 2 nd 10-Day Retest
TP-9	8/7/24	10-Day Retest	Passed	Requires 1-Month Retest

 $^{1\!\!:}$ EW-82 was unable to be monitored due to ponding water

Mr. Jonathan Chapman August 21, 2024 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Lucus D. Nachman

Senior Project Professional

Lucas S. Nachman

SCS Engineers

Sincerely,

Wylie R Hicklin Associate Professional SCS Engineers

Wylin R Dicklin

LSN/WRH

cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
 1	3.2 PPM	OK			Start Serpentine Route
2	3.7 PPM	OK			
3	10.2 PPM	OK			
4	5.7 PPM	OK			
5	5.0 PPM	OK			
6	3.0 PPM	OK			
7	3.0 PPM	OK			
8	48.3 PPM	OK			
9	2.7 PPM	OK			
10	1.5 PPM	OK			
11	1.6 PPM	OK			
12	3.2 PPM	OK			
13	2.6 PPM	OK			
14	3.9 PPM	OK			
15	13.0 PPM	OK			
16	1.4 PPM	OK			
1 <i>7</i>	1.7 PPM	OK			
18	1.5 PPM	OK			
19	1.2 PPM	OK			
20	1.4 PPM	OK			
21	6.9 PPM	OK			
22	1.5 PPM	OK			
23	4.2 PPM	OK			
24	1.6 PPM	OK			
25	1.3 PPM	OK			
26	1.1 PPM	OK			
27	1.1 PPM	OK			
28	1.1 PPM	OK			
29	6.0 PPM	OK			
30	1.8 PPM	OK			
31	23.7 PPM	OK			
32	108.0 PPM	OK			
33	33.7 PPM	OK			
34	144.0 PPM	OK			
35	20.5 PPM	OK			
36	10.2 PPM	OK			
37	7.8 PPM	OK			
38	79.5 PPM	OK			
39	11.4 PPM	OK			
40	2.3 PPM	OK			
41	2.4 PPM	OK			
42	5.5 PPM	OK			
43	8.3 PPM	OK			
44	2.8 PPM	OK			
45	20.3 PPM	OK			
46	28.1 PPM	OK			
47	51.7 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
48	4.3 PPM	OK			
49	1.8 PPM	OK			
50	3.1 PPM	OK			
51	2.4 PPM	OK			
52	1.9 PPM	OK			
53	1.0 PPM	OK			
54	0.9 PPM	OK			
55	3.1 PPM	OK			
56	2.6 PPM	OK			
57	22.7 PPM	OK			
58	17.6 PPM	OK			
59	4.8 PPM	OK			
60	379.0 PPM	OK			
61	6.1 PPM	OK			
62	2.8 PPM	OK			
63	1.3 PPM	OK			
64	1.1 PPM	OK			
65	0.9 PPM	OK			
66	1.0 PPM	OK			
67	1.7 PPM	OK			
68	1.6 PPM	OK			
69	7.3 PPM	OK			
70	0.5 PPM	OK OK			
70 71	4.8 PPM	OK OK			
72	2.8 PPM	OK OK			
73	7.9 PPM	OK OK			
73 74	0.5 PPM	OK OK			
74 75	1.3 PPM	OK OK			
75 76	0.5 PPM	OK OK			
76 77		OK OK			
	39.9 PPM				
78 70	1.9 PPM	OK			
79	2.1 PPM	OK			
80	1.6 PPM	OK			
81	0.5 PPM	OK			
82	0.4 PPM	OK			
83	8.3 PPM	OK			
84	1.2 PPM	OK			
85	1.0 PPM	OK			
86	19.9 PPM	OK			
87	13.5 PPM	OK			
88	18.3 PPM	OK			
89	97.4 PPM	OK			
90	206.0 PPM	OK			
91	1.5 PPM	OK			
92	5.2 PPM	OK			
93	110.0 PPM	OK			
94	35.8 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
95	6.5 PPM	OK			
96	0.4 PPM	OK			
97	0.1 PPM	OK			
98	0.1 PPM	OK			
99	1.2 PPM	OK			
100	15.9 PPM	OK			End Serpentine Route
101	96.7 PPM	OK			EW-52
102	12.8 PPM	OK			TP-4
103	46.4 PPM	OK			EW-60
104	41.4 PPM	OK			EW-48
105	1.6 PPM	OK			TP-6
106	1.2 PPM	OK			EW-61
107	3.6 PPM	OK			EW-50
108	152.0 PPM	OK			EW-67
109	0.5 PPM	OK			EW-47
110	31.8 PPM	OK			EW-54
111	423.0 PPM	OK			EW-55
112	0.9 PPM	OK			EW-92
113	2048.0 PPM	HIGH_ALRM	36.59890	-82.14756	EW-91
114	2.1 PPM	OK			EW-96
115	0.4 PPM	OK			TP-2
116	0.8 PPM	OK			EW-66
11 <i>7</i>	0.3 PPM	OK			EW-58
118	9.4 PPM	OK			EW-57
119	0.5 PPM	OK			TP-1
120	1.1 PPM	OK			EW-59
121	5.7 PPM	OK			EW-100
122	60.5 PPM	OK			EW-56
123	1.4 PPM	OK			EW-97
124	1.4 PPM	OK			EW-53
125	2.3 PPM	OK			TP-3
126	56.3 PPM	OK			EW-51
127	4.9 PPM	OK			TP-5
128	18.9 PPM	OK			EW-68
129	7.1 PPM	OK			EW-87
130	133.0 PPM	OK			EW-38
131	3.7 PPM	OK			TP-7
132	1.9 PPM	OK			EW-49
133	161.0 PPM	OK			EW-83
134	57.8 PPM	OK			EW-65
135	21.5 PPM	OK			EW-81
136	111.0 PPM	OK			TP-8
137	1160.0 PPM	HIGH_ALRM	36.60063	-82.14796	EW-64
138	1257.0 PPM	HIGH_ALRM	36.60090	-82.14807	EW-63
139	41.8 PPM	OK			EW-42
140	20.2 PPM	OK			EW-76

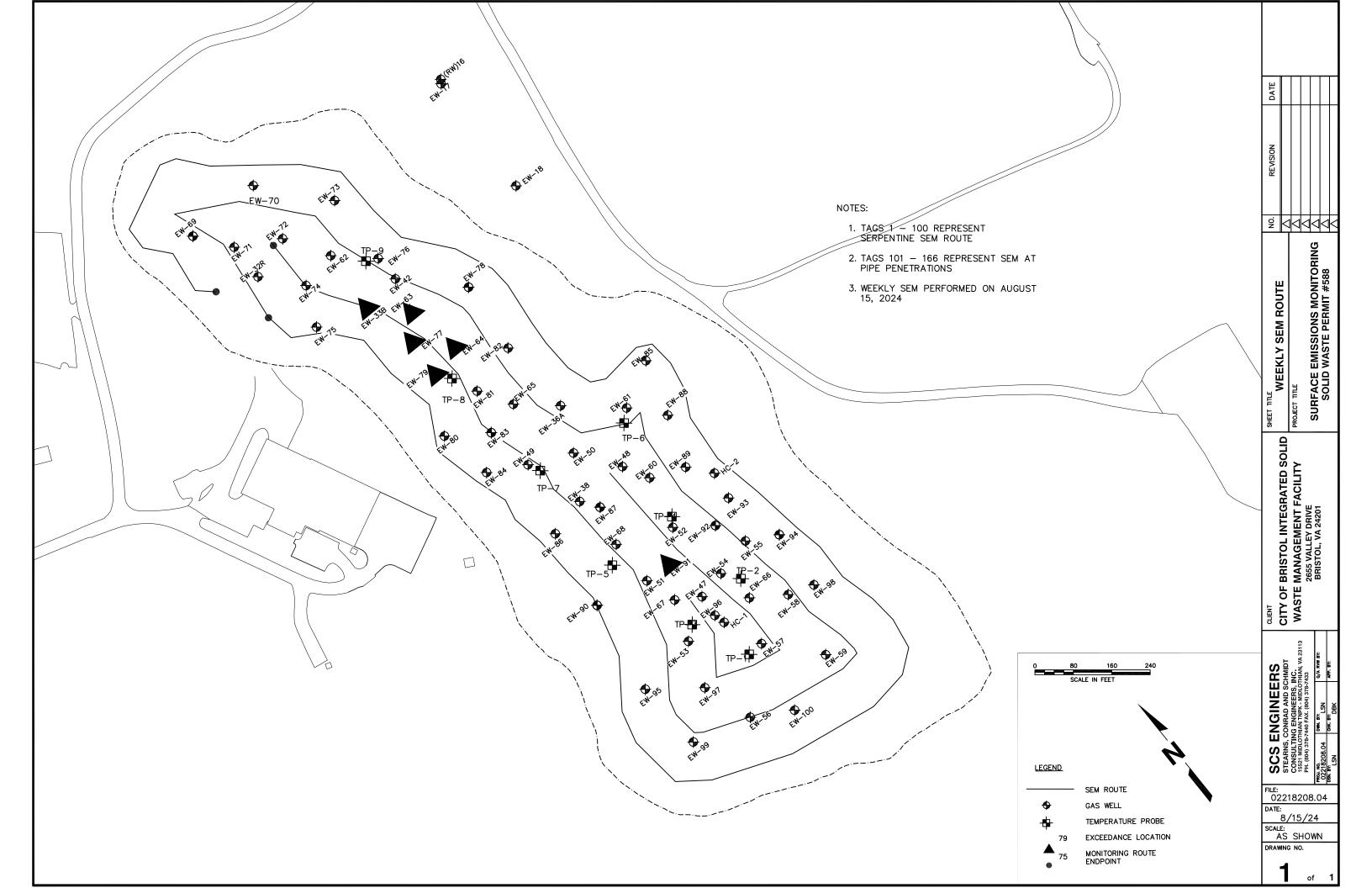
	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comment
141	0.1 PPM	OK			TP-9
142	6.6 PPM	OK			EW-62
143	29.8 PPM	OK			EW-74
144	1.0 PPM	OK			EW-32R
145	1.4 PPM	OK			EW-69
146	0.6 PPM	OK			EW-71
147	40.6 PPM	OK			EW-72
148	10.9 PPM	OK			EW-73
149	0.8 PPM	OK			EW-78
150	0.1 PPM	OK			EW-36A
151	0.0 PPM	OK			EW-85
152	2.5 PPM	OK			EW-88
153	0.0 PPM	OK			EW-89
154	1.3 PPM	OK			EW-93
155	0.0 PPM	OK			EW-94
156	2.0 PPM	OK			EW-98
1 <i>57</i>	37.0 PPM	OK			EW-99
158	9.3 PPM	OK			EW-95
159	8.8 PPM	OK			EW-90
160	47.1 PPM	OK			EW-86
161	26.1 PPM	OK			EW-84
162	339.0 PPM	OK			EW-80
163	1656.0 PPM	HIGH_ALRM	36.60017	-82.14847	EW-79
164	9297.0 PPM	HIGH_ALRM	36.60053	-82.14828	EW-77
165	4230.0 PPM	HIGH_ALRM	36.60088	-82.14829	EW-33B
166	431.0 PPM	OK			EW-75

Number of locations sampled: 166
Number of exceedance locations: 6

NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 166 represent SEM at Pipe Penetrations


Weather Conditions: Sunny, 85°F Wind: 2 MPH SE

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm

8/15/2024	10:48	ZERO	0.2	PPM
8/15/2024	10:50	SPAN	500.0	PPM

Background Reading:

8/15/2024	10:52	Upwind	2.4	PPM
8/15/2024	10:56	Downwind	4.6	PPM

SCS ENGINEERS

August 28, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event - August 21, 2024

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on August 21, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	167
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	67
Number of Exceedances	7
Number of Serpentine Exceedances	1
Number of Pipe Penetration Exceedances	6

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

The Facility continued to observe an increase of exceedance points during this weekly event, likely due to reduced vacuum at several of the vertical extraction wells. This will be addressed by increasing vacuum at these locations.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	8/21/24 Event	8/21/24 Event Result	Comments
EW-79	7/22/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-63	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-64	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-77	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-33B	8/7/24	2 nd 10-Day Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-75	7/22/24	1-Month Retest	Passed	Exceedance Resolved
EW-80	7/22/24	1-Month Retest	Passed	Exceedance Resolved
EW-52	8/1/24	N/A	Passed	Requires 1-Month Retest
EW-100	8/1/24	N/A	Passed	Requires 1-Month Retest
TP-9	8/7/24	N/A	Passed	Requires 1-Month Retest
EW-91	8/15/24	10-Day Retest	Passed	Requires 1-Month Retest

If you have questions or require additional information, please contact either of the undersigned.

Lucus D. Nachman

Lucas S. Nachman

SCS Engineers

Senior Project Professional

Sincerely,

Wylie R Hicklin Associate Professional SCS Engineers

Wylin R Dicklin

LSN/WRH

cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

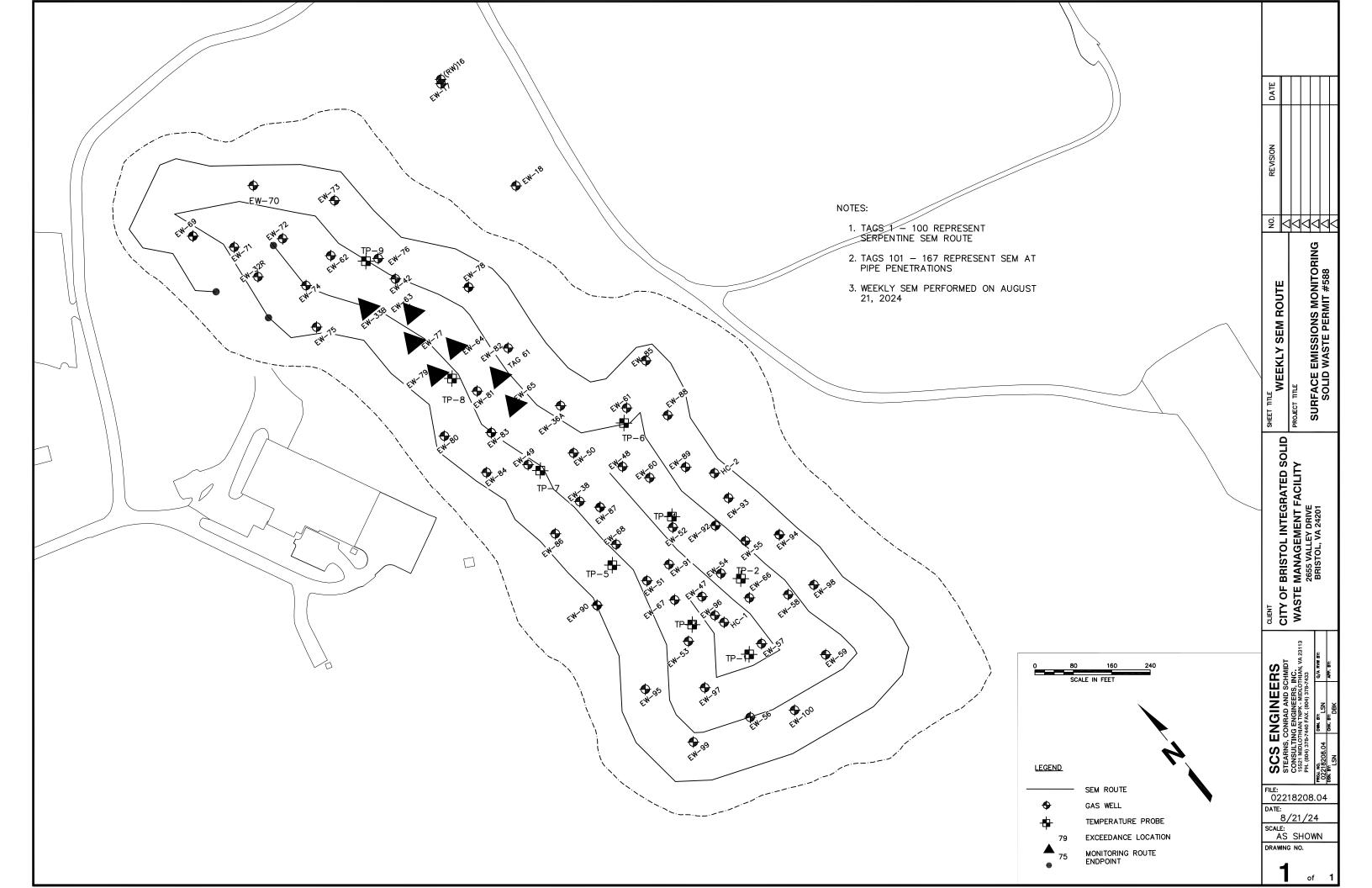
Bristol SEM Route Drawing

	Methane GPS Coordinates				
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	3.1 PPM	OK			Start Serpentine Route
2	21.6 PPM	OK			
3	7.6 PPM	OK			
4	1.9 PPM	OK			
5	1.8 PPM	OK			
6	1.8 PPM	OK			
7	1.7 PPM	OK			
8	1.7 PPM	OK			
9	1.8 PPM	OK			
10	1.7 PPM	OK			
11	1.8 PPM	OK			
12	1.7 PPM	OK			
13	4.3 PPM	OK			
14	2.5 PPM	OK			
15	12.1 PPM	OK			
16	5.0 PPM	OK			
17	11.6 PPM	OK			
18	7.4 PPM	OK			
19	2.6 PPM	OK			
20	2.1 PPM	OK			
21	1.9 PPM	OK			
22	14.5 PPM	OK			
23	4.6 PPM	OK OK			
24	4.6 PPM	OK			
25	4.6 PPM	OK OK			
26	3.3 PPM	OK OK			
27	2.7 PPM	OK OK			
28	3.0 PPM	OK OK			
29	2.8 PPM	OK OK			
	2.4 PPM	OK OK			
30 31	9.3 PPM	OK OK			
32	3.0 PPM	OK OK			
33	2.4 PPM	OK OK			
33 34	67.6 PPM	OK OK			
35 35	19.0 PPM	OK OK			
36	331.0 PPM	OK OK			
36 37	20.9 PPM	OK OK			
38	6.0 PPM	OK OK			
36 39	6.8 PPM	OK OK			
40	14.8 PPM	OK OK			
41		OK OK			
	9.0 PPM	OK OK			
42	4.3 PPM				
43	5.5 PPM	OK OK			
44	17.3 PPM	OK OK			
45 46	126.0 PPM	OK OK			
46 47	29.7 PPM 154.0 PPM	OK OK			

	Methane	Methane GPS Coordinates				
ID#	Concentration	Compliance	Lat.	Long.	Comments	
48	1.5 PPM	OK				
49	1.3 PPM	OK				
50	1.2 PPM	OK				
51	1.2 PPM	OK				
52	1.1 PPM	OK				
53	2.1 PPM	OK				
54	1.3 PPM	OK				
55	3.0 PPM	OK				
56	7.2 PPM	OK				
57	12.3 PPM	OK				
58	6.3 PPM	OK				
59	62.8 PPM	OK				
60	51.6 PPM	OK				
61	896.0 PPM	HIGH_ALRM	36.60029	-82.14785		
62	47.3 PPM	OK	00.00027	02.1 17 00		
63	14.9 PPM	OK				
64	5.3 PPM	OK				
65	6.3 PPM	OK				
66	14.4 PPM	OK OK				
67	14.8 PPM	OK OK				
68	8.3 PPM	OK OK				
69	3.4 PPM	OK OK				
70	2.2 PPM	OK OK				
70 71	5.1 PPM	OK OK				
71 72	127.0 PPM	OK OK				
72 73	61.8 PPM	OK OK				
73 74	1.8 PPM	OK OK				
74 75	1.8 PPM	OK OK				
75 76	1.6 FFM 17.2 PPM	OK OK				
70 77						
77 78	46.5 PPM 20.2 PPM	OK OK				
79 80	4.1 PPM	OK OK				
80 81	4.6 PPM	OK OK				
81 82	3.9 PPM	OK OK				
82	2.4 PPM	OK				
83	4.7 PPM	OK				
84	9.5 PPM	OK				
85	3.4 PPM	OK				
86	5.9 PPM	OK				
87	23.0 PPM	OK				
88	14.4 PPM	OK				
89	25.7 PPM	OK				
90	68.3 PPM	OK				
91	9.4 PPM	OK				
92	3.3 PPM	OK				
93 94	23.1 PPM 8.2 PPM	OK OK				

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
95	39.3 PPM	OK			
96	10.9 PPM	OK			
97	1.7 PPM	OK			
98	3.5 PPM	OK			
99	1.2 PPM	OK			
100	1.7 PPM	OK			End Serpentine Route
101	135.0 PPM	OK			EW-52
102	46.1 PPM	OK			TP-4
103	76.2 PPM	OK			EW-60
104	36.1 PPM	OK			EW-48
105	26.7 PPM	OK			TP-6
106	2.2 PPM	OK			EW-61
107	1.8 PPM	OK			EW-50
108	1.0 PPM	OK			EW-67
109	1.0 PPM	OK			EW-47
110	1.2 PPM	OK			EW-54
111	112.0 PPM	OK			EW-55
112	1.4 PPM	OK			EW-92
113	50.1 PPM	OK			EW-91
114	40.1 PPM	OK			EW-96
115	1.3 PPM	OK			TP-2
116	1.6 PPM	OK			EW-66
117	0.9 PPM	OK			EW-58
118	0.9 PPM	OK			EW-57
119	1.1 PPM	OK			TP-1
120	5.6 PPM	OK			EW-59
121	24.2 PPM	OK			EW-100
122	234.0 PPM	OK			EW-56
123	2.6 PPM	OK			EW-97
124	3.3 PPM	OK			EW-53
125	3.1 PPM	OK			TP-3
126	455.0 PPM	OK			EW-51
127	1.4 PPM	OK			TP-5
128	159.0 PPM	OK			EW-68
129	88.1 PPM	OK			EW-87
130	0.8 PPM	OK			EW-38
131	21.9 PPM	OK			TP-7
132	1.5 PPM	OK			EW-49
133	1.0 PPM	OK			EW-83
134	2840.0 PPM	HIGH_ALRM	36.60017	-82.14787	EW-65
135	60.1 PPM	OK			EW-81
136	30.8 PPM	OK			TP-8
137	11 <i>47</i> .0 PPM	HIGH_ALRM	36.60056	-82.14796	EW-64
138	696.0 PPM	HIGH_ALRM	36.60090	-82.14807	EW-63
139	3.7 PPM	OK			EW-42
140	45.1 PPM	OK			EW-76

Methane				GPS Coordinates		
#	Concentration	Compliance	Lat.	Long.	Comment	
4 1	259.0 PPM	OK			TP-9	
12	1.0 PPM	OK			EW-62	
13	6.2 PPM	OK			EW-74	
14	4.5 PPM	OK			EW-32R	
1 5	1.2 PPM	OK			EW-69	
16	1.0 PPM	OK			EW-71	
17	3.9 PPM	OK			EW-72	
18	11.8 PPM	OK			EW-73	
19	3.1 PPM	OK			EW-78	
50	14.9 PPM	OK			EW-82	
51	2.9 PPM	OK			EW-36A	
52	0.5 PPM	OK			EW-85	
53	1.3 PPM	OK			EW-88	
54	5.0 PPM	OK			EW-89	
55	0.3 PPM	OK			EW-93	
56	0.7 PPM	OK			EW-94	
57	0.4 PPM	OK			EW-98	
58	1.1 PPM	OK			EW-99	
59	78.8 PPM	OK			EW-95	
50	14.5 PPM	OK			EW-90	
51	152.0 PPM	OK			EW-86	
52	188.0 PPM	OK			EW-84	
33	79.5 PPM	OK			EW-80	
54	1128.0 PPM	HIGH_ALRM	36.60051	-82.14819	EW-79	
55	12700.0 PPM	HIGH_ALRM	36.60072	-82.14819	EW-77	
66	1789.0 PPM	HIGH_ALRM	36.60105	-82.14831	EW-338	
57	194.0 PPM	OK			EW-75	
	194.0 PPM	OK	36.60105 167 7	-82.14831		


NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 167 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, 65°F Wind: 5 MPH NE

Sampling Calib	ration: Meth	<u>ıane - 500 ppm</u>	, Zero Air - 0.0) ppm
8/21/2024	10:48	ZERO	0.2	PPM
8/21/2024	10:51	SPAN	501.0	PPM
Background Red	ading:			
8/21/2024	10:52	Upwind	2.3	PPM
8/21/2024	10:56	Downwind	2.1	PPM

SCS ENGINEERS

September 4, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event - August 29, 2024

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on August 29, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	167
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	67
Number of Exceedances	6
Number of Serpentine Exceedances	1
Number of Pipe Penetration Exceedances	5

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

The Facility continued to observe an increase of exceedance points during this weekly event, likely due to reduced vacuum at several of the vertical extraction wells. This will be addressed by increasing vacuum at these locations.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	8/29/24 Event	8/29/24 Event Result	Comments
EW-79	7/22/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-63	8/1/24	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-64	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-77	8/1/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-33B	8/7/24	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-52	8/1/24	1-Month Retest	Passed	Exceedance Resolved
EW-100	8/1/24	1-Month Retest	Passed	Exceedance Resolved
TP-9	8/7/24	N/A	Passed	Requires 1-Month Retest
EW-91	8/15/24	N/A	Passed	Requires 1-Month Retest
Tag 61	8/21/24	10-Day Retest	Failed	Requires 2 nd 10-Day Retest
EW-65	8/21/24	10-Day Retest	Failed	Requires 2 nd 10-Day Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

William J. Fabrie Staff Professional SCS Engineers Lucas S. Nachman Senior Project Professional SCS Engineers

ucus D. Nachman

LSN/WJF

cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Laura Socia, City of Bristol

William J. Fabrie

Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

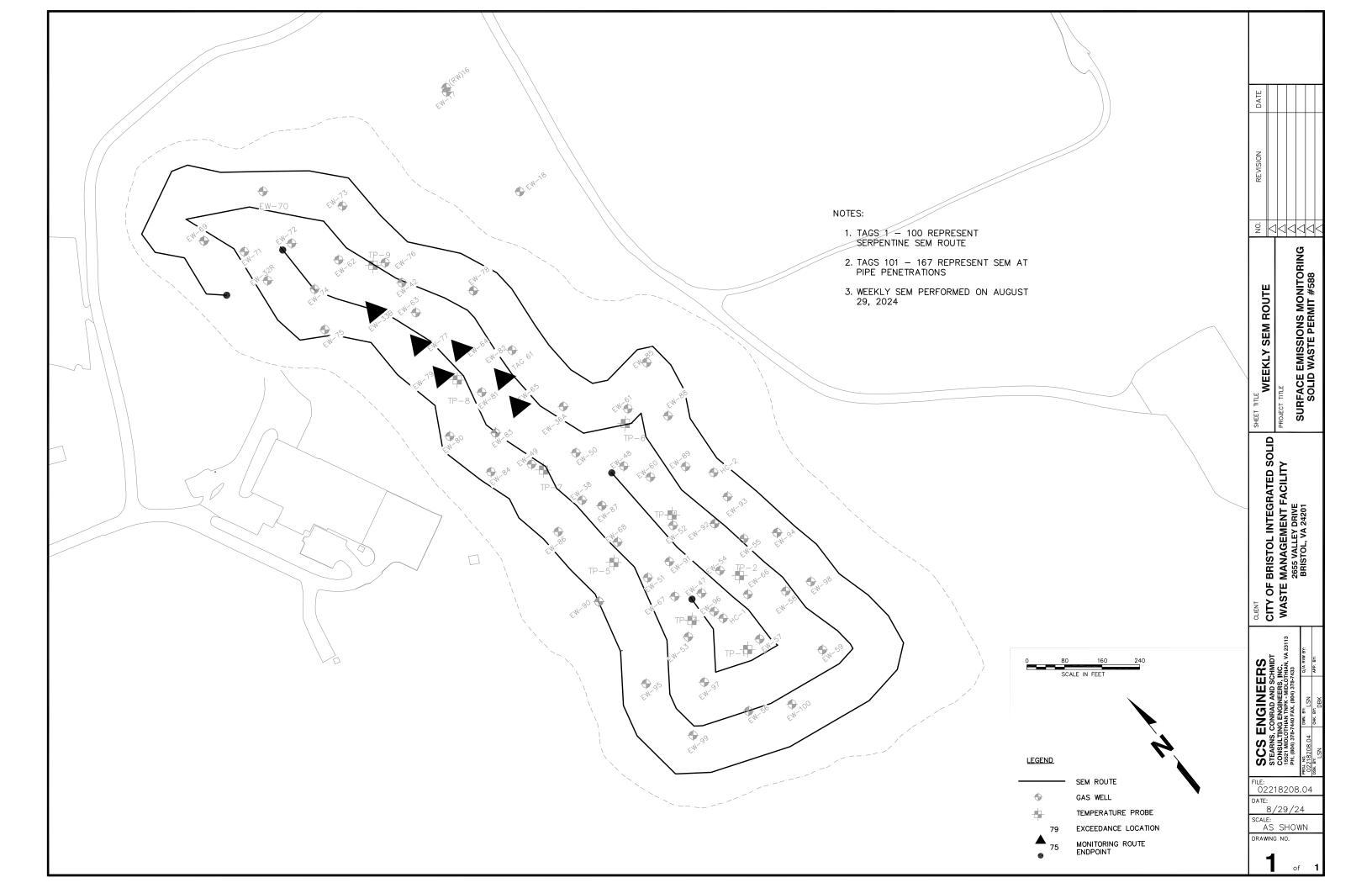
	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	9.3 PPM	OK			Start Serpentine Route
2	2.8 PPM	OK			
3	11.7 PPM	OK			
4	3.4 PPM	OK			
5	3.3 PPM	OK			
6	3.0 PPM	OK			
7	3.0 PPM	OK			
8	2.0 PPM	OK			
9	2.1 PPM	OK			
10	11.8 PPM	OK			
11	5.5 PPM	OK			
12	22.0 PPM	OK			
13	4.8 PPM	OK			
14	3.1 PPM	OK			
15	16.5 PPM	OK			
16	2.3 PPM	OK			
1 <i>7</i>	1.6 PPM	OK			
18	1.6 PPM	OK			
19	1.6 PPM	OK			
20	1.4 PPM	OK			
21	1.5 PPM	OK			
22	12.0 PPM	OK			
23	5.6 PPM	OK			
24	2.5 PPM	OK			
25	2.1 PPM	OK			
26	3.5 PPM	OK			
27	5.8 PPM	OK			
28	3.4 PPM	OK			
29	1.9 PPM	OK			
30	2.7 PPM	OK			
31	1.8 PPM	OK			
32	2.8 PPM	OK			
33	7.3 PPM	OK			
34	37.9 PPM	OK			
35	51.8 PPM	OK			
36	95.6 PPM	OK			
37	18.9 PPM	OK			
38	56.3 PPM	OK			
39	1.6 PPM	OK			
40	1.2 PPM	OK			
41	3.2 PPM	OK			
42	12.4 PPM	OK			
43	5.7 PPM	OK			
44	80.4 PPM	OK			
45	30.6 PPM	OK			
46	8.3 PPM	OK			
47	4.2 PPM	OK			

	Methane GPS Coordinates				
ID#	Concentration	Compliance	Lat.	Long.	Comments
48	8.4 PPM	OK			
49	6.8 PPM	OK			
50	2.8 PPM	OK			
51	3.1 PPM	OK			
52	4.2 PPM	OK			
53	2.2 PPM	OK			
54	2.5 PPM	OK			
55	6.1 PPM	OK			
56	83.1 PPM	OK			
57	4.4 PPM	OK			
58	9.3 PPM	OK			
59	15.1 PPM	OK			
60	35.0 PPM	OK			
61	837.0 PPM	HIGH_ALRM	36.60029	-82.14785	
62	141.0 PPM	OK			
63	16.8 PPM	OK			
64	1.4 PPM	OK			
65	3.5 PPM	OK			
66	1.0 PPM	OK			
67	0.5 PPM	OK			
68	0.6 PPM	OK			
69	0.4 PPM	OK			
<i>7</i> 0	0.3 PPM	OK			
<i>7</i> 1	0.3 PPM	OK			
72	15.6 PPM	OK			
73	44.7 PPM	OK			
74	3.2 PPM	OK			
7.5	0.9 PPM	OK			
76	0.4 PPM	OK			
77	186.0 PPM	OK			
<i>7</i> 8	105.0 PPM	OK			
<i>7</i> 9	8.9 PPM	OK			
80	2.3 PPM	OK			
81	0.4 PPM	OK			
82	5.8 PPM	OK			
83	0.4 PPM	OK			
84	2.0 PPM	OK			
85	0.6 PPM	OK			
86	9.8 PPM	OK			
87	50.3 PPM	OK			
88	35.5 PPM	OK			
89	171.0 PPM	OK			
90	114.0 PPM	OK			
91	2.8 PPM	OK			
92	280.0 PPM	OK			
93	6.4 PPM	OK			
94	88.5 PPM	OK			

	Methane		GPS Co		
ID#	Concentration	Compliance	Lat.	Long.	Comments
95	2.1 PPM	OK			
96	0.6 PPM	OK			
97	0.2 PPM	OK			
98	0.2 PPM	OK			
99	0.9 PPM	OK			
100	10.0 PPM	OK			End Serpentine Route
101	221.0 PPM	OK			EW-52
102	2.4 PPM	OK			TP-4
103	74.8 PPM	OK			EW-60
104	5.1 PPM	OK			EW-48
105	0.3 PPM	OK			TP-6
106	0.0 PPM	OK			EW-61
107	0.5 PPM	OK			EW-50
108	475.0 PPM	OK			EW-67
109	0.4 PPM	OK			EW-47
110	0.7 PPM	OK			EW-54
111	6.6 PPM	OK			EW-55
112	0.0 PPM	OK			EW-92
113	149.0 PPM	OK			EW-91
114	0.8 PPM	OK			EW-96
115	0.0 PPM	OK OK			TP-2
116	4.8 PPM	OK OK			EW-66
117	0.1 PPM	OK OK			EW-58
118	9.0 PPM	OK OK			EW-57
119	3.8 PPM	OK OK			TP-1
120	0.5 PPM	OK OK			EW-59
121	3.1 PPM	OK OK			EW-100
122	31.3 PPM	OK OK			EW-56
123	0.4 PPM	OK OK			EW-97
123		OK OK			EW-53
125	0.2 PPM 3.5 PPM	OK OK			TP-3
126	116.0 PPM	OK OK			EW-51
127	0.9 PPM	OK OK			TP-5
		OK OK			EW-68
128 129	7.7 PPM	OK OK			EW-87
	0.9 PPM				
130	0.3 PPM 92.4 PPM	OK			EW-38
131		OK			TP-7
132	0.2 PPM	OK			EW-49
133	1.8 PPM	OK	24 40017	0014707	EW-83
134	1113.0 PPM	HIGH_ALRM	36.60017	-82.14787	EW-65
135	207.0 PPM	OK			EW-81
136	7.5 PPM	OK	0//005/	001.707	TP-8
137	3964.0 PPM	HIGH_ALRM	36.60056	-82.14796	EW-64
138	87.3 PPM	OK			EW-63
139	11.9 PPM	OK			EW-42
140	9.6 PPM	OK			EW-76

	Methane		GPS Coordinates		
ID#	Concentration	Compliance	Lat.	Long.	Comments
141	8.8 PPM	OK			TP-9
142	2.0 PPM	OK			EW-62
143	10.5 PPM	OK			EW-74
144	1.7 PPM	OK			EW-32R
145	0.8 PPM	OK			EW-69
146	0.1 PPM	OK			EW-71
147	0.1 PPM	OK			EW-72
148	6.3 PPM	OK			EW-73
149	0.0 PPM	OK			EW-78
150	37.0 PPM	OK			EW-82
151	1.5 PPM	OK			EW-36A
152	0.2 PPM	OK			EW-85
153	0.1 PPM	OK			EW-88
154	6.2 PPM	OK			EW-89
155	6.3 PPM	OK			EW-93
156	0.1 PPM	OK			EW-94
1 <i>57</i>	0.2 PPM	OK			EW-98
158	4.0 PPM	OK			EW-99
159	13.5 PPM	OK			EW-95
160	0.3 PPM	OK			EW-90
161	38.2 PPM	OK			EW-86
162	245.0 PPM	OK			EW-84
163	36.8 PPM	OK			EW-80
164	2209.0 PPM	HIGH_ALRM	36.60051	-82.14819	EW-79
165	23400.0 PPM	HIGH_ALRM	36.60072	-82.14819	EW-77
166	994.0 PPM	HIGH_ALRM	36.60105	-82.14831	EW-33B
167	349.0 PPM	OK			EW-75

Number of locations sampled: 167
Number of exceedance locations: 6


NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 167 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, 91 $^{\circ}$ F Wind: 1 MPH W

Sampling Calibr	ation: Metl	nane - 500 ppm <u>,</u>	Zero Air - 0.0	ppm
8/29/2024	9:38	ZERO	0.3	PPM
8/29/2024	9:41	SPAN	499.0	PPM
Background Rea	ding:			
8/29/2024	9:44	Upwind	2.3	PPM
8/29/2024	9:49	Downwind	2.7	PPM

Appendix B

In-Waste Temperatures on Select Days in August

Appendix B Figures

Figure B - 1 Average Temperatures Recorded by TP-1 on August 7, 2024	B-3
Figure B - 2 Average Temperatures Recorded by TP-1 on August 14, 2024	B-3
Figure B - 3 Average Temperatures Recorded by TP-1 on August 21, 2024	B-4
Figure B - 4 Average Temperatures Recorded by TP-1 on August 28, 2024	B-4
Figure B - 5 Average Temperatures Recorded by TP-2 on August 7, 2024	B-5
Figure B - 6 Average Temperatures Recorded by TP-2 on August 14, 2024	B-5
Figure B - 7 Average Temperatures Recorded by TP-2 on August 21, 2024	B-6
Figure B - 8 Average Temperatures Recorded by TP-2 on August 28, 2024	B-6
Figure B - 9 Average Temperatures Recorded by TP-3 on August 7, 2024	B-7
Figure B - 10 Average Temperatures Recorded by TP-3 on August 14, 2024	B-7
Figure B - 11 Average Temperatures Recorded by TP-3 on August 21, 2024	B-8
Figure B - 12 Average Temperatures Recorded by TP-3 on August 28, 2024	B-8
Figure B - 13 Average Temperatures Recorded by TP-4 on August 7, 2024	B-9
Figure B - 14 Average Temperatures Recorded by TP-4 on August 14, 2024	B-9
Figure B - 15 Average Temperatures Recorded by TP-4 on August 21, 2024	
Figure B - 16 Average Temperatures Recorded by TP-4 on August 28, 2024	
Figure B - 17 Average Temperatures Recorded by TP-5 on August 7, 2024	B-11
Figure B - 18 Average Temperatures Recorded by TP-5 on August 14, 2024	
Figure B - 19 Average Temperatures Recorded by TP-5 on August 21, 2024	
Figure B - 20 Average Temperatures Recorded by TP-5 on August 28, 2024	
Figure B - 21 Average Temperatures Recorded by TP-6 on August 7, 2024	
Figure B - 22 Average Temperatures Recorded by TP-6 on August 14, 2024	
Figure B - 23 Average Temperatures Recorded by TP-6 on August 21, 2024	
Figure B - 24 Average Temperatures Recorded by TP-6 on August 28, 2024	
Figure B - 25 Average Temperatures Recorded by TP-7 on August 7, 2024	
Figure B - 26 Average Temperatures Recorded by TP-7 on August 14, 2024	
Figure B - 27 Average Temperatures Recorded by TP-7 on August 21, 2024	
Figure B - 28 Average Temperatures Recorded by TP-7 on August 28, 2024	
Figure B - 29 Average Temperatures Recorded by TP-8 on August 7, 2024	
Figure B - 30 Average Temperatures Recorded by TP-8 on August 14, 2024	
Figure B - 31 Average Temperatures Recorded by TP-8 on August 21, 2024	
Figure B - 32 Average Temperatures Recorded by TP-8 on August 28, 2024	
Figure B - 33 Average Temperatures Recorded by TP-9 on August 7, 2024	
Figure B - 34 Average Temperatures Recorded by TP-9 on August 14, 2024	
Figure B - 35 Average Temperatures Recorded by TP-9 on August 21, 2024	
Figure B - 36 Average Temperatures Recorded by TP-9 on August 28, 2024	B-20

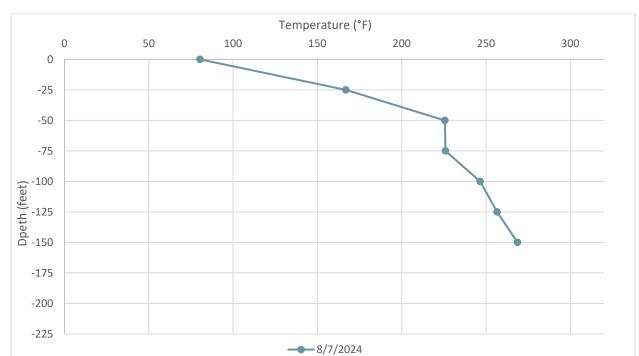
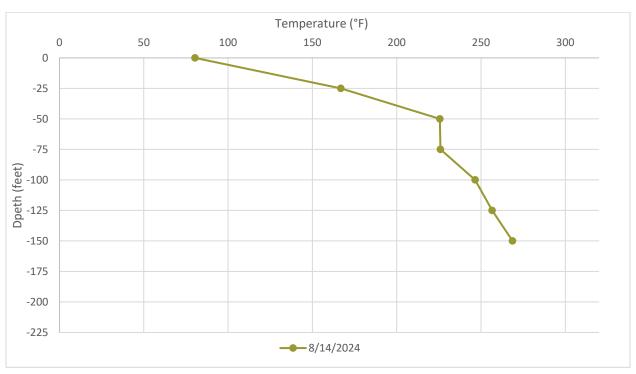



