February 2024 Monthly Compliance Report

Solid Waste Permit No. 588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-30 | March 8, 2024

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sec.	tion			Page
	Intro	duction.		4
1.0	Gas	Collectio	on	4
	1.1	Surface	e and Leachate Collection Emissions	4
		1.1.1	Surface Emissions	4
		1.1.2	Leachate Collection Emissions	5
	1.2	Existing	g Gas Extraction System Performance	7
	1.3	Remote	e Monitoring System	8
		1.3.1	Automated Wellhead Temperature Measurements	8
		1.3.2	Comparison with Manual Temperature Measurements	9
		1.3.3	Monthly Regulatory Wellhead Temperature Measurements	10
		1.3.4	LFG Sampling	11
	1.4	Large-D	Diameter Dual-Phase Extraction Wells	12
	1.5	VDEQ C	Concurrence on Wells	13
2.0	Side	wall Odo	or Mitigation	13
	2.1	Perime	eter Gas Collection System	13
	2.2	Sidewa	all Odor Mitigation System	13
	2.3	Pilot Sy	stem Construction	13
	2.4	Full Sys	stem Construction	14
3.0	Was	te Tempe	erature Monitoring	16
	3.1	Tempe	rature Monitoring System Design	17
	3.2	Tempe	rature Monitoring System Installation	17
4.0	Lead	hate Ext	raction and Monitoring	27
	4.1	Existing	g System Optimization	27
	4.2	Sampli	ng and Analysis Plan	29
		4.2.1	Sample Collection	29
		4.2.2	Quality Assurance and Quality Control	30
		4.2.3	Data Validation	31
		4.2.4	Laboratory Analytical Results	32
5.0	Settl	ement M	Nonitoring and Management	33
	5.1	Settlen	nent Monitoring and Management Plan	33
	5.2	Monthl	y Surveys	34
		5.2.1	Topographic Data Collection	34
		5.2.2	Settlement Plate Surveys	38

Table of Contents

Sec.	tion	Pc	ge
6.0	Inter	mediate Cover and EVOH Cover System	. 40
	6.1	Intermediate Cover Installation	. 40
	6.2	EVOH Cover System Design	. 41
	6.3	EVOH Cover System Procurement	. 41
	6.4	EVOH Cover System Installation	. 41
7.0	Storr	nWater Management	
	7.1	Stormwater Management Plan Development	. 41
	7.2	Stormwater Management Basin Design and Construction	
	7.3	Stormwater Management Plan Implementation	
	7.4	Long-Term Stormwater Control and Removal	
	7.5	Stormwater Monitoring	
8.0	Misc	ellaneous	
	8.1	Cease Waste Acceptance	
	8.2	Long-Term Plan	
	8.3	Monthly Compliance Reports	
	8.4	Community Outreach Program	
		Figures	
Figui	ro 1	Average Automated Wellhead Temperatures	۵
Figui		Automated vs. Manual Temperature Measurements	
Figui	re 1.	CO and H ₂ Concentration at EW-80	. 12
Figu		CO and H ₂ Concentration at EW-83	
Figui Figui		SOMS Phase I As-BuiltPhase 2 SOMS Wellhead Connections	
Figui		Phase 2 Sidewall Odor Mitigation System As-Built	
Figui		Temperature Monitoring Probe Locations	
Figu		TP-1 Average Temperatures for the Months of March 2023 through February 2024	
Figu		TP-2 Average Temperatures for the Months of March 2023 through February 2024	
Figu		TP-3 Average Temperatures for the Months of March 2023 through February 2024.	
Figu		TP-4 Average Temperatures for the Months of March 2023 through February 2024.	
_	re 10. re 11.	TP-5 Average Temperatures for the Months of March 2023 through February 2024 TP-6 Average Temperatures for the Months of March 2023 through February 2024	
_	re 12.	TP-7 Average Temperatures for the Months of March 2023 through February 2024	
_	re 13.	TP-8 Average Temperatures for the Months of March 2023 through February 2024	
_	re 14.	TP-9 Average Temperatures for the Months of March 2023 through February 2024	
_	re 15.	Estimated Dewatering Liquid Removal by Well	
_	re 16.	Estimated Volume of Liquids Removed from Landfill Gas Wells	

Table of Contents

Section		Page
Figure 17. Figure 18. Figure 19. Figure 20. Figure 21.	1-Month Elevation Change Map	36 37 38
	Tables	
Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7.	Summary of January Surface Emissions Monitoring Leachate Cleanout Pipe Monitoring Results January Temperature Exceedance Summary LFG Wellhead Sampling Summary System Averages of Sidewall Wellhead Gas Quality Monthly LFG-EW Leachate Monitoring Event Summary Elevation and Strain Data at Settlement Plate Locations	
Appendic	ces	
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F	Surface Emissions Monitoring Summary Letters In-Waste Temperatures on Select Days in February Daily Wellhead Temperature Averages Solid Waste Permit 588 Daily Borehole Temperature Averages Monthly Topography Analysis Sample Collection Log, Lab Reports, and Historical LFG-EW Leachate Monitor Results Summary	ring

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report provides updates regarding the progress towards completion of the items outlined in Appendix A of the Consent Decree between the City and VDEQ. The following sections outline progress during the month of February 2024 related to Solid Waste Permit (SWP) No. 588.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

1.1.1.1 Quarterly SEM

SCS performed the Fourth Quarter 2023 surface emissions monitoring event on December 14, 2023. The results of the Quarterly SEM were summarized in the December 2023 Compliance Report for the SWP No. 588 Landfill. A report outlining the results and exceedance locations was included in the Semi-Annual Report submitted to VDEQ on March 1, 2024.

The First Quarter 2024 SEM Event is scheduled to be completed by March 31, 2024.

1.1.1.2 Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, SCS performed additional surface emissions monitoring on February 8, 2024; February 14, 2024; February 20, 2024; and February 29, 2024. These weekly surface emissions monitoring (SEM) events were performed in accordance item 1.i in Appendix A of the Consent Decree between the City and VDEQ.

The monitoring in February generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint.

The Facility submitted letters to VDEQ outlining the results of the January monitoring events on February 14, 2024; February 21, 2024; February 28, 2024; and March 6, 2024.

Table 1. Summary of January Surface Emissions Monitoring

Description	February 8, 2024	February 14, 2024	February 20, 2024	February 29, 2024
Number of Points Sampled	171	170	171	170
Number of Points in Serpentine Route	100	100	100	100
Number of Points at Surface Cover Penetrations	71	70	71	70
Number of Exceedances	2	2	3	2
Number of Serpentine Exceedances	0	0	1	0
Number of Pipe Penetration Exceedances	2	2	2	2

There was one serpentine exceedance detected in February 2024 at Tag #29 in the southwest corner of the landfill. In addition, new exceedances were detected at pipe penetrations of three vertical extraction wells (EW-52, EW-66, and EW-67). While the exact cause of these exceedances is unknown, exceedances typically have corresponded to periods of pump down time, insufficient soil cover, and reduced vacuum in the vicinity.

During February, additional soil cover was placed throughout the SWP# 588 landfill, including at some of these exceedance locations. By the final weekly monitoring event of the month, corrective actions had been successful for all previous exceedance locations and only one new exceedance at EW-67 remained. Corrective actions taken at this location may include placement of additional soil, addition of a well-bore skirt, installation of a foam or bentonite seal, continued and improved dewatering activities, and well tuning to increase gas extraction. Corrective actions to address the ongoing exceedance are planned for the month of March 2024.

1.1.2 Leachate Collection Emissions

SCS Field Services (SCS-FS) visited the Bristol Landfill on February 2, 2024, and performed monitoring of the leachate, witness zone, and gradient control clean-outs at the northern and southern ends of the landfill. The results of that monitoring are included in Table 2. Table 2 also lists the cleanout pipe description based on site records and a review of correspondence.

Please note that LC07 is not connected to LFG collection system. During connection of the other leachate cleanouts to the LFGCCS in 2020, measurements of gas composition in LC07 indicated low levels of landfill gas in this cleanout.

Table 2. Leachate Cleanout Pipe Monitoring Results

Description	ID#	Record Date	CH4 (% by Vol)	CO2 (% by Vol)	O2 (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H2O)	Adj Static Pressure (in H2O)	System Pressure (in H2O)
Southern Cleanouts Gradient West	LC01	2/2/2024 12:16:10 PM	48.3	50.5	0.0	1.2	61.0	61.1	-10.77	-10.75	-10.99
Southern Cleanouts Gradient East	LC02	2/2/2024 12:17:43 PM	50.2	49.5	0.0	0.4	61.3	61.3	-10.51	-10.43	-10.81
Southern Cleanouts Leachate Center	LC03	2/2/2024 12:19:39 PM	22.0	16.8	13.0	48.2	60.6	60.5	-11.11	-11.11	-10.85
Southern Cleanouts Witness East	LC04	2/2/2024 12:21:44 PM	4.5	4.3	19.1	72.2	60.1	60.0	-10.77	-10.77	-10.77
Southern Cleanouts Leachate West	LC05	2/2/2024 12:24:57 PM	51.8	48.2	0.0	0.0	59.4	59.4	-10.43	-10.43	-10.89
Southern Cleanouts Gradient Center West	LC06	2/2/2024 12:26:45 PM	48.9	31.6	3.9	15.6	58.9	59.0	-10.78	-10.78	-10.78
Southern Cleanouts Leachate East	LC08	2/2/2024 12:28:28 PM	51.4	46.8	0.0	1.8	58.8	58.9	-10.43	-10.43	-10.78
Southern Cleanouts Gradient Center East	LC09	2/2/2024 12:30:05 PM	14.6	30.3	12.4	42.7	59.1	59.1	-10.43	-10.52	-10.77
Southern Cleanouts Leachate West	LC10	2/2/2024 12:31:34 PM	5.4	8.0	18.6	68.1	59.1	59.1	-10.77	-10.77	-10.71
Northern Cleanouts Leachate East	NC01	2/2/2024 12:39:28 PM	9.3	6.7	17.2	66.8	57.9	57.9	-14.47	-14.47	0.00
Northern Cleanouts Leachate Center	NC02	2/2/2024 12:40:26 PM	6.8	5.1	18.8	69.4	59.3	58.9	-14.28	-14.51	0.00
Northern Cleanouts Leachate West	NC03	2/2/2024 12:41:29 PM	2.9	1.8	20.3	75.0	58.7	58.4	-14.49	-14.51	0.00
Northern Cleanouts Witness East	NC04	2/2/2024 12:43:32 PM	26.0	17.9	10.2	45.9	54.6	54.5	-14.81	-14.47	0.00
Northern Cleanouts Witness Center	NC05	2/2/2024 12:44:54 PM	46.9	30.3	1.9	20.9	54.2	54.7	-14.51	-14.51	0.00

Description	ID#	Record Date	CH4 (% by Vol)	CO2 (% by Vol)	O2 (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H2O)	Adj Static Pressure (in H2O)	System Pressure (in H2O)
Northern	NC06	2/2/2024	3.1	2.1	20.3	74.6	57.9	58.1	-14.52	-14.49	0.00
Cleanouts		12:46:16									
Witness West		PM									
Northern	NC07	2/2/2024	49.7	35.8	0.5	14.0	59.2	59.0	-10.12	-10.10	0.00
Cleanouts		12:48:04									
Gradient East		PM									
Northern	NC08	2/2/2024	51.5	35.6	1.3	11.6	58.7	58.6	-10.14	-10.14	0.00
Cleanouts		12:49:31									
Gradient Center		PM									
East											
Northern	NC09	2/2/2024	54.1	37.0	1.0	7.9	57.0	56.4	-10.11	-10.10	0.00
Cleanouts		12:50:38									
Gradient Center		PM									
West											
Northern	NC10	2/2/2024	14.1	10.8	16.0	59.1	57.6	57.7	-10.43	-10.43	0.00
Cleanouts		12:52:04									
Gradient West		PM									

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in the following sections of this report.

Additional actions taken by SCS-FS include the following:

- Replacing air regulators at individual wells
- Troubleshooting air compressor
- Adjusting blower set-points
- Investigation of high oxygen levels
- Replacing a Kanaflex hose on wellheads
- Modifications to lateral piping
- Placement of enhanced posi-shell on Quarry sidewalls
- Replacement of sample ports
- Winterizing GCCS components

1.3 REMOTE MONITORING SYSTEM

In the Fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas wellheads. The purpose of the sensors is to record and transmit well-head gas temperatures via a cellular connection to a database managed by SCS-RMC.

The City is providing average temperatures recorded by the sensors to VDEQ on a daily basis via email. Average daily temperatures recorded by the remote monitoring system during the month of January are included in Appendix C. In addition, SCS previously prepared semi-monthly status updates to satisfy the conditions of compliance provision #2 of the Environmental Protection Agency (EPA) Region III letter, Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility, dated August 23, 2021. On August 2, 2023, VDEQ requested that such updates be included in the monthly compliance reports going forward. Accordingly, this section is a summary of temperature monitoring activities during the monthly monitoring period of February 2024.

1.3.1 Automated Wellhead Temperature Measurements

SCS reviewed the automated hourly temperature measurements from February 2024, and identified the following trends:

- Temperature probes removed at decommissioned wells: Temperature probes at EW-34 and EW-40 were removed in December due to the decommissioning of the wells. In February, SCS and the City were still procuring the proper fittings to deploy these sensors to 3" CPVC wells where temperature measurements would provide pertinent information.
- Temperatures over 145°F: Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded consistently at EW-52, EW-53, and EW-54 in February. The highest average temperature, 146.6°F, was measured at EW-52 (see Figure 1). SCS believes that wintry ambient temperatures are reflected in the lower average LFG temperatures recorded by automated wellhead sensors. The highest average temperatures in February shown in Figure 1 are between 130 and 140°F, while they were on the order of 150 to 160°F in fall 2023.
- Low average temperatures at certain wells: Average temperatures less than 50°F recorded at EW-35, EW-47, and EW-51 correlate to very low LFG flowrates through the wellheads; all less than 6 scfm in February.

Figure 1. Average Automated Wellhead Temperatures

1.3.2 Comparison with Manual Temperature Measurements

Per the approval issued by VDEQ on August 2, 2023, the Facility ceased dedicated daily manual temperature measurements in the Permit No. 588 Landfill. In lieu of these measurements, the City has agreed to compare instantaneous hourly automated temperature measurements with temperatures measured at each wellhead with a handheld sensor during monthly compliance monitoring. These comparisons are shown in Figure 2, with the $\pm 8\%$ deviation goals as prescribed in the VDEQ approval.

Temperature comparisons outside the $\pm 8\%$ deviation goal lines were found at wells EW-36A, EW-53, EW-54, EW-58 and EW-64. At EW-36A, the stainless-steel well casing appears to be a limiting factor in obtaining precise LFG temperatures with a handheld sensor.

At EW-54 the disparity between manual and automated temperature measurements was 11.5%; just outside the 8% threshold. SCS has historically noted challenges recording precise LFG temperatures at low flow rates when utilizing automated sensors, and LFG flowrates were consistently low (less than 5 cfm) during the month's wellfield monitoring events. Additionally, at the time the manual measurement was taken, the hourly automated temperature rapidly increased between automated measurements, which seems the most likely cause of the difference in measured temperatures.

The disparity between automated and manual temperature measurements at EW-58 and EW-64 continued to be more significant; 25%, and 16%, respectively. SCS has ruled out known typical causes (battery failure, low LFG flow, and casing material), but is still investigating potential causes of temperature disparity at EW-58 and EW-64 and will provide an update when a cause of this discrepancy has been identified.

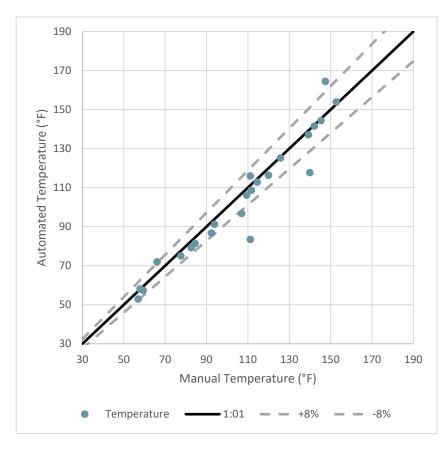


Figure 2. Automated vs. Manual Temperature Measurements

1.3.3 Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted February 1, 2023, with follow-up monitoring several days after. Additionally, SCS typically measures wellhead temperatures at the SWP No. 588 Landfill on a semi-monthly basis. During this monitoring period, temperature exceedances were resolved at EW-36A, 65, and 94. Table 3 provides the status of all exceedances recorded during this monitoring period. An HOV request was submitted for EW-52, EW-64, EW-81, EW-85, EW-88, EW-89, EW-91, and EW-99 on November 8, 2023 and was subsequently approved on January 9, 2024.

Table 3. January Temperature Exceedance Summary

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 2/29/24
EW-49	2/28/24	2/29/24 144°F	1 day	Resolved within 15 days
EW-52	1/30/24	2/1/24 152.8°F	2 days	Resolved within 15 days
EW-53	1/19/24	2/1/24 107°F	12 days	Resolved within 15 days

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 2/29/24
EW-54	1/19/24	2/15/24 100.7°F	27 days	Resolved within 15 days
EW-54	2/26/24	2/29/24 185.4°F	3 days	Ongoing, within 15-day timeline
EW-77	12/19/23	2/26/24 144.1°F	70 days	Resolved within 120-day timeline
EW-80	12/4/23	2/29/23 149.4°F	88 days	Ongoing, within 120-day timeline
EW-81	2/14/24	2/29/24 173°F	16 days	Resolved within 15 days
EW-83	12/4/23	2/29/24 173°F	88 days	Ongoing, within 120-day timeline
EW-85	2/26/24	2/29/24 181.1°F	3 days	Ongoing, within 15-day timeline
EW-97	1/3/24	2/7/24 133.7°F	36 days	Resolved within 60-days
EW-97	2/26/24	2/29/24 149.1°F	3 days	Ongoing, within 15-day timeline

1.3.4 LFG Sampling

SCS collected weekly LFG samples from wells with temperature exceedances lasting more than 7 days using 1.5-L Summa canisters during January. The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H_2) content. As of 1/31/24, the City is in possession of lab results for sampling on January 24, February 1, February 7, and February 15 to fulfill the requirement in 40 CFR 63.1961(a)(5). Lab results are summarized in Table 4.

Table 4. LFG Wellhead Sampling Summary

Sample Da	ite	1/24/24	2/1/24	2/7/24	2/15/24
77	CO (ppmv)	964	944	824	189
77	H2 (Vol. %)	0.28	0.45	0.3	0.38
00	CO (ppmv)	ND	ND	ND	ND
80	H2 (Vol. %)	1.31	1.12	1.13	0.99
81	CO (ppmv)				424
01	H2 (Vol. %)				12.2
83	CO (ppmv)	598	624	623	556
03	H2 (Vol. %)	16.2	16.1	16	15
88	CO (ppmv)				347
00	H2 (Vol. %)				9.05
97	CO (ppmv)	417	362		
31	H2 (Vol. %)	10.6	8.17		

The presence of hydrogen in the samples collected during this monitoring period indicates that combustion reactions are unlikely.

Carbon monoxide and hydrogen at wells EW-80 and EW-83 for the last five weeks or more are shown in Figures 3 and 4. There have been low concentrations of carbon monoxide and hydrogen at EW-80 compared to other wells under enhanced monitoring at this site. Measured concentrations of these gases in these wells do not indicate trends in either compound.

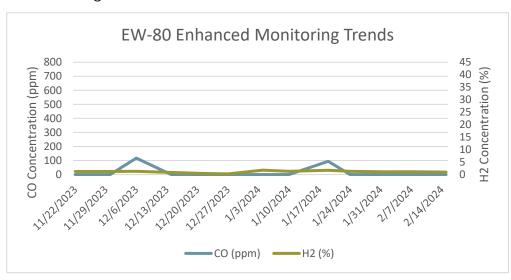
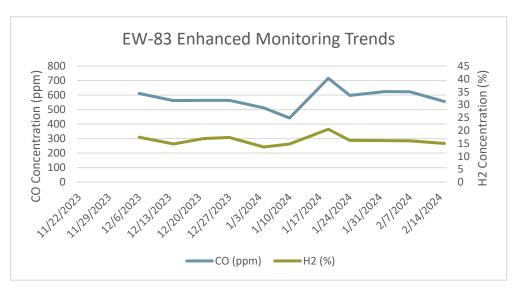



Figure 1. CO and H₂ Concentration at EW-80

Figure 1. CO and H₂ Concentration at EW-83

1.4 LARGE-DIAMETER DUAL-PHASE EXTRACTION WELLS

SCS completed design work on an expansion of the existing GCCS during the month of December 2022. The proposed expansion includes at least 5 large diameter dual-phase extraction wells. SCS submitted the design to VDEQ prior to December 31, 2022. The City commenced solicitation of contractor's bids for this project by advertising for bids and received one bid for the project from SCS

Field Services Construction (SCS-CONS). On January 26, 2023, the City awarded the project to SCS-CONS. The City's construction contractor left site as of the GCCS expansion project completion on October 12, 2023.

1.5 VDEQ CONCURRENCE ON WELLS

As described in previous monthly compliance reports, the City engaged with VDEQ in discussions about the proposed approach for landfill GCCS improvements and expansions. Upon completion of the landfill gas collection system, SCS will submit updated as-built drawings depicting the completed system to VDEQ.

2.0 SIDEWALL ODOR MITIGATION

The City has designed and constructed a system to control fugitive emissions emanating from the quarry sidewalls. Specific aspects of the proposed design features are described in the following sections.

2.1 PERIMETER GAS COLLECTION SYSTEM

SCS's design of the GCCS expansion described in Section 1.4 included perimeter LFG wells. These wells are closer to the sidewall to intercept landfill gas that potentially could migrate to the quarry wall. These wells supplement the sidewall odor mitigation system described in Section 2.2. As described in the April 2023 Monthly Compliance Report for the SWP No. 588 Landfill, construction of the perimeter gas collection system was completed. SCS submitted a letter to VDEQ documenting completion of the Perimeter Gas Collection System on May 1, 2023.

2.2 SIDEWALL ODOR MITIGATION SYSTEM

On behalf of the City and in an effort to capture emissions from the quarry sidewall, SCS designed a sidewall odor mitigation system (SOMS) during the month of October 2022. The design of this system was prepared and submitted to VDEQ on November 1, 2022.

2.3 PILOT SYSTEM CONSTRUCTION

SCS-CONS completed substantial construction of Phase 1 of the SOMS during the month of February 2023, SCS-FS began monitoring Phase 1 connected Horizontal Collector (HC) wellheads during the month of March, and SCS-FS continued weekly wellhead monitoring into the month of May 2023. Phase 1 is considered the pilot system portion of the SOMS. SCS submitted a design engineer certification to VDEQ on February 10, 2023 that documented the substantial completion of Phase 1 of the SOMS. Details of Phase 1 construction progress and monitoring can be found in the monthly compliance reports for the SWP No. 588 landfill.

Figure 5 shows the Phase 1 as-built, which includes the locations of the HC wellheads and HC sumps installed in Phase I, as well as the 4" header connection to the existing LFGCCS. The lower collector installed as part of Phase II was tied-in to the north end of the Phase I lower collector, and the upper collector installed as part of Phase II was tied-in to the south end of the Phase I upper collector.

APPROX. LOCATION OF LOWER HC PHASE I NORTHERN TIF-IN TO PHASE II SW-47. SW-48. SW-48. SW-49. SW-49. SW-21. SW-21.

Figure 2. SOMS Phase I As-Built¹

Both the upper and lower collectors of Phase 1 of the system have been connected to the substantially completed Phase 2 of the system. Collection of landfill gas by both the upper and lower collectors indicates that the system is working as intended. Based on this data, Phase 2 was constructed utilizing the same general configuration.

2.4 FULL SYSTEM CONSTRUCTION

SCS-CONS substantially completed construction of Phase 2 of the SOMS during the month of June 2023 as Phase 2 was connected to vacuum as of June 14, 2023. Cover soil placement continued into the month of October 2023, and ceased when the construction crew left site on October 12, 2023 upon project final completion. Figure 6 shows SOMS Phase 2 wellhead installation and connections at HC wells along the southeastern perimeter of the landfill.

Figure 3. Phase 2 SOMS Wellhead Connections

During the month of February 2024, SCS-FS collected monitoring data at each wellhead under vacuum. A summary of those measurements is shown in Table 5.

¹ Location data was collected using mapping grade global positioning system equipment.

Table 5. System Averages of Sidewall Wellhead Gas Quality

Record Date	Record Date Average CH4 [%]		Average O2 [%]	Average Bal Gas [%]
1/23/2024	5.7	10.1	16.8	67.4
2/5/2024	3.0	5.8	18.6	72.7
2/20/2024	3.6	6.2	17.7	72.5

Isolation valves have been installed on the SOMS to allow for manipulation of flow routed to the supplemental flare, currently being leased. The flare was constructed by Perennial Energy Incorporated (PEI). In cases where in is practical given the layout of the overall system, the gas is being re-routed to the supplemental flare because of the lower quality of the gas. The City is attempting to improve the quality of the gas directed to the primary flare and energy generation facility.

The sidewall system average gas composition indicates lower methane content than typical landfill gas collection systems. The gas quality measurements indicate that the SOMS is functioning as designed because landfill gas is being withdrawn and oxygen intrusion is acceptable. The wideranged gas composition may indicate that some areas of the landfill may be experiencing higher landfill gas concentrations than areas where methane content is seemingly insignificant. SCS-FS will adjust SOMS wellheads based on gas quality to increase flow from sections of the system with high methane content and reduce flow from sections of the system with low methane content. Phase 2 lower and upper collectors locations, including HC wellhead riser and sump locations, are shown in the as-built depicted as Figure 7².

² During construction, redundant risers were put in place to accommodate supplemental wellhead and installation in the future. Figure 10 shows all riser and sump locations. The final submittal to VDEQ, Revised June 26, 2023, shows the locations of actual wellhead installation. The facility may relocate wellheads based on field conditions.

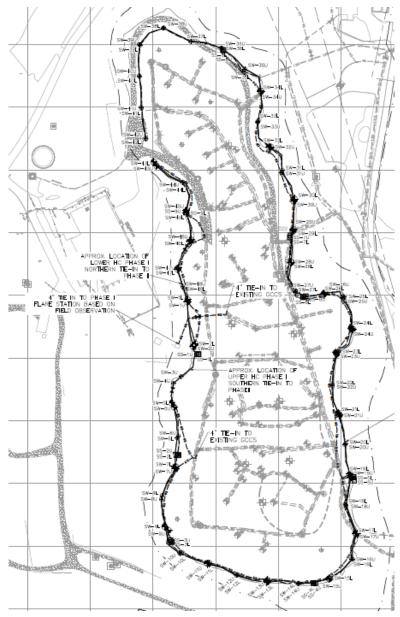


Figure 4. Phase 2 Sidewall Odor Mitigation System As-Built³

At this time, not every SOMS horizontal collector riser (HC) has a wellhead installed, but HC risers may receive a wellhead at a future date as warranted by field conditions.

3.0 WASTE TEMPERATURE MONITORING

On behalf of the City, SCS designed a temperature monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

³ Location data was collected using mapping grape global positioning system equipment.

3.1 TEMPERATURE MONITORING SYSTEM DESIGN

The temperature monitoring system consists of 9 boreholes drilled into the waste mass. A steel casing was placed in each borehole and the hole was backfilled around the casing with aggregate. A series of temperature sensors was placed inside the steel casing. At the top of each borehole, an IIoT transmitter collects the data from the sensors and transmits it to a cloud-based RMC system. The City submitted design of the temperature monitoring system to VDEQ on November 30, 2022.

3.2 TEMPERATURE MONITORING SYSTEM INSTALLATION

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP No. 588 Landfill. The locations of the temperature probes are shown in Figure 5.

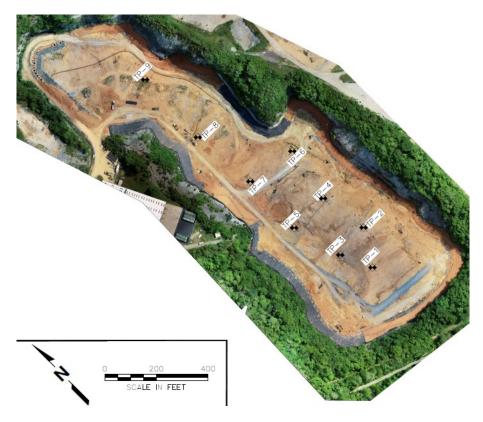


Figure 5. Temperature Monitoring Probe Locations

SCS began collecting temperature data daily on February 15, 2023. The temperature sensors continued to transmit temperature data during the month of February 2024. Average daily temperatures recorded by the sensors for the Month of February are included in Appendix D. Each week the average temperatures from a select day of that week are downloaded and compared to temperatures recorded during the previous week. Average daily temperatures recorded on select days during the month of February are shown in Appendix B. The average temperatures recorded during the months of March 2023 through February 2024 are shown in Figures 6 through 14 on the following pages.

Figure 6 shows daily average temperatures record by Temperature Probe 1 (TP-1) during the months of March 2023 through February 2024. Based on the data, temperatures were consistent from March through May and saw increases during the months of June, July and August at depths or 100 feet and below. In September, average temperatures showed little change when compared to August and in some cases, show a small decrease. Temperatures have stayed generally consistent based on measurements collected between September 2023 and February 2024.

TP-1 was originally drilled to a depth of 180 feet, but the contractor was unable to install the casing beyond a depth of 160 feet. TP-1 did not record temperatures between July 23, 2023 and July 30, 2023 due to a dead battery. The battery was replaced and TP-1 began recording temperatures again on July 31, 2023.

Figure 6. TP-1 Average Temperatures for the Months of March 2023 through February 2024

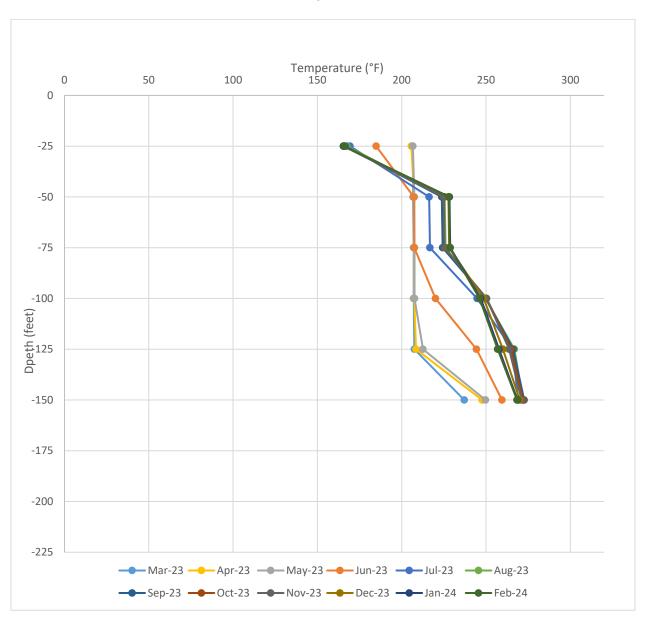


Figure 7 shows daily average temperatures in Temperature Probe 2 (TP-2) during the months of March 2023 through February 2024. Based on the data, temperatures have been consistent during the last eleven months, with an increase at 25 ft. during January 2024 and February 2024.

TP-2 was originally drilled to a depth of 160 feet. TP-2 did not record temperatures between August 15, 2023 and September 17, 2023 due to a dead battery. A replacement battery was installed in September of 2023 and TP-2 recording temperatures again on September 18, 2023.

Figure 7. TP-2 Average Temperatures for the Months of March 2023 through February 2024

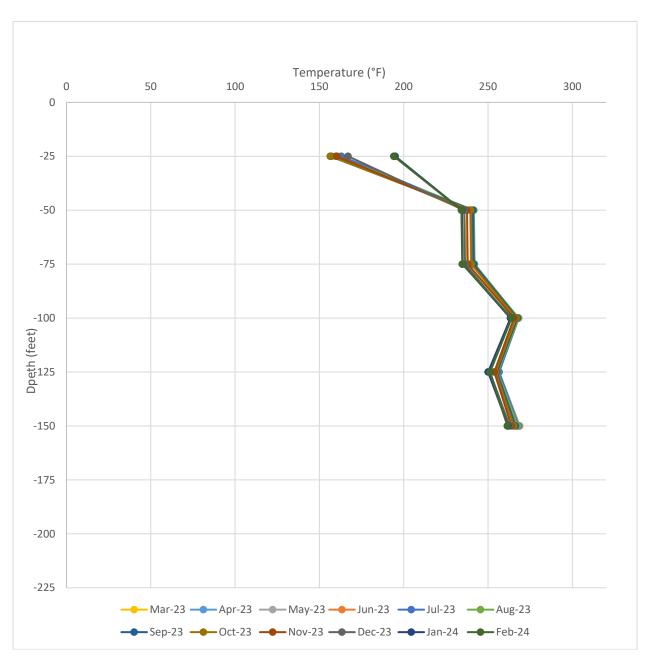


Figure 8 shows daily average temperatures in Temperature Probe 3 (TP-3) during the months of March 2023 through February 2024. Based on the data, temperatures have been generally consistent during the last year. There has been an increase in temperatures during the months of October 2023 through February 2024 at the 50-foot and 75-foot depths. Temperatures were consistent during the months of November 2023, December of 2023, January 2024, and February. SCS will continue to review temperature data recorded by this probe.

Figure 8. TP-3 Average Temperatures for the Months of March 2023 through February 2024

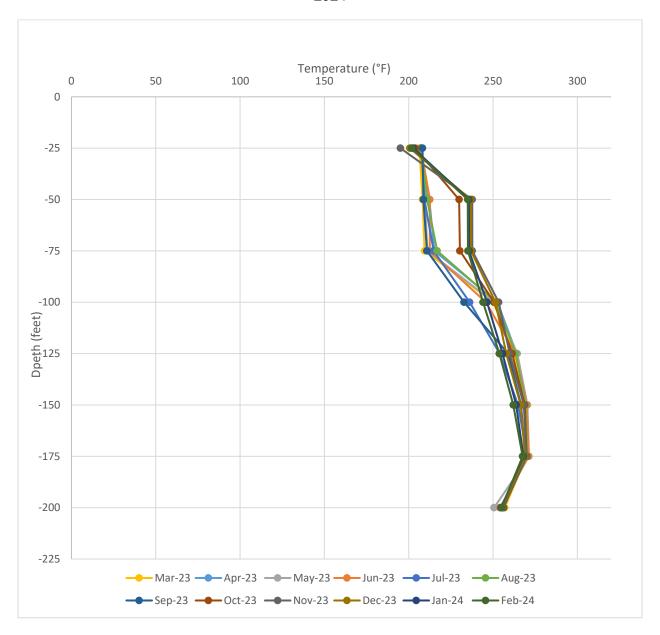


Figure 9 shows daily average temperatures in Temperature Probe 4 (TP-4) during the months of March 2023 through February 2024. Based on the data, temperatures appeared to drop during the months of April 2023 and May 2023, but returned to levels closer to baseline during the months of

June 2023 through February 2024. December temperatures appear to be closer to baseline than the low temperatures observed in April and May.

Figure 9. TP-4 Average Temperatures for the Months of March 2023 through February 2024

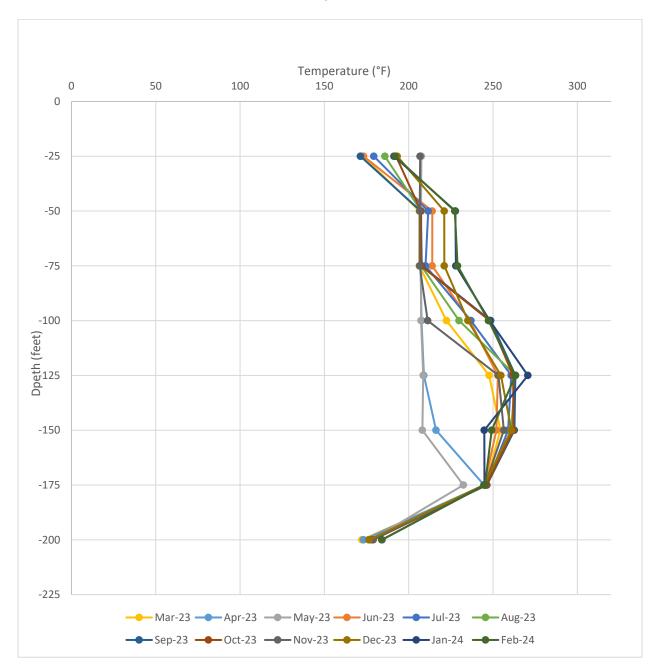


Figure 10 shows daily average temperatures in Temperature Probe 5 (TP-5) during the months of March 2023 through February 2024. Based on the data, temperatures have been consistent during the last nine months.

TP-5 was damaged in late October 2023 and the sensors at the 125-foot, 150-foot, 175-foot, and 200-foot depths stopped functioning. SCS completed troubleshooting during the month of November 2023 and the sensors returned to operation later that month. TP-5 appears to have stopped recording temperatures again during the latter half of February 2024. SCS is in the process of investigating the reason for the failure to record temperature data.

Figure 10. TP-5 Average Temperatures for the Months of March 2023 through February 2024

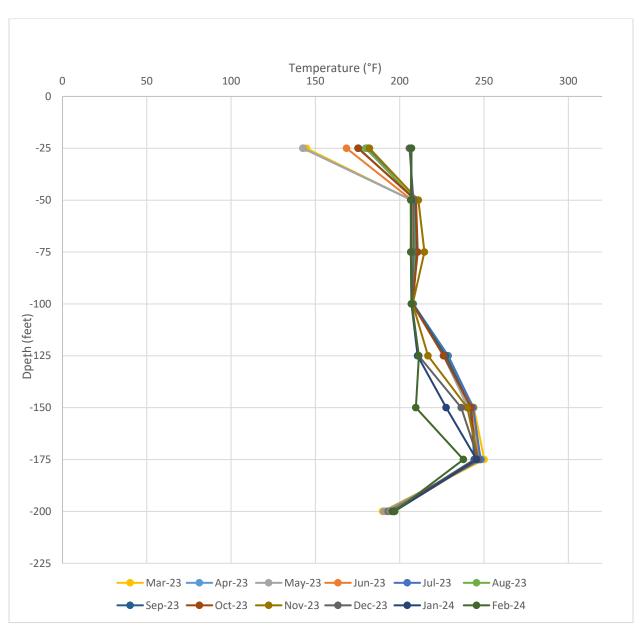


Figure 11 shows daily average temperatures in Temperature Probe 6 (TP-6) during the months of March 2023 through February 2024. Based on the data, temperatures have been generally consistent during the last nine months below the 25-foot level. A decrease at the 25-foot level was observed during the months of June 2023, September 2023, and October 2023. Temperatures returned to baseline during the months of July 2023 and August 2023. Temperatures at the 25-foot level dropped again in December 2023 and rose in January 2024. There was also an increase at the 125-foot level in January 2024 and February.

TP-6 was originally drilled to a depth of 208 feet and casing was installed to the full depth. During the installation of the installation of replacement sensors, a blockage within the casing prevented placement of sensors below the 125-foot depth.

Figure 11. TP-6 Average Temperatures for the Months of March 2023 through February 2024

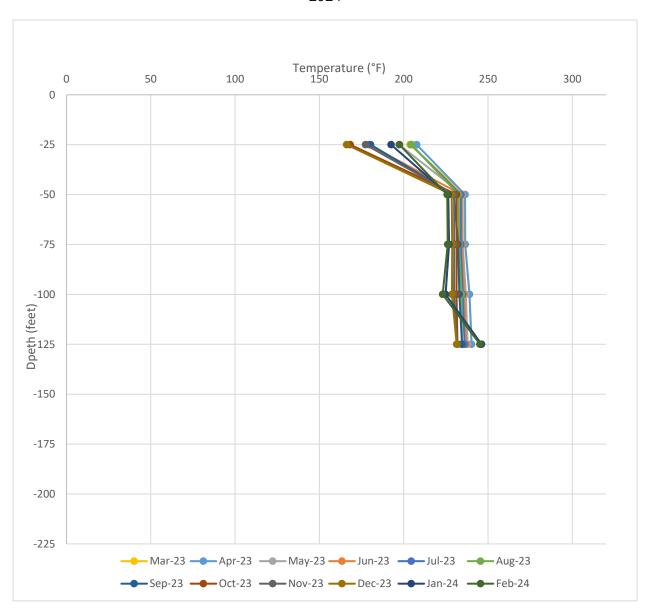


Figure 12 shows daily average temperatures in Temperature Probe 7 (TP-7) during the months of March 2023 through February 2024. Based on the data, temperatures have been consistent during the months of March 2023 through November 2023. Average temperatures dropped during the month of December 2023. Changes in temperatures observed during the month of January 2024 varied by depth. Readings in February 2024 are similar to those from December 2023. Observations of adjacent wells indicate that there may be below grade settlement of waste occurring in this area.

TP-7 did not record temperatures between August 15, 2023 and September 17, 2023 due to a dead battery. A replacement battery was installed in September of 2023 and TP-7 recording temperatures again on September 18, 2023.

Figure 12. TP-7 Average Temperatures for the Months of March 2023 through February 2024

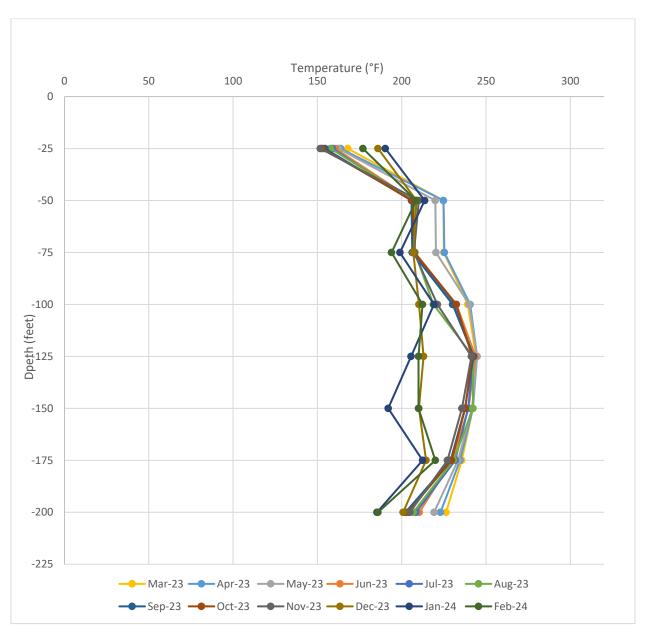


Figure 13 shows daily average temperatures in Temperature Probe 8 (TP-8) during the months of March 2023 through February 2024. Based on the data, temperatures increased throughout 2023. The rate of increase appears to have slowed between September 2023 and February 2024. At some depths average temperatures decreased in January 2024 and February 2024.

TP-8 Did not read from November 8 to November 27 due to faulty battery which was replaced on November 28.

Figure 13. TP-8 Average Temperatures for the Months of March 2023 through February 2024

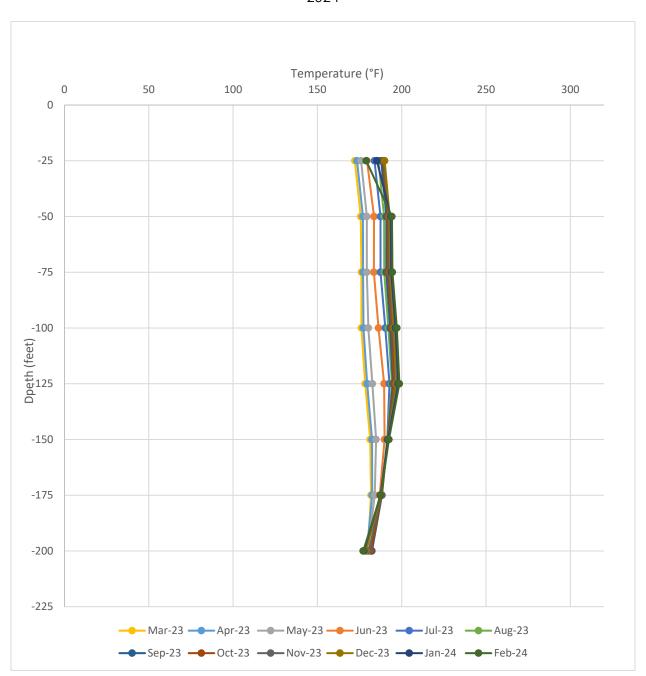
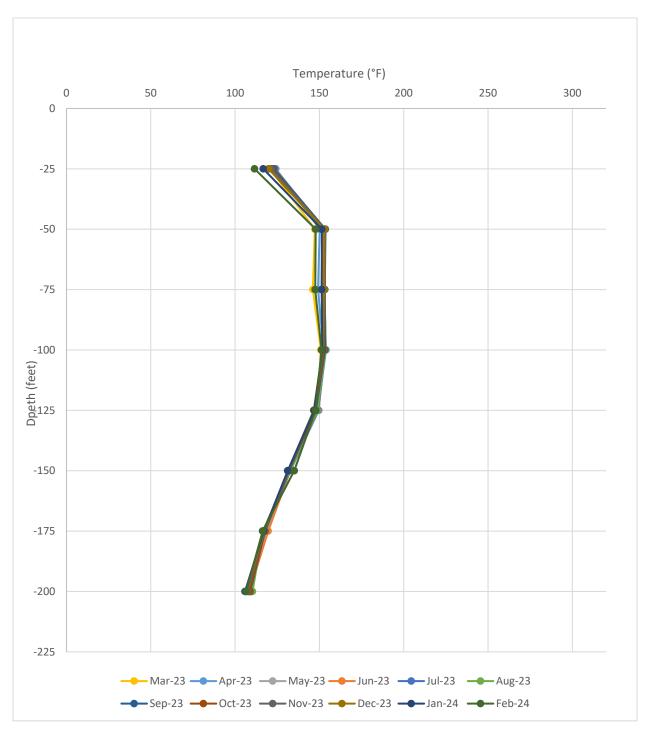



Figure 14 shows daily average temperatures in Temperature Probe 9 (TP-9) during the months of March 2023 through February 2024. Based on the data, temperatures have been consistent during the last year.

Figure 14. TP-9 Average Temperatures for the Months of March 2023 through February 2024

The data indicates that temperatures within the landfill are generally stable and are typical of those observed at elevated temperature landfills (ETLFs). During the months of May 2023 through September 2023, substantial construction occurred at the landfill including deep dual extraction wells that may have impacted temperatures within the waste mass adjacent to the probes. While quantifying the effect of the construction of addition wells is difficult, changes in wellhead temperature have been observed in existing wells adjacent to newly installed wells. The temperatures recorded are substantially lower than those associated with landfill fires or other combustion processes, which can exceed 1000°F. This further indicates that the elevated temperatures are due to sources other than combustion.

4.0 LEACHATE EXTRACTION AND MONITORING

The City is taking steps to improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals.

4.1 EXISTING SYSTEM OPTIMIZATION

During bimonthly gas extraction well monitoring, SCS also collected stroke counter data from the pumps installed in the GCCS extraction wells. Stroke count measurements are also collected weekly as part of routine pump maintenance. These stroke counts were collected from 40 wells from February 1 – February 26.

Based on this data, SCS can estimate the number of gallons of liquid pumped from each well. SCS assumed that each stroke from a float-style pneumatic pump correlates to approximately 0.3 gallons of liquid removed from the well. Additionally, Blackhawk piston-style pumps remove approximately 0.11 gallons per stroke recorded. Estimates of the quantities of liquids removed from each well during February are shown in Figure 15.

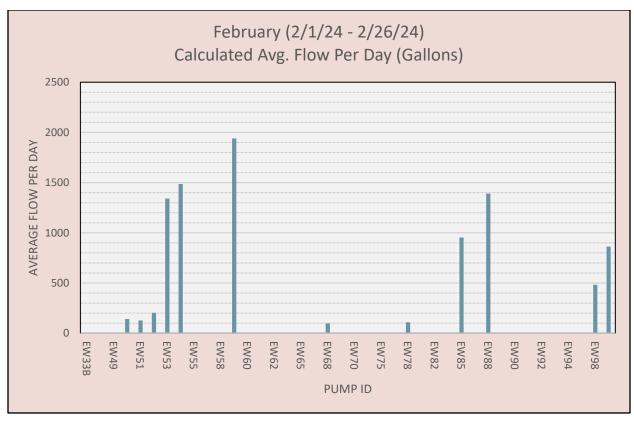


Figure 15. Estimated Dewatering Liquid Removal by Well

SCS-FS continues to implement an aggressive maintenance schedule for landfill gas liquids removal pumps. The pumps at wells EW-53, 54, 59, and 88 removed the most liquid in February, according to the stroke counter data. Several pumps recorded few or no strokes during February. These were sent to the manufacturer for repair had experienced significant wear and tear due to ETLF conditions and repairs were no longer feasible. The City has ordered additional pumps to replace these units, but due to supply chain delays, the pumps have not arrived on site yet.

In some cases, low volumes of landfill liquids removed correlate to low measured liquid levels within the gas wells. During the landfill gas well liquids monitoring event, the following wells were noted to be dry or have low liquid levels: EW-56, EW-63, EW-69, and EW-72. When this condition is identified, pumps may be relocated to wells with consistently higher liquid levels.

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations. Pumps require servicing after relatively short intervals. During the month of February 2024 pump maintenance occurred on 2/1/24, 2/8/24, 2/12/24, and 2/26/24. The SWP No. 588 Landfill's float-style pumps are bump-checked daily, and Blackhawk piston drive rods are cleaned routinely each week.

During the construction of the LFGCCS expansion outlined in Sections 1.4 and 2.1, multiple types of leachate extraction pumps were installed. The City and SCS will continue to evaluate the performance of those pumps in the coming months. Based on that evaluation, the City may replace pumps identified in particularly challenging well with a pump type that has been determined to be more effective.

4.1.1 Total LFG Liquids Removal

To improve the accuracy of the total landfill gas liquids flow rate, two flow meters were installed on the landfill gas liquid forcemains in December 2023. One flow meter was installed on the SWP No. 588 primary landfill gas liquid forcemain. The other was installed on the SWP No. 588 alternate landfill gas liquids forcemain, which also serves as the conduit for condensate from the temporary perennial flare and the SWP No. 588 stormwater pump. The SWP No. 588 alternate landfill gas liquids forcemain will also serve as the SWP No. 498 landfill gas liquids forcemain in the future. In February, the total liquids flow recorded by the SWP No. 588 primary landfill gas liquids flowmeter was 163,000 gallons.

The progress in landfill gas liquids removal over the last three months is depicted in Figure 21. Given the improved accuracy of a flowmeter compared to flow estimates based on collected stroke counter data, SCS and the City will only use calculated flow rates to track individual pump performance going forward, not the total liquids removal from the system.

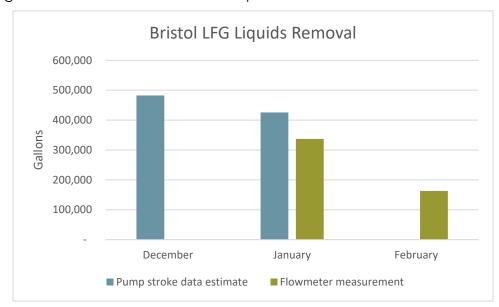


Figure 16. Estimated Volume of Liquids Removed from Landfill Gas Wells

4.2 SAMPLING AND ANALYSIS PLAN

On November 1, 2022, SCS submitted to VDEQ the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan for the Bristol Integrated Solid Waste Management Facility Solid Waste Permit No. 588 Landfill and the plan was subsequently revised on December 1, 2022. Refer to the November 2022 and December 2022 Compliance Reports for the SWP No. 588 Landfill for additional information.

4.2.1 Sample Collection

On February 6 and 7, 2024, SCS collected leachate samples from four Dual Phase LFG extraction wells (EW-51, EW-53, EW-85, and EW-88). At the time of sample collection dissolved oxygen,

oxidation-reduction potential, pH, specific conductance, temperature, and turbidity were measured and recorded. The sample collection log is included in **Appendix F**.

SCS' field staff were not able to collect samples from the following wells for the following reasons:

- Pump was not running at the time of monitoring for the following wells: EW-33B, EW-36A, EW-49, EW-50, EW-52, EW-54, EW-55, EW-57, EW-59, EW-60, EW-62, EW-68, EW-74, EW-75, EW-76, EW-78, EW-81, EW-87, EW-89, EW-91, EW-92, EW-94, EW-96, EW-98, and EW-100.
- Pump was disconnected at the time of monitoring for the following wells: EW-61, EW-64, EW-65. EW-82. EW-83. and EW-90.
- There was no sample port at the time of monitoring for the following well: EW-67. The City and SCS-FS are coordinating to get sample port installed on this well.
- There is no pump at the time of the monitoring for the following wells: EW-58, EW-63, EW-69, EW-71, EW-72, EW-73, EW-77, EW-79, EW-80, EW-84, EW-86, EW-93, EW-95, EW-97. and EW-99.
- There is no pump and the well appeared dry at the time of monitoring for the following well: EW-56.
- Well EW-70 was not accessible during the monitoring event.

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia and Pace Analytical Services, LLC (Pace) in Baton Rouge, Louisiana for analysis. The Enthalpy's and Pace's Virginia Division of Consolidated Laboratory Services (VELAP) certifications are provided on the certificate of analysis (COA) included in **Appendix F**. The samples were analyzed for the parameters utilizing the analytical methods described in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan.

4.2.2 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for VOC analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analyses. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A summary of each of these is presented below:

 Method Blank – The method blank is deionized water subjected to the same reagents and manipulations to which site samples are subjected. Positive results in the method blanks may indicate either contamination of the chemical reagents or the glassware and implements used to store or prepare the sample and resulting solutions.

- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis. MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.
- LCS These samples consist of distilled/deionized water injected with the parameters of
 interest for single parameter methods and selected parameters for multi-parameter
 methods according to the appropriate analytical method. LCS samples are prepared and
 analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to
 monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are like the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

No trip or method blank detects were identified for the February 2024 monitoring event. The laboratory analysis reports for the February 2024 monitoring event trip blanks are included in **Appendix F**. The February 2024 monitoring event laboratory QA/QC reports, including the method blank results, are included in the COA in **Appendix F**.

4.2.3 Data Validation

To identify analytical data that may not represent valid results, data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection Agency (EPA) guidance⁴. Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with parameter detections less than five times that of the trip blank, field blank, and/or method blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Samples with common laboratory contaminant parameter detections less than 10 times that of the trip blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not validated as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis.

⁴ United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. November 2020. United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. November 2020.

No leachate results were flagged with a "B" qualifier for the February 2024 monitoring event as no detections were identified in the trip or method blanks. The February 2024 detections flagged with a "J" qualifier are shown on **Table 6**.

4.2.4 Laboratory Analytical Results

The analytical results for the February 2024 leachate samples collected from extraction wells EW-51, EW-53, EW-85, and EW-88 are summarized in **Table 6**. The associated COAs are included in **Appendix F**. Parameter results from February 2024 and previous monitoring events (November 2022 – January 2024) are presented on a table in **Appendix F**. Time-series plots of each VOC for the wells that have historically been sampled are also included in **Appendix F**.