Figure B - 1 Average Temperatures Recorded by TP-1 on August 7, 2024

Figure B - 2 Average Temperatures Recorded by TP-1 on August 14, 2024

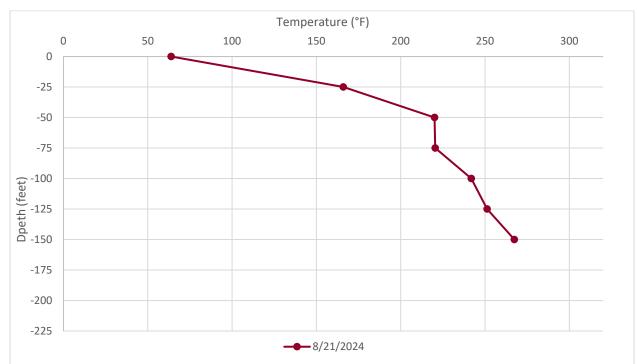
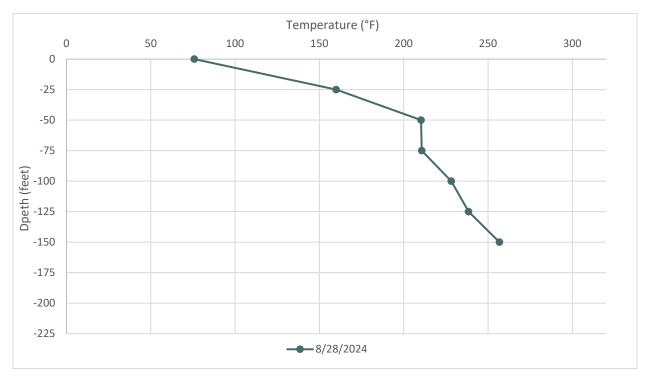



Figure B - 3 Average Temperatures Recorded by TP-1 on August 21, 2024

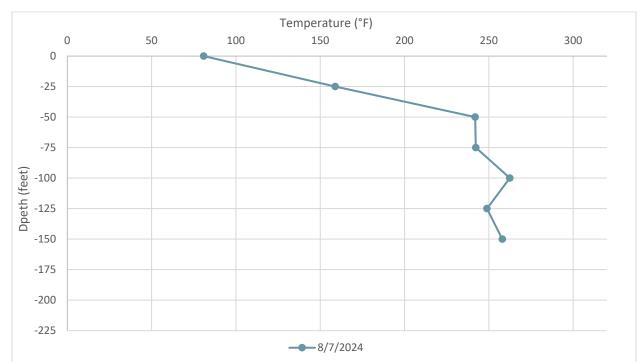
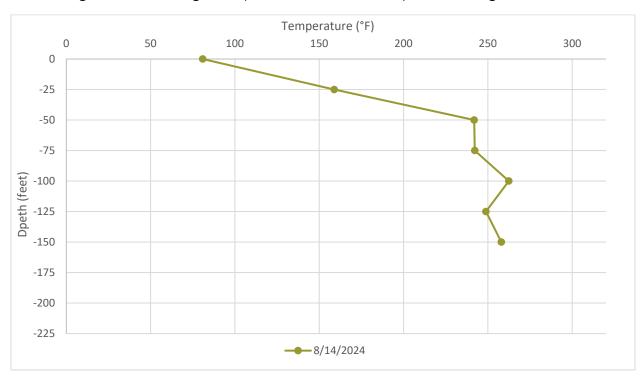



Figure B - 5 Average Temperatures Recorded by TP-2 on August 7, 2024

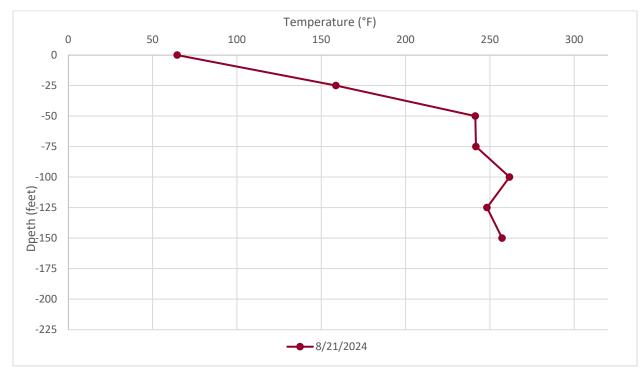
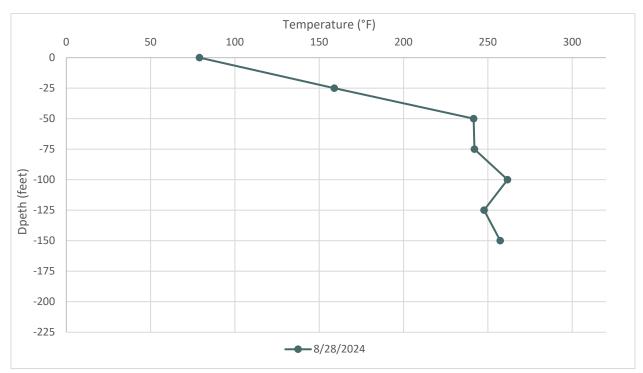



Figure B - 7 Average Temperatures Recorded by TP-2 on August 21, 2024

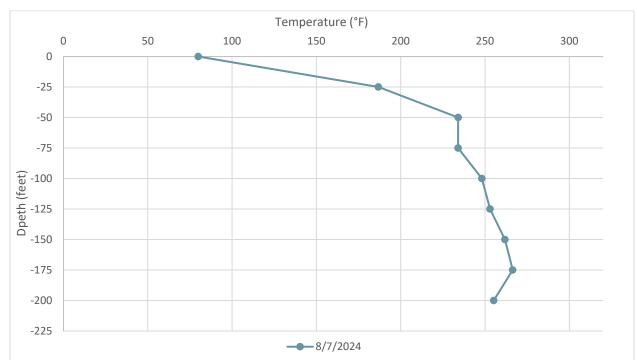
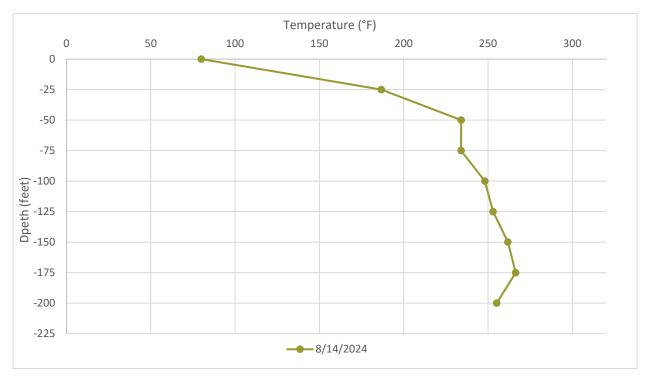



Figure B - 9 Average Temperatures Recorded by TP-3 on August 7, 2024

Figure B - 10 Average Temperatures Recorded by TP-3 on August 14, 2024

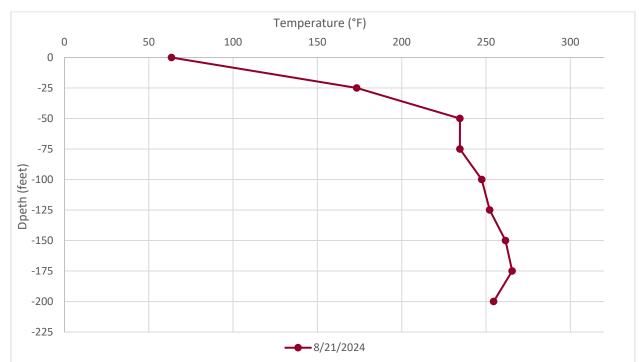
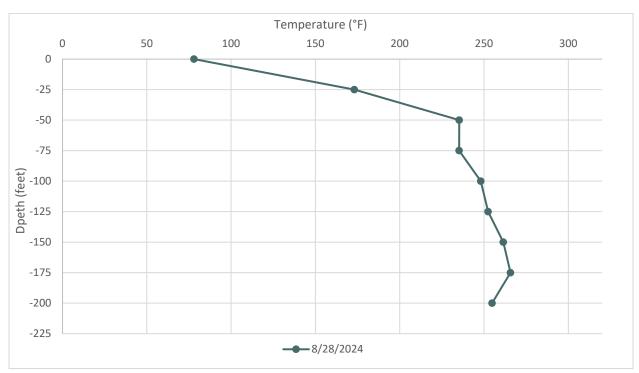



Figure B - 11 Average Temperatures Recorded by TP-3 on August 21, 2024

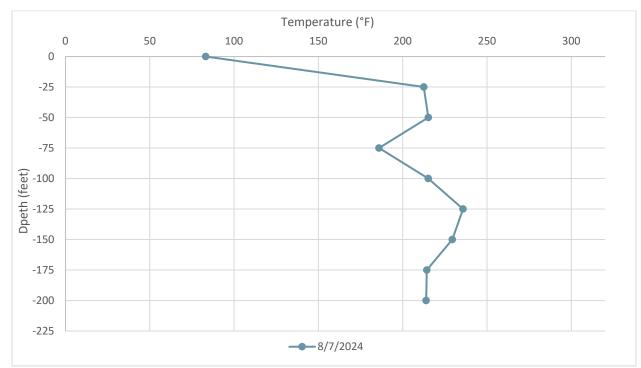
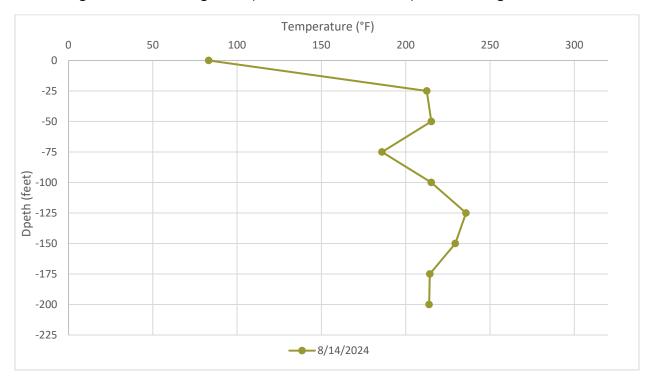



Figure B - 13 Average Temperatures Recorded by TP-4 on August 7, 2024

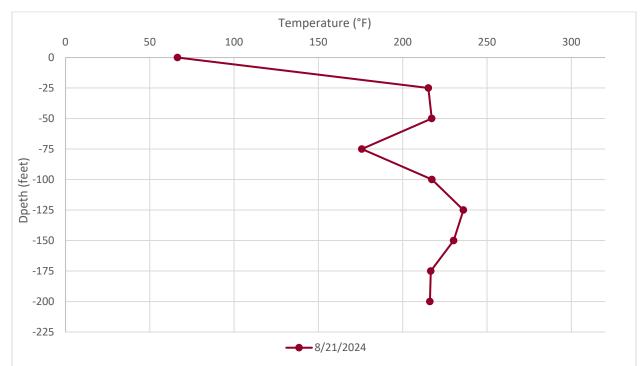
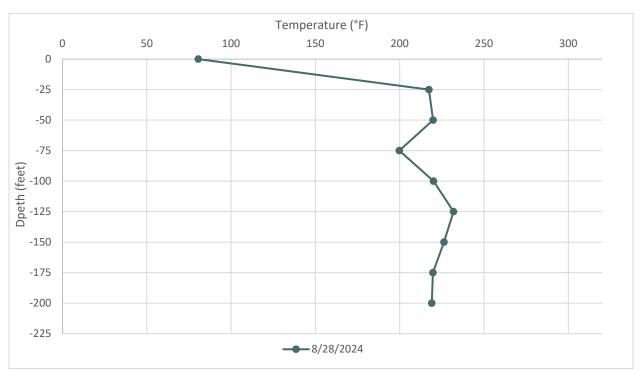



Figure B - 15 Average Temperatures Recorded by TP-4 on August 21, 2024

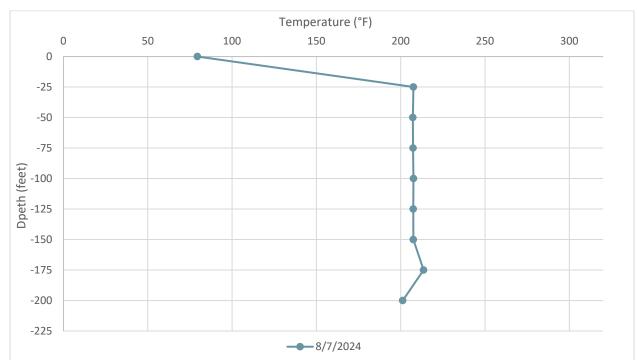
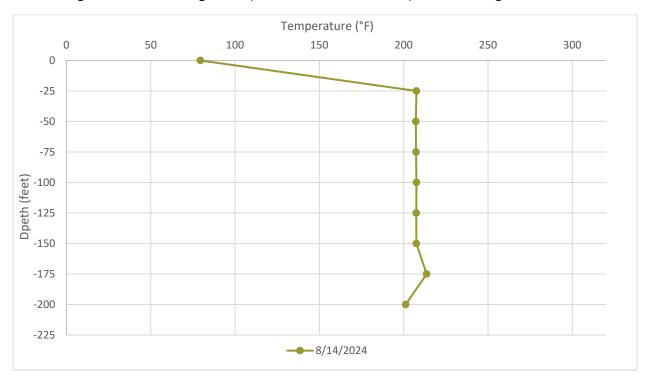



Figure B - 17 Average Temperatures Recorded by TP-5 on August 7, 2024

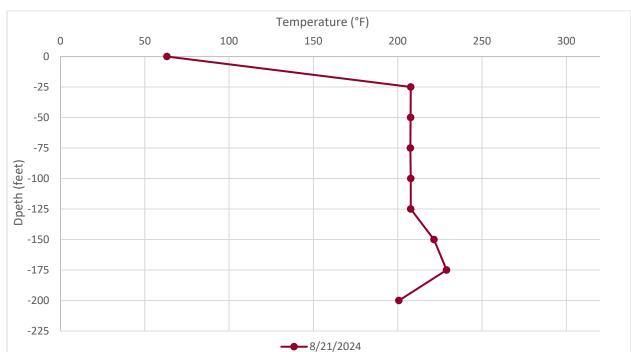
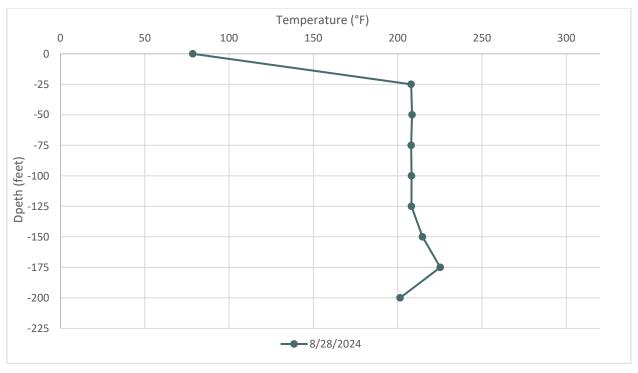



Figure B - 19 Average Temperatures Recorded by TP-5 on August 21, 2024

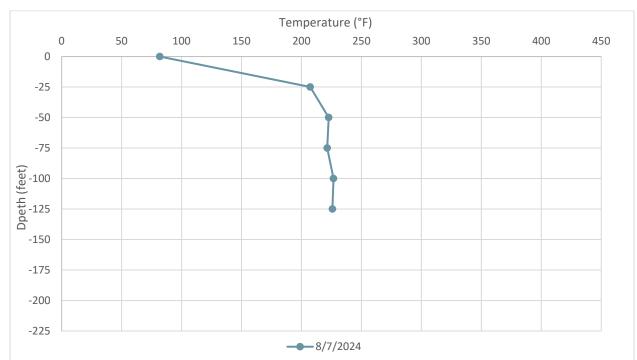
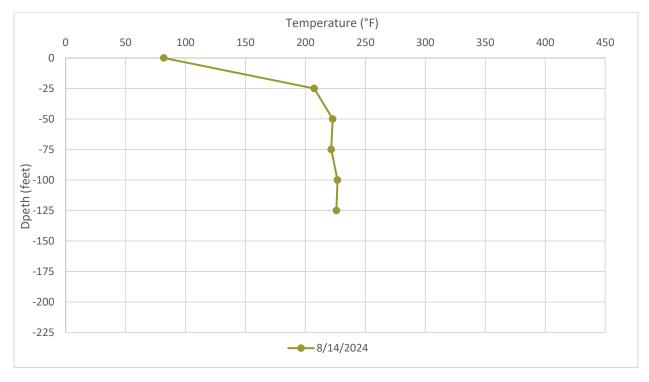



Figure B - 21 Average Temperatures Recorded by TP-6 on August 7, 2024

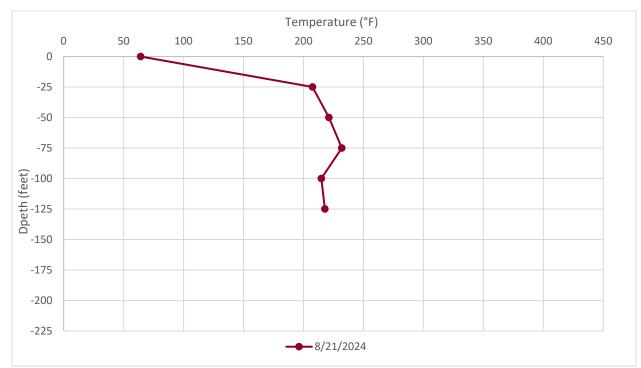
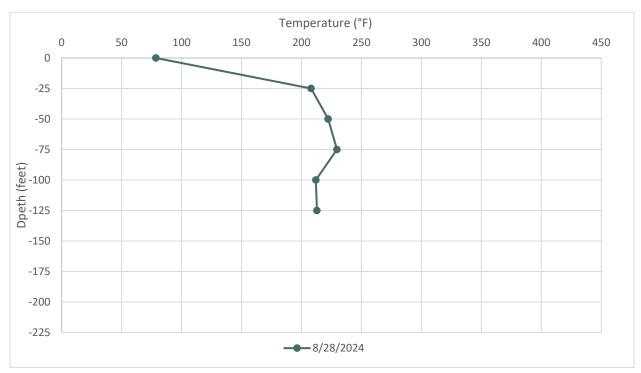



Figure B - 23 Average Temperatures Recorded by TP-6 on August 21, 2024

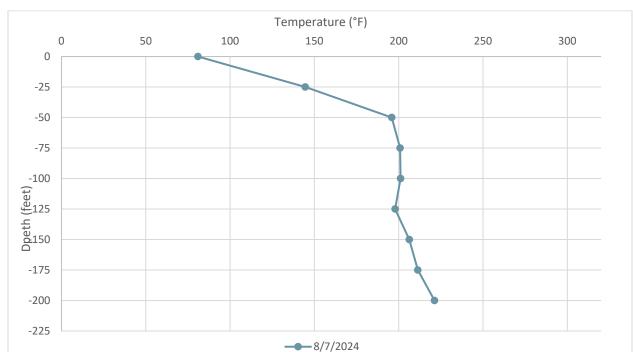
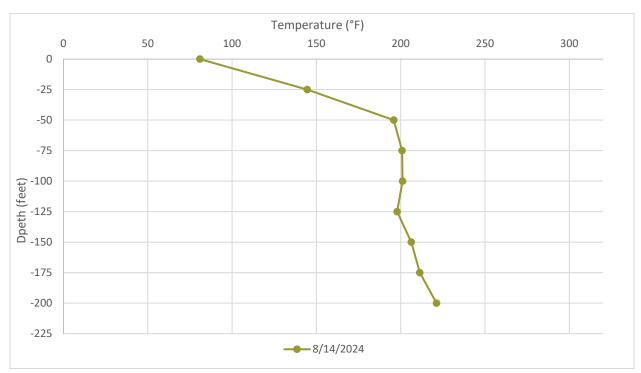



Figure B - 25 Average Temperatures Recorded by TP-7 on August 7, 2024

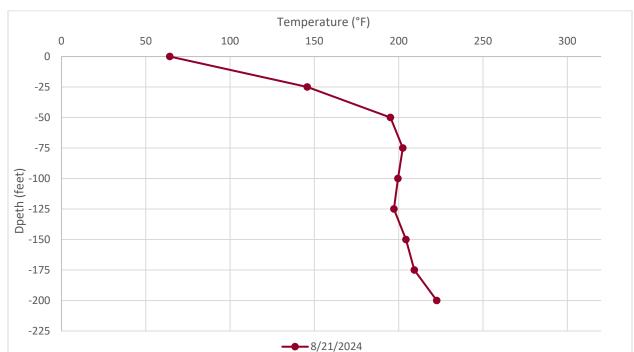
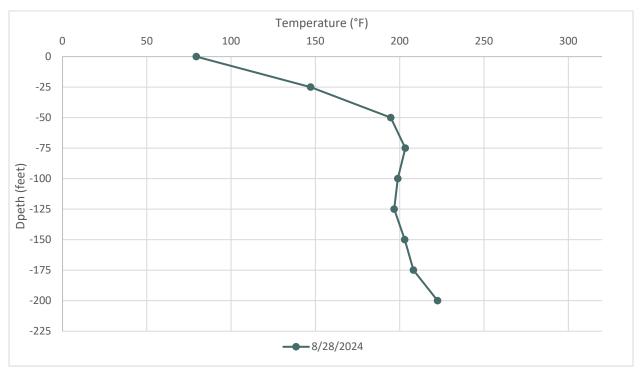



Figure B - 27 Average Temperatures Recorded by TP-7 on August 21, 2024

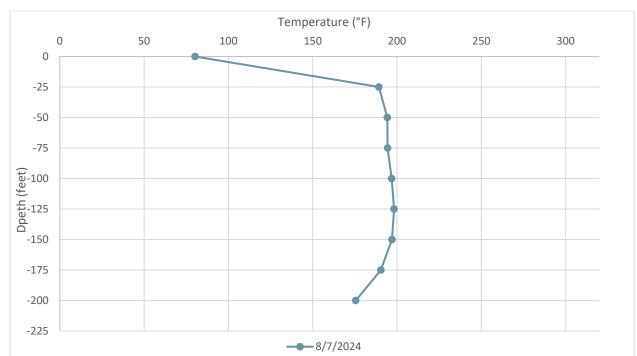
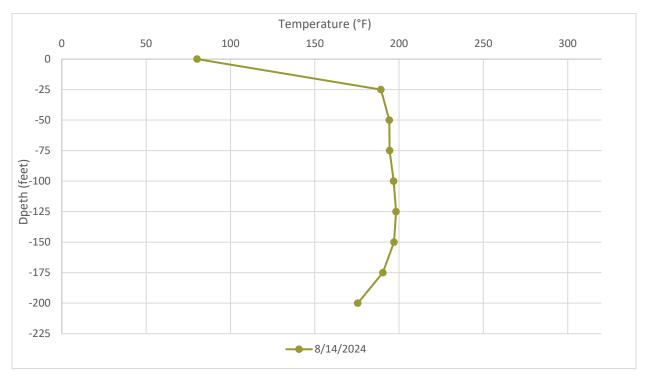



Figure B - 29 Average Temperatures Recorded by TP-8 on August 7, 2024

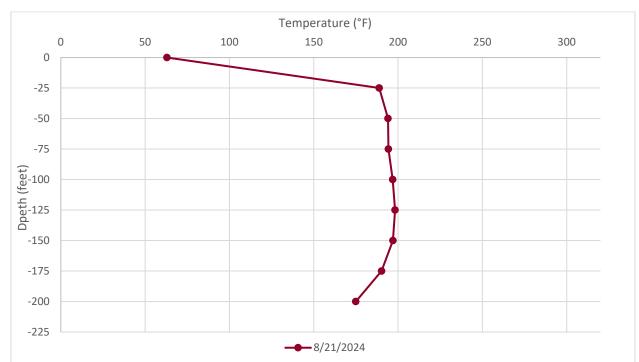
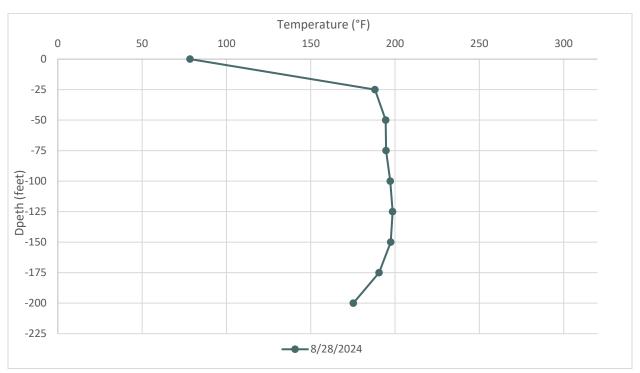



Figure B - 31 Average Temperatures Recorded by TP-8 on August 21, 2024

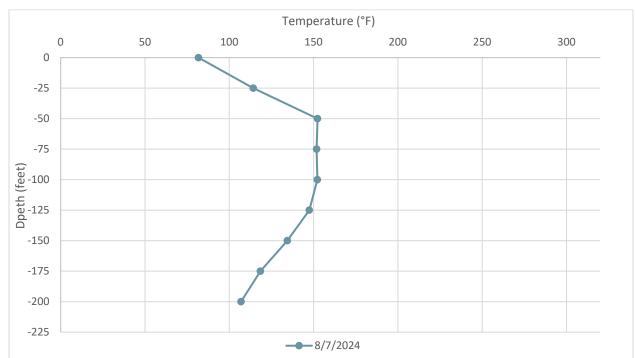
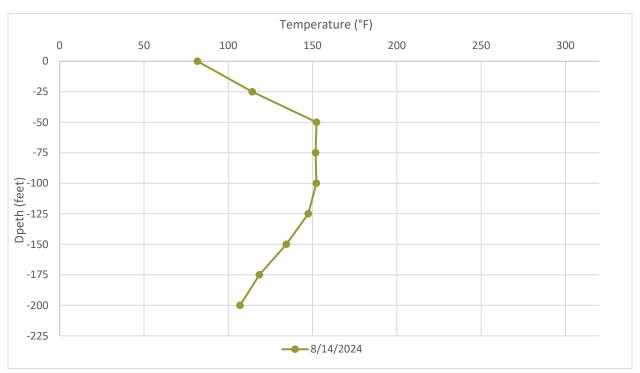



Figure B - 33 Average Temperatures Recorded by TP-9 on August 7, 2024

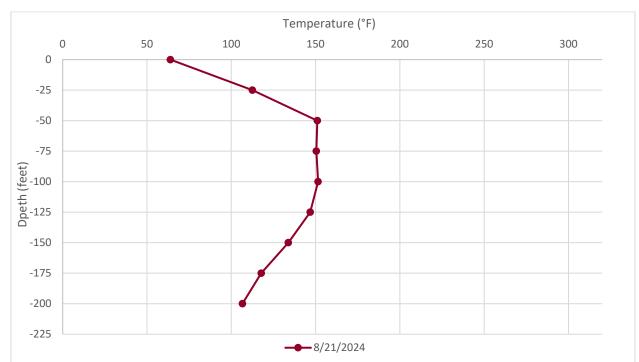
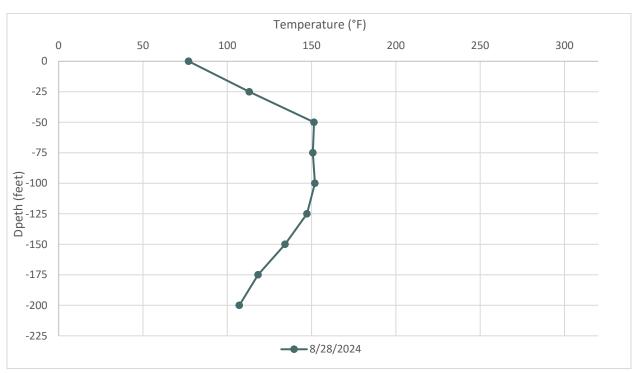



Figure B - 35 Average Temperatures Recorded by TP-9 on August 21, 2024

Appendix C

Daily Wellhead Temperature Averages

The data provided in this report represent initial readings provided by field instrumentation without Validation, analysis, quality assurance review, or context based on operating conditions. This report is subject to revision following quality assurance review and an analysis of operating conditions. SCS will continue to provide a supplemental report with additional information and further analysis on a monthly basis at a minimum.

SCS ENGINEERS

07222143.00 | September 3, 2024

274 Granite Run Drive Lancaster, PA 17601 717-550-6330

D. C.		,	NA (OE)
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	110.3	107.1	115.6
Aug 2	111.3	107.0	116.9
Aug 3	109.2	105.4	113.3
Aug 4	100.1	74.3	105.8
Aug 5	96.5	64.8	115.5
Aug 6	111.5	106.5	116.7
Aug 7	112.0	107.6	117.1
Aug 8	108.9	107.1	110.1
Aug 9	108.9	105.7	112.4
Aug 10	109.2	105.7	114.1
Aug 11	108.9	104.0	114.2
Aug 12	110.0	105.0	115.4
Aug 13	111.6	108.1	116.5
Aug 14	112.7	108.1	117.7
Aug 15	112.8	107.1	118.0
Aug 16	112.1	106.8	117.9
Aug 17	112.3	107.9	118.4
Aug 18	111.1	108.2	116.4
Aug 19	110.6	107.5	115.5
Aug 20	108.2	104.7	112.3
Aug 21	107.7	101.9	115.5
Aug 22	108.9	104.0	114.9
Aug 23	110.2	103.8	116.7
Aug 24	111.1	105.3	117.3
Aug 25	111.6	106.1	117.7
Aug 26	112.3	107.5	118.2
Aug 27	112.7	107.8	117.9
Aug 28	112.8	107.1	118.8
Aug 29	113.1	107.7	118.7
Aug 30	112.5	108.6	120.4
Summary	110.0	96.5	113.1

D		,	14 (07)
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	85.5	78.1	95.5
Aug 2	83.9	74.6	96.4
Aug 3	79.9	75.2	90.0
Aug 4	84.7	75.0	102.7
Aug 5	87.6	73.3	104.5
Aug 6	87.2	75.2	102.7
Aug 7	89.2	75.9	107.6
Aug 8	80.7	76.1	86.5
Aug 9	83.9	75.5	95.0
Aug 10	84.7	73.7	100.1
Aug 11	82.8	69.8	97.9
Aug 12	82.9	69.6	99.0
Aug 13	83.9	75.2	97.4
Aug 14	86.3	74.0	103.7
Aug 15	85.4	72.9	101.8
Aug 16	82.4	73.7	95.2
Aug 17	82.4	75.2	98.1
Aug 18	79.4	73.1	92.7
Aug 19	80.0	74.8	90.9
Aug 20	76.6	68.2	86.6
Aug 21	77.4	63.4	97.8
Aug 22	80.0	67.6	99.3
Aug 23	83.7	69.2	105.2
Aug 24	84.5	69.9	107.9
Aug 25	86.2	71.7	107.7
Aug 26	87.8	73.2	108.9
Aug 27	87.6	73.4	106.9
Aug 28	89.0	75.2	108.1
Aug 29	90.0	76.7	113.8
Aug 30	88.7	78.6	109.1
Summary	84.1	76.6	90.0

		., g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	149.0	148.5	149.6
Aug 2	148.9	145.6	149.9
Aug 3	138.7	124.3	149.0
Aug 4	116.8	95.0	128.8
Aug 5	129.7	82.3	160.3
Aug 6	150.5	150.0	150.9
Aug 7	117.5	76.4	150.3
Aug 8	74.4	69.2	80.4
Aug 9	77.6	68.5	91.1
Aug 10	77.1	64.5	90.3
Aug 11	74.7	60.3	92.9
Aug 12	74.8	59.4	92.1
Aug 13	76.0	66.1	92.0
Aug 14	78.0	63.4	96.3
Aug 15	77.1	63.2	92.8
Aug 16	75.5	67.6	90.1
Aug 17	74.6	67.2	88.5
Aug 18	70.7	63.7	83.6
Aug 19	71.7	64.9	84.4
Aug 20	66.2	56.2	78.2
Aug 21	65.9	49.8	85.3
Aug 22	69.3	54.9	87.1
Aug 23	73.1	56.6	92.7
Aug 24	74.6	57.4	93.0
Aug 25	76.5	60.2	94.9
Aug 26	77.8	60.9	97.3
Aug 27	78.2	62.8	96.8
Aug 28	80.4	63.3	99.9
Aug 29	82.5	66.1	102.9
Aug 30	80.6	67.9	101.8
Summary	89.3	65.9	150.5

_		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	108.5	107.2	111.0
Aug 2	108.5	107.1	110.9
Aug 3	96.8	77.7	107.8
Aug 4	82.0	72.3	97.5
Aug 5	97.0	66.2	117.7
Aug 6	110.7	108.5	115.5
Aug 7	110.2	108.0	114.6
Aug 8	109.2	108.4	112.1
Aug 9	109.1	108.3	110.3
Aug 10	108.8	107.5	110.2
Aug 11	108.2	106.7	109.8
Aug 12	108.8	106.4	113.2
Aug 13	109.2	107.8	110.9
Aug 14	109.3	107.4	111.8
Aug 15	109.3	107.3	111.9
Aug 16	109.0	107.0	111.4
Aug 17	108.4	107.0	110.0
Aug 18	107.8	107.4	109.0
Aug 19	108.3	107.2	111.5
Aug 20	107.9	106.6	110.4
Aug 21	107.8	105.8	111.3
Aug 22	107.7	106.2	109.2
Aug 23	108.4	106.3	111.5
Aug 24	108.1	106.6	110.0
Aug 25	108.1	106.7	109.7
Aug 26	108.8	106.8	112.3
Aug 27	109.3	107.0	113.0
Aug 28	109.2	107.5	113.4
Aug 29	109.4	107.7	112.2
Aug 30	109.5	108.0	112.7
Summary	107.1	82.0	110.7

_			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	75.7	67.9	91.4
Aug 2	76.2	69.2	90.7
Aug 3	73.4	68.3	88.5
Aug 4	76.7	67.4	94.3
Aug 5	79.7	65.6	97.7
Aug 6	80.5	68.2	95.4
Aug 7	81.6	68.6	97.7
Aug 8	74.4	69.8	79.7
Aug 9	77.6	69.1	90.6
Aug 10	76.9	64.9	93.0
Aug 11	74.4	61.1	93.0
Aug 12	74.7	60.1	92.8
Aug 13	76.2	66.0	91.9
Aug 14	77.9	64.0	96.8
Aug 15	77.2	63.9	95.7
Aug 16	75.4	67.6	90.2
Aug 17	74.6	67.5	88.8
Aug 18	71.1	64.5	85.7
Aug 19	71.6	65.6	83.2
Aug 20	66.1	57.2	77.9
Aug 21	65.7	50.7	87.0
Aug 22	68.9	55.9	88.4
Aug 23	72.8	57.9	95.6
Aug 24	74.7	58.2	97.0
Aug 25	76.9	60.9	99.5
Aug 26	78.2	61.7	102.4
Aug 27	78.6	63.6	100.1
Aug 28	80.7	64.0	104.5
Aug 29	82.3	66.1	103.5
Aug 30	80.9	68.5	105.2
Summary	75.7	65.7	82.3

.		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	147.2	145.8	147.9
Aug 2	146.8	145.2	147.8
Aug 3	146.3	142.4	148.8
Aug 4	149.7	146.7	153.2
Aug 5	159.1	148.1	176.4
Aug 6	160.1	154.8	173.9
Aug 7	152.7	150.5	155.0
Aug 8	154.9	148.9	171.5
Aug 9	157.8	151.9	173.0
Aug 10	151.8	150.0	153.8
Aug 11	149.1	148.2	150.0
Aug 12	155.7	147.3	172.1
Aug 13	157.2	150.9	171.9
Aug 14	157.2	151.2	172.7
Aug 15	157.6	150.9	174.0
Aug 16	158.2	152.2	173.4
Aug 17	152.4	150.3	154.0
Aug 18	149.7	149.0	150.7
Aug 19	155.7	148.5	171.6
Aug 20	156.3	150.2	172.1
Aug 21	156.9	150.2	173.8
Aug 22	151.6	149.5	153.3
Aug 23	155.9	148.4	173.0
Aug 24	151.3	149.2	152.7
Aug 25	149.0	148.2	149.8
Aug 26	158.1	147.3	170.3
Aug 27	0.0	170.3	170.3
Aug 28	0.0	170.3	170.3
Aug 29	0.0	170.3	170.3
Aug 30	0.0	170.3	170.3
Summary	133.3	0.0	160.1

		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	122.7	117.7	132.3
Aug 2	124.1	118.4	133.5
Aug 3	118.5	112.2	124.8
Aug 4	117.6	110.7	131.0
Aug 5	133.7	108.0	156.5
Aug 6	167.7	159.5	173.6
Aug 7	167.8	145.2	178.6
Aug 8	139.9	133.5	156.3
Aug 9	135.4	131.6	139.8
Aug 10	131.7	126.6	139.7
Aug 11	129.1	123.3	140.0
Aug 12	136.0	121.9	153.9
Aug 13	152.7	148.4	157.0
Aug 14	155.1	151.9	159.9
Aug 15	154.9	150.8	160.3
Aug 16	155.6	147.9	159.3
Aug 17	140.9	71.4	155.6
Aug 18	134.7	129.8	139.9
Aug 19	132.3	127.8	137.5
Aug 20	127.2	120.8	135.5
Aug 21	132.0	116.4	148.7
Aug 22	129.2	122.0	140.7
Aug 23	133.3	122.6	151.0
Aug 24	132.2	122.8	142.9
Aug 25	133.6	124.6	145.9
Aug 26	135.8	126.5	152.0
Aug 27	136.5	127.9	150.8
Aug 28	138.9	128.9	151.5
Aug 29	145.2	138.3	154.3
Aug 30	146.8	133.4	157.0
Summary	138.0	117.6	167.8

_		., 9	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	87.5	75.1	105.3
Aug 2	93.5	82.8	109.9
Aug 3	82.8	74.8	92.5
Aug 4	82.4	73.3	100.4
Aug 5	91.2	70.3	114.5
Aug 6	95.8	83.9	110.5
Aug 7	98.4	86.9	115.1
Aug 8	92.4	88.5	97.0
Aug 9	96.0	88.7	107.3
Aug 10	93.0	79.9	109.3
Aug 11	94.1	78.5	113.4
Aug 12	97.0	81.7	115.5
Aug 13	121.5	93.3	174.1
Aug 14	161.5	142.9	180.6
Aug 15	168.2	150.1	184.7
Aug 16	177.9	164.7	184.7
Aug 17	160.5	147.7	166.2
Aug 18	142.0	128.9	150.3
Aug 19	157.1	127.9	181.1
Aug 20	162.9	150.2	175.7
Aug 21	164.7	153.5	176.6
Aug 22	157.1	147.4	161.7
Aug 23	158.2	143.6	174.0
Aug 24	158.0	149.7	164.8
Aug 25	149.9	142.3	154.7
Aug 26	155.8	140.5	175.8
Aug 27	174.1	159.5	189.4
Aug 28	177.5	161.9	188.8
Aug 29	172.6	166.4	183.6
Aug 30	176.8	163.7	189.5
Summary	133.3	82.4	177.9

-		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	130.9	126.7	137.6
Aug 2	127.3	101.6	139.0
Aug 3	117.9	106.9	128.2
Aug 4	119.0	108.4	134.0
Aug 5	125.4	109.7	140.8
Aug 6	128.7	123.7	136.3
Aug 7	128.6	121.0	137.2
Aug 8	105.5	87.7	127.4
Aug 9	99.1	90.7	111.2
Aug 10	101.6	90.2	114.9
Aug 11	101.1	85.9	119.8
Aug 12	102.4	85.8	121.7
Aug 13	105.6	95.9	119.7
Aug 14	105.5	93.5	124.1
Aug 15	105.3	90.4	123.6
Aug 16	101.4	78.6	115.2
Aug 17	105.6	92.9	122.4
Aug 18	102.4	91.9	113.1
Aug 19	102.8	89.6	113.1
Aug 20	96.1	84.2	107.7
Aug 21	97.8	82.9	119.6
Aug 22	103.8	89.8	127.1
Aug 23	112.5	96.9	131.5
Aug 24	114.7	99.0	132.7
Aug 25	117.6	105.1	135.5
Aug 26	121.9	110.1	137.4
Aug 27	118.1	65.2	134.3
Aug 28	118.8	65.5	134.1
Aug 29	123.4	111.9	138.6
Aug 30	121.3	96.1	137.8
Summary	112.1	96.1	130.9

_		, 9	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	144.2	142.3	146.6
Aug 2	144.9	141.5	148.4
Aug 3	132.1	121.3	146.1
Aug 4	125.0	120.1	135.8
Aug 5	136.9	117.3	149.9
Aug 6	145.2	142.8	148.5
Aug 7	146.1	143.5	149.7
Aug 8	144.7	143.3	146.1
Aug 9	145.8	144.5	147.1
Aug 10	145.9	143.6	148.4
Aug 11	145.6	143.6	148.3
Aug 12	146.3	143.1	149.5
Aug 13	146.4	144.5	148.7
Aug 14	146.8	143.9	149.8
Aug 15	146.9	144.4	150.1
Aug 16	146.8	141.0	149.4
Aug 17	146.9	144.8	151.0
Aug 18	147.0	144.1	148.5
Aug 19	146.7	143.5	148.5
Aug 20	145.4	143.6	146.8
Aug 21	145.7	142.5	149.2
Aug 22	146.2	143.5	149.5
Aug 23	147.1	145.2	150.1
Aug 24	147.4	145.0	150.8
Aug 25	147.8	145.5	151.2
Aug 26	147.9	145.7	151.4
Aug 27	148.0	146.1	151.3
Aug 28	148.6	146.4	152.1
Aug 29	148.8	146.5	152.0
Aug 30	148.2	145.8	151.2
Summary	145.1	125.0	148.8

_		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	147.1	144.8	149.8
Aug 2	148.7	143.2	155.3
Aug 3	116.8	90.2	149.3
Aug 4	99.5	87.9	119.4
Aug 5	126.9	86.3	154.8
Aug 6	149.4	147.0	152.7
Aug 7	151.1	147.5	155.0
Aug 8	147.8	145.3	150.5
Aug 9	148.9	146.6	151.1
Aug 10	148.5	145.1	153.3
Aug 11	147.6	143.5	153.2
Aug 12	147.6	142.9	153.4
Aug 13	147.2	144.0	153.0
Aug 14	146.9	142.3	152.8
Aug 15	146.9	141.7	153.2
Aug 16	145.6	137.9	153.9
Aug 17	145.8	141.1	152.8
Aug 18	144.4	139.5	147.6
Aug 19	143.8	140.5	147.8
Aug 20	139.6	134.5	144.6
Aug 21	139.7	133.5	149.9
Aug 22	141.6	134.4	151.8
Aug 23	143.6	136.4	153.0
Aug 24	145.0	137.7	153.7
Aug 25	145.8	137.6	154.9
Aug 26	146.4	139.4	155.8
Aug 27	146.9	140.2	156.6
Aug 28	149.4	143.0	157.2
Aug 29	149.8	144.2	156.0
Aug 30	148.9	134.4	157.9
Summary	143.2	99.5	151.1

_		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	99.5	96.7	104.4
Aug 2	99.9	95.4	105.1
Aug 3	94.1	89.1	98.2
Aug 4	94.4	89.0	102.8
Aug 5	99.3	89.0	109.5
Aug 6	102.2	97.5	107.8
Aug 7	102.7	97.9	108.2
Aug 8	99.4	97.7	101.7
Aug 9	100.4	96.9	105.1
Aug 10	99.7	95.5	104.1
Aug 11	98.8	93.6	105.3
Aug 12	98.5	92.3	105.0
Aug 13	100.0	96.1	106.2
Aug 14	100.3	94.4	107.9
Aug 15	99.9	94.4	105.8
Aug 16	99.0	93.9	103.7
Aug 17	99.5	96.8	104.8
Aug 18	97.4	94.9	101.7
Aug 19	97.6	95.3	102.2
Aug 20	95.0	91.0	99.1
Aug 21	95.0	89.0	102.6
Aug 22	96.4	91.5	103.7
Aug 23	98.1	91.8	106.1
Aug 24	98.6	91.7	105.9
Aug 25	99.7	92.9	107.6
Aug 26	100.2	93.5	108.0
Aug 27	100.1	93.9	107.1
Aug 28	100.9	94.7	108.8
Aug 29	101.8	95.4	109.7
Aug 30	100.7	95.3	109.3
Summary	99.0	94.1	102.7

_		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	122.0	108.3	135.1
Aug 2	134.4	119.2	139.9
Aug 3	113.5	109.7	118.1
Aug 4	112.5	109.6	117.1
Aug 5	123.1	109.9	135.2
Aug 6	125.7	114.0	139.0
Aug 7	118.7	110.9	132.6
Aug 8	121.4	116.0	129.7
Aug 9	125.7	116.6	133.8
Aug 10	115.7	114.0	116.9
Aug 11	114.3	113.1	116.0
Aug 12	114.3	112.6	116.6
Aug 13	114.0	113.0	115.2
Aug 14	114.2	112.7	115.9
Aug 15	110.9	38.9	115.6
Aug 16	114.2	112.8	116.3
Aug 17	114.0	113.2	115.5
Aug 18	113.7	113.2	114.9
Aug 19	114.3	113.1	122.7
Aug 20	113.7	112.4	117.2
Aug 21	113.4	111.8	115.3
Aug 22	113.0	111.5	115.1
Aug 23	112.7	110.1	116.2
Aug 24	112.7	110.3	115.3
Aug 25	113.6	111.7	115.8
Aug 26	117.3	111.8	126.0
Aug 27	122.6	118.8	126.3
Aug 28	126.9	119.8	132.6
Aug 29	125.0	117.3	130.3
Aug 30	117.3	113.7	127.7
Summary	117.5	110.9	134.4

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	116.3	113.0	132.9
Aug 2	115.7	112.6	125.5
Aug 3	109.7	105.3	113.5
Aug 4	110.0	105.0	118.1
Aug 5	116.9	104.7	136.9
Aug 6	117.2	113.1	128.6
Aug 7	117.5	112.2	137.9
Aug 8	116.0	112.7	135.6
Aug 9	116.9	113.0	130.7
Aug 10	114.7	112.4	117.1
Aug 11	113.5	110.8	117.0
Aug 12	115.8	110.4	132.0
Aug 13	118.1	112.3	138.8
Aug 14	118.9	112.5	140.6
Aug 15	118.6	112.6	138.9
Aug 16	118.8	112.8	141.0
Aug 17	115.2	112.5	118.8
Aug 18	114.1	112.8	116.5
Aug 19	118.0	112.8	141.3
Aug 20	117.9	111.8	143.2
Aug 21	117.8	110.4	142.7
Aug 22	115.2	112.7	119.4
Aug 23	119.7	112.1	145.9
Aug 24	116.8	113.5	120.3
Aug 25	116.9	113.7	120.8
Aug 26	121.4	114.3	148.3
Aug 27	124.9	115.7	146.8
Aug 28	121.4	117.1	134.0
Aug 29	120.0	116.5	123.3
Aug 30	126.6	116.9	155.5
Summary	117.3	109.7	126.6

		.,,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	0.0	0.0	0.0
Aug 2	0.0	0.0	0.0
Aug 3	0.0	0.0	0.0
Aug 4	0.0	0.0	0.0
Aug 5	0.0	0.0	0.0
Aug 6	0.0	0.0	0.0
Aug 7	0.0	0.0	0.0
Aug 8	139.4	139.0	139.8
Aug 9	139.9	138.5	149.4
Aug 10	139.6	138.6	141.2
Aug 11	139.4	138.2	140.9
Aug 12	139.4	138.3	141.1
Aug 13	140.3	139.2	141.7
Aug 14	140.8	139.6	142.5
Aug 15	140.5	139.3	141.9
Aug 16	140.1	138.7	141.3
Aug 17	140.3	139.5	142.2
Aug 18	140.0	139.6	141.1
Aug 19	139.7	139.0	140.8
Aug 20	138.8	137.8	139.5
Aug 21	138.9	137.8	140.8
Aug 22	139.2	138.0	141.2
Aug 23	139.3	124.4	142.4
Aug 24	140.2	138.6	142.2
Aug 25	140.3	138.7	142.3
Aug 26	140.6	139.2	142.8
Aug 27	140.6	139.3	142.3
Aug 28	140.7	139.4	142.4
Aug 29	140.7	139.4	142.5
Aug 30	140.2	138.8	142.2
Summary	107.3	0.0	140.8

_		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	121.2	119.8	122.8
Aug 2	121.2	118.4	123.7
Aug 3	120.5	119.1	122.2
Aug 4	116.8	89.2	121.5
Aug 5	102.0	58.1	124.3
Aug 6	121.8	120.2	123.7
Aug 7	121.8	119.6	124.5
Aug 8	120.1	119.5	120.8
Aug 9	120.8	119.7	122.6
Aug 10	120.6	118.8	122.6
Aug 11	120.0	117.6	122.6
Aug 12	120.0	118.2	122.4
Aug 13	120.0	118.2	122.3
Aug 14	120.5	117.9	122.9
Aug 15	120.7	118.6	123.6
Aug 16	120.1	117.0	122.8
Aug 17	120.4	119.1	123.1
Aug 18	119.7	118.6	121.8
Aug 19	119.7	118.7	121.8
Aug 20	118.6	116.7	120.4
Aug 21	118.9	116.1	122.7
Aug 22	119.7	116.6	123.4
Aug 23	120.5	117.7	124.3
Aug 24	120.7	118.0	124.1
Aug 25	121.1	118.4	124.9
Aug 26	121.3	118.3	124.7
Aug 27	121.1	117.9	124.9
Aug 28	118.8	56.4	125.3
Aug 29	122.0	118.7	125.9
Aug 30	121.6	117.0	126.9
Summary	119.7	102.0	122.0

		, vii gii iid	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	75.8	67.3	89.7
Aug 2	76.8	68.3	93.3
Aug 3	73.4	68.3	85.8
Aug 4	77.5	67.5	94.1
Aug 5	80.8	65.7	98.5
Aug 6	80.7	67.4	97.2
Aug 7	82.8	68.1	100.3
Aug 8	74.0	69.2	80.2
Aug 9	78.1	68.9	91.9
Aug 10	77.0	64.4	90.7
Aug 11	74.5	60.1	93.3
Aug 12	73.9	59.0	92.5
Aug 13	75.8	65.3	93.4
Aug 14	77.0	63.0	96.7
Aug 15	76.3	62.1	94.4
Aug 16	74.6	67.5	88.8
Aug 17	74.8	66.6	87.9
Aug 18	70.9	63.7	85.2
Aug 19	71.7	64.9	86.9
Aug 20	66.2	56.1	80.1
Aug 21	65.3	48.9	83.3
Aug 22	69.0	53.6	89.3
Aug 23	72.5	56.5	93.1
Aug 24	74.0	57.2	92.7
Aug 25	76.6	60.2	95.3
Aug 26	77.4	60.8	97.9
Aug 27	77.9	62.7	97.2
Aug 28	79.8	63.3	98.5
Aug 29	81.5	65.6	103.1
Aug 30	79.8	67.4	101.6
Summary	75.5	65.3	82.8

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	105.7	101.8	112.1
Aug 2	105.7	95.3	114.6
Aug 3	104.3	97.5	111.7
Aug 4	98.0	76.9	106.1
Aug 5	97.2	66.1	117.1
Aug 6	109.9	102.3	117.7
Aug 7	110.9	101.9	120.0
Aug 8	104.5	101.5	108.8
Aug 9	107.2	100.9	114.0
Aug 10	107.1	99.5	116.5
Aug 11	105.2	95.5	115.5
Aug 12	104.5	95.4	113.4
Aug 13	104.9	98.5	113.6
Aug 14	105.9	97.2	116.2
Aug 15	105.6	98.3	114.3
Aug 16	103.4	92.2	109.3
Aug 17	103.1	98.0	111.0
Aug 18	100.5	95.8	106.1
Aug 19	101.7	97.1	109.2
Aug 20	96.9	90.4	105.2
Aug 21	97.6	88.1	108.4
Aug 22	100.6	92.6	112.0
Aug 23	102.9	93.1	115.4
Aug 24	103.8	91.0	114.5
Aug 25	105.1	95.2	115.9
Aug 26	106.0	94.0	116.4
Aug 27	106.1	96.5	115.5
Aug 28	107.7	97.3	117.6
Aug 29	108.4	96.2	119.3
Aug 30	106.9	98.1	119.3
Summary	104.2	96.9	110.9

_		., g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	129.9	127.7	132.1
Aug 2	129.8	121.5	136.0
Aug 3	109.0	90.2	130.0
Aug 4	101.1	91.8	115.0
Aug 5	122.1	92.9	141.2
Aug 6	140.5	138.7	143.0
Aug 7	136.5	133.4	138.5
Aug 8	135.3	132.7	137.4
Aug 9	140.0	137.7	142.4
Aug 10	141.6	139.9	143.7
Aug 11	140.5	138.8	142.3
Aug 12	116.2	67.4	141.6
Aug 13	76.3	65.8	97.3
Aug 14	78.2	63.3	97.4
Aug 15	77.7	63.4	98.8
Aug 16	75.4	67.8	91.2
Aug 17	75.5	67.4	90.9
Aug 18	71.2	64.2	88.6
Aug 19	72.4	64.2	87.0
Aug 20	67.1	56.9	82.8
Aug 21	66.9	50.1	88.1
Aug 22	70.4	54.9	94.1
Aug 23	74.4	57.1	98.8
Aug 24	75.5	57.8	98.0
Aug 25	77.4	60.5	99.4
Aug 26	79.3	61.4	102.7
Aug 27	79.5	63.1	100.7
Aug 28	81.7	64.1	104.3
Aug 29	82.9	65.9	108.1
Aug 30	81.3	68.0	106.9
Summary	96.8	66.9	141.6

		, viigiilia	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	147.7	145.2	148.9
Aug 2	147.6	137.1	150.2
Aug 3	128.9	107.8	148.3
Aug 4	125.5	117.5	136.4
Aug 5	142.8	123.7	158.1
Aug 6	151.1	149.6	154.4
Aug 7	151.5	149.3	153.4
Aug 8	150.1	147.5	152.0
Aug 9	151.1	149.1	152.8
Aug 10	151.4	149.4	153.4
Aug 11	151.0	149.0	153.1
Aug 12	151.7	148.6	154.1
Aug 13	152.0	150.4	154.2
Aug 14	151.8	149.7	154.0
Aug 15	151.8	149.8	154.0
Aug 16	150.8	136.3	154.9
Aug 17	151.6	149.4	154.4
Aug 18	151.0	139.7	152.6
Aug 19	151.0	141.5	153.2
Aug 20	150.1	146.7	151.4
Aug 21	150.4	148.3	153.0
Aug 22	151.1	148.7	154.8
Aug 23	151.7	149.7	154.2
Aug 24	152.0	149.9	154.2
Aug 25	152.1	149.9	154.8
Aug 26	152.2	149.3	154.9
Aug 27	152.1	150.0	155.1
Aug 28	152.6	150.1	154.9
Aug 29	152.7	150.6	155.1
Aug 30	151.3	130.8	155.1
Summary	149.3	125.5	152.7

_		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	193.2	190.2	194.7
Aug 2	179.2	160.7	193.9
Aug 3	169.3	154.3	173.0
Aug 4	166.2	163.4	168.3
Aug 5	181.5	160.9	194.4
Aug 6	191.9	182.1	195.6
Aug 7	148.2	75.0	181.7
Aug 8	125.7	69.4	172.3
Aug 9	169.7	167.3	171.6
Aug 10	167.3	166.1	168.6
Aug 11	165.3	163.5	166.9
Aug 12	173.1	163.3	188.8
Aug 13	193.8	189.5	195.4
Aug 14	192.8	184.7	196.2
Aug 15	181.5	177.7	184.3
Aug 16	178.0	174.5	182.6
Aug 17	174.2	171.7	176.3
Aug 18	170.3	167.0	172.7
Aug 19	169.2	167.4	170.4
Aug 20	167.1	165.1	169.0
Aug 21	166.9	164.4	169.8
Aug 22	166.3	162.9	169.5
Aug 23	166.7	163.8	169.7
Aug 24	166.1	162.8	169.0
Aug 25	166.3	163.9	169.4
Aug 26	167.1	164.4	170.8
Aug 27	166.9	165.2	168.9
Aug 28	172.3	147.7	188.9
Aug 29	168.6	165.2	173.7
Aug 30	161.7	133.1	169.1
Summary	170.9	125.7	193.8

		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	137.6	127.7	145.7
Aug 2	144.0	139.0	147.9
Aug 3	135.7	131.5	140.7
Aug 4	133.7	131.6	136.7
Aug 5	135.8	129.1	142.0
Aug 6	134.8	133.8	136.1
Aug 7	132.9	129.9	133.9
Aug 8	130.7	128.7	132.9
Aug 9	131.5	128.2	134.3
Aug 10	131.9	131.1	132.7
Aug 11	131.2	130.3	132.1
Aug 12	130.8	127.7	132.6
Aug 13	133.9	100.6	151.4
Aug 14	139.8	134.8	152.0
Aug 15	139.8	134.2	151.7
Aug 16	140.2	135.5	151.3
Aug 17	135.6	133.7	137.3
Aug 18	133.4	132.7	134.0
Aug 19	137.9	132.1	149.6
Aug 20	139.3	134.3	151.2
Aug 21	140.2	134.7	154.1
Aug 22	136.2	134.5	138.0
Aug 23	139.5	133.7	152.9
Aug 24	136.3	134.8	137.6
Aug 25	134.4	133.4	135.1
Aug 26	138.2	132.8	152.2
Aug 27	140.7	135.4	154.1
Aug 28	138.3	77.7	154.0
Aug 29	138.1	136.2	141.2
Aug 30	144.5	135.3	156.2
Summary	136.6	130.7	144.5

D. 1		,	B4 (OF)
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	123.6	120.6	127.3
Aug 2	144.0	139.0	147.9
Aug 3	119.5	110.9	123.7
Aug 4	133.7	131.6	136.7
Aug 5	124.0	113.7	130.8
Aug 6	134.8	133.8	136.1
Aug 7	125.0	121.4	129.4
Aug 8	130.7	128.7	132.9
Aug 9	124.4	122.0	127.3
Aug 10	131.9	131.1	132.7
Aug 11	122.0	117.0	125.9
Aug 12	130.8	127.7	132.6
Aug 13	123.2	119.2	128.0
Aug 14	139.8	134.8	152.0
Aug 15	123.5	117.6	128.8
Aug 16	140.2	135.5	151.3
Aug 17	123.2	119.9	128.2
Aug 18	133.4	132.7	134.0
Aug 19	121.0	116.1	123.6
Aug 20	139.3	134.3	151.2
Aug 21	117.7	111.7	124.0
Aug 22	136.2	134.5	138.0
Aug 23	121.7	116.1	128.5
Aug 24	136.3	134.8	137.6
Aug 25	123.9	118.0	129.5
Aug 26	138.2	132.8	152.2
Aug 27	126.4	118.1	134.1
Aug 28	138.3	77.7	154.0
Aug 29	130.1	126.3	133.3
Aug 30	144.5	135.3	156.2
Summary	123.3	117.7	130.1

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

Appendix D Table of Contents

Secti	ion	Page
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 1	D-3
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 2	D-4
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 3	D-5
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 4	D-6
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 5	D-7
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 6	D-8
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 7	D-9
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 8	D-10
	Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 9	D-11

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft				
1-Aug	166.5	225.9	226.3	247.2	257.7	268.8				
2-Aug	166.7	225.8	226.2	247.1	257.7	268.8				
3-Aug	166.0	225.2	225.6	246.7	257.5	268.6				
4-Aug	166.6	224.6	225.0	246.3	257.4	268.7				
5-Aug	167.2	224.7	225.1	246.4	257.2	268.8				
6-Aug	166.8	225.3	225.6	246.5	256.8	268.7				
7-Aug	166.9	225.6	226.0	246.5	256.6	268.7				
8-Aug	166.4	225.4	225.7	246.2	256.0	268.3				
9-Aug	166.5	226.3	226.7	246.6	256.0	268.5				
10-Aug	166.5	227.1	227.3	246.6	255.8	268.5				
11-Aug	166.4	224.9	225.2	245.4	254.7	268.3				
12-Aug	166.5	223.7	224.1	245.0	253.8	268.3				
13-Aug	166.4	222.9	223.3	244.3	253.2	268.1				
14-Aug	166.5	222.2	222.5	243.0	253.0	268.3				
15-Aug	166.5	221.5	221.9	242.5	252.2	268.1				
16-Aug	166.4	221.3	221.6	242.2	251.7	267.9				
17-Aug	166.5	220.9	221.3	242.0	252.2	267.8				
18-Aug	166.3	220.8	221.2	242.4	252.1	267.6				
19-Aug	166.3	220.7	221.1	241.9	251.6	267.7				
20-Aug	166.1	220.1	220.4	240.3	250.6	267.5				
21-Aug	166.0	220.1	220.5	241.9	251.3	267.4				
22-Aug	166.1	220.3	220.7	242.3	251.4	267.4				
23-Aug	166.3	219.8	220.2	239.3	250.6	267.6				
24-Aug	166.3	219.3	219.6	237.4	249.4	267.5				
25-Aug	166.5	219.0	219.3	236.3	248.4	267.5				
26-Aug	166.4	218.9	219.3	236.2	247.9	267.5				
27-Aug	166.5	218.8	219.2	236.5	247.8	267.4				
28-Aug	166.6	219.1	219.5	237.7	248.4	267.5				
29-Aug	166.6	219.0	219.4	237.5	248.6	267.4				
30-Aug	166.6	218.8	219.1	236.5	248.4	267.4				
31-Aug	166.4	218.5	218.8	235.7	247.8	267.2				
Average	166.5	222.1	222.5	242.3	252.7	268.0				

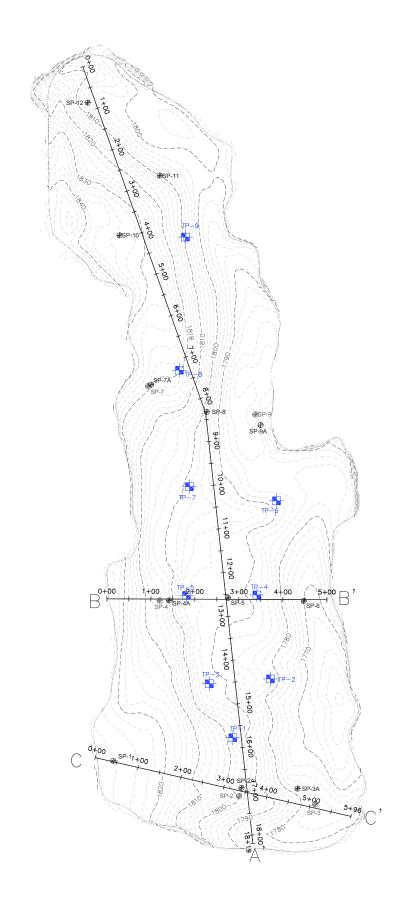
	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft				
1-Aug	159.0	242.0	242.4	262.4	249.1	258.0				
2-Aug	159.2	242.0	242.3	262.4	248.8	258.0				
3-Aug	158.9	241.8	242.2	262.4	249.0	258.1				
4-Aug	158.8	241.8	242.3	262.3	248.7	258.0				
5-Aug	159.0	241.9	242.3	262.4	248.9	258.0				
6-Aug	158.9	241.9	242.3	262.3	248.9	257.8				
7-Aug	158.9	241.9	242.2	262.4	248.9	258.0				
8-Aug	158.5	241.5	241.9	262.1	248.5	257.6				
9-Aug	159.0	241.6	242.0	262.3	248.8	257.9				
10-Aug	158.8	241.6	242.0	262.3	249.1	257.8				
11-Aug	158.7	241.6	242.1	262.2	248.7	257.8				
12-Aug	158.6	241.6	242.1	262.1	248.6	257.7				
13-Aug	158.9	241.6	242.0	262.1	248.6	257.5				
14-Aug	158.6	241.6	242.1	262.2	248.5	257.7				
15-Aug	158.5	241.4	241.8	262.0	248.6	257.6				
16-Aug	158.7	241.5	241.9	262.0	248.3	257.5				
17-Aug	158.8	241.6	242.0	262.0	248.3	257.6				
18-Aug	158.8	241.5	241.9	261.9	248.1	257.4				
19-Aug	158.6	241.5	241.9	261.8	248.1	257.4				
20-Aug	158.6	241.3	241.7	261.7	248.0	257.2				
21-Aug	158.7	241.4	241.8	261.7	248.3	257.3				
22-Aug	158.7	241.3	241.7	261.8	247.8	257.2				
23-Aug	158.6	241.4	241.8	261.9	248.0	257.3				
24-Aug	158.8	241.5	242.0	261.7	247.9	257.3				
25-Aug	158.9	241.6	242.0	261.7	248.0	257.4				
26-Aug	158.9	241.6	242.0	261.7	247.9	257.4				
27-Aug	158.9	241.7	242.1	261.6	247.7	257.3				
28-Aug	158.9	241.6	242.1	261.7	247.8	257.4				
29-Aug	159.0	241.5	241.8	261.7	247.8	257.3				
30-Aug	158.8	241.5	241.9	261.6	247.7	257.2				
31-Aug	158.7	241.3	241.8	261.4	247.5	257.1				
Average	158.8	241.6	242.0	262.0	248.3	257.6				

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft		
1-Aug	178.4	234.7	234.7	248.3	253.0	261.9	266.3	255.0		
2-Aug	180.6	234.2	234.1	248.3	253.0	261.8	266.4	255.0		
3-Aug	181.0	234.3	234.2	248.2	252.9	261.7	266.3	255.0		
4-Aug	180.1	234.5	234.5	248.3	252.9	261.6	266.3	255.0		
5-Aug	180.1	234.9	235.0	248.5	253.1	261.9	266.5	255.2		
6-Aug	182.0	234.3	234.4	248.3	253.0	261.8	266.4	255.2		
7-Aug	186.6	234.1	234.0	248.1	253.0	261.8	266.4	255.2		
8-Aug	189.2	233.9	233.9	247.7	252.5	261.5	266.1	254.8		
9-Aug	189.9	234.4	234.4	247.7	252.6	261.6	266.2	255.0		
10-Aug	190.5	234.6	234.6	247.7	252.8	261.7	266.3	255.0		
11-Aug	188.5	234.7	234.7	247.7	252.6	261.5	266.2	255.0		
12-Aug	184.0	234.9	234.9	247.7	252.6	261.6	266.2	255.0		
13-Aug	186.5	234.8	234.8	247.3	252.5	261.5	266.2	254.9		
14-Aug	187.4	234.1	234.2	247.4	252.6	261.6	266.2	255.1		
15-Aug	184.3	234.0	234.1	247.3	252.5	261.6	266.1	255.1		
16-Aug	181.2	234.1	234.0	247.3	252.3	261.4	265.9	254.8		
17-Aug	176.2	234.1	234.1	247.4	252.3	261.4	265.7	254.6		
18-Aug	177.1	234.3	234.3	247.4	252.2	261.3	265.6	254.5		
19-Aug	176.3	234.5	234.5	247.4	252.2	261.5	265.6	254.6		
20-Aug	173.7	234.5	234.5	247.4	252.2	261.5	265.6	254.6		
21-Aug	173.3	234.5	234.5	247.5	252.2	261.6	265.5	254.5		
22-Aug	174.5	234.7	234.8	247.6	252.3	261.5	265.7	254.6		
23-Aug	174.7	235.1	235.1	247.6	252.4	261.8	265.8	254.8		
24-Aug	174.6	235.1	235.2	247.6	252.3	261.7	265.7	254.7		
25-Aug	174.3	235.1	235.2	247.6	252.4	261.6	265.7	254.8		
26-Aug	173.7	235.3	235.3	247.9	252.4	261.7	265.8	254.8		
27-Aug	173.4	235.3	235.2	247.8	252.3	261.5	265.7	254.8		
28-Aug	173.1	235.3	235.3	248.1	252.4	261.4	265.7	254.8		
29-Aug	172.8	235.2	235.2	248.5	252.4	261.5	265.8	254.9		
30-Aug	172.8	235.1	235.1	248.6	252.5	261.6	265.8	254.8		
31-Aug	172.6	235.1	235.0	248.1	252.4	261.5	265.6	254.7		
Average	179.5	234.6	234.6	247.8	252.5	261.6	266.0	254.9		

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft		
1-Aug	210.5	214.0	177.0	229.9	232.1	226.4	213.1	212.9		
2-Aug	211.2	214.3	190.4	229.1	231.6	225.8	213.8	213.4		
3-Aug	210.6	213.6	176.8	223.5	233.1	226.9	212.8	212.4		
4-Aug	211.0	213.8	192.5	224.5	232.8	226.7	213.0	212.7		
5-Aug	211.6	214.2	183.8	214.3	233.2	227.0	213.7	213.3		
6-Aug	212.2	215.0	194.3	214.9	234.1	227.9	214.3	213.9		
7-Aug	212.5	215.2	185.8	215.2	235.8	229.5	214.3	213.9		
8-Aug	212.1	214.4	183.7	214.3	235.5	229.0	213.7	213.1		
9-Aug	213.0	215.0	181.4	215.1	236.3	229.9	214.3	213.7		
10-Aug	213.4	215.1	186.8	215.3	236.7	230.7	214.4	213.9		
11-Aug	213.5	215.4	182.4	215.6	236.6	230.6	214.8	214.3		
12-Aug	214.0	215.9	192.6	216.1	236.5	230.6	215.3	214.8		
13-Aug	214.5	216.6	204.7	216.7	236.8	231.2	215.8	215.3		
14-Aug	214.9	217.0	209.8	217.0	236.8	230.9	216.3	215.8		
15-Aug	214.7	216.7	206.7	216.6	235.5	229.4	216.1	215.6		
16-Aug	215.3	217.3	201.6	217.3	236.8	231.1	216.6	216.1		
17-Aug	215.3	217.3	157.6	217.4	236.4	230.2	216.6	216.1		
18-Aug	215.1	217.1	157.7	217.2	236.9	231.2	216.4	215.9		
19-Aug	215.4	217.4	161.3	217.5	236.3	230.4	216.8	216.3		
20-Aug	214.2	216.2	165.2	216.6	236.1	230.5	215.9	215.3		
21-Aug	215.2	217.1	176.8	217.3	235.9	230.1	216.6	216.1		
22-Aug	215.9	218.0	174.9	218.1	235.8	230.0	217.3	216.8		
23-Aug	216.2	218.2	184.1	218.5	236.5	230.7	217.7	217.2		
24-Aug	216.5	218.6	192.8	218.8	235.7	229.9	218.0	217.4		
25-Aug	217.0	219.1	206.1	219.4	234.6	229.0	218.8	218.1		
26-Aug	217.6	219.8	208.4	220.2	233.2	227.8	219.6	218.9		
27-Aug	217.3	219.9	204.8	220.2	232.6	227.5	219.6	219.0		
28-Aug	217.4	219.8	199.0	220.1	232.0	226.4	219.8	219.1		
29-Aug	217.7	220.0	213.3	220.1	232.2	227.0	220.0	219.3		
30-Aug	217.9	220.3	207.2	220.4	231.8	226.6	220.1	219.4		
31-Aug	217.1	219.4	178.4	219.5	232.0	227.0	219.3	218.7		
Average	214.5	216.8	188.3	218.6	234.8	229.0	216.3	215.8		

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft		
1-Aug	207.9	207.9	207.7	207.9	207.8	207.8	208.0	201.0		
2-Aug	207.7	207.9	207.6	207.7	207.6	207.7	210.4	201.0		
3-Aug	207.6	207.7	207.5	207.7	207.6	207.7	207.9	201.1		
4-Aug	207.9	208.0	207.7	207.9	207.8	207.9	211.2	201.2		
5-Aug	207.9	208.0	207.7	207.9	207.8	207.8	212.6	201.0		
6-Aug	207.7	207.6	207.6	207.7	207.6	207.6	213.0	201.0		
7-Aug	207.5	207.2	207.3	207.6	207.5	207.5	213.5	201.2		
8-Aug	207.3	206.9	207.1	207.3	207.1	207.2	212.3	200.8		
9-Aug	207.5	207.2	207.4	207.6	207.6	208.8	217.8	200.9		
10-Aug	207.9	207.6	207.7	208.2	207.9	212.9	226.3	201.1		
11-Aug	207.8	207.5	207.6	207.9	210.6	212.7	227.4	200.9		
12-Aug	207.8	207.5	207.6	207.9	211.4	208.1	220.0	201.0		
13-Aug	207.9	207.6	207.8	207.9	209.1	208.0	214.2	201.3		
14-Aug	208.0	207.7	207.8	208.0	207.8	208.0	212.6	201.3		
15-Aug	207.9	207.6	207.8	208.0	207.9	208.6	223.8	201.3		
16-Aug	207.9	207.6	207.7	207.9	207.9	208.2	227.0	201.0		
17-Aug	207.7	207.4	207.5	207.7	207.7	207.9	226.7	200.9		
18-Aug	207.5	207.2	207.3	207.6	207.6	213.3	227.4	201.0		
19-Aug	207.6	207.3	207.4	207.6	207.6	219.1	228.5	201.0		
20-Aug	207.7	207.5	207.4	207.6	207.5	219.8	228.6	200.7		
21-Aug	207.7	207.7	207.5	207.7	207.7	221.5	229.0	200.7		
22-Aug	207.9	208.0	207.7	208.0	207.9	222.2	229.4	200.9		
23-Aug	208.1	208.4	207.9	208.1	208.1	220.3	229.7	201.1		
24-Aug	208.2	208.6	208.0	208.2	208.1	213.9	229.9	201.2		
25-Aug	208.2	208.6	208.0	208.2	208.2	208.5	226.7	201.3		
26-Aug	208.3	208.7	208.0	208.3	208.4	220.8	228.9	201.3		
27-Aug	208.2	208.7	208.0	208.2	208.6	224.7	229.9	201.4		
28-Aug	208.0	208.5	208.0	208.2	208.2	215.0	225.9	201.4		
29-Aug	208.1	208.6	208.1	208.2	208.1	208.2	211.5	201.3		
30-Aug	208.1	208.6	208.1	208.1	208.1	208.1	212.8	201.3		
31-Aug	208.0	208.4	207.9	208.0	207.9	207.9	212.7	201.5		
Average	207.9	207.9	207.7	207.9	208.1	211.9	220.5	201.1		

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft					
1-Aug	207.5	222.9	214.3	287.5	300.6					
2-Aug	207.4	222.9	215.8	281.8	291.3					
3-Aug	207.1	212.3	208.7	304.2	318.5					
4-Aug	207.4	214.3	211.4	293.1	300.0					
5-Aug	207.5	223.2	217.3	269.8	275.1					
6-Aug	207.3	223.3	220.4	245.2	247.5					
7-Aug	207.3	222.8	221.5	226.6	225.8					
8-Aug	206.9	222.6	228.1	218.1	217.0					
9-Aug	207.3	222.4	230.9	215.3	216.1					
10-Aug	207.6	221.6	232.3	215.6	217.2					
11-Aug	207.6	222.1	232.3	215.7	217.3					
12-Aug	207.5	221.7	232.3	215.5	217.4					
13-Aug	207.5	221.7	233.2	216.3	218.1					
14-Aug	207.9	222.2	233.7	216.7	218.6					
15-Aug	207.7	222.2	236.2	218.7	220.7					
16-Aug	207.6	222.4	237.8	220.0	222.7					
17-Aug	207.4	221.3	236.1	218.6	222.5					
18-Aug	207.1	221.3	235.4	218.1	219.4					
19-Aug	207.1	221.8	232.5	214.8	216.0					
20-Aug	207.3	221.6	231.4	213.9	214.9					
21-Aug	207.6	221.2	232.0	214.9	217.9					
22-Aug	207.7	220.1	233.7	216.7	218.3					
23-Aug	207.9	220.8	231.5	214.5	215.3					
24-Aug	208.0	221.5	231.0	213.9	214.8					
25-Aug	208.1	221.6	231.0	213.5	214.5					
26-Aug	208.1	221.4	230.5	212.9	213.8					
27-Aug	208.0	221.5	229.9	212.1	213.0					
28-Aug	208.0	222.2	229.5	212.0	212.9					
29-Aug	205.4	224.2	227.9	213.2	214.1					
30-Aug	187.4	222.3	227.5	213.8	215.8					
31-Aug	197.7	220.9	230.4	212.7	220.0					
Average	206.5	221.4	228.3	228.2	231.2					


	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft		
1-Aug	146.4	186.6	205.8	197.9	193.1	204.0	209.1	217.4		
2-Aug	144.8	187.7	205.8	198.4	194.4	205.1	209.5	219.0		
3-Aug	144.1	186.9	205.7	198.0	193.8	204.4	209.2	219.0		
4-Aug	144.1	186.6	205.8	198.2	193.8	204.0	209.4	219.3		
5-Aug	143.9	188.0	205.9	198.5	194.9	204.8	209.8	220.4		
6-Aug	143.9	191.6	204.9	199.2	196.1	204.9	209.8	220.6		
7-Aug	144.6	195.9	200.8	201.1	197.9	206.3	211.4	221.3		
8-Aug	143.9	195.6	201.7	200.4	197.4	205.5	210.7	220.4		
9-Aug	144.3	196.1	201.6	200.7	198.0	205.9	211.0	221.0		
10-Aug	144.3	196.6	201.6	201.1	198.8	206.0	211.3	221.0		
11-Aug	144.4	196.6	201.7	201.1	198.5	205.9	211.0	221.0		
12-Aug	144.5	196.2	202.5	200.6	198.2	205.8	210.5	221.2		
13-Aug	144.7	196.1	202.0	200.6	198.2	206.3	210.4	221.5		
14-Aug	145.0	196.1	202.1	200.8	198.5	206.2	210.8	222.3		
15-Aug	145.0	196.1	202.0	200.8	198.4	206.4	210.6	221.9		
16-Aug	145.0	196.4	201.9	200.9	198.5	206.5	210.7	222.3		
17-Aug	145.2	196.4	201.4	201.0	198.6	206.4	210.8	222.7		
18-Aug	145.5	195.4	201.2	200.0	197.6	204.9	209.7	222.1		
19-Aug	145.8	195.4	201.5	199.9	197.6	204.8	209.7	222.2		
20-Aug	145.8	195.7	202.0	200.2	197.9	205.1	209.9	223.0		
21-Aug	145.8	195.1	202.4	199.6	197.2	204.3	209.3	222.6		
22-Aug	145.9	195.1	202.6	199.6	197.2	204.1	209.3	222.9		
23-Aug	146.2	195.2	203.1	199.6	197.3	204.1	209.2	223.0		
24-Aug	146.4	194.9	203.4	199.2	196.9	203.6	208.8	222.6		
25-Aug	146.5	195.0	203.6	199.4	197.0	203.6	208.9	223.0		
26-Aug	146.9	195.1	203.7	199.4	197.2	203.6	209.0	223.1		
27-Aug	147.0	194.9	203.4	199.1	196.9	203.1	208.5	222.6		
28-Aug	147.2	194.7	203.3	198.9	196.7	203.0	208.2	222.5		
29-Aug	147.3	194.9	203.6	198.9	196.9	203.0	208.0	222.2		
30-Aug	147.4	194.5	205.7	198.6	196.6	202.9	207.8	223.3		
31-Aug	147.4	195.3	203.7	199.1	197.2	203.8	207.9	222.0		
Average	145.5	194.1	203.1	199.7	197.0	204.8	209.7	221.6		

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft		
1-Aug	189.8	194.3	194.4	196.9	198.3	196.1	190.2	175.3		
2-Aug	189.4	194.2	194.4	196.9	198.2	196.4	190.2	175.4		
3-Aug	189.5	194.1	194.3	196.7	198.1	196.6	190.1	175.2		
4-Aug	189.8	194.2	194.4	196.8	198.3	196.8	190.2	175.3		
5-Aug	189.1	194.3	194.5	196.9	198.4	197.0	190.3	175.4		
6-Aug	189.4	194.2	194.4	196.9	198.4	197.0	190.4	175.5		
7-Aug	189.2	194.2	194.4	196.8	198.2	197.0	190.4	175.5		
8-Aug	189.0	194.0	194.2	196.6	198.0	196.8	190.3	175.4		
9-Aug	188.6	194.1	194.3	196.6	198.1	196.8	190.3	175.1		
10-Aug	188.9	194.2	194.4	196.8	198.3	196.9	190.3	175.1		
11-Aug	188.7	194.2	194.4	196.9	198.2	196.8	190.3	175.2		
12-Aug	188.1	194.2	194.4	196.9	198.3	196.9	190.4	175.3		
13-Aug	188.4	194.3	194.4	197.0	198.4	197.0	190.5	175.4		
14-Aug	188.0	194.2	194.5	197.0	198.4	197.0	190.4	175.2		
15-Aug	188.3	194.3	194.5	197.0	198.4	197.1	190.4	175.1		
16-Aug	188.1	194.3	194.5	197.0	198.4	197.0	190.4	175.2		
17-Aug	188.0	194.2	194.4	196.9	198.2	197.0	190.3	175.1		
18-Aug	188.5	194.1	194.2	196.7	198.1	196.9	190.3	175.0		
19-Aug	188.8	194.1	194.2	196.8	198.1	197.0	190.3	175.0		
20-Aug	188.7	194.0	194.2	196.8	198.1	197.0	190.3	175.0		
21-Aug	188.8	194.1	194.3	196.8	198.2	197.0	190.2	174.9		
22-Aug	188.9	194.2	194.4	197.0	198.4	197.1	190.3	174.9		
23-Aug	188.7	194.3	194.5	197.1	198.5	197.2	190.4	175.0		
24-Aug	187.3	194.4	194.5	197.1	198.6	197.3	190.5	175.3		
25-Aug	187.9	194.4	194.6	197.2	198.6	197.4	190.5	175.3		
26-Aug	188.0	194.4	194.6	197.1	198.5	197.4	190.5	175.3		
27-Aug	188.6	194.4	194.6	197.1	198.6	197.4	190.5	175.4		
28-Aug	188.1	194.5	194.7	197.2	198.6	197.5	190.5	175.2		
29-Aug	187.8	194.4	194.6	197.2	198.6	197.5	190.6	175.1		
30-Aug	188.1	194.4	194.7	197.3	198.7	197.6	190.6	175.1		
31-Aug	188.0	191.5	194.4	197.1	196.4	198.1	190.2	174.0		
Average	188.6	194.2	194.4	196.9	198.3	197.0	190.4	175.2		

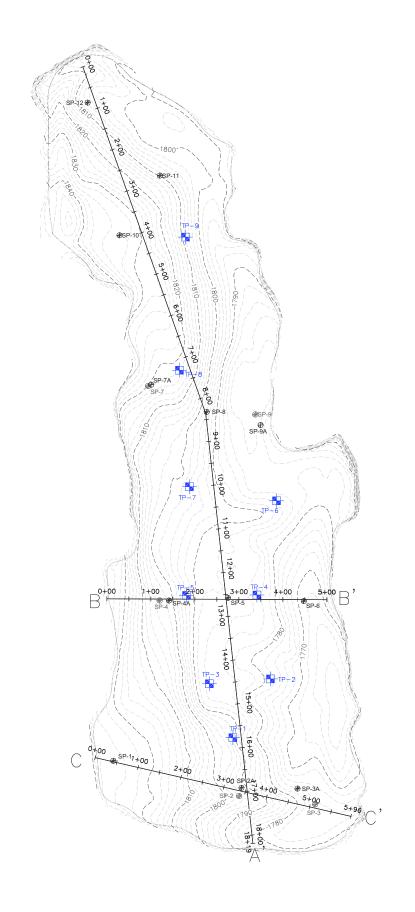
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 9

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Aug	114.2	152.1	151.8	151.9	147.2	134.5	118.2	106.5
2-Aug	111.8	151.7	150.9	152.0	147.3	134.5	118.3	106.5
3-Aug	110.2	150.9	150.0	151.9	147.3	134.2	118.0	106.3
4-Aug	112.2	151.5	151.0	152.1	147.5	134.5	118.4	106.6
5-Aug	113.8	152.1	151.6	152.2	147.5	134.5	118.4	106.6
6-Aug	114.1	152.2	151.6	152.0	147.2	134.5	118.2	106.6
7-Aug	114.3	152.4	151.8	152.3	147.5	134.5	118.5	107.0
8-Aug	113.7	151.8	151.3	151.7	147.2	133.9	117.9	106.5
9-Aug	113.7	152.1	151.5	152.0	147.3	134.3	118.3	106.9
10-Aug	113.9	152.1	151.6	151.9	147.1	134.2	118.2	106.8
11-Aug	113.9	152.0	151.5	151.9	147.1	134.1	118.0	106.8
12-Aug	113.5	151.9	151.3	151.9	147.1	134.2	118.1	106.8
13-Aug	113.5	151.9	151.3	151.8	147.1	134.2	118.0	106.7
14-Aug	113.4	152.0	151.3	152.0	147.2	134.4	118.2	106.9
15-Aug	112.9	151.7	151.0	151.9	147.1	134.3	118.1	106.9
16-Aug	112.7	151.5	150.8	151.9	147.1	134.2	118.0	106.8
17-Aug	112.6	151.5	150.7	151.9	147.3	134.5	118.2	107.0
18-Aug	112.3	151.2	150.4	151.7	147.0	134.2	117.9	106.7
19-Aug	112.4	151.1	150.3	151.7	147.1	134.0	118.0	106.8
20-Aug	112.3	150.9	150.3	151.5	146.9	133.8	117.8	106.6
21-Aug	112.6	151.1	150.5	151.5	146.8	133.9	117.8	106.7
22-Aug	112.7	151.1	150.4	151.6	146.9	134.0	117.9	106.7
23-Aug	112.9	151.3	150.7	151.7	147.1	134.2	118.1	106.9
24-Aug	112.9	151.4	150.7	151.7	147.1	134.1	118.1	106.9
25-Aug	112.9	151.4	150.7	151.8	147.1	134.1	118.0	106.9
26-Aug	113.2	151.5	150.8	151.9	147.3	134.2	118.2	107.1
27-Aug	113.0	151.5	150.7	151.8	147.1	134.1	118.1	107.0
28-Aug	113.1	151.5	150.8	152.0	147.3	134.3	118.3	107.2
29-Aug	113.3	151.6	150.9	152.1	147.4	134.3	118.4	107.2
30-Aug	113.2	151.6	150.9	152.0	147.3	134.3	118.3	107.2
31-Aug	113.0	151.4	150.7	151.8	147.1	134.0	118.2	107.0
Average	113.0	151.6	151.0	151.9	147.2	134.2	118.1	106.8

Appendix E Monthly Topography Analysis

NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON AUGUST 2, 2023 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.