Table 6. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-51	EW-53	EW-85	EW-88	LOD	LOQ
Parameter	Fe	bruary 2024	Concentrati	on	LOD	LOQ
Ammonia as N (mg/L)	1900	2600	1780	2380	146	200
Biological Oxygen Demand (mg/L)	23200	26200	21400	34300	0.2	2
Chemical Oxygen	42700	51200	48900		5000	5000
Demand (mg/L)				68400	10000	10000
Nitrata as N. (ma/l)	9.1		ND	ND	1.5	5.5
Nitrate as N (mg/L)		ND			3.5	7.5
Nitrite as N (mg/L)	ND	ND	ND	ND	1	5
Total Kjeldahl Nitrogen (mg/L)	2540	2890	2470	2970	100	250
Total Recoverable Phenolics (mg/L)	37.3	42.9	50.2	43.1	1.5	2.5
SEMI-VOLATILE ORGANIC	COMPOUND	(ug/L)				
		ND			200	400
Anthracene	ND				250	500
			ND	ND	400000	800000
TOTAL METALS (mg/L)						
Arsenic	0.68	0.42	0.33	0.23	0.002	0.002
Barium	3.03	4.41	2.65	0.925	0.005	0.025
Cadmium	ND	ND	0.0175	ND	0.0005	0.005
Chromium	0.23	0.272	0.203	0.336	0.002	0.005
Copper	ND	0.00201	ND	ND	0.0015	0.002
Lead	0.0065	0.01	0.051	0.012	0.001	0.002
Mercury	0.00376	0.0115	0.00238	0.00284	0.001	0.001
Nickel	0.07945	0.07013	0.09174	0.06183	0.005	0.005
Selenium	ND	ND	0.00571	0.00651	0.00425	0.005
Silver	ND	ND	ND	ND	0.0003	0.005
Zinc	0.0879	0.0554	0.475	0.809	0.0125	0.025

Table 6. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-51	EW-53	EW-85	EW-88	LOD	100			
Parameter	Fe	bruary 2024	LOD	LOQ					
VOLATILE FATTY ACIDS (mg/L)									
Acetic Acid	3130	3530				250			
Acetic Acid			3530	6770		500			
Putyric Acid	583	1170				250			
Butyric Acid			1180	2980		500			
Lactic Acid	334	180				250			
Laciic Acia			756	1650		500			
VOLATILE FATTY ACIDS (mg	g/L)								
Propionic Acid	1210	1510				250			
Propionic Acid			1980	2900		500			
Dyrayio Aoid	ND	ND				250			
Pyruvic Acid			ND	ND		500			
VOLATILE ORGANIC COM	POUNDS (ug	/ L)							
2 Putanana (MEK)			12700		150	500			
2-Butanone (MEK)	30500	28900		17400	1500	5000			
Acetone	81600	70200	45600	63100	3500	5000			
Benzene	906	884	346	484	20	50			
Ethylbenzene	51	43 J	31 J	41 J	20	50			
Tetrahydrofuran	3500	4580	3520	4910	500	500			
Toluene	49 J	37 J	ND	30.5 J	25	50			
Xylenes, Total	63 J	59 J	ND	ND	50	150			

^{--- =} not available

Concentration is estimated and not validated.

5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

On behalf of the City, SCS submitted a settlement monitoring and management plan to VDEQ on November 15, 2022. Refer to the 2022 November Monthly Compliance Report for the SWP No. 588 Landfill for additional information.

J = Constituent was detected at a concentration above the laboratory's LOD but below the laboratory's LOQ.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

5.2 MONTHLY SURVEYS

5.2.1 Topographic Data Collection

The City, through SCS, collected topographic data of the Solid Waste Permit No. 588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone). On February 15, 2024, the flight was completed and the topographic data collected. The topographic data collected is shown on Sheet 4 in Appendix E.

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on January 23, 2024. A drawing depicting the January 23, 2024 topography is included as Sheet 3 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 39,300 cubic yards. During that same time period, calculations indicate approximately 1,400 cubic yards of fill was placed during this time on the landfill. This resulted in a net volume decrease of approximately 37,900 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 17. Areas in yellow, orange, and red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 5 in Appendix E.

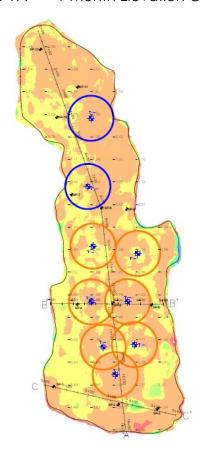


Figure 17. 1-Month Elevation Change Map

The locations of in-waste temperature monitoring probes are also shown on Figure 17, Figure 18, and Figure 19. The circles around the probes are indicative of the average borehole temperature. The circles shown are offset from the probes for clarity only and do not necessarily indicate temperatures measured at locations away from the probe. Probes with a blue circle around them typically have an average temperature less than 200°F across the full depth of the probe. Probes with an orange circle around them typically have an average temperature greater than 200°F and less than 250°F across the full depth of the probe. Probes with a red circle around them typically have an average temperature greater than 250°F and less than 300°F across the full depth of the probe. There were no probes measuring average temperatures greater than 250°F and less than 300°F during the month of February 2024.

Settlement change in the last month was relatively consistent at the northern end of the landfill at approximately 1 foot. In the south-central area of the landfill, there is an ongoing correlation between settlement and the probes recording higher temperatures.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation decrease was approximately 0.45 feet.

SCS also compared the topographic data collected in February to the topographic data collected on November 16, 2023. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 38,000 cubic yards. During that same time period calculations indicate approximately 1,200 cubic yards of fill were placed on the landfill. This fill may have been soil placed as part of regular maintenance.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 18. Areas in orange/yellow indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 6 in Appendix E.

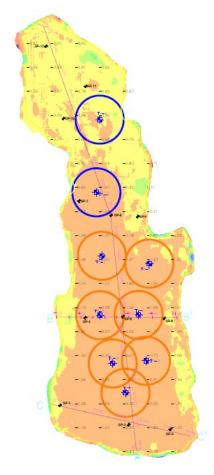


Figure 18. 3-Month Elevation Change Map

Based on the area of the landfill and the net volume change, the average elevation decrease was approximately 0.2 feet.

The largest settlement during this 3-month period occurred primarily in the southern end of the landfill where the waste settled by approximately 2 feet or more in some areas. The southern end of the landfill is the location of the gas wells and temperature probes exhibiting higher temperatures, and where the waste is deepest. Higher settlements are typical of elevated temperature landfill conditions. Settlement in the northern portion of the landfill was generally less substantial or was offset by soil placement associated with construction activities. Changes in elevation in these areas are more representative of typical settlement at municipal landfills. Some portions of the landfill perimeter exhibited an increase in elevation, likely due to sediment deposition during storm events, and soil placement associated with maintenance of the sidewall odor mitigation system. There were some large variations in elevation associated with soil stockpiling operations.

SCS also compared the topographic data collected in February to the drone topographic data collected on February 7, 2023 by SCS. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 99,990 cubic yards. During that same time period approximately 12,400 cubic yards of construction-related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 87,500 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 19. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 7 in Appendix E.

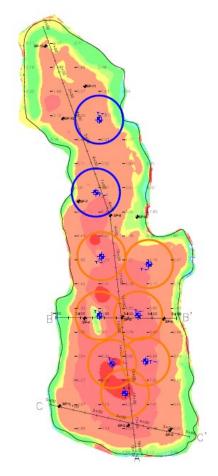


Figure 19. 1-Year Elevation Change Map

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 10 feet or more in some areas. These significant settlement values are typical of elevated temperature landfill conditions. The landfill perimeter exhibited an increase in elevation, likely due to soil placement associated with construction of the Sidewall Odor Mitigation System. There were variations in elevation associated with soil stockpiling operations.

Based on the landfill area and the net volume change, the average elevation decrease was approximately 1.0 feet.

SCS will collect topographic data covering the landfill surface again in March using photogrammetric methods via UAV. This data will be compared to the data collected in March 2023, December 2023, and February 2024.

5.2.2 Settlement Plate Surveys

On November 7, 2022 SCS field services installed 12 settlement plates on the Solid Waste Permit No. 588 landfill. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan. The tops of the PVC pipes were spray painted orange to improve visibility. The settlement plate locations are depicted in Figure 20 and on Sheet 1 in Appendix E.

Figure 20. Settlement Plate Locations

The locations of the settlement plates were surveyed by the City's surveyor on November 14, 2022. The settlement plates were surveyed again on December 13, 2022; January 3, 2023; February 6, 2023; March 8, 2023; April 3, 2023; May 11, 2023; June 5, 2023; July 10, 2023; August 17, 2023; September 11, 2023; October 11, 2023; November 6, 2023; December 12, 2023; January 11, 2024; and February 6, 2024. The surveyed coordinates⁵ and elevation changes of the settlement plates are shown in Table 7.

_

⁵ Settlement plate locations and coordinates are based on a local coordinate system.

Table 7. Elevation and Strain Data at Settlement Plate Locations

Settlement Plate	Northing	Easting	Elevation on February 6, 2024	Elevation Change Since January 11, 2024	Strain ⁶ Since January 11, 2024	Elevation Change Since Installation	Strain/Year
SP-1	3,397,887.0	10,412,079.7	1,830.4	-0.2	-0.3%	-4.0	-4.1%
SP-2	3,397,810.0	10,412,365.9	1,801.8	-0.3	-0.2%	-8.8	-2.9%
SP-3 ⁷	3,397,787.5	10,412,537.9	N/A	N/A	N/A	N/A	N/A
SP-4 ⁸	3,398,250.3	10,412,187.9	1,808.0	-0.3	-0.2%	-9.5	-2.9%
SP-5	3,398,255.7	10,412,339.0	1,792.7	-0.4	-0.2%	-8.0	-2.2%
SP-6	3,398,248.7	10,412,510.5	1,774.6	-0.3	-0.2%	-3.0	-2.7%
SP-7 ⁹	3,398,734.8	10,412,158.4	1,825.4	-0.1	-0.1%	-3.3	-1.5%
SP-8	3,398,678.6	10,412,290.9	1,802.1	-0.1	0.0%	-5.2	-0.6%
SP-9 ¹⁰	3,398,673.4	10,412,400.9	N/A	N/A	N/A	N/A	N/A
SP-10	3,399,080.1	10,412,093.2	1,838.1	-0.2	-0.1%	-2.1	-0.9%
SP-11	3,399,216.3	10,412,183.7	1,815.3	0.0	0.0%	-1.1	-0.3%
SP-12	3,399,381.9	10,412,019.6	1,810.0	-0.1	-0.1%	-0.6	-1.5%

Settlement Plates 1, 2, 4, 5, and 6 demonstrated larger settlements than at other locations. Settlement Plates 4 and 7 were damaged during construction operations. Settlement Plates 1, 2, and 5 are located in the southern end of the landfill. This area is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions.

The change in elevation at Settlement Plates 8, 10, 11, and 12 was lower and more representative of typical settlement at municipal landfills with waste of similar depth. Settlement Plate 3 was damaged and unable to be measured during September 2023, October 2023, November 2023, December 2023, January 2024, and February 2024. Settlement Plate 9 was located in standing water and was unable to be read for the months of December 2023, January 2024, and February 2024.

Figure 23 shows the changes in elevation of select settlement plates over time. Best-fit lines for these changes in elevation are also shown on the graph. Currently settlement rates are represented better by best-fit lines generated using linear equations that logarithmic equations. For the purposes of recording data in this figure, times are measured in days since the landfill was required to stop accepting waste.

⁶ Strain is defined as the change in elevation divided by the estimated waste depth.

⁷ SCS suspects that SP-3 was damaged as a result of construction activities.

⁸ Based on field observations SP-4 appears to have been disturbed during grading on an adjacent roadway.

⁹ Based on field observations SP-7 appears to have been disturbed during grading on an adjacent stockpile.

¹⁰ SCS suspects that SP-9 was damaged as a result of construction activities.

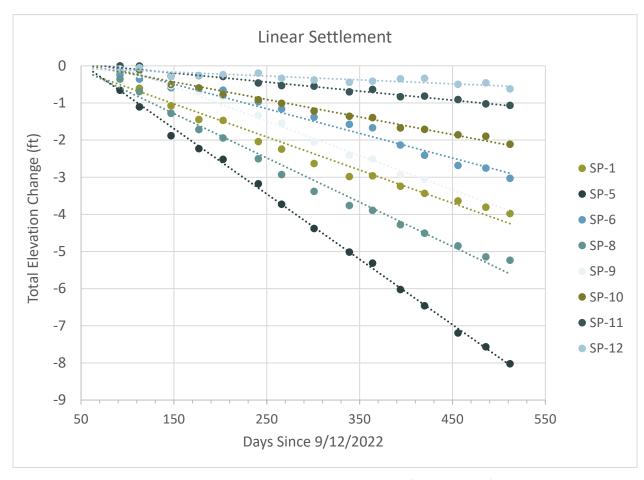


Figure 21. Linear Settlement

The settlement plates will be surveyed again during the month of March 2024. The elevations surveyed will be compared to the elevations surveyed the previous months.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City is taking steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below outline the steps taken by the City.

6.1 INTERMEDIATE COVER INSTALLATION

The City completed hauling and placement of a 12-inch-thick intermediate cover across the entire landfill prior to October 10, 2022. The cover was placed in accordance with 9VAC20-81-140(B)(1)(d). SCS coordinated with the City to dig a series of test holes to verify cover thickness in select locations. Details of these verifications were discussed in the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill.

6.2 EVOH COVER SYSTEM DESIGN

On December 4, 2023, SCS submitted a revised stormwater management plan to submit to VDEQ, including revised drawings and calculations. The revised SWMP includes the three quarry basins, additional stormwater pumps, new stormwater force mains, and the preliminary layout of the new electrical infrastructure along the quarry rim.

On December 18, 2023 SCS and VDEQ met to discuss concerns about the impact of settlement on the proposed EVOH Cover System. The City is discussing the appropriate schedule for EVOH deployment with VDEQ considering the significant settlement the site is experiencing.

6.3 EVOH COVER SYSTEM PROCUREMENT

Drawings used for the purposes of bidding, procurement and construction of the EVOH cover system will generally conform to the layout and details in the drawings described in section 6.2. SCS also prepared and submitted to VDEQ a specification for the EVOH geomembrane on January 30, 2023 based upon industry standards and discussions with material manufacturers. This specification and drawing set represent the first steps in the procurement process. SCS and the City have coordinated with potential suppliers to specify a product that is not currently anticipated to have long lead times. SCS has received a pro-forma data sheet from one manufacturer which is preparing a customized EVOH product for the No. 588 landfill.

6.4 EVOH COVER SYSTEM INSTALLATION

Timeline discussions are ongoing for the EVOH Cover System installation. Settlement concerns and other work at the site are being considered.

7.0 STORMWATER MANAGEMENT

The City is taking steps to implement a stormwater management plan at the landfill. The sections below outline the steps taken by the City.

7.1 STORMWATER MANAGEMENT PLAN DEVELOPMENT

The initial stormwater management plan (SWMP) was submitted to VDEQ on April 28, 2023.

The revised SWMP was submitted to VDEQ on December 4, 2023. The plan proposes a stormwater pumping system to convey stormwater collected atop the EVOH cover system to an existing discharge point permitted under VPDES permit VAR050053. The proposed system includes the construction of three stormwater collection basins in the quarry and the installation of pairs of skid-mounted stormwater pumps. The stormwater will be conveyed by force main pipes to the existing stormwater basins located west of the quarry.

The plan proposes modifications to the existing stormwater basins west of the quarry to achieve discharge quantity targets. Modifications include increasing the basin depths and installing new outlet riser structures.

7.2 STORMWATER MANAGEMENT BASIN DESIGN AND CONSTRUCTION

The landfill surface will be regraded to form the SWM basins proposed in the stormwater management plan. The earthwork will be completed as the first stage of the interim EVOH cover system installation project. A revised landfill gas management plan is being prepared to facilitate the regrading of the landfill, which will affect existing landfill gas infrastructure. The landfill gas system will be modified to accommodate the earthwork.

Attention is being given to settlement concerns in the vicinity of the stormwater basin or basins. Calculations provided to VDEQ on June 23, 2023 demonstrate the weight of the ponded water should not cause excessive settlement relative to ongoing settlement observed within the quarry. Including additional stormwater basins within the quarry will distribute the weight of ponded water over a wider area relative to the single stormwater basin design.

7.3 STORMWATER MANAGEMENT PLAN IMPLEMENTATION

The stormwater management plan design drawings are being incorporated into the overall construction drawings for the interim EVOH cover system. The interim EVOH cover system installation and stormwater management features will be bid and constructed as one project to facilitate simultaneous progress and completion.

As an interim measure, the City is currently operating a temporary stormwater pump to remove stormwater from the landfill surface. During the month of February approximately 427,000 gallons of stormwater were pumped from the surface of the landfill.

7.4 LONG-TERM STORMWATER CONTROL AND REMOVAL

The stormwater management plan is designed with resiliency and redundancy to promote long-term operation. Refer to previously submitted compliance reports for details of long-term stormwater control and removal.

7.5 STORMWATER MONITORING

Stormwater monitoring will commence upon initial discharge of stormwater from the quarry stormwater pumping system. As stated in the stormwater management plan drawings, the stormwater shall be monitored in accordance with the facility's VPDES general permit for discharge of stormwater associated with industrial activity. Additional requirements include collecting additional stormwater samples at the discharge pipes for the quarry stormwater pumping system. The stormwater from the quarry basins will be sampled on a monthly basis prior to discharge to the upper stormwater ponds. The Operations Manual will be revised to include these additional requirements.

If the stormwater becomes contaminated or sampling indicates contamination above discharge limits, the stormwater will be diverted to the sanitary sewer system. The diversion to the sanitary sewer system will continue until the source of contamination is identified and resolved. The stormwater discharge pipe alignment will pass adjacent to the existing sanitary sewer manhole. A tee with isolation valves will be used to direct the stormwater to the upper basins or the sanitary sewer manhole.

Stormwater currently pumped from the surface of the landfill is discharged to the sanitary sewer and is sampled with other wastewater discharges in accordance with the facility's industrial wastewater discharge permit.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit No. 588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

SCS submitted the Monitoring, Maintenance, and Repair Plan to VDEQ for the SWP No. 588 landfill on December 30, 2022. Refer to the December 2022 Monthly Compliance Report for the SWP No. 588 Landfill for additional information. The City has taken steps to implement the plan that were detailed in the March 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

8.3 MONTHLY COMPLIANCE REPORTS

As described in the introduction this report is intended to provide comprehensive updates regarding progress towards completion of each item described in Appendix A of the Consent Decree between the City and VDEQ,

8.4 COMMUNITY OUTREACH PROGRAM

The City's consultant leading community outreach, McGuireWoods Consulting, described the actions taken as part of their community outreach efforts. For the month of February, those actions include:

- Ongoing basis: Six posts on the BristalVALandfill.org site and the existing City of Bristol Landfill Notifications and Information page covering important updates including:
 - Progress updates related to remediation efforts at the quarry landfill
 - Included updates as well as related to steps towards closing landfill 498 in order to make sure residents are aware activities are occurring on another site in addition to ongoing work at the 588 landfill
 - Shared news articles about potential funding from the Virginia General Assembly related to remediation work at the 588 Quarry Landfill
- Weekly updates on landing page on Bristolvalandfill.org titled "Air Sampling and Air Monitoring" that includes a summary of the air sampling and monitoring being conducted by Bristol, VA around the quarry landfill.
 - Website now includes weekly air monitoring reports starting with May 15th, 2023 and running through February 18th of 2024.
- E-mail communication sent to the list of members of the public signed up through the Bristol, VA website, the BristolVALandfill.org website, or at subsequent Open Houses to receive information via e-mail.

- Website now includes weekly air monitoring reports starting with May 15th, 2023 and running through February 18th of 2024.
- E-mail communication sent to the list of members of the public signed up through the Bristol,
 VA website, the BristolVALandfill.org website, or at subsequent Open Houses to receive information via e-mail
 - E-mails sent included weekly remediation progress update and links to website updates and latest news articles.
- Mail piece sent to all residents of Bristol, VA and Bristol, TN to inform the public of progress made at the Quarry Landfill in 2023 to remediate issues at the landfill. Mail piece also included an introduction to the new Solid Waste Director for Bristol, VA

Appendix A

Surface Emissions Monitoring Summary Letters

SCS ENGINEERS

February 14, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – February 8, 2024

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on February 8, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	1 <i>7</i> 1
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	71
Number of Exceedances	2
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	2

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	2/8/24 Event	2/8/24 Event Result	Comments
EW-87	12/21/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	1/12/24	1-Month Retest	Passed	Exceedance Resolved
EW-99	1/12/24	1-Month Retest	Passed	Exceedance Resolved
EW-55	1/17/24	N/A	Passed	Requires 1-Month Retest
EW-58	1/17/24	N/A	Passed	Requires 1-Month Retest
EW-98	1/17/24	N/A	Passed	Requires 1-Month Retest
EW-94	1/17/24	N/A	Passed	Requires 1-Month Retest
EW-90	1/17/24	N/A	Passed	Requires 1-Month Retest
EW-95	1/31/24	10-Day Retest	Passed	Requires 1-Month Retest

If you have questions or require additional information, please contact either of the undersigned.

Lucus D. Nachman

Lucas S. Nachman

SCS Engineers

Senior Project Professional

Sincerely,

William J. Fabrie Staff Professional SCS Engineers

William J. Fabrie

LSN/WJF/cjw

cc: Randall Eads, City of Bristol

Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

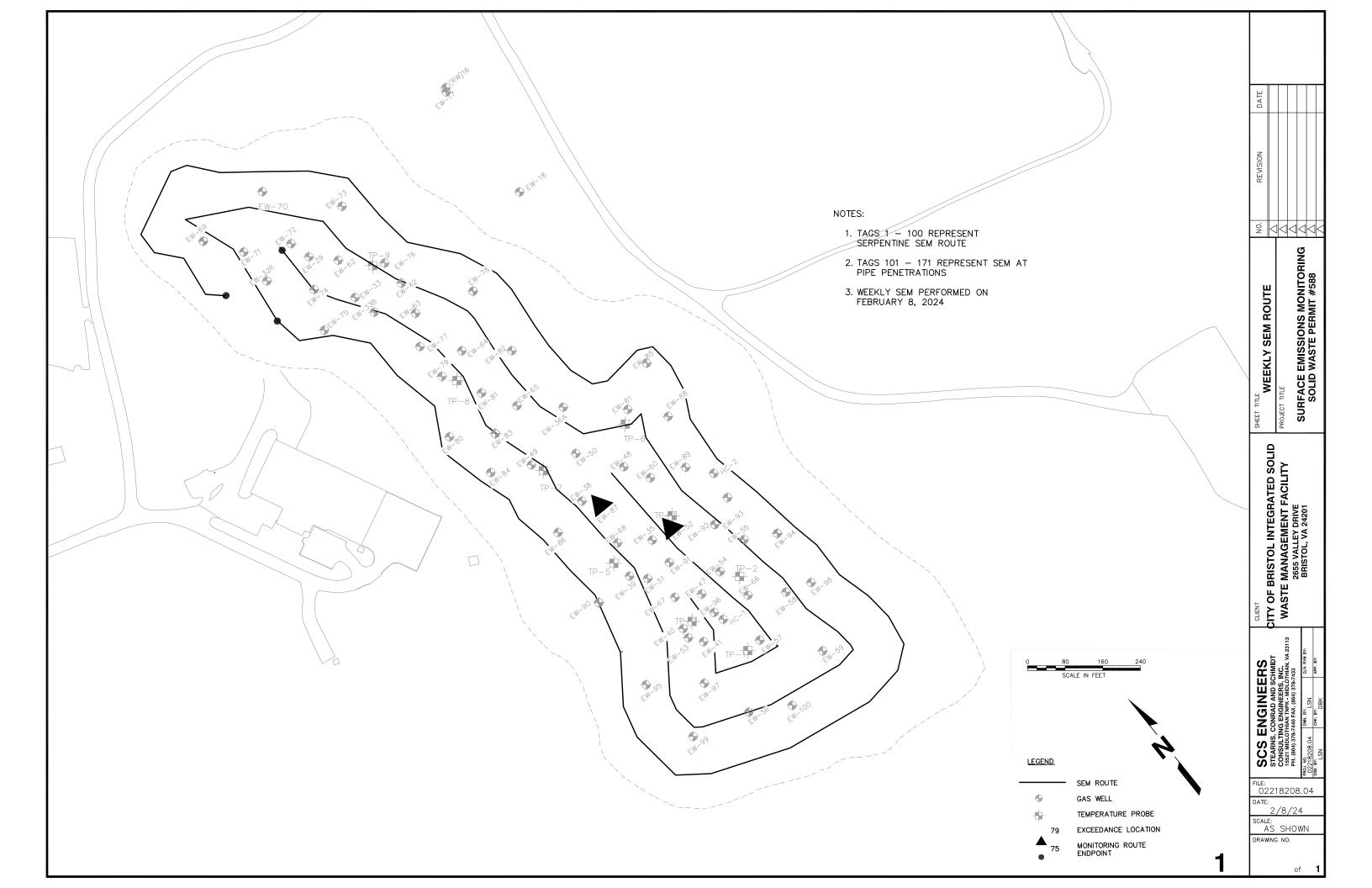
Bristol SEM Route Drawing

	Methane		GPS Co		
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	1.6 PPM	OK			Start Serpentine Route
2	10.2 PPM	OK			
3	2.0 PPM	OK			
4	2.1 PPM	OK			
5	1.8 PPM	OK			
6	1.8 PPM	OK			
7	3.1 PPM	OK			
8	3.2 PPM	OK			
9	3.6 PPM	OK			
10	11.7 PPM	OK			
11	2.6 PPM	OK			
12	2.0 PPM	OK			
13	19.3 PPM	OK			
14	54.1 PPM	OK			
15	18.0 PPM	OK			
16	3.8 PPM	OK			
1 <i>7</i>	3.0 PPM	OK			
18	3.4 PPM	OK			
19	4.2 PPM	OK			
20	4.0 PPM	OK			
21	3.2 PPM	OK			
22	3.8 PPM	OK			
23	5.0 PPM	OK			
24	5.7 PPM	OK			
25	1 <i>5.7</i> PPM	OK			
26	21.7 PPM	OK			
27	4.1 PPM	OK			
28	5.2 PPM	OK			
29	56.1 PPM	OK			
30	220.0 PPM	OK			
31	2.1 PPM	OK			
32	24.8 PPM	OK			
33	38.9 PPM	OK			
34	26.9 PPM	OK			
35	4.7 PPM	OK			
36	12.7 PPM	OK			
37	20.7 PPM	OK			
38	83.9 PPM	OK			
39	17.0 PPM	OK			
40	5.4 PPM	OK			
41	3.5 PPM	OK			
42	2.3 PPM	OK			
43	2.0 PPM	OK			
44	1.5 PPM	OK			
45	1.5 PPM	OK			
46	1.5 PPM	OK			
47	1.5 PPM	OK			
48	1.4 PPM	OK			
49	1.4 PPM	OK			

	Methane		GPS Coordinates		
ID#	Concentration	Compliance	Lat.	Long.	Comments
50	1.4 PPM	OK			
51	1.6 PPM	OK			
52	1.6 PPM	OK			
53	1.4 PPM	OK			
54	1.4 PPM	OK			
55	1.5 PPM	OK			
56	1.3 PPM	OK			
57	1.2 PPM	OK			
58	1.5 PPM	OK			
59	1.2 PPM	OK			
60	3.7 PPM	OK			
61	1.4 PPM	OK			
62	1.7 PPM	OK			
63	11.5 PPM	OK			
64	27.3 PPM	OK			
65	1.8 PPM	OK			
66	1.5 PPM	OK			
67	4.9 PPM	OK			
68	21.1 PPM	OK			
69	10.0 PPM	OK			
70	49.7 PPM	OK			
71	8.4 PPM	OK			
72	11.9 PPM	OK			
73	33.3 PPM	OK			
74	8.0 PPM	OK			
<i>7</i> 5	37.1 PPM	OK			
76	17.2 PPM	OK			
77	1.8 PPM	OK			
<i>7</i> 8	3.2 PPM	OK			
79	1.1 PPM	OK			
80	2.4 PPM	OK			
81	1.4 PPM	OK			
82	1.5 PPM	OK			
83	1.0 PPM	OK			
84	1.0 PPM	OK			
85	1.0 PPM	OK			
86	0.9 PPM	OK			
87	0.9 PPM	OK			
88	3.2 PPM	OK			
89	2.6 PPM	OK			
90	2.0 PPM	OK			
91	1.0 PPM	OK			
92	78.7 PPM	OK			
93	12.5 PPM	OK			
94	3.3 PPM	OK OK			
95	1.7 PPM	OK OK			
96	1.9 PPM	OK OK			
97	2.7 PPM	OK OK			
98	1.4 PPM	OK OK			

	Methane		GPS Co		
ID#	Concentration	Compliance	Lat.	Long.	Comments
99	7.1 PPM	OK			
100	2.3 PPM	OK			End Serpentine Route
101	373.0 PPM	OK			EW-35
102	1114.0 PPM	HIGH_ALRM	36.59900	-82.14749	EW-52
103	4.2 PPM	OK			TP-4
104	15.4 PPM	OK			EW-60
105	20.2 PPM	OK			EW-48
106	1.4 PPM	OK			TP-6
107	1.0 PPM	OK			EW-61
108	1.7 PPM	OK			EW-50
109	2.3 PPM	OK			EW-67
110	1.3 PPM	OK			EW-47
111	5.2 PPM	OK			EW-54
112	2.5 PPM	OK			EW-55
113	44.3 PPM	OK			EW-92
114	52.1 PPM	OK			EW-91
115	3.8 PPM	OK			EW-96
116	0.9 PPM	OK			TP-2
11 <i>7</i>	9.0 PPM	OK			EW-66
118	0.9 PPM	OK			EW-58
119	57.1 PPM	OK			EW-57
120	20.3 PPM	OK			TP-1
121	14.0 PPM	OK			EW-59
122	55.6 PPM	OK			EW-100
123	393.0 PPM	OK			EW-56
124	4.3 PPM	OK			EW-97
125	3.7 PPM	OK			EW-41
126	29.7 PPM	OK			EW-53
127	3.1 PPM	OK			TP-3
128	290.0 PPM	OK			EW-51
129	47.6 PPM	OK			EW-39
130	10.2 PPM	OK			TP-5
131	11.0 PPM	OK			EW-68
132	1095.0 PPM	HIGH_ALRM	36.59935	-82.14782	EW-87
133	19.6 PPM	OK			EW-38
134	387.0 PPM	OK			TP-7
135	1.3 PPM	OK			EW-49
136	1.3 PPM	OK			EW-83
137	1.8 PPM	OK			EW-65
138	1.7 PPM	OK			EW-81
139	1.0 PPM	OK			TP-8
140	4.2 PPM	OK			EW-64
141	2.5 PPM	OK			EW-63
142	1.1 PPM	OK			EW-42
143	33.0 PPM	OK			EW-76
144	116.0 PPM	OK			TP-9
145	0.9 PPM	OK			EW-62
146	160.0 PPM	OK			EW-29R

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Commen
147	172.0 PPM	ОК			EW-74
148	1.1 PPM	OK			EW-32F
149	0.4 PPM	OK			EW-69
150	0.4 PPM	OK			EW-71
151	0.2 PPM	OK			EW-72
152	103.0 PPM	OK			EW-73
153	9.9 PPM	OK			EW-78
154	20.1 PPM	OK			EW-82
155	0.3 PPM	OK			EW-36/
156	0.2 PPM	OK			EW-85
1 <i>57</i>	1.5 PPM	OK			EW-88
158	196.0 PPM	OK			EW-89
159	8.6 PPM	OK			EW-93
160	0.8 PPM	OK			EW-94
161	0.6 PPM	OK			EW-98
162	3.1 PPM	OK			EW-99
163	434.0 PPM	OK			EW-95
164	169.0 PPM	OK			EW-90
165	0.8 PPM	OK			EW-86
166	0.3 PPM	OK			EW-84
167	0.8 PPM	OK			EW-80
168	0.3 PPM	OK			EW-79
169	0.1 PPM	OK			EW-77
170	0.4 PPM	OK			EW-331
171	0.2 PPM	OK			EW-75
]	
		ations sampled:	171		
Number of exceedance locations:		dance locations:	2		


NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 171 represent SEM at Pipe Penetrations

Weather Conditions: Overcast 61°F Wind: 9 MPH SW

Sampling Calib	ration: Meth	nane - 500 ppm	, Zero Air - 0.0) ppm
2/8/2024	11:25	ZERO	0.1	PPM
2/8/2024	11:27	SPAN	500.0	PPM
Background Re	ading:			
2/8/2024	11:34	Upwind	2.4	PPM
2/8/2024	11:39	Downwind	1.9	PPM

SCS ENGINEERS

February 21, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – February 14, 2024

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on February 14, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	170
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	70
Number of Exceedances	2
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	2

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	2/14/24 Event	2/14/24 Event Result	Comments
EW-87	12/21/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-55	1/17/24	1-Month Retest	Failed	Requires 10-Day Retest
EW-58	1/17/24	1-Month Retest	Passed	Exceedance Resolved
EW-98	1/17/24	1-Month Retest	Passed	Exceedance Resolved
EW-94	1/17/24	1-Month Retest	Passed	Exceedance Resolved
EW-90	1/17/24	1-Month Retest	Passed	Exceedance Resolved
EW-95	1/31/24	N/A	Passed	Requires 1-Month Retest
EW-52	2/8/24	10-Day Retest	Passed	Requires 1-Month Retest

If you have questions or require additional information, please contact either of the undersigned.

Lucus D. Nachman

Lucas S. Nachman

SCS Engineers

Senior Project Professional

Sincerely,

William J. Fabrie Staff Professional SCS Engineers

William J. Fabrie

LSN/WJF/cjw

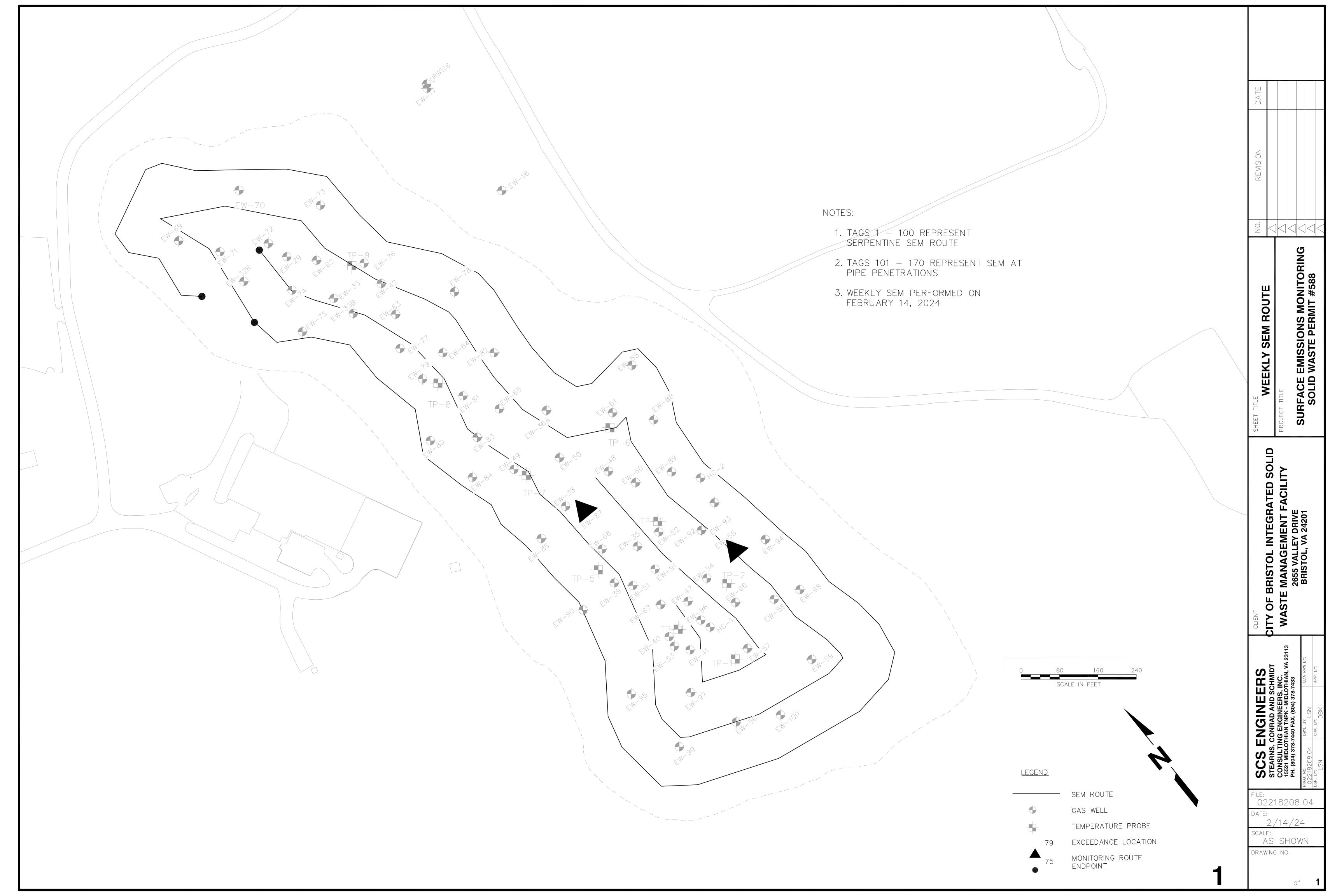
cc: Randall Eads, City of Bristol
Jonathan Hayes, City of Bristol
Jake Chandler, City of Bristol
Laura Socia, City of Bristol
Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Methane		GPS Coordinates			
ID#	Concentration	Compliance	Lat.	Long.	Comments	
1	3.0 PPM	OK			Start Serpentine Route	
2	1.9 PPM	OK				
3	1.9 PPM	OK				
4	1.4 PPM	OK				
5	1.4 PPM	OK				
6	1.5 PPM	OK				
7	1.3 PPM	OK				
8	1.3 PPM	OK				
9	1.3 PPM	OK				
10	1.2 PPM	OK				
11	1.4 PPM	OK				
12	1.2 PPM	OK				
13	1.3 PPM	OK				
14	1.2 PPM	OK				
15	1.8 PPM	OK				
16	1.3 PPM	OK				
1 <i>7</i>	1.3 PPM	OK				
18	1.4 PPM	OK				
19	2.6 PPM	OK				
20	1.1 PPM	OK				
21	1.4 PPM	OK				
22	1.6 PPM	OK				
23	5.5 PPM	OK				
24	1.1 PPM	OK				
25	1.4 PPM	OK				
26	1.2 PPM	OK				
27	1.5 PPM	OK				
28	1.6 PPM	OK				
29	8.5 PPM	OK				
30	18.2 PPM	OK				
31	7.5 PPM	OK				
32	57.2 PPM	OK				
33	37.9 PPM	OK				
34	50.2 PPM	OK				
35	166.0 PPM	OK				
36	2.1 PPM	OK				
37	2.9 PPM	OK				
38	6.9 PPM	OK				
39	1.2 PPM	OK				
40	1.1 PPM	OK				
41	1.1 PPM	OK				
42	1.1 PPM	OK				
43	2.8 PPM	OK				
44	0.9 PPM	OK				
45	0.9 PPM	OK				
46	0.9 PPM	OK				
47	0.9 PPM	OK				
48	0.9 PPM	OK				
49	0.9 PPM	OK				

	Methane			oordinates		
ID#	Concentration	Compliance	Lat.	Long.	Comments	
50	0.8 PPM	OK				
51	0.8 PPM	OK				
52	1.0 PPM	OK				
53	4.5 PPM	OK				
54	0.8 PPM	OK				
55	0.7 PPM	OK				
56	0.8 PPM	OK				
57	1.8 PPM	OK				
58	2.6 PPM	OK				
59	2.2 PPM	OK				
60	1.2 PPM	OK				
61	0.7 PPM	OK				
62	31.8 PPM	OK				
63	1.7 PPM	OK				
64	1.6 PPM	OK				
65	1.6 PPM	OK				
66	1.3 PPM	OK				
67	1.0 PPM	OK				
68	1.2 PPM	OK				
69	23.2 PPM	OK				
70	8.2 PPM	OK				
<i>7</i> 1	16.7 PPM	OK				
72	7.0 PPM	OK				
73	3.6 PPM	OK				
74	16.0 PPM	OK				
75	3.8 PPM	OK				
76	12.6 PPM	OK				
77	11.3 PPM	OK				
78	10.4 PPM	OK				
79	1.4 PPM	OK				
80	3.7 PPM	OK				
81	1.1 PPM	OK				
82	1.1 PPM	OK				
83	2.5 PPM	OK				
84	1.3 PPM	OK				
85	1.4 PPM	OK				
86	2.5 PPM	OK				
87	1.3 PPM	OK				
88	0.9 PPM	OK				
89	1.3 PPM	OK				
90	0.8 PPM	OK				
91	41.9 PPM	OK				
92	7.9 PPM	OK				
93	40.7 PPM	OK				
94	3.3 PPM	OK				
95	6.9 PPM	OK				
96	0.9 PPM	OK				
97	0.6 PPM	OK				
98	0.7 PPM	OK				

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
99	0.8 PPM	OK			
100	2.2 PPM	OK			End Serpentine Route
101	435.0 PPM	OK			EW-35
102	309.0 PPM	OK			EW-52
103	2.9 PPM	OK			TP-4
104	20.7 PPM	OK			EW-60
105	28.2 PPM	OK			EW-48
106	4.6 PPM	OK			TP-6
107	0.6 PPM	OK			EW-61
108	1.1 PPM	OK			EW-50
109	173.0 PPM	OK			EW-67
110	9.9 PPM	OK			EW-47
111	13.0 PPM	OK			EW-54
112	2251.0 PPM	HIGH_ALRM	36.59869	-82.14716	EW-55
113	2.2 PPM	OK			EW-92
114	21.6 PPM	OK			EW-91
115	4.0 PPM	OK			EW-96
116	1.8 PPM	OK			TP-2
117	1.2 PPM	OK			EW-66
118	0.9 PPM	OK			EW-58
119	5.4 PPM	OK			EW-57
120	25.0 PPM	OK			TP-1
121	7.4 PPM	OK			EW-59
122	15.6 PPM	OK			EW-100
123	59.8 PPM	OK			EW-56
124	2.3 PPM	OK			EW-97
125	1.8 PPM	OK			EW-41
126	28.7 PPM	OK			EW-53
127	4.5 PPM	OK			TP-3
128	1.6 PPM	OK			EW-51
129	3.0 PPM	OK			EW-39
130	1.2 PPM	OK			TP-5
131	6.1 PPM	OK			EW-68
132	816.0 PPM	HIGH_ALRM	36.59935	-82.14782	EW-87
133	488.0 PPM	OK			EW-38
134	101.0 PPM	OK			TP-7
135	0.8 PPM	OK			EW-49
136	0.5 PPM	OK			EW-83
137	0.3 PPM	OK			EW-65
138	2.7 PPM	OK			EW-81
139	0.4 PPM	OK			TP-8
140	0.7 PPM	OK			EW-64
141	0.2 PPM	OK			EW-63
142	0.1 PPM	OK			EW-42
143	358.0 PPM	OK			EW-76
144	2.7 PPM	OK			TP-9
145	0.3 PPM	OK			EW-62
146	0.3 PPM	OK			EW-29R


	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comment
147	0.9 PPM	ОК			EW-74
148	0.2 PPM	OK			EW-32R
149	0.1 PPM	OK			EW-69
150	0.1 PPM	OK			EW-71
151	0.3 PPM	OK			EW-72
152	1.2 PPM	OK			EW-73
153	0.2 PPM	OK			EW-78
154	3.9 PPM	OK			EW-36A
155	0.6 PPM	OK			EW-85
156	0.4 PPM	OK			EW-88
1 <i>57</i>	1.3 PPM	OK			EW-89
158	3.0 PPM	OK			EW-93
159	0.4 PPM	OK			EW-94
160	0.3 PPM	OK			EW-98
161	34.9 PPM	OK			EW-99
162	6.3 PPM	OK			EW-95
163	98.6 PPM	OK			EW-90
164	8.0 PPM	OK			EW-86
165	0.3 PPM	OK			EW-84
166	0.6 PPM	OK			EW-80
167	0.4 PPM	OK			EW-79
168	0.3 PPM	OK			EW-77
169	16.4 PPM	OK			EW-338
170	0.4 PPM	ОК			EW-75
			170		
	Number of loc Number of exceed	ations sampled:	170 2		

NOTES:

Points 1 through 100 represent serpentine SEM route.
Points 101 through 170 represent SEM at Pipe Penetrations

Weather Conditions: Partly Cloudy 54°F Wind: 11 MPH NW

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm 2/14/2024 12:36 ZERO 0.1 PPM 2/14/2024 12:37 SPAN 501.0 PPM **Background Reading:** 2/14/2024 12:40 Upwind 2.0 PPM 2/14/2024 12:47 Downwind 1.6 PPM

SCS ENGINEERS

February 28, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event - February 20, 2024

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on February 20, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	1 <i>7</i> 1
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	<i>7</i> 1
Number of Exceedances	3
Number of Serpentine Exceedances	1
Number of Pipe Penetration Exceedances	2

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	2/20/24 Event	2/20/24 Event Result	Comments
EW-87	12/21/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-55	1/17/24	1-Month Retest Follow-Up	Passed	Exceedance Resolved
EW-95	1/31/24	N/A	Passed	Requires 1-Month Retest
EW-52	2/8/24	N/A	Passed	Requires 1-Month Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylie R Hicklin Associate Professional

Wylie Hicklin

SCS Engineers

Lucas S. Nachman Senior Project Professional SCS Engineers

Lucus D. Nachman

LSN/WRH/cjw

cc: Randall Eads, City of Bristol

Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

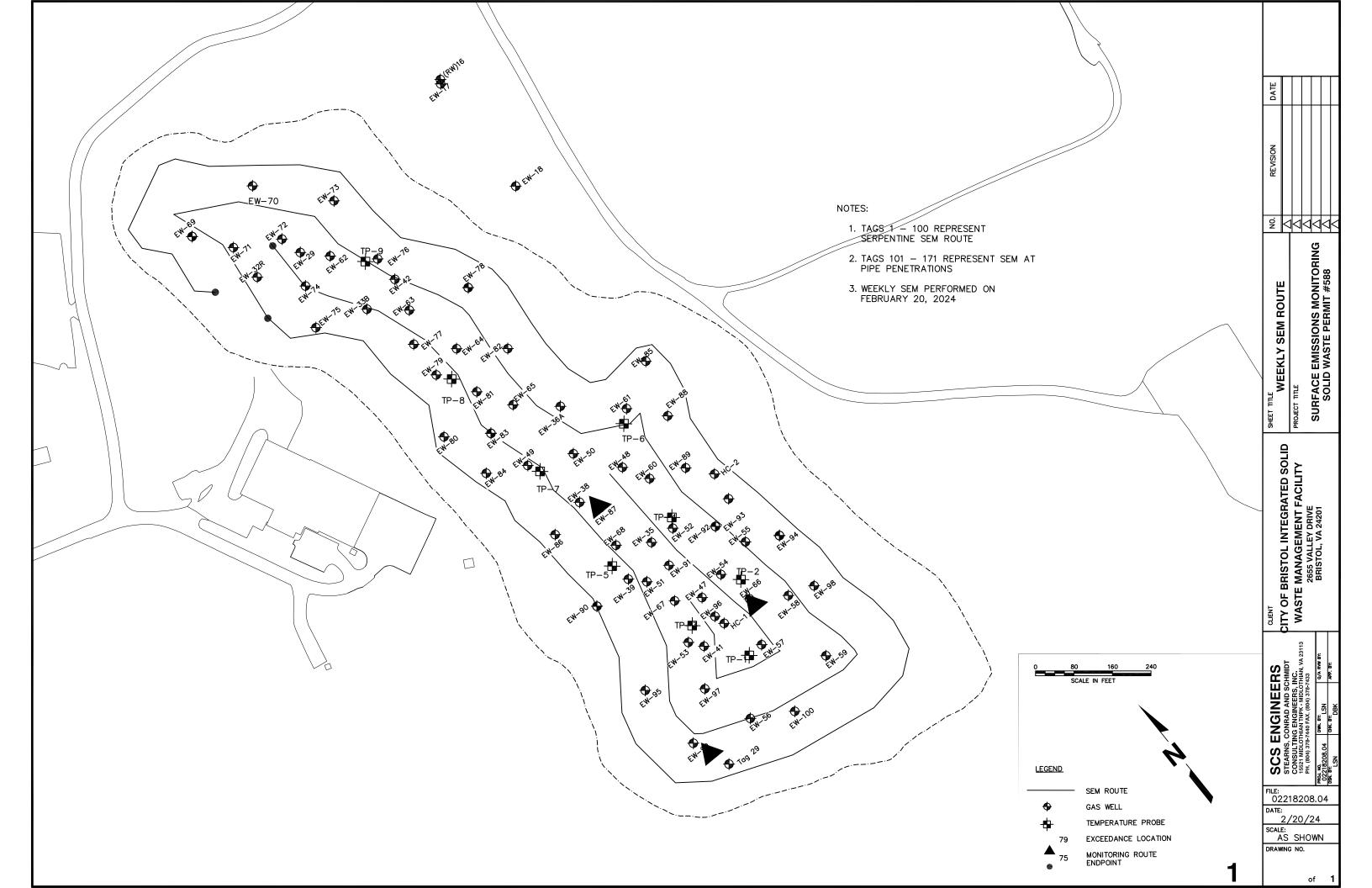
Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	0.2 PPM	OK			Start Serpentine Route
2	0.0 PPM	OK			
3	0.0 PPM	OK			
4	0.0 PPM	OK			
5	0.1 PPM	OK			
6	0.3 PPM	OK			
7	0.5 PPM	OK			
8	0.7 PPM	OK			
9	0.6 PPM	OK			
10	0.3 PPM	OK			
11	4.0 PPM	OK			
12	0.0 PPM	OK			
13	1 <i>5.7</i> PPM	OK			
14	0.7 PPM	OK			
15	0.6 PPM	OK			
16	1.9 PPM	OK			
1 <i>7</i>	10.2 PPM	OK			
18	1.0 PPM	OK			
19	0.3 PPM	OK			
20	0.3 PPM	OK			
21	15.3 PPM	OK			
22	6.5 PPM	OK			
23	2.2 PPM	OK			
24	15.3 PPM	OK			
25	26.0 PPM	OK			
26	16.5 PPM	OK			
27	49.8 PPM	OK			
28	40.4 PPM	OK			
29	678.0 PPM	HIGH_ALRM	36.59773	-82.1481 <i>7</i>	
30	6.8 PPM	OK			
31	5.3 PPM	OK			
32	4.6 PPM	OK			
33	0.5 PPM	OK			
34	4.7 PPM	OK			
35	0.6 PPM	OK			
36	0.6 PPM	OK			
37	0.7 PPM	OK			
38	0.6 PPM	OK			
39	0.5 PPM	OK			
40	0.0 PPM	OK			
41	0.1 PPM	OK			
42	0.3 PPM	OK			
43	0.9 PPM	OK			
44	0.3 PPM	OK			
45	1.6 PPM	OK			
46	0.4 PPM	OK			
47	3.6 PPM	OK			
48	0.0 PPM	OK			

	Methane		GPS Coord	inates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
50	1.4 PPM	OK			
51	1.0 PPM	OK			
52	0.0 PPM	OK			
53	0.5 PPM	OK			
54	0.6 PPM	OK			
55	1.8 PPM	OK			
56	1.0 PPM	OK			
57	1.3 PPM	OK			
58	4.1 PPM	OK			
59	7.2 PPM	OK			
60	28.2 PPM	OK			
61	5.9 PPM	OK			
62	2.5 PPM	OK			
63	23.0 PPM	OK			
64	0.2 PPM	OK			
65	1.1 PPM	OK			
66	3.8 PPM	OK			
67	3.1 PPM	OK			
68	408.0 PPM	OK			
69	6.3 PPM	OK			
70	21.2 PPM	OK			
<i>7</i> 1	14.4 PPM	OK			
72	2.0 PPM	OK			
73	2.6 PPM	OK			
74	0.0 PPM	OK			
75	0.9 PPM	OK			
76	1.3 PPM	OK			
77	0.0 PPM	OK			
78	0.5 PPM	OK			
79	0.1 PPM	OK			
80	0.1 PPM	OK			
81	0.1 PPM	OK			
82	0.1 PPM	OK			
83	0.0 PPM	OK			
84	0.0 PPM	OK			
85	0.0 PPM	OK			
86	1.4 PPM	OK			
87	0.2 PPM	OK			
88	0.0 PPM	OK			
89	0.0 PPM	OK			
90	0.0 PPM	OK			
91	0.0 PPM	OK			
92	0.0 PPM	OK			
93	0.0 PPM	OK			
94	0.0 PPM	OK			
95	0.0 PPM	OK			
96	0.0 PPM	OK			
97	0.0 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
99	0.0 pp.4	OK			
100	0.0 PPM 0.1 PPM	OK			5 10 × 5 ×
		OK			End Serpentine Route
101	0.0 PPM	OK			EW-69
102	0.0 PPM	OK			EW-71
103	0.1 PPM	OK			EW-32R
104	0.0 PPM	OK			EW-72
105	0.2 PPM	OK			EW-29R
106	0.3 PPM	OK			EW-62
107	0.1 PPM	OK			EW-74
108	36.1 PPM	OK			EW-33B
109	0.1 PPM	OK			EW-75
110	0.2 PPM	OK			EW-63
111	0.1 PPM	OK			EW-77
112	0.9 PPM	OK			EW-79
113	0.2 PPM	OK			TP-8
114	0.0 PPM	OK			EW-64
115	1.2 PPM	OK			EW-81
116	0.9 PPM	OK			EW-80
11 <i>7</i>	0.6 PPM	OK			EW-83
118	0.2 PPM	OK			EW-65
119	0.0 PPM	OK			EW-84
120	3.4 PPM	OK			EW-49
121	365.0 PPM	OK			TP-7
122	1.6 PPM	OK			EW-50
123	50.0 PPM	OK			EW-38
124	0.9 PPM	OK			EW-86
125	665.0 PPM	HIGH_ALRM	36.59934	-82.14782	EW-87
126	20.7 PPM	OK			EW-68
127	164.0 PPM	OK			EW-90
128	1.5 PPM	OK			TP-5
129	5.8 PPM	OK			EW-39
130	13.3 PPM	OK			EW-51
131	162.0 PPM	OK			EW-91
132	325.0 PPM	OK			EW-35
133	192.0 PPM	OK			EW-52
134	14.7 PPM	OK			TP-4
135	9.6 PPM	OK			EW-92
136	23.0 PPM	OK			EW-55
13 <i>7</i>	5.2 PPM	OK			EW-54
138	10.4 PPM	OK			EW-47
139	73.3 PPM	OK			EW-67
140	8.3 PPM	OK			TP-3
141	32.0 PPM	OK			EW-53
142	8.5 PPM	OK			EW-41
143	3.0 PPM	OK			EW-97
144	5.1 PPM	OK			EW-95
145	6.8 PPM	OK			EW-99
146	18.8 PPM	OK			EW-56

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comment
147	41.6 PPM	OK			EW-100
148	0.2 PPM	OK			EW-59
149	29.8 PPM	OK			TP-1
150	40.7 PPM	OK			EW-57
151	0.0 PPM	OK			EW-98
152	0.0 PPM	OK			EW-58
153	2496.0 PPM	HIGH_ALRM	36.59857	-82.14760	EW-66
154	0.4 PPM	OK			TP-2
155	0.0 PPM	OK			EW-96
156	0.3 PPM	OK			EW-94
1 <i>57</i>	2.0 PPM	OK			EW-93
158	1.8 PPM	OK			EW-89
159	66.9 PPM	OK			EW-60
160	52.7 PPM	OK			EW-48
161	0.4 PPM	OK			TP-6
162	3.9 PPM	OK			EW-61
163	0.0 PPM	OK			EW-85
164	0.0 PPM	OK			EW-88
165	0.4 PPM	OK			EW-364
166	0.5 PPM	OK			EW-82
1 <i>67</i>	11.0 PPM	OK			EW-78
168	0.8 PPM	OK			EW-42
169	19.9 PPM	OK			EW-76
170	0.4 PPM	OK			TP-9
171	0.2 PPM	OK			EW-73
				•	


Number of locations sampled: 171
Number of exceedance locations: 3

NOTES:

Points 1 through 100 represent serpentine SEM route. Points 101 through 171 represent SEM at Pipe Penetrations

Weather Conditions: Sunny 51 $^{\circ}F$ Wind: 6 MPH E

ation: Meth	ane - 500 ppm,	Zero Air - 0.0) ppm
10:08	ZERO	0.1	PPM
10:18	SPAN	496.0	PPM
ıding:			
10:28	Upwind	0.0	PPM
10:36	Downwind	0.2	PPM
	10:08 10:18 ading: 10:28	10:08 ZERO 10:18 SPAN ading: 10:28 Upwind	10:18 SPAN 496.0 <u>ading:</u> 10:28 Upwind 0.0

Appendix B

In-Waste Temperatures on Select Days in February

Appendix B Figures

Figure B - 1 Average Temperatures Recorded by TP-1 on February 7, 2024	B-3
Figure B - 2 Average Temperatures Recorded by TP-1 on February 14, 2024	B-3
Figure B - 3 Average Temperatures Recorded by TP-1 on February 21, 2024	B-4
Figure B - 4 Average Temperatures Recorded by TP-1 on February 28, 2024	B-4
Figure B - 5 Average Temperatures Recorded by TP-2 on February 7, 2024	
Figure B - 6 Average Temperatures Recorded by TP-2 on February 14, 2024	
Figure B - 7 Average Temperatures Recorded by TP-2 on February 21, 2024	B-6
Figure B - 8 Average Temperatures Recorded by TP-2 on February 28, 2024	B-6
Figure B - 9 Average Temperatures Recorded by TP-3 on February 7, 2024	B-7
Figure B - 10 Average Temperatures Recorded by TP-3 on February 14, 2024	B-7
Figure B - 11 Average Temperatures Recorded by TP-3 on February 21, 2024	
Figure B - 12 Average Temperatures Recorded by TP-3 on February 28, 2024	B-8
Figure B - 13 Average Temperatures Recorded by TP-4 on February 7, 2024	
Figure B - 14 Average Temperatures Recorded by TP-4 on February 14, 2024	
Figure B - 15 Average Temperatures Recorded by TP-4 on February 21, 2024	
Figure B - 16 Average Temperatures Recorded by TP-4 on February 28, 2024	
Figure B - 17 Average Temperatures Recorded by TP-5 on February 7, 2024	
Figure B - 18 Average Temperatures Recorded by TP-5 on February 14, 2024	
Figure B - 19 Average Temperatures Recorded by TP-6 on February 7, 2024	
Figure B - 20 Average Temperatures Recorded by TP-6 on February 14, 2024	
Figure B - 21 Average Temperatures Recorded by TP-6 on February 21, 2024	
Figure B - 22 Average Temperatures Recorded by TP-6 on February 28, 2024	
Figure B - 23 Average Temperatures Recorded by TP-7 on February 7, 2024	
Figure B - 24 Average Temperatures Recorded by TP-7 on February 14, 2024	
Figure B - 25 Average Temperatures Recorded by TP-7 on February 21, 2024	
Figure B - 26 Average Temperatures Recorded by TP-7 on February 28, 2024	
Figure B - 27 Average Temperatures Recorded by TP-8 on February 7, 2024	
Figure B - 28 Average Temperatures Recorded by TP-8 on February 14, 2024	
Figure B - 29 Average Temperatures Recorded by TP-8 on February 21, 2024	
Figure B - 30 Average Temperatures Recorded by TP-8 on February 28, 2024	
Figure B - 31 Average Temperatures Recorded by TP-9 on February 7, 2024	
Figure B - 32 Average Temperatures Recorded by TP-9 on February 14, 2024	
Figure B - 33 Average Temperatures Recorded by TP-9 on February 21, 2024	
Figure B - 34 Average Temperatures Recorded by TP-9 on February 28, 2024	B-19

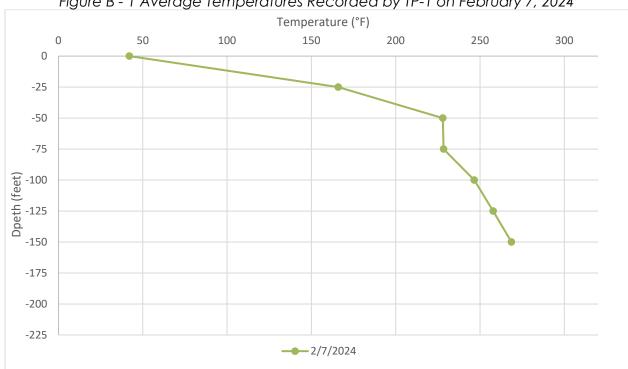
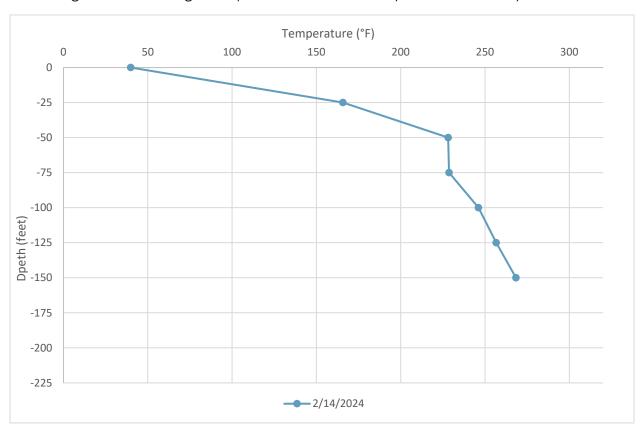



Figure B - 1 Average Temperatures Recorded by TP-1 on February 7, 2024

Figure B - 2 Average Temperatures Recorded by TP-1 on February 14, 2024

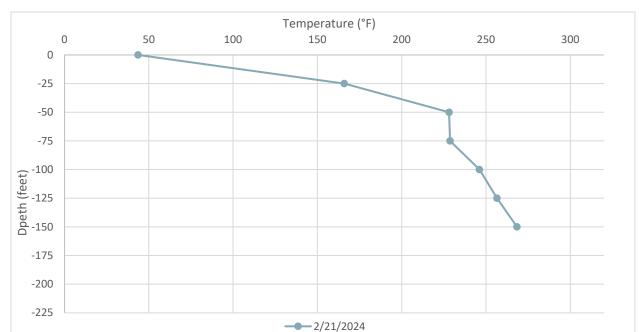
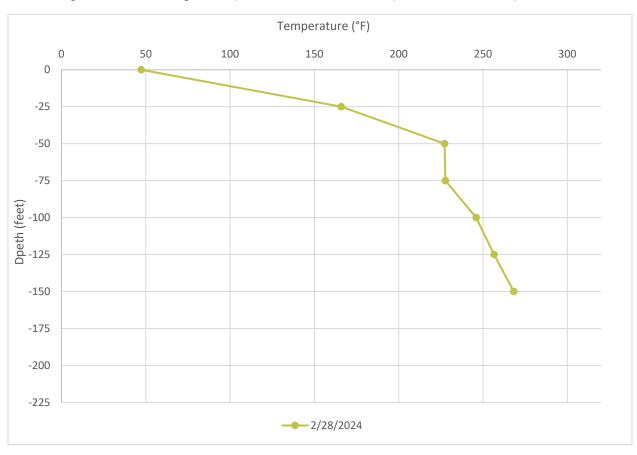



Figure B - 3 Average Temperatures Recorded by TP-1 on February 21, 2024

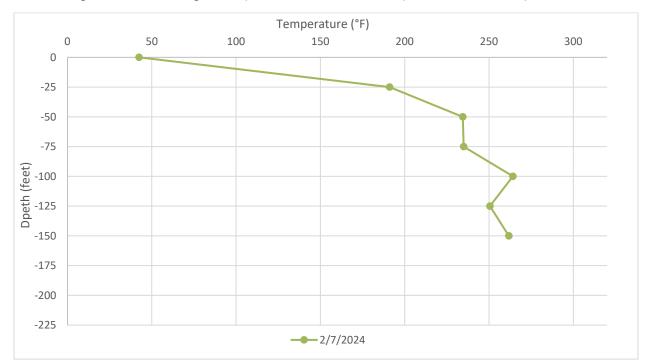
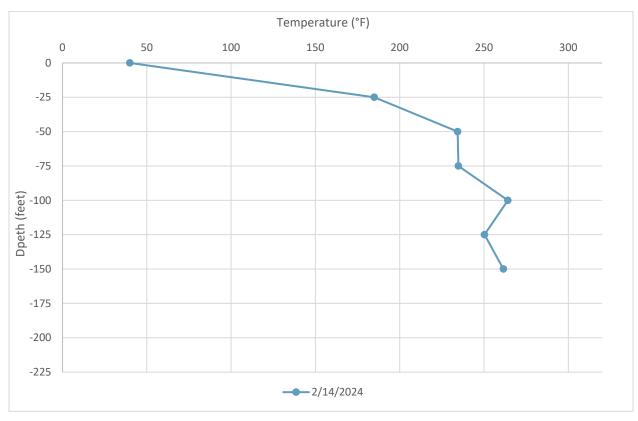



Figure B - 5 Average Temperatures Recorded by TP-2 on February 7, 2024

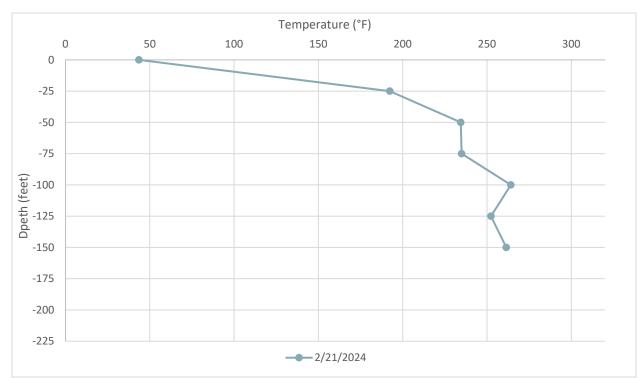
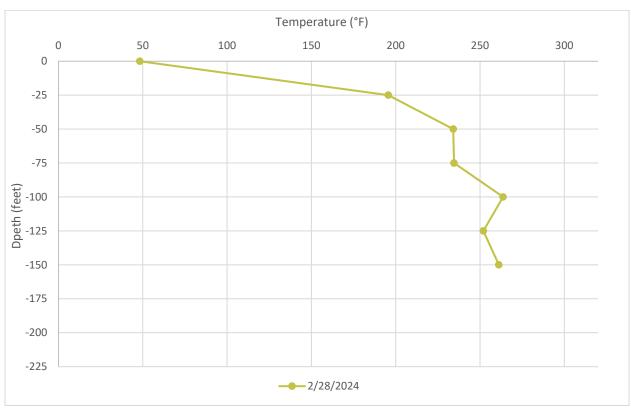



Figure B - 7 Average Temperatures Recorded by TP-2 on February 21, 2024

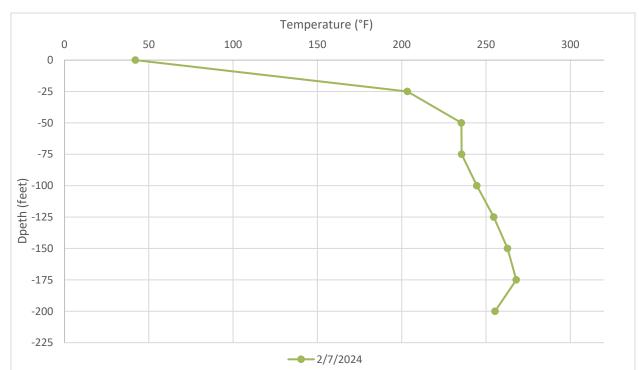
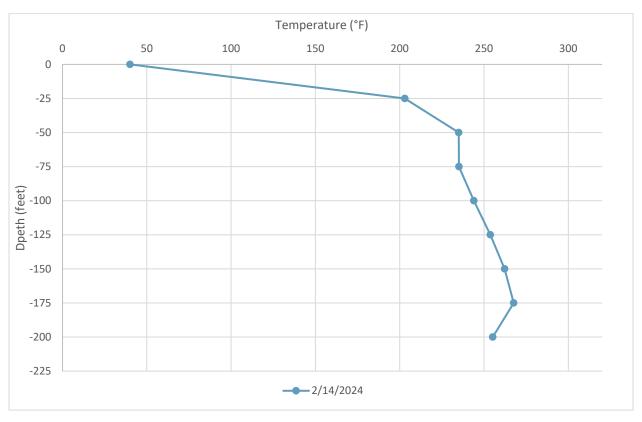



Figure B - 9 Average Temperatures Recorded by TP-3 on February 7, 2024

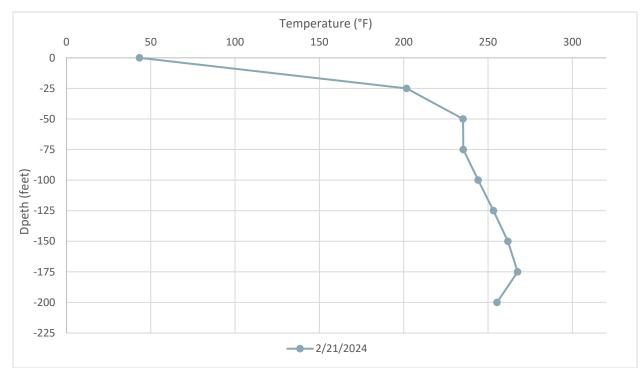
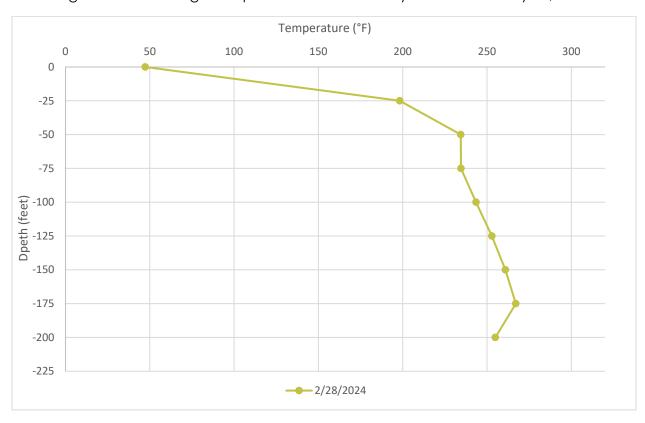



Figure B - 11 Average Temperatures Recorded by TP-3 on February 21, 2024

Figure B - 12 Average Temperatures Recorded by TP-3 on February 28, 2024

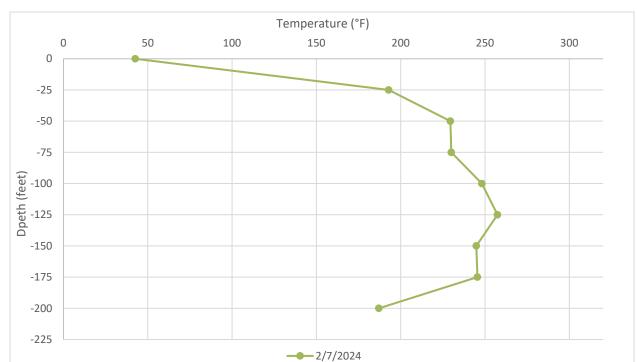
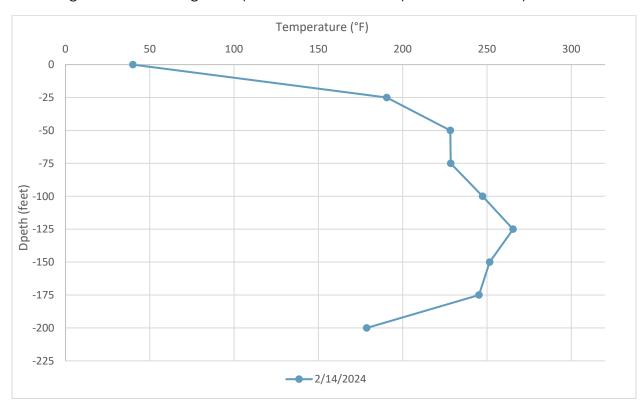



Figure B - 13 Average Temperatures Recorded by TP-4 on February 7, 2024

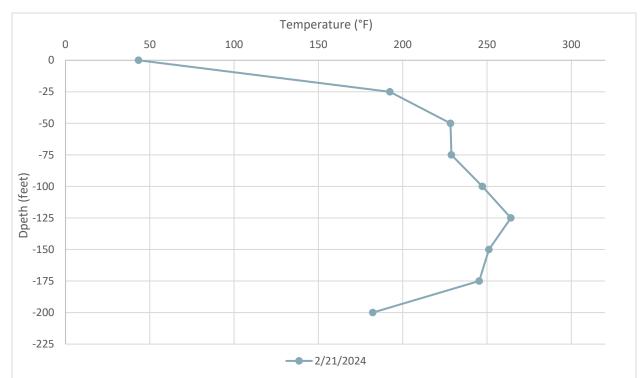
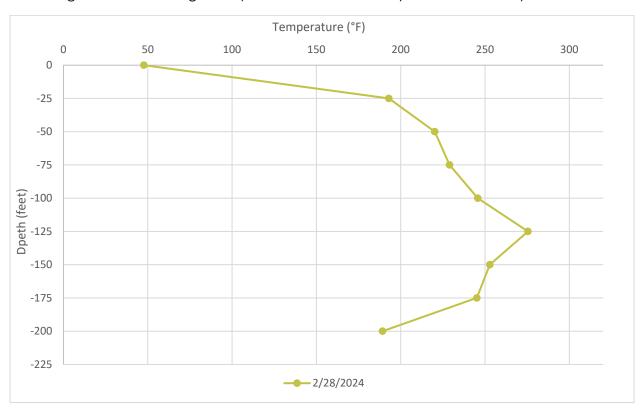



Figure B - 15 Average Temperatures Recorded by TP-4 on February 21, 2024

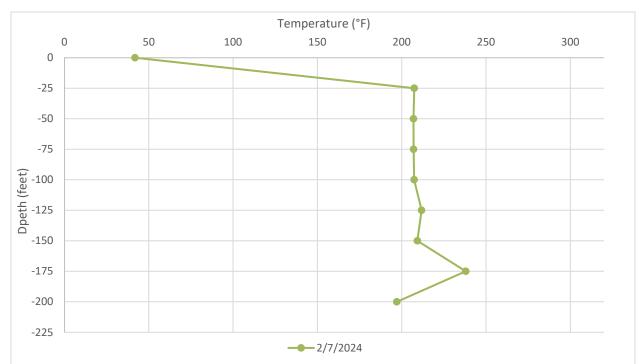
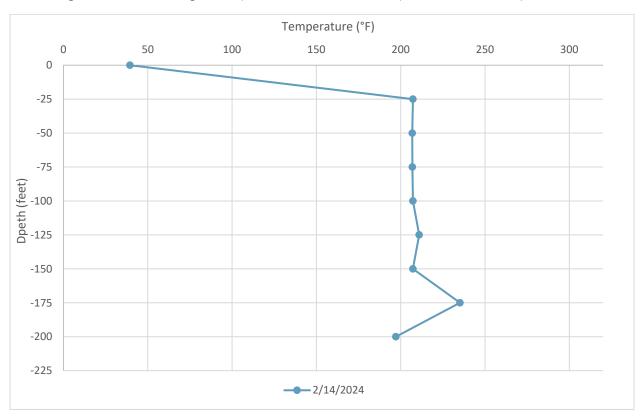



Figure B - 17 Average Temperatures Recorded by TP-5 on February 7, 2024

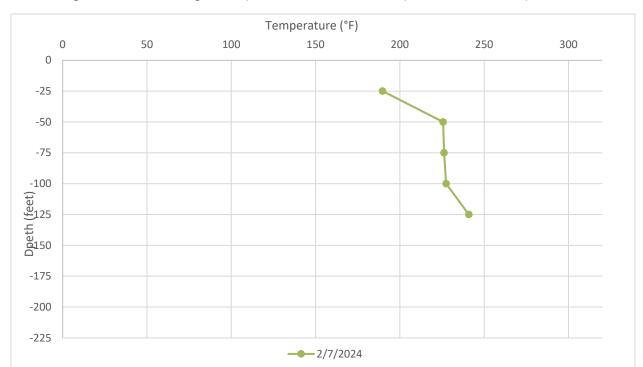
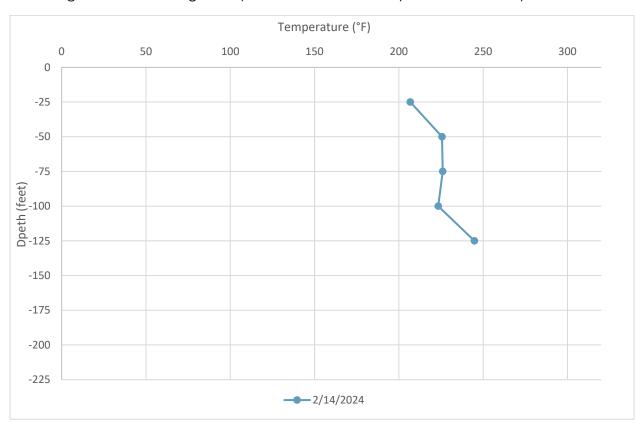



Figure B - 19 Average Temperatures Recorded by TP-6 on February 7, 2024

Figure B - 20 Average Temperatures Recorded by TP-6 on February 14, 2024

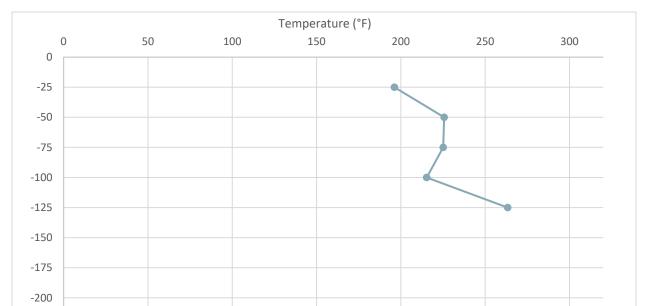
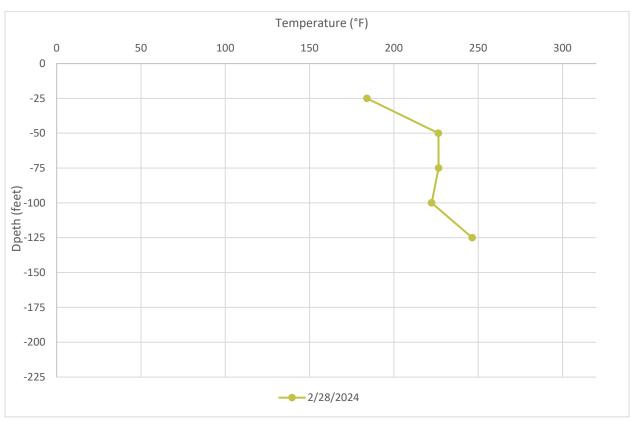



Figure B - 21 Average Temperatures Recorded by TP-6 on February 21, 2024

--- 2/21/2024

-225

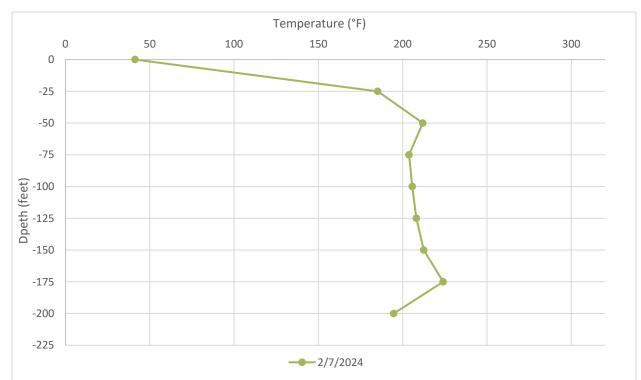
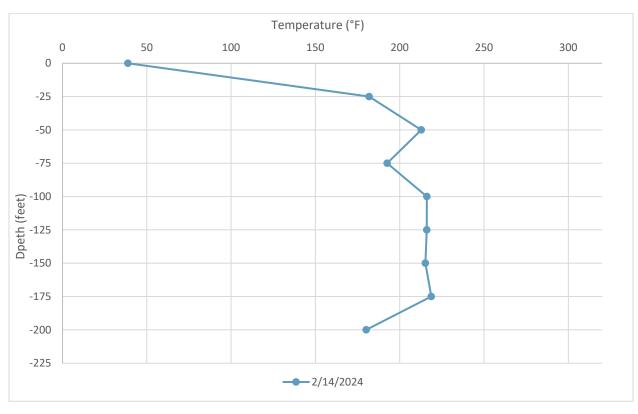



Figure B - 23 Average Temperatures Recorded by TP-7 on February 7, 2024

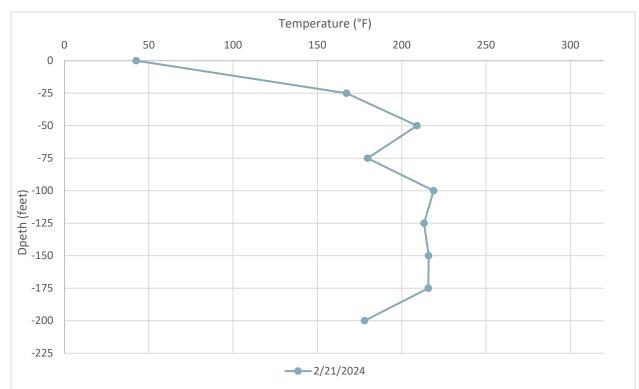
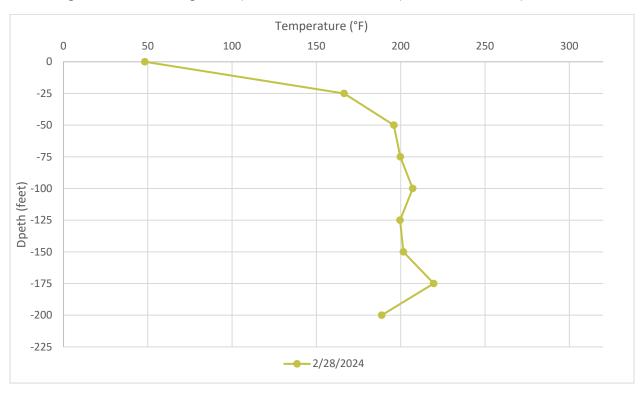



Figure B - 25 Average Temperatures Recorded by TP-7 on February 21, 2024

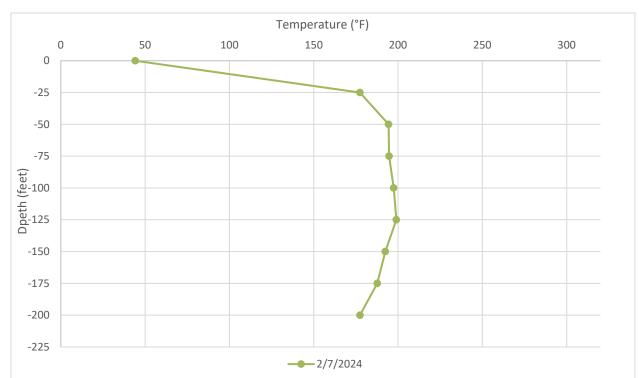
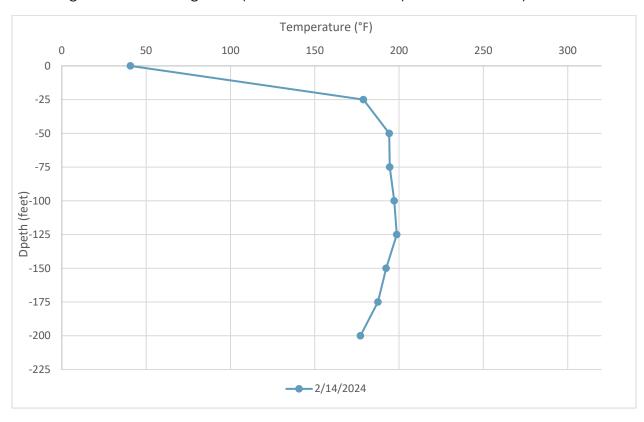



Figure B - 27 Average Temperatures Recorded by TP-8 on February 7, 2024

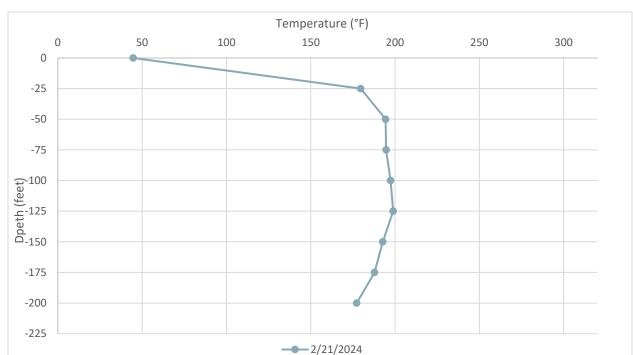
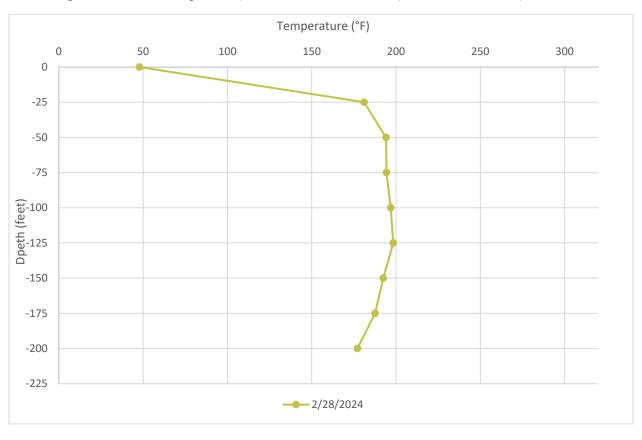



Figure B - 29 Average Temperatures Recorded by TP-8 on February 21, 2024

Figure B - 30 Average Temperatures Recorded by TP-8 on February 28, 2024

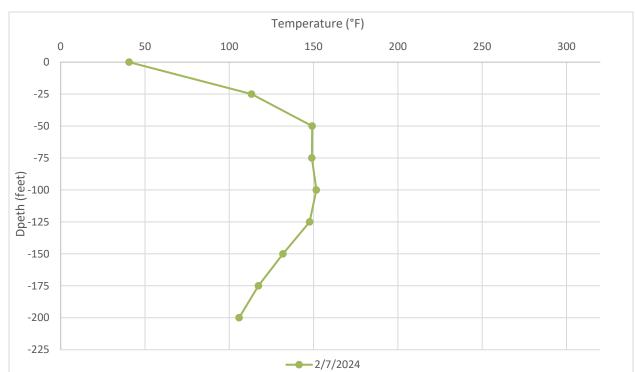


Figure B - 31 Average Temperatures Recorded by TP-9 on February 7, 2024

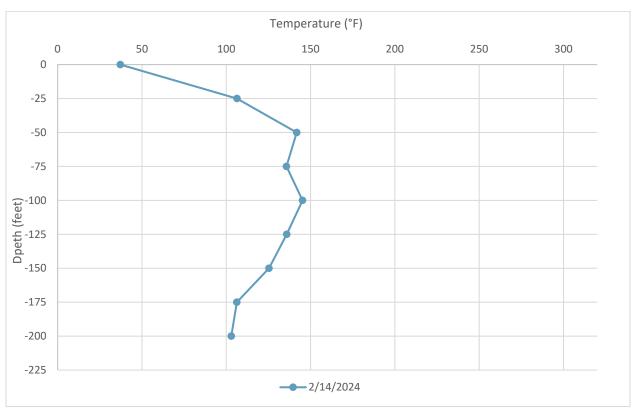
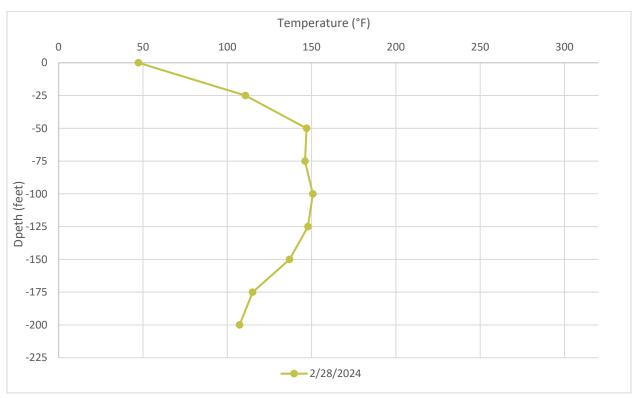



Figure B - 33 Average Temperatures Recorded by TP-9 on February 21, 2024

2/21/2024

-225

Appendix C

Daily Wellhead Temperature Averages

The data provided in this report represent initial readings provided by field instrumentation without Validation, analysis, quality assurance review, or context based on operating conditions. This report is subject to revision following quality assurance review and an analysis of operating conditions. SCS will continue to provide a supplemental report with additional information and further analysis on a monthly basis at a minimum.

SCS ENGINEERS

07222143.00 | March 1, 2024

		·	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	80.7	72.9	89.9
Feb 2	81.6	77.1	92.6
Feb 3	82.2	72.3	94.3
Feb 4	84.2	76.8	95.3
Feb 5	83.8	75.1	95.8
Feb 6	83.1	76.5	93.3
Feb 7	83.9	75.4	98.1
Feb 8	85.6	77.6	96.9
Feb 9	83.8	81.2	87.2
Feb 10	83.4	78.9	86.5
Feb 11	80.2	75.2	85.4
Feb 12	72.8	47.7	88.5
Feb 13	61.8	33.7	81.5
Feb 14	75.9	61.5	86.0
Feb 15	78.6	63.4	90.8
Feb 16	80.6	74.5	88.2
Feb 17	71.1	65.1	80.5
Feb 18	73.0	65.8	84.3
Feb 19	76.6	67.8	89.9
Feb 20	79.2	70.0	91.2
Feb 21	82.1	72.8	94.0
Feb 22	84.6	77.4	95.2
Feb 23	76.7	57.9	85.8
Feb 24	71.7	67.4	75.3
Feb 25	76.3	66.1	87.8
Feb 26	83.1	76.8	93.1
Feb 27	87.6	80.5	95.7
Feb 28	83.1	68.8	91.3
Summary	79.5	61.8	87.6

		· •	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	0.0	31.4	31.4
Feb 2	0.0	0.0	0.0
Feb 3	0.0	0.0	0.0
Feb 4	0.0	0.0	0.0
Feb 5	0.0	0.0	0.0
Feb 6	0.0	0.0	0.0
Feb 7	0.0	0.0	0.0
Feb 8	0.0	0.0	0.0
Feb 9	0.0	0.0	0.0
Feb 10	0.0	0.0	0.0
Feb 11	0.0	0.0	0.0
Feb 12	0.0	0.0	0.0
Feb 13	0.0	0.0	0.0
Feb 14	0.0	0.0	0.0
Feb 15	0.0	0.0	0.0
Feb 16	0.0	0.0	0.0
Feb 17	0.0	0.0	0.0
Feb 18	0.0	0.0	0.0
Feb 19	0.0	0.0	0.0
Feb 20	0.0	0.0	0.0
Feb 21	0.0	0.0	0.0
Feb 22	0.0	0.0	0.0
Feb 23	0.0	0.0	0.0
Feb 24	0.0	0.0	0.0
Feb 25	0.0	0.0	0.0
Feb 26	0.0	0.0	0.0
Feb 27	0.0	0.0	0.0
Feb 28	0.0	0.0	0.0
Summary	0.0	0.0	0.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	41.0	29.3	59.3
Feb 2	42.0	30.2	64.3
Feb 3	43.6	30.0	66.4
Feb 4	44.7	29.1	64.7
Feb 5	48.0	35.6	68.2
Feb 6	43.8	28.6	65.1
Feb 7	43.3	26.5	72.6
Feb 8	46.6	29.9	69.6
Feb 9	45.2	41.6	47.8
Feb 10	50.3	47.2	54.3
Feb 11	52.2	47.9	61.6
Feb 12	52.8	48.2	60.8
Feb 13	42.9	32.2	52.6
Feb 14	41.5	28.5	60.2
Feb 15	46.8	30.0	66.3
Feb 16	44.7	35.5	55.6
Feb 17	34.5	26.5	45.3
Feb 18	33.3	26.5	49.4
Feb 19	38.9	26.5	63.0
Feb 20	42.0	26.5	67.3
Feb 21	44.6	29.1	66.1
Feb 22	51.9	37.2	72.4
Feb 23	49.7	38.8	59.9
Feb 24	39.0	33.5	46.7
Feb 25	41.6	26.5	59.5
Feb 26	48.6	36.6	66.0
Feb 27	53.3	40.0	71.6
Feb 28	50.1	32.0	65.1
Summary	44.9	33.3	53.3

		·	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	63.3	52.1	77.1
Feb 2	63.0	55.6	77.5
Feb 3	65.5	54.5	84.7
Feb 4	65.0	54.1	79.5
Feb 5	66.8	56.2	85.9
Feb 6	65.3	53.4	83.6
Feb 7	64.9	49.7	88.5
Feb 8	67.8	54.9	85.5
Feb 9	65.6	61.1	70.2
Feb 10	66.9	63.4	69.5
Feb 11	66.1	58.6	74.1
Feb 12	67.0	57.5	72.1
Feb 13	54.3	47.0	64.9
Feb 14	56.6	46.1	70.6
Feb 15	58.7	44.3	74.8
Feb 16	58.9	51.5	68.0
Feb 17	46.0	39.4	54.6
Feb 18	48.6	36.4	67.9
Feb 19	56.1	41.8	79.6
Feb 20	56.6	42.3	75.9
Feb 21	59.1	45.4	77.2
Feb 22	62.7	52.5	79.0
Feb 23	59.9	56.1	68.3
Feb 24	51.1	44.4	55.8
Feb 25	54.2	40.2	70.4
Feb 26	62.1	52.0	80.9
Feb 27	64.3	55.7	77.9
Feb 28	60.1	43.2	71.8
Summary	60.6	46.0	67.8

		<u> </u>	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	0.0	32.1	32.1
Feb 2	0.0	0.0	0.0
Feb 3	0.0	0.0	0.0
Feb 4	0.0	0.0	0.0
Feb 5	0.0	0.0	0.0
Feb 6	0.0	0.0	0.0
Feb 7	0.0	0.0	0.0
Feb 8	0.0	0.0	0.0
Feb 9	0.0	0.0	0.0
Feb 10	0.0	0.0	0.0
Feb 11	0.0	0.0	0.0
Feb 12	0.0	0.0	0.0
Feb 13	0.0	0.0	0.0
Feb 14	0.0	0.0	0.0
Feb 15	0.0	0.0	0.0
Feb 16	0.0	0.0	0.0
Feb 17	0.0	0.0	0.0
Feb 18	0.0	0.0	0.0
Feb 19	0.0	0.0	0.0
Feb 20	0.0	0.0	0.0
Feb 21	0.0	0.0	0.0
Feb 22	0.0	0.0	0.0
Feb 23	0.0	0.0	0.0
Feb 24	0.0	0.0	0.0
Feb 25	0.0	0.0	0.0
Feb 26	0.0	0.0	0.0
Feb 27	0.0	0.0	0.0
Feb 28	0.0	0.0	0.0
Summary	0.0	0.0	0.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	42.1	29.7	59.8
Feb 2	43.1	30.9	67.9
Feb 3	45.4	31.0	71.6
Feb 4	46.6	29.7	66.7
Feb 5	50.2	36.9	69.6
Feb 6	45.1	29.6	67.7
Feb 7	44.9	26.6	74.9
Feb 8	48.0	30.5	73.4
Feb 9	46.1	43.2	48.7
Feb 10	51.0	48.0	54.9
Feb 11	53.1	48.4	62.9
Feb 12	53.7	48.6	61.6
Feb 13	43.2	34.0	52.8
Feb 14	42.6	29.3	61.5
Feb 15	47.8	30.1	66.6
Feb 16	46.0	36.2	57.3
Feb 17	34.5	26.6	45.7
Feb 18	33.3	26.6	49.5
Feb 19	39.9	26.6	64.7
Feb 20	43.3	26.6	71.0
Feb 21	46.3	29.8	69.5
Feb 22	53.0	38.4	75.0
Feb 23	50.4	39.8	61.4
Feb 24	39.4	33.8	49.4
Feb 25	42.4	26.6	59.5
Feb 26	49.8	37.4	69.6
Feb 27	54.0	41.5	71.5
Feb 28	50.8	32.6	66.7
Summary	45.9	33.3	54.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	139.5	138.0	140.7
Feb 2	139.4	137.2	140.9
Feb 3	140.1	137.1	142.4
Feb 4	140.0	138.7	141.4
Feb 5	139.7	137.4	142.4
Feb 6	137.3	68.3	142.6
Feb 7	140.4	137.2	142.7
Feb 8	142.2	140.9	143.7
Feb 9	142.3	141.2	143.2
Feb 10	142.4	138.9	143.4
Feb 11	142.3	136.6	143.7
Feb 12	142.4	127.6	144.5
Feb 13	136.1	117.5	142.4
Feb 14	140.7	109.1	143.3
Feb 15	142.3	140.5	144.4
Feb 16	142.9	132.0	144.9
Feb 17	133.3	125.2	142.0
Feb 18	119.5	87.7	141.9
Feb 19	106.4	43.7	149.9
Feb 20	143.3	140.5	145.5
Feb 21	143.6	142.1	145.4
Feb 22	143.2	140.6	144.6
Feb 23	142.1	137.5	144.2
Feb 24	138.1	123.4	143.8
Feb 25	143.1	142.0	144.7
Feb 26	144.4	143.2	145.3
Feb 27	144.6	143.8	146.6
Feb 28	139.4	125.7	146.0
Summary	139.0	106.4	144.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	107.7	105.3	111.5
Feb 2	109.4	105.5	113.6
Feb 3	110.9	108.1	114.6
Feb 4	110.4	107.0	113.4
Feb 5	107.6	105.8	110.2
Feb 6	105.9	101.9	109.3
Feb 7	102.8	99.3	105.9
Feb 8	104.5	102.5	106.0
Feb 9	103.6	101.7	105.7
Feb 10	106.2	105.7	106.7
Feb 11	105.8	103.6	106.7
Feb 12	106.2	103.4	108.3
Feb 13	103.6	101.0	105.1
Feb 14	103.9	79.2	106.8
Feb 15	105.3	102.8	107.6
Feb 16	105.6	104.1	107.4
Feb 17	103.1	101.7	104.3
Feb 18	76.6	49.1	103.8
Feb 19	75.8	38.3	112.4
Feb 20	105.9	102.5	109.5
Feb 21	106.0	103.7	108.2
Feb 22	105.9	104.5	107.9
Feb 23	104.1	101.8	105.5
Feb 24	101.7	100.0	103.1
Feb 25	103.0	100.7	104.9
Feb 26	104.0	102.4	105.9
Feb 27	103.8	102.6	106.8
Feb 28	101.9	89.3	105.1
Summary	103.3	75.8	110.9

_		, g	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	41.3	29.1	57.1
Feb 2	46.6	35.3	67.9
Feb 3	70.2	41.3	104.2
Feb 4	90.4	75.3	114.1
Feb 5	75.2	60.5	96.4
Feb 6	61.3	29.8	123.1
Feb 7	62.0	36.5	99.5
Feb 8	71.4	45.2	101.0
Feb 9	64.1	49.5	77.1
Feb 10	50.8	47.8	54.4
Feb 11	52.2	48.1	60.5
Feb 12	53.4	48.8	60.8
Feb 13	42.6	33.2	50.9
Feb 14	42.0	29.2	60.8
Feb 15	47.0	30.5	65.0
Feb 16	45.3	36.5	54.5
Feb 17	33.6	26.0	46.1
Feb 18	32.7	25.9	48.9
Feb 19	39.4	25.9	62.6
Feb 20	42.0	26.0	64.3
Feb 21	45.4	31.3	65.0
Feb 22	52.2	38.7	71.8
Feb 23	49.9	41.3	58.7
Feb 24	39.6	34.1	47.3
Feb 25	41.3	25.9	57.2
Feb 26	49.6	38.1	65.2
Feb 27	53.9	42.3	69.1
Feb 28	51.0	33.3	65.5
Summary	51.7	32.7	90.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	156.8	145.8	173.1
Feb 2	154.0	149.6	170.4
Feb 3	149.1	147.4	150.7
Feb 4	147.5	146.3	148.8
Feb 5	151.7	145.4	169.6
Feb 6	154.8	147.6	173.1
Feb 7	149.2	147.3	150.7
Feb 8	147.5	146.1	149.2
Feb 9	146.1	144.9	147.1
Feb 10	146.0	143.9	147.1
Feb 11	145.9	143.0	147.6
Feb 12	146.4	143.9	147.6
Feb 13	143.4	141.7	144.8
Feb 14	143.8	131.7	145.3
Feb 15	144.6	143.1	145.9
Feb 16	152.0	143.9	171.2
Feb 17	145.8	143.1	150.0
Feb 18	142.4	138.7	145.4
Feb 19	144.5	140.1	150.2
Feb 20	145.8	143.8	148.9
Feb 21	145.3	142.9	146.9
Feb 22	145.3	143.4	146.6
Feb 23	145.0	144.2	145.8
Feb 24	143.3	141.1	145.4
Feb 25	143.9	142.4	145.6
Feb 26	145.4	144.1	146.8
Feb 27	145.6	144.6	146.8
Feb 28	144.1	140.7	147.3
Summary	147.0	142.4	156.8

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	146.7	90.0	193.4
Feb 2	149.2	125.5	191.8
Feb 3	121.7	111.2	134.2
Feb 4	113.0	106.2	125.9
Feb 5	139.4	96.9	191.6
Feb 6	156.6	131.0	192.5
Feb 7	169.6	127.5	195.7
Feb 8	153.9	112.1	194.8
Feb 9	157.1	133.3	194.1
Feb 10	129.4	119.9	140.4
Feb 11	116.2	106.5	123.5
Feb 12	134.4	89.8	176.6
Feb 13	68.5	53.7	85.1
Feb 14	80.3	53.1	127.4
Feb 15	86.9	57.7	113.2
Feb 16	91.7	71.3	109.3
Feb 17	58.7	46.4	80.7
Feb 18	76.9	40.2	107.2
Feb 19	89.4	64.3	116.5
Feb 20	84.5	55.2	112.6
Feb 21	87.8	57.3	112.6
Feb 22	123.9	57.9	180.8
Feb 23	151.2	110.3	186.8
Feb 24	134.1	97.8	187.6
Feb 25	114.8	95.8	176.7
Feb 26	143.4	90.1	189.3
Feb 27	140.1	120.5	186.0
Feb 28	147.3	114.3	190.0
Summary	120.2	58.7	169.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	129.7	51.3	178.2
Feb 2	142.3	87.7	179.1
Feb 3	81.5	67.3	102.9
Feb 4	76.6	62.4	98.0
Feb 5	77.5	64.2	99.4
Feb 6	74.5	58.3	96.4
Feb 7	104.8	53.0	174.5
Feb 8	161.4	115.7	179.9
Feb 9	153.7	128.9	179.8
Feb 10	96.9	81.4	125.8
Feb 11	88.0	74.5	99.3
Feb 12	130.0	82.9	179.4
Feb 13	127.9	67.9	178.0
Feb 14	94.0	67.4	136.8
Feb 15	78.9	60.1	97.2
Feb 16	121.4	72.9	178.8
Feb 17	102.9	66.6	169.2
Feb 18	74.6	61.9	91.8
Feb 19	126.8	55.4	179.1
Feb 20	146.4	99.8	182.1
Feb 21	93.5	74.2	105.2
Feb 22	90.1	79.1	105.2
Feb 23	86.1	79.3	94.4
Feb 24	70.3	56.7	80.3
Feb 25	73.4	54.9	89.5
Feb 26	120.7	71.8	175.9
Feb 27	130.5	88.6	178.8
Feb 28	137.1	84.2	179.2
Summary	106.9	70.3	161.4

D-4-	A	BALLELING COEN	BA (05)
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	106.6	98.6	114.3
Feb 2	103.0	98.1	113.0
Feb 3	109.8	98.4	122.9
Feb 4	109.3	101.5	119.6
Feb 5	109.6	103.2	120.8
Feb 6	106.7	99.1	119.8
Feb 7	105.9	89.6	126.2
Feb 8	106.0	93.9	118.5
Feb 9	105.2	98.7	110.1
Feb 10	110.8	93.9	116.6
Feb 11	113.7	91.7	120.8
Feb 12	111.7	81.1	116.3
Feb 13	83.3	70.5	94.6
Feb 14	90.6	69.2	102.0
Feb 15	97.9	86.5	108.9
Feb 16	100.8	93.8	109.5
Feb 17	75.2	69.9	80.4
Feb 18	76.9	57.4	90.6
Feb 19	89.8	70.4	117.7
Feb 20	96.4	77.6	113.4
Feb 21	102.6	91.9	111.6
Feb 22	102.1	93.4	110.8
Feb 23	99.1	93.1	103.3
Feb 24	88.0	76.7	98.3
Feb 25	92.4	80.2	100.9
Feb 26	101.7	96.5	113.4
Feb 27	101.9	98.4	111.8
Feb 28	90.6	69.0	107.1
Summary	99.6	75.2	113.7

		. 3	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	72.2	64.4	84.4
Feb 2	72.6	65.5	89.3
Feb 3	71.2	60.5	89.9
Feb 4	71.8	64.9	85.5
Feb 5	72.3	60.4	91.1
Feb 6	71.5	63.1	86.0
Feb 7	70.4	59.3	89.1
Feb 8	73.2	62.5	90.6
Feb 9	70.6	67.6	73.7
Feb 10	73.6	68.9	77.8
Feb 11	75.2	66.7	84.7
Feb 12	87.9	71.3	102.4
Feb 13	83.4	76.7	93.8
Feb 14	85.7	78.5	95.3
Feb 15	89.4	82.3	99.4
Feb 16	90.4	84.3	96.9
Feb 17	79.0	74.0	85.6
Feb 18	76.1	68.0	90.6
Feb 19	77.2	65.6	94.4
Feb 20	83.7	72.0	99.9
Feb 21	89.3	81.1	100.9
Feb 22	94.1	87.3	104.5
Feb 23	92.6	86.5	98.6
Feb 24	83.2	73.9	88.6
Feb 25	85.8	76.4	97.4
Feb 26	90.8	86.7	98.5
Feb 27	92.0	85.6	101.9
Feb 28	85.8	66.9	96.7
Summary	80.8	70.4	94.1

		<u> </u>	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	141.1	134.9	146.7
Feb 2	140.5	135.6	147.3
Feb 3	142.6	136.8	151.8
Feb 4	141.6	137.4	147.5
Feb 5	140.8	135.1	150.0
Feb 6	137.3	70.1	148.5
Feb 7	139.6	130.4	151.9
Feb 8	141.3	133.5	149.9
Feb 9	140.4	136.6	143.9
Feb 10	140.8	132.3	144.3
Feb 11	141.0	131.2	147.0
Feb 12	142.5	130.4	145.6
Feb 13	127.5	118.5	138.0
Feb 14	132.6	117.9	141.0
Feb 15	134.6	126.7	143.5
Feb 16	136.2	128.1	142.2
Feb 17	121.2	115.0	130.2
Feb 18	116.2	103.9	128.4
Feb 19	120.8	97.4	143.0
Feb 20	129.7	117.7	139.3
Feb 21	134.4	124.6	142.6
Feb 22	136.5	129.3	143.4
Feb 23	132.0	125.7	136.7
Feb 24	121.3	106.8	131.1
Feb 25	125.4	112.2	134.0
Feb 26	131.3	124.0	139.0
Feb 27	131.0	123.8	138.4
Feb 28	121.9	102.3	134.2
Summary	133.7	116.2	142.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	79.6	72.9	86.3
Feb 2	79.9	73.8	88.4
Feb 3	82.0	74.8	92.8
Feb 4	81.9	74.8	90.2
Feb 5	82.9	75.0	91.6
Feb 6	80.7	74.9	88.3
Feb 7	80.0	70.2	94.1
Feb 8	82.0	72.5	92.0
Feb 9	81.4	78.4	83.3
Feb 10	81.9	80.2	84.5
Feb 11	82.0	76.5	86.7
Feb 12	81.4	73.5	86.9
Feb 13	72.7	66.5	76.9
Feb 14	74.2	55.1	81.5
Feb 15	76.9	66.7	85.4
Feb 16	77.8	73.7	83.4
Feb 17	69.6	65.0	73.8
Feb 18	55.0	41.1	68.9
Feb 19	58.2	33.3	86.1
Feb 20	75.4	61.3	90.1
Feb 21	79.5	69.5	89.2
Feb 22	82.0	73.7	91.2
Feb 23	79.6	76.4	83.4
Feb 24	73.9	69.2	77.0
Feb 25	75.8	66.9	81.3
Feb 26	81.0	74.5	90.5
Feb 27	81.5	75.3	89.3
Feb 28	78.0	69.4	85.5
Summary	77.4	55.0	82.9

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	112.0	111.2	112.6
Feb 2	111.8	111.3	112.7
Feb 3	111.8	111.3	112.9
Feb 4	111.7	110.9	112.6
Feb 5	111.8	111.2	112.7
Feb 6	111.3	110.5	112.4
Feb 7	114.9	110.1	122.6
Feb 8	116.4	109.5	124.9
Feb 9	113.8	111.4	122.2
Feb 10	111.6	111.2	111.8
Feb 11	111.5	110.9	112.0
Feb 12	115.2	111.3	125.1
Feb 13	111.8	109.8	120.3
Feb 14	110.2	94.3	115.3
Feb 15	113.0	109.8	122.3
Feb 16	112.0	110.3	119.9
Feb 17	109.7	109.1	110.4
Feb 18	106.0	90.5	110.0
Feb 19	109.2	101.9	115.4
Feb 20	113.0	109.6	122.3
Feb 21	115.6	109.4	124.3
Feb 22	112.3	110.2	122.1
Feb 23	110.5	110.2	111.0
Feb 24	109.8	109.0	110.3
Feb 25	109.8	108.9	110.5
Feb 26	110.3	109.6	110.9
Feb 27	110.6	109.9	111.4
Feb 28	110.2	108.6	111.3
Summary	111.7	106.0	116.4