SCS ENGINEERS STEARS, CONFAD AND SCHMIDT ONSULTING ENGINEES, INC. 6521 MIDLOTHIAN THEK - MIDLOTHIAN, VA 23113 Ht. (804) 378-7430
AND S EERS, et) 378
SCS ENGINEERS STERNS, CONED AND ENIDE CONSULTING ENGINEERS, INC. 16521 MIDLOTHIAN TUPK. MIDLOTHIAN, VA PH. (804) 378-7400 FAX. (804) 878-7433
0,00-1
9/1/202 SCALE:
DRAWING NO.

9 4444

MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588

LEGEND

MAJOR CONTOURS (EVERY 10')

MINOR CONTOURS (EVERY 2')

APPROXIMATE SIDEWALL LOCATION

SETTLEMENT PLATE

TEMPERATURE MONITORING PROBE

1-0.39 SPOT ELEVATION ON 100' GRID

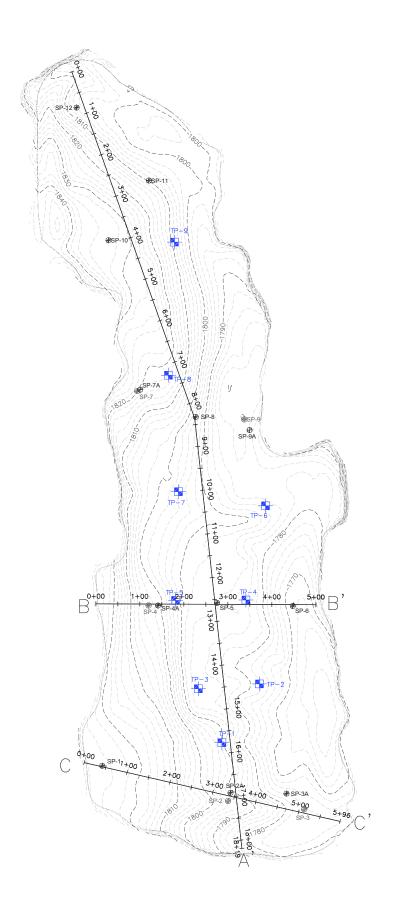
NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON MAY 21, 2024 BY SCS ENGINEERS.
- ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

SHEET TILE MAY 2024 NO. REVISION DATE		A PROJECT TITLE		MONTHLY TOPOGRAPHY ANALYSIS △	SOLID WASTE PERMIT #588 \triangle	
CLENT	CITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY	2655 VALLEY DRIVE	BRISTOL, VIRGINIA 24201		

Communication Communication

CADD FILE:
SURF COMP


DATE:
9/1/2024

SCALE:

DRAWING NO.

2

of

LEGEND

MAJOR CONTOURS (EVERY 10')

MINOR CONTOURS (EVERY 2')

APPROXIMATE SIDEWALL LOCATION

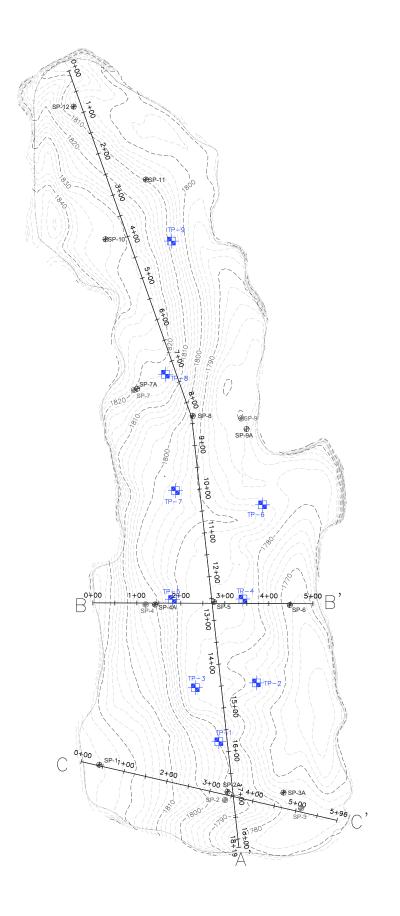
⊕SP-9 SETTLEMENT PLATE

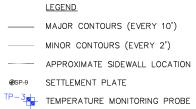
TP-3 TEMPERATURE MONITORING PROBE

NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON JULY 16, 2024 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

SHEET TITLE JULY 2024 NO. REVISION DATE LANDFILL TOPOGRAPHY AMANAGEMENT FACILITY PROJECT TITLE MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588


CLIENT	CITY OF BRI	WASTE MA	265	BRIST	_
00	Z HMIDT	NC. THIAN, VA 23113	433	Q/A RWW BY: CJW	APP. BY:
SOS ENGINEEDS	STEARNS, CONRAD AND SCHMIDT	CONSULTING ENGINEERS, INC. 15521 MIDLOTHIAN TNPK - MIDLOTHIAN, VA 23113	PH. (804) 378-7440 FAX. (804) 378-7433	DWN. BY: LLH	CHK. BY:
	STEARNS, C	CONSULTIN 15521 MIDLOTH	PH. (804) 378-7	00. NO. 02218208.05	N. BY:

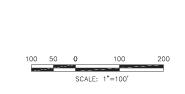

CADD FILE:
SURF COMP

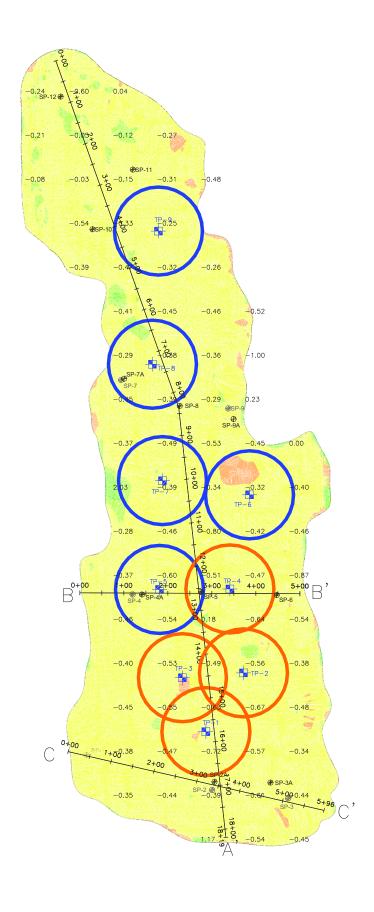
DATE:
9/1/2024

SCALE:
DRAWING NO.

3

NOTES:


- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON AUGUST 14, 2024 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.


!	SHEET TITLE	AUGUST 2024	NO.	REVISION	DATE	
SOLID		LANDFILL I OF OGNAFILI	<			
∠	PROJECT TITLE					
			◁			
	MONTHL	MONTHLY TOPOGRAPHY ANALYSIS	\triangleleft			
	SOLI	SOLID WASTE PERMIT #588	⊲			
			<			

		ľ
RS:HMIDT:NC. NC. HIAN, VA 23113	Q/A RVW BY: CJW	
SCS ENGINEERS TEARNS, CONRAD AND SCHMIDT TOUSULTING SENGINEERS, INC. SEST MELOCIHIAN THRK. MIDICHIAN, VA 23113 H. (804) 378-7440 FAX. (804) 378-7433	DWN. BY: LLH	
SCS E TEARNS, C CONSULTING 5521 MIDLOTH H. (804) 378-74	NO. 18208.05	

CADD FILE:
SURF COMP
DATE:
9/1/2024
SCALE:
DRAWING NO.

LEGEND MAJOR CONTOURS (EVERY 10')

MINOR CONTOURS (EVERY 2')

APPROXIMATE WASTE BOUNDARY

⊕ SP-9 SETTLEMENT PLATE

-0.39 SPOT ELEVATION ON 100' GRID

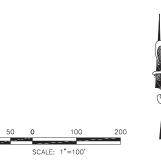
TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH LESS THAN 200 F

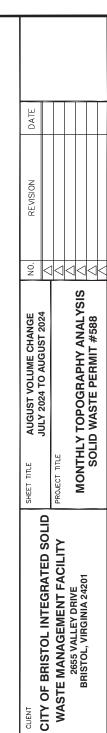
TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 200 F AND 250 F

TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 250 F AND 300 F

Volume

Base Surface TOPO - JULY 16, 2024 Comparison Surface TOPO - AUGUST 14, 2024

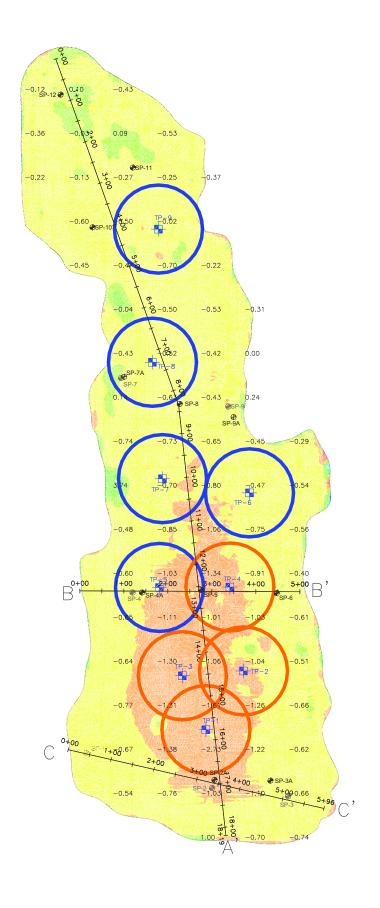

Cu. Yd. Cu. Yd. Cu. Yd. Cut Volume 12,439 Fill Volume Net Cut 12,022


Elevations Table

	Fleva	tions lable			
Number	Minimum Elevation	Maximum Elevation	Color		
1	-8.000	-5.000			
2	-5.000	-1.000			
3	-1.000	0.000			
4	0.000	1.000			
5	1.000	5.000			
6	5.000	10.000			
7	10.000	20.000			

NOTES:

- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON JULY 16, 2024 AND AUGUST 14, 2024 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.


SCS ENGINEERS
STEAMS, CONRAD AND SCHMIDT
CONSULTING ENGINEERS, INC.
16221 MIDLOTHIAN TWR. MIDLOTHIAN, VA 23113
PROJ. NO.
102218208 LOS.
1086 BY. LIH. 1047 RW BY.
1086 BY. LIH. 1047 RW BY.
1087 BY. 1087 BY.
1087 BY. 1087 BY.
1087 BY. 1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 BY.
1087 CADD FILE: SURF COMP

DATE:

SCALE:

9/1/2024

LEGEND

MAJOR CONTOURS (EVERY 10')

MINOR CONTOURS (EVERY 2')

APPROXIMATE WASTE BOUNDARY

SETTLEMENT PLATE

-0.39 SPOT ELEVATION ON 100' GRID

TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH LESS THAN 200 'F

TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 200 'F AND 250 F

TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 250 F AND 300 F

Volume

Base Surface TOPO - MAY 21, 2024 Comparison Surface TOPO - AUGUST 14, 2024

 Cut Volume
 17,873
 Cu. Yd.

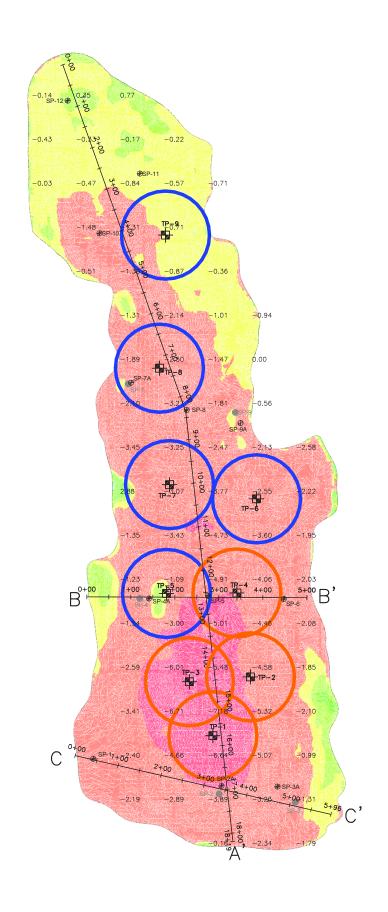
 Fill Volume
 725
 Cu. Yd.

 Net Cut
 17,148
 Cu. Yd.

Elevations Table

Number	Minimum Elevation	Maximum Elevation	Color
1	-10.000	-5.000	
2	-5.000	-1.000	
3	-1.000	0.000	
4	0.000	1.000	
5	1.000	5.000	
6	5.000	10.000	

NOTES:


- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON MAY 21, 2024 AND AUGUST 14, 2024 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

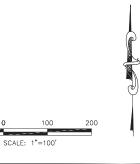
O. REVISION DATE						
SHEET TITLE AUGUST VOLUME CHANGE	MAT 2024 TO AUGUST 2024	PROJECT TITLE	7	MONTHLY TOPOGRAPHY ANALYSIS	SOLID WASTE PERMIT #588	
CLIENT	CITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY	2655 VALLEY DRIVE	BRISTOL, VIRGINIA 24201		
GINEERS	NAD AND SCHMIDT	IGINEERS, INC.	AX. (804) 378-7433	BY: Q/A RVW BY:	LLH CJW	CJW APP. BT.

CADD FILE:
SURF COMP
DATE:
9/1/2024
SCALE:
DRAWING NO.

LEGEND MAJOR CONTOURS (EVERY 10') ---- MINOR CONTOURS (EVERY 2') ---- APPROXIMATE WASTE BOUNDARY SETTLEMENT PLATE -0.39 SPOT ELEVATION ON 100' GRID TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH LESS THAN 200 F TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 200 F AND 250 F TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 250 F AND 300 F

Volume

Base Surface TOPO — AUGUST 2, 2023 Comparison Surface TOPO — AUGUST 14, 2024

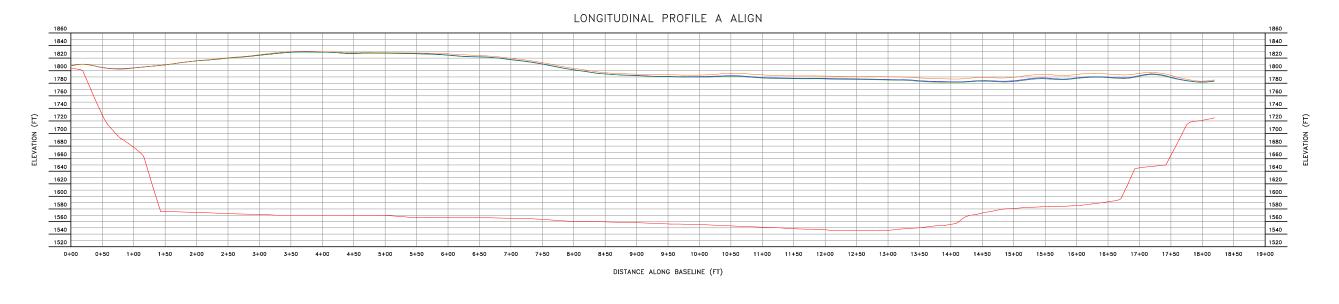

Cut Volume Fill Volume Net Cut Cu. Yd. Cu. Yd. Cu. Yd. 69,042 546 68,496

Elevations Table

Number	Minimum Elevation	Maximum Elevation	Color
1	-16.000	-10.000	
2	-10.000	-5.000	
3	-5.000	-1.000	
4	-1.000	0.000	
5	0.000	1.000	
6	1.000	5.000	
7	5.000	10.000	

NOTES:

- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON AUGUST 2, 2023 AND AUGUST 14, 2024 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
- 4. THE VERTICAL DATUM(S) IS BASED UPON NAVD-88.


9 44444 TOPOGRAPHY ANALYSI WASTE PERMIT #588 AUGUST VOLUME CHANGE AUGUST 2023 TO AUGUST 2024 MONTHLY T SOLID V CITY OF BRISTOL INTEGRATED SOLID
WASTE MANAGEMENT FACILITY
2655 VALLEY DRIVE
BRISTOL, VIRGINIA 24201

SCS ENGINEERS
STEARNS, CONRAD AND SCHMIDT
CONSULTING ENGINEERS, INC.
15521 MIDLOTHIAN TINK- MIDLOTHIAN, IAZ 23113
HI, (804) 3727-7404 FAX. (804) 372-74313
FROJ. NO.
02218208.05 ONM. BT.

CADD FILE: SURF COMP DATE:

9/1/2024 SCALE:

DRAWING NO.

LEGEND

BOTTOM LINER ELEVATION

AUGUST 2023 TOPO

MAY 2024 TOPO

JULY 2024 TOPO

AUGUST 2024 TOPO

9 4444 MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588 PROFILES CITY OF BRISTOL INTEGRATED SOLID
WASTE MANAGEMENT FACILITY
2655 VALLEY DRIVE
BRISTOL, VIRGINIA 24201 SCS ENGINEERS
STEARNS, CONRAD AND SCHMIDT
CONSULTING ENGINEERS, INC.
15821 MIDLOTHIAN TWR. MIDLOTHIAN, VA 23113
FRO. NO.
02218208.05
OSC. 100. THE CONTROL OF THE CONTROL O CADD FILE: SURF COMP DATE: 9/1/2024 SCALE:

DRAWING NO.

of 8

8

Appendix F

Field Logs

Lab Report

Historical LFG-EW Leachate Monitoring Results Summary
Time-Series Plots

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (oC)	pH (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-33B									
EW-36A									
EW-49									
EW-50									
EW-51									
EW-52									
EW-53									
EW-54	8/28/2024	9:34					-127.3	51.01	Brown
EW-55									
EW-57									
EW-58									
EW-59									
EW-60									
EW-61									
EW-62									
EW-64									
EW-67									
EW-68									
EW-70									
EW-72									

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (oC)	pH (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations		
EW-73											
EW-74											
EW-75											
EW-76											
EW-78											
EW-81											
EW-82											
EW-83											
EW-85	8/27/2024	11:56					-150.3	26.62	Brown		
EW-87											
EW-88											
EW-89											
EW-90											
EW-91											
EW-92											
EW-94	8/27/2024	13:04					-157.2	1.31	Brown		
EW-96											
EW-98											
EW-100											
= YSI displa	ing ++++ for r	esult									
Sampler:		M. Myers, W. Fo	abrie			Samples Shipped By: Courier					
Log Checked	By:	L. Howard				Laboratory: Enthalpy Analytical					

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date							8/27/20:	24-8/28/20)24			
Personnel		٧	V. Fabrie, M.	Myers			Checke	ed By:			L	. Howard
Location ID	Date	Measured Well Casing Depth (ft)	Pump Depth (ft)	Prior Cycle Count (6/11)	Cycle Count	Prior Depth to Liquid (ft)	Depth to Liquid (ft)	Casing Stickup (ft)	Liquid Column Thickness (ft)	Pump PSI	Sample Collected	Comments
PUMP INSTALL	ED											
EW-33B*		185.00	140	94		125.94						
EW-36A	8/27/2024	180.00	135	26966	64574	48.95	50.29	5.17	129.71			
EW-49*		96.15	90	79555		80.33						
EW-50	8/27/2024	77.70	83	141671	1442037	35.28	55.58	4.75	22.12			
EW-51	8/28/2024	92.80	95	180628	180635	33.23		3.83				Blockage @ 32.93 (pump?)
EW-52	8/28/2024	98.70	93	646006	830633	46.82	47.31	3.58	51.39			
EW-53	8/27/2024	100.70		3108459	3275227	51.08	52.24	4.50	48.46			
EW-54	8/28/2024	82.70	75	977367	1015321	36.78	39.5	4.50	43.20		Y	Sample collected @ 9:34
EW-55	8/28/2024	90.40	90	713767		42.02						Too tall
EW-57	8/27/2024	107.40	71	97665	97665	45.38	45.39	5.42	62.01			Cycle counter disconnected
EW-59	8/27/2024	73.40	64	3255268	3377582	37.90	59.81	4.75	13.59			
EW-60	8/28/2024	81.80	70	644434	678741	45.6	43.33	4.25	38.47			
EW-61	8/27/2024	87.80	66	79936	266507	56.62	61.11	3.17	26.69			
EW-62	8/28/2024	110.60	80	214566	214599	85.35	84.62	4.58	25.98			
EW-64*		109.00	113	177633		84.64						
EW-65*		88.40	50	4818		46.94						
EW-67	8/28/2024	107.75	62.5	373921	65053	45.15	40.29	2.50	67.46			
EW-68	8/28/2024	73.57	68	2479873	2510407	50.6	45.38	1.75	28.19			
EW-69	8/28/2024	98.00		17	18	94.08	93.44	4.58	4.56			
EW-70	8/28/2024	71.00	58	14		5.55	DNM					Standing water
EW-74	8/28/2024	184.15	140	35		161.34	162.36	6.42	21.79			No pump
EW-78	8/28/2024	57.00	47	121019	128230	57.68	43.38	3.83	13.62			
EW-81*		151.56	125	329326		102.97						
EW-82	8/28/2024	163.26	145	24501	124501	112.08	121.95	4.42	41.31			
EW-83*		167.04	145	2194		101.54						
EW-85	8/27/2024	91.00	78.5	43794	204216	73.65	80.05	4.58	10.95		Y	Sample collected @ 11:56
EW-87	8/28/2024	149.57	125	214634	276118	53.00	57.80	5.08	91.77			
EW-88	8/27/2024	100.00	58	38924	171472	45.55	49.26	3.83	50.74			Cycle counter disconnected
EW-89	8/27/2024	84.57	70			39.15	41.92	3.83	42.65			
EW-90	8/27/2024	114.00	101			77.53	79.67	3.33	34.33			
EW-91	8/28/2024	137.70	115			35.40	45.35	5.33	92.35			No pump
EW-92	8/28/2024	112.99	95			46.32	49.57	6.25	63.42			No pump
EW-96	8/27/2024	164.35	145			50.45	49.57	6.25	114.78			
EW-98	8/27/2024	51.00	43	915576	1155091	25.38	55.53	4.25	-4.53			
EW-100	8/27/2024	108.50	96.5	705163	733311	108.59	109.27	4.17	-0.77			

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date							8/27/20	24-8/28/20)24									
Personnel		W	/. Fabrie, M.	Myers			Checke	ed By:	L. Howard									
Location ID	Date	Measured Well Casing Depth (ft)	Pump Depth (ft)	Prior Cycle Count (6/11)	Cycle Count	Prior Depth to Liquid (ft)	Depth to Liquid (ft)	Casing Stickup (ft)	Liquid Column Thickness (ft)	Pump PSI	Sample Collected	Comments						
NO PUMP																		
EW-56	8/27/2024	42.71	58			Dry	Dry	5.42				Dry @ ~43.40						
EW-58	8/27/2024	84.50	82			28.09	28.31	3.83	56.19									
EW-63*		62.10	64			66.63												
EW-66	8/27/2024					33.68	36.81	5.58										
EW-71	8/28/2024	185.80				165.75	165.90	4.83	19.9									
EW-72	8/28/2024	141.21				133.45	131.64	4.50	9.57									
EW-73	8/28/2024	116.00				107.31	106.59	3.83	9.41									
EW-77*		185.22				134.11												
EW-79*		185.64				152.95												
EW-80*		149.00				137.84												
EW-84*		130.56				78.01												
EW-86	8/27/2024	153.00				74.88	74.90	2.92	78.10									
EW-93	8/27/2024	111.00				28.78	32.22	4.25	78.78									
EW-95	8/27/2024	68.00				56.96	59.10	3.50	8.90									
EW-97	8/27/2024	144.50				88.70	94.12	6.50	50.38									
EW-99	8/27/2024	65.00				60.88	60.40	3.75	4.60									
MEASURE CAS	SING STICKUP	AND CYCLE CO	DUNTER ON	ILY														
EW-76	8/28/2024	127.00	108	34	41	DNM		3.33										
EW-75*		130.82	140	16		DNM												
EW-94	8/27/2024	50.00	45	301711	434431	35.1		4.17			Y	Sample collected @ 13:04						

DNM = Do not measure

^{* =} Unable to get depth to liquid due to damage to forcemain causing wells to be not under vacuum and therefore unsafe to open.

1941 Reymet Road ● Richmond, Virginia 23237 ● Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 24G1354

Date Received:

Project Number:

Purchase Order:

Date Issued:

Client Name: SCS Engineers-Winchester

296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 07/25/2024 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Sarah R. Endsley

Laboratory Manager

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

July 25, 2024 8:00

August 8, 2024 17:09

02218208.15 Task 2

8/8/2024 5:09:45PM

Date Issued:

Analysis Detects Report

Client Name: SCS Engineers-Winchester

Client Site ID: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Laboratory Sample ID: 24G1354-01 Client Sample ID: EW-59

							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Factor	Units
Arsenic	01	SW6020B	300		2.5	5.0	5	ug/L
Barium	01	SW6020B	1280		5.00	25.0	5	ug/L
Chromium	01	SW6020B	252		2.00	5.00	5	ug/L
Copper	01	SW6020B	39.8		1.50	5.00	5	ug/L
Nickel	01	SW6020B	191.7		5.000	5.000	5	ug/L
Zinc	01	SW6020B	104		12.5	25.0	5	ug/L
2-Butanone (MEK)	01	SW8260D	15600		150	500	50	ug/L
Acetone	01RE1	SW8260D	32200		3500	5000	500	ug/L
Benzene	01	SW8260D	1410		20.0	50.0	50	ug/L
Ethylbenzene	01	SW8260D	76.0		20.0	50.0	50	ug/L
Tetrahydrofuran	01	SW8260D	1900		500	500	50	ug/L
Toluene	01	SW8260D	97.0		25.0	50.0	50	ug/L
Xylenes, Total	01	SW8260D	125	J	50.0	150	50	ug/L
Ammonia as N	01	EPA350.1 R2.0	1860		73.1	100	1000	mg/L
BOD	01	SM5210B-2016	25800	Н	0.2	2.0	1	mg/L
COD	01	SM5220D-2011	42400		5000	5000	500	mg/L
Cyanide	01	SW9012B	0.28	CI	0.10	0.10	10	mg/L
Nitrate as N	01	Calc.	6.66		5.00	25.0	500	mg/L
Nitrate+Nitrite as N	01	SM4500-NO3F-2016	6.66		0.50	0.50	5	mg/L
TKN as N	01	EPA351.2 R2.0	2840		100	250	500	mg/L
Total Recoverable Phenolics	01	SW9065	37.8		3.00	5.00	100	mg/L

8/8/2024 5:09:45PM

Date Issued:

Analysis Detects Report

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site ID:

Laboratory Sample ID: 24G1354-02	Client Sa	imple ID: EW-60						
							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Factor	Units
Arsenic	02	SW6020B	95		2.5	5.0	5	ug/L
Barium	02	SW6020B	2750		5.00	25.0	5	ug/L
Chromium	02	SW6020B	246		2.00	5.00	5	ug/L
Mercury	02	SW6020B	1.04		1.00	1.00	5	ug/L
Nickel	02	SW6020B	36.34		5.000	5.000	5	ug/L
Zinc	02	SW6020B	45.1		12.5	25.0	5	ug/L
2-Butanone (MEK)	02RE1	SW8260D	25400		1500	5000	500	ug/L
Acetone	02RE1	SW8260D	52600		3500	5000	500	ug/L
Benzene	02	SW8260D	1820		20.0	50.0	50	ug/L
Ethylbenzene	02	SW8260D	118		20.0	50.0	50	ug/L
Tetrahydrofuran	02	SW8260D	4020		500	500	50	ug/L
Toluene	02	SW8260D	125		25.0	50.0	50	ug/L
Xylenes, Total	02	SW8260D	157		50.0	150	50	ug/L
Ammonia as N	02RE1	EPA350.1 R2.0	1950		146	200	2000	mg/L
BOD	02	SM5210B-2016	4750		0.2	2.0	1	mg/L
COD	02	SM5220D-2011	98500		10000	10000	1000	mg/L
Cyanide	02	SW9012B	0.25	CI	0.05	0.05	5	mg/L
TKN as N	02	EPA351.2 R2.0	2680		100	250	500	mg/L
Total Recoverable Phenolics	02	SW9065	28.8		0.750	1.25	1	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order:

24G1354

8/8/2024 5:09:45PM

Date Issued:

Sample ID Laboratory ID Matrix **Date Sampled Date Received** EW-59 24G1354-01 **Ground Water** 07/23/2024 12:38 07/25/2024 08:00 EW-60 24G1354-02 **Ground Water** 07/24/2024 10:40 07/25/2024 08:00 Non-Potable Water 07/25/2024 08:00 Trip Blank 24G1354-03 07/02/2024 09:10

ANALYTICAL REPORT FOR SAMPLES

Analysis for VFA was subcontracted to Pace Analytical. The subcontracted results are attached at the end of this Certificate of Analysis.

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

8/8/2024 5:09:45PM

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

24G1354

Client Sample ID: EW-59 Laboratory Sample ID: 24G1354-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Metals (Total) by EPA 6000/7000 Serie	s Methods											
Silver	01	7440-22-4	SW6020B	07/26/2024 17:00	07/29/2024 12:20	BLOD		0.300	5.00	5	ug/L	AB
Arsenic	01	7440-38-2	SW6020B	07/26/2024 17:00	07/29/2024 12:20	300		2.5	5.0	5	ug/L	AB
Barium	01	7440-39-3	SW6020B	07/26/2024 17:00	07/29/2024 12:20	1280		5.00	25.0	5	ug/L	AB
Cadmium	01	7440-43-9	SW6020B	07/26/2024 17:00	07/29/2024 12:20	BLOD		0.500	5.00	5	ug/L	AB
Chromium	01	7440-47-3	SW6020B	07/26/2024 17:00	07/29/2024 12:20	252		2.00	5.00	5	ug/L	AB
Copper	01	7440-50-8	SW6020B	07/26/2024 17:00	07/29/2024 12:20	39.8		1.50	5.00	5	ug/L	AB
Mercury	01	7439-97-6	SW6020B	07/26/2024 17:00	07/29/2024 12:20	BLOD		1.00	1.00	5	ug/L	AB
Nickel	01	7440-02-0	SW6020B	07/26/2024 17:00	07/29/2024 12:20	191.7		5.000	5.000	5	ug/L	AB
Lead	01	7439-92-1	SW6020B	07/26/2024 17:00	07/29/2024 12:20	BLOD		5.0	5.0	5	ug/L	AB
Selenium	01	7782-49-2	SW6020B	07/26/2024 17:00	07/29/2024 12:20	BLOD		4.25	5.00	5	ug/L	AB
Zinc	01	7440-66-6	SW6020B	07/26/2024 17:00	07/29/2024 12:20	104		12.5	25.0	5	ug/L	AB
Volatile Organic Compounds by GCM	S											
2-Butanone (MEK)	01	78-93-3	SW8260D	07/26/2024 17:33	07/26/2024 17:33	15600		150	500	50	ug/L	RJB
Acetone	01RE1	67-64-1	SW8260D	07/26/2024 17:56	07/26/2024 17:56	32200		3500	5000	500	ug/L	RJB
Benzene	01	71-43-2	SW8260D	07/26/2024 17:33	07/26/2024 17:33	1410		20.0	50.0	50	ug/L	RJB
Ethylbenzene	01	100-41-4	SW8260D	07/26/2024 17:33	07/26/2024 17:33	76.0		20.0	50.0	50	ug/L	RJB
Toluene	01	108-88-3	SW8260D	07/26/2024 17:33	07/26/2024 17:33	97.0		25.0	50.0	50	ug/L	RJB
Xylenes, Total	01	1330-20-7	SW8260D	07/26/2024 17:33	07/26/2024 17:33	125	J	50.0	150	50	ug/L	RJB
Tetrahydrofuran	01	109-99-9	SW8260D	07/26/2024 17:33	07/26/2024 17:33	1900		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	01	113	% 70-120	07/26/2024 1	7:33 07/26/2024 17:3	3						
Surr: 4-Bromofluorobenzene (Surr)	01	99.3	% 75-120	07/26/2024 1	7:33 07/26/2024 17:3	33						
Surr: Dibromofluoromethane (Surr)	01	105	% 70-130	07/26/2024 1	7:33 07/26/2024 17:3	33						
Surr: Toluene-d8 (Surr)	01	103	% 70-130	07/26/2024 1	7:33 07/26/2024 17:3	3						
Surr: 1,2-Dichloroethane-d4 (Surr)	01RE1	118	% 70-120	07/26/2024 1	7:56 07/26/2024 17:5	56						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 8/8/202

8/8/2024 5:09:45PM

Client Site I.D.: 24-

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order: 24G1354

Client Sample ID: EW-59 Laboratory Sample ID: 24G1354-01

Chefit Gample 15.					Laboratory	oumpio ib.	24010	704 01				
Parameter	Samp ID	CAS F	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Compounds by GCMS	;											
Surr: 4-Bromofluorobenzene (Surr)	01RE1	98.5 %	75-120	07/26/2024 17:56	6 07/26/2024 17:56	<u> </u>						
Surr: Dibromofluoromethane (Surr)	01RE1	105 %	70-130	07/26/2024 17:56	6 07/26/2024 17:56	5						
Surr: Toluene-d8 (Surr)	01RE1	104 %	70-130	07/26/2024 17:56	6 07/26/2024 17:56	5						
Semivolatile Organic Compounds by 0	GCMS											
Anthracene	01	120-12-7	SW8270E	07/29/2024 08:30	07/29/2024 15:05	BLOD		40.0	80.0	4	ug/L	BMS
Surr: 2,4,6-Tribromophenol (Surr)	01	36.3 %	5-136	07/29/2024 08:30	07/29/2024 15:05	5						
Surr: 2-Fluorobiphenyl (Surr)	01	73.7 %	9-117	07/29/2024 08:30	07/29/2024 15:05	5						
Surr: 2-Fluorophenol (Surr)	01	%	5-60	07/29/2024 08:30	07/29/2024 15:05	5						DS
Surr: Nitrobenzene-d5 (Surr)	01	0.400 %	5-151	07/29/2024 08:30	07/29/2024 15:05	5						DS
Surr: Phenol-d5 (Surr)	01	%	5-60	07/29/2024 08:30	07/29/2024 15:05	5						DS
Surr: p-Terphenyl-d14 (Surr)	01	106 %	5-141	07/29/2024 08:30	07/29/2024 15:05	5						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

8/8/2024 5:09:45PM

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

24G1354

Client Sample ID: EW-59 Laboratory Sample ID: 24G1354-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Wet Chemistry Analysis												
Ammonia as N	01	7664-41-7	EPA350.1 R2.0	08/06/2024 12:16	08/06/2024 12:16	1860		73.1	100	1000	mg/L	SPH
BOD	01	E1640606	SM5210B-20 16	07/25/2024 13:55	07/25/2024 13:55	25800	Н	0.2	2.0	1	mg/L	CET
Cyanide	01	57-12-5	SW9012B	08/02/2024 11:00	08/02/2024 12:17	0.28	CI	0.10	0.10	10	mg/L	AAL
COD	01	NA	SM5220D-20 11	07/31/2024 15:46	07/31/2024 15:46	42400		5000	5000	500	mg/L	TEG
Nitrate as N	01	14797-55-8	Calc.	08/03/2024 13:00	08/03/2024 13:00	6.66		5.00	25.0	500	mg/L	EEM
Nitrate+Nitrite as N	01	E701177	SM4500-NO 3F-2016	08/03/2024 13:00	08/03/2024 13:00	6.66		0.50	0.50	5	mg/L	TEG
Nitrite as N	01	14797-65-0	SM4500-NO 2B-2011	07/25/2024 09:30	07/25/2024 09:30	BLOD		5.00	25.0	500	mg/L	EEM
Total Recoverable Phenolics	01	NA	SW9065	08/07/2024 17:30	08/07/2024 17:30	37.8		3.00	5.00	100	mg/L	SPH
TKN as N	01	E17148461	EPA351.2 R2.0	08/05/2024 12:32	08/05/2024 12:32	2840		100	250	500	mg/L	TEG

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

8/8/2024 5:09:45PM

Client Site I.D.:
Submitted To:

24-02 LFG-EW Monthly Monitoring

Jennifer Robb

Work Order: 24G1354

Client Sample ID: EW-60 Laboratory Sample ID: 24G1354-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Metals (Total) by EPA 6000/7000 Series	s Methods											
Silver	02	7440-22-4	SW6020B	07/26/2024 17:00	07/29/2024 12:23	BLOD		0.300	5.00	5	ug/L	AB
Arsenic	02	7440-38-2	SW6020B	07/26/2024 17:00	07/29/2024 12:23	95		2.5	5.0	5	ug/L	AB
Barium	02	7440-39-3	SW6020B	07/26/2024 17:00	07/29/2024 12:23	2750		5.00	25.0	5	ug/L	AB
Cadmium	02	7440-43-9	SW6020B	07/26/2024 17:00	07/29/2024 12:23	BLOD		0.500	5.00	5	ug/L	AB
Chromium	02	7440-47-3	SW6020B	07/26/2024 17:00	07/29/2024 12:23	246		2.00	5.00	5	ug/L	AB
Copper	02	7440-50-8	SW6020B	07/26/2024 17:00	07/29/2024 12:23	BLOD		1.50	5.00	5	ug/L	AB
Mercury	02	7439-97-6	SW6020B	07/26/2024 17:00	07/29/2024 12:23	1.04		1.00	1.00	5	ug/L	AB
Nickel	02	7440-02-0	SW6020B	07/26/2024 17:00	07/29/2024 12:23	36.34		5.000	5.000	5	ug/L	AB
Lead	02	7439-92-1	SW6020B	07/26/2024 17:00	07/29/2024 12:23	BLOD		5.0	5.0	5	ug/L	AB
Selenium	02	7782-49-2	SW6020B	07/26/2024 17:00	07/29/2024 12:23	BLOD		4.25	5.00	5	ug/L	AB
Zinc	02	7440-66-6	SW6020B	07/26/2024 17:00	07/29/2024 12:23	45.1		12.5	25.0	5	ug/L	AB
Volatile Organic Compounds by GCMS	S											
2-Butanone (MEK)	02RE1	78-93-3	SW8260D	07/26/2024 18:44	07/26/2024 18:44	25400		1500	5000	500	ug/L	RJB
Acetone	02RE1	67-64-1	SW8260D	07/26/2024 18:44	07/26/2024 18:44	52600		3500	5000	500	ug/L	RJB
Benzene	02	71-43-2	SW8260D	07/26/2024 18:20	07/26/2024 18:20	1820		20.0	50.0	50	ug/L	RJB
Ethylbenzene	02	100-41-4	SW8260D	07/26/2024 18:20	07/26/2024 18:20	118		20.0	50.0	50	ug/L	RJB
Toluene	02	108-88-3	SW8260D	07/26/2024 18:20	07/26/2024 18:20	125		25.0	50.0	50	ug/L	RJB
Xylenes, Total	02	1330-20-7	SW8260D	07/26/2024 18:20	07/26/2024 18:20	157		50.0	150	50	ug/L	RJB
Tetrahydrofuran	02	109-99-9	SW8260D	07/26/2024 18:20	07/26/2024 18:20	4020		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	02	118	% 70-120	07/26/2024 1	8:20 07/26/2024 18:2	0					-	
Surr: 4-Bromofluorobenzene (Surr)	02	97.9	% 75-120	07/26/2024 1	8:20 07/26/2024 18:2	0						
Surr: Dibromofluoromethane (Surr)	02	104	% 70-130	07/26/2024 1	8:20 07/26/2024 18:2	0						
Surr: Toluene-d8 (Surr)	02	103	% 70-130	07/26/2024 1	8:20 07/26/2024 18:2	0						
Surr: 1,2-Dichloroethane-d4 (Surr)	02RE1	116	% 70-120	07/26/2024 1	8:44 07/26/2024 18:4	4						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