		·	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	59.1	48.8	71.5
Feb 2	58.7	49.4	76.3
Feb 3	62.2	50.8	81.1
Feb 4	63.8	53.1	79.3
Feb 5	65.5	53.8	81.7
Feb 6	65.6	54.8	80.2
Feb 7	67.3	54.9	85.1
Feb 8	70.2	60.3	84.1
Feb 9	69.9	67.6	72.7
Feb 10	73.1	71.1	74.8
Feb 11	74.9	69.7	81.0
Feb 12	71.2	60.0	76.1
Feb 13	56.2	48.3	64.4
Feb 14	56.7	42.2	69.9
Feb 15	59.6	47.6	73.9
Feb 16	59.0	52.6	67.2
Feb 17	48.3	43.2	55.5
Feb 18	41.1	30.4	55.1
Feb 19	45.7	27.8	72.2
Feb 20	55.6	39.8	75.1
Feb 21	61.5	49.2	76.4
Feb 22	66.4	57.6	79.6
Feb 23	65.1	59.5	72.5
Feb 24	56.1	50.6	61.1
Feb 25	59.1	47.9	70.9
Feb 26	65.2	56.8	77.4
Feb 27	66.4	59.4	77.4
Feb 28	61.9	48.1	73.0
Summary	61.6	41.1	74.9

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	95.8	89.8	103.0
Feb 2	95.4	92.0	102.6
Feb 3	95.3	87.3	104.7
Feb 4	95.2	90.4	103.4
Feb 5	93.7	87.2	103.3
Feb 6	90.7	82.7	97.2
Feb 7	89.8	79.2	105.4
Feb 8	92.2	85.8	101.7
Feb 9	89.0	84.6	91.6
Feb 10	89.5	84.6	92.6
Feb 11	89.0	81.4	94.1
Feb 12	77.0	48.1	93.6
Feb 13	63.7	34.2	85.5
Feb 14	100.4	57.1	120.6
Feb 15	114.3	85.1	117.5
Feb 16	114.8	113.2	115.7
Feb 17	112.0	110.7	113.1
Feb 18	111.9	111.0	113.4
Feb 19	112.0	110.6	114.4
Feb 20	111.8	110.3	113.7
Feb 21	111.8	110.7	113.4
Feb 22	111.9	110.4	113.5
Feb 23	109.8	99.4	113.2
Feb 24	109.5	108.0	110.4
Feb 25	109.5	108.2	110.8
Feb 26	109.6	108.2	111.0
Feb 27	109.0	107.8	111.3
Feb 28	107.7	104.2	110.1
Summary	100.4	63.7	114.8

_		,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	92.7	86.1	101.0
Feb 2	85.9	76.1	100.4
Feb 3	82.7	73.0	99.0
Feb 4	82.2	71.5	95.3
Feb 5	80.5	71.1	97.1
Feb 6	79.1	67.2	95.9
Feb 7	77.6	64.4	98.4
Feb 8	78.9	66.8	95.1
Feb 9	74.8	70.4	77.5
Feb 10	75.7	71.4	78.9
Feb 11	76.5	68.2	84.0
Feb 12	70.3	47.9	85.2
Feb 13	56.5	34.7	72.9
Feb 14	69.1	55.2	81.2
Feb 15	70.3	58.6	84.7
Feb 16	70.8	64.4	79.4
Feb 17	57.1	49.6	66.9
Feb 18	59.2	48.2	74.6
Feb 19	65.3	50.1	85.9
Feb 20	68.8	54.5	88.2
Feb 21	71.1	58.4	88.3
Feb 22	72.9	63.7	88.1
Feb 23	67.5	54.2	79.3
Feb 24	60.8	54.7	65.7
Feb 25	64.6	49.7	81.3
Feb 26	73.1	62.9	90.1
Feb 27	75.0	67.4	87.2
Feb 28	69.2	50.7	80.3
Summary	72.4	56.5	92.7

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	114.7	111.1	117.3
Feb 2	114.7	111.8	116.3
Feb 3	116.4	111.9	120.9
Feb 4	116.5	113.0	120.4
Feb 5	116.4	113.0	121.0
Feb 6	115.3	106.6	119.4
Feb 7	116.0	109.5	125.7
Feb 8	116.9	112.0	122.8
Feb 9	115.0	111.7	117.5
Feb 10	115.1	110.3	118.2
Feb 11	115.6	109.7	119.8
Feb 12	96.3	48.7	119.9
Feb 13	83.1	36.5	113.8
Feb 14	112.4	105.1	116.0
Feb 15	111.8	70.7	118.5
Feb 16	114.8	110.9	119.6
Feb 17	105.8	102.3	108.4
Feb 18	107.7	102.3	112.8
Feb 19	112.2	105.7	118.8
Feb 20	113.4	108.0	119.2
Feb 21	114.3	110.3	120.2
Feb 22	114.6	109.9	119.1
Feb 23	110.2	93.4	115.7
Feb 24	109.5	104.3	113.2
Feb 25	111.2	106.3	115.5
Feb 26	116.5	112.6	122.5
Feb 27	117.2	113.0	123.0
Feb 28	113.8	104.9	120.3
Summary	112.0	83.1	117.2

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	94.7	86.1	101.3
Feb 2	91.7	85.8	100.0
Feb 3	92.5	82.0	105.8
Feb 4	89.9	83.0	98.7
Feb 5	89.1	76.9	106.1
Feb 6	89.3	76.3	104.9
Feb 7	90.4	76.8	111.0
Feb 8	91.7	79.6	107.0
Feb 9	88.3	82.2	92.3
Feb 10	90.8	83.9	95.5
Feb 11	91.9	82.2	99.9
Feb 12	93.0	77.3	99.7
Feb 13	77.5	65.9	86.0
Feb 14	82.9	51.4	95.1
Feb 15	86.5	74.4	96.9
Feb 16	88.6	80.6	98.0
Feb 17	74.0	67.4	82.1
Feb 18	45.4	27.3	73.6
Feb 19	54.9	26.5	101.3
Feb 20	88.4	69.7	105.3
Feb 21	93.1	84.3	104.4
Feb 22	91.3	83.1	101.8
Feb 23	87.8	83.9	95.5
Feb 24	78.3	69.9	84.7
Feb 25	81.1	67.5	92.9
Feb 26	108.6	78.2	145.7
Feb 27	137.9	136.8	139.4
Feb 28	135.3	133.2	136.9
Summary	89.5	45.4	137.9

		· J	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	133.7	129.2	137.0
Feb 2	133.2	130.0	138.1
Feb 3	136.4	131.8	142.1
Feb 4	134.7	131.5	137.8
Feb 5	136.3	131.3	141.2
Feb 6	137.3	133.2	141.3
Feb 7	137.8	129.0	146.3
Feb 8	139.2	133.2	144.0
Feb 9	139.2	135.0	142.3
Feb 10	136.8	116.0	142.9
Feb 11	137.3	123.3	142.6
Feb 12	136.6	112.1	140.4
Feb 13	121.6	110.0	131.4
Feb 14	128.5	95.6	134.8
Feb 15	129.8	122.2	140.9
Feb 16	132.9	125.2	137.3
Feb 17	121.1	115.5	125.7
Feb 18	107.7	90.2	132.0
Feb 19	113.6	89.7	140.8
Feb 20	130.7	114.0	145.2
Feb 21	135.5	128.6	142.0
Feb 22	136.7	127.4	141.3
Feb 23	133.2	124.5	138.0
Feb 24	128.7	116.4	138.0
Feb 25	131.7	126.3	138.9
Feb 26	135.9	131.2	139.7
Feb 27	134.5	129.2	141.7
Feb 28	127.0	108.3	139.2
Summary	131.7	107.7	139.2

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	118.1	109.6	125.1
Feb 2	115.8	109.3	123.1
Feb 3	116.8	100.9	133.3
Feb 4	117.3	110.4	125.8
	117.5		
Feb 5		101.0	131.8
Feb 6	117.7	108.1	128.1
Feb 7	116.8	102.2	135.3
Feb 8	120.4	109.6	131.6
Feb 9	118.9	110.6	124.5
Feb 10	120.6	107.8	127.9
Feb 11	117.6	95.4	128.7
Feb 12	122.3	101.2	130.2
Feb 13	99.0	85.7	112.7
Feb 14	109.1	102.6	116.4
Feb 15	111.3	98.7	121.0
Feb 16	116.0	101.9	125.5
Feb 17	89.5	78.5	102.3
Feb 18	98.8	84.3	110.1
Feb 19	105.8	89.5	127.7
Feb 20	108.0	92.3	124.3
Feb 21	109.8	93.0	120.6
Feb 22	113.7	105.2	122.9
Feb 23	110.1	102.6	116.9
Feb 24	97.7	77.1	114.9
Feb 25	101.7	90.8	113.5
Feb 26	112.9	101.4	123.5
Feb 27	113.9	103.6	123.6
Feb 28	102.9	71.9	123.7
Summary	111.4	89.5	122.3

		.,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Feb 1	120.7	119.5	121.4
Feb 2	121.0	120.0	123.9
Feb 3	121.5	119.1	123.6
Feb 4	122.0	120.8	123.3
Feb 5	122.6	120.0	124.9
Feb 6	123.1	121.8	125.1
Feb 7	123.8	121.7	125.8
Feb 8	124.3	122.5	126.3
Feb 9	124.3	122.9	126.5
Feb 10	123.3	121.4	124.7
Feb 11	120.5	117.6	121.9
Feb 12	124.0	119.4	127.3
Feb 13	125.9	122.2	130.3
Feb 14	129.8	120.5	133.7
Feb 15	124.8	123.2	126.2
Feb 16	125.3	122.5	131.2
Feb 17	121.9	120.2	123.6
Feb 18	114.9	105.8	123.3
Feb 19	118.8	110.4	129.4
Feb 20	125.0	121.8	128.2
Feb 21	125.7	123.7	127.0
Feb 22	125.5	123.8	127.0
Feb 23	123.5	121.0	125.4
Feb 24	121.5	118.7	123.6
Feb 25	122.3	120.6	123.3
Feb 26	123.2	122.4	124.5
Feb 27	123.8	122.5	126.0
Feb 28	121.7	116.6	125.2
Summary	123.0	114.9	129.8

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

Appendix D Table of Contents

Section	Page
---------	------

Solid	Waste Permit	588 Daily	Borehole	Temperature	e Averages to	r Borehole	1	D-3
Solid	Waste Permit	588 Daily	Borehole	Temperature	e Averages fo	r Borehole	2	D-4
Solid	Waste Permit	588 Daily	Borehole	Temperature	e Averages fo	r Borehole	3	D-5
Solid	Waste Permit	588 Daily	Borehole	Temperature	e Averages fo	r Borehole	4	D-6
Solid	Waste Permit	588 Daily	Borehole	Temperature	e Averages fo	r Borehole	5	D-7
Solid	Waste Permit	588 Daily	Borehole	Temperature	e Averages fo	r Borehole	6	D-8
Solid	Waste Permit	588 Daily	Borehole	Temperature	e Averages fo	r Borehole	7	D-9
Solid	Waste Permit	588 Daily	Borehole	Temperature	e Averages fo	r Borehole	8	D-10
Solid	Waste Permit	588 Daily	Borehole	Temperature	e Averages fo	r Borehole	9	D-11

	Depth from Surface					
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft
1-Feb	165.8	228.5	228.9	246.7	257.7	268.8
2-Feb	165.8	227.7	228.2	246.6	257.8	268.6
3-Feb	165.9	227.7	228.3	246.7	258.1	268.8
4-Feb	165.9	228.0	228.5	246.6	257.9	268.6
5-Feb	166.1	228.1	228.6	246.7	257.9	268.7
6-Feb	165.9	227.9	228.4	246.6	257.8	268.6
7-Feb	165.9	227.9	228.4	246.6	257.8	268.6
8-Feb	165.8	228.0	228.5	246.4	257.6	268.5
9-Feb	165.6	228.3	228.8	245.9	256.7	268.1
10-Feb	165.8	228.5	229.0	246.1	256.7	268.3
11-Feb	165.8	228.7	229.1	246.2	256.8	268.4
12-Feb	166.0	228.6	229.2	246.2	256.8	268.3
13-Feb	165.7	228.3	228.8	246.1	256.7	268.3
14-Feb	165.7	228.2	228.7	246.1	256.6	268.4
15-Feb	166.0	228.4	228.9	246.2	256.8	268.5
16-Feb	165.7	227.9	228.4	245.7	256.2	267.9
17-Feb	165.5	227.7	228.3	245.6	256.1	267.8
18-Feb	165.6	227.7	228.2	245.7	256.2	268.0
19-Feb	166.0	228.0	228.5	246.0	256.5	268.3
20-Feb	166.0	228.1	228.6	246.1	256.6	268.4
21-Feb	165.9	228.1	228.7	246.1	256.5	268.3
22-Feb	166.3	228.4	229.0	246.2	256.7	268.5
23-Feb	166.0	228.3	228.7	246.0	256.5	268.3
24-Feb	165.4	227.5	228.0	245.5	256.1	267.8
25-Feb	165.8	227.6	228.2	246.1	256.6	268.4
26-Feb	165.8	227.5	227.9	245.8	256.4	268.2
27-Feb	166.1	227.6	228.1	246.1	256.7	268.5
28-Feb	165.9	227.2	227.7	246.0	256.6	268.3
29-Feb	165.8	226.9	227.3	246.0	256.7	268.5
Average	165.8	228.0	228.5	246.2	256.9	268.4

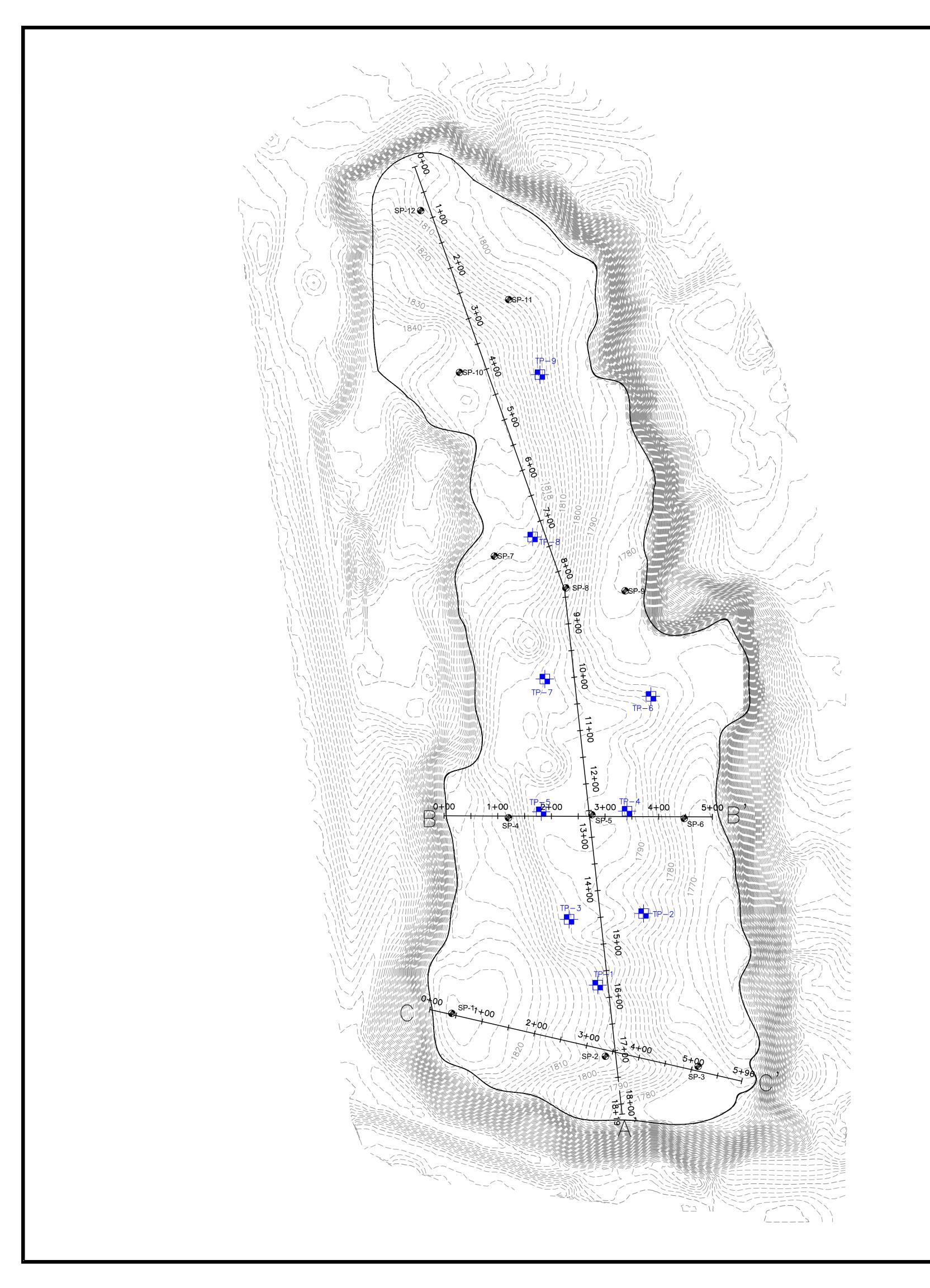
	Depth from Surface					
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft
1-Feb	195.9	234.4	234.9	263.9	250.2	261.8
2-Feb	197.1	234.3	234.8	264.0	250.2	261.8
3-Feb	196.5	234.3	234.8	264.1	250.2	261.8
4-Feb	197.7	234.2	234.6	264.1	250.1	261.7
5-Feb	197.1	234.1	234.7	264.1	250.3	261.9
6-Feb	194.5	234.3	234.8	264.1	250.1	261.7
7-Feb	191.1	234.5	235.0	264.1	250.5	261.8
8-Feb	187.8	234.4	235.0	264.1	250.4	261.6
9-Feb	191.9	234.2	234.7	263.9	249.8	261.3
10-Feb	194.6	234.3	234.7	264.1	250.0	261.5
11-Feb	196.4	234.3	234.7	264.2	250.1	261.6
12-Feb	198.6	234.1	234.5	264.2	250.2	261.6
13-Feb	193.4	234.0	234.5	264.1	250.0	261.5
14-Feb	185.0	234.3	234.8	264.2	250.3	261.5
15-Feb	196.4	234.7	235.1	264.0	253.3	261.6
16-Feb	198.6	234.1	234.6	263.9	251.7	261.3
17-Feb	191.2	233.9	234.4	263.8	251.2	261.2
18-Feb	190.0	234.0	234.5	263.9	251.8	261.2
19-Feb	191.0	234.3	234.9	264.1	252.2	261.4
20-Feb	191.2	234.5	235.1	264.1	252.4	261.5
21-Feb	192.2	234.5	235.0	264.1	252.4	261.4
22-Feb	198.3	234.2	234.7	264.2	252.4	261.5
23-Feb	200.4	233.8	234.3	264.1	252.2	261.3
24-Feb	196.9	233.7	234.2	263.7	251.8	260.9
25-Feb	193.4	234.2	234.7	263.9	252.1	261.2
26-Feb	194.5	234.2	234.8	263.8	252.2	261.2
27-Feb	197.3	234.2	234.7	263.8	252.2	261.4
28-Feb	195.9	234.1	234.6	263.6	252.0	261.1
29-Feb	185.5	234.4	235.0	263.5	251.8	261.1
Average	194.2	234.2	234.7	264.0	251.2	261.5

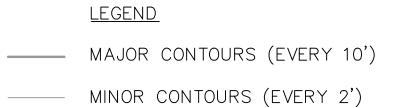
				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Feb	202.2	235.5	235.6	245.5	255.0	263.0	267.9	255.1
2-Feb	202.6	235.4	235.5	244.9	254.9	262.9	267.8	255.1
3-Feb	203.1	235.4	235.5	244.9	254.9	263.0	268.0	255.2
4-Feb	203.2	235.3	235.5	245.0	254.8	262.9	267.9	255.1
5-Feb	203.4	235.6	235.6	245.1	254.8	262.9	268.0	255.3
6-Feb	203.2	235.5	235.6	244.8	254.7	262.9	267.9	255.3
7-Feb	203.3	235.4	235.5	244.5	254.6	262.8	267.9	255.3
8-Feb	203.4	235.2	235.3	244.2	254.3	262.6	267.8	255.2
9-Feb	203.3	234.8	234.8	243.7	253.9	262.3	267.4	254.8
10-Feb	203.4	234.7	234.8	243.8	254.0	262.4	267.5	254.9
11-Feb	203.3	234.9	235.0	244.0	254.0	262.4	267.6	255.0
12-Feb	203.3	235.0	235.0	244.0	253.8	262.3	267.5	255.0
13-Feb	202.9	234.9	235.0	244.0	253.9	262.3	267.6	255.2
14-Feb	203.0	235.0	235.1	244.0	253.8	262.2	267.6	255.2
15-Feb	203.2	235.2	235.3	244.1	253.8	262.3	267.7	255.3
16-Feb	202.7	234.9	235.0	243.7	253.2	261.9	267.2	254.8
17-Feb	202.3	234.7	234.8	243.5	253.0	261.6	267.1	254.7
18-Feb	202.3	234.8	235.0	243.6	253.1	261.7	267.3	255.0
19-Feb	202.4	235.1	235.2	244.0	253.4	261.9	267.6	255.3
20-Feb	202.1	235.2	235.3	244.1	253.4	261.8	267.6	255.4
21-Feb	201.7	235.2	235.4	244.2	253.3	261.8	267.6	255.4
22-Feb	200.8	235.3	235.4	244.1	253.2	261.6	267.4	255.2
23-Feb	200.8	235.0	235.1	243.8	253.0	261.3	267.3	255.0
24-Feb	199.9	234.5	234.6	243.1	252.6	260.8	266.9	254.6
25-Feb	199.1	234.7	234.9	243.7	253.1	261.0	267.4	255.3
26-Feb	198.6	234.7	234.8	243.6	252.9	261.0	267.2	255.0
27-Feb	199.0	234.7	234.9	243.7	253.1	261.1	267.3	255.1
28-Feb	198.3	234.5	234.6	243.5	252.9	260.9	267.1	254.9
29-Feb	196.4	234.3	234.4	243.4	252.9	261.0	267.2	255.1
Average	201.8	235.0	235.1	244.1	253.7	262.0	267.5	255.1

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Feb	193.6	227.4	227.8	247.8	263.3	248.3	245.3	186.0
2-Feb	194.5	229.1	229.6	248.2	262.5	248.3	245.3	187.5
3-Feb	194.8	228.1	228.6	248.2	262.6	248.3	245.4	187.4
4-Feb	191.4	229.2	229.7	248.3	263.1	248.8	245.3	184.9
5-Feb	192.3	229.5	230.0	248.4	262.0	248.2	245.5	184.9
6-Feb	192.8	229.5	230.1	248.3	259.5	246.5	245.4	186.0
7-Feb	192.8	229.4	230.0	248.1	257.4	244.8	245.5	187.0
8-Feb	193.0	229.1	229.7	248.0	255.7	243.7	245.4	187.7
9-Feb	192.8	228.7	229.2	247.6	253.8	242.4	244.9	188.3
10-Feb	191.7	228.7	229.2	247.8	250.8	240.4	245.2	190.7
11-Feb	188.6	228.6	229.0	247.8	256.1	244.3	245.2	186.0
12-Feb	191.0	228.7	229.1	247.6	261.5	248.3	245.2	182.1
13-Feb	187.1	228.3	228.6	247.6	262.9	249.4	245.3	180.5
14-Feb	190.6	228.2	228.4	247.4	265.3	251.4	245.3	178.6
15-Feb	191.1	228.5	228.9	247.5	268.4	253.9	245.4	176.6
16-Feb	191.0	228.4	228.8	247.1	267.1	253.3	244.9	177.1
17-Feb	189.9	227.8	228.1	247.1	264.1	250.2	244.9	178.4
18-Feb	190.5	228.0	228.4	247.1	264.1	250.4	245.1	178.6
19-Feb	191.5	228.2	228.7	247.7	264.3	250.9	245.5	179.9
20-Feb	192.2	228.2	228.7	247.2	262.9	250.1	245.3	181.4
21-Feb	192.4	228.3	228.8	247.3	264.2	251.1	245.4	182.3
22-Feb	192.2	228.9	229.5	247.3	265.3	252.2	245.4	181.7
23-Feb	191.4	228.4	228.9	246.5	262.3	249.5	245.3	183.2
24-Feb	191.1	227.9	228.4	246.0	267.5	253.7	244.8	177.0
25-Feb	191.9	225.3	228.8	246.4	263.3	250.9	245.3	185.1
26-Feb	192.4	221.2	228.6	246.7	263.9	251.3	245.0	189.0
27-Feb	192.4	221.8	229.5	246.2	269.0	251.0	245.3	190.5
28-Feb	193.0	220.4	229.0	245.8	275.0	252.5	245.1	189.6
29-Feb	193.1	218.9	228.3	245.6	277.5	253.0	245.3	188.4
Average	191.8	227.3	229.0	247.3	263.3	249.2	245.2	184.0

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Feb	207.1	206.7	206.8	207.1	211.1	215.9	242.2	196.9
2-Feb	206.8	206.5	206.6	206.9	210.9	214.2	241.0	196.9
3-Feb	207.0	206.5	206.6	206.9	210.7	212.7	240.1	197.0
4-Feb	206.8	206.3	206.4	206.7	210.5	211.8	239.5	197.0
5-Feb	206.8	206.4	206.4	206.8	210.9	211.1	239.1	197.1
6-Feb	207.1	206.6	206.7	207.0	211.6	210.1	238.5	197.0
7-Feb	207.4	207.0	207.1	207.4	211.8	209.3	238.0	197.1
8-Feb	207.4	207.0	207.1	207.4	212.6	208.5	237.5	197.2
9-Feb	207.1	206.7	206.8	207.1	212.5	207.7	236.9	197.1
10-Feb	207.1	206.6	206.8	207.1	212.6	207.4	236.7	197.3
11-Feb	206.9	206.5	206.6	207.0	212.5	207.2	236.3	197.3
12-Feb	206.5	206.1	206.2	206.6	211.2	206.7	235.8	197.3
13-Feb	206.8	206.3	206.4	206.7	210.6	206.9	235.4	197.2
14-Feb	207.3	206.8	206.9	207.2	211.0	207.2	235.2	197.1
15-Feb	206.9	206.4	206.5	206.9	210.2	206.8	234.6	196.8
16-Feb	*	*	*	*	*	*	*	*
17-Feb	*	*	*	*	*	*	*	*
18-Feb	*	*	*	*	*	*	*	*
19-Feb	*	*	*	*	*	*	*	*
20-Feb	*	*	*	*	*	*	*	*
21-Feb	*	*	*	*	*	*	*	*
22-Feb	*	*	*	*	*	*	*	*
23-Feb	*	*	*	*	*	*	*	*
24-Feb	*	*	*	*	*	*	*	*
25-Feb	*	*	*	*	*	*	*	*
26-Feb	*	*	*	*	*	*	*	*
27-Feb	*	*	*	*	*	*	*	*
28-Feb	*	*	*	*	*	*	*	*
29-Feb	*	*	*	*	*	*	*	*
Average	207.0	206.6	206.6	207.0	211.4	209.6	237.8	197.1

^{*} Indicates senor reading failures


		Dep	th from Su	rface	
Date	25 ft	50 ft	75 ft	100 ft	125 ft
1-Feb	198.4	226.4	226.6	224.5	239.2
2-Feb	180.1	226.5	226.5	225.1	238.8
3-Feb	174.9	226.6	226.9	226.1	237.8
4-Feb	172.8	226.9	225.6	224.4	241.3
5-Feb	171.7	226.6	226.7	225.7	236.7
6-Feb	170.3	226.1	226.6	226.8	237.1
7-Feb	189.7	225.6	226.2	227.4	240.9
8-Feb	206.8	224.7	226.2	225.6	248.9
9-Feb	206.5	225.2	226.4	223.8	248.2
10-Feb	206.5	225.3	225.7	221.5	254.7
11-Feb	206.6	224.9	225.9	222.3	256.1
12-Feb	206.2	225.3	226.0	222.7	251.6
13-Feb	206.3	225.4	225.7	221.5	251.2
14-Feb	206.8	225.6	226.0	223.3	244.8
15-Feb	206.9	225.7	226.3	224.7	241.3
16-Feb	206.4	225.7	226.1	225.1	239.1
17-Feb	206.4	225.4	225.8	224.2	240.0
18-Feb	206.6	225.6	225.8	224.0	242.4
19-Feb	207.0	225.9	226.2	225.8	237.8
20-Feb	207.0	225.7	226.3	225.4	238.9
21-Feb	196.7	225.7	225.1	215.5	262.9
22-Feb	195.3	225.7	225.9	220.3	255.4
23-Feb	206.0	225.0	225.1	214.2	275.4
24-Feb	206.0	225.5	226.0	223.6	244.9
25-Feb	206.8	226.2	226.3	227.3	236.8
26-Feb	206.7	226.1	226.3	227.3	235.7
27-Feb	204.4	226.1	226.4	224.4	242.1
28-Feb	184.2	226.4	226.6	222.1	246.8
29-Feb	177.6	226.4	225.4	205.5	244.6
Average	197.5	225.8	226.1	223.1	245.2


				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Feb	184.1	215.0	201.0	208.9	207.0	202.5	222.2	192.7
2-Feb	184.8	214.5	200.9	209.6	205.3	198.5	222.1	192.4
3-Feb	185.7	213.9	201.4	209.8	205.7	199.4	222.6	193.2
4-Feb	186.4	212.9	201.8	209.5	208.6	199.0	223.0	193.4
5-Feb	186.7	211.8	202.1	208.9	208.4	207.4	223.4	193.1
6-Feb	185.8	210.9	203.0	208.8	208.7	211.5	224.1	193.9
7-Feb	185.2	211.9	203.7	205.7	208.1	212.5	224.0	194.6
8-Feb	185.6	212.0	203.6	205.5	208.8	212.6	224.0	194.4
9-Feb	186.0	210.2	203.8	207.5	211.6	210.8	223.9	193.1
10-Feb	184.4	209.0	203.6	207.7	210.2	210.1	223.5	194.8
11-Feb	184.2	209.2	202.9	209.0	210.9	210.2	223.5	192.8
12-Feb	185.5	210.1	201.2	210.6	211.7	210.8	222.4	189.6
13-Feb	184.0	210.8	199.4	212.2	213.0	212.3	221.3	186.0
14-Feb	181.9	212.7	192.7	216.0	216.0	215.2	218.8	180.4
15-Feb	181.2	215.2	185.1	219.5	219.3	217.8	217.4	172.7
16-Feb	179.4	214.6	183.3	220.2	219.7	219.0	216.7	171.6
17-Feb	176.3	211.7	178.4	219.7	219.2	219.1	215.9	175.2
18-Feb	173.6	211.2	178.4	221.1	220.1	220.0	215.1	168.8
19-Feb	172.0	211.3	177.9	219.6	217.3	218.5	216.1	172.3
20-Feb	169.0	211.2	174.7	220.6	216.1	218.4	215.0	174.4
21-Feb	167.3	209.1	179.8	218.9	213.3	216.0	215.9	178.3
22-Feb	166.9	206.6	184.4	216.4	210.9	213.4	216.7	178.7
23-Feb	166.4	203.2	189.0	213.3	207.1	210.0	218.7	183.9
24-Feb	165.0	202.2	187.6	213.2	205.4	208.0	217.6	185.3
25-Feb	163.3	201.4	190.0	213.5	205.2	207.3	217.9	186.6
26-Feb	163.3	198.1	195.6	210.4	202.2	204.1	217.9	189.1
27-Feb	165.0	196.2	198.7	208.4	200.4	202.2	219.1	191.8
28-Feb	166.4	196.0	199.7	207.2	199.6	201.6	219.5	188.8
29-Feb	167.4	195.2	201.2	206.4	199.4	201.1	219.5	189.2
Average	177.0	208.5	194.0	212.3	210.0	210.0	219.9	185.9

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Feb	180.9	194.2	194.5	197.1	198.7	192.1	187.4	177.3
2-Feb	179.7	194.1	194.4	197.0	198.6	192.1	187.4	177.3
3-Feb	179.1	194.2	194.5	197.2	198.7	192.2	187.6	177.4
4-Feb	180.0	194.1	194.4	197.0	198.6	192.2	187.5	177.3
5-Feb	179.6	194.2	194.6	197.1	198.7	192.3	187.6	177.5
6-Feb	178.4	194.3	194.6	197.2	198.7	192.4	187.6	177.4
7-Feb	177.4	194.4	194.7	197.4	198.9	192.4	187.7	177.4
8-Feb	176.3	194.4	194.7	197.4	198.9	192.4	187.6	177.3
9-Feb	175.7	194.1	194.4	197.1	198.6	192.1	187.2	176.8
10-Feb	176.2	194.2	194.4	197.1	198.6	192.2	187.3	177.0
11-Feb	177.6	194.2	194.5	197.0	198.5	192.3	187.4	177.0
12-Feb	179.8	194.1	194.3	196.9	198.3	192.3	187.3	177.0
13-Feb	181.6	194.1	194.4	197.0	198.5	192.4	187.5	177.2
14-Feb	178.9	194.2	194.5	197.1	198.7	192.4	187.5	177.1
15-Feb	178.1	194.3	194.7	197.3	198.8	192.5	187.6	177.2
16-Feb	177.6	194.0	194.3	196.9	198.4	192.2	187.2	176.8
17-Feb	176.9	193.9	194.2	196.8	198.3	192.2	187.3	176.8
18-Feb	176.5	194.1	194.4	197.1	198.6	192.5	187.5	177.0
19-Feb	176.7	194.3	194.7	197.3	198.8	192.7	187.7	177.3
20-Feb	178.3	194.4	194.7	197.3	198.9	192.7	187.8	177.3
21-Feb	179.6	194.4	194.7	197.4	198.9	192.7	187.9	177.3
22-Feb	180.7	194.3	194.6	197.2	198.7	192.7	187.8	177.2
23-Feb	181.5	194.1	194.4	196.9	198.3	192.7	187.7	177.2
24-Feb	179.0	193.8	194.0	196.7	198.1	192.3	187.4	176.8
25-Feb	179.0	194.2	194.5	197.2	198.7	192.7	187.9	177.3
26-Feb	180.3	194.2	194.5	197.1	198.6	192.6	187.7	177.1
27-Feb	181.5	194.2	194.6	197.1	198.5	192.7	187.8	177.3
28-Feb	181.1	194.1	194.3	196.9	198.3	192.5	187.6	177.1
29-Feb	181.1	194.3	194.6	197.3	198.8	192.6	187.7	177.2
Average	178.9	194.2	194.5	197.1	198.6	192.4	187.6	177.2

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Feb	113.2	149.5	149.5	151.6	147.5	131.6	117.2	105.6
2-Feb	113.1	149.2	149.2	151.7	147.7	131.7	117.2	105.7
3-Feb	113.0	149.2	149.2	151.7	147.7	131.8	117.3	105.7
4-Feb	112.9	148.9	148.9	151.7	147.8	131.8	117.3	105.7
5-Feb	112.9	148.7	148.7	151.7	147.9	131.9	117.4	105.8
6-Feb	113.1	148.9	148.7	151.6	147.8	131.8	117.3	105.7
7-Feb	113.2	149.2	149.0	151.6	147.7	131.8	117.3	105.8
8-Feb	113.3	149.2	148.9	151.7	147.7	132.0	117.4	105.9
9-Feb	112.9	148.7	148.5	151.5	147.5	131.8	117.2	105.7
10-Feb	112.6	148.5	148.3	151.6	147.7	132.0	117.4	106.0
11-Feb	111.4	148.1	147.9	151.6	148.3	135.9	117.5	106.0
12-Feb	111.0	148.5	148.2	151.6	148.0	136.1	117.5	106.1
13-Feb	110.4	147.5	147.4	151.3	147.7	135.6	115.5	106.6
14-Feb	110.8	147.7	147.5	151.3	147.7	136.3	115.5	107.3
15-Feb	110.8	147.7	147.5	151.4	147.9	137.0	115.9	107.6
16-Feb	110.8	147.1	147.0	151.1	147.7	137.0	115.8	107.2
17-Feb	110.4	146.3	146.4	150.8	147.6	137.3	115.8	106.9
18-Feb	110.4	146.6	146.6	150.8	147.4	137.1	115.8	106.7
19-Feb	110.8	146.8	146.8	151.0	147.7	137.4	116.0	106.8
20-Feb	111.2	146.8	146.7	151.1	147.8	137.3	116.0	106.8
21-Feb	111.2	146.9	146.9	151.1	147.9	137.0	116.5	106.8
22-Feb	110.7	146.8	146.8	151.2	148.0	137.3	117.2	106.9
23-Feb	110.4	146.4	145.9	151.0	148.0	137.2	115.6	106.7
24-Feb	110.1	146.5	145.6	150.4	147.5	136.7	114.9	106.5
25-Feb	110.8	147.2	146.4	150.7	147.7	136.8	115.0	107.2
26-Feb	110.8	147.2	146.4	150.8	147.9	137.0	115.2	107.5
27-Feb	110.6	147.3	146.3	151.0	148.1	137.2	115.4	107.6
28-Feb	110.8	147.1	146.1	150.8	147.9	137.0	115.1	107.3
29-Feb	111.0	147.2	146.7	150.6	147.5	136.6	114.6	107.1
Average	111.5	147.8	147.5	151.2	147.8	135.1	116.3	106.5

Appendix E Monthly Topography Analysis

---- MINOR CONTOURS (EVERY 2')

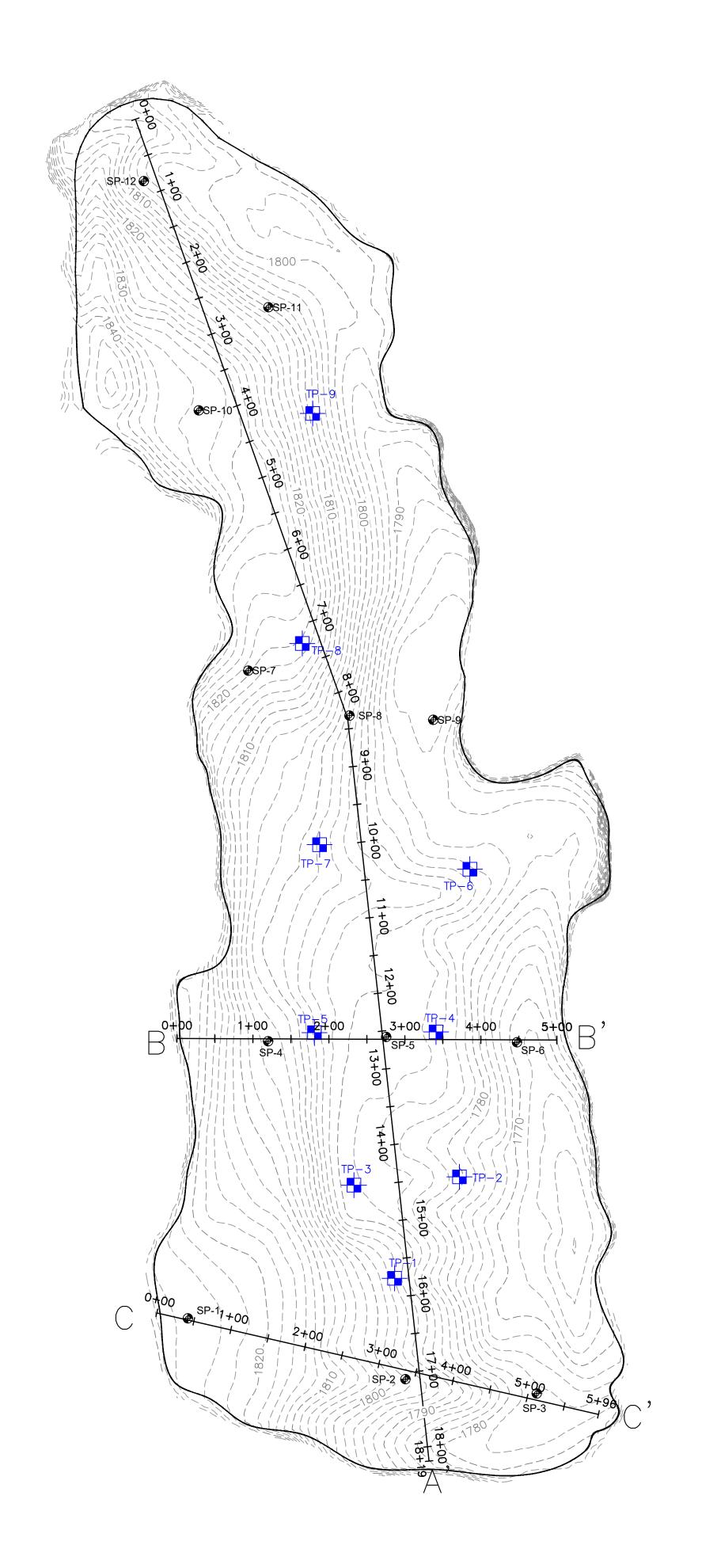
----- APPROXIMATE SIDEWALL LOCATION

⊕SP-9 SETTLEMENT PLATE

TP-3 TEMPERATURE MONITORING PROBE

NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON FEBRUARY 7, 2023 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.


MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE DEPMIT #588
--

SCALE: 1"=100'

CADD FILE: SURF COMP

SCALE:

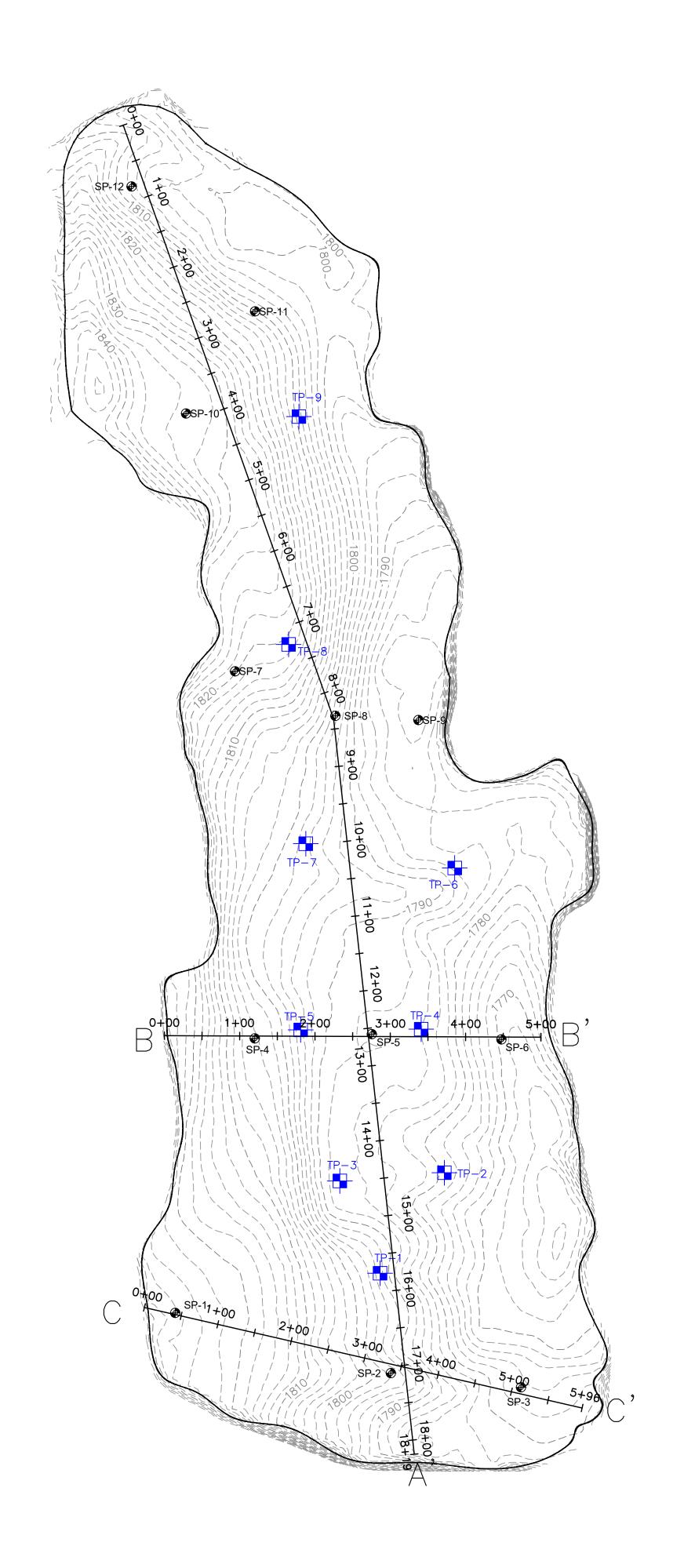
DRAWING NO.

<u>LEGEND</u> ----- MAJOR CONTOURS (EVERY 10') ---- MINOR CONTOURS (EVERY 2') ----- APPROXIMATE SIDEWALL LOCATION ⊕SP-9 SETTLEMENT PLATE TP-3 TEMPERATURE MONITORING PROBE

NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON NOVEMBER 16, 2023 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

CLIENT	CITY OF BRISTOL	WASTE MANAGE	I IVN 3390
SEBENISHERS	STEARNS, CONRAD AND SCHMIDT	CONSULTING ENGINEERS, INC.	PH. (804) 378-7440 FAX. (804) 378-7433
CAD	d fi SUR		C(
DAT	E: 2 / 2	-	/2



SCALE: 1"=100'

OLID

DRAWING NO.

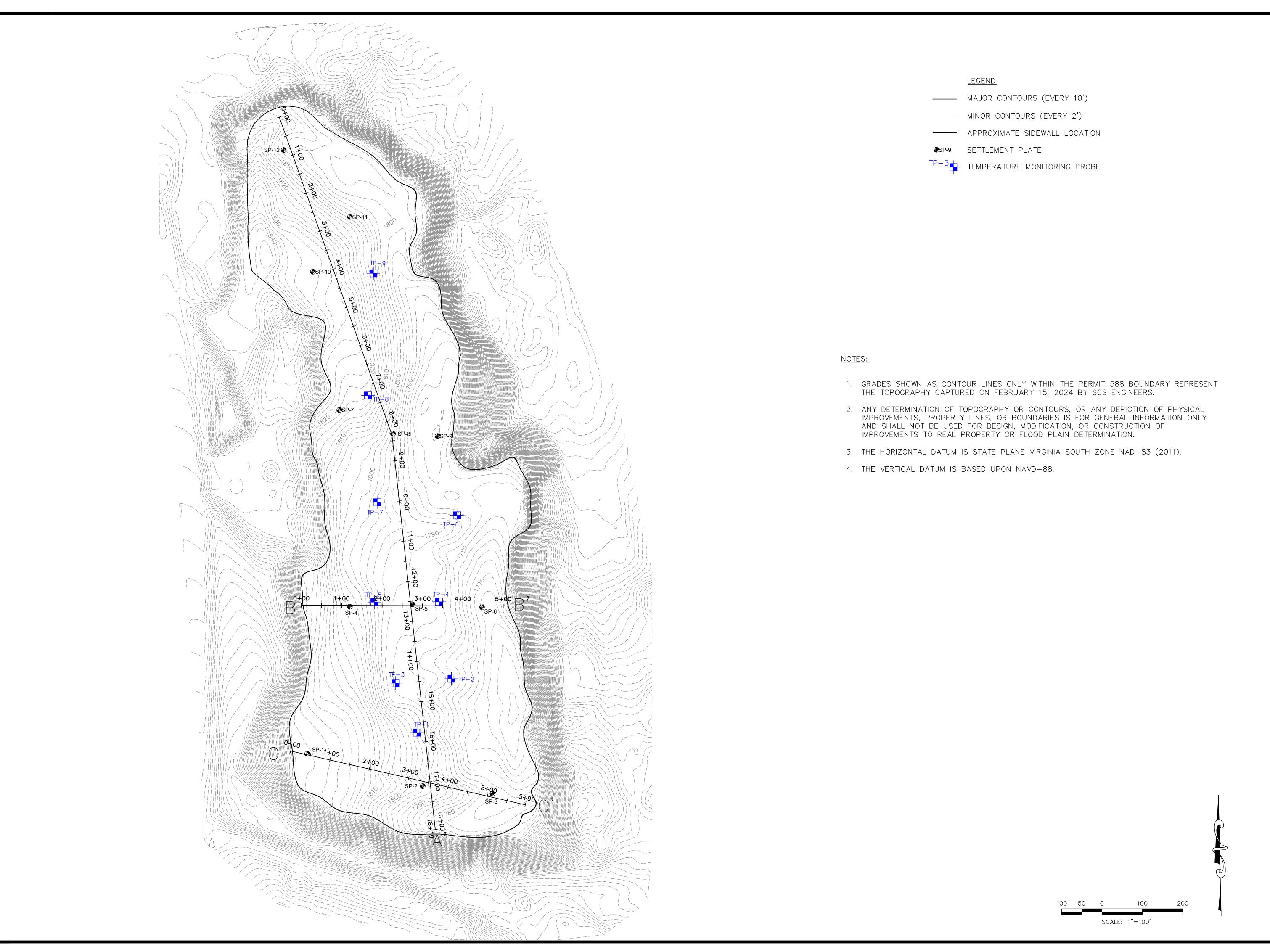
SCALE:

NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON JANUARY 23, 2024 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

SCALE: 1"=100'

	SHEET TILE	JANUARY 2024	O N	REVISION	DATE	
ED SOLID	LAND	LANDFILL IOPOGRAPHY	<			
CILITY	PROJECT TITLE					
			\triangleleft			
	MONTHLY TOPC	MONTHLY TOPOGRAPHY ANALYSIS	\triangleleft			
	SOLID WAS	SOLID WASTE PERMIT #588	\triangleleft			
			<			

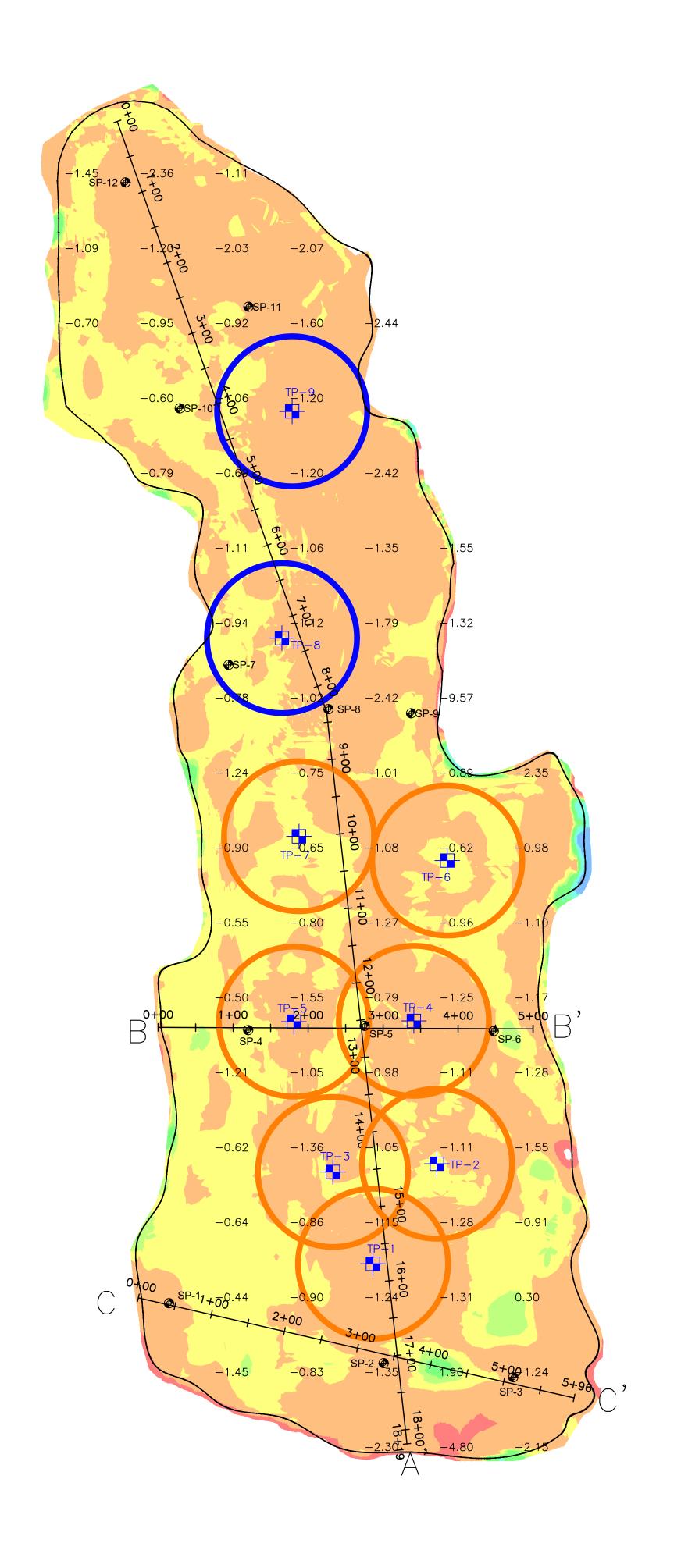

CITY OF BRISTOL INTEGRATE WASTE MANAGEMENT FACIL 2655 VALLEY DRIVE	A 23113
CITY OF REICTOL INTEGRAT	

SCS ENGINEERS, STEARNS, CONRAD AND SCHM CONSULTING ENGINEERS, INC. 15521 MIDLOTHIAN TNPK - MIDLOTHIAN PH. (804) 378-7440 FAX. (804) 378-7433

CADD FILE:
SURF COMP
DATE:
2/27/2024

DRAWING NO.

3


CITY OF BRISTOL INTEGRATED SOME WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201

CADD FILE: SURF COMP

DATE: 2/27/2024

DRAWING NO.

<u>LEGEND</u>

——— MAJOR CONTOURS (EVERY 10')

— MINOR CONTOURS (EVERY 2')

----- APPROXIMATE WASTE BOUNDARY

SP-9 SETTLEMENT PLATE

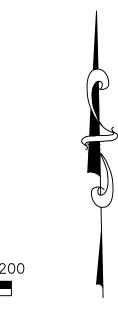
-0.39 SPOT ELEVATION ON 100' GRID

TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH LESS THAN 200 °F

TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 200 °F AND 250 °F

TEMPERATURE MONITORING PROBE WITH AVERAGE TEMPERATURES AT DEPTH BETWEEN 250 °F AND 300 °F

Base Surface TOPO — JANUARY 23, 2024 Comparison Surface TOPO — FEBRUARY 15, 2024


Cut Volume	39,300	Cu. Yd.
Fill Volume	1,400	Cu. Yd.
Net Cut	37,900	Cu. Yd.

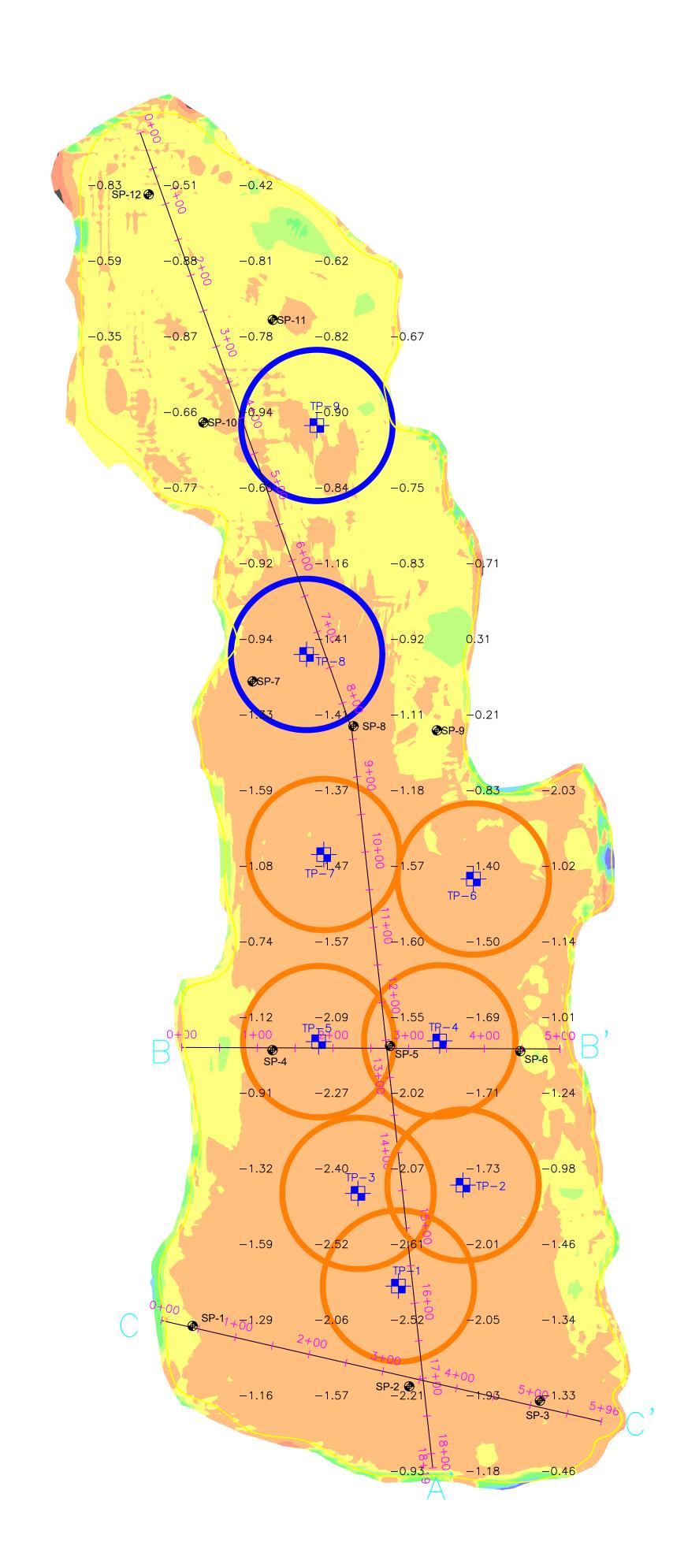
Elevations Table

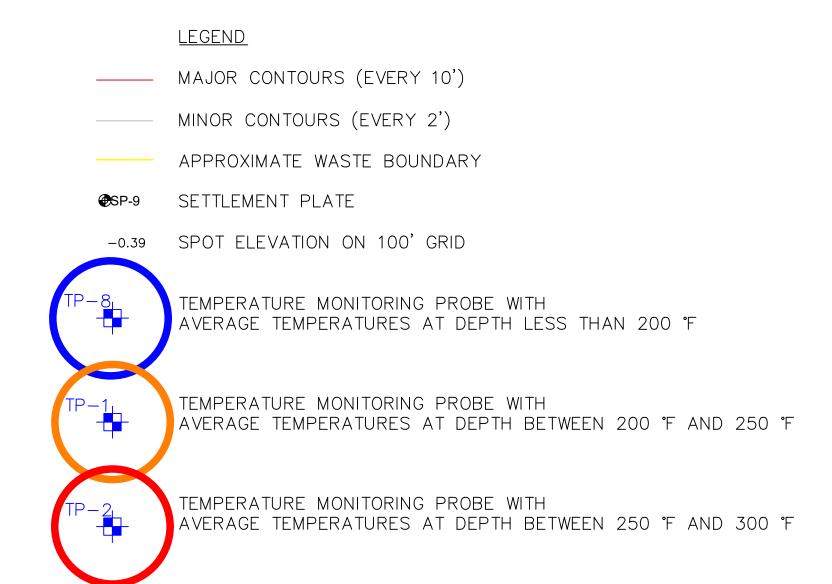
Number	Minimum Elevation	Maximum Elevation	Color
1	-8.000	-5.000	
2	-5.000	-1.000	
3	-1.000		
4	0.000	1.000	
5	1.000	5.000	
6	5.000	10.000	
7	1 -8.000 2 -5.000 3 -1.000 4 0.000 5 1.000	20.000	

NOTES:

- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON JANUARY 23, 2023 AND FEBRUARY 15, 2024 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SÉTTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

SCALE: 1"=100'


OLID CITY OF BRISTOL INTEGRATED S
WASTE MANAGEMENT FACILITY
2655 VALLEY DRIVE
BRISTOL, VIRGINIA 24201 SCS ENGINEERS
STEARNS, CONRAD AND SCHMIDT
CONSULTING ENGINEERS, INC.
15521 MIDLOTHIAN TNPK - MIDLOTHIAN, VA 2:
PH. (804) 378-7440 FAX. (804) 378-7433


SURF COMP

2/27/2024

SCALE:

DRAWING NO.

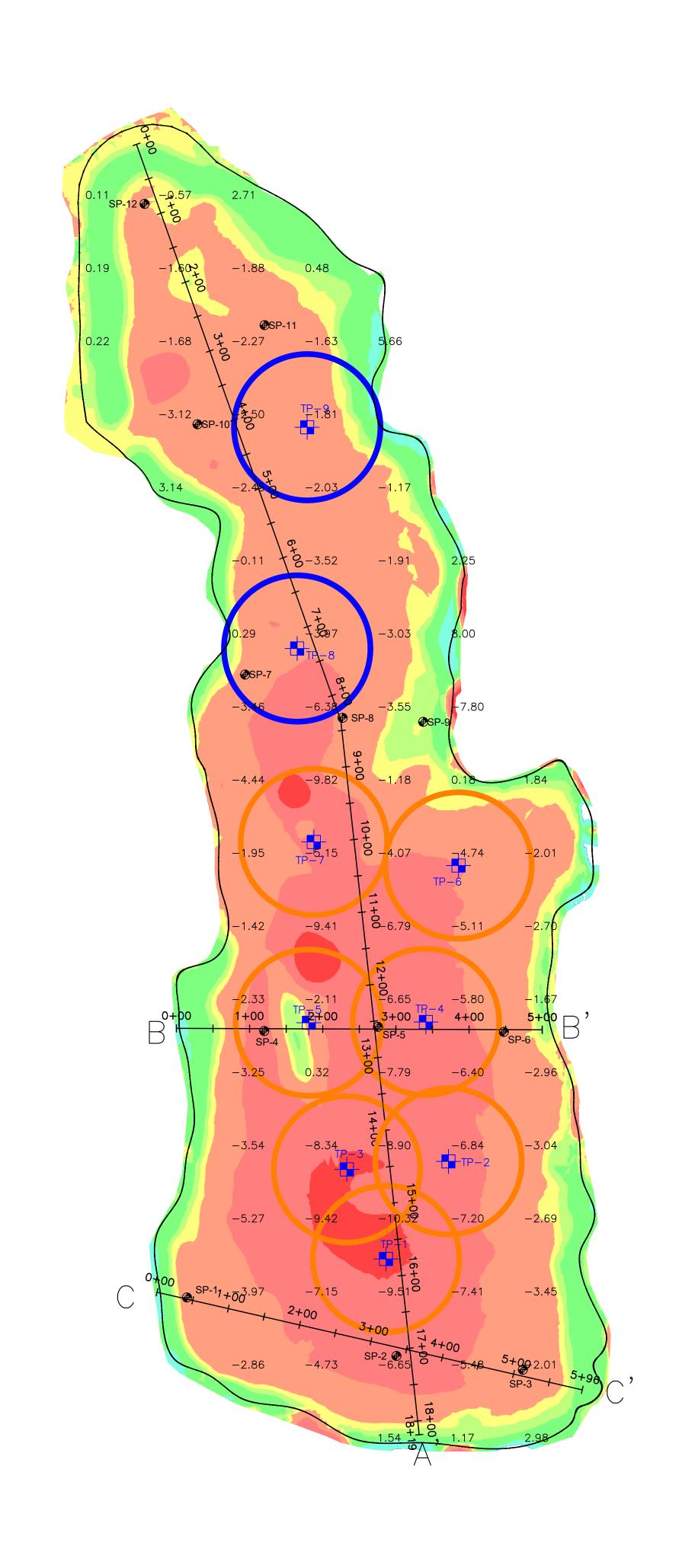
Volume

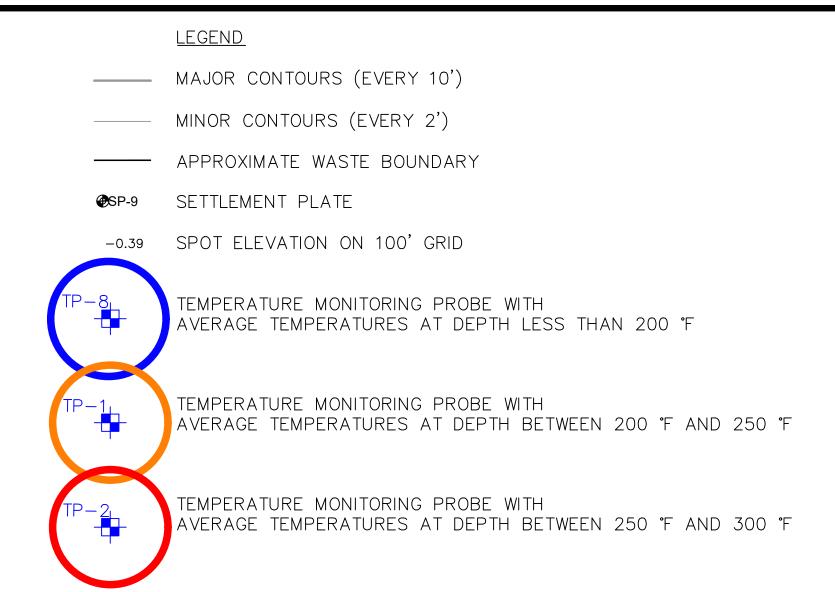
Base Surface TOPO - NOVEMBER 16, 2023 Comparison Surface TOPO - FEBRUARY 15, 2024

Cut Volume 39,200 Cu. Yd. Fill Volume 1,200 Cu. Yd. Net Cut 38,000 Cu. Yd.

Elevations Table

Minimum Elevation	Maximum Elevation	Color							
-10.000	-5.000								
-5.000	-1.000								
-1.000	0.000								
0.000	1.000								
1.000	5.000								
5.000	10.000								
	Minimum Elevation -10.000 -5.000 -1.000 0.000 1.000	-10.000 -5.000 -5.000 -1.000 -1.000 0.000 0.000 1.000 1.000 5.000							


NOTES:


- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON NOVEMBER 16, 2023 AND FEBRUARY 15, 2024 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

SCALE: 1"=100'

NO. REVISION DATE						
SHEET TITLE FEBRUARY VOLUME CHANGE		PROJECT TITLE		MONTHLY TOPOGRAPHY ANALYSIS	SOLID WASTE PERMIT #588	
CLIENT	CITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY	2655 VALLEY DRIVE	BRISTOL. VIRGINIA 24201		
SCS ENGINEERS		CONSULTING ENGINEERS, INC. 15521 MIDI OTHIAN TNPK - MIDI OTHIAN VA 23113	PH. (804) 378-7440 FAX. (804) 378-7433	DWN. BY: Q/A R	02218208.05 BRBV CJW	CJW
CADD SI DATE: 2 SCALE	/2 =:	27/	CO /20))2	4	8

Volume

Base Surface TOPO — FEBRUARY 7, 2023 Comparison Surface TOPO — FEBRUARY 15, 2024

Cut Volume 99,900 Cu. Yd. Fill Volume 12,400 Cu. Yd. Net Cut 87,500 Cu. Yd.

Elevations Table

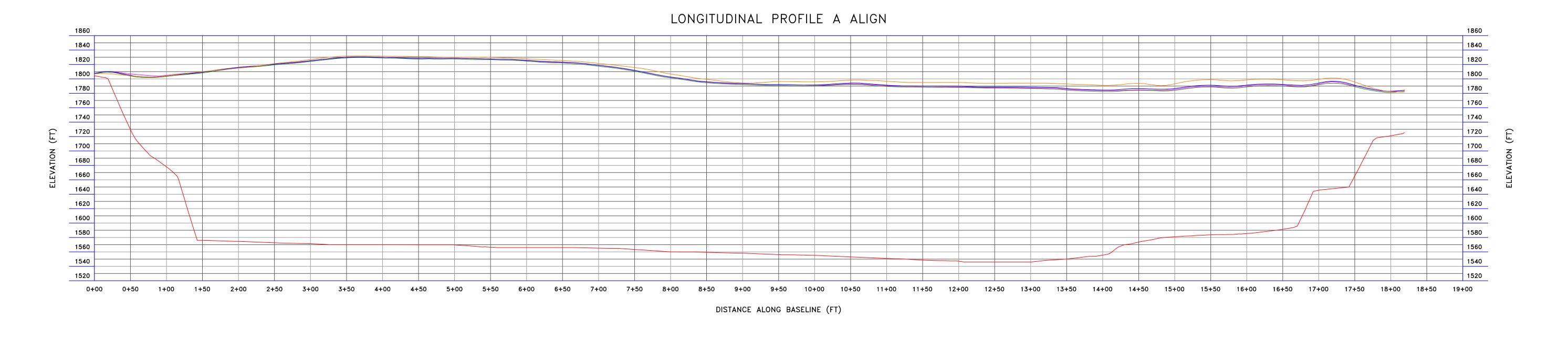
		Licva	tions rabic	
-	Number	Minimum Elevation	Maximum Elevation	Color
	1	-16.000	-10.000	
	2	-10.000	-5.000	
	3	-5.000	-1.000	
-	4	-1.000	0.000	
	5	0.000	1.000	
	6	1.000	5.000	
•	7	1 -16.000 2 -10.000 3 -5.000 4 -1.000 5 0.000 6 1.000	10.000	

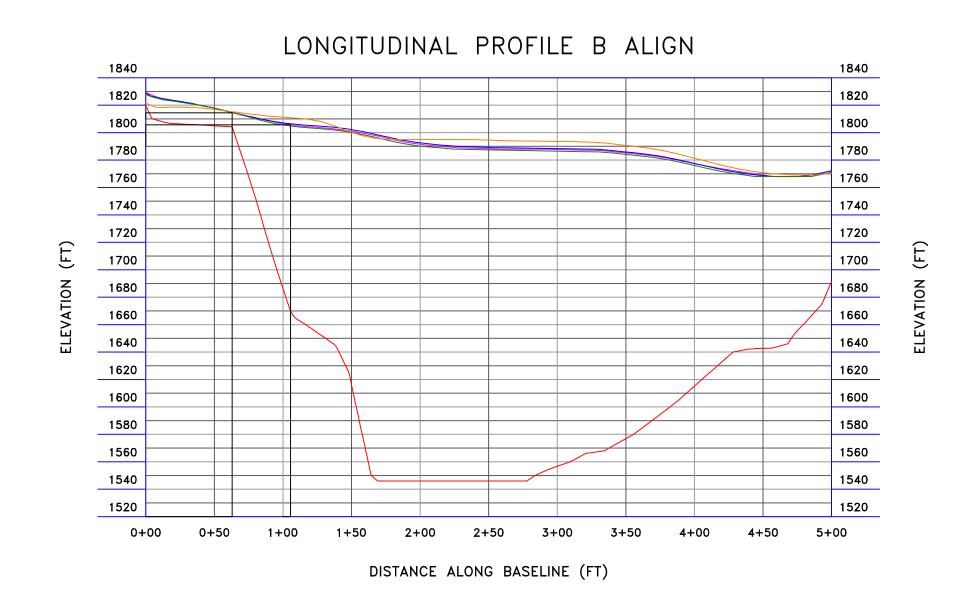
NOTES:

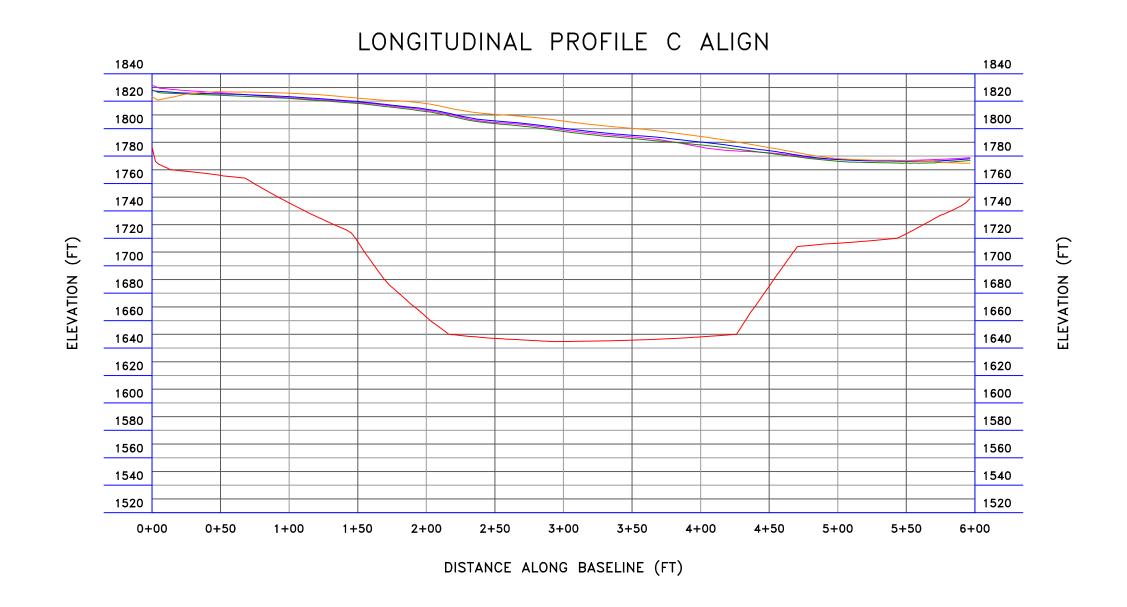
- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON FEBRUARY 7, 2023 AND FEBRUARY 15, 2024 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
- 4. THE VERTICAL DATUM(S) IS BASED UPON NAVD-88.

SCALE: 1"=100'

CADD FILE:


SCALE:


DRAWING NO.


SURF COMP

2/27/2024

NO. REVISION						
	1	l		SIS	<u> </u>	<u> </u>
SHEET TITLE FEBRUARY VOLUME CHANGE		PROJECT TITLE		MONTHLY TOPOGRAPHY ANALYSIS	SOLID WASTE PERMIT #588	
CLIENT	CITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY	2655 VALLEY DRIVE	BRISTOL VIRGINIA 24201		
ERS	CHMIDT	NGINEERS, INC. TNPK - MIDI OTHIAN VA 23113	-7433	Q/A RVW BY:	CJW	CJW CJW
GINEERS	IRAD AND SCHMIDT	ENGINEERS,	FAX. (804) 378-7433	4. BY:	BGB	MCO.

SCS ENGINEERS

STEARNS, CONRAD AND SCHMIDT

CONSULTING ENGINEERS, INC.

1 SEZ1 MIDLOTHIAN TNPK - MIDLOTHIAN, VA 23113

PH. (804) 378-7440 FAX. (804) 378-7433

PRISTOL, VIRGINIA 24201

CLIENT

CITY OF BRISTOL INTEGRATED SOLID

WASTE MANAGEMENT FACILITY

RASTE MANAGEMENT FACILITY

SESBW

CLIENT

WASTE MANAGEMENT FACILITY

SESBW

CONSULTING ENGINE

PROJ. NO. 807 878-878

BRISTOL, VIRGINIA 24201

PROFILES

Appendix F

Field Logs

Lab Report

Historical LFG-EW Leachate Monitoring Results Summary

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date						2/5/	2024 - 2/8/2	2024				
Personnel												
Location ID	Date	Measured Well Casing Depth (ft)	Pump Installed	Pump Depth (ft)	Prior Cycle Count (12/28/23)	Cycle Count	Prior Depth to Liquid (ft)	Depth to Liquid (ft)	Casing Stickup (ft)	Liquid Column Thickness (ff)	Sample Collected	Comments
EW-33B	2/7/2024	185.00	Y	140	17	62	140.05	139.32	4.13	45.68		Blue liquid found on pump see picture
EW-36A	2/7/2024	180.00	Y	135	335039	335039	74.78	47.24	4.92	132.76		
EW-49	2/7/2024	96.15	Y	90	777893				8.50			Too tall to measure
EW-50	2/7/2024	77.70	Y	83	1395359	1416285	61.55	38.36	4.50	39.34		
EW-51	2/6/2024	92.80	Y	95	148468	175437	33.15	33.17	3.42	59.63	Y	
EW-52	2/7/2024	98.70	Y	93	448412	484502	44.03	44.49	3.38	54.21		
EW-53	2/6/2024	100.70	Y		2495763	2643830	52.13	55.57	4.94	45.13	Y	Lost pvc buoy in well
EW-54	2/6/2024	82.70	Y	75	602341	718242	36.37	33.63	5.38	49.07		Force main crimped
EW-55	2/6/2024	90.40	Y	90	713760	713267	42.68	40.86	7.33	49.54		
EW-56	2/6/2024	42.38	N	58			Dry	Dry	4.75			Depth at bottom 42.38
EW-57	2/6/2024	107.40	Y	71	44644	44644	45.65	45.18	4.66	62.22		
EW-58	2/6/2024	84.50	N	82			27.88	25.02	3.84	59.48		
EW-59	2/6/2024	73.40	Y	64	2490489	2701039	40.86	37.18	3.92	36.22		Force main crimped
EW-60	2/7/2024	81.80	Y	70	617257	617738	38.22	36.66	4.23	45.14		
EW-61	2/7/2024	87.80	Y	66	24275	26505	66.8	57.11	2.92	30.69		pump off
EW-62	2/7/2024	110.60	Y	80	202631	203920	84.6	77.21	4.42	33.39		
EW-63	2/7/2024	62.10	N	64			69.8	57.66	5.29	4.44		
EW-64	2/7/2024	109.00	Y	113	177605	177633	81.57	80.89	4.21	28.11		pump off
EW-65	2/7/2024	88.40	Υ	50	4817	4818	58.12	50.93	5.50	37.47		pump off
EW-67	2/6/2024	107.75	Y	62.5	865688	865689	42.2	44.28	6.00	63.47		no sample port
EW-68	2/7/2024	73.57	Y	68	2280685	2287763	40.31	38.09	1.46	35.48		
EW-69	2/7/2024	98.00	N		10	15	93.02	93.95	4.42	4.05		
EW-70	2/7/2024	71.00	Y	58								Well surrounded by water could not get to it.
EW-71	2/7/2024	185.80	N				163.35	166.88	4.50	18.92		
EW-72	2/7/2024	141.21	N				147.04	144.45	4.33	-3.24		
EW-73	2/7/2024	116.00	N				107.37	106.64	3.96	9.36		

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date		2/5/2024 - 2/8/2024 W. Egbrio I. Nolson											
Personnel													
Location ID	Date	Measured Well Casing Depth (ft)	Pump Installed	Pump Depth (ft)	Prior Cycle Count (12/28/23)	Cycle Count	Prior Depth to Liquid (ft)	Depth to Liquid (ft)	Casing Stickup (ft)	Liquid Column Thickness (ff)	Sample Collected	Comments	
EW-74	2/7/2024	184.15	Y	140	25	35	162.3	161.82	5.83	22.33			
EW-75	2/7/2024	124.58	Y	140	11	12	66.98	Dry	4.97			Not sure if dry or if we hit pump at 134.35	
EW-76	2/7/2024	106.08	Y	108	23	25		Dry	3.50			Got pvc buoy stuck in well, depth to bottom 106.08. Not worth measuring again.	
EW-77	2/7/2024	185.22	N				139.86	137.37	5.27	47.85			
EW-78	2/7/2024	57.00	Y	47	91764	102402	47.13		3.58			Could not get past pumps cables around 8.35. I doubt it was water	
EW-79	2/7/2024	185.64	N				154.3	155.11	5.58	30.53			
EW-80	2/7/2024	149.00	N				136.31	137.04	3.42	11.96			
EW-81	2/7/2024	151.56	Y	125	329326	329326	105.49	93.12	5.92	58.44		Lost pvc buoy	
EW-82	2/7/2024	163.26	Y	145		124501		102.33	3.00	60.93		pump off	
EW-83	2/7/2024	167.04	Y	145	428888	428902	109.57	112.84	4.42	54.20		pump off	
EW-84	2/7/2024	130.56	N				72.61	74.31	4.75	56.25			
EW-85	2/7/2024	91.00	Y	78.5	161385	280403	57.01	82.77	4.25	8.23	Y		
EW-86	2/7/2024	153.00	N				76.32	74.88	4.17	78.12			
EW-87	2/7/2024	149.57	Y	125	953643	953645	55.64	54.33	4.75	95.24			
EW-88	2/7/2024	100.00	Y	58	413409	462832	44.61	65.92	3.63	34.08	Y		
EW-89	2/7/2024	84.57	Y	70	563451		41.42	39.36	3.58	45.21		Unable to read stroke counter	
EW-90	2/7/2024	114.00	Y	101	170679		91.86	87.38	2.63	26.62		pump off	
EW-91	2/6/2024	137.70	Y	115	265809	265809	42.39	40.29	5.15	97.41			
EW-92	2/7/2024	112.99	Y	95	391973	391973	47.29	45.42	6.83	67.57			
EW-93	2/6/2024	111.00	N				29.95	28.64	4.17	82.36			
EW-94	2/6/2024	50.00	Y	45	520385	520385	24.87	23.97	4.25	26.03		Lost pvc buoy	
EW-95	2/6/2024	68.00	N				57.44	56.74	2.83	11.26			
EW-96	2/6/2024	164.35	Y	145			59.5		8.00			Too tall	
EW-97	2/6/2024	67.95	N				90.67	89.06	6.60	-21.11		Very tall needs more dirt surrounding well to more easily get level measurement	
EW-98	2/6/2024	51.00	Y	43	1859826	2166760	43.68	24.24	3.94	26.76			
EW-99	2/6/2024	65.00	N				60.7	59.97	3.72	5.03			
EW-100	2/6/2024	108.50	Y	96.5	470465	583480	74.95	74.27	3.83	34.23			

NOTE: Multiple wells were unable to be measureed due to the height of the well. Midway through 2/6 dirt was being transported to some of these wells, we did not return to the wells we couldn't get measurements on due to the dirt just being placed in the immediate vicinity of the well not around the well.

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (°C)	pH (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-33B									
EW-36A						22			
EW-49									
EW-50	100					71			
EW-51	2/6/21	11:20	69.2	6.00	27.369	0.13	-94.9	40.30	Anber Brown
EW-52			NEA.			-			
EW-53	2/6/24	9:45	666	5.81	30.911	0.13	-94.5	17.59	Black
EW-54									
EW-55									
EW-57									
EW-58									
EW-59									
EW-60	0				-				
EW-61							E .		
EW-62									
EW-64									
EW-67									
EW-68									
EW-70									
EW-72									

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (°C)	pH (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations	Bot
EW-73										
EW-74										
EW-75										1
EW-76										1
EW-78										
EW-81										1
EW-82										1
EW-83										
EW-85	2/7/24	9,30	767	5,96	34.828	0,04	-165.6	45,21	Amber Brown	(12)
EW-87				100	9		-100.5			1
EW-88	29/24	9:00	60.9	5.33	34-009	6.06	0.07	13.31	Amber Brown	(13
EW-89						1 1 2				
EW-90										
EW-91						7	-			
EW-92										1
EW-94										1
EW-96										1
EW-98										1
EW-100										1

Sampler:

L. Nelson, W. Fabrie

Samples Shipped By: Courier

Log Checked By:

J. Robb

Laboratory: Enthalpy Analytical

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 24B0271

Client Name: SCS Engineers-Winchester

296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Date Received:

February 7, 2024 8:00

Date Issued:

February 29, 2024 17:28

Project Number:

02218208.15 Task 2

Purchase Order:

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 02/07/2024 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

Enthalpy Analytical 1941 Reymet Road Richmond, VA 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

Date Issued:

2/29/2024 5:28:28PM

Analysis Detects Report

Client Name: SCS Engineers-Winchester

Client Site ID: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Laboratory Sample ID: 24B0271-01 Client Sample ID: EW-5

Laboratory Sample ID: 24B0271-01	Client Sa	ample ID: EW-51						
							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Factor	Units
Arsenic	01	SW6020B	680		2.0	2.0	5	ug/L
Barium	01	SW6020B	3030		5.00	25.0	5	ug/L
Chromium	01	SW6020B	230		2.00	5.00	5	ug/L
Lead	01	SW6020B	6.5		1.0	2.0	5	ug/L
Mercury	01	SW6020B	3.76		1.00	1.00	5	ug/L
Nickel	01	SW6020B	79.45		5.000	5.000	5	ug/L
Zinc	01	SW6020B	87.9		12.5	25.0	5	ug/L
2-Butanone (MEK)	01RE1	SW8260D	30500		1500	5000	500	ug/L
Acetone	01RE1	SW8260D	81600		3500	5000	500	ug/L
Benzene	01	SW8260D	906		20.0	50.0	50	ug/L
Ethylbenzene	01	SW8260D	51.0		20.0	50.0	50	ug/L
m+p-Xylenes	01	SW8260D	40.5	J	30.0	100	50	ug/L
o-Xylene	01	SW8260D	22.5	J	20.0	50.0	50	ug/L
Tetrahydrofuran	01	SW8260D	3500		500	500	50	ug/L
Toluene	01	SW8260D	49.0	J	25.0	50.0	50	ug/L
Xylenes, Total	01	SW8260D	63.0	J	50.0	150	50	ug/L
Ammonia as N	01	EPA350.1 R2.0	1900		146	200	2000	mg/L
BOD	01	SM5210B-2016	23200		0.2	2.0	1	mg/L
COD	01	SM5220D-2011	42700		5000	5000	500	mg/L
Cyanide	01	SW9012B	0.23	CI	0.05	0.05	5	mg/L
Nitrate as N	01	Calc.	9.10		1.50	5.50	100	mg/L
Nitrate+Nitrite as N	01	SM4500-NO3F-2016	9.10		0.50	0.50	5	mg/L
TKN as N	01	EPA351.2 R2.0	2540		100	250	500	mg/L
Total Recoverable Phenolics	01	SW9065	37.3		1.50	2.50	50	mg/L

Enthalpy Analytical 1941 Reymet Road Richmond, VA 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

2/29/2024 5:28:28PM

Date Issued:

Analysis Detects Report

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site ID:

Laboratory Sample ID: 24B0271-02 Client Sample ID: EW-53

Laboratory Sample ID: 24B0271-02	Client Sa	ample ID: EW-53						
							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Factor	Units
Arsenic	02	SW6020B	420		2.0	2.0	5	ug/L
Barium	02	SW6020B	4410		5.00	25.0	5	ug/L
Chromium	02	SW6020B	272		2.00	5.00	5	ug/L
Copper	02	SW6020B	2.01		1.50	2.00	5	ug/L
Lead	02	SW6020B	10		1.0	2.0	5	ug/L
Mercury	02	SW6020B	11.5		1.00	1.00	5	ug/L
Nickel	02	SW6020B	70.13		5.000	5.000	5	ug/L
Selenium	02	SW6020B	4.30	J	4.25	5.00	5	ug/L
Zinc	02	SW6020B	55.4		12.5	25.0	5	ug/L
2-Butanone (MEK)	02RE1	SW8260D	28900		1500	5000	500	ug/L
Acetone	02RE1	SW8260D	70200		3500	5000	500	ug/L
Benzene	02	SW8260D	884		20.0	50.0	50	ug/L
Ethylbenzene	02	SW8260D	43.0	J	20.0	50.0	50	ug/L
m+p-Xylenes	02	SW8260D	37.0	J	30.0	100	50	ug/L
o-Xylene	02	SW8260D	22.0	J	20.0	50.0	50	ug/L
Tetrahydrofuran	02	SW8260D	4580		500	500	50	ug/L
Toluene	02	SW8260D	37.0	J	25.0	50.0	50	ug/L
Xylenes, Total	02	SW8260D	59.0	J	50.0	150	50	ug/L
Ammonia as N	02	EPA350.1 R2.0	2600		146	200	2000	mg/L
BOD	02	SM5210B-2016	26200		0.2	2.0	1	mg/L
COD	02	SM5220D-2011	51200		5000	5000	500	mg/L
Cyanide	02	SW9012B	0.27	CI	0.05	0.05	5	mg/L
Nitrate+Nitrite as N	02	SM4500-NO3F-2016	2.65		2.50	2.50	25	mg/L
TKN as N	02	EPA351.2 R2.0	2890		100	250	500	mg/L
Total Recoverable Phenolics	02	SW9065	42.9		1.50	2.50	50	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-51	24B0271-01	Ground Water	02/06/2024 11:30	02/07/2024 08:00
EW-53	24B0271-02	Ground Water	02/06/2024 09:45	02/07/2024 08:00
Trip Blank	24B0271-03	Ground Water	08/09/2023 16:15	02/07/2024 08:00

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 2/29/2024 5:28:28PM

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Sample ID: EW-51 Laboratory Sample ID: 24B0271-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA 6000/7000 Series	s Methods											
Silver	01	7440-22-4	SW6020B	02/09/2024 11:45	02/12/2024 12:44	BLOD		0.300	5.00	5	ug/L	AB
Arsenic	01	7440-38-2	SW6020B	02/09/2024 11:45	02/12/2024 12:44	680		2.0	2.0	5	ug/L	AB
Barium	01	7440-39-3	SW6020B	02/09/2024 11:45	02/12/2024 12:44	3030		5.00	25.0	5	ug/L	AB
Cadmium	01	7440-43-9	SW6020B	02/09/2024 11:45	02/12/2024 12:44	BLOD		0.500	5.00	5	ug/L	AB
Chromium	01	7440-47-3	SW6020B	02/09/2024 11:45	02/12/2024 12:44	230		2.00	5.00	5	ug/L	AB
Copper	01	7440-50-8	SW6020B	02/09/2024 11:45	02/12/2024 12:44	BLOD		1.50	2.00	5	ug/L	AB
Mercury	01	7439-97-6	SW6020B	02/09/2024 11:45	02/12/2024 12:44	3.76		1.00	1.00	5	ug/L	AB
Nickel	01	7440-02-0	SW6020B	02/09/2024 11:45	02/12/2024 12:44	79.45		5.000	5.000	5	ug/L	AB
Lead	01	7439-92-1	SW6020B	02/09/2024 11:45	02/12/2024 12:44	6.5		1.0	2.0	5	ug/L	AB
Selenium	01	7782-49-2	SW6020B	02/09/2024 11:45	02/12/2024 12:44	BLOD		4.25	5.00	5	ug/L	AB
Zinc	01	7440-66-6	SW6020B	02/09/2024 11:45	02/12/2024 12:44	87.9		12.5	25.0	5	ug/L	AB
Volatile Organic Compounds by GCMS	3											
2-Butanone (MEK)	01RE1	78-93-3	SW8260D	02/07/2024 21:25	02/07/2024 21:25	30500		1500	5000	500	ug/L	RJB
Acetone	01RE1	67-64-1	SW8260D	02/07/2024 21:25	02/07/2024 21:25	81600		3500	5000	500	ug/L	RJB
Benzene	01	71-43-2	SW8260D	02/07/2024 21:00	02/07/2024 21:00	906		20.0	50.0	50	ug/L	RJB
Ethylbenzene	01	100-41-4	SW8260D	02/07/2024 21:00	02/07/2024 21:00	51.0		20.0	50.0	50	ug/L	RJB
m+p-Xylenes	01	179601-23- 1	SW8260D	02/07/2024 21:00	02/07/2024 21:00	40.5	J	30.0	100	50	ug/L	RJB
o-Xylene	01	95-47-6	SW8260D	02/07/2024 21:00	02/07/2024 21:00	22.5	J	20.0	50.0	50	ug/L	RJB
Toluene	01	108-88-3	SW8260D	02/07/2024 21:00	02/07/2024 21:00	49.0	J	25.0	50.0	50	ug/L	RJB
Xylenes, Total	01	1330-20-7	SW8260D	02/07/2024 21:00	02/07/2024 21:00	63.0	J	50.0	150	50	ug/L	RJB
Tetrahydrofuran	01	109-99-9	SW8260D	02/07/2024 21:00	02/07/2024 21:00	3500		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	01	94.6	% 70-120	02/07/2024 2	1:00 02/07/2024 21:0	0						
Surr: 4-Bromofluorobenzene (Surr)	01	93.2	% 75-120	02/07/2024 2	1:00 02/07/2024 21:0	0						
Surr: Dibromofluoromethane (Surr)	01	91.0	% 70-130	02/07/2024 2	1:00 02/07/2024 21:0	0						

Date Issued:

2/29/2024 5:28:28PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Client Sample ID: EW-51 Laboratory Sample ID: 24B0271-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compounds by GCMS	S											
Surr: Toluene-d8 (Surr)	01	97.3 %	6 70-130	02/07/2024 21:0	0 02/07/2024 21:00)						
Surr: 1,2-Dichloroethane-d4 (Surr)	01RE1	97.0 %	6 70-120	02/07/2024 21:2	5 02/07/2024 21:25	5						
Surr: 4-Bromofluorobenzene (Surr)	01RE1	92.1 %	6 75-120	02/07/2024 21:2	5 02/07/2024 21:25	5						
Surr: Dibromofluoromethane (Surr)	01RE1	94.5 %	6 70-130	02/07/2024 21:2	5 02/07/2024 21:25	5						
Surr: Toluene-d8 (Surr)	01RE1	98.0 %	6 70-130	02/07/2024 21:2	5 02/07/2024 21:25	5						
Semivolatile Organic Compounds by	GCMS											
Anthracene	01	120-12-7	SW8270E	02/07/2024 09:30	02/09/2024 22:02	BLOD		250	500	50	ug/L	BMS
Surr: 2,4,6-Tribromophenol (Surr)	01	9	6 5-136	02/07/2024 09:3	0 02/09/2024 22:02	2						DS
Surr: 2-Fluorobiphenyl (Surr)	01	27.5 %	6 9-117	02/07/2024 09:3	0 02/09/2024 22:02	2						
Surr: 2-Fluorophenol (Surr)	01	37.8 %	6 5-60	02/07/2024 09:3	0 02/09/2024 22:02	2						
Surr: Nitrobenzene-d5 (Surr)	01	9	6 5-151	02/07/2024 09:3	0 02/09/2024 22:02	2						DS
Surr: Phenol-d5 (Surr)	01	68.0 %	6 5-60	02/07/2024 09:3	0 02/09/2024 22:02	2						DS
Surr: p-Terphenyl-d14 (Surr)	01	9	6 5-141	02/07/2024 09:3	0 02/09/2024 22:02	2						DS

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 2/29/2024 5:28:28PM

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Sample ID: EW-51 Laboratory Sample ID: 24B0271-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analysis												
Ammonia as N	01	7664-41-7	EPA350.1 R2.0	02/17/2024 17:18	02/17/2024 17:18	1900		146	200	2000	mg/L	LAM
BOD	01	E1640606	SM5210B-20 16	02/08/2024 09:28	02/08/2024 09:28	23200		0.2	2.0	1	mg/L	SPH
Cyanide	01	57-12-5	SW9012B	02/16/2024 13:31	02/16/2024 13:31	0.23	CI	0.05	0.05	5	mg/L	MGC
COD	01	NA	SM5220D-20 11	02/20/2024 12:45	02/20/2024 12:45	42700		5000	5000	500	mg/L	MGC
Nitrate as N	01	14797-55-8	Calc.	02/20/2024 09:00	02/20/2024 15:13	9.10		1.50	5.50	100	mg/L	AJM
Nitrate+Nitrite as N	01	E701177	SM4500-NO 3F-2016	02/20/2024 09:00	02/20/2024 15:13	9.10		0.50	0.50	5	mg/L	TEG
Nitrite as N	01	14797-65-0	SM4500-NO 2B-2011	02/08/2024 07:50	02/08/2024 07:50	BLOD		1.00	5.00	100	mg/L	AJM
Total Recoverable Phenolics	01	NA	SW9065	02/16/2024 17:00	02/16/2024 17:00	37.3		1.50	2.50	50	mg/L	AAL
TKN as N	01	E17148461	EPA351.2 R2.0	02/13/2024 16:02	02/14/2024 15:03	2540		100	250	500	mg/L	AAL

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Submitted To:

Date Issued: 2/29/2024 5:28:28PM

24-02 LFG-EW Monthly Monitoring Client Site I.D.: Jennifer Robb

Client Sample ID: EW-53 **Laboratory Sample ID:** 24B0271-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA 6000/7000 Series	s Methods											
Silver	02	7440-22-4	SW6020B	02/09/2024 11:45	02/12/2024 12:48	BLOD		0.300	5.00	5	ug/L	AB
Arsenic	02	7440-38-2	SW6020B	02/09/2024 11:45	02/12/2024 12:48	420		2.0	2.0	5	ug/L	AB
Barium	02	7440-39-3	SW6020B	02/09/2024 11:45	02/12/2024 12:48	4410		5.00	25.0	5	ug/L	AB
Cadmium	02	7440-43-9	SW6020B	02/09/2024 11:45	02/12/2024 12:48	BLOD		0.500	5.00	5	ug/L	AB
Chromium	02	7440-47-3	SW6020B	02/09/2024 11:45	02/12/2024 12:48	272		2.00	5.00	5	ug/L	AB
Copper	02	7440-50-8	SW6020B	02/09/2024 11:45	02/12/2024 12:48	2.01		1.50	2.00	5	ug/L	AB
Mercury	02	7439-97-6	SW6020B	02/09/2024 11:45	02/12/2024 12:48	11.5		1.00	1.00	5	ug/L	AB
Nickel	02	7440-02-0	SW6020B	02/09/2024 11:45	02/12/2024 12:48	70.13		5.000	5.000	5	ug/L	AB
Lead	02	7439-92-1	SW6020B	02/09/2024 11:45	02/12/2024 12:48	10		1.0	2.0	5	ug/L	AB
Selenium	02	7782-49-2	SW6020B	02/09/2024 11:45	02/12/2024 12:48	4.30	J	4.25	5.00	5	ug/L	AB
Zinc	02	7440-66-6	SW6020B	02/09/2024 11:45	02/12/2024 12:48	55.4		12.5	25.0	5	ug/L	AB
Volatile Organic Compounds by GCMS	S											
2-Butanone (MEK)	02RE1	78-93-3	SW8260D	02/07/2024 22:16	02/07/2024 22:16	28900		1500	5000	500	ug/L	RJB
Acetone	02RE1	67-64-1	SW8260D	02/07/2024 22:16	02/07/2024 22:16	70200		3500	5000	500	ug/L	RJB
Benzene	02	71-43-2	SW8260D	02/07/2024 21:51	02/07/2024 21:51	884		20.0	50.0	50	ug/L	RJB
Ethylbenzene	02	100-41-4	SW8260D	02/07/2024 21:51	02/07/2024 21:51	43.0	J	20.0	50.0	50	ug/L	RJB
m+p-Xylenes	02	179601-23-	SW8260D	02/07/2024 21:51	02/07/2024 21:51	37.0	J	30.0	100	50	ug/L	RJB
o-Xylene	02	95-47-6	SW8260D	02/07/2024 21:51	02/07/2024 21:51	22.0	J	20.0	50.0	50	ug/L	RJB
Toluene	02	108-88-3	SW8260D	02/07/2024 21:51	02/07/2024 21:51	37.0	J	25.0	50.0	50	ug/L	RJB
Xylenes, Total	02	1330-20-7	SW8260D	02/07/2024 21:51	02/07/2024 21:51	59.0	J	50.0	150	50	ug/L	RJB
Tetrahydrofuran	02	109-99-9	SW8260D	02/07/2024 21:51	02/07/2024 21:51	4580		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	02	108	3 % 70-120	02/07/2024 2	1:51 02/07/2024 21:5	1						
Surr: 4-Bromofluorobenzene (Surr)	02	94.7	7% 75-120	02/07/2024 2	1:51 02/07/2024 21:5	1						
Surr: Dibromofluoromethane (Surr)	02	103	3 % 70-130	02/07/2024 2	1:51 02/07/2024 21:5	1						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 2/29

2/29/2024 5:28:28PM

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Sample ID: EW-53 Laboratory Sample ID: 24B0271-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compounds by GCM	S											
Surr: Toluene-d8 (Surr)	02	97.7 %	6 70-130	02/07/2024 21:5	51 02/07/2024 21:5:	1						
Surr: 1,2-Dichloroethane-d4 (Surr)	02RE1	110 %	6 70-120	02/07/2024 22:1	16 02/07/2024 22:10	5						
Surr: 4-Bromofluorobenzene (Surr)	02RE1	93.9 %	6 75-120	02/07/2024 22:1	16 02/07/2024 22:16	5						
Surr: Dibromofluoromethane (Surr)	02RE1	104 %	6 70-130	02/07/2024 22:1	16 02/07/2024 22:16	5						
Surr: Toluene-d8 (Surr)	02RE1	97.4 %	6 70-130	02/07/2024 22:1	16 02/07/2024 22:16	5						
Semivolatile Organic Compounds by	GCMS											
Anthracene	02	120-12-7	SW8270E	02/07/2024 09:30	02/09/2024 22:32	BLOD		200	400	20	ug/L	BMS
Surr: 2,4,6-Tribromophenol (Surr)	02	9	6 5-136	02/07/2024 09:3	30 02/09/2024 22:32	2						DS
Surr: 2-Fluorobiphenyl (Surr)	02	33.2 %	6 9-117	02/07/2024 09:3	30 02/09/2024 22:32	2						
Surr: 2-Fluorophenol (Surr)	02	32.0 %	6 5-60	02/07/2024 09:3	30 02/09/2024 22:32	2						
Surr: Nitrobenzene-d5 (Surr)	02	340 %	6 5-151	02/07/2024 09:3	30 02/09/2024 22:32	2						DS
Surr: Phenol-d5 (Surr)	02	85.0 %	6 5-60	02/07/2024 09:3	30 02/09/2024 22:32	2						DS
Surr: p-Terphenyl-d14 (Surr)	02	7.20 %	6 5-141	02/07/2024 09:3	30 02/09/2024 22:32	2						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 2/29/2024 5:28:28PM

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Sample ID: EW-53 Laboratory Sample ID: 24B0271-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analysis												
Ammonia as N	02	7664-41-7	EPA350.1 R2.0	02/17/2024 17:18	02/17/2024 17:18	2600		146	200	2000	mg/L	LAM
BOD	02	E1640606	SM5210B-20 16	02/08/2024 08:59	02/08/2024 08:59	26200		0.2	2.0	1	mg/L	SPH
Cyanide	02	57-12-5	SW9012B	02/16/2024 13:31	02/16/2024 13:31	0.27	CI	0.05	0.05	5	mg/L	MGC
COD	02	NA	SM5220D-20 11	02/20/2024 12:45	02/20/2024 12:45	51200		5000	5000	500	mg/L	MGC
Nitrate as N	02	14797-55-8	Calc.	02/20/2024 09:00	02/20/2024 15:15	BLOD		3.50	7.50	100	mg/L	AJM
Nitrate+Nitrite as N	02	E701177	SM4500-NO 3F-2016	02/20/2024 09:00	02/20/2024 15:15	2.65		2.50	2.50	25	mg/L	TEG
Nitrite as N	02	14797-65-0	SM4500-NO 2B-2011	02/08/2024 07:50	02/08/2024 07:50	BLOD		1.00	5.00	100	mg/L	AJM
Total Recoverable Phenolics	02	NA	SW9065	02/16/2024 17:00	02/16/2024 17:00	42.9		1.50	2.50	50	mg/L	AAL
TKN as N	02	E17148461	EPA351.2 R2.0	02/13/2024 16:02	02/14/2024 15:04	2890		100	250	500	mg/L	AAL

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Submitted To:

Date Issued: 2/29/2024 5:28:28PM

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring Jennifer Robb

Client Sample ID: Trip Blank **Laboratory Sample ID:** 24B0271-03

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compounds by GCM	S											
2-Butanone (MEK)	03	78-93-3	SW8260D	02/07/2024 16:45	02/07/2024 16:45	BLOD		3.00	10.0	1	ug/L	RJB
Acetone	03	67-64-1	SW8260D	02/07/2024 16:45	02/07/2024 16:45	BLOD		7.00	10.0	1	ug/L	RJB
Benzene	03	71-43-2	SW8260D	02/07/2024 16:45	02/07/2024 16:45	BLOD		0.40	1.00	1	ug/L	RJB
Ethylbenzene	03	100-41-4	SW8260D	02/07/2024 16:45	02/07/2024 16:45	BLOD		0.40	1.00	1	ug/L	RJB
m+p-Xylenes	03	179601-23- 1	SW8260D	02/07/2024 16:45	02/07/2024 16:45	BLOD		0.60	2.00	1	ug/L	RJB
o-Xylene	03	95-47-6	SW8260D	02/07/2024 16:45	02/07/2024 16:45	BLOD		0.40	1.00	1	ug/L	RJB
Toluene	03	108-88-3	SW8260D	02/07/2024 16:45	02/07/2024 16:45	BLOD		0.50	1.00	1	ug/L	RJB
Xylenes, Total	03	1330-20-7	SW8260D	02/07/2024 16:45	02/07/2024 16:45	BLOD		1.00	3.00	1	ug/L	RJB
Tetrahydrofuran	03	109-99-9	SW8260D	02/07/2024 16:45	02/07/2024 16:45	BLOD		10.0	10.0	1	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	03	97.6	% 70-120	02/07/2024 1	6:45 02/07/2024 16:	45						
Surr: 4-Bromofluorobenzene (Surr)	03	92.9	% 75-120	02/07/2024 1	6:45 02/07/2024 16:	45						
Surr: Dibromofluoromethane (Surr)	03	105	% 70-130	02/07/2024 1	6:45 02/07/2024 16:	45						
Surr: Toluene-d8 (Surr)	03	97.3	% 70-130	02/07/2024 1	6:45 02/07/2024 16:	45						

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bat	ch BHB0369 - EPA20	0.8 R5.4								
Blank (BHB0369-BLK1)				Prepared: 02/09/	2024 Analyzed: (02/12/2024				
Mercury	ND	0.200	ug/L							
Arsenic	ND	1.0	ug/L							
Barium	ND	5.00	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	1.00	ug/L							
Copper	ND	1.00	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	1.000	ug/L							
Selenium	ND	1.00	ug/L							
Silver	ND	1.00	ug/L							
Zinc	ND	5.00	ug/L							
CS (BHB0369-BS1)				Prepared: 02/09/	2024 Analyzed: (02/12/2024				
Mercury	1.03	0.200	ug/L	1.00		103	80-120			
Arsenic	51	1.0	ug/L	50.0		103	80-120			
Barium	53.2	5.00	ug/L	50.0		106	80-120			
Cadmium	51.5	1.00	ug/L	50.0		103	80-120			
Chromium	51.5	1.00	ug/L	50.0		103	80-120			
Copper	51.8	1.00	ug/L	50.0		104	80-120			
Lead	53	1.0	ug/L	50.0		107	80-120			
Nickel	52.52	1.000	ug/L	50.0		105	80-120			
Selenium	51.6	1.00	ug/L	50.0		103	80-120			
Silver	10.8	1.00	ug/L	10.0		108	80-120			
Zinc	51.9	5.00	ug/L	50.0		104	80-120			
latrix Spike (BHB0369-MS1)	Sour	ce: 24B0351-0	1	Prepared: 02/09/	2024 Analyzed: (02/12/2024				

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BHB0369 - EPA20	0.8 R5.4								
Matrix Spike (BHB0369-MS1)	Sour	ce: 24B0351-0	1	Prepared: 02/09/	/2024 Analyzed: 0)2/12/2024				
Mercury	1.09	0.200	ug/L	1.00	BLOD	109	70-130			
Arsenic	67	1.0	ug/L	50.0	15	105	75-125			
Barium	133	5.00	ug/L	50.0	82.3	101	75-125			
Cadmium	50.1	1.00	ug/L	50.0	BLOD	100	75-125			
Chromium	49.7	1.00	ug/L	50.0	0.454	98.5	75-125			
Copper	53.0	1.00	ug/L	50.0	4.39	97.1	75-125			
Lead	53	1.0	ug/L	50.0	1.1	103	75-125			
Nickel	53.09	1.000	ug/L	50.0	4.354	97.5	75-125			
Selenium	53.9	1.00	ug/L	50.0	BLOD	108	75-125			
Silver	10.4	1.00	ug/L	10.0	BLOD	104	75-125			
Zinc	54.6	5.00	ug/L	50.0	7.24	94.7	75-125			
fatrix Spike (BHB0369-MS2)	Sour	ce: 24B0351-0	2	Prepared: 02/09/	/2024 Analyzed: 0)2/12/2024				
Mercury	1.06	0.200	ug/L	1.00	BLOD	106	70-130			
Arsenic	52	1.0	ug/L	50.0	1.1	101	75-125			
Barium	265	5.00	ug/L	50.0	210	110	75-125			E
Cadmium	50.1	1.00	ug/L	50.0	BLOD	100	75-125			
Chromium	49.6	1.00	ug/L	50.0	BLOD	99.1	75-125			
Copper	47.9	1.00	ug/L	50.0	0.722	94.3	75-125			
Lead	52	1.0	ug/L	50.0	BLOD	103	75-125			
Nickel	49.38	1.000	ug/L	50.0	1.777	95.2	75-125			
Selenium	51.7	1.00	ug/L	50.0	BLOD	103	75-125			
Silver	10.4	1.00	ug/L	10.0	BLOD	104	75-125			
Zinc	112	5.00	ug/L	50.0	66.2	91.2	75-125			
Matrix Spike Dup (BHB0369-MSD1)	Sour	ce: 24B0351-0	1	Prenared: 02/00	/2024 Analyzed: 0	12/12/2024				

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BHB0369 - EPA20	0.8 R5.4								
Matrix Spike Dup (BHB0369-MSD1)	Sour	ce: 24B0351-0)1	Prepared: 02/09/	/2024 Analyzed: ()2/12/2024				
Mercury	1.09	0.200	ug/L	1.00	BLOD	109	70-130	0.171	20	
Arsenic	66	1.0	ug/L	50.0	15	103	75-125	1.33	20	
Barium	134	5.00	ug/L	50.0	82.3	104	75-125	1.18	20	
Cadmium	50.0	1.00	ug/L	50.0	BLOD	99.9	75-125	0.283	20	
Chromium	49.7	1.00	ug/L	50.0	0.454	98.5	75-125	0.00654	20	
Copper	52.7	1.00	ug/L	50.0	4.39	96.5	75-125	0.575	20	
Lead	52	1.0	ug/L	50.0	1.1	102	75-125	0.861	20	
Nickel	52.97	1.000	ug/L	50.0	4.354	97.2	75-125	0.228	20	
Selenium	53.0	1.00	ug/L	50.0	BLOD	106	75-125	1.59	20	
Silver	10.4	1.00	ug/L	10.0	BLOD	104	75-125	0.721	20	
Zinc	54.6	5.00	ug/L	50.0	7.24	94.8	75-125	0.0536	20	
Matrix Spike Dup (BHB0369-MSD2)	Sour	ce: 24B0351-0)2	Prepared: 02/09	/2024 Analyzed: (02/12/2024				
Mercury	1.05	0.200	ug/L	1.00	BLOD	105	70-130	0.713	20	
Arsenic	52	1.0	ug/L	50.0	1.1	102	75-125	0.682	20	
Barium	259	5.00	ug/L	50.0	210	96.6	75-125	2.55	20	E
Cadmium	50.1	1.00	ug/L	50.0	BLOD	100	75-125	0.00274	20	
Chromium	49.7	1.00	ug/L	50.0	BLOD	99.4	75-125	0.258	20	
Copper	48.0	1.00	ug/L	50.0	0.722	94.6	75-125	0.357	20	
Lead	51	1.0	ug/L	50.0	BLOD	103	75-125	0.693	20	
Nickel	49.43	1.000	ug/L	50.0	1.777	95.3	75-125	0.102	20	
Selenium	51.8	1.00	ug/L	50.0	BLOD	104	75-125	0.0937	20	
Silver	10.5	1.00	ug/L	10.0	BLOD	105	75-125	0.403	20	
Zinc	112	5.00	ug/L	50.0	66.2	90.7	75-125	0.233	20	