EW-60

Date Issued:

Laboratory Sample ID:

8/8/2024 5:09:45PM

Client Site I.D.: Submitted To:

Client Sample ID:

24-02 LFG-EW Monthly Monitoring

Jennifer Robb

Work Order: 24G1354

24G1354-02

Parameter S	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys

Volatile Organic Compounds by GCMS	S				
Surr: 4-Bromofluorobenzene (Surr)	02RE1	99.1 %	75-120	07/26/2024 18:44	07/26/2024 18:44
Surr: Dibromofluoromethane (Surr)	02RE1	105 %	70-130	07/26/2024 18:44	07/26/2024 18:44
Surr: Toluene-d8 (Surr)	02RE1	102 %	70-130	07/26/2024 18:44	07/26/2024 18:44

Anthracene	02	120-12-7	SW8270E	07/29/2024 08:30	07/29/2024 15:34	BLOD	80.0	160	4	ug/L	BMS
Surr: 2,4,6-Tribromophenol (Surr)	02	%	5-136	07/29/2024 08:	30 07/29/2024 15:34	!					DS
Surr: 2-Fluorobiphenyl (Surr)	02	%	9-117	07/29/2024 08:	30 07/29/2024 15:34	!					DS
Surr: 2-Fluorophenol (Surr)	02	0.320 %	5-60	07/29/2024 08:	30 07/29/2024 15:34	!					DS
Surr: Nitrobenzene-d5 (Surr)	02	%	5-151	07/29/2024 08:	30 07/29/2024 15:34	!					DS
Surr: Phenol-d5 (Surr)	02	0.320 %	5-60	07/29/2024 08:	30 07/29/2024 15:34	!					DS
Surr: p-Terphenyl-d14 (Surr)	02	146 %	5-141	07/29/2024 08:	30 07/29/2024 15:34	!					DS

Wet Chemistry Analysis												
Ammonia as N	02RE1	7664-41-7	EPA350.1 R2.0	08/06/2024 12:16	08/06/2024 12:16	1950		146	200	2000	mg/L	SPH
BOD	02	E1640606	SM5210B-20 16	07/25/2024 16:38	07/25/2024 16:38	4750		0.2	2.0	1	mg/L	CET
Cyanide	02	57-12-5	SW9012B	08/06/2024 12:29	08/06/2024 12:29	0.25	CI	0.05	0.05	5	mg/L	TEG
COD	02	NA	SM5220D-20 11	07/31/2024 15:46	07/31/2024 15:46	98500		10000	10000	1000	mg/L	TEG
Nitrate as N	02	14797-55-8	Calc.	08/08/2024 10:00	08/08/2024 11:50	BLOD		0.500	2.50	50	mg/L	EEM
Nitrate+Nitrite as N	02	E701177	SM4500-NO 3F-2016	08/08/2024 10:00	08/08/2024 11:50	BLOD		0.50	0.50	5	mg/L	MKS
Nitrite as N	02	14797-65-0	SM4500-NO 2B-2011	07/25/2024 09:30	07/25/2024 09:30	BLOD		0.50	2.50	50	mg/L	EEM
Total Recoverable Phenolics	02	NA	SW9065	08/07/2024 17:30	08/07/2024 17:30	28.8		0.750	1.25	1	mg/L	SPH
TKN as N	02	E17148461	EPA351.2 R2.0	08/05/2024 12:33	08/05/2024 12:33	2680		100	250	500	mg/L	TEG

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

8/8/2024 5:09:45PM

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Work Order:

24G1354

Submitted To:

Client Sample ID:

Jennifer Robb

Trip Blank Laboratory Sample ID: 24G1354-03

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analys
Volatile Organic Compounds by GCMS												
2-Butanone (MEK)	03	78-93-3	SW8260D	07/26/2024 13:11	07/26/2024 13:11	BLOD		3.00	10.0	1	ug/L	RJB
Acetone	03	67-64-1	SW8260D	07/26/2024 13:11	07/26/2024 13:11	BLOD		7.00	10.0	1	ug/L	RJB
Benzene	03	71-43-2	SW8260D	07/26/2024 13:11	07/26/2024 13:11	BLOD		0.40	1.00	1	ug/L	RJB
Ethylbenzene	03	100-41-4	SW8260D	07/26/2024 13:11	07/26/2024 13:11	BLOD		0.40	1.00	1	ug/L	RJB
Toluene	03	108-88-3	SW8260D	07/26/2024 13:11	07/26/2024 13:11	BLOD		0.50	1.00	1	ug/L	RJB
Xylenes, Total	03	1330-20-7	SW8260D	07/26/2024 13:11	07/26/2024 13:11	BLOD		1.00	3.00	1	ug/L	RJB
Tetrahydrofuran	03	109-99-9	SW8260D	07/26/2024 13:11	07/26/2024 13:11	BLOD		10.0	10.0	1	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	03	115	% 70-120	07/26/2024 13:	11 07/26/2024 13:11	1						
Surr: 4-Bromofluorobenzene (Surr)	03	96.6	% 75-120	07/26/2024 13:	11 07/26/2024 13:11	1						
Surr: Dibromofluoromethane (Surr)	03	102	% 70-130	07/26/2024 13:	11 07/26/2024 13:11	1						
Surr: Toluene-d8 (Surr)	03	105	% 70-130	07/26/2024 13:	11 07/26/2024 13:11	1						

24G1354

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Jennifer Robb

Date Issued:

Work Order:

8/8/2024 5:09:45PM

Client Site I.D.:
Submitted To:

24-02 LFG-EW Monthly Monitoring

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHG1053 - EP	A200.8 R5.4								
Blank (BHG1053-BLK1)				Prepared: 07/26	/2024 Analyzed: (07/29/2024				
Mercury	ND	0.200	ug/L							
Arsenic	ND	1.0	ug/L							
Barium	ND	5.00	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	1.00	ug/L							
Copper	ND	1.00	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	1.000	ug/L							
Selenium	ND	1.00	ug/L							
Silver	ND	1.00	ug/L							
Zinc	ND	5.00	ug/L							
LCS (BHG1053-BS1)				Prepared: 07/26	/2024 Analyzed: (07/29/2024				
Mercury	0.992	0.200	ug/L	1.00		99.2	80-120			
Arsenic	52	1.0	ug/L	50.0		104	80-120			
Barium	51.6	5.00	ug/L	50.0		103	80-120			
Cadmium	49.8	1.00	ug/L	50.0		99.7	80-120			
Chromium	50.5	1.00	ug/L	50.0		101	80-120			
Copper	51.6	1.00	ug/L	50.0		103	80-120			
Lead	52	1.0	ug/L	50.0		103	80-120			
Nickel	50.05	1.000	ug/L	50.0		100	80-120			
Selenium	50.1	1.00	ug/L	50.0		100	80-120			
Silver	10.3	1.00	ug/L	10.0		103	80-120			
Zinc	51.3	5.00	ug/L	50.0		103	80-120			
Matrix Spike (BHG1053-MS1)	S	ource: 24G1509-0	1	Prepared: 07/26	/2024 Analyzed: (07/29/2024				

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 8

8/8/2024 5:09:45PM

Client Site I.D.: Submitted To: 24-02 LFG-EW Monthly Monitoring

Jennifer Robb

Work Order:

24G1354

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BHG1053 - EPA20	0.8 R5.4								
Matrix Spike (BHG1053-MS1)	Sour	ce: 24G1509-0	1	Prepared: 07/26	/2024 Analyzed: (07/29/2024				
Mercury	1.01	0.200	ug/L	1.00	BLOD	101	70-130			
Arsenic	50	1.0	ug/L	50.0	BLOD	100	75-125			
Barium	120	5.00	ug/L	50.0	67.8	105	75-125			
Cadmium	50.6	1.00	ug/L	50.0	BLOD	101	75-125			
Chromium	50.0	1.00	ug/L	50.0	BLOD	100	75-125			
Copper	142	1.00	ug/L	50.0	93.1	98.6	75-125			
Lead	55	1.0	ug/L	50.0	5.3	100	75-125			
Nickel	52.63	1.000	ug/L	50.0	3.223	98.8	75-125			
Selenium	49.0	1.00	ug/L	50.0	BLOD	98.0	75-125			
Silver	10.4	1.00	ug/L	10.0	BLOD	104	75-125			
Zinc	592	5.00	ug/L	50.0	546	91.7	75-125			E
Matrix Spike (BHG1053-MS2)	Sour	ce: 24G1510-0	1	Prepared: 07/26	/2024 Analyzed: (07/29/2024				
Mercury	1.01	0.200	ug/L	1.00	BLOD	101	70-130			
Arsenic	54	1.0	ug/L	50.0	BLOD	109	75-125			
Barium	52.0	5.00	ug/L	50.0	BLOD	104	75-125			
Cadmium	52.4	1.00	ug/L	50.0	BLOD	105	75-125			
Chromium	52.6	1.00	ug/L	50.0	BLOD	105	75-125			
Copper	53.2	1.00	ug/L	50.0	BLOD	106	75-125			
Lead	52	1.0	ug/L	50.0	BLOD	104	75-125			
Nickel	52.42	1.000	ug/L	50.0	BLOD	105	75-125			
Selenium	52.6	1.00	ug/L	50.0	BLOD	105	75-125			
Silver	10.8	1.00	ug/L	10.0	BLOD	108	75-125			
Zinc	53.4	5.00	ug/L	50.0	BLOD	107	75-125			
Matrix Spike Dup (BHG1053-MSD1)	Sour	ce: 24G1509-0	1	Prepared: 07/26	/2024 Analyzed: (07/29/2024				

8/8/2024 5:09:45PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 24G1354

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BHG1053 - EPA20	00.8 R5.4								
Matrix Spike Dup (BHG1053-MSD1)	Sour	ce: 24G1509-()1	Prepared: 07/26	/2024 Analyzed: (07/29/2024				
Mercury	0.994	0.200	ug/L	1.00	BLOD	99.4	70-130	1.97	20	
Arsenic	52	1.0	ug/L	50.0	BLOD	103	75-125	2.61	20	
Barium	120	5.00	ug/L	50.0	67.8	105	75-125	0.0820	20	
Cadmium	50.2	1.00	ug/L	50.0	BLOD	100	75-125	0.844	20	
Chromium	50.7	1.00	ug/L	50.0	BLOD	101	75-125	1.35	20	
Copper	144	1.00	ug/L	50.0	93.1	102	75-125	1.27	20	
Lead	55	1.0	ug/L	50.0	5.3	99.9	75-125	0.159	20	
Nickel	53.64	1.000	ug/L	50.0	3.223	101	75-125	1.91	20	
Selenium	50.6	1.00	ug/L	50.0	BLOD	101	75-125	3.14	20	
Silver	10.4	1.00	ug/L	10.0	BLOD	104	75-125	0.0417	20	
Zinc	597	5.00	ug/L	50.0	546	101	75-125	0.810	20	Ε
Matrix Spike Dup (BHG1053-MSD2)	Sour	ce: 24G1510-0)1	Prepared: 07/26	/2024 Analyzed: (07/29/2024				
Mercury	0.994	0.200	ug/L	1.00	BLOD	99.4	70-130	1.25	20	
Arsenic	50	1.0	ug/L	50.0	BLOD	101	75-125	7.53	20	
Barium	50.9	5.00	ug/L	50.0	BLOD	102	75-125	2.11	20	
Cadmium	50.0	1.00	ug/L	50.0	BLOD	100	75-125	4.64	20	
Chromium	50.5	1.00	ug/L	50.0	BLOD	101	75-125	3.94	20	
Copper	50.1	1.00	ug/L	50.0	BLOD	100	75-125	5.88	20	
Lead	49	1.0	ug/L	50.0	BLOD	98.4	75-125	5.72	20	
Nickel	49.68	1.000	ug/L	50.0	BLOD	99.4	75-125	5.37	20	
Selenium	49.5	1.00	ug/L	50.0	BLOD	99.0	75-125	6.01	20	
Silver	10.2	1.00	ug/L	10.0	BLOD	102	75-125	5.16	20	
Zinc	50.8	5.00	ug/L	50.0	BLOD	102	75-125	4.98	20	

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

8/8/2024 5:09:45PM

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

24G1354

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BH	IG1080 - SW503	BOB-MS								
Blank (BHG1080-BLK1)			1	Prepared & Analy	yzed: 07/26/2024					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	54.2		ug/L	50.0		108	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.1		ug/L	50.0		98.2	75-120			
Surr: Dibromofluoromethane (Surr)	51.8		ug/L	50.0		104	70-130			
Surr: Toluene-d8 (Surr)	51.5		ug/L	50.0		103	70-130			
CS (BHG1080-BS1)			I	Prepared & Analy	yzed: 07/26/2024					
1,1,1,2-Tetrachloroethane	43.0	0.4	ug/L	50.0		85.9	80-130			
1,1,1-Trichloroethane	43.4	1	ug/L	50.0		86.8	65-130			
1,1,2,2-Tetrachloroethane	46.0	0.4	ug/L	50.0		92.1	65-130			
1,1,2-Trichloroethane	45.5	1	ug/L	50.0		91.0	75-125			
1,1-Dichloroethane	45.0	1	ug/L	50.0		89.9	70-135			
1,1-Dichloroethylene	42.5	1	ug/L	50.0		85.0	70-130			
1,1-Dichloropropene	52.7	1	ug/L	50.0		105	75-135			
1,2,3-Trichlorobenzene	50.8	1	ug/L	50.0		102	55-140			
1,2,3-Trichloropropane	44.7	1	ug/L	50.0		89.4	75-125			
1,2,4-Trichlorobenzene	48.3	1	ug/L	50.0		96.6	65-135			
1,2,4-Trimethylbenzene	54.9	1	ug/L	50.0		110	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	36.1	1	ug/L	50.0		72.2	50-130			
1,2-Dibromoethane (EDB)	44.6	1	ug/L	50.0		89.1	80-120			

8/8/2024 5:09:45PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Engineers-Winchester Date Issued:

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 24G1354

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batcl	n BHG1080 - SW503	BOB-MS								
LCS (BHG1080-BS1)			ſ	Prepared & Anal	yzed: 07/26/2024	ļ				
1,2-Dichlorobenzene	49.7	0.5	ug/L	50.0		99.3	70-120			
1,2-Dichloroethane	39.4	1	ug/L	50.0		78.9	70-130			
1,2-Dichloropropane	51.0	0.5	ug/L	50.0		102	75-125			
1,3,5-Trimethylbenzene	53.1	1	ug/L	50.0		106	75-125			
1,3-Dichlorobenzene	49.5	1	ug/L	50.0		99.1	75-125			
1,3-Dichloropropane	46.7	1	ug/L	50.0		93.5	75-125			
1,4-Dichlorobenzene	49.1	1	ug/L	50.0		98.2	75-125			
2,2-Dichloropropane	45.1	1	ug/L	50.0		90.2	70-135			
2-Butanone (MEK)	40.9	10	ug/L	50.0		81.7	30-150			
2-Chlorotoluene	48.9	1	ug/L	50.0		97.8	75-125			
2-Hexanone (MBK)	41.9	5	ug/L	50.0		83.7	55-130			
4-Chlorotoluene	49.2	1	ug/L	50.0		98.3	75-130			
4-Isopropyltoluene	56.6	1	ug/L	50.0		113	75-130			
4-Methyl-2-pentanone (MIBK)	42.7	5	ug/L	50.0		85.4	60-135			
Acetone	36.2	10	ug/L	50.0		72.3	40-140			
Benzene	53.7	1	ug/L	50.0		107	80-120			
Bromobenzene	44.6	1	ug/L	50.0		89.2	75-125			
Bromochloromethane	48.5	1	ug/L	50.0		97.0	65-130			
Bromodichloromethane	40.9	0.5	ug/L	50.0		81.8	75-120			
Bromoform	39.6	1	ug/L	50.0		79.3	70-130			
Bromomethane	38.7	1	ug/L	50.0		77.4	30-145			
Carbon disulfide	55.1	10	ug/L	50.0		110	35-160			
Carbon tetrachloride	40.5	1	ug/L	50.0		81.1	65-140			
Chlorobenzene	49.0	1	ug/L	50.0		98.1	80-120			
Chloroethane	39.4	1	ug/L	50.0		78.8	60-135			

8/8/2024 5:09:45PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

ineers-Winchester Date Issued:

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 24G1354

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BHG1080 - SW503	0B-MS								
LCS (BHG1080-BS1)			I	Prepared & Anal	yzed: 07/26/2024					
Chloroform	46.9	0.5	ug/L	50.0		93.9	65-135			
Chloromethane	49.3	1	ug/L	50.0		98.6	40-125			
cis-1,2-Dichloroethylene	51.8	1	ug/L	50.0		104	70-125			
cis-1,3-Dichloropropene	43.9	1	ug/L	50.0		87.9	70-130			
Dibromochloromethane	38.9	0.5	ug/L	50.0		77.8	60-135			
Dibromomethane	43.9	1	ug/L	50.0		87.8	75-125			
Dichlorodifluoromethane	54.9	1	ug/L	50.0		110	30-155			
Ethylbenzene	51.2	1	ug/L	50.0		102	75-125			
Hexachlorobutadiene	47.0	0.8	ug/L	50.0		94.0	50-140			
Isopropylbenzene	44.4	1	ug/L	50.0		88.8	75-125			
m+p-Xylenes	95.6	2	ug/L	100		95.6	75-130			
Methylene chloride	44.5	4	ug/L	50.0		89.1	55-140			
Methyl-t-butyl ether (MTBE)	38.6	1	ug/L	50.0		77.2	65-125			
Naphthalene	49.2	1	ug/L	50.0		98.4	55-140			
n-Butylbenzene	54.5	1	ug/L	50.0		109	70-135			
n-Propylbenzene	50.0	1	ug/L	50.0		99.9	70-130			
o-Xylene	47.0	1	ug/L	50.0		93.9	80-120			
sec-Butylbenzene	54.2	1	ug/L	50.0		108	70-125			
Styrene	47.4	1	ug/L	50.0		94.7	65-135			
tert-Butylbenzene	51.8	1	ug/L	50.0		104	70-130			
Tetrachloroethylene (PCE)	44.5	1	ug/L	50.0		88.9	45-150			
Toluene	49.2	1	ug/L	50.0		98.4	75-120			
trans-1,2-Dichloroethylene	44.3	1	ug/L	50.0		88.6	60-140			
trans-1,3-Dichloropropene	43.3	1	ug/L	50.0		86.6	55-140			
Trichloroethylene	47.1	1	ug/L	50.0		94.2	70-125			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

8/8/2024 5:09:45PM

Client Site I.D.: Submitted To: 24-02 LFG-EW Monthly Monitoring

Jennifer Robb

Work Order:

24G1354

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BH	IG1080 - SW503	BOB-MS								
LCS (BHG1080-BS1)				Prepared & Anal	yzed: 07/26/2024					
Trichlorofluoromethane	36.2	1	ug/L	50.0		72.4	60-145			
Vinyl chloride	30.5	0.5	ug/L	50.0		61.1	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	54.9		ug/L	50.0		110	70-120			
Surr: 4-Bromofluorobenzene (Surr)	48.6		ug/L	50.0		97.2	75-120			
Surr: Dibromofluoromethane (Surr)	51.9		ug/L	50.0		104	70-130			
Surr: Toluene-d8 (Surr)	50.2		ug/L	50.0		100	70-130			
Matrix Spike (BHG1080-MS1)	Sourc	e: 24G1308-0	5	Prepared & Anal	yzed: 07/26/2024					
1,1,1,2-Tetrachloroethane	42.4	0.4	ug/L	50.0	BLOD	84.8	80-130			
1,1,1-Trichloroethane	43.7	1	ug/L	50.0	BLOD	87.5	65-130			
1,1,2,2-Tetrachloroethane	47.6	0.4	ug/L	50.0	BLOD	95.2	65-130			
1,1,2-Trichloroethane	46.3	1	ug/L	50.0	BLOD	92.6	75-125			
1,1-Dichloroethane	51.0	1	ug/L	50.0	BLOD	102	70-135			
1,1-Dichloroethylene	43.3	1	ug/L	50.0	BLOD	86.5	50-145			
1,1-Dichloropropene	53.0	1	ug/L	50.0	BLOD	106	75-135			
1,2,3-Trichlorobenzene	49.4	1	ug/L	50.0	BLOD	98.7	55-140			
1,2,3-Trichloropropane	46.4	1	ug/L	50.0	BLOD	92.8	75-125			
1,2,4-Trichlorobenzene	47.8	1	ug/L	50.0	BLOD	95.7	65-135			
1,2,4-Trimethylbenzene	54.6	1	ug/L	50.0	BLOD	109	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	38.4	1	ug/L	50.0	BLOD	76.7	50-130			
1,2-Dibromoethane (EDB)	45.8	1	ug/L	50.0	BLOD	91.5	80-120			
1,2-Dichlorobenzene	49.3	0.5	ug/L	50.0	BLOD	98.6	70-120			
1,2-Dichloroethane	38.8	1	ug/L	50.0	BLOD	77.6	70-130			
1,2-Dichloropropane	51.8	0.5	ug/L	50.0	BLOD	104	75-125			
1,3,5-Trimethylbenzene	53.2	1	ug/L	50.0	BLOD	106	75-124			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

8/8/2024 5:09:45PM

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

24G1354

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batcl										
Matrix Spike (BHG1080-MS1)	Source: 24G1308-05			Prepared & Anal	yzed: 07/26/2024					
1,3-Dichlorobenzene	49.6	1	ug/L	50.0	BLOD	99.1	75-125			
1,3-Dichloropropane	47.3	1	ug/L	50.0	BLOD	94.6	75-125			
1,4-Dichlorobenzene	48.7	1	ug/L	50.0	BLOD	97.3	75-125			
2,2-Dichloropropane	44.8	1	ug/L	50.0	BLOD	89.6	70-135			
2-Butanone (MEK)	48.2	10	ug/L	50.0	BLOD	96.3	30-150			
2-Chlorotoluene	49.7	1	ug/L	50.0	BLOD	99.3	75-125			
2-Hexanone (MBK)	45.2	5	ug/L	50.0	BLOD	90.5	55-130			
4-Chlorotoluene	49.4	1	ug/L	50.0	BLOD	98.9	75-130			
4-Isopropyltoluene	56.2	1	ug/L	50.0	BLOD	112	75-130			
4-Methyl-2-pentanone (MIBK)	45.4	5	ug/L	50.0	BLOD	90.8	60-135			
Acetone	55.1	10	ug/L	50.0	14.7	80.7	40-140			
Benzene	53.6	1	ug/L	50.0	BLOD	107	80-120			
Bromobenzene	44.5	1	ug/L	50.0	BLOD	89.0	75-125			
Bromochloromethane	48.1	1	ug/L	50.0	BLOD	96.2	65-130			
Bromodichloromethane	41.5	0.5	ug/L	50.0	BLOD	83.0	75-136			
Bromoform	40.3	1	ug/L	50.0	BLOD	80.5	70-130			
Bromomethane	38.9	1	ug/L	50.0	BLOD	77.8	30-145			
Carbon disulfide	72.0	10	ug/L	50.0	BLOD	143	35-160			
Carbon tetrachloride	39.6	1	ug/L	50.0	BLOD	79.2	65-140			
Chlorobenzene	48.8	1	ug/L	50.0	BLOD	97.5	80-120			
Chloroethane	37.9	1	ug/L	50.0	BLOD	75.8	60-135			
Chloroform	46.9	0.5	ug/L	50.0	BLOD	93.6	65-135			
Chloromethane	49.1	1	ug/L	50.0	BLOD	98.2	40-125			
cis-1,2-Dichloroethylene	51.6	1	ug/L	50.0	BLOD	103	70-125			
cis-1,3-Dichloropropene	43.3	1	ug/L	50.0	BLOD	86.7	47-136			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

8/8/2024 5:09:45PM

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

24G1354

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BHG1080 - SW5030B-MS										
Matrix Spike (BHG1080-MS1)	Source: 24G1308-05			Prepared & Anal	yzed: 07/26/2024					
Dibromochloromethane	39.8	0.5	ug/L	50.0	BLOD	79.6	60-135			
Dibromomethane	43.9	1	ug/L	50.0	BLOD	87.8	75-125			
Dichlorodifluoromethane	38.6	1	ug/L	50.0	BLOD	77.1	30-155			
Ethylbenzene	51.4	1	ug/L	50.0	BLOD	103	75-125			
Hexachlorobutadiene	45.4	0.8	ug/L	50.0	BLOD	90.7	50-140			
Isopropylbenzene	44.7	1	ug/L	50.0	BLOD	89.5	75-125			
m+p-Xylenes	96.0	2	ug/L	100	BLOD	96.0	75-130			
Methylene chloride	44.9	4	ug/L	50.0	BLOD	88.2	55-140			
Methyl-t-butyl ether (MTBE)	38.7	1	ug/L	50.0	BLOD	77.3	65-125			
Naphthalene	49.6	1	ug/L	50.0	BLOD	99.3	55-140			
n-Butylbenzene	54.8	1	ug/L	50.0	BLOD	110	70-135			
n-Propylbenzene	49.8	1	ug/L	50.0	BLOD	99.5	70-130			
o-Xylene	47.2	1	ug/L	50.0	BLOD	94.4	80-120			
sec-Butylbenzene	54.3	1	ug/L	50.0	BLOD	109	70-125			
Styrene	47.8	1	ug/L	50.0	BLOD	95.5	65-135			
tert-Butylbenzene	51.7	1	ug/L	50.0	BLOD	103	70-130			
Tetrachloroethylene (PCE)	43.4	1	ug/L	50.0	BLOD	86.9	51-231			
Toluene	50.0	1	ug/L	50.0	BLOD	100	75-120			
trans-1,2-Dichloroethylene	43.1	1	ug/L	50.0	BLOD	86.3	60-140			
trans-1,3-Dichloropropene	44.1	1	ug/L	50.0	BLOD	88.2	55-140			
Trichloroethylene	47.1	1	ug/L	50.0	BLOD	94.2	70-125			
Trichlorofluoromethane	35.7	1	ug/L	50.0	BLOD	71.3	60-145			
Vinyl chloride	30.7	0.5	ug/L	50.0	BLOD	61.3	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	55.9		ug/L	50.0		112	70-120			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

8/8/2024 5:09:45PM

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

24G1354

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl	IG1080 - SW503	0B-MS								
Matrix Spike (BHG1080-MS1)	Source: 24G1308-05 F			Prepared & Anal	yzed: 07/26/2024					
Surr: 4-Bromofluorobenzene (Surr)	49.2		ug/L	50.0		98.4	75-120			
Surr: Dibromofluoromethane (Surr)	51.3		ug/L	50.0		103	70-130			
Surr: Toluene-d8 (Surr)	50.8		ug/L	50.0		102	70-130			
Matrix Spike Dup (BHG1080-MSD1)	Source	e: 24G1308-0	5	Prepared & Anal	yzed: 07/26/2024					
1,1,1,2-Tetrachloroethane	44.4	0.4	ug/L	50.0	BLOD	88.9	80-130	4.65	30	
1,1,1-Trichloroethane	44.8	1	ug/L	50.0	BLOD	89.5	65-130	2.28	30	
1,1,2,2-Tetrachloroethane	48.8	0.4	ug/L	50.0	BLOD	97.7	65-130	2.61	30	
1,1,2-Trichloroethane	48.7	1	ug/L	50.0	BLOD	97.5	75-125	5.11	30	
1,1-Dichloroethane	53.7	1	ug/L	50.0	BLOD	107	70-135	5.14	30	
1,1-Dichloroethylene	42.0	1	ug/L	50.0	BLOD	84.0	50-145	2.98	30	
1,1-Dichloropropene	55.6	1	ug/L	50.0	BLOD	111	75-135	4.77	30	
1,2,3-Trichlorobenzene	52.4	1	ug/L	50.0	BLOD	105	55-140	5.99	30	
1,2,3-Trichloropropane	47.2	1	ug/L	50.0	BLOD	94.5	75-125	1.82	30	
1,2,4-Trichlorobenzene	50.0	1	ug/L	50.0	BLOD	100	65-135	4.44	30	
1,2,4-Trimethylbenzene	57.7	1	ug/L	50.0	BLOD	115	75-130	5.52	30	
1,2-Dibromo-3-chloropropane (DBCP)	39.1	1	ug/L	50.0	BLOD	78.2	50-130	1.94	30	
1,2-Dibromoethane (EDB)	47.5	1	ug/L	50.0	BLOD	95.0	80-120	3.73	30	
1,2-Dichlorobenzene	51.1	0.5	ug/L	50.0	BLOD	102	70-120	3.59	30	
1,2-Dichloroethane	40.7	1	ug/L	50.0	BLOD	81.3	70-130	4.73	30	
1,2-Dichloropropane	54.1	0.5	ug/L	50.0	BLOD	108	75-125	4.30	30	
1,3,5-Trimethylbenzene	55.1	1	ug/L	50.0	BLOD	110	75-124	3.43	30	
1,3-Dichlorobenzene	51.4	1	ug/L	50.0	BLOD	103	75-125	3.72	30	
1,3-Dichloropropane	49.7	1	ug/L	50.0	BLOD	99.3	75-125	4.87	30	
1,4-Dichlorobenzene	50.2	1	ug/L	50.0	BLOD	100	75-125	3.00	30	

24G1354

8/8/2024 5:09:45PM

Date Issued:

Work Order:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Amelista	Deput	1.00	Lluita	Spike	Source	0/ DEC	%REC	DDD	RPD	0
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch	BHG1080 - SW503	0B-MS								
Matrix Spike Dup (BHG1080-MSD1)	Source	e: 24G1308-0)5	Prepared & Anal	yzed: 07/26/2024	ļ				
2,2-Dichloropropane	46.7	1	ug/L	50.0	BLOD	93.3	70-135	4.09	30	
2-Butanone (MEK)	44.4	10	ug/L	50.0	BLOD	88.7	30-150	8.17	30	
2-Chlorotoluene	50.6	1	ug/L	50.0	BLOD	101	75-125	1.89	30	
2-Hexanone (MBK)	45.0	5	ug/L	50.0	BLOD	90.0	55-130	0.487	30	
4-Chlorotoluene	51.3	1	ug/L	50.0	BLOD	103	75-130	3.71	30	
4-Isopropyltoluene	58.4	1	ug/L	50.0	BLOD	117	75-130	3.80	30	
4-Methyl-2-pentanone (MIBK)	46.9	5	ug/L	50.0	BLOD	93.9	60-135	3.38	30	
Acetone	56.0	10	ug/L	50.0	14.7	82.5	40-140	1.62	30	
Benzene	56.0	1	ug/L	50.0	BLOD	112	80-120	4.36	30	
Bromobenzene	46.1	1	ug/L	50.0	BLOD	92.2	75-125	3.51	30	
Bromochloromethane	49.4	1	ug/L	50.0	BLOD	98.9	65-130	2.75	30	
Bromodichloromethane	42.6	0.5	ug/L	50.0	BLOD	85.3	75-136	2.69	30	
Bromoform	41.6	1	ug/L	50.0	BLOD	83.1	70-130	3.13	30	
Bromomethane	41.5	1	ug/L	50.0	BLOD	83.0	30-145	6.49	30	
Carbon disulfide	58.2	10	ug/L	50.0	BLOD	116	35-160	21.2	30	
Carbon tetrachloride	41.8	1	ug/L	50.0	BLOD	83.7	65-140	5.47	30	
Chlorobenzene	50.7	1	ug/L	50.0	BLOD	101	80-120	3.90	30	
Chloroethane	38.5	1	ug/L	50.0	BLOD	77.1	60-135	1.70	30	
Chloroform	48.9	0.5	ug/L	50.0	BLOD	97.7	65-135	4.19	30	
Chloromethane	50.6	1	ug/L	50.0	BLOD	101	40-125	2.91	30	
cis-1,2-Dichloroethylene	54.0	1	ug/L	50.0	BLOD	108	70-125	4.49	30	
cis-1,3-Dichloropropene	45.5	1	ug/L	50.0	BLOD	91.1	47-136	4.95	30	
Dibromochloromethane	41.6	0.5	ug/L	50.0	BLOD	83.3	60-135	4.57	30	
Dibromomethane	45.0	1	ug/L	50.0	BLOD	89.9	75-125	2.34	30	
Dichlorodifluoromethane	57.3	1	ug/L	50.0	BLOD	115	30-155	39.2	30	P

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Client Site I.D.: Submitted To: Jennifer Robb

Work Order:

Date Issued:

24G1354

8/8/2024 5:09:45PM

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	HG1080 - SW503	0B-MS								
Matrix Spike Dup (BHG1080-MSD1)	Sourc	e: 24G1308-0	05	Prepared & Anal	lyzed: 07/26/2024					
Ethylbenzene	53.3	1	ug/L	50.0	BLOD	107	75-125	3.51	30	
Hexachlorobutadiene	48.1	0.8	ug/L	50.0	BLOD	96.2	50-140	5.84	30	
Isopropylbenzene	46.2	1	ug/L	50.0	BLOD	92.5	75-125	3.30	30	
m+p-Xylenes	99.4	2	ug/L	100	BLOD	99.4	75-130	3.51	30	
Methylene chloride	46.2	4	ug/L	50.0	BLOD	90.8	55-140	2.83	30	
Methyl-t-butyl ether (MTBE)	42.3	1	ug/L	50.0	BLOD	84.6	65-125	9.04	30	
Naphthalene	52.4	1	ug/L	50.0	BLOD	105	55-140	5.39	30	
n-Butylbenzene	55.9	1	ug/L	50.0	BLOD	112	70-135	2.04	30	
n-Propylbenzene	51.9	1	ug/L	50.0	BLOD	104	70-130	4.17	30	
o-Xylene	48.6	1	ug/L	50.0	BLOD	97.2	80-120	2.92	30	
sec-Butylbenzene	56.5	1	ug/L	50.0	BLOD	113	70-125	4.04	30	
Styrene	49.5	1	ug/L	50.0	BLOD	99.0	65-135	3.60	30	
tert-Butylbenzene	53.9	1	ug/L	50.0	BLOD	108	70-130	4.26	30	
Tetrachloroethylene (PCE)	45.7	1	ug/L	50.0	BLOD	91.4	51-231	5.09	30	
Toluene	51.8	1	ug/L	50.0	BLOD	104	75-120	3.42	30	
trans-1,2-Dichloroethylene	44.0	1	ug/L	50.0	BLOD	88.1	60-140	2.04	30	
trans-1,3-Dichloropropene	46.2	1	ug/L	50.0	BLOD	92.4	55-140	4.70	30	
Trichloroethylene	49.0	1	ug/L	50.0	BLOD	98.0	70-125	3.87	30	
Trichlorofluoromethane	37.3	1	ug/L	50.0	BLOD	74.5	60-145	4.39	30	
Vinyl chloride	31.0	0.5	ug/L	50.0	BLOD	61.9	50-145	0.973	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	53.8		ug/L	50.0		108	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.4		ug/L	50.0		98.8	75-120			
Surr: Dibromofluoromethane (Surr)	51.3		ug/L	50.0		103	70-130			
Surr: Toluene-d8 (Surr)	51.1		ug/L	50.0		102	70-130			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

8/8/2024 5:09:45PM

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

24G1354

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BHG1111 - SW351	0C/EPA600	-MS							
Blank (BHG1111-BLK1)			F	Prepared & Anal	yzed: 07/29/2024					
Anthracene	ND	10.0	ug/L							
Surr: 2,4,6-Tribromophenol (Surr)	72.7		ug/L	100		72.7	5-136			
Surr: 2-Fluorobiphenyl (Surr)	30.3		ug/L	50.0		60.5	9-117			
Surr: 2-Fluorophenol (Surr)	41.1		ug/L	100		41.1	5-60			
Surr: Nitrobenzene-d5 (Surr)	34.7		ug/L	50.0		69.4	5-151			
Surr: Phenol-d5 (Surr)	29.5		ug/L	100		29.5	5-60			
Surr: p-Terphenyl-d14 (Surr)	36.8		ug/L	50.0		73.6	5-141			
_CS (BHG1111-BS1)			F	Prepared & Anal	yzed: 07/29/2024					
1,2,4-Trichlorobenzene	34.5	10.0	ug/L	50.0		69.0	57-130			
1,2-Dichlorobenzene	30.2	10.0	ug/L	50.0		60.4	22-115			
1,3-Dichlorobenzene	30.0	10.0	ug/L	50.0		59.9	22-112			
1,4-Dichlorobenzene	32.3	10.0	ug/L	50.0		64.6	13-112			
2,4,6-Trichlorophenol	33.6	10.0	ug/L	50.0		67.2	52-129			
2,4-Dichlorophenol	36.2	10.0	ug/L	50.0		72.4	53-122			
2,4-Dimethylphenol	38.9	5.00	ug/L	50.0		77.8	42-120			
2,4-Dinitrophenol	18.9	50.0	ug/L	50.0		37.8	48-127			J, L
2,4-Dinitrotoluene	38.4	10.0	ug/L	50.0		76.8	10-173			
2,6-Dinitrotoluene	36.4	10.0	ug/L	50.0		72.8	68-137			
2-Chloronaphthalene	33.6	10.0	ug/L	50.0		67.3	65-120			
2-Chlorophenol	31.2	10.0	ug/L	50.0		62.4	36-120			
2-Nitrophenol	36.3	10.0	ug/L	50.0		72.6	45-167			
3,3'-Dichlorobenzidine	23.6	10.0	ug/L	50.0		47.2	10-213			
4,6-Dinitro-2-methylphenol	31.6	50.0	ug/L	50.0		63.2	53-130			
4-Bromophenyl phenyl ether	34.8	10.0	ug/L	50.0		69.5	65-120			

24G1354

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Jennifer Robb

Date Issued:

8/8/2024 5:09:45PM

Client Site I.D.:
Submitted To:

24-02 LFG-EW Monthly Monitoring

Work Order:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batcl	h BHG1111 - SW351	0C/EPA600	-MS							
LCS (BHG1111-BS1)			F	Prepared & Anal	yzed: 07/29/2024					
4-Chlorophenyl phenyl ether	33.9	10.0	ug/L	50.0		67.9	38-145			
4-Nitrophenol	10.7	50.0	ug/L	50.0		21.4	13-129			
Acenaphthene	34.5	10.0	ug/L	50.0		68.9	60-132			
Acenaphthylene	36.4	10.0	ug/L	50.0		72.9	54-126			
Acetophenone	29.0	20.0	ug/L	50.0		58.1	0-200			
Anthracene	34.8	10.0	ug/L	50.0		69.5	43-120			
Benzo (a) anthracene	39.3	10.0	ug/L	50.0		78.6	42-133			
Benzo (a) pyrene	41.1	10.0	ug/L	50.0		82.2	32-148			
Benzo (b) fluoranthene	43.0	10.0	ug/L	50.0		85.9	42-140			
Benzo (g,h,i) perylene	46.1	10.0	ug/L	50.0		92.3	10-195			
Benzo (k) fluoranthene	35.8	10.0	ug/L	50.0		71.6	25-146			
bis (2-Chloroethoxy) methane	32.5	10.0	ug/L	50.0		64.9	49-165			
bis (2-Chloroethyl) ether	29.6	10.0	ug/L	50.0		59.2	43-126			
2,2'-Oxybis (1-chloropropane)	30.6	10.0	ug/L	50.0		61.2	63-139			L
bis (2-Ethylhexyl) phthalate	45.1	10.0	ug/L	50.0		90.3	29-137			
Butyl benzyl phthalate	42.6	10.0	ug/L	50.0		85.1	10-140			
Chrysene	37.2	10.0	ug/L	50.0		74.5	44-140			
Dibenz (a,h) anthracene	42.9	10.0	ug/L	50.0		85.7	10-200			
Diethyl phthalate	37.3	10.0	ug/L	50.0		74.6	10-120			
Dimethyl phthalate	35.3	10.0	ug/L	50.0		70.6	10-120			
Di-n-butyl phthalate	32.3	10.0	ug/L	50.0		64.5	10-120			
Di-n-octyl phthalate	44.1	10.0	ug/L	50.0		88.2	19-132			
Fluoranthene	31.9	10.0	ug/L	50.0		63.9	43-121			
Fluorene	37.0	10.0	ug/L	50.0		74.0	70-120			
Hexachlorobenzene	34.1	1.00	ug/L	50.0		68.3	10-142			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