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	SHB0273 - SW503	0B-MS								
Blank (BHB0273-BLK1)				Prepared & Anal	yzed: 02/07/2024					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
m+p-Xylenes	ND	2.00	ug/L							
o-Xylene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	51.9		ug/L	50.0		104	70-120			
Surr: 4-Bromofluorobenzene (Surr)	46.3		ug/L	50.0		92.6	75-120			
Surr: Dibromofluoromethane (Surr)	44.4		ug/L	50.0		88.9	70-130			
Surr: Toluene-d8 (Surr)	48.1		ug/L	50.0		96.2	70-130			
.CS (BHB0273-BS1)				Prepared & Anal	yzed: 02/07/2024					
1,1,1,2-Tetrachloroethane	51.3	0.4	ug/L	50.0		103	80-130			
1,1,1-Trichloroethane	52.0	1	ug/L	50.0		104	65-130			
1,1,2,2-Tetrachloroethane	47.8	0.4	ug/L	50.0		95.5	65-130			
1,1,2-Trichloroethane	48.7	1	ug/L	50.0		97.5	75-125			
1,1-Dichloroethane	46.2	1	ug/L	50.0		92.5	70-135			
1,1-Dichloroethylene	51.3	1	ug/L	50.0		103	70-130			
1,1-Dichloropropene	52.7	1	ug/L	50.0		105	75-135			
1,2,3-Trichlorobenzene	61.5	1	ug/L	50.0		123	55-140			
1,2,3-Trichloropropane	48.6	1	ug/L	50.0		97.1	75-125			
1,2,4-Trichlorobenzene	62.9	1	ug/L	50.0		126	65-135			
1,2,4-Trimethylbenzene	62.2	1	ug/L	50.0		124	75-130			

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl	HB0273 - SW503	0B-MS								
LCS (BHB0273-BS1)			F	Prepared & Analy	yzed: 02/07/2024					
1,2-Dibromo-3-chloropropane (DBCP)	50.4	1	ug/L	50.0		101	50-130			
1,2-Dibromoethane (EDB)	49.5	1	ug/L	50.0		99.1	80-120			
1,2-Dichlorobenzene	57.3	0.5	ug/L	50.0		115	70-120			
1,2-Dichloroethane	40.9	1	ug/L	50.0		81.9	70-130			
1,2-Dichloropropane	52.3	0.5	ug/L	50.0		105	75-125			
1,3,5-Trimethylbenzene	63.3	1	ug/L	50.0		127	75-125			L
1,3-Dichlorobenzene	55.6	1	ug/L	50.0		111	75-125			
1,3-Dichloropropane	47.0	1	ug/L	50.0		94.0	75-125			
1,4-Dichlorobenzene	54.3	1	ug/L	50.0		109	75-125			
2,2-Dichloropropane	48.5	1	ug/L	50.0		97.0	70-135			
2-Butanone (MEK)	44.0	10	ug/L	50.0		88.1	30-150			
2-Chlorotoluene	56.3	1	ug/L	50.0		113	75-125			
2-Hexanone (MBK)	50.1	5	ug/L	50.0		100	55-130			
4-Chlorotoluene	57.0	1	ug/L	50.0		114	75-130			
4-Isopropyltoluene	65.6	1	ug/L	50.0		131	75-130			L
4-Methyl-2-pentanone (MIBK)	48.5	5	ug/L	50.0		97.0	60-135			
Acetone	40.8	10	ug/L	50.0		81.6	40-140			
Benzene	52.8	1	ug/L	50.0		106	80-120			
Bromobenzene	54.2	1	ug/L	50.0		108	75-125			
Bromochloromethane	45.1	1	ug/L	50.0		90.2	65-130			
Bromodichloromethane	50.3	0.5	ug/L	50.0		101	75-120			
Bromoform	53.2	1	ug/L	50.0		106	70-130			
Bromomethane	52.4	1	ug/L	50.0		105	30-145			
Carbon disulfide	47.0	10	ug/L	50.0		93.9	35-160			
Carbon tetrachloride	57.8	1	ug/L	50.0		116	65-140			

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	h BHB0273 - SW503	0B-MS								
.CS (BHB0273-BS1)			F	Prepared & Anal	yzed: 02/07/2024					
Chlorobenzene	51.7	1	ug/L	50.0		103	80-120			
Chloroethane	49.4	1	ug/L	50.0		98.8	60-135			
Chloroform	41.3	0.5	ug/L	50.0		82.6	65-135			
Chloromethane	48.4	1	ug/L	50.0		96.9	40-125			
cis-1,2-Dichloroethylene	45.6	1	ug/L	50.0		91.3	70-125			
cis-1,3-Dichloropropene	52.8	1	ug/L	50.0		106	70-130			
Dibromochloromethane	50.6	0.5	ug/L	50.0		101	60-135			
Dibromomethane	53.1	1	ug/L	50.0		106	75-125			
Dichlorodifluoromethane	77.9	1	ug/L	50.0		156	30-155			L
Ethylbenzene	57.6	1	ug/L	50.0		115	75-125			
Hexachlorobutadiene	70.3	0.8	ug/L	50.0		141	50-140			L
Isopropylbenzene	51.1	1	ug/L	50.0		102	75-125			
m+p-Xylenes	104	2	ug/L	100		104	75-130			
Methylene chloride	39.3	4	ug/L	50.0		78.7	55-140			
Methyl-t-butyl ether (MTBE)	41.0	1	ug/L	50.0		82.0	65-125			
Naphthalene	62.5	1	ug/L	50.0		125	55-140			
n-Butylbenzene	67.6	1	ug/L	50.0		135	70-135			L
n-Propylbenzene	63.0	1	ug/L	50.0		126	70-130			
o-Xylene	54.0	1	ug/L	50.0		108	80-120			
sec-Butylbenzene	64.3	1	ug/L	50.0		129	70-125			L
Styrene	53.9	1	ug/L	50.0		108	65-135			
tert-Butylbenzene	63.2	1	ug/L	50.0		126	70-130			
Tetrachloroethylene (PCE)	60.2	1	ug/L	50.0		120	45-150			
Toluene	52.4	1	ug/L	50.0		105	75-120			
trans-1,2-Dichloroethylene	45.1	1	ug/L	50.0		90.2	60-140			

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BH	IB0273 - SW503	OB-MS								
LCS (BHB0273-BS1)				Prepared & Anal	yzed: 02/07/2024					
trans-1,3-Dichloropropene	56.8	1	ug/L	50.0		114	55-140			
Trichloroethylene	53.6	1	ug/L	50.0		107	70-125			
Trichlorofluoromethane	55.7	1	ug/L	50.0		111	60-145			
Vinyl chloride	54.5	0.5	ug/L	50.0		109	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	47.9		ug/L	50.0		95.8	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.2		ug/L	50.0		98.5	75-120			
Surr: Dibromofluoromethane (Surr)	46.2		ug/L	50.0		92.5	70-130			
Surr: Toluene-d8 (Surr)	48.6		ug/L	50.0		97.3	70-130			
Duplicate (BHB0273-DUP1)	Source	e: 24B0284-0	2	Prepared & Anal	yzed: 02/07/2024					
1,1,1,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,1-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,2-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichloropropane	ND	1.00	ug/L		BLOD			NA	30	
1,2,4-Trichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2,4-Trimethylbenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dibromo-3-chloropropane (DBCP)	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dibromoethane (EDB)	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dichlorobenzene	ND	0.50	ug/L		BLOD			NA	30	
1,2-Dichloroethane	ND	1.00	ug/L		BLOD			NA	30	

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units		ource esult	%REC	%REC Limits	RPD	RPD Limit	Qual
Batcl	h BHB0273 - SW503	0B-MS								
Ouplicate (BHB0273-DUP1)	Sourc	e: 24B0284-0	02	Prepared & Analyzed: 03	2/07/2024					
1,2-Dichloropropane	ND	0.50	ug/L	В	LOD			NA	30	
1,3,5-Trimethylbenzene	ND	1.00	ug/L	В	LOD			NA	30	
1,3-Dichlorobenzene	ND	1.00	ug/L	В	LOD			NA	30	
1,3-Dichloropropane	ND	1.00	ug/L	В	LOD			NA	30	
1,4-Dichlorobenzene	ND	1.00	ug/L	В	LOD			NA	30	
2,2-Dichloropropane	ND	1.00	ug/L	В	LOD			NA	30	
2-Butanone (MEK)	ND	10.0	ug/L	В	LOD			NA	30	
2-Chlorotoluene	ND	1.00	ug/L	В	LOD			NA	30	
2-Hexanone (MBK)	ND	5.00	ug/L	В	LOD			NA	30	
4-Chlorotoluene	ND	1.00	ug/L	В	LOD			NA	30	
4-Isopropyltoluene	ND	1.00	ug/L	В	LOD			NA	30	
4-Methyl-2-pentanone (MIBK)	ND	5.00	ug/L	В	LOD			NA	30	
Acetone	ND	10.0	ug/L	В	LOD			NA	30	
Benzene	ND	1.00	ug/L	В	LOD			NA	30	
Bromobenzene	ND	1.00	ug/L	В	LOD			NA	30	
Bromochloromethane	ND	1.00	ug/L	В	LOD			NA	30	
Bromodichloromethane	ND	0.50	ug/L	В	LOD			NA	30	
Bromoform	ND	1.00	ug/L	В	LOD			NA	30	
Bromomethane	ND	1.00	ug/L	В	LOD			NA	30	
Carbon disulfide	ND	10.0	ug/L	В	LOD			NA	30	
Carbon tetrachloride	ND	1.00	ug/L	В	LOD			NA	30	
Chlorobenzene	ND	1.00	ug/L	В	LOD			NA	30	
Chloroethane	ND	1.00	ug/L	В	LOD			NA	30	
Chloroform	ND	0.50	ug/L	В	LOD			NA	30	
Chloromethane	ND	1.00	ug/L	В	LOD			NA	30	

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BHB0273 - SW503	0B-MS								
Duplicate (BHB0273-DUP1)	Sourc	e: 24B0284-0	02	Prepared & Analy	zed: 02/07/2024					
cis-1,2-Dichloroethylene	1.22	1.00	ug/L		1.27			4.02	30	
cis-1,3-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	
Dibromochloromethane	ND	0.50	ug/L		BLOD			NA	30	
Dibromomethane	ND	1.00	ug/L		BLOD			NA	30	
Dichlorodifluoromethane	ND	1.00	ug/L		BLOD			NA	30	
Di-isopropyl ether (DIPE)	ND	5.00	ug/L		BLOD			NA	30	
Ethylbenzene	ND	1.00	ug/L		BLOD			NA	30	
Hexachlorobutadiene	ND	0.80	ug/L		BLOD			NA	30	
Iodomethane	ND	10.0	ug/L		BLOD			NA	30	
Isopropylbenzene	ND	1.00	ug/L		BLOD			NA	30	
m+p-Xylenes	ND	2.00	ug/L		BLOD			NA	30	
Methylene chloride	ND	4.00	ug/L		BLOD			NA	30	
Methyl-t-butyl ether (MTBE)	ND	1.00	ug/L		BLOD			NA	30	
Naphthalene	ND	1.00	ug/L		BLOD			NA	30	
n-Butylbenzene	ND	1.00	ug/L		BLOD			NA	30	
n-Propylbenzene	ND	1.00	ug/L		BLOD			NA	30	
o-Xylene	ND	1.00	ug/L		BLOD			NA	30	
sec-Butylbenzene	ND	1.00	ug/L		BLOD			NA	30	
Styrene	ND	1.00	ug/L		BLOD			NA	30	
tert-Butylbenzene	ND	1.00	ug/L		BLOD			NA	30	
Tetrachloroethylene (PCE)	ND	1.00	ug/L		BLOD			NA	30	
Toluene	ND	1.00	ug/L		BLOD			NA	30	
trans-1,2-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
trans-1,3-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	
Trichloroethylene	1.13	1.00	ug/L		1.01			11.2	30	

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

				Епитагру 7 и						
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BH	IB0273 - SW503	0B-MS								
Duplicate (BHB0273-DUP1)	Sourc	e: 24B0284-0	2	Prepared & Anal	yzed: 02/07/2024					
Trichlorofluoromethane	ND	1.00	ug/L		BLOD			NA	30	
Vinyl acetate	ND	10.0	ug/L		BLOD			NA	30	
Vinyl chloride	ND	0.50	ug/L		BLOD			NA	30	
Xylenes, Total	ND	3.00	ug/L		BLOD			NA	30	
Tetrahydrofuran	ND	10.0	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	51.0		ug/L	50.0		102	70-120			
Surr: 4-Bromofluorobenzene (Surr)	46.4		ug/L	50.0		92.7	75-120			
Surr: Dibromofluoromethane (Surr)	49.7		ug/L	50.0		99.5	70-130			
Surr: Toluene-d8 (Surr)	49.0		ug/L	50.0		97.9	70-130			
Matrix Spike (BHB0273-MS1)	Sourc	e: 24B0284-0	1	Prepared & Anal	yzed: 02/07/2024					
1,1,1,2-Tetrachloroethane	54.2	0.4	ug/L	50.0	BLOD	108	80-130			
1,1,1-Trichloroethane	53.2	1	ug/L	50.0	BLOD	106	65-130			
1,1,2,2-Tetrachloroethane	50.2	0.4	ug/L	50.0	BLOD	100	65-130			
1,1,2-Trichloroethane	48.4	1	ug/L	50.0	BLOD	96.8	75-125			
1,1-Dichloroethane	47.9	1	ug/L	50.0	BLOD	95.8	70-135			
1,1-Dichloroethylene	52.0	1	ug/L	50.0	BLOD	104	50-145			
1,1-Dichloropropene	55.1	1	ug/L	50.0	BLOD	110	75-135			
1,2,3-Trichlorobenzene	59.2	1	ug/L	50.0	BLOD	118	55-140			
1,2,3-Trichloropropane	50.6	1	ug/L	50.0	BLOD	101	75-125			
1,2,4-Trichlorobenzene	64.8	1	ug/L	50.0	BLOD	130	65-135			
1,2,4-Trimethylbenzene	62.0	1	ug/L	50.0	BLOD	124	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	51.5	1	ug/L	50.0	BLOD	103	50-130			
1,2-Dibromoethane (EDB)	52.1	1	ug/L	50.0	BLOD	104	80-120			
1,2-Dichlorobenzene	56.5	0.5	ug/L	50.0	BLOD	113	70-120			

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batcl	n BHB0273 - SW503	0B-MS								
Matrix Spike (BHB0273-MS1)	Sourc	e: 24B0284-0)1	Prepared & Anal	yzed: 02/07/2024					
1,2-Dichloroethane	40.6	1	ug/L	50.0	BLOD	81.2	70-130			
1,2-Dichloropropane	53.1	0.5	ug/L	50.0	BLOD	106	75-125			
1,3,5-Trimethylbenzene	62.8	1	ug/L	50.0	BLOD	126	75-124			М
1,3-Dichlorobenzene	56.0	1	ug/L	50.0	BLOD	112	75-125			
1,3-Dichloropropane	46.8	1	ug/L	50.0	BLOD	93.5	75-125			
1,4-Dichlorobenzene	54.5	1	ug/L	50.0	BLOD	109	75-125			
2,2-Dichloropropane	54.4	1	ug/L	50.0	BLOD	109	70-135			
2-Butanone (MEK)	42.7	10	ug/L	50.0	BLOD	85.4	30-150			
2-Chlorotoluene	58.1	1	ug/L	50.0	BLOD	116	75-125			
2-Hexanone (MBK)	49.6	5	ug/L	50.0	BLOD	99.3	55-130			
4-Chlorotoluene	59.8	1	ug/L	50.0	BLOD	120	75-130			
4-Isopropyltoluene	66.4	1	ug/L	50.0	BLOD	133	75-130			M
4-Methyl-2-pentanone (MIBK)	46.4	5	ug/L	50.0	BLOD	92.9	60-135			
Acetone	38.1	10	ug/L	50.0	BLOD	76.2	40-140			
Benzene	53.6	1	ug/L	50.0	BLOD	107	80-120			
Bromobenzene	56.0	1	ug/L	50.0	BLOD	112	75-125			
Bromochloromethane	45.5	1	ug/L	50.0	BLOD	91.1	65-130			
Bromodichloromethane	50.6	0.5	ug/L	50.0	BLOD	101	75-136			
Bromoform	56.7	1	ug/L	50.0	BLOD	113	70-130			
Bromomethane	55.7	1	ug/L	50.0	BLOD	111	30-145			
Carbon disulfide	44.9	10	ug/L	50.0	BLOD	89.7	35-160			
Carbon tetrachloride	58.9	1	ug/L	50.0	BLOD	118	65-140			
Chlorobenzene	54.7	1	ug/L	50.0	BLOD	109	80-120			
Chloroethane	49.5	1	ug/L	50.0	BLOD	98.9	60-135			
Chloroform	41.1	0.5	ug/L	50.0	BLOD	82.2	65-135			

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BHB0273 - SW503	0B-MS								
Matrix Spike (BHB0273-MS1)	Sourc	e: 24B0284-0)1	Prepared & Anal	yzed: 02/07/2024					
Chloromethane	49.6	1	ug/L	50.0	BLOD	99.2	40-125			
cis-1,2-Dichloroethylene	51.4	1	ug/L	50.0	6.40	90.1	70-125			
cis-1,3-Dichloropropene	52.6	1	ug/L	50.0	BLOD	105	47-136			
Dibromochloromethane	50.9	0.5	ug/L	50.0	BLOD	102	60-135			
Dibromomethane	54.4	1	ug/L	50.0	BLOD	109	75-125			
Dichlorodifluoromethane	77.8	1	ug/L	50.0	BLOD	156	30-155			M
Ethylbenzene	61.4	1	ug/L	50.0	BLOD	123	75-125			
Hexachlorobutadiene	68.8	0.8	ug/L	50.0	BLOD	138	50-140			
Isopropylbenzene	54.7	1	ug/L	50.0	BLOD	109	75-125			
m+p-Xylenes	110	2	ug/L	100	BLOD	110	75-130			
Methylene chloride	40.1	4	ug/L	50.0	BLOD	80.2	55-140			
Methyl-t-butyl ether (MTBE)	40.8	1	ug/L	50.0	BLOD	81.5	65-125			
Naphthalene	66.2	1	ug/L	50.0	BLOD	132	55-140			
n-Butylbenzene	67.4	1	ug/L	50.0	BLOD	135	70-135			
n-Propylbenzene	62.9	1	ug/L	50.0	BLOD	126	70-130			
o-Xylene	56.1	1	ug/L	50.0	BLOD	112	80-120			
sec-Butylbenzene	65.0	1	ug/L	50.0	BLOD	130	70-125			M
Styrene	56.1	1	ug/L	50.0	BLOD	112	65-135			
tert-Butylbenzene	65.4	1	ug/L	50.0	BLOD	131	70-130			M
Tetrachloroethylene (PCE)	65.6	1	ug/L	50.0	BLOD	131	51-231			
Toluene	53.2	1	ug/L	50.0	BLOD	106	75-120			
trans-1,2-Dichloroethylene	52.5	1	ug/L	50.0	BLOD	105	60-140			
trans-1,3-Dichloropropene	57.6	1	ug/L	50.0	BLOD	115	55-140			
Trichloroethylene	60.7	1	ug/L	50.0	5.41	111	70-125			
Trichlorofluoromethane	57.5	1	ug/L	50.0	BLOD	115	60-145			

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch E	3HB0273 - SW503	0B-MS								
Matrix Spike (BHB0273-MS1)	Sourc	e: 24B0284-01	1	Prepared & Anal	yzed: 02/07/2024					
Vinyl chloride	52.6	0.5	ug/L	50.0	BLOD	105	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	45.6		ug/L	50.0		91.3	70-120			
Surr: 4-Bromofluorobenzene (Surr)	50.4		ug/L	50.0		101	75-120			
Surr: Dibromofluoromethane (Surr)	45.5		ug/L	50.0		91.0	70-130			
Surr: Toluene-d8 (Surr)	47.6		ug/L	50.0		95.2	70-130			

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BHB0243 - SW351	0C/EPA600	-MS							
Blank (BHB0243-BLK1)			F	Prepared & Anal	yzed: 02/07/2024					
Anthracene	ND	10.0	ug/L							
Surr: 2,4,6-Tribromophenol (Surr)	71.0		ug/L	100		71.0	5-136			
Surr: 2-Fluorobiphenyl (Surr)	33.1		ug/L	50.0		66.2	9-117			
Surr: 2-Fluorophenol (Surr)	35.4		ug/L	100		35. <i>4</i>	5-60			
Surr: Nitrobenzene-d5 (Surr)	32.4		ug/L	50.0		64.9	5-151			
Surr: Phenol-d5 (Surr)	21.5		ug/L	100		21.5	5-60			
Surr: p-Terphenyl-d14 (Surr)	54.4		ug/L	50.0		109	5-141			
.CS (BHB0243-BS1)			F	Prepared & Anal	yzed: 02/07/2024					
1,2,4-Trichlorobenzene	32.4	10.0	ug/L	50.0		64.9	57-130			
1,2-Dichlorobenzene	26.7	10.0	ug/L	50.0		53.3	22-115			
1,3-Dichlorobenzene	23.7	10.0	ug/L	50.0		47.4	22-112			
1,4-Dichlorobenzene	30.0	10.0	ug/L	50.0		60.0	13-112			
2,4,6-Trichlorophenol	48.1	10.0	ug/L	50.0		96.1	52-129			
2,4-Dichlorophenol	37.7	10.0	ug/L	50.0		75.3	53-122			
2,4-Dimethylphenol	33.8	5.00	ug/L	50.0		67.6	42-120			
2,4-Dinitrophenol	36.8	50.0	ug/L	50.0		73.5	48-127			
2,4-Dinitrotoluene	37.2	10.0	ug/L	50.0		74.4	10-173			
2,6-Dinitrotoluene	31.3	10.0	ug/L	50.0		62.7	68-137			L
2-Chloronaphthalene	35.2	10.0	ug/L	50.0		70.4	65-120			
2-Chlorophenol	31.2	10.0	ug/L	50.0		62.4	36-120			
2-Nitrophenol	31.6	10.0	ug/L	50.0		63.3	45-167			
3,3'-Dichlorobenzidine	25.6	10.0	ug/L	50.0		51.2	10-213			
4,6-Dinitro-2-methylphenol	37.0	50.0	ug/L	50.0		73.9	53-130			
4-Bromophenyl phenyl ether	40.4	10.0	ug/L	50.0		80.8	65-120			

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batc	h BHB0243 - SW351	0C/EPA600	-MS							
LCS (BHB0243-BS1)			F	repared & Anal	yzed: 02/07/2024					
4-Chlorophenyl phenyl ether	38.8	10.0	ug/L	50.0		77.6	38-145			
4-Nitrophenol	8.34	50.0	ug/L	50.0		16.7	13-129			
Acenaphthene	36.5	10.0	ug/L	50.0		73.1	60-132			
Acenaphthylene	37.5	10.0	ug/L	50.0		75.1	54-126			
Acetophenone	34.4	20.0	ug/L	50.0		68.9	0-200			
Anthracene	32.7	10.0	ug/L	50.0		65.4	43-120			
Benzo (a) anthracene	43.0	10.0	ug/L	50.0		86.0	42-133			
Benzo (a) pyrene	45.7	10.0	ug/L	50.0		91.3	32-148			
Benzo (b) fluoranthene	50.6	10.0	ug/L	50.0		101	42-140			
Benzo (g,h,i) perylene	40.3	10.0	ug/L	50.0		80.6	10-195			
Benzo (k) fluoranthene	48.7	10.0	ug/L	50.0		97.4	25-146			
bis (2-Chloroethoxy) methane	30.0	10.0	ug/L	50.0		60.0	49-165			
bis (2-Chloroethyl) ether	28.7	10.0	ug/L	50.0		57.4	43-126			
2,2'-Oxybis (1-chloropropane)	27.8	10.0	ug/L	50.0		55.5	63-139			L
bis (2-Ethylhexyl) phthalate	41.2	10.0	ug/L	50.0		82.3	29-137			
Butyl benzyl phthalate	38.7	10.0	ug/L	50.0		77.4	10-140			
Chrysene	37.4	10.0	ug/L	50.0		74.8	44-140			
Dibenz (a,h) anthracene	49.3	10.0	ug/L	50.0		98.6	10-200			
Diethyl phthalate	41.2	10.0	ug/L	50.0		82.5	10-120			
Dimethyl phthalate	34.3	10.0	ug/L	50.0		68.7	10-120			
Di-n-butyl phthalate	51.2	10.0	ug/L	50.0		102	10-120			
Di-n-octyl phthalate	52.8	10.0	ug/L	50.0		106	19-132			
Fluoranthene	54.7	10.0	ug/L	50.0		109	43-121			
Fluorene	42.8	10.0	ug/L	50.0		85.6	70-120			
Hexachlorobenzene	37.5	1.00	ug/L	50.0		75.0	10-142			

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BHB0243 - SW351	0C/EPA600	-MS							
_CS (BHB0243-BS1)				Prepared & Anal	yzed: 02/07/2024					
Hexachlorobutadiene	37.8	10.0	ug/L	50.0		75.6	38-120			
Hexachlorocyclopentadiene	19.4	10.0	ug/L	50.0		38.8	10-76			
Hexachloroethane	29.8	10.0	ug/L	50.0		59.6	55-120			
Indeno (1,2,3-cd) pyrene	46.4	10.0	ug/L	50.0		92.7	10-151			
Isophorone	19.7	10.0	ug/L	50.0		39.4	47-180			L
Naphthalene	33.3	5.00	ug/L	50.0		66.6	36-120			
Nitrobenzene	38.6	10.0	ug/L	50.0		77.2	54-158			
n-Nitrosodimethylamine	14.8	10.0	ug/L	50.0		29.7	10-85			
n-Nitrosodi-n-propylamine	36.5	10.0	ug/L	50.0		72.9	14-198			
n-Nitrosodiphenylamine	32.2	10.0	ug/L	50.0		64.5	12-97			
p-Chloro-m-cresol	31.5	10.0	ug/L	50.0		63.0	10-142			
Pentachlorophenol	27.9	20.0	ug/L	50.0		55.8	38-152			
Phenanthrene	48.8	10.0	ug/L	50.0		97.6	65-120			
Phenol	11.6	10.0	ug/L	50.5		22.9	17-120			
Pyrene	45.3	10.0	ug/L	50.0		90.5	70-120			
Pyridine	21.1	10.0	ug/L	50.0		42.1	10-103			
Surr: 2,4,6-Tribromophenol (Surr)	93.2		ug/L	100		93.2	5-136			
Surr: 2-Fluorobiphenyl (Surr)	40.1		ug/L	50.0		80.2	9-117			
Surr: 2-Fluorophenol (Surr)	42.2		ug/L	100		42.2	5-60			
Surr: Nitrobenzene-d5 (Surr)	38.6		ug/L	50.0		77.1	5-151			
Surr: Phenol-d5 (Surr)	27.2		ug/L	100		27.2	5-60			
Surr: p-Terphenyl-d14 (Surr)	43.1		ug/L	50.0		86.2	5-141			
Matrix Spike (BHB0243-MS1)	Source	e: 24B0206-0)4	Prepared & Anal	yzed: 02/07/2024					
1,2,4-Trichlorobenzene	25.4	10.0	ug/L	46.7	BLOD	54.5	44-142			

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batc	h BHB0243 - SW351	0C/EPA600	-MS							
Matrix Spike (BHB0243-MS1)	Sourc	e: 24B0206-0)4	Prepared & Anal	yzed: 02/07/2024					
1,2-Dichlorobenzene	22.1	10.0	ug/L	46.7	BLOD	47.4	22-115			
1,3-Dichlorobenzene	19.7	10.0	ug/L	46.7	BLOD	42.1	22-112			
1,4-Dichlorobenzene	24.5	10.0	ug/L	46.7	BLOD	52.4	13-112			
2,4,6-Trichlorophenol	36.3	10.0	ug/L	46.7	BLOD	77.7	37-144			
2,4-Dichlorophenol	28.7	10.0	ug/L	46.7	BLOD	61.5	39-135			
2,4-Dimethylphenol	25.4	5.00	ug/L	46.7	BLOD	54.4	32-120			
2,4-Dinitrophenol	16.0	50.0	ug/L	46.7	BLOD	34.2	39-139			М
2,4-Dinitrotoluene	27.1	10.0	ug/L	46.7	BLOD	57.9	10-191			
2,6-Dinitrotoluene	23.2	10.0	ug/L	46.7	BLOD	49.7	50-158			M
2-Chloronaphthalene	25.7	10.0	ug/L	46.7	BLOD	54.9	60-120			M
2-Chlorophenol	22.2	10.0	ug/L	46.7	BLOD	47.5	23-134			
2-Nitrophenol	24.6	10.0	ug/L	46.7	BLOD	52.6	29-182			
3,3'-Dichlorobenzidine	18.4	10.0	ug/L	46.7	BLOD	39.3	10-262			
4,6-Dinitro-2-methylphenol	16.2	50.0	ug/L	46.7	BLOD	34.6	10-181			
4-Bromophenyl phenyl ether	30.0	10.0	ug/L	46.7	BLOD	64.3	53-127			
4-Chlorophenyl phenyl ether	28.7	10.0	ug/L	46.7	BLOD	61.4	25-158			
4-Nitrophenol	3.53	50.0	ug/L	46.7	BLOD	7.56	10-132			M
Acenaphthene	26.8	10.0	ug/L	46.7	BLOD	57.4	47-145			
Acenaphthylene	28.0	10.0	ug/L	46.7	BLOD	60.0	33-145			
Acetophenone	26.8	20.0	ug/L	46.7	BLOD	57.3	0-200			
Anthracene	25.4	10.0	ug/L	46.7	BLOD	54.4	27-133			
Benzo (a) anthracene	32.9	10.0	ug/L	46.7	BLOD	70.5	33-143			
Benzo (a) pyrene	37.2	10.0	ug/L	46.7	BLOD	79.6	17-163			
Benzo (b) fluoranthene	41.0	10.0	ug/L	46.7	BLOD	87.7	24-159			
Benzo (g,h,i) perylene	27.2	10.0	ug/L	46.7	BLOD	58.1	10-219			

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BHB0243 - SW351	0C/EPA600	-MS							
Matrix Spike (BHB0243-MS1)	Sourc	e: 24B0206-0)4	Prepared & Anal	yzed: 02/07/2024					
Benzo (k) fluoranthene	40.5	10.0	ug/L	46.7	BLOD	86.7	11-162			
bis (2-Chloroethoxy) methane	23.1	10.0	ug/L	46.7	BLOD	49.5	33-184			
bis (2-Chloroethyl) ether	22.6	10.0	ug/L	46.7	BLOD	48.4	12-158			
2,2'-Oxybis (1-chloropropane)	22.5	10.0	ug/L	46.7	BLOD	48.1	36-166			
bis (2-Ethylhexyl) phthalate	29.2	10.0	ug/L	46.7	BLOD	62.5	10-158			
Butyl benzyl phthalate	29.5	10.0	ug/L	46.7	BLOD	63.2	10-152			
Chrysene	29.1	10.0	ug/L	46.7	BLOD	62.4	17-169			
Dibenz (a,h) anthracene	32.5	10.0	ug/L	46.7	BLOD	69.5	10-227			
Diethyl phthalate	31.7	10.0	ug/L	46.7	BLOD	67.8	10-120			
Dimethyl phthalate	26.8	10.0	ug/L	46.7	BLOD	57.4	10-120			
Di-n-butyl phthalate	37.3	10.0	ug/L	46.7	BLOD	79.8	10-120			
Di-n-octyl phthalate	43.8	10.0	ug/L	46.7	BLOD	93.7	10-146			
Fluoranthene	40.8	10.0	ug/L	46.7	BLOD	87.3	26-137			
Fluorene	30.9	10.0	ug/L	46.7	BLOD	66.1	59-121			
Hexachlorobenzene	29.3	1.00	ug/L	46.7	BLOD	62.6	10-152			
Hexachlorobutadiene	29.8	10.0	ug/L	46.7	BLOD	63.8	24-120			
Hexachlorocyclopentadiene	10.1	10.0	ug/L	46.7	BLOD	21.5	10-90			
Hexachloroethane	23.7	10.0	ug/L	46.7	BLOD	50.8	40-120			
Indeno (1,2,3-cd) pyrene	30.6	10.0	ug/L	46.7	BLOD	65.4	10-171			
Isophorone	15.7	10.0	ug/L	46.7	BLOD	33.6	21-196			
Naphthalene	24.9	5.00	ug/L	46.7	BLOD	53.3	21-133			
Nitrobenzene	30.0	10.0	ug/L	46.7	BLOD	64.2	35-180			
n-Nitrosodimethylamine	11.5	10.0	ug/L	46.7	BLOD	24.5	10-85			
n-Nitrosodi-n-propylamine	29.5	10.0	ug/L	46.7	BLOD	63.2	10-230			
n-Nitrosodiphenylamine	24.5	10.0	ug/L	46.7	BLOD	52.4	12-111			

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BHB0243 - SW351	0C/EPA600-	-MS							
Matrix Spike (BHB0243-MS1)	Sourc	e: 24B0206-0	4	Prepared & Anal	yzed: 02/07/2024					
p-Chloro-m-cresol	23.4	10.0	ug/L	46.7	BLOD	50.0	10-127			
Pentachlorophenol	26.9	20.0	ug/L	46.7	BLOD	57.6	14-176			
Phenanthrene	35.2	10.0	ug/L	46.7	BLOD	75.4	54-120			
Phenol	7.06	10.0	ug/L	47.2	BLOD	15.0	10-120			
Pyrene	40.6	10.0	ug/L	46.7	BLOD	86.8	52-120			
Pyridine	16.3	10.0	ug/L	46.7	BLOD	34.8	10-110			
Surr: 2,4,6-Tribromophenol (Surr)	69.9		ug/L	93.5		74.8	5-136			
Surr: 2-Fluorobiphenyl (Surr)	29.0		ug/L	46.7		62.0	9-117			
Surr: 2-Fluorophenol (Surr)	28.5		ug/L	93.5		30.5	5-60			
Surr: Nitrobenzene-d5 (Surr)	29.7		ug/L	46.7		63.5	5-151			
Surr: Phenol-d5 (Surr)	17.2		ug/L	93.5		18.4	5-60			
Surr: p-Terphenyl-d14 (Surr)	31.2		ug/L	46.7		66.8	5-141			
Matrix Spike Dup (BHB0243-MSD1)	Sourc	e: 24B0206-0	4	Prepared: 02/07/	/2024 Analyzed: (02/08/2024				
1,2,4-Trichlorobenzene	24.4	10.0	ug/L	46.7	BLOD	52.3	44-142	4.08	20	
1,2-Dichlorobenzene	21.5	10.0	ug/L	46.7	BLOD	45.9	22-115	3.13	20	
1,3-Dichlorobenzene	20.0	10.0	ug/L	46.7	BLOD	42.8	22-112	1.74	20	
1,4-Dichlorobenzene	23.6	10.0	ug/L	46.7	BLOD	50.6	13-112	3.57	20	
2,4,6-Trichlorophenol	35.7	10.0	ug/L	46.7	BLOD	76.4	37-144	1.76	20	
2,4-Dichlorophenol	28.7	10.0	ug/L	46.7	BLOD	61.3	39-135	0.261	20	
2,4-Dimethylphenol	25.0	5.00	ug/L	46.7	BLOD	53.6	32-120	1.48	20	
2,4-Dinitrophenol	21.4	50.0	ug/L	46.7	BLOD	45.8	39-139	29.0	20	Р
2,4-Dinitrotoluene	27.9	10.0	ug/L	46.7	BLOD	59.6	10-191	2.86	20	
2,6-Dinitrotoluene	23.1	10.0	ug/L	46.7	BLOD	49.5	50-158	0.444	20	M
2-Chloronaphthalene	25.1	10.0	ug/L	46.7	BLOD	53.8	60-120	2.13	20	M

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BHB0243 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BHB0243-MSD1)	Sourc	e: 24B0206-0)4	Prepared: 02/07/	/2024 Analyzed: ()2/08/2024				
2-Chlorophenol	22.7	10.0	ug/L	46.7	BLOD	48.7	23-134	2.41	20	
2-Nitrophenol	24.4	10.0	ug/L	46.7	BLOD	52.2	29-182	0.687	20	
3,3'-Dichlorobenzidine	21.0	10.0	ug/L	46.7	BLOD	44.9	10-262	13.3	20	
4,6-Dinitro-2-methylphenol	19.8	50.0	ug/L	46.7	BLOD	42.4	10-181	20.2	20	Р
4-Bromophenyl phenyl ether	29.4	10.0	ug/L	46.7	BLOD	62.9	53-127	2.20	20	
4-Chlorophenyl phenyl ether	28.2	10.0	ug/L	46.7	BLOD	60.3	25-158	1.84	20	
4-Nitrophenol	3.49	50.0	ug/L	46.7	BLOD	7.46	10-132	1.33	20	М
Acenaphthene	26.2	10.0	ug/L	46.7	BLOD	56.2	47-145	2.25	20	
Acenaphthylene	27.5	10.0	ug/L	46.7	BLOD	58.9	33-145	1.78	20	
Acetophenone	28.9	20.0	ug/L	46.7	BLOD	61.8	0-200	7.62	20	
Anthracene	24.6	10.0	ug/L	46.7	BLOD	52.5	27-133	3.44	20	
Benzo (a) anthracene	32.9	10.0	ug/L	46.7	BLOD	70.5	33-143	0.00	20	
Benzo (a) pyrene	37.3	10.0	ug/L	46.7	BLOD	79.9	17-163	0.376	20	
Benzo (b) fluoranthene	37.3	10.0	ug/L	46.7	BLOD	79.7	24-159	9.53	20	
Benzo (g,h,i) perylene	28.3	10.0	ug/L	46.7	BLOD	60.5	10-219	4.08	20	
Benzo (k) fluoranthene	40.5	10.0	ug/L	46.7	BLOD	86.8	11-162	0.0231	20	
bis (2-Chloroethoxy) methane	23.1	10.0	ug/L	46.7	BLOD	49.4	33-184	0.121	20	
bis (2-Chloroethyl) ether	22.4	10.0	ug/L	46.7	BLOD	48.0	12-158	0.830	20	
2,2'-Oxybis (1-chloropropane)	22.6	10.0	ug/L	46.7	BLOD	48.3	36-166	0.540	20	
bis (2-Ethylhexyl) phthalate	24.0	10.0	ug/L	46.7	BLOD	51.5	10-158	19.4	20	
Butyl benzyl phthalate	26.4	10.0	ug/L	46.7	BLOD	56.4	10-152	11.4	20	
Chrysene	29.9	10.0	ug/L	46.7	BLOD	64.0	17-169	2.59	20	
Dibenz (a,h) anthracene	35.9	10.0	ug/L	46.7	BLOD	76.9	10-227	10.1	20	
Diethyl phthalate	30.8	10.0	ug/L	46.7	BLOD	65.9	10-120	2.90	20	
Dimethyl phthalate	26.1	10.0	ug/L	46.7	BLOD	55.9	10-120	2.58	20	

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BHB0243 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BHB0243-MSD1)	Sourc	e: 24B0206-0)4	Prepared: 02/07	/2024 Analyzed: (02/08/2024				
Di-n-butyl phthalate	33.7	10.0	ug/L	46.7	BLOD	72.0	10-120	10.2	20	
Di-n-octyl phthalate	47.3	10.0	ug/L	46.7	BLOD	101	10-146	7.73	20	
Fluoranthene	40.1	10.0	ug/L	46.7	BLOD	85.8	26-137	1.69	20	
Fluorene	30.6	10.0	ug/L	46.7	BLOD	65.5	59-121	0.821	20	
Hexachlorobenzene	28.1	1.00	ug/L	46.7	BLOD	60.2	10-152	3.88	20	
Hexachlorobutadiene	29.0	10.0	ug/L	46.7	BLOD	62.0	24-120	2.77	20	
Hexachlorocyclopentadiene	11.3	10.0	ug/L	46.7	BLOD	24.1	10-90	11.2	20	
Hexachloroethane	23.1	10.0	ug/L	46.7	BLOD	49.4	40-120	2.68	20	
Indeno (1,2,3-cd) pyrene	33.8	10.0	ug/L	46.7	BLOD	72.3	10-171	10.0	20	
Isophorone	15.4	10.0	ug/L	46.7	BLOD	33.0	21-196	1.68	20	
Naphthalene	23.9	5.00	ug/L	46.7	BLOD	51.2	21-133	4.06	20	
Nitrobenzene	30.2	10.0	ug/L	46.7	BLOD	64.6	35-180	0.559	20	
n-Nitrosodimethylamine	11.3	10.0	ug/L	46.7	BLOD	24.1	10-85	1.73	20	
n-Nitrosodi-n-propylamine	28.1	10.0	ug/L	46.7	BLOD	60.2	10-230	4.86	20	
n-Nitrosodiphenylamine	24.4	10.0	ug/L	46.7	BLOD	52.2	12-111	0.382	20	
p-Chloro-m-cresol	23.1	10.0	ug/L	46.7	BLOD	49.4	10-127	1.33	20	
Pentachlorophenol	26.6	20.0	ug/L	46.7	BLOD	56.8	14-176	1.33	20	
Phenanthrene	33.7	10.0	ug/L	46.7	BLOD	72.1	54-120	4.47	20	
Phenol	6.64	10.0	ug/L	47.2	BLOD	14.1	10-120	6.14	20	
Pyrene	30.9	10.0	ug/L	46.7	BLOD	66.2	52-120	26.9	20	Р
Pyridine	14.5	10.0	ug/L	46.7	BLOD	31.0	10-110	11.7	20	
Surr: 2,4,6-Tribromophenol (Surr)	66.7		ug/L	93.5		71.4	5-136			
Surr: 2-Fluorobiphenyl (Surr)	28.4		ug/L	46.7		60.8	9-117			
Surr: 2-Fluorophenol (Surr)	28.5		ug/L	93.5		30.4	5-60			
Surr: Nitrobenzene-d5 (Surr)	30.1		ug/L	46.7		64.4	5-151			

2/29/2024 5:28:28PM

Date Issued:

5-141

55.2

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

25.8

Submitted To: Jennifer Robb

Surr: p-Terphenyl-d14 (Surr)

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Analyte	Result BHB0243 - SW3510C/	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Matrix Spike Dup (BHB0243-MSD1)	Source: 2	4B0206-04	Prepared: 02/07	7/2024 Analyzed: 0)2/08/2024				
Surr: Phenol-d5 (Surr)	17.3	ug/L	93.5		18.5	5-60			

46.7

ug/L

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Wet Chemistry Analysis - Quality Control

				Spike Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level Result	%REC	Limits	RPD	Limit	Qual
Batch E	3HB0293 - No Pre	p Wet Chem	1						
Blank (BHB0293-BLK1)				Prepared & Analyzed: 02/08/202	4				
Nitrite as N	ND	0.05	mg/L						
LCS (BHB0293-BS1)				Prepared & Analyzed: 02/08/202	4				
Nitrite as N	0.12	0.05	mg/L	0.100	118	80-120			
Matrix Spike (BHB0293-MS1)	Sourc	e: 24B0268-0	1	Prepared & Analyzed: 02/08/202	4				
Nitrite as N	0.10	0.05	mg/L	0.100 BLOD	101	80-120			
Matrix Spike Dup (BHB0293-MSD1)	Sourc	e: 24B0268-0	1	Prepared & Analyzed: 02/08/202	4				
Nitrite as N	0.10	0.05	mg/L	0.100 BLOD	98.0	80-120	3.02	20	
Batch E	3HB0313 - No Pre	p Wet Chem	1						
Blank (BHB0313-BLK1)				Prepared & Analyzed: 02/08/202	4				
BOD	ND	2.0	mg/L						
LCS (BHB0313-BS1)				Prepared & Analyzed: 02/08/202	4				
BOD	221	2	mg/L	198	112	84.6-115.4			
Duplicate (BHB0313-DUP1)	Sourc	e: 24B0291-0	7	Prepared & Analyzed: 02/08/202	4				
BOD	4.4	2.0	mg/L	4.4			1.13	20	
Batch E	3HB0507 - No Pre	p Wet Chem	1						
Blank (BHB0507-BLK1)				Prepared: 02/13/2024 Analyzed:	02/14/2024				
TKN as N	ND	0.50	mg/L						

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Wet Chemistry Analysis - Quality Control

				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch	BHB0507 - No Pre	p Wet Chen	1							
LCS (BHB0507-BS1)				Prepared: 02/13/	2024 Analyzed: ()2/14/2024				
TKN as N	5.19	0.5	mg/L	5.00		104	90-110			
Matrix Spike (BHB0507-MS1)	Source	e: 24B0170-0	2	Prepared: 02/13/	2024 Analyzed: (02/14/2024				
TKN as N	6.05	0.50	mg/L	5.00	0.50	111	90-110			M
Matrix Spike (BHB0507-MS2)	Source	e: 24B0170-0	3	Prepared: 02/13/	2024 Analyzed: (02/14/2024				
TKN as N	5.82	0.50	mg/L	5.00	0.75	101	90-110			
Matrix Spike Dup (BHB0507-MSD1)	Sourc	e: 24B0170-0	2	Prepared: 02/13/	2024 Analyzed: ()2/14/2024				
TKN as N	6.19	0.50	mg/L	5.00	0.50	114	90-110	2.29	20	М
Matrix Spike Dup (BHB0507-MSD2)	Sourc	e: 24B0170-0	3	Prepared: 02/13/	2024 Analyzed: ()2/14/2024				
TKN as N	6.00	0.50	mg/L	5.00	0.75	105	90-110	3.15	20	
Batch	BHB0671 - No Pre	p Wet Chen	1							
Blank (BHB0671-BLK1)				Prepared & Analy	/zed: 02/16/2024	•				
Total Recoverable Phenolics	ND	0.050	mg/L							
LCS (BHB0671-BS1)				Prepared & Analy	yzed: 02/16/2024					
Total Recoverable Phenolics	0.42	0.050	mg/L	0.500		84.8	80-120			
Matrix Spike (BHB0671-MS1)	Sourc	e: 24B0271-0	1	Prepared & Analy	yzed: 02/16/2024					
Total Recoverable Phenolics	58.1	2.50	mg/L	25.0	37.3	83.2	70-130			
Matrix Spike Dup (BHB0671-MSD1)	Source	e: 24B0271-0	1	Prepared & Analy	zed: 02/16/2024					
Total Recoverable Phenolics	56.4	2.50	mg/L	25.0	37.3	76.4	70-130	2.97	20	

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/29/2024 5:28:28PM

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BHB0683 - No Pre	p Wet Chem	1							
Blank (BHB0683-BLK1)				Prepared & Analyzo	ed: 02/16/2024					
Cyanide	ND	0.01	mg/L							
LCS (BHB0683-BS1)				Prepared & Analyze	ed: 02/16/2024					
Cyanide	0.24	0.01	mg/L	0.250		97.5	80-120			
Matrix Spike (BHB0683-MS1)	Sourc	e: 24B0258-0	6	Prepared & Analyze	ed: 02/16/2024					
Cyanide	0.22	0.01	mg/L	0.250	0.02	80.4	80-120			
Matrix Spike (BHB0683-MS2)	Sourc	e: 24B0352-0	5	Prepared & Analyze	ed: 02/16/2024					
Cyanide	0.26	0.01	mg/L	0.250	BLOD	102	80-120			
Matrix Spike Dup (BHB0683-MSD1)	Sourc	e: 24B0258-0	6	Prepared & Analyze	ed: 02/16/2024					
Cyanide	0.23	0.01	mg/L	0.250	0.02	84.2	80-120	4.17	20	
Matrix Spike Dup (BHB0683-MSD2)	Sourc	e: 24B0352-0	5	Prepared & Analyze	ed: 02/16/2024					
Cyanide	0.25	0.01	mg/L	0.250	BLOD	99.2	80-120	2.60	20	
Batch	BHB0710 - No Pre	p Wet Chem	1							
Blank (BHB0710-BLK1)				Prepared & Analyze	ed: 02/17/2024					
Ammonia as N	ND	0.10	mg/L	-						
LCS (BHB0710-BS1)				Prepared & Analyze	ed: 02/17/2024					
Ammonia as N	1.04	0.1	mg/L	1.00		104	90-110			
Matrix Spike (BHB0710-MS1)	Sourc	e: 24B0651-0	3	Prepared & Analyzo	ed: 02/17/2024					
Ammonia as N	1.06	0.1	mg/L	1.00	BLOD	103	89.3-131	·	·	

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Date Issued:

2/29/2024 5:28:28PM

Wet Chemistry Analysis - Quality Control

				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch I	BHB0710 - No Prej	p Wet Chem	1							
Matrix Spike (BHB0710-MS2)	Source	e: 24B0288-0	2	Prepared & Analy	zed: 02/17/2024					
Ammonia as N	1.08	0.1	mg/L	1.00	BLOD	102	89.3-131			
Matrix Spike Dup (BHB0710-MSD1)	Source	e: 24B0651-0	3	Prepared & Analys	zed: 02/17/2024					
Ammonia as N	1.06	0.1	mg/L	1.00	BLOD	104	89.3-131	0.471	20	
Matrix Spike Dup (BHB0710-MSD2)	Source	e: 24B0288-0	2	Prepared & Analys	zed: 02/17/2024					
Ammonia as N	1.10	0.1	mg/L	1.00	BLOD	104	89.3-131	1.38	20	
Batch I	BHB0782 - No Prej	p Wet Chem	1							
Blank (BHB0782-BLK1)				Prepared & Analys	zed: 02/20/2024					
COD	ND	10.0	mg/L							
LCS (BHB0782-BS1)				Prepared & Analys	zed: 02/20/2024					
COD	54.8	10.0	mg/L	50.0		110	88-119			
Matrix Spike (BHB0782-MS1)	Source	e: 24B0714-0	1	Prepared & Analys	zed: 02/20/2024					
COD	59.1	10.0	mg/L	50.0	BLOD	118	72.4-130			
Matrix Spike Dup (BHB0782-MSD1)	Source	e: 24B0714-0	1	Prepared & Analys	zed: 02/20/2024					
COD	51.4	10.0	mg/L	50.0	BLOD	103	72.4-130	13.9	20	<u> </u>
Batch	BHB0800 - No Prej	p Wet Chem	1							
Blank (BHB0800-BLK1)				Prepared & Analy	zed: 02/20/2024					
Nitrate+Nitrite as N	ND	0.10	mg/L							

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BHB0800 - No Pre	ep Wet Chem								
LCS (BHB0800-BS1)				Prepared & Analy	yzed: 02/20/2024					
Nitrate+Nitrite as N	1.02	0.1	mg/L	1.00		102	90-110			
Matrix Spike (BHB0800-MS1)	Sour	ce: 24B0306-02	2	Prepared & Analy	yzed: 02/20/2024					
Nitrate+Nitrite as N	8.16	0.50	mg/L	5.00	3.09	101	90-120			
Matrix Spike Dup (BHB0800-MSD1)	Sour	ce: 24B0306-02	2	Prepared & Analy	yzed: 02/20/2024					
Nitrate+Nitrite as N	8.08	0.50	ma/L	5.00	3.09	99.7	90-120	1.05	20	

Date Issued:

2/29/2024 5:28:28PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Analytical Summary

24B0271-01 Subcontract
24B0271-02 Subcontract

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
24B0271-01	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
24B0271-02	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID

Sample ID	Initial / Final	Wethou	Batchib	Sequence ID	Calibration ID
Wet Chemistry Ana	alysis		Preparation Method:	No Prep Wet Chem	
24B0271-01	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHB0293	SHB0298	AJ30297
24B0271-02	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHB0293	SHB0298	AJ30297
24B0271-01	300 mL / 300 mL	SM5210B-2016	BHB0313	SHB0485	
24B0271-02	300 mL / 300 mL	SM5210B-2016	BHB0313	SHB0485	
24B0271-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215
24B0271-02	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215
24B0271-01	5.00 mL / 10.0 mL	SW9065	BHB0671	SHB0664	AB40234
24B0271-02	5.00 mL / 10.0 mL	SW9065	BHB0671	SHB0664	AB40234
24B0271-01	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
24B0271-02	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
24B0271-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0710	SHB0668	AB40235
24B0271-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0710	SHB0668	AB40235
24B0271-01	2.00 mL / 2.00 mL	SM5220D-2011	BHB0782	SHB0744	AB40165
24B0271-02	2.00 mL / 2.00 mL	SM5220D-2011	BHB0782	SHB0744	AB40165
24B0271-01	1.00 mL / 1.00 mL	SM4500-NO3F-2016	BHB0800	SHB0771	AB40252
24B0271-02	1.00 mL / 1.00 mL	SM4500-NO3F-2016	BHB0800	SHB0771	AB40252

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-	MS
24B0271-01	500 mL / 0.500 mL	SW8270E	BHB0243	SHB0414	AK30271
24B0271-02	500 mL / 1.00 mL	SW8270E	BHB0243	SHB0414	AK30271
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	SW5030B-MS	
24B0271-01	5.00 mL / 5.00 mL	SW8260D	BHB0273	SHB0295	AL30250
24B0271-01RE1	5.00 mL / 5.00 mL	SW8260D	BHB0273	SHB0295	AL30250
24B0271-02	5.00 mL / 5.00 mL	SW8260D	BHB0273	SHB0295	AL30250
24B0271-02RE1	5.00 mL / 5.00 mL	SW8260D	BHB0273	SHB0295	AL30250
24B0271-03	5.00 mL / 5.00 mL	SW8260D	BHB0273	SHB0295	AL30250

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

QC Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
BHB0369-BLK1	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
BHB0369-BS1	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
BHB0369-MS1	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
BHB0369-MS2	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
BHB0369-MSD1	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
BHB0369-MSD2	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	rsis		Preparation Method:	No Prep Wet Chem	ı
BHB0293-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHB0293	SHB0298	AJ30297
BHB0293-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHB0293	SHB0298	AJ30297
BHB0293-MRL1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHB0293	SHB0298	AJ30297
BHB0293-MS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHB0293	SHB0298	AJ30297
BHB0293-MSD1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHB0293	SHB0298	AJ30297
BHB0313-BLK1	300 mL / 300 mL	SM5210B-2016	BHB0313	SHB0485	
BHB0313-BS1	300 mL / 300 mL	SM5210B-2016	BHB0313	SHB0485	
BHB0313-DUP1	300 mL / 300 mL	SM5210B-2016	BHB0313	SHB0485	
BHB0507-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215
BHB0507-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215
BHB0507-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215
BHB0507-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215
BHB0507-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215
BHB0507-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analys	sis		Preparation Method:	No Prep Wet Chem	
BHB0671-BLK1	5.00 mL / 10.0 mL	SW9065	BHB0671	SHB0664	AB40234
BHB0671-BS1	5.00 mL / 10.0 mL	SW9065	BHB0671	SHB0664	AB40234
BHB0671-MRL1	5.00 mL / 10.0 mL	SW9065	BHB0671	SHB0664	AB40234
BHB0671-MS1	0.100 mL / 10.0 mL	SW9065	BHB0671	SHB0664	AB40234
BHB0671-MSD1	0.100 mL / 10.0 mL	SW9065	BHB0671	SHB0664	AB40234
BHB0683-BLK1	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
BHB0683-BS1	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
BHB0683-MRL1	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
BHB0683-MS1	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
BHB0683-MS2	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
BHB0683-MSD1	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
BHB0683-MSD2	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
BHB0710-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0710	SHB0668	AB40235
BHB0710-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0710	SHB0668	AB40235
BHB0710-MRL1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0710	SHB0668	AB40235
BHB0710-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0710	SHB0668	AB40235
BHB0710-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0710	SHB0668	AB40235
BHB0710-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0710	SHB0668	AB40235
BHB0710-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0710	SHB0668	AB40235
BHB0782-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BHB0782	SHB0744	AB40165
BHB0782-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BHB0782	SHB0744	AB40165
BHB0782-MRL1	2.00 mL / 2.00 mL	SM5220D-2011	BHB0782	SHB0744	AB40165
BHB0782-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BHB0782	SHB0744	AB40165
BHB0782-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BHB0782	SHB0744	AB40165
BHB0800-BLK1	1.00 mL / 1.00 mL	SM4500-NO3F-2016	BHB0800	SHB0771	AB40252
BHB0800-BS1	1.00 mL / 1.00 mL	SM4500-NO3F-2016	BHB0800	SHB0771	AB40252
BHB0800-MS1	5.00 mL / 25.0 mL	SM4500-NO3F-2016	BHB0800	SHB0771	AB40252
BHB0800-MSD1	5.00 mL / 25.0 mL	SM4500-NO3F-2016	BHB0800	SHB0771	AB40252

Date Issued:

2/29/2024 5:28:28PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600	-MS
BHB0243-BLK1	1000 mL / 1.00 mL	SW8270E	BHB0243	SHB0336	AK30271
BHB0243-BLK2		SW8270E	BHB0243	SHB0326	AB40138
BHB0243-BS1	1000 mL / 1.00 mL	SW8270E	BHB0243	SHB0336	AK30271
BHB0243-MRL1	1000 mL / 1.00 mL	SW8270E	BHB0243	SHB0454	AL30202
BHB0243-MRL2	1000 mL / 1.00 mL	SW8270E	BHB0243		
BHB0243-MRL3	1000 mL / 1.00 mL	SW8270E	BHB0243	SHB0460	AK30271
BHB0243-MS1	1070 mL / 1.00 mL	SW8270E	BHB0243	SHB0336	AK30271
BHB0243-MSD1	1070 mL / 1.00 mL	SW8270E	BHB0243	SHB0336	AK30271
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	SW5030B-MS	
BHB0273-BLK1	5.00 mL / 5.00 mL	SW8260D	BHB0273	SHB0295	AL30250
BHB0273-BS1	5.00 mL / 5.00 mL	SW8260D	BHB0273	SHB0295	AL30250
BHB0273-DUP1	5.00 mL / 5.00 mL	SW8260D	BHB0273	SHB0295	AL30250
BHB0273-MRL1	5.00 mL / 5.00 mL	SW8260D	BHB0273	SHB0295	AL30250
BHB0273-MRL2	5.00 mL / 5.00 mL	SW8260D	BHB0273	BHB0273 SHB0295	
BHB0273-MS1	5.00 mL / 5.00 mL	SW8260D	BHB0273	SHB0295	AL30250

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Certifications

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Analyte

Certified Analyses included in this Report

EPA350.1 R2.0 in Non-Potable Water	
Ammonia as N	VELAP,NCDEQ,PADEP,WVDEP
EPA351.2 R2.0 in Non-Potable Water	
TKN as N	VELAP,NCDEQ,WVDEP
SM4500-NO2B-2011 in Non-Potable Water	
Nitrite as N	VELAP,WVDEP,NCDEQ
SM4500-NO3F-2016 in Non-Potable Water	
Nitrate+Nitrite as N	VELAP,WVDEP
SM5210B-2016 in Non-Potable Water	
BOD	VELAP,NCDEQ,WVDEP
SM5220D-2011 in Non-Potable Water	
COD	VELAP,NCDEQ,PADEP,WVDEP
SW6020B in Non-Potable Water	
Mercury	VELAP
Arsenic	VELAP,WVDEP
Barium	VELAP,WVDEP
Cadmium	VELAP,WVDEP
Chromium	VELAP,WVDEP
Copper	VELAP,WVDEP
Lead	VELAP,WVDEP
Nickel	VELAP,WVDEP
Selenium	VELAP,WVDEP
Silver	VELAP,WVDEP
	VELAP,WVDEP

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Certified Analyses included in this Report

Analyte Certifications 2-Butanone (MEK) VELAP,NCDEQ,PADEP,WVDEP Acetone VELAP, NCDEQ, PADEP, WVDEP Benzene VELAP, NCDEQ, PADEP, WVDEP Ethylbenzene VELAP, NCDEQ, PADEP, WVDEP m+p-Xylenes VELAP, NCDEQ, PADEP, WVDEP o-Xylene VELAP, NCDEQ, PADEP, WVDEP Toluene VELAP, NCDEQ, PADEP, WVDEP Xylenes, Total VELAP, NCDEQ, PADEP, WVDEP Tetrahydrofuran VELAP, PADEP SW8270E in Non-Potable Water NCDEQ,WVDEP,VELAP,PADEP Anthracene SW9012B in Non-Potable Water Cyanide VELAP, WVDEP SW9065 in Non-Potable Water Total Recoverable Phenolics VELAP, WVDEP

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2024
NCDEQ	North Carolina DEQ	495	12/31/2024
NCDOH	North Carolina Department of Health	51714	07/31/2024
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #009	68-03503	10/31/2024
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/14/2024
TXCEQ	Texas Comm on Environmental Quality #T104704576-23-1	T104704576	05/31/2024
VELAP	NELAP-Virginia Certificate #12759	460021	06/14/2024
WVDEP	West Virginia DEP	350	11/30/2024

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Qualifiers and Definitions

Cl Residual Chlorine or other oxidizing agent was detected in the container used to analyze this sample.

DS Surrogate concentration reflects a dilution factor.

E Estimated concentration, outside calibration range

J The reported result is an estimated value.

LCS recovery is outside of established acceptance limits

M Matrix spike recovery is outside established acceptance limits

P Duplicate analysis does not meet the acceptance criteria for precision

RPD Relative Percent Difference

Qual Qualifers

-RE Denotes sample was re-analyzed

LOD Limit of Detection

BLOD Below Limit of Detection

LOQ Limit of Quantitation

DF Dilution Factor

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral

library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are

estimated and are calculated using an internal standard response factor of 1.

PCBs, Total Total PCBs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.

1941 REYMET ROAD **RICHMOND, VIRGINIA 23237** (804) 358-8295 PHONE (804)358-8297 FAX

CHAIN OF CUSTODY

							CHA	IIV OI	CUS	יוכ	טנ	T												PAGE 1 OF 1
COMPANY NAME: SCS Eng	ine	ers	5		IN	VOICE TO):	- 56	9	SAN	1E				PF	ROJ	EC	T NAN	/IE/(Quo	te #:	1	City	y of Bristol Landfill #588
CONTACT: Jennifer Robb					IN	VOICE CC	NTAC	T:							SI	SITE NAME: 24-02 LFG-EW Monthly Monitoring								
ADDRESS: 296 Victory Road					IN	VOICE AD	DRES	S:							PF	PROJECT NUMBER: 02218208.15 Task 2								
Winchester, VA 226	02				INVOICE PHONE #:									P.O. #:										
PHONE #: 703-471-6150				EMAIL: jr	jrobb@scsengineers.com							Pr	Pretreatment Program:											
Is sample for compliance reporting	ıg?		YE	S NO Regu	ılato	ry State:	VA	ls sar	nple fro	om a	a ch	hlori	inat	ed s	supply	?	Υ	ES	NO		PWS	I.D	. #:	
SAMPLER NAME (PRINT): Lagan Nelson/Vill Fabire SAMPLER SIGNATURE: Lagan Nelson/Vill Fabire SAMPLER SIGNATURE: Lagan Nelson/Vill Fabire									me: 10 Day(s)															
Matrix Codes: WW=Waste Water/Storm Water GW=Ground Water DW=Drinking Water S=Soil/Solids OR=Organic A=Air WP=Wipe OT=Other										COMMENTS														
								139		T				AN	IALYS	IS/	(PF	RESE	RVA	TIV	F)			Preservative Codes: N=Nitric Acid C=Hydrochloric Acid S=Sulfuric Acid
			stals				do				0	Т	Т	T	T	Ι.	Γ.	I	T	T	-,	\top	\top	H=Sodium Hydroxide A=Ascorbic Acid Z=Zinc Acetate T=Sodium
1) EW-51 2) EW-53	X X Grab	Composite	Field Filtered (Dissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop	Time Preserved	Matrix (See Codes)	Number of Containers	X X Ammonia - EPA 350.1 R2.0	X BOD - SM22 5210B-20	- GOD X	X Cyanide - SV	X Nitrate SM22 450-NO3F-2011 (report seperatly from Nitrite)	X Nitrite SM22 450-NO3F-2011	X X SVOC (Anthracene) 8270	Total Metals (As, Ba, Cd, Cr, Cu, Pb, Ni, Se, Aq, Zn) 6020	I - EPA 3	X Mercury - 6020	X X Total Recoverable Phenolics - 9065	S	X	Note VOC 8260 No HCI PLEASE NOTE PRESERVATIVE(S), INTERFERENCE CHECKS or PUMP RATE (L/min)
3)									GW	Γ	Ė		Ť	'					1	1		T	Ť	
4)							3	1869	GW										1	I	1	¬	D0	271
5)			Ш						GW						SCS				cour.			24)	Bu	0271
6)			Ш				100		GW	1 5		_						G-EV						
7)		_	Н						GW			_	_	_	Rec	d: (02/	07/20	24	D	ue: 0	12/2	21/2	2024
8)			Н						GW		_	-	_										v136	0325002
9) Tio RI						Q/A/2	111-	9	GW			-				-	 		+	-	-	+	+	
10) Trip Blank RELINQUISHED:	DAT	F/	TIME	RECEIVED:		8/9/23		DATE /	DI	2		ata P	look	200	LAB US	SE C	L N	/ Th	erm	ID.	2-1	丄	COL	OLER TEMP O 4 °C
D - 1/	6/2		/130		co	$\sqrt{}$		DATE /		"	, טנ	ata P	ack	aye	Custody				tact?	(V)ī	N)	1	000	Received on ice? (V/N)
REEINQUISHED:	DAT	E 7	TIME	RECEIVED:	~	h A	re	DATE /	10000)	el III											<u>.</u>		

Page 49 of 66

Sample Preservation Log Form #: F1301 Rev # 15.0 Effective: July 13, 2023 Page 1 of 1

Sample Preservation Log

Order II	2												1	Date F	Perfo	orme	d : _	2	-7	-2	4							Ana	ılyst F	Perfor	ming (Check:	<u>C</u>	353							
		ı	/letal	s	С	yanio	de		Sulfide		Amm	onia		TKN			os, 1	Γot)3+N	102		DRO)	(808 PC	estic 81/608 B DW	(508)	(52	SVOC (525/8270/625)		CrV	1 * **		(50 SVO			CO	D		Pheno	· lice
Sample ID	Container ID	Rec	as elved Other	Final pH	Rec	l as elved Other	Final pH	Rec	l as elved Other	Final pH	pH as Received	in a	PH Rece	as ived Other	Final pH	pH Rece	ived	Final pH	Rece	as elved Other	inal	Rec	l as elved Other	Final pH		eived s. Cl	final + or -		elved s. Cl	final + or -	Received	Final pH	_!	pH as Receive	inal I	Re	Oth		R	pH as Received	-
1	A	П	6	42																																					
	13										6	42		6 4	42					6	42																6	4	2		\perp
i	D					10	212																																		
Ì	F																																							6	46
1	G																												_												
1	H										6	42		6	2					6	42							L					\perp							6	4
2	A		5	42																																					
2	В										5	62		5	2					5	۷2															L	5	< ?	1		
2	D	П				10	712																																		
2	F																																1							6	6
2	G	П																											_												
2	H										5	42		5 6	-2					5	42																5	17	2		
		П																																		L				\perp	
		П																																							
																																	\perp								
NaOH	D:	YA.	03	375					HNO ₃	ID:	310	30	50			_	CrVI	pres	erve	d dat	te/tim	ne:	3 - 9.7						Ana	lyst Ir	nitials:							_			
H ₂ SO ₄	ID: _L	14	019	142					Na ₂ S ₂	:Оз Ι	D:												3 - 9.7																		
HCL ID	:							_	Na ₂ S	O3 IE	D:					_	5N N	laOH	ID:									- /													
Page 50 of 66																														led a	were to the L	on 7	th (of Fe	brua	ry 20	024,	by (

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Laboratory Order ID: 24B0271

Sample Conditions Checklist

Samples Received at:	0.40°C
How were samples received?	Logistics Courier
Were Custody Seals used? If so, were they received intact?	Yes
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	Yes
Are all volatile organic and TOX containers free of headspace?	No
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	Yes
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis. In addition, field parameters are always received outside holding time and will be marked accordingly.	No

^{*}H2SO4-preserved bottles for both samples were received with a pH greater than 2, and H2SO4 was added to bring the pH to less than 2.

^{*}NaOH-preserved bottles for both samples were received with a pH less than 12, and NaOH was added to bring the pH to greater than 12.

2/29/2024 5:28:28PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

*All VOAs for both samples were received with headspace.

Analysis to proceed per Jennifer Robb via email. MRS 02/07/24 1341

February 29, 2024

Virginia Thrasher Enthalpy 1941 Reymet Road Richmond, VA 23237

RE: Project: 24B0271

Pace Project No.: 20306749

Dear Virginia Thrasher:

Enclosed are the analytical results for sample(s) received by the laboratory on February 08, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Baton Rouge

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ruth Webs

Ruth Welsh ruth.welsh@pacelabs.com (225) 769-4900 Project Manager

Enclosures

cc: Andrew Bruner, Enthalpy Daniel Elliott, Enthalpy Meghan Meyer, Enthalpy

Baton Rouge, LA 70820 (225) 769-4900

CERTIFICATIONS

Project: 24B0271
Pace Project No.: 20306749

Pace Analytical Services Baton Rouge

7979 Innovation Park Drive Ste A, Baton Rouge, LA

70820-7402

Louisiana Dept of Environmental Quality (NELAC/LELAP):

01979

Florida Dept of Health (NELAC/FELAP): E87854

DoD ELAP (A2LA) #: 6429.01 Alabama DEM #: 41900 Alaska DEC-DW #: LA00024 Alaska DEC CS-LAP #: 21-001 Arkansas DEQ #: 88-0655 California ELAP #: 3063 Georgia DPD #: C050

Hawaii DOH State Laboratories Division

Illinois EPA #: 200048 Kansas DoHE #: E-10354

Kentucky DEP UST Branch #: 123054

Louisiana DOH #: LA036 Minnesota DOH #: 2233799 Mississippi State Dept of Health Montana Department of Environmental Quality

Nebraska DHHS #: NE-OS-35.21 Nevada DCNR DEP #: LA00024 New York DOH #: 12149

North Carolina DEQ - WW & GW #: 618

North Dakota DEQ #: R195

Ohio EPA #: 87782

Oklahoma Dept of Environmental Quality #: 9403

Oregon ELAP #: 4168

Pennsylvania Dept of Environmental Protection #: 68-

05973

South Carolina DHEC #: 73006001 Texas CEQ #: T104704178-23-15

Utah DOH #: LA00024 Virginia DCLS #: 6460215

Washington Dept of Ecology #: C929 Wisconsin DNR #: 399139510

SAMPLE SUMMARY

Project: 24B0271
Pace Project No.: 20306749

Lab ID	Sample ID	Matrix	Date Collected	Date Received
20306749001	24B0271-01:EW-51	Water	02/06/24 11:30	02/08/24 09:54
20306749002	24B0271-02:EW-53	Water	02/06/24 09:45	02/08/24 09:54

SAMPLE ANALYTE COUNT

Project: 24B0271
Pace Project No.: 20306749

Lab ID	Sample ID	Method	Analysts	Analytes Reported
20306749001	24B0271-01:EW-51	Pace ENV-SOP-BTRO-0042	CCL	10
20306749002	24B0271-02:EW-53	Pace ENV-SOP-BTRO-0042	CCL	10

PASI-BR = Pace Analytical Services - Baton Rouge

PROJECT NARRATIVE

Project: 24B0271 Pace Project No.: 20306749

Method: Pace ENV-SOP-BTRO-0042
Description: BR AM23G Low Level VFA

Client: BR-Enthalpy

Date: February 29, 2024

General Information:

2 samples were analyzed for Pace ENV-SOP-BTRO-0042 by Pace Analytical Services Baton Rouge. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 318777

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

- 24B0271-01:EW-51 (Lab ID: 20306749001)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- 24B0271-02:EW-53 (Lab ID: 20306749002)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid

PROJECT NARRATIVE

Project: 24B0271
Pace Project No.: 20306749

Method: Pace ENV-SOP-BTRO-0042
Description: BR AM23G Low Level VFA

Client: BR-Enthalpy

Date: February 29, 2024

Analyte Comments:

QC Batch: 318777

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

- 24B0271-02:EW-53 (Lab ID: 20306749002)
 - Pentanoic Acid
- BLANK (Lab ID: 1526443)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- LCS (Lab ID: 1526444)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- MS (Lab ID: 1526463)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- MSD (Lab ID: 1526464)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: 24B0271
Pace Project No.: 20306749

Date: 02/29/2024 01:54 PM

Sample: 24B0271-01:EW-51	Lab ID: 2030	06749001	Collected: 02/06/2	4 11:30	Received: 0	2/08/24 09:54 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
BR AM23G Low Level VFA	Analytical Meth	od: Pace E	NV-SOP-BTRO-0042	2				
	Pace Analytical	Services -	Baton Rouge					
Pentanoic Acid	ND	mg/L	250	500		02/26/24 18:59	109-52-4	N2
Acetic Acid	3130	mg/L	250	500		02/26/24 18:59	64-19-7	
Butyric Acid	583	mg/L	250	500		02/26/24 18:59	107-92-6	
Formic acid	1070	mg/L	250	500		02/26/24 18:59	64-18-6	
Hexanoic Acid	ND	mg/L	250	500		02/26/24 18:59	142-62-1	N2
i-Hexanoic Acid	ND	mg/L	250	500		02/26/24 18:59	646-07-1	N2
Lactic Acid	334	mg/L	250	500		02/26/24 18:59	50-21-5	
i-Pentanoic Acid	ND	mg/L	250	500		02/26/24 18:59	503-74-2	N2
Propionic Acid	1210	mg/L	250	500		02/26/24 18:59	79-09-4	
Pyruvic Acid	ND	mg/L	250	500		02/26/24 18:59	127-17-3	
Sample: 24B0271-02:EW-53	Lab ID: 2030	06749002	Collected: 02/06/2	4 09:45	Received: 0	2/08/24 09:54 1	Matrix: Water	
-								
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Parameters BR AM23G Low Level VFA			Report Limit		Prepared	Analyzed	CAS No.	Qual
		od: Pace E	:NV-SOP-BTRO-0042		Prepared	Analyzed	CAS No.	Qual
BR AM23G Low Level VFA	Analytical Meth	od: Pace E	:NV-SOP-BTRO-0042		Prepared	Analyzed 02/26/24 19:23		Qua N2
BR AM23G Low Level VFA Pentanoic Acid	Analytical Meth	od: Pace E Services -	:NV-SOP-BTRO-0042 Baton Rouge	2	Prepared		109-52-4	
	Analytical Meth Pace Analytical ND	od: Pace E Services - mg/L	:NV-SOP-BTRO-0042 Baton Rouge 250	500	Prepared	02/26/24 19:23	109-52-4 64-19-7	
BR AM23G Low Level VFA Pentanoic Acid Acetic Acid	Analytical Meth Pace Analytical ND 3530	nod: Pace E I Services - mg/L mg/L	:NV-SOP-BTRO-0042 Baton Rouge 250 250	500 500	Prepared	02/26/24 19:23 02/26/24 19:23	109-52-4 64-19-7 107-92-6	
BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid	Analytical Meth Pace Analytical ND 3530 1170	nod: Pace E I Services - mg/L mg/L mg/L	:NV-SOP-BTRO-0042 Baton Rouge 250 250 250	500 500 500	Prepared	02/26/24 19:23 02/26/24 19:23 02/26/24 19:23	109-52-4 64-19-7 107-92-6 64-18-6	
BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid	Analytical Meth Pace Analytical ND 3530 1170 1000	nod: Pace E I Services - mg/L mg/L mg/L mg/L	ENV-SOP-BTRO-0042 Baton Rouge 250 250 250 250	500 500 500 500	Prepared	02/26/24 19:23 02/26/24 19:23 02/26/24 19:23 02/26/24 19:23	109-52-4 64-19-7 107-92-6 64-18-6 142-62-1	N2
BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid	Analytical Meth Pace Analytical ND 3530 1170 1000 ND	mod: Pace E I Services - mg/L mg/L mg/L mg/L mg/L	ENV-SOP-BTRO-0042 Baton Rouge 250 250 250 250 250 250	500 500 500 500 500 500	Prepared	02/26/24 19:23 02/26/24 19:23 02/26/24 19:23 02/26/24 19:23 02/26/24 19:23	109-52-4 64-19-7 107-92-6 64-18-6 142-62-1 646-07-1	N2 N2
BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid i-Hexanoic Acid	Analytical Meth Pace Analytical ND 3530 1170 1000 ND ND	mod: Pace E I Services - mg/L mg/L mg/L mg/L mg/L mg/L	ENV-SOP-BTRO-0042 Baton Rouge 250 250 250 250 250 250 250	500 500 500 500 500 500	Prepared	02/26/24 19:23 02/26/24 19:23 02/26/24 19:23 02/26/24 19:23 02/26/24 19:23 02/26/24 19:23	109-52-4 64-19-7 107-92-6 64-18-6 142-62-1 646-07-1 50-21-5	N2 N2
BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid i-Hexanoic Acid Lactic Acid	Analytical Meth Pace Analytical ND 3530 1170 1000 ND ND ND	mod: Pace E I Services - mg/L mg/L mg/L mg/L mg/L mg/L mg/L	ENV-SOP-BTRO-0042 Baton Rouge 250 250 250 250 250 250 250 250	500 500 500 500 500 500 500	Prepared	02/26/24 19:23 02/26/24 19:23 02/26/24 19:23 02/26/24 19:23 02/26/24 19:23 02/26/24 19:23 02/26/24 19:23	109-52-4 64-19-7 107-92-6 64-18-6 142-62-1 646-07-1 50-21-5 503-74-2	N2 N2 N2 N2

QUALITY CONTROL DATA

Project: 24B0271
Pace Project No.: 20306749

Date: 02/29/2024 01:54 PM

QC Batch: 318777 Analysis Method: Pace ENV-SOP-BTRO-0042
QC Batch Method: Pace ENV-SOP-BTRO-0042 Analysis Description: BR AM23G Low Level VFA

Laboratory: Pace Analytical Services - Baton Rouge

Associated Lab Samples: 20306749001, 20306749002

METHOD BLANK: 1526443 Matrix: Water

Associated Lab Samples: 20306749001, 20306749002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
				7 trialy 20a	
Acetic Acid	mg/L	ND	0.50	02/26/24 16:06	
Butyric Acid	mg/L	ND	0.50	02/26/24 16:06	
Formic acid	mg/L	ND	0.50	02/26/24 16:06	
Hexanoic Acid	mg/L	ND	0.50	02/26/24 16:06	N2
i-Hexanoic Acid	mg/L	ND	0.50	02/26/24 16:06	N2
i-Pentanoic Acid	mg/L	ND	0.50	02/26/24 16:06	N2
Lactic Acid	mg/L	ND	0.50	02/26/24 16:06	
Pentanoic Acid	mg/L	ND	0.50	02/26/24 16:06	N2
Propionic Acid	mg/L	ND	0.50	02/26/24 16:06	
Pyruvic Acid	mg/L	ND	0.50	02/26/24 16:06	

LABORATORY CONTROL SAMPLE:	1526444					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Acetic Acid	mg/L		2.0	99	70-130	
Butyric Acid	mg/L	2	1.9	93	70-130	
Formic acid	mg/L	2	1.9	96	70-130	
Hexanoic Acid	mg/L	2	1.6	81	39-114 N	1 2
i-Hexanoic Acid	mg/L	2	1.8	92	39-114 N	\ 2
i-Pentanoic Acid	mg/L	2	1.7	85	59-121 N	1 2
Lactic Acid	mg/L	2	2.1	106	70-130	
Pentanoic Acid	mg/L	2	1.7	87	59-121 N	1 2
Propionic Acid	mg/L	2	1.9	93	70-130	
Pyruvic Acid	mg/L	2	1.9	96	70-130	

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 1526	463		1526464							
			MS	MSD								
	2	0306861002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Acetic Acid	mg/L	10.0U	40	40	40.4	40.5	96	97	70-130	0	30	
Butyric Acid	mg/L	10.0U	40	40	39.9	41.5	98	102	70-130	4	30	
Formic acid	mg/L	10.0U	40	40	39.6	40.1	97	98	70-130	1	30	
Hexanoic Acid	mg/L	10.0U	40	40	30.8	30.6	77	76	39-114	1	30	N2
i-Hexanoic Acid	mg/L	10.0U	40	40	42.9	42.3	107	106	39-114	1	30	N2
i-Pentanoic Acid	mg/L	10.0U	40	40	34.1	32.5	85	81	59-121	5	30	N2
Lactic Acid	mg/L	7.3J	40	40	47.0	47.4	99	100	70-130	1	30	
Pentanoic Acid	mg/L	10.0U	40	40	35.0	34.2	88	85	59-121	2	30	N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 24B0271
Pace Project No.: 20306749

Date: 02/29/2024 01:54 PM

MATRIX SPIKE & MATRIX	SPIKE DUPLI	ICATE: 1526	463		1526464							
		20306861002	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
_			-1 -		_	_	_	_				
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Propionic Acid	mg/L	10.0U	40	40	37.3	37.8	93	94	70-130	1	30	
Pyruvic Acid	mg/L	10.0U	40	40	36.9	39.4	92	99	70-130	7	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 24B0271 Pace Project No.: 20306749

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

ANALYTE QUALIFIERS

Date: 02/29/2024 01:54 PM

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 24B0271
Pace Project No.: 20306749

Date: 02/29/2024 01:54 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
20306749001	24B0271-01:EW-51	Pace ENV-SOP-BTRO- 0042	318777		
20306749002	24B0271-02:EW-53	Pace ENV-SOP-BTRO- 0042	318777		

Pace - Gulf Coast 7979 Innovation Park Dr Baton Rouge, LA 70820

1941 RE RICHMOND, VIR (804) 358-(804)3 WO#: 20306749

CHAIN OF CUSTODY

ENT			A	LPY		79 Innovation Iton Rouge,						R	ICHMOND, VIR (804) 358- (804)3	20306749				Page 65 of 66
LANA	L)			UAL			CHAI	N OF	CUS	ТО	DY			20000178				age 6
COMPANY NAME: Enthalpy					IN	VOICE TO:	Ent	halpy					PROJECT	NAME/Quot	e #:	24B02	71	1-1
CONTACT: Dan Elliott					IN	VOICE CON	ITACT						SITE NAME	=: 24B0271				
ADDRESS: 1941 Reymet Rd Richmo	ond \	VA 2	23237		IN	VOICE ADD	RESS:	194	1 Reymet	Rd R	ichmond '	VA 23237	PROJECT		24B02	271		
PHONE #: (804) 358-8295					IN	VOICE PHC	NE #:	(804)	358-82	95			P.O. #: F					
FAX #:			E	EMAIL:									Pretreatme	nt Program:				
Is sample for compliance reportir	ng?	Υ	'ES	NO		Is sample f	rom a	chlorin	ated sı	uppl	y?	YES I	NO		PWS	l.D. #:		
SAMPLER NAME (PRINT):					SA	MPLER SIG	SNATU	IRE:							Turn /	Around	Time: 10 da	ry:
Matrix Codes: WW=Waste Water/Storm Wat	er G	W=G	Ground	Water DW=Dri	nking	Water S=Soil/S	Solids OF	R=Organi	ic A=Air	WP=	Wipe O	Γ=Other					COMMENTS	3
			als)									ANA	LYSIS / (PRE	SERVATIVE	≣)		Preservative Codes: N=1 Acid C=Hydrochloric A	cid
CLIENT SAMPLE I.D.	Grab	Composite	Field Filtered (Dissolved Metals)		Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Time Preserved	Matrix (See Codes)	Number of Containers	Volatile Fatty Acid Low Level						S=Sulfuric Acid H=Sodi Hydroxide A=Ascorbic A Z=Zinc Acetate T=Sodi Thiosulfate M=Methan PLEASE NOTE PRESERVATIVE(S), INTERFERENCE CHECK	Acid ium nol
4) 0400074 04 5) 4 54		Ö	뜨	Ö	Ŏ_			<u> </u>									PUMP RATE (L/min)	- 1
1) 24B0271-01: EW-51 2) 24B0271-02: EW-53	X	_	\vdash		_	02/06/24	1130 0945		GW GW	3	X							9
3)	 ^		\vdash			02/00/24	0945		GVV	3								0
4)			\vdash															
5)			\sqcap															
6)														-				
7)																		
8)																		
9)					h.												1	
10)																		
NOTO CU 217124 RELINQUISHED! Fedex 2/8/14	15 DAT	4 E1	TIME	RECEIVED: Fed RECEIVED:	Ex	1 Express	2-2-8	3-24	/543 TIME 9:91	Leve	el I		AB USE ONL	.Υ	COOL	ER TE	MP°C	
RELINQUISHED:	DAT	E/	TIME	RECEIVED:				DATE /		Leve							Page 12 of 13	3
										reve	II IV							

W0#:20306749

PM: RW

Due Date: 02/22/24

CLIENT: BR-Enthalpy

7979 Innovation Park Dr. Baton Rouge, LA 70806

Cooler Inspected by/date: LASM / 248144

Coole	1 1112/16	crea r	by/date: 1/2000 C		
Means	of receip	ot: F	Pace Client UPS FedEx Other:		
☐ Yes	□/No	,	Were custody seals present on the cooler?		
☐ Yes	П No	Ø NA	If custody seals were present, were they intact and	unbroken?	
Method					ection Factor:C
Cool		·		amples on i	
			emp °C: (Actual/True)	□Yes	
Cool				Nethod of co	
Cool				Wet Wet	☐ Ice Packs ☐ Dry Ice ☐ None
Cool- Trackin		Cooler	emp °C: (Actual/True)	ιμο weι	Cite Packs Ci Dry Ice Ci None
rracking	5 77.	77	510984 1796		***************************************
Yes	☐ No	□ NA	Is a temperature blank present?		
Yes	☐ No	□ NA	Was a chain of custody (COC) recieved?		WE THE RESIDENCE OF A SHARE AND THE COURT OF THE
☐ Yes	No.	□ NA	Was the line and profile number listed on the COC?		
🔼 Yes	□ No	□ NA	Were all coolers received at or below 6.0°C? If no, n Project Manager notified via email.	notify	
Yes	□No		Were proper custody procedures (relinquished/rec	eived)	
			followed?		
	_	∟ NA	Is the sampler name and signature on the COC?		
Yes Yes	□ №		Were sample IDs listed on the COC and all sample		
<u> </u>			containers? Was collection date & time listed on the COC and al	ll sample	
Yes	□No		containers?	ii sampic	
Yes	□ No		Did all container label information (ID, date, time) a the COC?	agree with	
Yes	☐ No		Were tests to be performed listed on the COC?		
			Did all samples arrive in the proper containers for e	ach test	
Yes	□No		and/or in good condition		
			(unbroken, lids on, etc.)?		
Yes	☐ No		Was adequate sample volume available?		
Yes	□No		Were all samples received within ½ the holding tim	e or 48	
			hours, whichever comes first? Were all samples containers accounted for? (No mi	ssing /	
Ves Yes	∐ No		excess)		
			Were VOA, 8015C (GRO/VPH), and RSK-175 sample:		
∐ Yes	☐ No	□ NA	bubbles > "pea size" (1/4" or 6mm in diameter) in a	iny of the	
			VOA vials?		
☐ Yes	□ No	III NA	Trip blank present?		
☐ Yes	□ No	D NA	Filtered volume received for dissolved tests?		
	-		If no, list affected sample(s) in comments below.		
☐ Yes	□ No	NA NA	Were all metals/nutrient samples received at a pH o	of < 2?	If No, was preservative added?
☐ Yes	□No	D NA	Were all cyanide samples received at a pH > 12 and		HNO ₃ H ₂ SO ₄ NaOH NaOH
<u> </u>			samples received at a pH > 9?		Date: Time:
Comme	nts:				

Sample Condition Upon Reciept (5

Workorder #

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 24B0353

Client Name: SCS Engineers-Winchester

296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Date Received:

February 8, 2024 8:00

Date Issued:

February 29, 2024 17:27

Project Number:

02218208.15 Task 2

Purchase Order:

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 02/08/2024 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

Date Issued:

2/29/2024 5:27:44PM

Analysis Detects Report

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site ID:

Laboratory Sample ID: 24B0353-01 **Client Sample ID: EW-85** Dil. LOQ Parameter Factor Units Samp ID Reference Method Sample Results Qual LOD 330 01 SW6020B 2.0 2.0 5 Arsenic ug/L 01 SW6020B 2650 5.00 25.0 5 Barium ug/L Cadmium 01 SW6020B 17.5 0.500 5.00 5 ug/L SW6020B 203 2.00 5.00 5 Chromium 01 ug/L 5 Copper 01 SW6020B 1.51 1.50 2.00 ug/L SW6020B 51 1.0 2.0 5 Lead 01 ug/L SW6020B 2.38 5 Mercury 01 1.00 1.00 ug/L Nickel 01 SW6020B 91.74 5.000 5.000 5 ug/L 01 SW6020B 5.71 4.25 5.00 5 Selenium ug/L 01 SW6020B 475 12.5 Zinc 25.0 5 ug/L 2-Butanone (MEK) 01 SW8260D 12700 150 500 50 ug/L 45600 Acetone 01RE1 SW8260D 3500 5000 500 ug/L Benzene 01 SW8260D 346 20.0 50.0 50 ug/L Ethylbenzene 01 SW8260D 31.0 20.0 50.0 50 ug/L SW8260D 3520 500 50 Tetrahydrofuran 01 500 ug/L EPA350.1 R2.0 1780 Ammonia as N 01 146 200 2000 mg/L BOD 01 SM5210B-2016 21400 0.2 2.0 1 mg/L COD 01 SM5220D-2011 48900 5000 5000 500 mg/L 01 SW9012B 0.27 CI 0.05 0.05 5 Cyanide mg/L TKN as N 01 EPA351.2 R2.0 2470 100 250 500 mg/L Total Recoverable Phenolics SW9065 50.2 01 1.50 2.50 50 mg/L

2/29/2024 5:27:44PM

Date Issued:

Analysis Detects Report

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site ID:

Laboratory Sample ID: 24B03	353-02 Client	Sample ID: EW-88						
							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Factor	Units
Arsenic	02	SW6020B	230		2.0	2.0	5	ug/L
Barium	02	SW6020B	925		5.00	25.0	5	ug/L
Chromium	02	SW6020B	336		2.00	5.00	5	ug/L
Copper	02	SW6020B	1.63	J	1.50	2.00	5	ug/L
Lead	02	SW6020B	12		1.0	2.0	5	ug/L
Mercury	02	SW6020B	2.84		1.00	1.00	5	ug/L
Nickel	02	SW6020B	61.83		5.000	5.000	5	ug/L
Selenium	02	SW6020B	6.51		4.25	5.00	5	ug/L
Zinc	02	SW6020B	809		12.5	25.0	5	ug/L
2-Butanone (MEK)	02RE1	SW8260D	17400		1500	5000	500	ug/L
Acetone	02RE1	SW8260D	63100		3500	5000	500	ug/L
Benzene	02	SW8260D	484		20.0	50.0	50	ug/L
Ethylbenzene	02	SW8260D	41.0	J	20.0	50.0	50	ug/L
Tetrahydrofuran	02	SW8260D	4910		500	500	50	ug/L
Toluene	02	SW8260D	30.5	J	25.0	50.0	50	ug/L
Ammonia as N	02	EPA350.1 R2.0	2380		146	200	2000	mg/L
BOD	02	SM5210B-2016	34300		0.2	2.0	1	mg/L
COD	02	SM5220D-2011	68400		10000	10000	1000	mg/L
Cyanide	02	SW9012B	0.12	CI	0.05	0.05	5	mg/L
TKN as N	02	EPA351.2 R2.0	2970		100	250	500	mg/L
Total Recoverable Phenolics	02	SW9065	43.1		1.50	2.50	50	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-85	24B0353-01	Ground Water	02/07/2024 09:30	02/08/2024 08:00
EW-88	24B0353-02	Ground Water	02/07/2024 09:00	02/08/2024 08:00

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Client Sample ID: EW-85 Laboratory Sample ID: 24B0353-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA 6000/7000 Series	s Methods											
Silver	01	7440-22-4	SW6020B	02/09/2024 11:45	02/12/2024 12:50	BLOD		0.300	5.00	5	ug/L	AB
Arsenic	01	7440-38-2	SW6020B	02/09/2024 11:45	02/12/2024 12:50	330		2.0	2.0	5	ug/L	AB
Barium	01	7440-39-3	SW6020B	02/09/2024 11:45	02/12/2024 12:50	2650		5.00	25.0	5	ug/L	AB
Cadmium	01	7440-43-9	SW6020B	02/09/2024 11:45	02/12/2024 12:50	17.5		0.500	5.00	5	ug/L	AB
Chromium	01	7440-47-3	SW6020B	02/09/2024 11:45	02/12/2024 12:50	203		2.00	5.00	5	ug/L	AB
Copper	01	7440-50-8	SW6020B	02/09/2024 11:45	02/12/2024 12:50	1.51	J	1.50	2.00	5	ug/L	AB
Mercury	01	7439-97-6	SW6020B	02/09/2024 11:45	02/12/2024 12:50	2.38		1.00	1.00	5	ug/L	AB
Nickel	01	7440-02-0	SW6020B	02/09/2024 11:45	02/12/2024 12:50	91.74		5.000	5.000	5	ug/L	AB
Lead	01	7439-92-1	SW6020B	02/09/2024 11:45	02/12/2024 12:50	51		1.0	2.0	5	ug/L	AB
Selenium	01	7782-49-2	SW6020B	02/09/2024 11:45	02/12/2024 12:50	5.71		4.25	5.00	5	ug/L	AB
Zinc	01	7440-66-6	SW6020B	02/09/2024 11:45	02/12/2024 12:50	475		12.5	25.0	5	ug/L	AB
Volatile Organic Compounds by GCMS	S											
2-Butanone (MEK)	01	78-93-3	SW8260D	02/08/2024 19:14	02/08/2024 19:14	12700		150	500	50	ug/L	RJB
Acetone	01RE1	67-64-1	SW8260D	02/08/2024 19:36	02/08/2024 19:36	45600		3500	5000	500	ug/L	RJB
Benzene	01	71-43-2	SW8260D	02/08/2024 19:14	02/08/2024 19:14	346		20.0	50.0	50	ug/L	RJB
Ethylbenzene	01	100-41-4	SW8260D	02/08/2024 19:14	02/08/2024 19:14	31.0	J	20.0	50.0	50	ug/L	RJB
m+p-Xylenes	01	179601-23- 1	SW8260D	02/08/2024 19:14	02/08/2024 19:14	BLOD		30.0	100	50	ug/L	RJB
o-Xylene	01	95-47-6	SW8260D	02/08/2024 19:14	02/08/2024 19:14	BLOD		20.0	50.0	50	ug/L	RJB
Toluene	01	108-88-3	SW8260D	02/08/2024 19:14	02/08/2024 19:14	BLOD		25.0	50.0	50	ug/L	RJB
Xylenes, Total	01	1330-20-7	SW8260D	02/08/2024 19:14	02/08/2024 19:14	BLOD		50.0	150	50	ug/L	RJB
Tetrahydrofuran	01	109-99-9	SW8260D	02/08/2024 19:14	02/08/2024 19:14	3520		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	01	97.2	% 70-120	02/08/2024 1	9:14 02/08/2024 19:1	4					-	
Surr: 4-Bromofluorobenzene (Surr) Surr: Dibromofluoromethane (Surr)	01 01	98.5 93.7										

Date Issued:

2/29/2024 5:27:44PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Client Sample ID: EW-85 Laboratory Sample ID: 24B0353-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compounds by GCM	S											
Surr: Toluene-d8 (Surr)	01	99.1 %	% 70-130	02/08/2024 19:1	14 02/08/2024 19:14	4						
Surr: 1,2-Dichloroethane-d4 (Surr)	01RE1	99.8 %	% 70-120	02/08/2024 19:3	36 02/08/2024 19:36	5						
Surr: 4-Bromofluorobenzene (Surr)	01RE1	100 %	% 75-120	02/08/2024 19:3	36 02/08/2024 19:36	5						
Surr: Dibromofluoromethane (Surr)	01RE1	91.9 %	% 70-130	02/08/2024 19:3	36 02/08/2024 19:36	5						
Surr: Toluene-d8 (Surr)	01RE1	100 %	% 70-130	02/08/2024 19:3	36 02/08/2024 19:36	5						
Semivolatile Organic Compounds by	GCMS											
Anthracene	01	120-12-7	SW8270E	02/14/2024 08:30	02/16/2024 15:07	BLOD		400000	800000	20	ug/L	ZDR
Surr: 2,4,6-Tribromophenol (Surr)	01	9	% 5-136	02/14/2024 08:3	30 02/16/2024 15:07	7						DS
Surr: 2-Fluorobiphenyl (Surr)	01	9	% 9-117	02/14/2024 08:3	30 02/16/2024 15:07	7						DS
Surr: 2-Fluorophenol (Surr)	01	8.40 %	% 5-60	02/14/2024 08:3	30 02/16/2024 15:07	7						
Surr: Nitrobenzene-d5 (Surr)	01	742 %	% 5-151	02/14/2024 08:3	30 02/16/2024 15:07	7						DS
Surr: Phenol-d5 (Surr)	01	9	% 5-60	02/14/2024 08:3	30 02/16/2024 15:07	7						DS
Surr: p-Terphenyl-d14 (Surr)	01	9	% 5-141	02/14/2024 08:3	30 02/16/2024 15:07	7						DS

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 2/29/2024 5:27:44PM

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Sample ID: EW-85 Laboratory Sample ID: 24B0353-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analysis												
Ammonia as N	01	7664-41-7	EPA350.1 R2.0	02/17/2024 17:23	02/17/2024 17:23	1780		146	200	2000	mg/L	LAM
BOD	01	E1640606	SM5210B-20 16	02/08/2024 08:50	02/08/2024 08:50	21400		0.2	2.0	1	mg/L	SPH
Cyanide	01	57-12-5	SW9012B	02/16/2024 13:31	02/16/2024 13:31	0.27	CI	0.05	0.05	5	mg/L	MGC
COD	01	NA	SM5220D-20 11	02/20/2024 12:45	02/20/2024 12:45	48900		5000	5000	500	mg/L	MGC
Nitrate as N	01	14797-55-8	Calc.	02/20/2024 09:00	02/20/2024 16:33	BLOD		1.50	5.50	100	mg/L	TEG
Nitrate+Nitrite as N	01RE1	E701177	SM4500-NO 3F-2016	02/20/2024 09:00	02/20/2024 16:33	BLOD		0.50	0.50	5	mg/L	TEG
Nitrite as N	01	14797-65-0	SM4500-NO 2B-2011	02/08/2024 07:50	02/08/2024 07:50	BLOD		1.00	5.00	100	mg/L	AJM
Total Recoverable Phenolics	01	NA	SW9065	02/16/2024 17:00	02/16/2024 17:00	50.2		1.50	2.50	50	mg/L	AAL
TKN as N	01	E17148461	EPA351.2 R2.0	02/13/2024 16:02	02/14/2024 15:11	2470		100	250	500	mg/L	AAL

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Client Sample ID: EW-88 Laboratory Sample ID: 24B0353-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA 6000/7000 Serie	s Methods											
Silver	02	7440-22-4	SW6020B	02/09/2024 11:45	02/12/2024 12:53	BLOD		0.300	5.00	5	ug/L	AB
Arsenic	02	7440-38-2	SW6020B	02/09/2024 11:45	02/12/2024 12:53	230		2.0	2.0	5	ug/L	AB
Barium	02	7440-39-3	SW6020B	02/09/2024 11:45	02/12/2024 12:53	925		5.00	25.0	5	ug/L	AB
Cadmium	02	7440-43-9	SW6020B	02/09/2024 11:45	02/12/2024 12:53	BLOD		0.500	5.00	5	ug/L	AB
Chromium	02	7440-47-3	SW6020B	02/09/2024 11:45	02/12/2024 12:53	336		2.00	5.00	5	ug/L	AB
Copper	02	7440-50-8	SW6020B	02/09/2024 11:45	02/12/2024 12:53	1.63	J	1.50	2.00	5	ug/L	AB
Mercury	02	7439-97-6	SW6020B	02/09/2024 11:45	02/12/2024 12:53	2.84		1.00	1.00	5	ug/L	AB
Nickel	02	7440-02-0	SW6020B	02/09/2024 11:45	02/12/2024 12:53	61.83		5.000	5.000	5	ug/L	AB
Lead	02	7439-92-1	SW6020B	02/09/2024 11:45	02/12/2024 12:53	12		1.0	2.0	5	ug/L	AB
Selenium	02	7782-49-2	SW6020B	02/09/2024 11:45	02/12/2024 12:53	6.51		4.25	5.00	5	ug/L	AB
Zinc	02	7440-66-6	SW6020B	02/09/2024 11:45	02/12/2024 12:53	809		12.5	25.0	5	ug/L	AB
Volatile Organic Compounds by GCM	S											
2-Butanone (MEK)	02RE1	78-93-3	SW8260D	02/08/2024 20:21	02/08/2024 20:21	17400		1500	5000	500	ug/L	RJB
Acetone	02RE1	67-64-1	SW8260D	02/08/2024 20:21	02/08/2024 20:21	63100		3500	5000	500	ug/L	RJB
Benzene	02	71-43-2	SW8260D	02/08/2024 19:59	02/08/2024 19:59	484		20.0	50.0	50	ug/L	RJB
Ethylbenzene	02	100-41-4	SW8260D	02/08/2024 19:59	02/08/2024 19:59	41.0	J	20.0	50.0	50	ug/L	RJB
m+p-Xylenes	02	179601-23-	SW8260D	02/08/2024 19:59	02/08/2024 19:59	BLOD		30.0	100	50	ug/L	RJB
o-Xylene	02	95-47-6	SW8260D	02/08/2024 19:59	02/08/2024 19:59	BLOD		20.0	50.0	50	ug/L	RJB
Toluene	02	108-88-3	SW8260D	02/08/2024 19:59	02/08/2024 19:59	30.5	J	25.0	50.0	50	ug/L	RJB
Xylenes, Total	02	1330-20-7	SW8260D	02/08/2024 19:59	02/08/2024 19:59	BLOD		50.0	150	50	ug/L	RJB
Tetrahydrofuran	02	109-99-9	SW8260D	02/08/2024 19:59	02/08/2024 19:59	4910		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	02	102	% 70-120	02/08/2024 1	9:59 02/08/2024 19:59	9						
Surr: 4-Bromofluorobenzene (Surr)	02	101	% 75-120	02/08/2024 1	9:59 02/08/2024 19:59	9						
Surr: Dibromofluoromethane (Surr)	02	92.8	70-130	02/08/2024 1	9:59 02/08/2024 19:59	9						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

2/29/2024 5:27:44PM

Client Site I.D.: 24-02 I

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Sample ID: EW-88 Laboratory Sample ID: 24B0353-02

Parameter	Samp ID	CAS F	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compounds by GCM	S											
Surr: Toluene-d8 (Surr)	02	99.6 %	70-130	02/08/2024 19:59	02/08/2024 19:59	9						
Surr: 1,2-Dichloroethane-d4 (Surr)	02RE1	97.6 %	70-120	02/08/2024 20:21	02/08/2024 20:2:	1						
Surr: 4-Bromofluorobenzene (Surr)	02RE1	98.8 %	75-120	02/08/2024 20:21	02/08/2024 20:2	1						
Surr: Dibromofluoromethane (Surr)	02RE1	92.6 %	70-130	02/08/2024 20:21	02/08/2024 20:2	1						
Surr: Toluene-d8 (Surr)	02RE1	100 %	70-130	02/08/2024 20:21	02/08/2024 20:2:	1						
Semivolatile Organic Compounds by	GCMS											
Anthracene	02	120-12-7	SW8270E	02/14/2024 08:30 0	2/16/2024 15:47	BLOD		400000	800000	20	ug/L	ZDR
Surr: 2,4,6-Tribromophenol (Surr)	02	%	5-136	02/14/2024 08:30	02/16/2024 15:47	7						DS
Surr: 2-Fluorobiphenyl (Surr)	02	%	9-117	02/14/2024 08:30	02/16/2024 15:47	7						DS
Surr: 2-Fluorophenol (Surr)	02	0.800 %	5-60	02/14/2024 08:30	02/16/2024 15:47	7						DS
Surr: Nitrobenzene-d5 (Surr)	02	619 %	5-151	02/14/2024 08:30	02/16/2024 15:47	7						DS
Surr: Phenol-d5 (Surr)	02	4.80 %	5-60	02/14/2024 08:30	02/16/2024 15:47	7						DS
Surr: p-Terphenyl-d14 (Surr)	02	%	5-141	02/14/2024 08:30	02/16/2024 15:47	7						DS

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 2/29/2024 5:27:44PM

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Sample ID: EW-88 Laboratory Sample ID: 24B0353-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analysis												
Ammonia as N	02	7664-41-7	EPA350.1 R2.0	02/17/2024 17:23	02/17/2024 17:23	2380		146	200	2000	mg/L	LAM
BOD	02	E1640606	SM5210B-20 16	02/08/2024 08:46	02/08/2024 08:46	34300		0.2	2.0	1	mg/L	SPH
Cyanide	02	57-12-5	SW9012B	02/16/2024 13:31	02/16/2024 13:31	0.12	CI	0.05	0.05	5	mg/L	MGC
COD	02	NA	SM5220D-20 11	02/20/2024 12:45	02/20/2024 12:45	68400		10000	10000	1000	mg/L	MGC
Nitrate as N	02	14797-55-8	Calc.	02/20/2024 09:00	02/20/2024 16:34	BLOD		1.50	5.50	100	mg/L	TEG
Nitrate+Nitrite as N	02RE1	E701177	SM4500-NO 3F-2016	02/20/2024 09:00	02/20/2024 16:34	BLOD		0.50	0.50	5	mg/L	TEG
Nitrite as N	02	14797-65-0	SM4500-NO 2B-2011	02/08/2024 07:50	02/08/2024 07:50	BLOD		1.00	5.00	100	mg/L	AJM
Total Recoverable Phenolics	02	NA	SW9065	02/16/2024 17:00	02/16/2024 17:00	43.1		1.50	2.50	50	mg/L	AAL
TKN as N	02	E17148461	EPA351.2 R2.0	02/13/2024 16:02	02/14/2024 15:12	2970		100	250	500	mg/L	AAL

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

2/29/2024 5:27:44PM

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
-	tch BHB0369 - EPA20									
Blank (BHB0369-BLK1)				Prepared: 02/09/	/2024 Analyzed: 0	2/12/2024				
Mercury	ND	0.200	ug/L							
Arsenic	ND	1.0	ug/L							
Barium	ND	5.00	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	1.00	ug/L							
Copper	ND	1.00	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	1.000	ug/L							
Selenium	ND	1.00	ug/L							
Silver	ND	1.00	ug/L							
Zinc	ND	5.00	ug/L							
LCS (BHB0369-BS1)				Prepared: 02/09/	/2024 Analyzed: 0	2/12/2024				
Mercury	1.03	0.200	ug/L	1.00		103	80-120			
Arsenic	51	1.0	ug/L	50.0		103	80-120			
Barium	53.2	5.00	ug/L	50.0		106	80-120			
Cadmium	51.5	1.00	ug/L	50.0		103	80-120			
Chromium	51.5	1.00	ug/L	50.0		103	80-120			
Copper	51.8	1.00	ug/L	50.0		104	80-120			
Lead	53	1.0	ug/L	50.0		107	80-120			
Nickel	52.52	1.000	ug/L	50.0		105	80-120			
Selenium	51.6	1.00	ug/L	50.0		103	80-120			
Silver	10.8	1.00	ug/L	10.0		108	80-120			
Zinc	51.9	5.00	ug/L	50.0		104	80-120			
Matrix Spike (BHB0369-MS1)	Source	e: 24B0351-01	ĺ	Prepared: 02/09/	/2024 Analyzed: 0	2/12/2024				

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BHB0369 - EPA20	0.8 R5.4								
Matrix Spike (BHB0369-MS1)	Source	ce: 24B0351-01	I	Prepared: 02/09	/2024 Analyzed: ()2/12/2024				
Mercury	1.09	0.200	ug/L	1.00	BLOD	109	70-130			
Arsenic	67	1.0	ug/L	50.0	15	105	75-125			
Barium	133	5.00	ug/L	50.0	82.3	101	75-125			
Cadmium	50.1	1.00	ug/L	50.0	BLOD	100	75-125			
Chromium	49.7	1.00	ug/L	50.0	0.454	98.5	75-125			
Copper	53.0	1.00	ug/L	50.0	4.39	97.1	75-125			
Lead	53	1.0	ug/L	50.0	1.1	103	75-125			
Nickel	53.09	1.000	ug/L	50.0	4.354	97.5	75-125			
Selenium	53.9	1.00	ug/L	50.0	BLOD	108	75-125			
Silver	10.4	1.00	ug/L	10.0	BLOD	104	75-125			
Zinc	54.6	5.00	ug/L	50.0	7.24	94.7	75-125			
Matrix Spike (BHB0369-MS2)	Sour	ce: 24B0351-02	2	Prepared: 02/09	/2024 Analyzed: (02/12/2024				
Mercury	1.06	0.200	ug/L	1.00	BLOD	106	70-130			
Arsenic	52	1.0	ug/L	50.0	1.1	101	75-125			
Barium	265	5.00	ug/L	50.0	210	110	75-125			E
Cadmium	50.1	1.00	ug/L	50.0	BLOD	100	75-125			
Chromium	49.6	1.00	ug/L	50.0	BLOD	99.1	75-125			
Copper	47.9	1.00	ug/L	50.0	0.722	94.3	75-125			
Lead	52	1.0	ug/L	50.0	BLOD	103	75-125			
Nickel	49.38	1.000	ug/L	50.0	1.777	95.2	75-125			
Selenium	51.7	1.00	ug/L	50.0	BLOD	103	75-125			
Silver	10.4	1.00	ug/L	10.0	BLOD	104	75-125			
Zinc	112	5.00	ug/L	50.0	66.2	91.2	75-125			
Matrix Spike Dup (BHB0369-MSD1)	Source	ce: 24B0351-01	l	Prepared: 02/09	/2024 Analyzed: ()2/12/2024				