8/8/2024 5:09:45PM

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

24G1354

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BHG1111 - SW351	0C/EPA600	-MS							
LCS (BHG1111-BS1)			ı	Prepared & Anal	yzed: 07/29/2024					
Hexachlorobutadiene	37.1	10.0	ug/L	50.0		74.3	38-120			
Hexachlorocyclopentadiene	28.2	10.0	ug/L	50.0		56.5	10-76			
Hexachloroethane	30.0	10.0	ug/L	50.0		60.1	55-120			
Indeno (1,2,3-cd) pyrene	42.1	10.0	ug/L	50.0		84.2	10-151			
Isophorone	18.4	10.0	ug/L	50.0		36.8	47-180			L
Naphthalene	32.3	5.00	ug/L	50.0		64.7	36-120			
Nitrobenzene	26.4	10.0	ug/L	50.0		52.8	54-158			L
n-Nitrosodimethylamine	17.4	10.0	ug/L	50.0		34.8	10-85			
n-Nitrosodi-n-propylamine	31.4	10.0	ug/L	50.0		62.8	14-198			
n-Nitrosodiphenylamine	29.6	10.0	ug/L	50.0		59.2	12-97			
p-Chloro-m-cresol	34.5	10.0	ug/L	50.0		69.0	10-142			
Pentachlorophenol	25.3	20.0	ug/L	50.0		50.6	38-152			
Phenanthrene	46.2	10.0	ug/L	50.0		92.4	65-120			
Phenol	13.7	10.0	ug/L	50.5		27.2	17-120			
Pyrene	37.3	10.0	ug/L	50.0		74.5	70-120			
Pyridine	21.1	10.0	ug/L	50.0		42.1	10-103			
Surr: 2,4,6-Tribromophenol (Surr)	77.5		ug/L	100		77.5	5-136			
Surr: 2-Fluorobiphenyl (Surr)	35.7		ug/L	50.0		71.3	9-117			
Surr: 2-Fluorophenol (Surr)	40.2		ug/L	100		40.2	5-60			
Surr: Nitrobenzene-d5 (Surr)	34.8		ug/L	50.0		69.6	5-151			
Surr: Phenol-d5 (Surr)	29.0		ug/L	100		29.0	5-60			
Surr: p-Terphenyl-d14 (Surr)	41.3		ug/L	50.0		82.6	5-141			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

8/8/2024 5:09:45PM

Work Order:

24G1354

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
-	BHG0999 - No Pre	p Wet Chem	า							
Blank (BHG0999-BLK1)				Prepared & Analy	zed: 07/25/2024					
BOD	ND	2.0	mg/L							
LCS (BHG0999-BS1)				Prepared & Analy	zed: 07/25/2024					
BOD	202	2	mg/L	198		102	84.6-115.4			
Duplicate (BHG0999-DUP1)	Sourc	e: 24G1286-0	3	Prepared & Analy	zed: 07/25/2024					
BOD	2.2	2.0	mg/L		2.5			10.1	20	
Batch	BHG1000 - No Pre	p Wet Chen	1							
Blank (BHG1000-BLK1)				Prepared & Analy	zed: 07/25/2024					
Nitrite as N	ND	0.05	mg/L							
LCS (BHG1000-BS1)				Prepared & Analy	zed: 07/25/2024					
Nitrite as N	0.10	0.05	mg/L	0.100		98.0	80-120			
Matrix Spike (BHG1000-MS1)	Sourc	e: 24G1355-0	3	Prepared & Analy	zed: 07/25/2024					
Nitrite as N	0.11	0.05	mg/L	0.100	0.01	94.0	80-120			
Matrix Spike Dup (BHG1000-MSD1)	Sourc	e: 24G1355-0	3	Prepared & Analy	zed: 07/25/2024					
Nitrite as N	0.11	0.05	mg/L	0.100	0.01	94.0	80-120	0.00	20	
Batch	BHG1261 - No Pre	p Wet Chen	1							
Blank (BHG1261-BLK1)				Prepared & Analy	zed: 07/31/2024					
COD	ND	10.0	mg/L							

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

8/8/2024 5:09:45PM

Work Order:

24G1354

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	HG1261 - No Pre	p Wet Chen	1							
LCS (BHG1261-BS1)				Prepared & Analy	yzed: 07/31/2024					
COD	50.1	10.0	mg/L	50.0		100	88-119			
Matrix Spike (BHG1261-MS1)	Source	e: 24G1286-0	1	Prepared & Analy	yzed: 07/31/2024					
COD	60.3	10.0	mg/L	50.0	BLOD	121	72.4-130			
Matrix Spike Dup (BHG1261-MSD1)	Source	e: 24G1286-0	1	Prepared & Analy	yzed: 07/31/2024					
COD	59.9	10.0	mg/L	50.0	BLOD	120	72.4-130	0.549	20	
Batch B	HH0100 - No Prej	p Wet Chem	1							
Blank (BHH0100-BLK1)				Prepared & Analy	yzed: 08/02/2024					
Cyanide	ND	0.01	mg/L							
LCS (BHH0100-BS1)				Prepared & Analy	yzed: 08/02/2024					
Cyanide	0.22	0.01	mg/L	0.250		89.0	80-120			
Matrix Spike (BHH0100-MS1)	Source	e: 24G1292-0	3	Prepared & Analy	yzed: 08/02/2024					
Cyanide	0.24	0.01	mg/L	0.250	BLOD	94.1	80-120			CI
Matrix Spike (BHH0100-MS2)	Source	e: 24G1292-0	6	Prepared & Analy	yzed: 08/02/2024					
Cyanide	0.26	0.01	mg/L	0.250	BLOD	103	80-120			CI
Matrix Spike Dup (BHH0100-MSD1)	Source	e: 24G1292-0	3	Prepared & Analy	yzed: 08/02/2024					
Cyanide	0.25	0.01	mg/L	0.250	BLOD	101	80-120	6.85	20	CI
Matrix Spike Dup (BHH0100-MSD2)	Source	e: 24G1292-0	6	Prepared & Analy	yzed: 08/02/2024					
Cyanide	0.26	0.01	mg/L	0.250	BLOD	105	80-120	2.01	20	CI

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

8/8/2024 5:09:45PM

Work Order:

24G1354

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BHH0114 - No Pre	p Wet Chem	1							
Blank (BHH0114-BLK1)				Prepared & Analy	zed: 08/05/2024					
TKN as N	ND	0.50	mg/L							
LCS (BHH0114-BS1)				Prepared & Analy	zed: 08/05/2024					
TKN as N	5.23	0.5	mg/L	5.00		105	90-110			
Matrix Spike (BHH0114-MS1)	Source	e: 24G1720-0	1	Prepared & Analy	zed: 08/05/2024					
TKN as N	6.54	0.50	mg/L	5.00	1.49	101	90-110			
Matrix Spike (BHH0114-MS2)	Source	e: 24G1720-0	2	Prepared & Analy	zed: 08/05/2024					
TKN as N	6.36	0.50	mg/L	5.00	1.34	100	90-110			
Matrix Spike Dup (BHH0114-MSD1)	Source	e: 24G1720-0	1	Prepared & Analy	zed: 08/05/2024					
TKN as N	6.45	0.50	mg/L	5.00	1.49	99.1	90-110	1.51	20	
Matrix Spike Dup (BHH0114-MSD2)	Source	e: 24G1720-0	2	Prepared & Analy	zed: 08/05/2024					
TKN as N	6.58	0.50	mg/L	5.00	1.34	105	90-110	3.32	20	
Batch I	BHH0124 - No Pre	p Wet Chem	1							
Blank (BHH0124-BLK1)				Prepared & Analy	zed: 08/03/2024					
Nitrate+Nitrite as N	ND	0.10	mg/L							
LCS (BHH0124-BS1)				Prepared & Analy	zed: 08/03/2024					
Nitrate+Nitrite as N	1.04	0.1	mg/L	1.00		104	90-110			
Matrix Spike (BHH0124-MS1)	Source	e: 24G1319-0	2	Prepared & Analy	zed: 08/03/2024					
Nitrate+Nitrite as N	3.98	0.20	mg/L	2.00	2.07	95.4	90-120			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

8/8/2024 5:09:45PM

Work Order:

24G1354

Wet Chemistry Analysis - Quality Control

				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch	BHH0124 - No Pre	p Wet Chen	1							
Matrix Spike Dup (BHH0124-MSD1)	Sourc	e: 24G1319-0	2	Prepared & Analy	zed: 08/03/2024					
Nitrate+Nitrite as N	3.97	0.20	mg/L	2.00	2.07	95.0	90-120	0.201	20	
Batch	BHH0209 - No Pre	p Wet Chen	1							
Blank (BHH0209-BLK1)				Prepared & Analy	zed: 08/06/2024					
Ammonia as N	ND	0.10	mg/L							
LCS (BHH0209-BS1)				Prepared & Analy	zed: 08/06/2024					
Ammonia as N	1.04	0.1	mg/L	1.00		104	90-110			
Matrix Spike (BHH0209-MS1)	Source	e: 24H0013-1	0	Prepared & Analy	zed: 08/06/2024					
Ammonia as N	1.00	0.10	mg/L	1.00	BLOD	100	89.3-131			
Matrix Spike (BHH0209-MS2)	Source	e: 24G1406-0	1	Prepared & Analy	zed: 08/06/2024					
Ammonia as N	1.03	0.10	mg/L	1.00	0.08	94.5	89.3-131			
Matrix Spike Dup (BHH0209-MSD1)	Source	e: 24H0013-1	0	Prepared & Analy	zed: 08/06/2024					
Ammonia as N	0.99	0.10	mg/L	1.00	BLOD	98.9	89.3-131	1.60	20	
Matrix Spike Dup (BHH0209-MSD2)	Source	e: 24G1406-0	1	Prepared & Analy	zed: 08/06/2024					
Ammonia as N	1.00	0.10	mg/L	1.00	0.08	91.5	89.3-131	2.96	20	
Batch	BHH0223 - No Pre	p Wet Chen	1							
Blank (BHH0223-BLK1)				Prepared & Analy	zed: 08/06/2024					
Cyanide	ND	0.01	mg/L							

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

8/8/2024 5:09:45PM

Work Order:

24G1354

Wet Chemistry Analysis - Quality Control

1										
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch i	BHH0223 - No Pre	p Wet Chen	า							
LCS (BHH0223-BS1)				Prepared & Analy	zed: 08/06/2024					
Cyanide	0.21	0.01	mg/L	0.250		85.2	80-120			
Matrix Spike (BHH0223-MS1)	Source	e: 24G1691-0	1	Prepared & Analy	zed: 08/06/2024					
Cyanide	0.25	0.01	mg/L	0.250	BLOD	98.1	80-120			CI
Matrix Spike Dup (BHH0223-MSD1)	Source	e: 24G1691-0	1	Prepared & Analy	zed: 08/06/2024					
Cyanide	0.23	0.01	mg/L	0.250	BLOD	91.6	80-120	6.87	20	CI
Batch !	BHH0306 - No Pre	p Wet Chen	1							
Blank (BHH0306-BLK1)				Prepared & Analy	zed: 08/08/2024					
Nitrate+Nitrite as N	ND	0.10	mg/L							
LCS (BHH0306-BS1)				Prepared & Analy	zed: 08/08/2024					
Nitrate+Nitrite as N	1.00	0.1	mg/L	1.00		100	90-110			
Matrix Spike (BHH0306-MS1)	Source	e: 24G1406-0	6	Prepared & Analy	zed: 08/08/2024					
Nitrate+Nitrite as N	1.09	0.10	mg/L	1.00	BLOD	109	90-120			
Matrix Spike Dup (BHH0306-MSD1)	Sourc	e: 24G1406-0	6	Prepared & Analy	zed: 08/08/2024					
Nitrate+Nitrite as N	1.08	0.10	mg/L	1.00	BLOD	108	90-120	0.737	20	
Batch !	BHH0317 - No Pre	p Wet Chen	า							
Blank (BHH0317-BLK1)				Prepared & Analy	zed: 08/07/2024					
Total Recoverable Phenolics	ND	0.050	mg/L							

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

8/8/2024 5:09:45PM

Work Order:

24G1354

Wet Chemistry Analysis - Quality Control

Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
3HH0317 - No Pre	p Wet Chen	า							
			Prepared & Anal	yzed: 08/07/2024					
0.45	0.050	mg/L	0.510		87.8	80-120			
Sourc	e: 24H0069-0	6	Prepared & Anal	yzed: 08/07/2024					
0.38	0.050	mg/L	0.500	BLOD	76.0	70-130			
Sourc	e: 24H0069-0	6	Prepared & Anal	yzed: 08/07/2024					
0.39	0.050	mg/L	0.500	BLOD	78.8	70-130	3.62	20	
3HH0319 - No Pre	p Wet Chen	ı							
			Prepared & Anal	yzed: 08/08/2024					
ND	0.10	mg/L							
			Prepared & Anal	yzed: 08/08/2024					
1.01	0.1	mg/L	1.00		101	90-110			
Sourc	e: 24H0102-0	1	Prepared & Anal	yzed: 08/08/2024					
1.12	0.10	mg/L	1.00	0.09	104	89.3-131			
Sourc	e: 24H0104-0	1	Prepared & Anal	yzed: 08/08/2024					
1.07	0.10	mg/L	1.00	BLOD	107	89.3-131			
Sourc	e: 24H0102-0	1	Prepared & Anal	yzed: 08/08/2024					
1.13	0.10	mg/L	1.00	0.09	104	89.3-131	0.710	20	
Sourc	e: 24H0104-0	1	Prepared & Anal	yzed: 08/08/2024					
1.03	0.10	mg/L	1.00	BLOD	103	89.3-131	3.61	20	
	0.45 Source 0.38 Source 0.39 BHH0319 - No Pre ND 1.01 Source 1.12 Source 1.07 Source 1.13 Source	0.45 0.050 Source: 24H0069-0 0.38 0.050 Source: 24H0069-0 0.39 0.050 8HH0319 - No Prep Wet Chem ND 0.10 1.01 0.1 Source: 24H0102-0 1.12 0.10 Source: 24H0104-0 1.07 0.10 Source: 24H0104-0 1.13 0.10 Source: 24H0104-0	0.45 0.050 mg/L	Result LOQ Units Level	Result LOQ Units Level Result	Result LOQ Units Level Result %REC	Result LOQ Units Level Result %REC Limits	Result LOQ Units Level Result %REC Limits RPD	Result LOQ Units Level Result %REC Limits RPD Limit ##################################

24G1354

8/8/2024 5:09:45PM

Date Issued:

Work Order:

Calibration ID

Certificate of Analysis

Sequence ID

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Method

Submitted To: Jennifer Robb

Analytical Summary

Preparation Factors Method Batch ID Sequence ID **Calibration ID** Initial / Final

Batch ID

Preparation Method:

Subcontracted Analysis

Sample ID

Sample ID

Client Site I.D.:

24G1354-01 Subcontract

24G1354-02 Subcontract

Preparation Factors

Initial / Final

Metals (Total) by EPA 600	00/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
24G1354-01	50.0 mL / 50.0 mL	SW6020B	BHG1053	SHG1028	AG40318
24G1354-02	50.0 mL / 50.0 mL	SW6020B	BHG1053	SHG1028	AG40318
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analysis			Preparation Method:	No Prep Wet Chem	
24G1354-01	300 mL / 300 mL	SM5210B-2016	BHG0999	SHG1067	
24G1354-02	300 mL / 300 mL	SM5210B-2016	BHG0999	SHG1067	
24G1354-01	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHG1000	SHG0974	AD40276
24G1354-02	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHG1000	SHG0974	AD40276
24G1354-01	2.00 mL / 2.00 mL	SM5220D-2011	BHG1261	SHG1145	AG40341
24G1354-02	2.00 mL / 2.00 mL	SM5220D-2011	BHG1261	SHG1145	AG40341
24G1354-01	6.00 mL / 6.00 mL	SW9012B	BHH0100	SHH0101	AH40179
24G1354-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHH0114	SHH0143	AH40190
24G1354-02	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHH0114	SHH0143	AH40190
24G1354-01	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHH0124	SHH0125	AH40182
24G1354-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0209	SHH0215	AH40199
24G1354-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0209	SHH0215	AH40199
24G1354-02	6.00 mL / 6.00 mL	SW9012B	BHH0223	SHH0257	AH40203

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 8/8/2024 5:09:45PM

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 24G1354

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	/sis		Preparation Method:	No Prep Wet Chem	
24G1354-02	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHH0306	SHH0309	AH40214
24G1354-01	5.00 mL / 10.0 mL	SW9065	BHH0317	SHH0314	AH40219
24G1354-02	0.200 mL / 10.0 mL	SW9065	BHH0317	SHH0314	AH40219
24G1354-02RE1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0319	SHH0316	AH40217
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-I	MS
24G1354-01	500 mL / 1.00 mL	SW8270E	BHG1111	SHH0020	AC40286
24G1354-02	500 mL / 2.00 mL	SW8270E	BHG1111	SHH0020	AC40286
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	npounds by GCMS		Preparation Method:	SW5030B-MS	
24G1354-01	5.00 mL / 5.00 mL	SW8260D	BHG1080	SHG1004	AE40260
24G1354-01RE1	5.00 mL / 5.00 mL	SW8260D	BHG1080	SHG1004	AE40260
24G1354-02	5.00 mL / 5.00 mL	SW8260D	BHG1080	SHG1004	AE40260
24G1354-02RE1	5.00 mL / 5.00 mL	SW8260D	BHG1080	SHG1004	AE40260
24G1354-03	5.00 mL / 5.00 mL	SW8260D	BHG1080	SHG1004	AE40260

8/8/2024 5:09:45PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Engineers-Winchester Date Issued:

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring
Submitted To: Jennifer Robb

QC Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
BHG1053-BLK1	50.0 mL / 50.0 mL	SW6020B	BHG1053	SHG1028	AG40318
BHG1053-BS1	50.0 mL / 50.0 mL	SW6020B	BHG1053	SHG1028	AG40318
BHG1053-MS1	50.0 mL / 50.0 mL	SW6020B	BHG1053	SHG1028	AG40318
BHG1053-MS2	50.0 mL / 50.0 mL	SW6020B	BHG1053	SHG1028	AG40318
BHG1053-MSD1	50.0 mL / 50.0 mL	SW6020B	BHG1053	SHG1028	AG40318
BHG1053-MSD2	50.0 mL / 50.0 mL	SW6020B	BHG1053	SHG1028	AG40318

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	/sis		Preparation Method:	No Prep Wet Chem	
BHG0999-BLK1	300 mL / 300 mL	SM5210B-2016	BHG0999	SHG1067	
BHG0999-BS1	300 mL / 300 mL	SM5210B-2016	BHG0999	SHG1067	
BHG0999-DUP1	300 mL / 300 mL	SM5210B-2016	BHG0999	SHG1067	
BHG1000-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHG1000	SHG0974	AD40276
BHG1000-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHG1000	SHG0974	AD40276
BHG1000-MRL1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHG1000	SHG0974	AD40276
BHG1000-MS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHG1000	SHG0974	AD40276
BHG1000-MSD1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHG1000	SHG0974	AD40276
BHG1261-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BHG1261	SHG1145	AG40341
BHG1261-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BHG1261	SHG1145	AG40341
BHG1261-MRL1	2.00 mL / 2.00 mL	SM5220D-2011	BHG1261	SHG1145	AG40341
BHG1261-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BHG1261	SHG1145	AG40341
BHG1261-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BHG1261	SHG1145	AG40341
BHH0100-BLK1	6.00 mL / 6.00 mL	SW9012B	BHH0100	SHH0101	AH40179
BHH0100-BS1	6.00 mL / 6.00 mL	SW9012B	BHH0100	SHH0101	AH40179
BHH0100-MRL1	6.00 mL / 6.00 mL	SW9012B	BHH0100	SHH0101	AH40179

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Date Issued: 8/8/2024 5:09:45PM

BHH0100-MS2 6.00 mL / 6.00 mL SW9012B BHH0100 SHH0101 AH40179 BHH0100-MSD1 6.00 mL / 6.00 mL SW9012B BHH0100 SHH0101 AH40179 BHH0100-MSD2 6.00 mL / 6.00 mL SW9012B BHH0100 SHH0101 AH40179 BHH0114-BLK1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MRL1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MRL1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0124-BLK1 5.00 mL / 5.00 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0124-BLK1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125	Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
BHH0100-MS2 6.00 mL / 6.00 mL SW9012B BHH0100 SHH0101 AH40179 BHH0100-MSD1 6.00 mL / 6.00 mL SW9012B BHH0100 SHH0101 AH40179 BHH0110-MSD2 6.00 mL / 6.00 mL SW9012B BHH0100 SHH0101 AH40179 BHH0114-BL1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MRL1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MRL1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0124-BLK1 5.00 mL / 5.00 mL EPA351.2 R2.0 BHH014 SHH0143 AH40190 BHH0124-BLK1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125	Net Chemistry Analys	sis		Preparation Method:	No Prep Wet Chem	
BHH0100-MSD1 6.00 mL / 6.00 mL SW9012B BHH0100 SHH0101 AH40179 BHH0100-MSD2 6.00 mL / 6.00 mL SW9012B BHH0100 SHH0101 AH40179 BHH0114-BLK1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-BLK1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSL1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSL2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0124-MSD1 50.0 mL / 50.0 mL EPA351.2 R2.0 BHH0144 SHH0143 AH40180 BHH0124-BLK1 5.00 mL / 50.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 <td>3HH0100-MS1</td> <td>6.00 mL / 6.00 mL</td> <td>SW9012B</td> <td>BHH0100</td> <td>SHH0101</td> <td>AH40179</td>	3HH0100-MS1	6.00 mL / 6.00 mL	SW9012B	BHH0100	SHH0101	AH40179
BHH0100-MSD2 6.00 mL / 6.00 mL SW9012B BHH0100 SHH0101 AH40179 BHH0114-BLK1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-BS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MRL1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0124-MSD1 5.00 mL / 5.00 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0124-BS1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-BS1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH012	3HH0100-MS2	6.00 mL / 6.00 mL	SW9012B	BHH0100	SHH0101	AH40179
BHH0114-BLK1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-BS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MRL1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MS2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0124-BLK1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-BS1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MRL1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MS1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MS1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MS1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MS1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MS1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MS1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MS1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MS1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MS1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MS1 5.00 mL / 10.0 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 SHH0215 AH40199 SHH0215 AH40199 SHH0215 AH40199 SHH0225 AH40199 SHH02	3HH0100-MSD1	6.00 mL / 6.00 mL	SW9012B	BHH0100	SHH0101	AH40179
BHH0114-BS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MRL1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MS2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0124-BLK1 5.00 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0124-BLK1 5.00 mL / 5.00 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40180 BHH0124-BLK1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-BLK1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MRL1 5.00 mL / 10.00 mL SM4500-NO3F-2016 BHH0124	3HH0100-MSD2	6.00 mL / 6.00 mL	SW9012B	BHH0100	SHH0101	AH40179
BHH0114-MRL1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MS1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MS2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD1 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD2 25.0 mL / 25.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-BS1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MRL1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MSD1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MSD1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MSD1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MSD1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0209-BLK1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40189 BHH0209-MS1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0223 SHH0257 AH40203 BHH0223-BLK1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-BK1 6.00 mL / 6.00 mL SW9012B BH0223 SH10257 AH40203 BH0223-MRL1 6.00 mL / 6.00 mL SW9012B BH0223 SH10225 SH10257 AH40203	3HH0114-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHH0114	SHH0143	AH40190
BHH0114-MS1	3HH0114-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHH0114	SHH0143	AH40190
BHH0114-MS2	3HH0114-MRL1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHH0114	SHH0143	AH40190
BHH0114-MSD1 25.0 mL / 25.0 mL	3HH0114-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHH0114	SHH0143	AH40190
BHH0114-MSD2 25.0 mL / 25.0 mL EPA351.2 R2.0 BHH0114 SHH0143 AH40190 BHH0114-MSD2 25.0 mL / 25.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-BLK1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MRL1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MS1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MSD1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MSD1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0209-BLK1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-BS1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0114-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHH0114	SHH0143	AH40190
BHH0124-BLK1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-BS1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MRL1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MS1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MSD1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH024-MSD1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0209-BLK1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL SW9012B BH00223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BH00223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BH00223 SHH0257 AH40203 BHH0223-MRL2 6.00 mL / 6.00 mL SW9012B BH00223 SHH0257 AH40203	3HH0114-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHH0114	SHH0143	AH40190
BHH0124-BS1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MRL1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MS1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MSD1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0209-BLK1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0203-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-BK1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL2 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL2 6.00 mL / 6.00 mL	3HH0114-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHH0114	SHH0143	AH40190
BHH0124-MRL1 5.00 mL / 5.00 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MS1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MSD1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0209-BLK1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS1 6.00 mL 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL SW9012B BH0223 SHH0257 AH40203 BH0223-MRL1 6.00 mL / 6.00 mL SW9012B BH0223 SHH0257 AH40203 BH0223-MRL1 6.00 mL / 6.00 mL SW9012B BH0223 SHH0257 AH40203 BH0223-MRL1 6.00 mL / 6.00 mL SW9012B BH0223 SHH0257 AH40203 BH0223-MRL2 6.00 mL / 6.00 mL SW9012B BH0223 SHH0257 AH40203	3HH0124-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHH0124	SHH0125	AH40182
BHH0124-MS1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0124-MSD1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0209-BLK1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-BR1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0124-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHH0124	SHH0125	AH40182
BHH0124-MSD1 5.00 mL / 10.0 mL SM4500-NO3F-2016 BHH0124 SHH0125 AH40182 BHH0209-BLK1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-BS1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-BR1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0124-MRL1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHH0124	SHH0125	AH40182
BHH0209-BLK1 6.00 mL / 6.00 mL BPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-BS1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS1 6.00 mL 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-BS1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL2 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0124-MS1	5.00 mL / 10.0 mL	SM4500-NO3F-2016	BHH0124	SHH0125	AH40182
BHH0209-BS1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-BS1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0124-MSD1	5.00 mL / 10.0 mL	SM4500-NO3F-2016	BHH0124	SHH0125	AH40182
BHH0209-MS1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MS2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-BS1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0209-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0209	SHH0215	AH40199
BHH0209-MS2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-BS1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL2 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0209-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0209	SHH0215	AH40199
BHH0209-MSD1 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-BS1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL2 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0209-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0209	SHH0215	AH40199
BHH0209-MSD2 6.00 mL / 6.00 mL EPA350.1 R2.0 BHH0209 SHH0215 AH40199 BHH0223-BLK1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-BS1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL2 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0209-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0209	SHH0215	AH40199
BHH0223-BLK1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-BS1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL2 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0209-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0209	SHH0215	AH40199
BHH0223-BS1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL2 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0209-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0209	SHH0215	AH40199
BHH0223-MRL1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203 BHH0223-MRL2 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0223-BLK1	6.00 mL / 6.00 mL	SW9012B	BHH0223	SHH0257	AH40203
BHH0223-MRL2 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0223-BS1	6.00 mL / 6.00 mL	SW9012B	BHH0223	SHH0257	AH40203
	3HH0223-MRL1	6.00 mL / 6.00 mL	SW9012B	BHH0223	SHH0257	AH40203
BHH0223-MS1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0223-MRL2	6.00 mL / 6.00 mL	SW9012B	BHH0223	SHH0257	AH40203
	3HH0223-MS1	6.00 mL / 6.00 mL	SW9012B	BHH0223	SHH0257	AH40203
BHH0223-MSD1 6.00 mL / 6.00 mL SW9012B BHH0223 SHH0257 AH40203	3HH0223-MSD1	6.00 mL / 6.00 mL	SW9012B	BHH0223	SHH0257	AH40203

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued: 8/8/2024 5:09:45PM

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	ysis		Preparation Method:	No Prep Wet Chen	n
BHH0306-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHH0306	SHH0309	AH40214
BHH0306-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHH0306	SHH0309	AH40214
BHH0306-MRL1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHH0306	SHH0309	AH40214
BHH0306-MRL2	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHH0306	SHH0309	AH40214
BHH0306-MS1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BHH0306	SHH0309	AH40214
BHH0306-MSD1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BHH0306	SHH0309	AH40214
BHH0317-BLK1	5.00 mL / 10.0 mL	SW9065	BHH0317	SHH0314	AH40219
BHH0317-BS1	5.00 mL / 10.0 mL	SW9065	BHH0317	SHH0314	AH40219
BHH0317-MRL1	5.00 mL / 10.0 mL	SW9065	BHH0317	SHH0314	AH40219
BHH0317-MS1	5.00 mL / 10.0 mL	SW9065	BHH0317	SHH0314	AH40219
BHH0317-MSD1	5.00 mL / 10.0 mL	SW9065	BHH0317	SHH0314	AH40219
BHH0319-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0319	SHH0316	AH40217
BHH0319-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0319	SHH0316	AH40217
BHH0319-MRL1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0319	SHH0316	AH40217
BHH0319-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0319	SHH0316	AH40217
BHH0319-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0319	SHH0316	AH40217
BHH0319-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0319	SHH0316	AH40217
BHH0319-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHH0319	SHH0316	AH40217
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organio	Compounds by GCMS		Preparation Method:	SW3510C/EPA600	-MS
BHG1111-BLK1	1000 mL / 1.00 mL	SW8270E	BHG1111	SHG1085	AG40237
BHG1111-BS1	1000 mL / 1.00 mL	SW8270E	BHG1111	SHG1085	AG40237
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
BHG1080-BLK1	5.00 mL / 5.00 mL	SW8260D	BHG1080	SHG1004	AE40260

8/8/2024 5:09:45PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 24G1354

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
BHG1080-BS1	5.00 mL / 5.00 mL	SW8260D	BHG1080	SHG1004	AE40260
BHG1080-MS1	5.00 mL / 5.00 mL	SW8260D	BHG1080	SHG1004	AE40260
BHG1080-MSD1	5 00 ml / 5 00 ml	SW8260D	BHG1080	SHG1004	AF40260

Certificate of Analysis

Certifications

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Analyte

Date Issued: 8/8/2024 5:09:45PM

Work Order: 24G1354

Certified Analyses included in this Report

EPA350.1 R2.0 in Non-Potable Water	
Ammonia as N	VELAP,NCDEQ,PADEP,WVDEP
EPA351.2 R2.0 in Non-Potable Water	
TKN as N	VELAP,NCDEQ,WVDEP
SM4500-NO2B-2011 in Non-Potable Water	
Nitrite as N	VELAP,WVDEP,NCDEQ
SM4500-NO3F-2016 in Non-Potable Water	
Nitrate+Nitrite as N	VELAP,WVDEP,NCDEQ
SM5210B-2016 in Non-Potable Water	
BOD	VELAP,NCDEQ,WVDEP
SM5220D-2011 in Non-Potable Water	•
COD	VELAP,NCDEQ,PADEP,WVDEP
SW6020B in Non-Potable Water	
Mercury	VELAP
Arsenic	VELAP,WVDEP,NCDEQ
Barium	VELAP,WVDEP,NCDEQ
Cadmium	VELAP,WVDEP,NCDEQ
Chromium	VELAP,WVDEP,NCDEQ
Copper	VELAP,WVDEP,NCDEQ
Lead	VELAP,WVDEP
Nickel	VELAP,WVDEP
Selenium	VELAP,WVDEP
Silver	VELAP,WVDEP
Zinc	VELAP,WVDEP
SW8260D in Non-Potable Water	

8/8/2024 5:09:45PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

24G1354

Date Issued:

Work Order:

Certified Analyses included in this Report

Client Site I.D.:

Total Recoverable Phenolics

_ Analyte	Certifications
2-Butanone (MEK)	VELAP,NCDEQ,PADEP,WVDEP
Acetone	VELAP,NCDEQ,PADEP,WVDEP
Benzene	VELAP,NCDEQ,PADEP,WVDEP
Ethylbenzene	VELAP,NCDEQ,PADEP,WVDEP
Toluene	VELAP,NCDEQ,PADEP,WVDEP
Xylenes, Total	VELAP,NCDEQ,PADEP,WVDEP
Tetrahydrofuran	VELAP,PADEP
SW8270E in Non-Potable Water	
Anthracene	NCDEQ,WVDEP,VELAP,PADEP
SW9012B in Non-Potable Water	
Cyanide	VELAP,WVDEP,NCDEQ
SW9065 in Non-Potable Water	

VELAP,WVDEP

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued: 8/8/2024 5:09:45PM

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2024
NCDEQ	North Carolina DEQ	495	12/31/2024
NCDOH	North Carolina Department of Health	51714	07/31/2025
NYDOH	New York DOH Drinking Water	12069	04/01/2025
PADEP	NELAP-Pennsylvania Certificate #009	68-03503	10/31/2024
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	09/14/2024
TXCEQ	Texas Comm on Environmental Quality #T104704576-23-1	T104704576	05/31/2025
VELAP	NELAP-Virginia Certificate #12969	460021	06/14/2025
WVDEP	West Virginia DEP	350	11/30/2024

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

8/8/2024 5:09:45PM

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Work Order:

24G1354

Qualifiers and Definitions

CI Residual Chlorine or other oxidizing agent was detected in the container used to analyze this sample.

DS Surrogate concentration reflects a dilution factor.

E Estimated concentration, outside calibration range

H Analysis was performed outside of the method prescribed holding time.

J The reported result is an estimated value.

LCS recovery is outside of established acceptance limits

P Duplicate analysis does not meet the acceptance criteria for precision

RPD Relative Percent Difference

Qual Qualifers

-RE Denotes sample was re-analyzed

LOD Limit of Detection, same as Method Detection Limit (MDL) as defined by 40 CFR 136 Appendix B

BLOD Below Limit of Detection, same as Below Method Detection Limit (MDL) as defined by 40 CFR 136 Appendix B

LOQ Limit of Quantitation

DF Dilution Factor

DL Detection Limit, same as MDL as defined by 40 CFR 136 Appendix B

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral

library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations

are estimated and are calculated using an internal standard response factor of 1.

PCBs, Total Total PCBs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

CHAIN OF CUSTODY

PAGE 1 OF 1

COMPANY NAME: SCS Eng	ine	ers		170 60 80	IN	VOICE TO	:		S	AM	E			F	PROJ	ECT	Г NAM	E/Q	uote	e #:	(City	of Bristol Landfill #588
CONTACT: Jennifer Robb					IN	VOICE CO	NTACT	Ī:	100					5	ITE	NAN	ΛE:	24-	02	LFG-E			nthly Monitoring
ADDRESS: 296 Victory Road					IN	VOICE AD	DRESS	S:	3					F	ROJ	ECT	r num						Task 2
Winchester, VA 2260)2				IN'	VOICE PH	ONE #:		- 6						.O. #								
PHONE #: 703-471-6150				EMAIL:	robb@	scsengine	eers.co	m	8					F	retre	atm	ent Pr	ogra	am:				
Is sample for compliance reporting	a?	-	YES	NO Rec	ulator	y State:	VA	Is sam	ple fro	m a	chl	orin	ated	supply	?	YE	S N	0		PWS	I.D.	#:	***************************************
SAMPLER NAME (PRINT): Wil		in				•	MPLEF	E-0 Harrison							W	-/			Tur	n Aro	und	Tim	ne: 10 Day(s)
Matrix Codes: WW=Waste Water/Storm Water														-	//-	-1							COMMENTS
	Г		<u>@</u>	T	2.53				7				Δ	NALY	SIS /	(PR	ESER	\/Δ٦	TIV/F	:)			Preservative Codes: N=Nitric Acid C=Hydrochloric Acid S=Sulfuric Acid
			Field Filtered (Dissolved Metals)				Stop				_			1		1	COLIT	1		-,	_	Т	H=Sodium Hydroxide A=Ascorbic Acid Z=Zinc Acetate T=Sodium
			ž				S					2	=	-	Nitrite* SM22 450-NO3F-2011	02	Cr.				2		Thiosulfate M=Methanol
			vec	o)	Φ	σ.	Grab Time or Composite Time		37	S	1.0	5210B-2021	COD - SM22 5220D-201	Vitrate SM22 450-NO3F-2011	3 13	SVOC (Anthracene) 8270	Total Metals (As, Ba, Cd, Cr. Cu, Pb, Ni, Se, Ag, Zn) 6020	R2.0			V. Fatty Acids (See List) 8015	0	
			sol	Date	Start Time	Date)du		(S	inei	EPA 350.1	B	واه	7 S F	ĺÿ	e)	За, Zri)	R		<u>e</u>	ist)	8260	\$
CLIENT SAMPLE I.D.			Si	7	౼	ď	Sol	ъ) de	ntai	٧c	21	22 5220E			cer	s, E	1.2	0	r ab 365	ee L	List)	Note VOC 8260
			9	Sta	Sta	or Stc	or (Z	ŭ	Ö	ш	2	2 2	45(2 4	hra	A,','	35	302	. 90	S.(S.	Ë	The state of the s
1		ite	ere	ite	ite	te o	Э	Preserved	ee	of (ä.	SM22	Z ,	M22	M2	Antl	tals Ii, S	PA	'. 6	SS	cid	(See	no HCI
*		SOC	計	soc	SOC	Date	Ë	Pre	(8)	Ser	-01	s'-	S 5	S S	S	0.0	Me O	Щ.	L,	A H	y A	3),8	
	Grab	Composite	밁	Composite Start Date	Composite	Grab Date or Composite Stop Date	Grab Time	Time	Matrix (See Codes)	Number of Containers	Ammonia'-	BOD		Nitrate SM	ij	ŏ	Total Meta Cu, Pb, Ni,	TKN'- EPA 351.2	Mercury - 6020	Total Recoverable Phenolics - 9065	Fatt	VOCs	PLEASE NOTE PRESERVATIVE(S), INTERFERENCE CHECKS or PUMP
	_	ŭ	ij	<u>റ്</u>	<u> </u>			_Ë_		$\overline{}$	Ā	B	ŏ	S = 3	Ž	S	1 0 ℃	È	Ž	卢급	>	×	RATE (L/min)
1)EW-59	メ					7 23 24				13	_					2.10				and the same of th		-	
2) EW-60	×					7/24/24	1040			13	-										=	-	
3)									GW		_	\vdash	+	_	-	\vdash		_			+		
4)			\vdash						GW			\vdash	+	_	+	\vdash					+	\vdash	
5)									GW			-	+	_	+	\vdash					+	100	
6)	_		\vdash						GW	-	-	\dashv	+	-	-	\vdash		_	Н	-		1	\$271 ed Temp °C: 0 ·
7)		_	Н						GW	-	-	\dashv	+	+	+	\vdash		_		_ ()bs	erve	ed Temp °C: U 1
8)	_	_	\vdash						GW	-	-	-	+		+		X	-	-	၂ ,	Corr	ect	ion Factor °C: 0-0
9)	~/					7 la 11	910		GW	2			0)	-	+					-			^ /
10) Trip Blank	DAT	F/	TIME	RECEIVE	D:	7/2/24		DATE /	DI TIME	2	: Dat	ta Pa	ckag	e LAB	ISE (NLY	The	rm II	D:	Ξ (Corr	ect	ed Temp °C:
1 -1 7/2 7/24						150	/										d and inta			1)			Received on ice? (N)
ELINQUISHED:		70.	TIME	RECEIVE	D: /	1		DATE /		Leve	el III				S	CS.	-W					24	G1354
LCV				sam	1/1	eno	7.25		1800		-1.17						LFG	_F	W			- 1	
ELINQUISHED:	DAT	E/	TIME	PECEIVE	D:			DATE /	TIME	Leve	el IV												
				V				_							R	ecd	: 07/2	5/2	024	t Di	ie:	08/	08/2024 ———

Sample Preservation Log

Order ID	2	ЧG	135	<u> </u>											Date	Perfe	ome	ed: _	_7	<u>-2</u>	5-	Z'			_					Ana	lyst F	Perfor	ming C	heck:			3/3						
	e	,	Vieta	s	ı	yani	de	l	Sulfic	de		mmo	nia		TKN	ı		hos,				NO2	1	DF			(808) PCE	stici 1/808 DW	(802)	(52	SVO 5/8270		CrV		s	Pest/P (508) VOC(5	1		รภ		Ph	ensli	cs
Sample ID	Container II	Rec	as elved Other	Final pH	Rec	as elved Other	Final pH	Rec	H as selved Other	Final pH	Rec	elved Other	Final pH	Rec	olved Other	Ţ.		H as celved Other	Final pH	1	H as ceived Other	7 2	Г	pH as eceived 2 Other	7	ringi pu	Res	ived . Cl	final + or -		elved s. Cl	final + or -	Received pH	Final pH	Re	H as celved Other	-	PH Reco	l as elved Other	-	Rec	elved Other	1 78
i	A		6	42																																							
-	B											5	42		5	42					5	42	<u>:</u>							L									5	٤2	L		
-	D					9	712				L			L																		L		<u> </u>					L	_	L	ot	<u> </u>
j	H													L			i							L		1								<u> </u>	L				L	<u> </u>	┖	5	42
	I	Ц																						_							_			ļ	┸			<u> </u>	L	$oxed{oxed}$	L	丄	上
Z	Α		6	12				L		<u> </u>													┸							_					$oldsymbol{\perp}$				$oxed{igspace}$	ot	L	ot	上
2	飞							L				5	42		5	22					5	27	<u>:</u>	$oldsymbol{\perp}$	_									<u> </u>	$oldsymbol{\downarrow}$			$ldsymbol{f eta}$	ot	ot	上	5	۲2
2	D	Ш				9	712													L				<u> </u>															<u> </u>	ot	L	丄	_
2	H									!	_			L									┸											<u> </u>				<u></u>	L	ot	L	5	۲2
2	I		_					Ŀ			L			L								-		1_	┸	╛				L	_			<u> </u>		<u> </u>		$ldsymbol{f eta}$	ot	<u> </u>	L	<u> </u>	<u> </u>
								L						L									┸												L				L	$oxed{oxed}$	L	ot	<u> </u>
		Ш						L	L.											<u> </u>		<u> </u> _	1		┸	╛				L					_			$ldsymbol{f eta}$	ot	ot	L	ot	$ldsymbol{oxedsymbol{oxedsymbol{eta}}}$
		Ш						L			L			L								L		\perp		╛						ļ			L	<u> </u>			$oxed{igspace}$	L	上	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	igspace
		Ш												L									┸	↓_										<u> </u>	┖				L	$oxed{oxed}$	上	丄	上
																					<u></u>					İ									1_			<u> </u>				<u></u>	<u></u>
NaOH II					-			_	HNC)s ID:		4G0	>24	158	3			CrVI							0.7						Ana	iyst Ir	nitials: _			-				-			
H2SO4 I		4 <i>F</i> 0	221	56				_		S2O3	_						_	Amn				Sol'n	ID:																				
HCL ID:									Na ₂ S	SO ₃ II	D:							ISN N	IaOH	HD:																							

Metals were received with pH = 6 HNO3 was added at 1155 on 25 July 2024, by CSB in the Log-In room to bring pH=<2.

8/8/2024 5:09:45PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 24G1354

8/8/2024 5:09:45PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.:

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb Work Order: 24G1354

Laboratory Order ID: 24G1354

Sample Conditions Checklist

Samples Received at:	0.10°C
How were samples received?	Logistics Courier
Were Custody Seals used? If so, were they received intact?	Yes
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	Yes
Are all volatile organic and TOX containers free of headspace?	No
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	Yes
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis. In addition, field parameters are always received outside holding time and will be marked accordingly.	No

Client informed via email that: a) two NaOH containers were received with a pH of 9 and adjusted to bring them to the required pH of >12, b) four H2SO4 containers were received with a pH of 5 and adjusted to bring them to the required pH of <2, and c) several VOAs from both samples were received with headspace. Client asked if they

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

would like lab to proceed with analysis. AKB2 7/25/24 1526 Analysis to proceed per Jennifer Robb via email. CSB 7/26/24 1020

Per phone discussion with Logan Howard on 7/25/24 at 1615 the lab is OK to analyze and report the BOD result on sample EW-59 out of hold. DFE 7/25/24 1620.

Date Issued: 8/8/2024 5:09:45PM

24G1354

Work Order:

August 07, 2024

Virginia Thrasher Enthalpy 1941 Reymet Road Richmond, VA 23237

RE: Project: 24G1354/Enthalpy

Pace Project No.: 20325361

Dear Virginia Thrasher:

Enclosed are the analytical results for sample(s) received by the laboratory on July 30, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Baton Rouge

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dev D & M Dougal

Devin McDougal devin.mcdougal@pacelabs.com (225) 769-4900 Project Manager

Enclosures

cc: Andrew Bruner, Enthalpy Daniel Elliott, Enthalpy Meghan Meyer, Enthalpy

Baton Rouge, LA 70820 (225) 769-4900

CERTIFICATIONS

Project: 24G1354/Enthalpy

Pace Project No.: 20325361

Pace Analytical Services Baton Rouge

7979 Innovation Park Drive Ste A, Baton Rouge, LA

70820-7402

Louisiana Dept of Environmental Quality (NELAC/LELAP):

01979

Florida Dept of Health (NELAC/FELAP): E87854

DoD ELAP (A2LA) #: 6429.01 Alabama DEM #: 41900 Alaska DEC-DW #: LA00024 Alaska DEC CS-LAP #: 21-001 Arkansas DEQ #: 88-0655 California ELAP #: 3063 Georgia DPD #: C050

Hawaii DOH State Laboratories Division

Illinois EPA #: 200048 Kansas DoHE #: E-10354

Kentucky DEP UST Branch #: 123054

Louisiana DOH #: LA036 Minnesota DOH #: 2233799 Mississippi State Dept of Health Montana Department of Environmental Quality

Nebraska DHHS #: NE-OS-35.21 Nevada DCNR DEP #: LA00024 New York DOH #: 12149

North Carolina DEQ - WW & GW #: 618

North Dakota DEQ #: R195

Ohio EPA #: 87782

Oklahoma Dept of Environmental Quality #: 9403

Oregon ELAP #: 4168

Pennsylvania Dept of Environmental Protection #: 68-

05973

South Carolina DHEC #: 73006001 Texas CEQ #: T104704178-23-15

Utah DOH #: LA00024 Virginia DCLS #: 6460215

Washington Dept of Ecology #: C929 Wisconsin DNR #: 399139510

SAMPLE SUMMARY

Project: 24G1354/Enthalpy

Pace Project No.: 20325361

Lab ID	Sample ID	Matrix	Date Collected	Date Received
20325361001	24G1354-01: EW-59	Water	07/23/24 12:38	07/30/24 10:00
20325361002	24G1354-02: EW-60	Water	07/24/24 10:40	07/30/24 10:00

SAMPLE ANALYTE COUNT

Project: 24G1354/Enthalpy

Pace Project No.: 20325361

Lab ID	Sample ID	Method	Analysts	Analytes Reported	
20325361001	24G1354-01: EW-59	Pace ENV-SOP-BTRO-0042	VAM	10	
20325361002	24G1354-02: EW-60	Pace ENV-SOP-BTRO-0042	VAM	10	

PASI-BR = Pace Analytical Services - Baton Rouge

PROJECT NARRATIVE

Project: 24G1354/Enthalpy

Pace Project No.: 20325361

Method: Pace ENV-SOP-BTRO-0042
Description: BR AM23G Low Level VFA

Client: BR-Enthalpy

Date: August 07, 2024

General Information:

2 samples were analyzed for Pace ENV-SOP-BTRO-0042 by Pace Analytical Services Baton Rouge. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 337420

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 20325165001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1620075)
 - Butyric Acid
 - Formic acid
 - Lactic Acid
 - Pentanoic Acid
 - Propionic Acid
 - Pyruvic Acid
 - i-Pentanoic Acid
- MSD (Lab ID: 1620076)
 - Butyric Acid
 - Formic acid
 - Lactic Acid

PROJECT NARRATIVE

Project: 24G1354/Enthalpy

Pace Project No.: 20325361

Method: Pace ENV-SOP-BTRO-0042
Description: BR AM23G Low Level VFA

Client: BR-Enthalpy

Date: August 07, 2024

QC Batch: 337420

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 20325165001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- Pentanoic Acid
- Propionic Acid
- Pyruvic Acid
- i-Pentanoic Acid

Additional Comments:

Analyte Comments:

QC Batch: 337420

D4: Sample was diluted due to the presence of high levels of target analytes.

- 24G1354-01: EW-59 (Lab ID: 20325361001)
 - Lactic Acid
- 24G1354-02: EW-60 (Lab ID: 20325361002)
 - Lactic Acid

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

- 24G1354-01: EW-59 (Lab ID: 20325361001)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- 24G1354-02: EW-60 (Lab ID: 20325361002)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- BLANK (Lab ID: 1619673)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- LCS (Lab ID: 1619674)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- MS (Lab ID: 1620075)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid

PROJECT NARRATIVE

Project: 24G1354/Enthalpy

Pace Project No.: 20325361

Method: Pace ENV-SOP-BTRO-0042
Description: BR AM23G Low Level VFA

Client: BR-Enthalpy

Date: August 07, 2024

Analyte Comments:

QC Batch: 337420

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

• MSD (Lab ID: 1620076)

- Hexanoic Acid
- i-Hexanoic Acid
- i-Pentanoic Acid
- Pentanoic Acid

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: 24G1354/Enthalpy

Pace Project No.: 20325361

Date: 08/07/2024 12:39 PM

Sample: 24G1354-01: EW-59	Lab ID: 20325361001		Collected: 07/23/24 12:38		Received: 07/30/24 10:00		Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
BR AM23G Low Level VFA	Analytical Meth	od: Pace E	NV-SOP-BTRO-004	2					
	Pace Analytical	Services -	Baton Rouge						
Pentanoic Acid	275	mg/L	250	500		08/03/24 00:21	109-52-4	N2	
Acetic Acid	6280	mg/L	1250	2500		08/05/24 23:39	64-19-7		
Butyric Acid	2400	mg/L	250	500		08/03/24 00:21	107-92-6		
Formic acid	1830	mg/L	250	500		08/03/24 00:21	64-18-6		
Hexanoic Acid	ND	mg/L	250	500		08/03/24 00:21	142-62-1	N2	
i-Hexanoic Acid	ND	mg/L	250	500		08/03/24 00:21	646-07-1	N2	
Lactic Acid	1220	mg/L	250	500		08/03/24 00:21	50-21-5	D4	
i-Pentanoic Acid	308	mg/L	250	500		08/03/24 00:21	503-74-2	N2	
Propionic Acid	2500	mg/L	250	500		08/03/24 00:21	79-09-4		
Pyruvic Acid	ND	mg/L	250	500		08/03/24 00:21	127-17-3		
0	Lak ID 000	2504000	0-11-11-1 07/04/	24.40.40	Daniel 0	7/00/04 40 00	A-1 \\A/-1		
Sample: 24G1354-02: EW-60 Parameters	Lab ID: 2032	25361002 Units	Collected: 07/24/2	24 10:40 DF	Received: 0	7/30/24 10:00 I Analyzed	Matrix: Water CAS No.	Qua	
Parameters	Results	Units	Report Limit	DF				Qua	
Sample: 24G1354-02: EW-60 Parameters BR AM23G Low Level VFA	Results	Units od: Pace E	Report Limit NV-SOP-BTRO-004	DF				Qua	
Parameters	Results Analytical Meth	Units od: Pace E	Report Limit NV-SOP-BTRO-004	DF			CAS No.	Qua	
Parameters BR AM23G Low Level VFA Pentanoic Acid	Results Analytical Meth Pace Analytical	Units nod: Pace E I Services - mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge	DF 2		Analyzed	CAS No.		
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid	Analytical Meth Pace Analytical	Units nod: Pace E Services -	Report Limit NV-SOP-BTRO-004 Baton Rouge	DF 2 500		Analyzed 08/03/24 00:46	CAS No. 109-52-4 64-19-7		
Parameters BR AM23G Low Level VFA	Analytical Meth Pace Analytical 293 6180	Units nod: Pace E I Services - mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 250 1250	DF 2 500 2500		Analyzed 08/03/24 00:46 08/06/24 00:04	CAS No. 109-52-4 64-19-7 107-92-6		
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid	Analytical Meth Pace Analytical 293 6180 2360	Units od: Pace E Services - mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 250 1250 250	DF 2 500 2500 500		Analyzed 08/03/24 00:46 08/06/24 00:04 08/03/24 00:46	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6		
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid	Analytical Meth Pace Analytical 293 6180 2360 1810	Units od: Pace E Services - mg/L mg/L mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 250 1250 250 250	DF 2 500 2500 500 500		08/03/24 00:46 08/06/24 00:04 08/03/24 00:46 08/03/24 00:46	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6 142-62-1	N2	
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid i-Hexanoic Acid	Analytical Meth Pace Analytical 293 6180 2360 1810 ND	Units od: Pace E Services - mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 250 1250 250 250 250	DF 2 500 2500 500 500 500		08/03/24 00:46 08/06/24 00:04 08/03/24 00:46 08/03/24 00:46 08/03/24 00:46	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6 142-62-1 646-07-1	N2 N2	
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid I-Hexanoic Acid Lactic Acid	Analytical Meth Pace Analytical 293 6180 2360 1810 ND	Units od: Pace E Services - mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 250 1250 250 250 250 250	DF 2 500 2500 500 500 500 500		08/03/24 00:46 08/06/24 00:04 08/03/24 00:46 08/03/24 00:46 08/03/24 00:46 08/03/24 00:46	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6 142-62-1 646-07-1 50-21-5	N2 N2 N2 N2	
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid	Analytical Meth Pace Analytical 293 6180 2360 1810 ND ND 1210	Units od: Pace E Services - mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Report Limit ENV-SOP-BTRO-004 Baton Rouge 250 1250 250 250 250 250 250 250	DF 2 500 2500 500 500 500 500 500		08/03/24 00:46 08/06/24 00:04 08/03/24 00:46 08/03/24 00:46 08/03/24 00:46 08/03/24 00:46 08/03/24 00:46	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6 142-62-1 646-07-1 50-21-5 503-74-2	N2 N2 N2 N2 D4	

QUALITY CONTROL DATA

Project: 24G1354/Enthalpy

Pace Project No.: 20325361

QC Batch: 337420 Analysis Method: Pace ENV-SOP-BTRO-0042
QC Batch Method: Pace ENV-SOP-BTRO-0042 Analysis Description: BR AM23G Low Level VFA

Laboratory: Pace Analytical Services - Baton Rouge

Associated Lab Samples: 20325361001, 20325361002

METHOD BLANK: 1619673 Matrix: Water

Associated Lab Samples: 20325361001, 20325361002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Butyric Acid	 mg/L	ND	0.50	08/02/24 16:51	
Formic acid	mg/L	ND	0.50	08/02/24 16:51	
Hexanoic Acid	mg/L	ND	0.50	08/02/24 16:51	N2
i-Hexanoic Acid	mg/L	ND	0.50	08/02/24 16:51	N2
i-Pentanoic Acid	mg/L	ND	0.50	08/02/24 16:51	N2
Lactic Acid	mg/L	ND	0.50	08/02/24 16:51	
Pentanoic Acid	mg/L	ND	0.50	08/02/24 16:51	N2
Propionic Acid	mg/L	ND	0.50	08/02/24 16:51	
Pyruvic Acid	mg/L	ND	0.50	08/02/24 16:51	

LABORATORY	CONTROL	CAMPLE.	4040074
LABUKATUKT	CONTROL	SAIVIPLE:	1619674

Date: 08/07/2024 12:39 PM

		Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers
Butyric Acid	mg/L	2	1.7	86	70-130
Formic acid	mg/L	2	1.9	93	70-130
Hexanoic Acid	mg/L	2	1.6	80	39-114 N2
i-Hexanoic Acid	mg/L	2	1.8	89	39-114 N2
i-Pentanoic Acid	mg/L	2	1.9	93	59-121 N2
Lactic Acid	mg/L	2	1.9	96	70-130
Pentanoic Acid	mg/L	2	1.7	84	59-121 N2
Propionic Acid	mg/L	2	1.7	84	70-130
Pyruvic Acid	mg/L	2	1.8	88	70-130

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 1620	075		1620076							
Parameter	2 Units	0325165001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Butyric Acid	mg/L	34.2	20	20	41.8	43.3	38	45	70-130	3	30	M1
Formic acid	mg/L	ND	20	20	9.0	8.9	40	40	70-130	0	30	M1
Hexanoic Acid	mg/L	ND	20	20	8.4	9.2	42	46	39-114	9	30	N2
i-Hexanoic Acid	mg/L	ND	20	20	8.3	7.8	42	39	39-114	7	30	N2
i-Pentanoic Acid	mg/L	ND	20	20	7.8	9.4	36	44	59-121	19	30	M1,N2
Lactic Acid	mg/L	ND	20	20	6.1	6.2	24	24	70-130	1	30	M1,ML
Pentanoic Acid	mg/L	ND	20	20	10.1	10.2	36	36	59-121	1	30	M1,N2
Propionic Acid	mg/L	36.7	20	20	42.4	43.4	28	33	70-130	2	30	M1
Pyruvic Acid	mg/L	ND	20	20	8.8	9.4	37	40	70-130	7	30	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 24G1354/Enthalpy

Pace Project No.: 20325361

Date: 08/07/2024 12:39 PM

QC Batch: 337633 Analysis Method: Pace ENV-SOP-BTRO-0042
QC Batch Method: Pace ENV-SOP-BTRO-0042 Analysis Description: BR AM23G Low Level VFA

Laboratory: Pace Analytical Services - Baton Rouge

Associated Lab Samples: 20325361001, 20325361002

METHOD BLANK: 1620515 Matrix: Water

Associated Lab Samples: 20325361001, 20325361002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Acetic Acid mg/L ND 0.50 08/05/24 16:29

LABORATORY CONTROL SAMPLE: 1620516

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Acetic Acid 2 1.8 90 70-130 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1620658 1620659

MS MSD

50379256004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result **RPD** RPD Qual Result % Rec % Rec Limits 5.0 U Acetic Acid mg/L 20 20 17.8 18.0 87 88 70-130 30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 24G1354/Enthalpy

Pace Project No.: 20325361

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

ANALYTE QUALIFIERS

Date: 08/07/2024 12:39 PM

D4	Sample was diluted due to the presence of high levels of target analytes.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

ML Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 24G1354/Enthalpy

Pace Project No.: 20325361

Date: 08/07/2024 12:39 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
20325361001	24G1354-01: EW-59	Pace ENV-SOP-BTRO- 0042	337420		
20325361001	24G1354-01: EW-59	Pace ENV-SOP-BTRO- 0042	337633		
20325361002	24G1354-02: EW-60	Pace ENV-SOP-BTRO- 0042	337420		
20325361002	24G1354-02: EW-60	Pace ENV-SOP-BTRO- 0042	337633		

REPORT OF LABORATORY ANALYSIS

Pace - Gulf Coast 7979 Innovation Park Dr Baton Rouge, LA 70820 RICHMONI (804) WO#: 20325361

ENIANAI	L Y		AL	JYY CAL		on Rouge,		20	CHS		nV	K	3)	(2	03253	61				Page 59 of 59
OOMAD AND ANALYSIA First First First					LINIX				003	OL	<i></i>		 PR	OJECT	ΓΝΔΙ/	E/Quot	to #:	24G13	254	Pag
COMPANY NAME: Enthalpy					+	OICE TO:		halpy					_					24013	554	-
CONTACT: Dan Elliot					-	OICE CON							_			G1354				_
ADDRESS: 1941 Reymet Rd Richmo	nd V	/A 23	3237		INV	OICE ADD	RESS:	1941	Reymet I	Rd Rid	chmond V	/A 23237					24G13		9	
PHONE #: (804) 358-8295					INV	OICE PHO	NE #:	(804) 3	358-829	95			P.C).#: }	20-	06	942	20		
FAX #:			E	MAIL:									Pre	etreatm	ent Pr	ogram:				
Is sample for compliance reportin	g?	ΥE	ES N	IO		Is sample f	rom a c	chlorina	ated su	pply	? `	YES N	NO				PWS	I.D. #:		
SAMPLER NAME (PRINT):					SAI	MPLER SIG	SNATU	RE:									Turn	Around	l Time: 10	
Matrix Codes: WW=Waste Water/Storm Water	er G\	W=G	round V	Vater DW=Drir	nking V	Water S=Soil/S	olids OR	=Organic	: A=Air V	VP=W	lipe OT=	Other							COMMENTS	
			(SIB									ANA	LYSI	S/(PR	ESER	VATIVI	Ξ)		Preservative Codes: N=N Acid C=Hydrochloric Ac S=Sulfuric Acid H=Sodii	id
CLIENT SAMPLE I.D.	Grab	Composite	Field Filtered (Dissolved Metals)		Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Time Preserved	Matrix (See Codes)	Number of Containers	Volatile Fatty Acid								PLEASE NOTE PRESERVATIVE(S), INTERFERENCE CHECK PUMP RATE (Umin)	cid um ol
1) 24G1354-01: EW-59	X	Ť				7/23/24	1238		GW	13	Χ									(
2) 24G1354-02: EW-60	X					7/24/24	1040		GW	13	Χ									2
3)																				
4)																				
5)																				
6)																				
7)																				
8)																				
9)										Ш		-	*							
10)																				
RELINQUISHED: RELINQUISHED: RELINQUISHED: RELINQUISHED:	DAT	E /	TIME TIME /DOC TIME	RECEIVED:	-	Apres 7	29/24	DATE / DATE / DATE /	TIME TIME TIME	Leve Leve Leve	11 ¹ 131 1311		LAB (JSE ON	NLY		COOL	ER TEI	MP°C	13
										Leve	IV								Pace Gulf Coast	

Well	IIID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	FW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
	Monitoring Event	211 30	211 31	111 32	111 30	111 04	L11 00	211 07	211 00	L11 07	211 00	Conce		277 04	211 00	L 11 07	211 00	LW 70	LW 00	244 07	LW 00		LW 70	LOD	LOQ
raidifielei						1				1560				1	1200									50	50
	November-2022	1700						0110			1010	1400			1380	1150	1700							50	50
	December-2022	1700		2280				2110		1410	1310					1150	1780							100	100
	January-2023	1520							936						1330									50	50
	, i									2440														100	100
	February-2023																1490							100	100
	March-2023								667	1480														73.1	100
	April-2023								1410		1220													73.1	100
	May-2023	1390							1860	2380														146	200
	June-2023									2740		2370		2170										146	200
																		1180						73.1	100
	July-2023	1570						2260														2350	310	146	200
	August-2023					1600		1890														2140	222	146	200
																		1720						73.1	100
Ammonia as N	September-2023			1250																				146	200
(mg/L)	October-2023						1980											1730		2890				146	200
(11.9, 2)	00.000.2020	1260		2490	1830		2070											1800		2590				146	200
	November-2023												1170										2080	183	250
										2440														366	500
	D 1 0000																	1540						73.1	100
	December-2023			2900													2200							146	200
	January-2024		2160							2400													1610	146	200
	February-2024		1900		2600														1780		2380			146	200
	March-2024																				2280		968	146	200
	April-2024			2290									928				2140	1800						146	200
																							898	73.1	100
	May-2024									2550								1620	1950	2660				146	200
	June-2024																	1990	2170				1850	146	200
										1860														73.1	100
	July-2024										1950													146	200
	November-2022									15700		5860			5140									0.2	2
	December-2022	6440		12500				11400		9240	3330					8360	6770							0.2	2
	January-2023	9920							999	28100					7060									0.2	2
	February-2023																7230							0.2	2
									1570	0100															
	March-2023								1570	9190														0.2	2
	April-2023								8430		2860													0.2	2
	May-2023	7350							11900	35300														0.2	2
	June-2023									20000		27400		23100										0.2	2
	July-2023	6820						32900										330				31800	937	0.2	2
Biological Oxygen	August-2023					>33045		>33225														>32805	506	0.2	2
Demand (mg/L)	September-2023			40185.5														659						0.2	2
	October-2023						34600											690		37000				0.2	2
	November-2023	1910		30400	27500		32015			29600			3640					480		32135			21500	0.2	2
	December-2023			>44105						17100							13700	681					14000	0.2	2
	January-2024		26000							17100													14000	0.2	2
	February-2024		23200		26200														21400		34300		7400	0.2	2
	March-2024			41140													10/00				40600		7680	0.2	2
	April-2024			41142									1210				19600	386						0.2	2
	May-2024									25600								448	22200	33400			7750	0.2	2
· ·	June-2024																	421	24400				16200	0.2	2
ļ.	July-2024									25800	4750													0.2	2

	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	100	100
Parameter	Monitoring Event											Conce	ntration							,				LOD	LOQ
												9790			10800									1000	1000
	November-2022									23500														2000	2000
		7440																						1000	1000
	-									12000							14100								
	December-2022									13200	8000					20300	14100							2000	2000
								22400																5000	5000
				86800																				10000	10000
									3630															500	500
	January-2023	14900													8430									2000	2000
										47600														5000	5000
	February-2023																9210							1000	1000
									1690															500	500
	March-2023									10600														2000	2000
											7370													1000	1000
	April-2023								1 (0 0 0																
									16800															2000	2000
	May-2023	7590							18700															2000	2000
										44700														4000	4000
	June-2023											44800												5000	5000
	June-2023									41300				55000										10000	10000
																							2180	500	500
	-	6480																2460						1000	1000
	July-2023																					41000		5000	5000
	-																								+
								50100																10000	10000
	August-2023																						1750	500	500
Chemical Oxygen	- I					59000		58600														60600		5000	5000
Demand (mg/L)	September-2023																	6260						1000	1000
Demand (mg/L)	00010111001 2020			87400																				10000	10000
																		5320						500	500
	October-2023						51000																	5000	5000
																				63600				10000	10000
																		4710						1000	1000
	November-2023	6200											5620											2000	2000
	November-2023				48100		57900			43700													37600	5000	5000
				77100																63900				10000	10000
																		4870						1000	1000
	December-2023																19900							5000	5000
				94200																				10000	10000
	January-2024		48600							59800													38200	5000	5000
			42700		51200														48900					5000	5000
	February-2024																				68400			10000	10000
																							14400	2000	2000
	March-2024																				75500			10000	10000
													3110					4200						1000	1000
	April-2024																32400								
	Αμπ-2024			70700																				5000	5000
				79700																				10000	10000
																		4930						1000	1000
	May-2024																						17700	5000	5000
										48500									43100	70700				10000	10000
'	1 200																	4520						1000	1000
	June-2024																		51400				31300	5000	5000
										42400														5000	5000
	July-2024										98500													10000	10000
Nitrate+Nitrite as N	November-2022									2.91		0.16			0.33									0.1	0.1

Well	IID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event											Conce												LOD	LOQ
	monning avoin															ND								0.2	0.2
											ND													0.2	0.6
	December-2022	 ND		ND		1		ND		ND														1.1	5.1
	-																								
																	ND							1.5	5.5
	-								ND															0.35	1.35
	January-2023														ND									1.1	1.1
	Í '	3.9																						2.1	2.1
										ND														2.2	2.2
	February-2023																ND							0.35	1.35
	March-2023								ND	ND														1.04	5.1
	April-2023								ND		ND													0.6	2.6
	M === 0000	ND																						1.1	5.1
	May-2023								ND	ND														1.2	5.2
										ND				ND										1.1	5.1
	June-2023											ND												1.2	5.2
																		0.355						0.15	0.35
																							ND	0.55	0.75
	July-2023	 ND				1																		0.55	
		עא																						1 1 5	3
								ND														ND		1.5	5.5
	August-2023																						ND	0.15	0.35
	-					ND		ND														ND		1.5	3.5
	September-2023																	ND						0.3	1.1
				ND																				0.7	1.5
Nitrate as N (mg/L)	October-2023						ND											ND						0.35	1.35
	OC100e1-2023						ND													ND				1 5	3
		 ND																ND		ND				1.5 0.15	3.5 0.35
													 ND											0.13	1.35
	November-2023						ND																	0.75	1.75
	110101111001 2020			ND																				1.1	5.1
					ND					ND										ND			ND	1.5	5.5
				ND														ND						1.1	5.1
	December-2023																ND							1.5	5.5
	January-2024		2.01							ND													ND	1.5	5.5
			9.1																ND		ND			1.5	5.5
	February-2024				ND																			3.5	7.5
	March-2024																				ND		ND	0.75	1.75
													ND					ND						0.35	0.35
	April-2024			ND																				1.5	5.5
																	ND							2.5	10.5
																		ND						0.15	0.35
																							ND	0.35	1.35
	May-2024																								
	1VIUY-2024																		ND	1.0				0.6	2.6
																				1.9				1 1	3
										ND														1.1	5.1
	June-2024																	0.692						0.6	2.6
																			ND				ND	1.5	3.5
	July-2024										ND													0.5	2.5
										6.66														5	25

We	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event											Conce												LOD	LOQ
1 0.1 0.11 0.10 1.											0.12 J													0.1	0.5
	December-2022	ND		ND				ND		ND						ND	ND							1	5
									ND															0.25	1.25
	January-2023														ND									1	1
	2011.10 0.11 / 2020	ND								ND														2	2
	February-2023																0.48 J							0.25	1.25
	, March-2023								ND	ND														1	5
	April-2023								ND		ND													0.5	2.5
	May-2023	ND							ND	ND														1	5
	June-2023									2 J		ND		ND										1	5
																		ND					ND	0.05	0.25
	July-2023	ND																						0.5	2.5
								1.2 J														ND		1	5
	August-2023																						ND	0.05	0.25
						ND		ND														ND		0.5	2.5
	September-2023			ND														ND						0.2	1
Nitrite as N (mg/L)	October-2023																	ND						0.25	1.25
		0.06 J					ND											 ND		ND				0.5 0.05	2.5 0.25
	November-2023	U.U6 J					ND						ND											0.05	1.25
	110101111001 2020			ND	ND					ND										ND			ND	1	5
	December-2023			ND													ND	ND						1	5
	January-2024		1.7 J							ND													ND	1	5
	February-2024		ND		ND														ND		ND			1	5
	March-2024																				ND		0.25 J	0.25	1.25
													ND					ND						0.25	0.25
	April-2024			ND																				1	5
																	ND							2	10
																		ND						0.05	0.25
	May-2024																						ND	0.25	1.25
	1110, 2024																		ND	ND				0.5	2.5
										ND														1	5
	June-2024																	ND	ND				ND	0.5	2.5
	July-2024										ND													0.5	2.5
										ND														5	25

Historical LFG-EW Leachate Monitoring Results Summary

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event											Conce	ntration											LOD	LOQ
												1290			1470									20	50
	November-2022									2110														50	125
	December-2022	1510		3570				1790		1830	1490					1340	1940							200	500
		1840							881						1410									20	50
	January-2023									2970														40	100
	February-2023																1870							16.8	50
	March-2023								879	1920														33.6	100
	April-2023								1820		1510													16.8	50
	May-2023	1590							1950	2910														40	100
	1V1Gy-2023									3080				2750										100	250
	June-2023											2650												200	500
	July-2023	1670						2960										1670				2720	285	40	100
								<u> </u>										1070					279	10	25
	August-2023					2240		2820														2850		100	250
	September-2023			3340														2680						100	250
Total Kjeldahl							1050													1320				40	100
Nitrogen (mg/L)	October-2023																	4630						100	250
2 9 2 1 (1 1 9, 2)	November-2023						2240																2120	80	200
	November-2023	1440		3290	2630					2530			1120					2270		3170				100	250
	December-2023																1880							80	200
				3130														1890						100	250
	January-2024		2450							3020													1810	100	250
	February-2024		2540		2890														2470		2970			100	250
	March-2024																						1030	50	125
													1000					1700			2980			100	250
													1030					1730						40	100
	April-2024																2320							50	125
				3260																				100	250
	May-2024																						1140	40	100
	, ===									3120								1780	2470	3280				100	250
	June-2024																	1870					4750	100	250
																			2680					200	500
	July-2024									2840	2680													100	250

Well	IID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event				-11 55							Conce												LOD	LOQ
												5.68			3									0.3	0.5
	November-2022									28.8														0.75	1.25
	December 2000										8.94													0.3	0.5
	December-2022	24.9		54.6				28.3		32						20.2	36							1.5	2.5
	January-2023	27.2							1.3						20.2									0.75	1.25
	January-2023									56.5														1.5	2.5
	February-2023																22.4							1.5	2.5
	March-2023								0.4															0.03	0.05
	March-2025									13.9														0.3	0.5
	April-2023								18.7		5.1													0.3	0.5
	May-2023	18.6							20	50														1.5	2.5
	June-2023									39.1		45.6		80.6										1.5	2.5
																		0.7						0.15	0.25
	July-2023																						2.92	0.3	0.5
		11.6						47.9														37.3		1.5	2.5
	August-2023																						1.46	0.15	0.25
	Ŭ					28.6		31.4										4.50				40.4		1.5	2.5
	September-2023			38.2														4.58						0.3	0.5
																		4.13						0.15	0.25
Total Recoverable	October-2023						37													38.7				0.6	1
Phenolics (mg/L)																		3.65						0.15	0.25
	November-2023	7.88			36.4								4.76											0.6	1
	11010111001 2020			38.8			47.4													47.1				0.75	1.25
										46.9								2.70					29.1	1.5	2.5
	December-2023																23	3.72						0.06 0.75	0.1
	December-2023			34.2																				1.5	2.5
	1 0004		38																				22.7	1.5	2.5
	January-2024									39.2														3	5
	February-2024		37.3		42.9														50.2		43.1			1.5	2.5
	March-2024																				46.6		12.8	3	5
	April-2024												1.68					1.16						0.3	0.5
	ησ ====1			38.4													28.6							1.5	2.5
	<u></u>																	1.06						0.3	0.5
	May-2024																						13.6	1.5	2.5
										36.6									33.6	51				3	5
	l 000 t																	0.82						0.3	0.5
	June-2024																		 11 Q				23.2	1.5	2.5
											28.8								44.8					0.75	5 1.25
	July-2024									37.8	20.0													3	5
						1							1							1					

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event											Conce	ntration											LOD	LOQ
SEMI-VOLATILE OR	RGANIC COMPOUND	(ug/L)																							
	November-2022											ND			ND									46.7	93.5
	11010111001 2022									ND														93.5	187
										ND	ND						ND							9.35	9.35
	December-2022							ND								ND								11.7	11.7
				ND																				23.4	23.4
		ND																						485	971
									ND															243	485
	January-2023														ND									253	505
		ND								NID														490	980
	February-2023									ND							ND							500 187	374
	rebiodiy-2023									ND														51	102
	March-2023								ND															117	234
									ND															37.4	74.8
	April-2023										ND													38.8	77.7
		ND								ND														93.5	187
	May-2023								ND															467	935
										ND				ND										485	971
	June-2023											ND												490	980
																							ND	46.7	93.5
		ND																						100	200
	July-2023																	ND						250	500
								ND														ND		1000	2000
	August-2023																						ND	19.6	39.2
						ND		ND														ND		1000	2000
	September-2023			ND														ND						40	80
Anthracene	0 -1 -1 0000																			ND				40	80
	October-2023						ND											ND						50 500	100
		 ND											ND											20	40
																		ND						50	100
	November-2023																						ND	100	200
					ND		ND			ND										ND				400	800
				ND																				1000	2000
	December 2022																	ND						50	100
	December-2023			ND													ND 							100 200	200 400
			ND																					100	200
	January-2024																						ND	250	500
										ND														1000	2000
					ND																			200	400
	February-2024		ND																					250	500
																			ND 		ND 		ND	400000 20	800000 40
	March-2024																				ND			80	160
													ND											5	100
																		ND						20	40
	April-2024																ND							100	200
				ND																				400	800
	1.4 000.1									ND								ND	ND				ND	10	10
	May-2024																			ND				80	160
	June-2024																	ND						20	40
	JUI16-2024																		ND				ND	100	200
	July-2024									ND														40	80
											ND													80	160

More	We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Non-print Non-																									LOD	LOQ
New-nine 2029 1.00																										
December 1229 1,02											0.863		0.464			1.3									0.02	0.04
Fisher (1970)		December-2022	1.02		0.406				0.174			0.49					0.159	0.574							0.02	0.04
Marina 2022		January-2023	0.285							0.596	0.225					0.846									0.01	0.02
Astriction April 2002		February-2023																0.29							0.005	0.01
May 2010 1		March-2023								1.07	1														0.01	0.02
Mary 2003 0.26		A := ::I 0000										0.11													0.0005	0.001
Apper 62		April-2023								0.36															0.005	0.01
Asertice May 7007 0.23		May-2023	0.26							0.3	0.27														0.0025	0.005
Agent 2007		June-2023									0.26		0.5		0.14										0.0025	0.005
ARREIC August 2023 ——————————————————————————————————		1	0.23																0.24				0.19	0.06	0.0005	0.001
Amend September 2023		JUIY-2023							0.7																0.0025	0.005
## September 2000		August_2023																						0.15	0.0025	0.005
Octobe-2022		_					0.32		0.43														0.29		0.005	0.01
New Processor New Processo	Arsenic	September-2023			0.42																				0.005	0.01
November 2023 0.23		October-2023		-																					0.0005	0.001
December-2022		November 2023																							0.001	0.002
December 2022 1.0																									0.003	0.005
Part		December-2023																							0.0023	0.002
February-2024 0,68		January-2024																				1			0.0025	0.005
April 2024				0.68		0.42														0.33		0.23			0.002	0.002
April-2024		March 2024																						0.12	0.001	0.002
April-20/28		Maici-2024																				0.23			0.0025	0.005
March 2024		April-2024												0.49					0.18						0.0005	0.001
June-2074		7\pi11 2024			0.31													0.33							0.004	0.004
November 2002 0.546		,									0.33								0.2	0.73	0.22			0.22	0.005	0.01
November-2022 0.566 0.803 0.978 0.978 0.871 0.485 0.214 0.978 0.805 0.978 0.97																			0.19	0.49				0.14	0.005	0.01
December-2022 0.566 0.803 0.978 0.438 0.214 0.554												0.095													0.0025	0.005
Barium												0.485			0.36									0.01	0.02	
February-2023					0.803				0.978			0.214					0.856	0.793							0.01	0.02
March-2023			0.643							0.683	1.92					0.554									0.005	0.01
April-2023																		1.04							0.01	0.05
Barium May-2023 0.636											0.683														0.005	0.01
Barium May-2023		April-2023								1.21		0.326													0.01	0.05
Barium August-2023		May-2023	0.636																						0.005	0.025
Barium Berium	, ====								1.2															0.01	0.05	
Barium August-2023		June-2023									1.69				1.65										0.005	0.025
Barium Barium August-2023 October-2023 November-2023 November-2023 December-2023 January-2024 January-2024 January-2024 January-2024 December-2023 January-2024 January-2024 January-2024 December-2023 January-2024 January-2024 January-2024 December-2023 January-2024 January-2													3.01												0.01	0.05
Barium August-2023																								0.217	0.001	0.005
Barium August-2023		July-2023																	0.558						0.002	0.01
August-2023 1.61 1.58			0.542						2.28														1.02		0.005	0.025
September-2023 0.72 1.61 1.58 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48		August-2023																						0.218	0.005	0.025
October-2023	Barium	_					1.61																1.48		0.01	0.05
November-2023 0.572 0.81 2.28 2.51 1.96 0.418 1.36 1.36 1.93 2.84 December-2023 0.68		September-2023																							0.01	0.05
November-2023 0.572 0.81 2.28 2.51 1.96 0.418 0.67 2.06 2.84 December-2023		October-2023		_																					0.002	0.01
December-2023 0.68		November-2023																							0.003	0.023
December-2023																									0.005	0.025
January-2024		December-2023																							0.002	0.01
3.27		January 0004									1.92													1.91	0.005	0.025
February-2024 3.03 4.41		ŕ		3.27																					0.01	0.05
		February-2024		3.03		4.41														2.65		0.925			0.005	0.025
MOI(C)- $1/2$		March-2024																						1.03	0.002	0.01
1.54		31311 2027																				1.54			0.005	0.025
April-2024		April-2024												0.4					0.634						0.001	0.005
1.02		·			1.02													2.15							0.01	0.05
May-2024 1.79 0.619 2.8 2.06 0.872		·									1.79										2.06				0.01	0.05
June-2024																									0.01	0.05
July-2024 1.28 2.75		July-2024									1.28	2.75													0.005	0.025

Wel	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	100
Parameter	Monitoring Event											Conce	ntration											LOD	LOQ
	November-2022									ND		ND			ND									0.004	0.008
	December-2022	ND		0.0104				ND		ND	ND					ND	ND							0.004	0.008
	January-2023	ND							ND	ND					ND									0.002	0.004
	February-2023																0.000297 J							0.0001	0.001
	March-2023								ND	ND														0.002	0.004
	April-2023								0.000158 J		0.000333 J													0.0001	0.001
	May-2023	ND							ND	ND														0.0005	0.005
	June-2023									ND		ND		ND										0.0005	0.005
	July-2023							0.000156 J										0.000186 J				ND	ND	0.0003	0.003
	JUIY-2023																	U.UUU186 J					ND	0.0001	0.001
	August-2023					ND		 ND														ND		0.0003	0.003
	September-2023			ND														ND						0.001	0.01
Cadmium																		0.000171 J		ND				0.0001	0.001
Caamiom	October-2023						ND																	0.0002	0.002
	November-2023	ND		ND	ND		ND			ND			ND					ND		ND			ND	0.001	0.003
	Dogambar 2022			ND													0.000604 J							0.0005	0.0015
	December-2023																	ND						0.0002	0.002
	January-2024		ND							ND													ND	0.0005	0.005
	February-2024		ND		ND														0.0175		ND			0.0005	0.005
	March-2024																						ND	0.0002	0.002
																					ND			0.0005	0.005
	April-2024												0.000204 J					0.000195 J						0.0001	0.001
	·			ND													ND							0.001	0.004
	May-2024									ND								ND	0.0483	ND			ND	0.001	0.01
	June-2024																	ND	0.0175				ND	0.001	0.01
	July-2024									ND	ND													0.0005	0.005
	November-2022									0.208		0.112			0.354									0.016	0.02
	December-2022	0.503		1.08				1.76		0.274	0.319					0.499	0.822							0.016	0.02
	January-2023	0.31							0.488	0.178					0.155									0.008	0.01
	February-2023																0.277							0.004	0.01
	March-2023								0.213	0.188														0.008	0.01
	April-2023										0.142													0.0004	0.001
	Αριιι-2023								0.306															0.004	0.01
	May-2023	0.422							0.281	0.237														0.002	0.005
	June-2023									0.251		0.191		0.272										0.002	0.005
	July-2023	0.308						0.535										0.231				0.215	0.0265	0.0004	0.001
	August-2023																						0.0276	0.002	0.005
	A09031-2023					0.606		0.449														0.259		0.004	0.01
	September-2023			1.17														0.234						0.004	0.01
Chromium	October-2023																	0.144		0.194				0.0004	0.001
33							0.273																	0.0008	0.002
	November 2002	0.391			0.51													0.251		0.402				0 003	0.003
	November-2023			1.04	0.51		0.402			0.246			0.343					0.251		0.403			0.222	0.003	0.003
				1.04													0.259							0.004	0.005
	December-2023			1.34													0.237	0.219						0.002	0.003
	January-2024		0.17							0.193													0.128	0.000	0.005
	February-2024		0.23		0.272														0.203		0.336			0.002	0.005
																							0.0759	0.0008	0.002
	March-2024																				0.414			0.002	0.005
	4 3 000 1												0.36					0.245						0.0004	0.001
	April-2024			0.836													0.228							0.004	0.01
	May-2024									0.268								0.226	0.183	0.352			0.11	0.004	0.01
	June-2024																	0.226	0.188				0.16	0.004	0.01
	July-2024									0.252	0.246													0.002	0.005
	, , ,																								-

Wel	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		100
Parameter	Monitoring Event											Conce					'							LOD	LOQ
	November-2022									ND		ND			ND									0.016	0.02
	December-2022	ND		ND				ND		ND	ND					ND	ND							0.016	0.02
	January-2023	ND							0.0127	0.0256					ND									0.008	0.01
	February-2023																0.00365							0.0003	0.001
	March-2023								ND	ND															
									ND 0.00444	ND														0.008	0.01
	April-2023								0.00664		0.00767													0.0003	0.001
	May-2023	ND							ND	ND														0.0015	0.005
	June-2023									0.00154 J		0.00362 J		0.00269 J										0.0015	0.005
	July-2023	0.00124						0.00163										0.00811				ND	0.0027	0.0003	0.001
	August-2023																						ND	0.0015	0.005
						0.00343 J		0.0176														ND		0.003	0.01
	September-2023			ND														0.00407 J						0.003	0.01
Copper	October-2023																	0.00361		0.000609 J				0.0003	0.001
	November 2022	0.00407		0.00252	0.0212		0.00806						0.00241					0.00207						0.0006	0.002
	November-2023	0.00607		0.00352			0.00756			ND			0.00341				ND	0.00387		ND			ND	0.003	0.003
	December-2023			0.00184													ND	0.0034						0.0015	0.0015
	January-2024		ND							0.019													ND	0.0008	0.002
	February-2024		ND		0.00201														ND		ND			0.0015	0.003
																							0.00115 J	0.0006	0.002
	March-2024																				0.00184 J			0.0015	0.002
													0.00443					0.004						0.0003	0.001
	April-2024			ND													ND							0.003	0.004
	May-2024																	0.00486 J	0.00688 J						0.004
	June-2024									ND										ND			ND	0.003	0.01
										U 300	ND							0.00409 J	ND				ND	0.003	0.005
	July-2024 November-2022									0.398	ND				0.017 J										0.003
				0.0201						ND		ND												0.012	
	December-2022	ND		0.0381				ND		ND	ND					ND	ND							0.012	0.02
	January-2023	ND							ND	ND					ND									0.006	0.01
	February-2023																0.006							0.001	0.001
	March-2023								ND	ND														0.006	0.01
	April-2023								0.0022		0.0067													0.001	0.001
	May-2023	ND							ND	ND														0.005	0.005
	June-2023									ND		ND		0.0069										0.005	0.005
	July-2023	0.0014						0.019										0.0092				ND	0.0017	0.001	0.001
	August 2022																						ND	0.005	0.005
	August-2023					0.014		ND														0.013		0.01	0.01
	September-2023			0.12														ND						0.01	0.01
Lead	October-2023																	0.0036		0.0034				0.001	0.001
							0.0077																	0.002	0.002
	November-2023	ND		0.13	0.0046		0.014			ND			ND					0.0032		0.0043			ND	0.003	0.003
	December-2023																	0.0043						0.002	0.002
				0.16													0.002							0.0015	0.0015
	January-2024		ND							0.0081													ND	0.005	0.005
	February-2024		0.0065		0.01														0.051		0.012			0.001	0.002
	March-2024																						ND	0.002	0.002
																					0.02			0.005	0.005
	April-2024												0.0013					0.0025						0.001	0.001
	·			0.13													ND							0.004	0.004
	May-2024									ND								ND	0.11	ND			ND	0.01	0.01
	June-2024																	ND	0.024				ND	0.01	0.01
	July-2024									ND	ND													0.005	0.005

Wel	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event											Conce												LOD	LOQ
												0.00169			0.00053									0.0004	0.0004
	November-2022									ND														0.0008	0.0008
		0.00051																						0.0004	0.0004
	December-2022							0.00118		ND	0.00588					0.0048	ND							0.0008	0.0008
				ND																				0.004	0.004
	January-2023	ND							ND						ND									0.0004	0.0004
	January-2025									ND														0.004	0.004
	February-2023																ND							0.0004	0.0004
	March-2023								ND															0.0002	0.0002
	Widicii 2020									ND														0.0004	0.0004
	April-2023										0.00128													0.0002	0.0002
									ND															0.0004	0.0004
	May-2023	ND							ND	ND														0.0002	0.0002
	June-2023									ND		ND		ND										0.004	0.004
	July-2023	0.000306																ND					ND	0.0002	0.0002
Mercury	,							0.0107														ND		0.001	0.001
Mercury	August-2023					0.00210		0.00207															ND	0.001	0.001
	September-2023			0.00503		0.00312		0.00397										ND				ND 		0.002	0.002
	October-2023						0.00165											ND		0.00055				0.002	0.002
	0010001 2020	ND											ND												0.0000002
	November-2023																	ND						0.0000004	0.000004
				0.00576	0.00606		0.00578			ND										0.00954			ND	0.000004	0.000004
	December-2023			0.00484													ND							0.001	0.001
																		ND						0.0004	0.0004
	January-2024 February-2024		0.00376		0.0115					ND		_ 							0.00238		0.00284		ND	0.001	0.001
	·																		0.00236				0.00124	0.001	0.001
	March-2024																				ND			0.001	0.001
	4 3 000 4												0.000201					ND						0.0002	0.0002
	April-2024			0.00382													0.00151							0.0008	0.0008
	May-2024									ND								ND	ND	ND			ND	0.002	0.002
	June-2024																	ND	0.0119				ND	0.002	0.002
	July-2024									ND	0.00104													0.001	0.001
	November-2022									0.0866		0.1344			0.173									0.014	0.02
	December-2022	0.1722		0.5025				0.2989		0.1299	0.287					0.1853	0.346							0.014	0.02
	January-2023	0.1074							0.1442	0.0407					0.0769									0.007	0.01
	February-2023																0.1726							0.001	0.001
	March-2023								0.1254	0.1033														0.007	0.01
	April-2023								0.1143		0.1732													0.001	0.001
	May-2023	0.113							0.09726	0.05657														0.005	0.005
	June-2023									0.05978		0.05892		0.07161										0.005	0.005
	July-2023	0.09872						0.08332										0.1576				0.03074	0.01403	0.001	0.001
	August-2023					0.1457		0.09673														0.0513	0.02029	0.005	0.005
	September-2023			0.5152														0.2387						0.01	0.01
Nickel	·																	0.2019		0.09206				0.001	0.001
THERE	October-2023						0.104																	0.002	0.002
	November-2023	0.1178		0.4227	0.1242		0.07791			0.05944			0.1493					0.2492		0.1332			0.05277	0.01	0.01
	December-2023			0.6091													0.1447							0.005	0.005
																		0.2127					0.0224	0.002	0.002
	January-2024		0.06308		0.07012					0.04911									0.00174		0.04102		0.0326	0.005	0.005
	February-2024		0.07945		0.07013														0.09174		0.06183		0.02232	0.005	0.005
	March-2024																				0.08678		0.02232	0.002	0.002
													0.1319					0.196						0.003	0.003
	April-2024			0.3136													0.1139							0.001	0.001
	May-2024									0.0538								0.2065	0.07835	0.09235			0.02884	0.01	0.01
	June-2024																	0.2003	0.07664				0.02864	0.01	0.01
	July-2024									0.1917	0.03634													0.005	0.005
	33., 2321																							3.200	,

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event		1 211 21									Conce												LOD	LOQ
	November-2022									ND		ND			ND									0.08	0.1
	December-2022	ND		ND				ND		ND	ND					ND	ND							0.08	0.1
	January-2023	ND							ND	ND					ND									0.04	0.05
	February-2023																0.00199							0.00085	0.001
	March-2023								ND	ND														0.000	0.001
	April-2023								0.00189		0.00185													0.00085	0.001
										0.005/0															
	May-2023	ND							ND	0.00569														0.00425	0.005
	June-2023									ND		ND		ND										0.00425	0.005
	July-2023	0.00101						0.00331										0.00116				0.00251	ND	0.00085	0.001
	August-2023																					ND	ND	0.00425	0.005
	September-2023			ND		ND		ND										ND				ND		0.0085	0.01
Selenium																		0.00186		0.0044				0.00085	0.001
Selenioni	October-2023						0.00332																	0.00003	0.001
	November-2023	ND			0.00314		0.00315			ND			ND					ND		0.0032			ND	0.003	0.003
				0.00785													0.00253							0.0015	0.0015
	December-2023																	0.00215						0.0017	0.002
	January-2024		ND							ND													ND	0.00425	0.005
	February-2024		ND		ND														0.00571		0.00651			0.00425	0.005
	March-2024																						ND	0.0017	0.002
	March-2024																				0.00627			0.00425	0.005
	April-2024												ND					0.000929 J						0.00085	0.001
	Αριιι-2024			ND													ND							0.0085	0.01
	May-2024									ND								ND	ND	ND			ND	0.0085	0.01
	June-2024																	ND	ND				ND	0.0085	0.01
	July-2024									ND	ND													0.00425	0.005
	November-2022									ND		ND			ND									0.01	0.02
	December-2022	ND		0.0187 J				ND		ND	ND					ND	ND							0.01	0.02
	January-2023	ND							ND	ND					ND									0.005	0.01
	February-2023																ND							0.00006	0.001
	March-2023								ND	ND														0.005	0.01
	April-2023								ND		0.00011 J													0.00006	0.001
	May-2023	ND							ND	ND														0.0003	0.005
	June-2023									ND		ND		ND										0.0003	0.005
	July-2023	ND						ND										ND				ND	ND	0.00006	0.001
																							ND	0.0003	0.005
	August-2023					ND		ND														ND		0.0006	0.01
	September-2023			ND														ND						0.0006	0.01
Silver	·																	ND		ND				0.00006	0.001
	October-2023						ND																	0.00012	0.002
	November-2023	ND		ND	ND		ND			ND			ND					ND		ND			ND	0.0006	0.01
	December-2023			ND													ND							0.00025	0.001
																		ND						0.00012	0.002
	January-2024		ND							ND													ND	0.0003	0.005
	February-2024		ND		ND														ND		ND			0.0003	0.005
	March-2024																						ND	0.00012	0.002
																					ND			0.0003	0.005
	April-2024												ND					ND						0.00006	0.001
				ND													ND							0.0004	0.001
	May-2024									ND								ND	ND	ND			ND	0.0006	0.01
	June-2024																	ND	ND				ND	0.0006	0.01
	July-2024									ND	ND													0.0003	0.0005

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event											Conce												LOD	LOQ
	November-2022									ND		0.032			0.694									0.02	0.02
	December-2022	0.208		29.7				0.162		0.0686	0.75					0.364	0.286							0.02	0.02
	January-2023	0.133							0.15	0.074					0.0752									0.01	0.01
	February-2023																0.0851							0.0025	0.005
	March-2023								0.0689	0.0538														0.01	0.01
									0.0539															0.0025	0.005
	April-2023										0.414													0.025	0.05
	May-2023	0.079							0.0635	0.0519														0.0125	0.025
	June-2023									0.0538		0.0253		0.945										0.0125	0.025
	1.1.0002	0.0488																0.0714				0.354	0.0782	0.0025	0.005
	July-2023							2.03																0.0125	0.025
																							0.112	0.0125	0.025
	August-2023							1.71														0.914		0.025	0.05
						5.92																		0.05	0.1
	September-2023																	0.0788						0.025	0.05
Zinc	·			45														0.0622						0.25 0.0025	0.5
	October-2023						0.203													633				0.0025	0.005
		0.0471 J			0.0534		0.74			0.053			0.0618					0.0722		0.845			0.0313 J	0.025	0.05
	November-2023			30.4																				0.25	0.5
				52.7																				0.25	0.5
	December-2023																	0.061						0.005	0.01
																	0.0462							0.025	0.025
	January-2024		0.117							0.0974													0.0261	0.0125	0.025
	February-2024		0.0879		0.0554														0.475		0.809		0.0342	0.0125 0.005	0.025
	March-2024																				2.09			0.005	0.01
													0.0565					0.0539						0.0025	0.005
	April-2024																0.0394							0.02	0.02
	7 (DIII 2024			24.7																				0.25	0.5
	May-2024									0.165								0.0568	1.3	1.43			0.0812	0.025	0.05
	June-2024																	0.0505	0.498				ND	0.025	0.05
	July-2024									0.104	0.0451													0.0125	0.025
	July-2024									0.104	0.0451													0.0125	0.025

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65 EW-6	7 EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event		'									Conce											LOD	LOQ
VOLATILE FATTY AC																								
												1600											25	100
	November-2022									3500					150 J								62	250
	December-2022	1800																					62	250
	January-2023	ND							ND	4400					ND									500
	February-2023															ND								500
	, March-2023								ND	640														500
	April-2023								1200		520												370	500
	May-2023	990							1800	3000													370	500
	June-2023									5900		4100		5000									750	1000
																						ND	150	200
	July-2023	ND															ND						370	500
	, i							6100													750		750	1000
	August-2023					3300		5300													4200	ND		500
	September-2023			7400													ND						370	500
	October-2023						3200										720		4100				370	500
		ND											ND				ND					4160	250	500
Acetic Acid	November-2023				4950		6650			5350									7300				500	1000
				9900																			1000	2000
	D = = = = = = = 0002															660								100
	December-2023			11200													ND							250 1000
	January-2024		4410							5290												3080		250
	,		3130		3530																			250
	February-2024																	3530		6770				500
	14 aurala 2004																					2700		200
	March-2024																			46000				1000
													ND				ND							100
	April-2024															1670								250
				9170																				1250
																	ND	4370				221		250
	May-2024									4950														500
																			6530					1250
	June-2024																ND							100
											/100							3890				4450		500
	July-2024									6280	6180													1250

Wel	All ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	FW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event	L11-30	LW-51	LW-JZ	L VV - 30	L11-34	L11-33	LW-J/	L11-30	LW-57	L11-00	Conce		L111-0-7	L11-03	L 11 - 07	LW-00	L11-70	L11-03	L11-07	L111-00	EW-74	L11-70	LOD	LOQ
Tulullelel	Monitoring Eveni																							10	100
	November-2022									830		430			ND									12 29	100 250
	December-2022	ND																						29	250
	January-2023	ND							ND	1800					ND										500
	February-2023																ND								500
	March-2023								ND	ND															500
	April-2023								ND		ND													330	500
	May-2023									1200															
		ND							ND			1.500												330	500
	June-2023									2500		1500		2900										650	1000
	h.d. 0002																						ND	130	200
	July-2023	ND																ND						330	500
								2800														650		650	1000
	August-2023					1400		1700														1600	ND		500
Dutumia Asid	September-2023			3100														ND						330	500
Butyric Acid	October-2023						1200											ND		2000				330	500
	November-2023	ND		2400	1670		1760			1370			ND					ND		2730			740	250	500
				3420													336							500	1000
	December-2023																	ND							100 250
	December-2023			3390																					1000
	January-2024		813							1230													594		250
			583		1170																				250
	February-2024																		1180		2980				500
																							500		20
	March-2024																				2100				200
													ND					ND							100
	April-2024			3120													444								250
	May-2024									1190								ND	984	2370			448		250
	June-2024																	ND	1190				1030		100
	July-2024									2400	2360														250
	N 0000											ND												11	100
	November-2022									ND					ND									27	250
	December-2022	90 J																						27	250
	N 0002	ND			968		1800			969			ND					ND		1170			324	250	500
	November-2023			6030																				500	1000
																	ND								100
	December-2023																	ND							250
				9050																					1000
Laudia Asisi	January-2024		629		100					979													256		250
Lactic Acid	February-2024		334		180														75/		1/50				250
	·																		756		1650				500
	March-2024																						ND		20
																					ND				200
	April 2024												ND					ND							100
	April-2024			 5120													ND								250
	May 2024			5120						1160								ND	1170	1730			ND		1250
	May-2024 June-2024																	ND					ND 246		250
	July-2024									1220	1210							ND	706				246		100 250
	JUIY-2024									1 220	1210														

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event	L11-30	L11-31	L11-32	L11-33	L11-37	L11-33	L11-37	L11-30	L11-37	L11-00		ntration		L11-03	211-07	L11-00	L11-70	L11-03	L111-07	L11-00	_11-/7	L11-70	LOD	LOQ
raidificiei	William State of the state of t											620												11	100
	November-2022									1600					73 J									27	250
	December-2022	640																						27	250
	January-2023	ND							ND	2000					ND										500
	February-2023																ND								500
	March-2023								ND	ND															500
	April-2023								600		ND													340	500
	May-2023	520							800	1400														340	500
	June-2023									2900		2000		2900										680	1000
	J011 C -2023											1											 ND	140	200
	July-2023	ND.																						340	
	July-2023	ND						2100										ND				400			500
	A					1000		3100														680		680	1000
	August-2023			1000		1200		2000														1900	ND	2.40	500
Propionic Acid	September-2023			1800			1200											ND		2000				340	500
Tropionic Acid	October-2023	ND.			2170		1300 2310			2080			387					ND		2000			1420	340 250	500 500
	November-2023	ND 		2580			2310											ND		3350			1420	500	1000
																	996								1000
	December-2023																	ND							250
				2280																					1000
	January-2024		1680							1970													1030		250
	February-2024		1210		1510																				250
	rebiodiy-2024																		1980		2900				500
	March-2024																						570		20
	WidiCi1-2024																				2100				200
	April-2024												ND					ND							100
				2300													1150								250
	May-2024									1730								ND	1640	2770			647		250
	June-2024																	ND	1870				1400		100
	July-2024									2500	2470														250
	November-2022											46 J												12	100
										98 J					ND									30	250
	December-2022	ND																						30	250
	November-2023	ND			ND		ND			ND			ND					ND		ND			ND	250	500
				ND																				500	1000
	December-2023																ND	ND							100 250
	December-2023			ND																					1000
	January-2024		ND							ND													ND		250
Pyruvic Acid			ND		ND																				250
	February-2024																		ND		ND				500
	Manuala 000 4																						130		20
	March-2024																				460				200
	April-2024												ND					ND							100
	Aprii-2024			ND													ND								250
	May-2024									ND								ND	ND	ND			ND		250
	June-2024																	ND	113				ND		100
	July-2024									ND	ND														250

We	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event	L111-30	217-51	L11-52	L11-30	L11-34	L11-33	LIII	L11-30	L11-57	L11-00	Conce		L11-04	L11-03	211-07	L11-00	L17-70	L17-03	_111-07	L11-00		211.70	LOD	LOQ
	C COMPOUNDS (ug/L	1										Conce	illialion												
VOLATILL OROAINIC										3510					1140									30	100
	November-2022											15600												300	1000
		3140	-								3390													300	
	December-2022			24900				27700		F/70						21700	7150								100
		2400		26800				27700	/20	5670						21700	7150							300	1000
	January-2023	3480							632	7040					 5 4 7 0									30	100
	F - I 0000									7840					5470		14400							300	1000
	February-2023									0770							14400							600	2000
	March-2023								257	2770														30	100
	April-2023								3420		5530													750	2500
	May-2023	5360							5970															150	500
	,									13600														750	2500
	June-2023									13800														750	2500
												20100		22600										1500	5000
		5860																ND						60	200
	July-2023																						13500	750	2500
								38400														31600		3000	10000
																							5950	60	200
	August-2023																					7350		150	500
	_							3000																750	2500
						25600												420						1500	5000
	September-2023			17500														439						60 750	200 2500
																		211						15	50
2-Butanone (MEK)	October-2023						17800													33400				1500	5000
																		78.8 J						30	100
							17700			10600														150	500
	November-2023	3990																						300	1000
				25700																				750	2500
					22300								17600							26700			31200	1500	5000
	December-2023			13700													7060	ND						150	500
	January-2024									10800														150	500
	, , ,		34700																				28900	1500	5000
	February-2024		20500		2000														12700		17400			150	500
			30500		28900																17400			1500 150	5000 500
	March-2024																				11700		25200	1500	5000
																		ND						30	100
	April-2024												14600											750	2500
	Aprii-2024			37200													28700								
																								1500	5000
	MA 50 / 2004																	ND	7240				10/00	60	200
	May-2024									25700									7340	20700			18600	150	500
										25700										32700				1500	5000
	June-2024																	ND	12900					150	200
	JUI 18-2024																		13800				33200	150 15000	500 25000
										15600														15000	500
	July-2024										25400													1500	5000
			1			1			ı											1				. 5 5 5	3000

Parameter Well	Monitoring Event	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59				EW-64	EW-65	EW-67		EW-78		EW-87	EW-88	EW-94			
	3										EW-60	EW-61 Concei	EW-62 ntration				EW-68		EW-85				EW-98	LOD	LOQ
															4420									70	100
	November-2022									16100		38300												700	1000
										15600	5170						9800							700	1000
	December-2022	8500																						1750	2500
	December 2022			53100				49900								45600								3500	5000
									1530															70	100
	January-2023									22200					14000									700	1000
	Juliudiy-2023	0120																							
	F. I. 0000	8130																						1750	2500
	February-2023																23900							1400	2000
	March-2023								375															70	100
										6810														700	1000
	April-2023								8290		7560													1750	2500
	May-2023	10700							11700															350	500
										29600														1750	2500
	June-2023									29600														1750	2500
	30110 2020											61800		50800										3500	5000
																		1180						140	200
	July-2023	9780																						700	1000
	JUIY-2023																						11600	1750	2500
								77200														69700		7000	10000
																							20900	700	1000
Acetone	August-2023							18700																1750	2500
						72500																87700		3500	5000
	September-2023																	188 J						140	200
	3epiember-2023			40100																				1750	2500
	October-2023																	79						35	50
	0010001 2020						66900													92900				3500	5000
	_																	104						70	100
	November-2023	5560																						700	1000
	_			64700	40100		/1100			2/000													47000	1750	2500
					43100		61100			36800			32800				ND			53900			67800	3500	5000
	December-2023																ND	 ND						140 350	200 500
	DCCC111DC1-2023			44300																				1750	2500
	January-2024		96600							22800													47300	3500	5000
	February-2024		81600		70200														45600		63100			3500	5000
	March-2024																				50800		57600	3500	5000
																		ND						70	100
	April-2024												24300											1750	2500
				95300													55200							3500	5000
																		ND						140	200
	May-2024									63200									39000	91300			33300	3500	5000
																		ND						140	200
	June-2024 —																	ND 	94400				84400	35000	50000
	July-2024									32200	52600								74400					3500	5000
	JOIY 2024									722V	0±000						1								

W	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	100	100
Parameter	Monitoring Event											Conce	ntration											LOD	LOQ
	November-2022									7.4 J		2860			50.4									4	10
		301		2960						6.3 J	622					1750	179							4	10
	December-2022							6550																40	100
	January-2023	240							28.7	1620					167									4	10
	February-2023																1370							4	10
	March-2023								1540	727														4	10
	April-2023								3740		320													4	10
	May-2023	814							4890	3370														20	50
										2630														8	20
	June-2023											1400		1590										20	50
		824																80.8						8	20
	July-2023							4050														1420		20	50
	301y 2023																						11800	100	250
																							379	8	20
	August-2023					2320		168														ND		20	50
	0 1 1 0000																	193						8	20
Danzana	September-2023			468																				100	250
Benzene	October-2023																	399						2	5
	OC100061-2023						576													3100				20	50
		80.8											31.3											2	5
	November-2023																	323						4	10
					1070		654			982										1960			1190	20	50
				870																				100	250
	December-2023			1330													932	463						8 20	20 50
	January-2024		1410							662													2900	20	50
	February-2024		906		884														346		484			20	50
	March-2024																				226		8910	20	50
													52.1					13.8						4	10
	April-2024			2040													3420							20	50
																		276						8	20
	May-2024									3080									144	818			2990	20	50
	l 000 t																	173						8	20
	June-2024																		210				2740	20	50
	July-2024									1410	1820													20	50

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	105	100
Parameter	Monitoring Event											Conce												LOD	LOQ
	December-2022	67.3		172				287		ND	48.5					108	27.4							4	10
	November-2022									ND		194			16.2									4	10
	January-2023	65.1							ND	93.9					20.8									4	10
	February-2023																151							4	10
	, March-2023								131	71.5														4	10
	April-2023								186		43.4													4	10
	May-2023	124							276	144														20	50
										104														8	20
	June-2023											98		116										20	50
																							666	4	10
	July-2023	128																82						8	20
	· •							224														87.5		20	50
	A																						16.8 J	8	20
	August-2023					80		ND														ND		20	50
	September-2023																	22.8						8	20
	30picifibol 2020			ND																				100	250
Ethylbenzene	October-2023																	34.8						2	5
							42.5 J						45.4							247				20	50
	-	26.3											45.4 					26.9						4	5 10
	November-2023				62		54			76.5										224			60.5	20	50
				ND																				100	250
	D 0000																46							8	20
	December-2023			69.5														44 J						20	50
	January-2024		99							28 J													248	20	50
	February-2024		51		43 J														31 J		41 J			20	50
	March-2024																				25 J		710	20	50
	April-2024												106					ND						4	10
	,,,			91.5													186							20	50
	May-2024																	35.4						8	20
										146									ND	59			225	20	50
	June-2024																	23.6						8	20
											110								ND				142	20	50
	July-2024									76	118													20	50

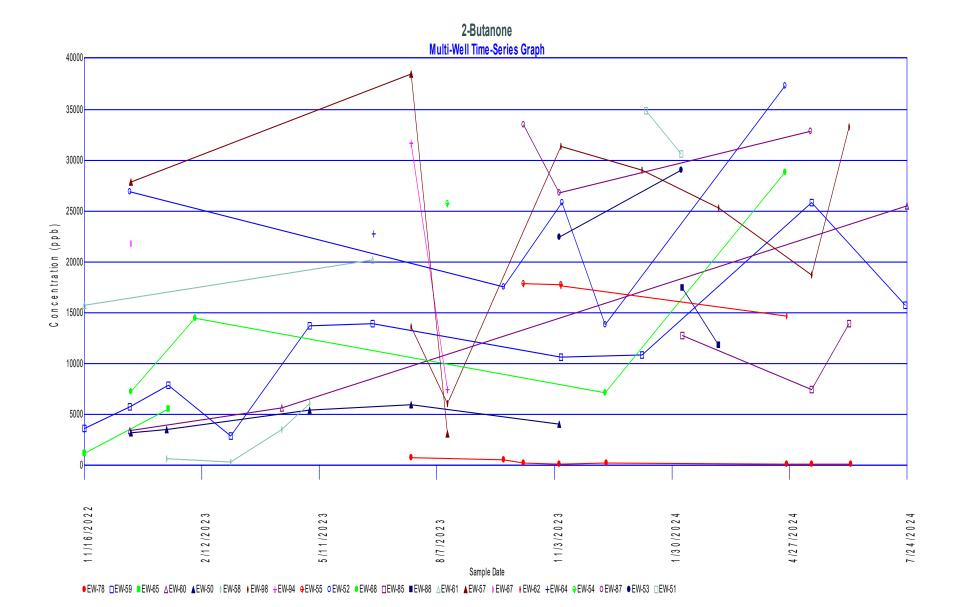
We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	100	100
Parameter	Monitoring Event										,	Conce	ntration											LOD	LOQ
										309					176									100	100
	November-2022											8530												1000	1000
		151								170	1120						663							100	100
	December-2022			5210				19800								6130								1000	1000
	January-2023	183							566	1810					352									100	100
	February-2023																3760							2000	2000
	March-2023								353	464														100	100
	April-2023								2410		4790													100	100
	May-2023	ND							2740	2380														500	500
										2100														200	200
	June-2023											7320		6670										500	500
																							2960	100	100
	July-2023	411																616						200	200
	3017 2020							8380														5310		500	500
																							2880	200	200
	August-2023					7370		3210														1200		500	500
	6 1 1 0000																	343						200	200
Tetrahydrofuran	September-2023			ND																				2500	2500
	October-2023																	606						50	50
	OC100e1-2023						4870													9140				500	500
		199											325											50	50
	November-2023																	358						100	100
					4780		3320			785										5370			4600	500	500
				4620													40.40							2500	2500
	December-2023			2620													4240	502						200 500	200 500
	January-2024		5160							1040													10900	500	500
	February-2024		3500		4580														3520		4910			500	500
	March-2024																				3320		8710	500	500
													697					ND						100	100
	April-2024			7290													7680							500	500
																		555						200	200
	May-2024									2660									1880	5860			7640	500	500
	1 222																	568						200	200
	June-2024																		3830				13000	500	500
	July-2024									1900	4020													500	500

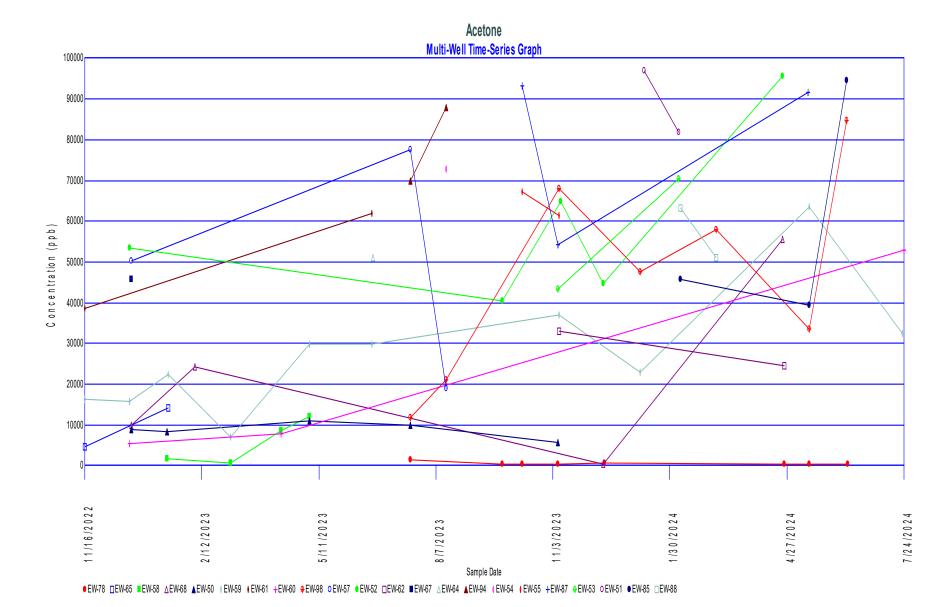
W	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event												ntration											LOD	LOQ
- Gramoro	November-2022									ND		214			32.8									5	10
	December-2022	122		175				195		ND	113					113	48.3							5	10
	January-2023	122							8 J	139					35.3									5	10
	February-2023																224							5	10
	March-2023								182	98.1														5	10
	April-2023								303		94.4													5	10
	May-2023	258							371	239														25	50
										165														10	20
	June-2023											67		212										25	50
																							965	5	10
	July-2023																	107						10	20
	301y 2020							218														118		25	50
																							36.6	10	20
	August-2023					105		ND														ND		25	50
	0 1 1 0000																	40.6						10	20
	September-2023			ND																				125	250
Toluene	October-2023																	59.2						2.5	5
	OC10De1-2023						37 J													235				25	50
		47.3											50.4											2.5	5
	November-2023																	48.7						5	10
					62.5		51.5			114										167			114	25	50
				ND													73.2							125	250
	December-2023			83.5														74.5						10 25	20 50
	January-2024		95.5							60								74.3					310	25	50
	February-2024		49 J		37 J														ND		30.5 J			25	50
	March-2024																				73		916	25	50
	A												90.1					ND						5	10
	April-2024			104													263							25	50
	14 0004																	53.8						10	20
	May-2024									180									ND	62.5			284	25	50
	l 000 t																	34.6						10	20
	June-2024																		ND				228	25	50
	July-2024									97	125													25	50

Historical LFG-EW Leachate Monitoring Results Summary

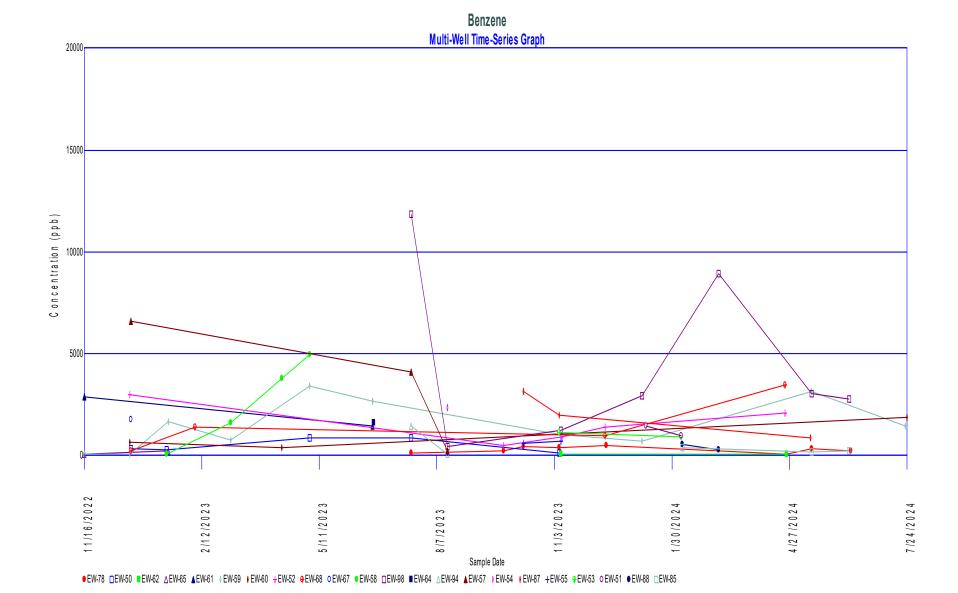
Well ID		EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	100	100				
Parameter	Monitoring Event											Conce	ntration											LOD LOQ					
Xylenes, Total	November-2022									ND		185			37.8									10	30				
	December-2022	161		222				186		ND	112					197	59.9							10	30				
	January-2023	138							ND	134					38.1									10	30				
	February-2023																240							10	30				
	March-2023								240	111														10	30				
	April-2023								329		97.4													10	30				
	May-2023	274							441	230														50	150				
	June-2023									177														20	60				
												92 J		136 J										50	150				
	July-2023																						1130	10	30				
		257																74.4						20	60				
								230														174		50	150				
	August-2023																						48.4 J	20	60				
						180		ND														ND		50	150				
	September-2023																	ND						20	60				
				ND																				250	750				
	October-2023																	30.6						5	15				
							134 J													328				50	150				
	November-2023	56											48											5	15				
																		25.3 J						10	30				
					116 J		104 J			132 J										306			138 J	50	150				
				ND													167							250 20	750 60				
	December-2023			224														ND						50	150				
	January-2024		142 J							ND													534	50	150				
	February-2024		63 J		59 J														ND		ND			50	150				
	March-2024																				ND		1360	50	150				
	April-2024												110					ND						10	30				
				140 J													352							50	150				
	May-2024																	31.6 J						20	60				
										223									ND	105 J			400	50	150				
	June-2024																	ND						20	60				
																			ND				261	50	150				
	July-2024									125 J	157													50	150				

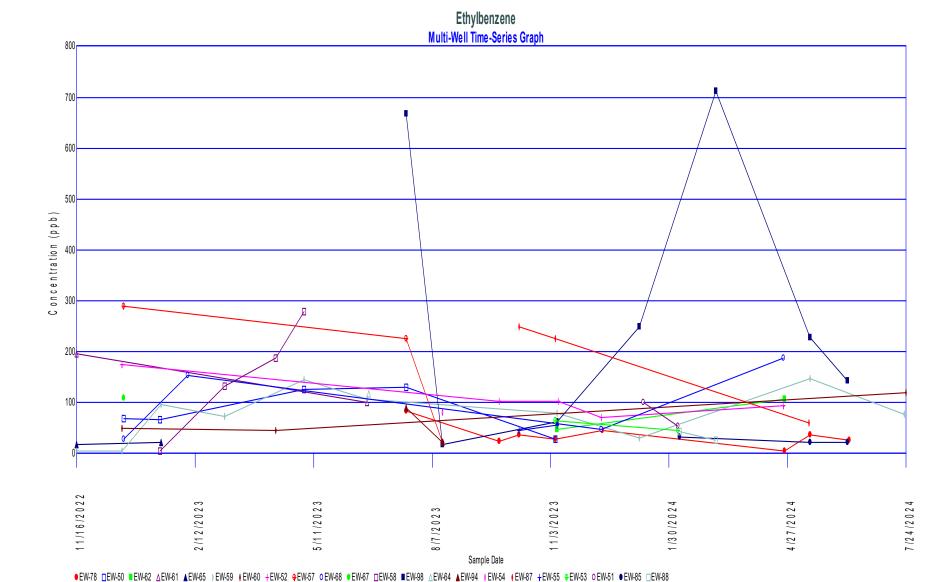
^{--- =} not applicable/available

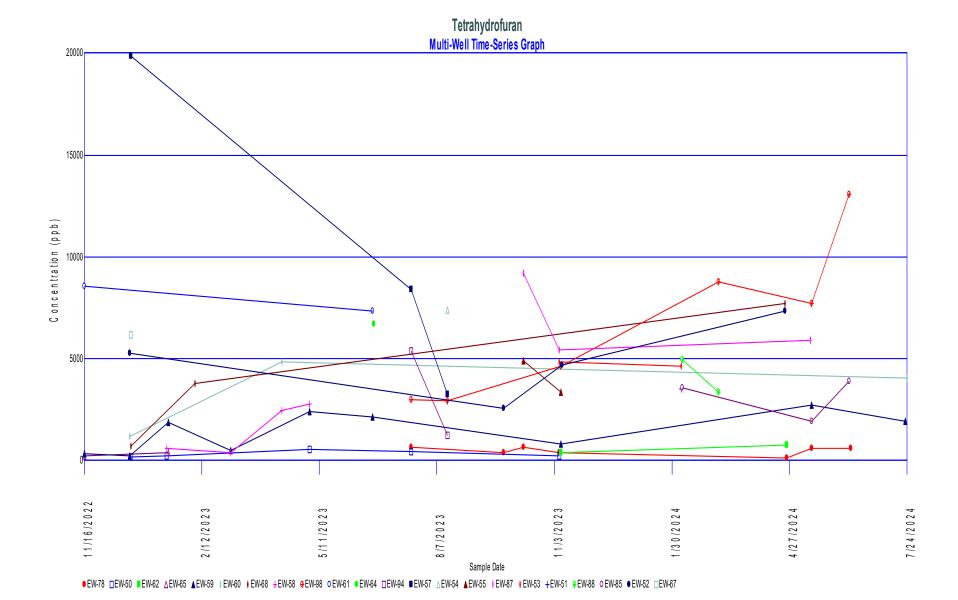

LOQ = laboratory's Limit of Quantitation


mg/L = milligrams per liter

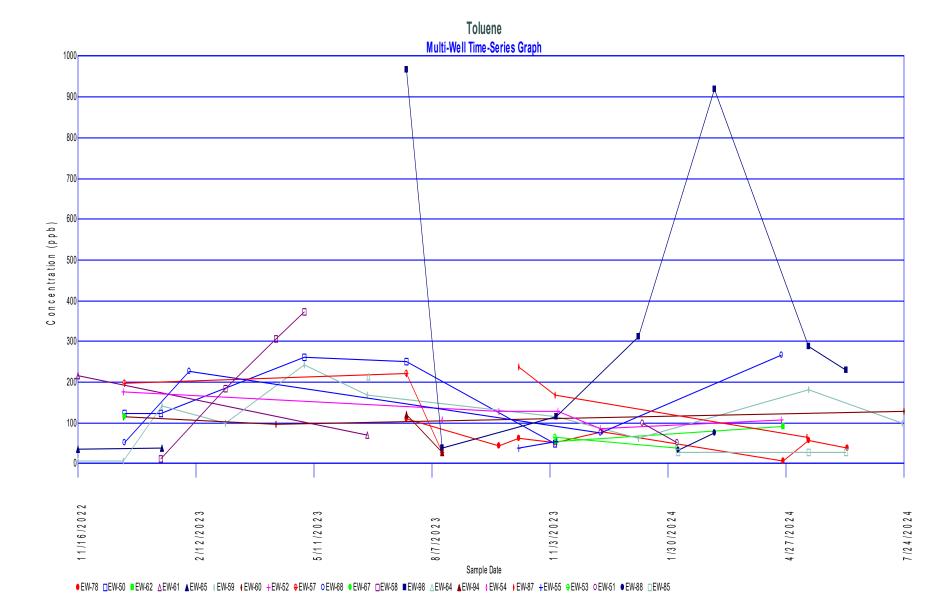
ND = Not Detected

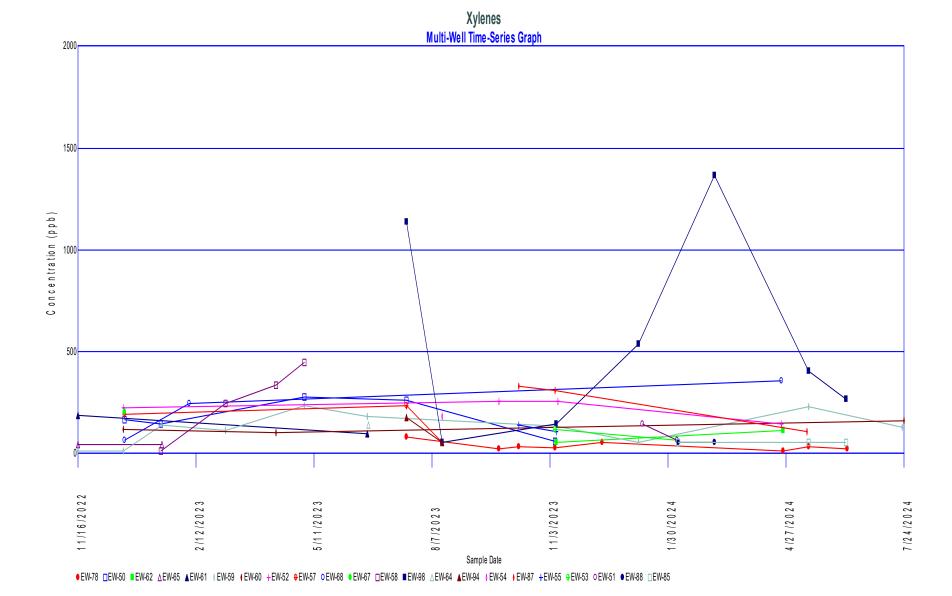

ug/L = micrograms per liter


J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated. LOD = laboratory's Limit of Detection



Page 2




Page 4

Page 5

Page 6

Page 7