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BHB0369 - EPA20	0.8 R5.4								
Matrix Spike Dup (BHB0369-MSD1)	Sour	ce: 24B0351-0)1	Prepared: 02/09/	/2024 Analyzed: ()2/12/2024				
Mercury	1.09	0.200	ug/L	1.00	BLOD	109	70-130	0.171	20	
Arsenic	66	1.0	ug/L	50.0	15	103	75-125	1.33	20	
Barium	134	5.00	ug/L	50.0	82.3	104	75-125	1.18	20	
Cadmium	50.0	1.00	ug/L	50.0	BLOD	99.9	75-125	0.283	20	
Chromium	49.7	1.00	ug/L	50.0	0.454	98.5	75-125	0.00654	20	
Copper	52.7	1.00	ug/L	50.0	4.39	96.5	75-125	0.575	20	
Lead	52	1.0	ug/L	50.0	1.1	102	75-125	0.861	20	
Nickel	52.97	1.000	ug/L	50.0	4.354	97.2	75-125	0.228	20	
Selenium	53.0	1.00	ug/L	50.0	BLOD	106	75-125	1.59	20	
Silver	10.4	1.00	ug/L	10.0	BLOD	104	75-125	0.721	20	
Zinc	54.6	5.00	ug/L	50.0	7.24	94.8	75-125	0.0536	20	
Matrix Spike Dup (BHB0369-MSD2)	Sour	ce: 24B0351-0)2	Prepared: 02/09	/2024 Analyzed: (02/12/2024				
Mercury	1.05	0.200	ug/L	1.00	BLOD	105	70-130	0.713	20	
Arsenic	52	1.0	ug/L	50.0	1.1	102	75-125	0.682	20	
Barium	259	5.00	ug/L	50.0	210	96.6	75-125	2.55	20	E
Cadmium	50.1	1.00	ug/L	50.0	BLOD	100	75-125	0.00274	20	
Chromium	49.7	1.00	ug/L	50.0	BLOD	99.4	75-125	0.258	20	
Copper	48.0	1.00	ug/L	50.0	0.722	94.6	75-125	0.357	20	
Lead	51	1.0	ug/L	50.0	BLOD	103	75-125	0.693	20	
Nickel	49.43	1.000	ug/L	50.0	1.777	95.3	75-125	0.102	20	
Selenium	51.8	1.00	ug/L	50.0	BLOD	104	75-125	0.0937	20	
Silver	10.5	1.00	ug/L	10.0	BLOD	105	75-125	0.403	20	
Zinc	112	5.00	ug/L	50.0	66.2	90.7	75-125	0.233	20	

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	3HB0320 - SW503	0B-MS								
Blank (BHB0320-BLK1)			ı	Prepared & Anal	yzed: 02/08/2024					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
m+p-Xylenes	ND	2.00	ug/L							
o-Xylene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Tetrahydrofuran	ND	10.0	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	51.9		ug/L	50.0		104	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.6		ug/L	50.0		99.2	75-120			
Surr: Dibromofluoromethane (Surr)	46.7		ug/L	50.0		93.4	70-130			
Surr: Toluene-d8 (Surr)	50.5		ug/L	50.0		101	70-130			
LCS (BHB0320-BS1)			ı	Prepared & Anal	yzed: 02/08/2024					
1,1,1,2-Tetrachloroethane	53.5	0.4	ug/L	50.0		107	80-130			
1,1,1-Trichloroethane	54.2	1	ug/L	50.0		108	65-130			
1,1,2,2-Tetrachloroethane	52.0	0.4	ug/L	50.0		104	65-130			
1,1,2-Trichloroethane	52.9	1	ug/L	50.0		106	75-125			
1,1-Dichloroethane	50.2	1	ug/L	50.0		100	70-135			
1,1-Dichloroethylene	52.9	1	ug/L	50.0		106	70-130			
1,1-Dichloropropene	52.8	1	ug/L	50.0		106	75-135			
1,2,3-Trichlorobenzene	55.9	1	ug/L	50.0		112	55-140			
1,2,3-Trichloropropane	50.8	1	ug/L	50.0		102	75-125			
1,2,4-Trichlorobenzene	57.3	1	ug/L	50.0		115	65-135			

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl	HB0320 - SW503	BOB-MS								
LCS (BHB0320-BS1)			F	Prepared & Analy	yzed: 02/08/2024					
1,2,4-Trimethylbenzene	58.3	1	ug/L	50.0		117	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	48.2	1	ug/L	50.0		96.4	50-130			
1,2-Dibromoethane (EDB)	54.4	1	ug/L	50.0		109	80-120			
1,2-Dichlorobenzene	56.6	0.5	ug/L	50.0		113	70-120			
1,2-Dichloroethane	45.4	1	ug/L	50.0		90.8	70-130			
1,2-Dichloropropane	51.7	0.5	ug/L	50.0		103	75-125			
1,3,5-Trimethylbenzene	58.0	1	ug/L	50.0		116	75-125			
1,3-Dichlorobenzene	58.4	1	ug/L	50.0		117	75-125			
1,3-Dichloropropane	51.8	1	ug/L	50.0		104	75-125			
1,4-Dichlorobenzene	56.0	1	ug/L	50.0		112	75-125			
2,2-Dichloropropane	56.1	1	ug/L	50.0		112	70-135			
2-Butanone (MEK)	44.7	10	ug/L	50.0		89.3	30-150			
2-Chlorotoluene	57.7	1	ug/L	50.0		115	75-125			
2-Hexanone (MBK)	47.9	5	ug/L	50.0		95.8	55-130			
4-Chlorotoluene	57.1	1	ug/L	50.0		114	75-130			
4-Isopropyltoluene	61.2	1	ug/L	50.0		122	75-130			
4-Methyl-2-pentanone (MIBK)	46.6	5	ug/L	50.0		93.2	60-135			
Acetone	46.4	10	ug/L	50.0		92.9	40-140			
Benzene	52.5	1	ug/L	50.0		105	80-120			
Bromobenzene	54.5	1	ug/L	50.0		109	75-125			
Bromochloromethane	48.3	1	ug/L	50.0		96.6	65-130			
Bromodichloromethane	53.4	0.5	ug/L	50.0		107	75-120			
Bromoform	52.9	1	ug/L	50.0		106	70-130			
Bromomethane	50.3	1	ug/L	50.0		101	30-145			
Carbon disulfide	47.6	10	ug/L	50.0		95.3	35-160			

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BHB0320 - SW503	0B-MS								
.CS (BHB0320-BS1)			F	Prepared & Analy	/zed: 02/08/2024					
Carbon tetrachloride	55.5	1	ug/L	50.0		111	65-140			
Chlorobenzene	55.5	1	ug/L	50.0		111	80-120			
Chloroethane	54.0	1	ug/L	50.0		108	60-135			
Chloroform	47.5	0.5	ug/L	50.0		94.9	65-135			
Chloromethane	57.4	1	ug/L	50.0		115	40-125			
cis-1,2-Dichloroethylene	49.6	1	ug/L	50.0		99.3	70-125			
cis-1,3-Dichloropropene	52.2	1	ug/L	50.0		104	70-130			
Dibromochloromethane	53.3	0.5	ug/L	50.0		107	60-135			
Dibromomethane	51.2	1	ug/L	50.0		102	75-125			
Dichlorodifluoromethane	69.0	1	ug/L	50.0		138	30-155			
Ethylbenzene	56.2	1	ug/L	50.0		112	75-125			
Hexachlorobutadiene	61.9	0.8	ug/L	50.0		124	50-140			
Isopropylbenzene	53.3	1	ug/L	50.0		107	75-125			
m+p-Xylenes	110	2	ug/L	100		110	75-130			
Methylene chloride	45.5	4	ug/L	50.0		90.9	55-140			
Methyl-t-butyl ether (MTBE)	48.9	1	ug/L	50.0		97.9	65-125			
Naphthalene	51.4	1	ug/L	50.0		103	55-140			
n-Butylbenzene	61.9	1	ug/L	50.0		124	70-135			
n-Propylbenzene	58.9	1	ug/L	50.0		118	70-130			
o-Xylene	54.9	1	ug/L	50.0		110	80-120			
sec-Butylbenzene	62.6	1	ug/L	50.0		125	70-125			L
Styrene	54.6	1	ug/L	50.0		109	65-135			
tert-Butylbenzene	58.8	1	ug/L	50.0		118	70-130			
Tetrachloroethylene (PCE)	58.9	1	ug/L	50.0		118	45-150			
Toluene	53.4	1	ug/L	50.0		107	75-120			

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch Bl	1B0320 - SW503	BOB-MS								
LCS (BHB0320-BS1)				Prepared & Anal	yzed: 02/08/2024					
trans-1,2-Dichloroethylene	53.3	1	ug/L	50.0		107	60-140			
trans-1,3-Dichloropropene	54.6	1	ug/L	50.0		109	55-140			
Trichloroethylene	54.8	1	ug/L	50.0		110	70-125			
Trichlorofluoromethane	57.4	1	ug/L	50.0		115	60-145			
Vinyl chloride	56.7	0.5	ug/L	50.0		113	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	49.1		ug/L	50.0		98.3	70-120			
Surr: 4-Bromofluorobenzene (Surr)	48.5		ug/L	50.0		97.1	75-120			
Surr: Dibromofluoromethane (Surr)	48.6		ug/L	50.0		97.1	70-130			
Surr: Toluene-d8 (Surr)	49.0		ug/L	50.0		97.9	70-130			
Duplicate (BHB0320-DUP1)	Sourc	e: 24B0352-0	02	Prepared & Anal	yzed: 02/08/2024	ļ				
1,1,1,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,1-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,2-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichloropropane	ND	1.00	ug/L		BLOD			NA	30	
1,2,4-Trichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2,4-Trimethylbenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dibromo-3-chloropropane (DBCP)	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dibromoethane (EDB)	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dichlorobenzene	ND	0.50	ug/L		BLOD			NA	30	

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 2

2/29/2024 5:27:44PM

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units		ource esult %REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BHB0320 - SW503	0B-MS							
Ouplicate (BHB0320-DUP1)	Sourc	e: 24B0352-0	2	Prepared & Analyzed: 0	2/08/2024				
1,2-Dichloroethane	ND	1.00	ug/L	Е	SLOD		NA	30	
1,2-Dichloropropane	ND	0.50	ug/L	E	SLOD		NA	30	
1,3,5-Trimethylbenzene	ND	1.00	ug/L	E	BLOD		NA	30	
1,3-Dichlorobenzene	ND	1.00	ug/L	E	BLOD		NA	30	
1,3-Dichloropropane	ND	1.00	ug/L	E	BLOD		NA	30	
1,4-Dichlorobenzene	ND	1.00	ug/L	E	BLOD		NA	30	
2,2-Dichloropropane	ND	1.00	ug/L	E	BLOD		NA	30	
2-Butanone (MEK)	ND	10.0	ug/L	E	BLOD		NA	30	
2-Chlorotoluene	ND	1.00	ug/L	E	BLOD		NA	30	
2-Hexanone (MBK)	ND	5.00	ug/L	E	BLOD		NA	30	
4-Chlorotoluene	ND	1.00	ug/L	E	SLOD		NA	30	
4-Isopropyltoluene	ND	1.00	ug/L	E	BLOD		NA	30	
4-Methyl-2-pentanone (MIBK)	ND	5.00	ug/L	E	BLOD		NA	30	
Acetone	ND	10.0	ug/L	E	BLOD		NA	30	
Benzene	ND	1.00	ug/L	E	BLOD		NA	30	
Bromobenzene	ND	1.00	ug/L	E	BLOD		NA	30	
Bromochloromethane	ND	1.00	ug/L	E	BLOD		NA	30	
Bromodichloromethane	ND	0.50	ug/L	E	BLOD		NA	30	
Bromoform	ND	1.00	ug/L	E	BLOD		NA	30	
Bromomethane	ND	1.00	ug/L	E	BLOD		NA	30	
Carbon disulfide	ND	10.0	ug/L	E	BLOD		NA	30	
Carbon tetrachloride	ND	1.00	ug/L	E	BLOD		NA	30	
Chlorobenzene	ND	1.00	ug/L	E	SLOD		NA	30	
Chloroethane	ND	1.00	ug/L	E	SLOD		NA	30	
Chloroform	ND	0.50	ug/L	E	BLOD		NA	30	

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BHB0320 - SW503	0B-MS								
Duplicate (BHB0320-DUP1)	Source	e: 24B0352-0)2	Prepared & Analyz	ed: 02/08/2024					
Chloromethane	ND	1.00	ug/L		BLOD			NA	30	
cis-1,2-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
cis-1,3-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	
Dibromochloromethane	ND	0.50	ug/L		BLOD			NA	30	
Dibromomethane	ND	1.00	ug/L		BLOD			NA	30	
Dichlorodifluoromethane	ND	1.00	ug/L		BLOD			NA	30	
Di-isopropyl ether (DIPE)	ND	5.00	ug/L		BLOD			NA	30	
Ethylbenzene	ND	1.00	ug/L		BLOD			NA	30	
Hexachlorobutadiene	ND	0.80	ug/L		BLOD			NA	30	
lodomethane	ND	10.0	ug/L		BLOD			NA	30	
Isopropylbenzene	ND	1.00	ug/L		BLOD			NA	30	
m+p-Xylenes	ND	2.00	ug/L		BLOD			NA	30	
Methylene chloride	ND	4.00	ug/L		BLOD			NA	30	
Methyl-t-butyl ether (MTBE)	ND	1.00	ug/L		BLOD			NA	30	
Naphthalene	ND	1.00	ug/L		BLOD			NA	30	
n-Butylbenzene	ND	1.00	ug/L		BLOD			NA	30	
n-Propylbenzene	ND	1.00	ug/L		BLOD			NA	30	
o-Xylene	ND	1.00	ug/L		BLOD			NA	30	
sec-Butylbenzene	ND	1.00	ug/L		BLOD			NA	30	
Styrene	ND	1.00	ug/L		BLOD			NA	30	
tert-Butylbenzene	ND	1.00	ug/L		BLOD			NA	30	
Tetrachloroethylene (PCE)	ND	1.00	ug/L		BLOD			NA	30	
Toluene	ND	1.00	ug/L		BLOD			NA	30	
trans-1,2-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
trans-1,3-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BH	B0320 - SW503	0B-MS								
Duplicate (BHB0320-DUP1)	Sourc	e: 24B0352-0	2	Prepared & Anal	yzed: 02/08/2024					
Trichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
Trichlorofluoromethane	ND	1.00	ug/L		BLOD			NA	30	
Vinyl acetate	ND	10.0	ug/L		BLOD			NA	30	
Vinyl chloride	ND	0.50	ug/L		BLOD			NA	30	
Xylenes, Total	ND	3.00	ug/L		BLOD			NA	30	
Tetrahydrofuran	ND	10.0	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	49.0		ug/L	50.0		98.1	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.4		ug/L	50.0		98.9	75-120			
Surr: Dibromofluoromethane (Surr)	46.8		ug/L	50.0		93.6	70-130			
Surr: Toluene-d8 (Surr)	49.9		ug/L	50.0		99.8	70-130			
Matrix Spike (BHB0320-MS1)	Sourc	e: 24B0352-0	1	Prepared & Anal	yzed: 02/08/2024					
1,1,1,2-Tetrachloroethane	55.9	0.4	ug/L	50.0	BLOD	112	80-130			
1,1,1-Trichloroethane	55.7	1	ug/L	50.0	BLOD	111	65-130			
1,1,2,2-Tetrachloroethane	54.5	0.4	ug/L	50.0	BLOD	109	65-130			
1,1,2-Trichloroethane	53.6	1	ug/L	50.0	BLOD	107	75-125			
1,1-Dichloroethane	51.2	1	ug/L	50.0	BLOD	102	70-135			
1,1-Dichloroethylene	55.6	1	ug/L	50.0	BLOD	111	50-145			
1,1-Dichloropropene	55.7	1	ug/L	50.0	BLOD	111	75-135			
1,2,3-Trichlorobenzene	55.5	1	ug/L	50.0	BLOD	111	55-140			
1,2,3-Trichloropropane	53.0	1	ug/L	50.0	BLOD	106	75-125			
1,2,4-Trichlorobenzene	56.1	1	ug/L	50.0	BLOD	112	65-135			
1,2,4-Trimethylbenzene	58.5	1	ug/L	50.0	BLOD	117	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	51.4	1	ug/L	50.0	BLOD	103	50-130			
1,2-Dibromoethane (EDB)	54.9	1	ug/L	50.0	BLOD	110	80-120			

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BHB0320 - SW503	0B-MS								
Matrix Spike (BHB0320-MS1)	Sourc	e: 24B0352-0)1	Prepared & Anal	yzed: 02/08/2024					
1,2-Dichlorobenzene	56.8	0.5	ug/L	50.0	BLOD	114	70-120			
1,2-Dichloroethane	45.1	1	ug/L	50.0	BLOD	89.1	70-130			
1,2-Dichloropropane	52.7	0.5	ug/L	50.0	BLOD	105	75-125			
1,3,5-Trimethylbenzene	58.7	1	ug/L	50.0	BLOD	117	75-124			
1,3-Dichlorobenzene	58.3	1	ug/L	50.0	BLOD	117	75-125			
1,3-Dichloropropane	52.4	1	ug/L	50.0	BLOD	105	75-125			
1,4-Dichlorobenzene	56.3	1	ug/L	50.0	BLOD	113	75-125			
2,2-Dichloropropane	56.3	1	ug/L	50.0	BLOD	113	70-135			
2-Butanone (MEK)	51.5	10	ug/L	50.0	BLOD	103	30-150			
2-Chlorotoluene	57.1	1	ug/L	50.0	BLOD	114	75-125			
2-Hexanone (MBK)	51.6	5	ug/L	50.0	BLOD	103	55-130			
4-Chlorotoluene	58.5	1	ug/L	50.0	BLOD	117	75-130			
4-Isopropyltoluene	62.3	1	ug/L	50.0	BLOD	125	75-130			
4-Methyl-2-pentanone (MIBK)	51.4	5	ug/L	50.0	BLOD	103	60-135			
Acetone	51.9	10	ug/L	50.0	BLOD	95.1	40-140			
Benzene	54.2	1	ug/L	50.0	BLOD	108	80-120			
Bromobenzene	55.0	1	ug/L	50.0	BLOD	110	75-125			
Bromochloromethane	48.7	1	ug/L	50.0	BLOD	97.4	65-130			
Bromodichloromethane	54.8	0.5	ug/L	50.0	BLOD	110	75-136			
Bromoform	54.1	1	ug/L	50.0	BLOD	108	70-130			
Bromomethane	54.5	1	ug/L	50.0	BLOD	109	30-145			
Carbon disulfide	61.1	10	ug/L	50.0	BLOD	122	35-160			
Carbon tetrachloride	57.3	1	ug/L	50.0	BLOD	115	65-140			
Chlorobenzene	57.1	1	ug/L	50.0	BLOD	114	80-120			
Chloroethane	55.1	1	ug/L	50.0	BLOD	110	60-135			

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BHB0320 - SW503	0B-MS								
Matrix Spike (BHB0320-MS1)	Sourc	e: 24B0352-0)1	Prepared & Anal	yzed: 02/08/2024					
Chloroform	49.4	0.5	ug/L	50.0	BLOD	98.8	65-135			
Chloromethane	59.9	1	ug/L	50.0	BLOD	120	40-125			
cis-1,2-Dichloroethylene	51.1	1	ug/L	50.0	BLOD	102	70-125			
cis-1,3-Dichloropropene	53.1	1	ug/L	50.0	BLOD	106	47-136			
Dibromochloromethane	53.2	0.5	ug/L	50.0	BLOD	106	60-135			
Dibromomethane	51.2	1	ug/L	50.0	BLOD	102	75-125			
Dichlorodifluoromethane	74.7	1	ug/L	50.0	BLOD	149	30-155			
Ethylbenzene	58.3	1	ug/L	50.0	BLOD	117	75-125			
Hexachlorobutadiene	63.7	0.8	ug/L	50.0	BLOD	127	50-140			
Isopropylbenzene	55.0	1	ug/L	50.0	BLOD	110	75-125			
m+p-Xylenes	113	2	ug/L	100	BLOD	113	75-130			
Methylene chloride	46.1	4	ug/L	50.0	BLOD	91.5	55-140			
Methyl-t-butyl ether (MTBE)	49.6	1	ug/L	50.0	BLOD	99.3	65-125			
Naphthalene	54.2	1	ug/L	50.0	BLOD	108	55-140			
n-Butylbenzene	62.5	1	ug/L	50.0	BLOD	125	70-135			
n-Propylbenzene	59.8	1	ug/L	50.0	BLOD	120	70-130			
o-Xylene	57.1	1	ug/L	50.0	BLOD	114	80-120			
sec-Butylbenzene	63.4	1	ug/L	50.0	BLOD	127	70-125			M
Styrene	55.8	1	ug/L	50.0	BLOD	112	65-135			
tert-Butylbenzene	60.5	1	ug/L	50.0	BLOD	121	70-130			
Tetrachloroethylene (PCE)	63.2	1	ug/L	50.0	BLOD	126	51-231			
Toluene	54.4	1	ug/L	50.0	BLOD	109	75-120			
trans-1,2-Dichloroethylene	53.6	1	ug/L	50.0	BLOD	107	60-140			
trans-1,3-Dichloropropene	54.4	1	ug/L	50.0	BLOD	109	55-140			
Trichloroethylene	57.4	1	ug/L	50.0	BLOD	115	70-125			

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	3HB0320 - SW503	0B-MS								
Matrix Spike (BHB0320-MS1)	Source	e: 24B0352-0)1	Prepared & Anal	yzed: 02/08/2024					
Trichlorofluoromethane	59.8	1	ug/L	50.0	BLOD	120	60-145			
Vinyl chloride	59.0	0.5	ug/L	50.0	BLOD	118	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	47.6		ug/L	50.0		95.3	70-120			
Surr: 4-Bromofluorobenzene (Surr)	48.3		ug/L	50.0		96.7	75-120			
Surr: Dibromofluoromethane (Surr)	47.6		ug/L	50.0		95.2	70-130			
Surr: Toluene-d8 (Surr)	49.7		ug/L	50.0		99.5	70-130			

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	BHB0479 - SW351	0C/EPA600	-MS							
Blank (BHB0479-BLK1)			F	Prepared: 02/13/	2024 Analyzed: ()2/14/2024				
Anthracene	ND	10.0	ug/L							
Surr: 2,4,6-Tribromophenol (Surr)	76.7		ug/L	100		76.7	5-136			
Surr: 2-Fluorobiphenyl (Surr)	32.9		ug/L	50.0		65.8	9-117			
Surr: 2-Fluorophenol (Surr)	34.7		ug/L	100		34.7	5-60			
Surr: Nitrobenzene-d5 (Surr)	34.4		ug/L	50.0		68.9	5-151			
Surr: Phenol-d5 (Surr)	23.5		ug/L	100		23.5	5-60			
Surr: p-Terphenyl-d14 (Surr)	36.7		ug/L	50.0		73.4	5-141			
LCS (BHB0479-BS1)			F	Prepared: 02/13/	2024 Analyzed: ()2/14/2024				
1,2,4-Trichlorobenzene	31.0	10.0	ug/L	50.0		62.0	57-130			
1,2-Dichlorobenzene	24.0	10.0	ug/L	50.0		48.0	22-115			
1,3-Dichlorobenzene	22.1	10.0	ug/L	50.0		44.2	22-112			
1,4-Dichlorobenzene	26.7	10.0	ug/L	50.0		53.3	13-112			
2,4,6-Trichlorophenol	42.2	10.0	ug/L	50.0		84.3	52-129			
2,4-Dichlorophenol	34.9	10.0	ug/L	50.0		69.9	53-122			
2,4-Dimethylphenol	29.8	5.00	ug/L	50.0		59.6	42-120			
2,4-Dinitrophenol	38.0	50.0	ug/L	50.0		76.0	48-127			
2,4-Dinitrotoluene	36.0	10.0	ug/L	50.0		72.1	10-173			
2,6-Dinitrotoluene	29.1	10.0	ug/L	50.0		58.3	68-137			L
2-Chloronaphthalene	29.6	10.0	ug/L	50.0		59.3	65-120			L
2-Chlorophenol	27.0	10.0	ug/L	50.0		54.1	36-120			
2-Nitrophenol	28.5	10.0	ug/L	50.0		57.0	45-167			
3,3'-Dichlorobenzidine	34.1	10.0	ug/L	50.0		68.1	10-213			
4,6-Dinitro-2-methylphenol	41.1	50.0	ug/L	50.0		82.2	53-130			
4-Bromophenyl phenyl ether	33.4	10.0	ug/L	50.0		66.7	65-120			

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batc	h BHB0479 - SW351	0C/EPA600	-MS							
LCS (BHB0479-BS1)			F	Prepared: 02/13/	2024 Analyzed: (02/14/2024				
4-Chlorophenyl phenyl ether	34.9	10.0	ug/L	50.0		69.8	38-145			
4-Nitrophenol	6.07	50.0	ug/L	50.0		12.1	13-129			L
Acenaphthene	30.4	10.0	ug/L	50.0		60.9	60-132			
Acenaphthylene	32.0	10.0	ug/L	50.0		64.0	54-126			
Acetophenone	31.7	20.0	ug/L	50.0		63.4	0-200			
Anthracene	30.4	10.0	ug/L	50.0		60.8	43-120			
Benzo (a) anthracene	39.3	10.0	ug/L	50.0		78.6	42-133			
Benzo (a) pyrene	44.3	10.0	ug/L	50.0		88.6	32-148			
Benzo (b) fluoranthene	45.6	10.0	ug/L	50.0		91.2	42-140			
Benzo (g,h,i) perylene	39.6	10.0	ug/L	50.0		79.2	10-195			
Benzo (k) fluoranthene	37.6	10.0	ug/L	50.0		75.2	25-146			
bis (2-Chloroethoxy) methane	27.5	10.0	ug/L	50.0		55.0	49-165			
bis (2-Chloroethyl) ether	24.8	10.0	ug/L	50.0		49.6	43-126			
2,2'-Oxybis (1-chloropropane)	24.8	10.0	ug/L	50.0		49.5	63-139			L
bis (2-Ethylhexyl) phthalate	24.3	10.0	ug/L	50.0		48.6	29-137			
Butyl benzyl phthalate	25.8	10.0	ug/L	50.0		51.6	10-140			
Chrysene	35.2	10.0	ug/L	50.0		70.4	44-140			
Dibenz (a,h) anthracene	48.7	10.0	ug/L	50.0		97.3	10-200			
Diethyl phthalate	37.0	10.0	ug/L	50.0		74.0	10-120			
Dimethyl phthalate	31.6	10.0	ug/L	50.0		63.3	10-120			
Di-n-butyl phthalate	38.7	10.0	ug/L	50.0		77.5	10-120			
Di-n-octyl phthalate	33.7	10.0	ug/L	50.0		67.4	19-132			
Fluoranthene	55.1	10.0	ug/L	50.0		110	43-121			
Fluorene	37.2	10.0	ug/L	50.0		74.4	70-120			
Hexachlorobenzene	31.8	1.00	ug/L	50.0		63.6	10-142			

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BHB0479 - SW351	0C/EPA600	-MS							
.CS (BHB0479-BS1)			ı	Prepared: 02/13/	2024 Analyzed: ()2/14/2024				
Hexachlorobutadiene	38.8	10.0	ug/L	50.0		77.6	38-120			
Hexachlorocyclopentadiene	20.8	10.0	ug/L	50.0		41.6	10-76			
Hexachloroethane	28.0	10.0	ug/L	50.0		55.9	55-120			
Indeno (1,2,3-cd) pyrene	46.7	10.0	ug/L	50.0		93.5	10-151			
Isophorone	18.2	10.0	ug/L	50.0		36.5	47-180			L
Naphthalene	27.9	5.00	ug/L	50.0		55.9	36-120			
Nitrobenzene	34.4	10.0	ug/L	50.0		68.9	54-158			
n-Nitrosodimethylamine	8.38	10.0	ug/L	50.0		16.8	10-85			
n-Nitrosodi-n-propylamine	33.8	10.0	ug/L	50.0		67.5	14-198			
n-Nitrosodiphenylamine	29.6	10.0	ug/L	50.0		59.2	12-97			
p-Chloro-m-cresol	27.9	10.0	ug/L	50.0		55.8	10-142			
Pentachlorophenol	25.4	20.0	ug/L	50.0		50.8	38-152			
Phenanthrene	40.6	10.0	ug/L	50.0		81.3	65-120			
Phenol	9.00	10.0	ug/L	50.5		17.8	17-120			
Pyrene	30.9	10.0	ug/L	50.0		61.8	70-120			L
Pyridine	8.48	10.0	ug/L	50.0		17.0	10-103			
Surr: 2,4,6-Tribromophenol (Surr)	73.8		ug/L	100		73.8	5-136			
Surr: 2-Fluorobiphenyl (Surr)	31.1		ug/L	50.0		62.3	9-117			
Surr: 2-Fluorophenol (Surr)	15.4		ug/L	100		15.4	5-60			
Surr: Nitrobenzene-d5 (Surr)	32.7		ug/L	50.0		65.4	5-151			
Surr: Phenol-d5 (Surr)	20.1		ug/L	100		20.1	5-60			
Surr: p-Terphenyl-d14 (Surr)	30.2		ug/L	50.0		60.4	5-141			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

2/29/2024 5:27:44PM

Wet Chemistry Analysis - Quality Control

				Spike Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level Result	%REC	Limits	RPD	Limit	Qual
Batch E	3HB0293 - No Pre	p Wet Chem	1						
Blank (BHB0293-BLK1)				Prepared & Analyzed: 02/08/202	24				
Nitrite as N	ND	0.05	mg/L						
LCS (BHB0293-BS1)				Prepared & Analyzed: 02/08/202	24				
Nitrite as N	0.12	0.05	mg/L	0.100	118	80-120			
Matrix Spike (BHB0293-MS1)	Source	e: 24B0268-0	1	Prepared & Analyzed: 02/08/202	24				
Nitrite as N	0.10	0.05	mg/L	0.100 BLOD	101	80-120			
Matrix Spike Dup (BHB0293-MSD1)	Sourc	e: 24B0268-0	1	Prepared & Analyzed: 02/08/202	24				
Nitrite as N	0.10	0.05	mg/L	0.100 BLOD	98.0	80-120	3.02	20	
Batch E	3HB0314 - No Pre	p Wet Chem	1						
Blank (BHB0314-BLK1)				Prepared & Analyzed: 02/08/202	24				
BOD	ND	2.0	mg/L						
LCS (BHB0314-BS1)				Prepared & Analyzed: 02/08/202	24				
BOD	211	2	mg/L	198	107	84.6-115.4			
Duplicate (BHB0314-DUP1)	Source	e: 24B0304-0	2	Prepared & Analyzed: 02/08/202	24				
BOD	16.7	2.0	mg/L	13.6			20.3	20	Р
Batch E	3HB0507 - No Pre	p Wet Chem	1						
Blank (BHB0507-BLK1)				Prepared: 02/13/2024 Analyzed	: 02/14/2024				
TKN as N	ND	0.50	mg/L	•					

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Wet Chemistry Analysis - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BHB0507 - No Pre	p Wet Chen	1							
LCS (BHB0507-BS1)				Prepared: 02/13/	2024 Analyzed: (02/14/2024				
TKN as N	5.19	0.5	mg/L	5.00		104	90-110			
Matrix Spike (BHB0507-MS1)	Sourc	e: 24B0170-0	2	Prepared: 02/13/	/2024 Analyzed: (02/14/2024				
TKN as N	6.05	0.50	mg/L	5.00	0.50	111	90-110			M
Matrix Spike (BHB0507-MS2)	Sourc	e: 24B0170-0	3	Prepared: 02/13/	2024 Analyzed: (02/14/2024				
TKN as N	5.82	0.50	mg/L	5.00	0.75	101	90-110			
Matrix Spike Dup (BHB0507-MSD1)	Sourc	e: 24B0170-0	2	Prepared: 02/13/	2024 Analyzed: (02/14/2024				
TKN as N	6.19	0.50	mg/L	5.00	0.50	114	90-110	2.29	20	М
Matrix Spike Dup (BHB0507-MSD2)	Sourc	e: 24B0170-0	3	Prepared: 02/13/2024 Analyzed: 02/14/2024						
TKN as N	6.00	0.50	mg/L	5.00	0.75	105	90-110	3.15	20	
Batch	BHB0671 - No Pre	p Wet Chen	n							
Blank (BHB0671-BLK1)				Prepared & Analy	yzed: 02/16/2024	ļ				
Total Recoverable Phenolics	ND	0.050	mg/L							
LCS (BHB0671-BS1)				Prepared & Analy	yzed: 02/16/2024	ļ				
Total Recoverable Phenolics	0.42	0.050	mg/L	0.500		84.8	80-120			
Matrix Spike (BHB0671-MS1)	Sourc	e: 24B0271-0	1	Prepared & Analy	yzed: 02/16/2024	ļ				
Total Recoverable Phenolics	58.1	2.50	mg/L	25.0	37.3	83.2	70-130			
Matrix Spike Dup (BHB0671-MSD1)	Sourc	e: 24B0271-0	1	Prepared & Analy	yzed: 02/16/2024	ļ				
Total Recoverable Phenolics	56.4	2.50	mg/L	25.0	37.3	76.4	70-130	2.97	20	

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BHB0683 - No Pre	p Wet Chem								
Blank (BHB0683-BLK1)				Prepared & Analy	yzed: 02/16/2024					
Cyanide	ND	0.01	mg/L							
LCS (BHB0683-BS1)				Prepared & Analy	yzed: 02/16/2024					
Cyanide	0.24	0.01	mg/L	0.250		97.5	80-120			
Matrix Spike (BHB0683-MS1)	Sourc	e: 24B0258-00	6	Prepared & Analy	yzed: 02/16/2024					
Cyanide	0.22	0.01	mg/L	0.250	0.02	80.4	80-120			
Matrix Spike (BHB0683-MS2)	Sourc	e: 24B0352-0	5	Prepared & Analy	yzed: 02/16/2024					
Cyanide	0.26	0.01	mg/L	0.250	BLOD	102	80-120			
Matrix Spike Dup (BHB0683-MSD1)	Sourc	e: 24B0258-00	6	Prepared & Analy	yzed: 02/16/2024					
Cyanide	0.23	0.01	mg/L	0.250	0.02	84.2	80-120	4.17	20	
Matrix Spike Dup (BHB0683-MSD2)	Sourc	e: 24B0352-0	5	Prepared & Analy	yzed: 02/16/2024					
Cyanide	0.25	0.01	mg/L	0.250	BLOD	99.2	80-120	2.60	20	
Batch	BHB0711 - No Pre	p Wet Chem								
Blank (BHB0711-BLK1)				Prepared & Analy	yzed: 02/17/2024					
Ammonia as N	ND	0.10	mg/L							
LCS (BHB0711-BS1)				Prepared & Analy	yzed: 02/17/2024					
Ammonia as N	1.01	0.1	mg/L	1.00		101	90-110			
Matrix Spike (BHB0711-MS1)	Sourc	e: 24B0714-08	3	Prepared & Analy	yzed: 02/17/2024					
Ammonia as N	1.07	0.1	mg/L	1.00	BLOD	101	89.3-131			

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Wet Chemistry Analysis - Quality Control

				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch	BHB0711 - No Pre	p Wet Chem	l							
Matrix Spike (BHB0711-MS2)	Sourc	e: 24B0352-0	1	Prepared & Analy	/zed: 02/17/2024					
Ammonia as N	1.14	0.1	mg/L	1.00	0.12	102	89.3-131			
Matrix Spike Dup (BHB0711-MSD1)	Sourc	e: 24B0714-0	В	Prepared & Analy	/zed: 02/17/2024					
Ammonia as N	1.07	0.1	mg/L	1.00	BLOD	101	89.3-131	0.0934	20	
Matrix Spike Dup (BHB0711-MSD2)	Sourc	e: 24B0352-0	1	Prepared & Analy	/zed: 02/17/2024					
Ammonia as N	1.15	0.1	mg/L	1.00	0.12	103	89.3-131	0.611	20	
Batch	BHB0783 - No Pre	p Wet Chem								
Blank (BHB0783-BLK1)				Prepared & Analy	/zed: 02/20/2024					
COD	ND	10.0	mg/L							
LCS (BHB0783-BS1)				Prepared & Analy	/zed: 02/20/2024					
COD	53.4	10.0	mg/L	50.0		107	88-119			
Matrix Spike (BHB0783-MS1)	Sourc	e: 24B0352-0	3	Prepared & Analy	/zed: 02/20/2024					
COD	57.8	10.0	mg/L	50.0	BLOD	116	72.4-130			
Matrix Spike Dup (BHB0783-MSD1)	Sourc	e: 24B0352-0	3	Prepared & Analy	/zed: 02/20/2024					
COD	51.4	10.0	mg/L	50.0	BLOD	103	72.4-130	11.6	20	
Batch I	BHB0801 - No Pre	p Wet Chem	1							
Blank (BHB0801-BLK1)				Prepared & Analy	/zed: 02/20/2024					
Nitrate+Nitrite as N	ND	0.10	mg/L							

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BHB0801 - No Pre	ep Wet Chem								
LCS (BHB0801-BS1)				Prepared & Anal	yzed: 02/20/2024					
Nitrate+Nitrite as N	1.02	0.1	mg/L	1.00		102	90-110			
Matrix Spike (BHB0801-MS1)	Sour	ce: 24B0823-08	3	Prepared & Anal	yzed: 02/20/2024					
Nitrate+Nitrite as N	2.44	0.10	mg/L	1.00	1.45	99.1	90-120			
Matrix Spike Dup (BHB0801-MSD1)	Sour	ce: 24B0823-08	3	Prepared & Anal	yzed: 02/20/2024					
Nitrate+Nitrite as N	2.42	0.10	ma/L	1.00	1.45	96.9	90-120	0.905	20	

Date Issued:

2/29/2024 5:27:44PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Analytical Summary

 24B0353-01
 Subcontract

 24B0353-02
 Subcontract

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA 60	00/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
24B0353-01	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
24B0353-02	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analys	is		Preparation Method:	No Prep Wet Chem	
24B0353-01	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHB0293	SHB0298	AJ30297
24B0353-02	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHB0293	SHB0298	AJ30297
24B0353-01	300 mL / 300 mL	SM5210B-2016	BHB0314	SHB0485	
24B0353-02	300 mL / 300 mL	SM5210B-2016	BHB0314	SHB0485	
24B0353-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215
24B0353-02	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215
24B0353-01	5.00 mL / 10.0 mL	SW9065	BHB0671	SHB0664	AB40234
24B0353-02	5.00 mL / 10.0 mL	SW9065	BHB0671	SHB0664	AB40234
24B0353-01	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
24B0353-02	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
24B0353-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0711	SHB0668	AB40235
24B0353-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0711	SHB0668	AB40235
24B0353-01	2.00 mL / 2.00 mL	SM5220D-2011	BHB0783	SHB0744	AB40165
24B0353-02	2.00 mL / 2.00 mL	SM5220D-2011	BHB0783	SHB0744	AB40165
24B0353-01	1.00 mL / 1.00 mL	SM4500-NO3F-2016	BHB0801	SHB0771	AB40252
24B0353-01RE1	1.00 mL / 1.00 mL	SM4500-NO3F-2016	BHB0801	SHB0771	AB40252
24B0353-02	1.00 mL / 1.00 mL	SM4500-NO3F-2016	BHB0801	SHB0771	AB40252

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	/sis		Preparation Method:	No Prep Wet Chen	1
24B0353-02RE1	1.00 mL / 1.00 mL	SM4500-NO3F-2016	BHB0801	SHB0771	AB40252
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-	-MS
24B0353-01	0.500 mL / 2.00 mL	SW8270E	BHB0479	SHB0682	AL30202
24B0353-02	0.500 mL / 2.00 mL	SW8270E	BHB0479	SHB0682	AL30202
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
24B0353-01	5.00 mL / 5.00 mL	SW8260D	BHB0320	SHB0330	AL30322
24B0353-01RE1	5.00 mL / 5.00 mL	SW8260D	BHB0320	SHB0330	AL30322
24B0353-02	5.00 mL / 5.00 mL	SW8260D	BHB0320	SHB0330	AL30322
24B0353-02RE1	5.00 mL / 5.00 mL	SW8260D	BHB0320	SHB0330	AL30322

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

QC Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
BHB0369-BLK1	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
BHB0369-BS1	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
BHB0369-MS1	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
BHB0369-MS2	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
BHB0369-MSD1	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
BHB0369-MSD2	50.0 mL / 50.0 mL	SW6020B	BHB0369	SHB0409	AB40197
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	rsis		Preparation Method:	No Prep Wet Chem	1
BHB0293-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHB0293	SHB0298	AJ30297
BHB0293-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHB0293	SHB0298	AJ30297
BHB0293-MRL1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHB0293	SHB0298	AJ30297
BHB0293-MS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHB0293	SHB0298	AJ30297
BHB0293-MSD1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHB0293	SHB0298	AJ30297
BHB0314-BLK1	300 mL / 300 mL	SM5210B-2016	BHB0314	SHB0485	
BHB0314-BS1	300 mL / 300 mL	SM5210B-2016	BHB0314	SHB0485	
BHB0314-DUP1	300 mL / 300 mL	SM5210B-2016	BHB0314	SHB0485	
BHB0507-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215
BHB0507-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215
BHB0507-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215
BHB0507-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215
BHB0507-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215
BHB0507-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHB0507	SHB0539	AB40215

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	ysis		Preparation Method:	No Prep Wet Chem	
BHB0671-BLK1	5.00 mL / 10.0 mL	SW9065	BHB0671	SHB0664	AB40234
BHB0671-BS1	5.00 mL / 10.0 mL	SW9065	BHB0671	SHB0664	AB40234
BHB0671-MRL1	5.00 mL / 10.0 mL	SW9065	BHB0671	SHB0664	AB40234
BHB0671-MS1	0.100 mL / 10.0 mL	SW9065	BHB0671	SHB0664	AB40234
BHB0671-MSD1	0.100 mL / 10.0 mL	SW9065	BHB0671	SHB0664	AB40234
BHB0683-BLK1	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
BHB0683-BS1	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
BHB0683-MRL1	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
BHB0683-MS1	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
BHB0683-MS2	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
BHB0683-MSD1	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
BHB0683-MSD2	6.00 mL / 6.00 mL	SW9012B	BHB0683	SHB0640	AB40228
BHB0711-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0711	SHB0668	AB40235
BHB0711-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0711	SHB0668	AB40235
BHB0711-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0711	SHB0668	AB40235
BHB0711-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0711	SHB0668	AB40235
BHB0711-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0711	SHB0668	AB40235
BHB0711-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHB0711	SHB0668	AB40235
BHB0783-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BHB0783	SHB0744	AB40165
BHB0783-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BHB0783	SHB0744	AB40165
BHB0783-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BHB0783	SHB0744	AB40165
BHB0783-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BHB0783	SHB0744	AB40165
BHB0801-BLK1	1.00 mL / 1.00 mL	SM4500-NO3F-2016	BHB0801	SHB0771	AB40252
BHB0801-BS1	1.00 mL / 1.00 mL	SM4500-NO3F-2016	BHB0801	SHB0771	AB40252
BHB0801-MS1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BHB0801	SHB0771	AB40252
BHB0801-MSD1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BHB0801	SHB0771	AB40252
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID

Date Issued:

AL30322

AL30322

2/29/2024 5:27:44PM

Certificate of Analysis

SHB0330

SHB0330

Client Name: SCS Engineers-Winchester

5.00 mL / 5.00 mL

5.00 mL / 5.00 mL

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

BHB0320-DUP1

BHB0320-MS1

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID					
Semivolatile Organi	c Compounds by GCMS		Preparation Method:	SW3510C/EPA600-	MS					
BHB0479-BLK1	1000 mL / 1.00 mL	SW8270E	BHB0479	SHB0575	AK30271					
BHB0479-BLK2		SW8270E	BHB0479	SHB0772	AL30202					
BHB0479-BS1	1000 mL / 1.00 mL	SW8270E	BHB0479	SHB0575	AK30271					
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID					
Volatile Organic Cor	mpounds by GCMS		Preparation Method:	SW5030B-MS						
BHB0320-BLK1	5.00 mL / 5.00 mL	SW8260D	BHB0320	SHB0330	AL30322					
BHB0320-BS1	5.00 mL / 5.00 mL	SW8260D	BHB0320	SHB0330	AL30322					

BHB0320

BHB0320

SW8260D

SW8260D

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Certifications

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Analyte

Certified Analyses included in this Report

EPA350.1 R2.0 in Non-Potable Water	
Ammonia as N	VELAP,NCDEQ,PADEP,WVDEP
EPA351.2 R2.0 in Non-Potable Water	
TKN as N	VELAP,NCDEQ,WVDEP
SM4500-NO2B-2011 in Non-Potable Water	
Nitrite as N	VELAP,WVDEP,NCDEQ
SM4500-NO3F-2016 in Non-Potable Water	
Nitrate+Nitrite as N	VELAP,WVDEP
SM5210B-2016 in Non-Potable Water	,
BOD	VELAP,NCDEQ,WVDEP
SM5220D-2011 in Non-Potable Water	,
COD	VELAP,NCDEQ,PADEP,WVDEP
SW6020B in Non-Potable Water	v = 2 u , (105 = q, 1 v = 1 , (11 v = 1)
	VELAP
Mercury	· ·
Arsenic	VELAP,WVDEP
Barium	VELAP,WVDEP
Cadmium	VELAP,WVDEP
Chromium	VELAP,WVDEP
Copper	VELAP,WVDEP
Lead	VELAP,WVDEP
Nickel	VELAP,WVDEP
Selenium	VELAP,WVDEP
Silver	VELAP,WVDEP
Zinc	VELAP,WVDEP
SW8260D in Non-Potable Water	

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Certified Analyses included in this Report

Analyte	Certifications
2-Butanone (MEK)	VELAP,NCDEQ,PADEP,WVDEP
Acetone	VELAP,NCDEQ,PADEP,WVDEP
Benzene	VELAP,NCDEQ,PADEP,WVDEP
Ethylbenzene	VELAP,NCDEQ,PADEP,WVDEP
m+p-Xylenes	VELAP,NCDEQ,PADEP,WVDEP
o-Xylene	VELAP,NCDEQ,PADEP,WVDEP
Toluene	VELAP,NCDEQ,PADEP,WVDEP
Xylenes, Total	VELAP,NCDEQ,PADEP,WVDEP
Tetrahydrofuran	VELAP,PADEP
SW8270E in Non-Potable Water	
Anthracene	NCDEQ,WVDEP,VELAP,PADEP
SW9012B in Non-Potable Water	
Cyanide	VELAP,WVDEP
SW9065 in Non-Potable Water	
Total Recoverable Phenolics	VELAP,WVDEP

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2024
NCDEQ	North Carolina DEQ	495	12/31/2024
NCDOH	North Carolina Department of Health	51714	07/31/2024
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #009	68-03503	10/31/2024
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/14/2024
TXCEQ	Texas Comm on Environmental Quality #T104704576-23-1	T104704576	05/31/2024
VELAP	NELAP-Virginia Certificate #12759	460021	06/14/2024
WVDEP	West Virginia DEP	350	11/30/2024

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Qualifiers and Definitions

Cl Residual Chlorine or other oxidizing agent was detected in the container used to analyze this sample.

DS Surrogate concentration reflects a dilution factor.

E Estimated concentration, outside calibration range

J The reported result is an estimated value.

LCS recovery is outside of established acceptance limits

M Matrix spike recovery is outside established acceptance limits

P Duplicate analysis does not meet the acceptance criteria for precision

RPD Relative Percent Difference

Qual Qualifers

-RE Denotes sample was re-analyzed

LOD Limit of Detection

BLOD Below Limit of Detection

LOQ Limit of Quantitation

DF Dilution Factor

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral

library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are

estimated and are calculated using an internal standard response factor of 1.

PCBs, Total Total PCBs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.

Citatii oi Custouy Effective: Mar 10, 2021

1941 REYMET ROAD **RICHMOND, VIRGINIA 23237** (804) 358-8295 PHONE (804)358-8297 FAX

							CHA	IN OF	CUS		וטי	1												PAGE 1	1 OF 1
												y of Bristol Landfill	#588												
CONTACT: Jennifer Rob	b				IN	VOICE CO								-02	02 LFG-EW Monthly Monitoring										
ADDRESS: 296 Victory Road	Ł				IN	NVOICE ADDRESS:								PF	PROJECT NUMBER: 02218208.15 Task 2										
Winchester, VA 22602 INVOICE PHONE #:															P.0	O. #:									
PHONE #: 703-471-6150 EMAIL: <u>irobb@scsengineers.com</u> Pretreatment Program:																									
Is sample for compliance reporting? YES NO Regulatory State: V A Is sample from a chlorinated supply? YES NO PWS I.D. #:																									
												ime: 10 Day(s)													
Matrix Codes: WW=Waste Water/Storm Water GW=Ground Water DW=Drinking Water S=Soil/Solids OR=Organic A=Air WP=Wipe OT=Other													COMMENT	S											
			(6)					1						AN	ALYSI	S/(PR	ESER	VA	TIV	E)			Preservative Codes: N=N C=Hydrochloric Acid S=Sul	
			Field Filtered (Dissolved Metals)				Stop		/		0											Т	\top	H=Sodium Hydroxide A=A Acid Z=Zinc Acetate T=S	
			ž				St				R2.	Ξ.	-		-	Nitrite SM22 450-NO3F-2011	0	ć o				1,0		Thiosulfate M=Metha	inol
			l ed	a)	(n)	4	site			S		- SM22 5210B-2021	- SM22 5220D-2011		SM22 450-NO3F-2011 eperatly from Nitrite)	F-2	SVOC (Anthracene) 8270	Total Metals (As, Ba, Cd, Cr, Cu, Pb, Ni, Se, Ag, Zn) 6020	0.			V. Fatty Acids (See List) 8015	; _		
			los	ate	Ĭ.Ĕ	 ate	Od.		(n)	ner	350.1	9	- O	2	3F- Nitri	ğ	(e)	a, (Zn)	R2		<u>ه</u>	(ts	8260	3	
CLIENT SAMPLE I.D.	=		l e	-	gë	tai	A	21(22(90	N- Fo	5	ig.	As, B	3		/erabl	3 9	1 4		2260				
			D D	Composite Start Date	Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Time	Time Preserved	Matrix (See Codes)	Number of Containers	Ammonia - EPA	2 5	2 5	Cyanide - SW9012	Nitrate SM22 450-NO3F-20 (report seperatly from Nitrite)	2 45	Jra(e, A	32.	6020	Total Recoverable	S	VOCs (See List)		1200
		e	ere	<u>te</u>	ţe.	Grab Date or Composite Si) e (ese	ee	of (a.	M2	M2	5	//22 erat	M22	힐	tals I, S	141	9 .	00 %	Sigs	0	no HCI	
		Sos	I	Sos	Soci	Da	늗	Pre	8)	er	on	S	S	ide		S	3	Met	回	3	B :	Š	0.	2	
	Grab	Composite	밀	Ę.	Composite	ab	Grab	ne	Et.	l m	틸	BOD	COD	an	Nitrate (report s	rite	ĕ۱	ta T	Ż	Mercury	Total Reco	Fatt	١٥	PLEASE NOTE PRESERVA	
	ঠ	ပြိ	ijĔ	ပိ	ပိ	ဗ် ပိ		Ë	ž	ž	Ar	В	\ddot{c}	ઈ	Te Je	ž	S	<u>₽</u> ਹ	¥	ž	는 선	. >	>	RATE (L/min)	01101111
1) EW-85	X					2/6/24	930		GW	12	X	X	X	X	X	X	X	X	X	1	X	X	X		
2) EW-88	×					2/6/24	900		GW	13	X	X	X	×	7	×	×	X	×	X	×	K	/		
3)	\perp	-	\sqcup					- 33	GW		l ,					\sqcup						\bot	\bot		
4)	_	_	\perp						GW								ا ~ -		l	ı	L	ı	١,	1 100252 ——	
5)	+	-	+					- 10	GW	_	_		_	\dashv		SC							2	24B0353	
6)	+	-	+						GW	-	_		\dashv	\dashv		24-	02	LFG	-E	W					
7)	+	-	+			- 1	-	-	GW			9 D	-	\dashv		Re	cd:	02/0	8/2	202	4 D	ue:	: 02	2/22/2024 ——	
8)	+	+	+						GW	\vdash			\dashv	\dashv										v130325002	
9)	+	+	+						GW	-			-	\dashv		\vdash	-		1	-		+	+		
10) RELINQUISHED;	- DA	TE /	TIME	RECEIV	ED:			DATE /	DI	00	Do	to D	a oko		LADII		W V	The	rm l	ID: I	HEG	辶	늤	OLER TEMP 0 - 2	°C
RELINQUISHED: DATE / TIME TIME TIME TIME COOLER TEMP COOLER																									
RELINQUISHED:		TE /	TIME	RECEIV		1 1		DATE /	TIME	Leve	el III			- 1					2	27	1				
LCN			70.0	16	an	6	R	48/2	708	UU	SI 187		П												
RELINQUISHED: DATE / TIME RECEIVED: DATE / TIME Level IV																									
I									15-01	1															

Page 41 of 58

Sample Preservation Log Form #: F1301 Rev # 15.0 Effective: July 13, 2023 Page 1 of 1

Sample Preservation Log

Order I	24			í 3											Date	Perf	orme	ed: _	7	2 - 8	3 - 2	24	0 200000	***********	_				Ana	lyst F	Perfor	ming C	heck:		C	°5 <u>8</u>			_					
		Г	Vieta		c	yanio	de	[Sulfic	de	A	mmo	nia		TKN			nos,		NC)3+N	02		DRO)	(808)	estic 81/608 B DW	(508)		SVOC (525/8270/625)		(525/8270/625)		CrV	* **	1	est/P (508) VOC(1	C	oD			mli	
Sample ID	Container ID	Rec	l as eived Other	Final pH	Rec	l as elved Other	Final pH	Rec	H as ceived Other	Final pH	Rec	d as elved Other	inal	Rec	l as eived Other	Final pH	Rece	l as eived Other	Final pH	П	l as eived Other	Final pH	Rec	H as elved Other	Final pH				Res. CI final + or -		Received Res. Cl final or -		final + or -	Received	Final pH	Re	H as ceived Other	뎔	Rec	i as eived Other	Final pH	pH Rece 4 2	as eived Other	_
1	Α		5	42																																								
1	D					9	712										Ц									L								L								L		
	F																																	L							5	42		
1	G													Ш			Ц													_				L								L		
1	H											5	12		5	42					5	42												L				5	۲2					
2	Α		5	12													Ш						L																					
2	D					8	712																											L										
2	F																																	L							5	42		
2	G																													-														
2	14											5	42		5	42					5	47																5	42					
																																		L										
																																		L										
																																		L										
NaOH									HNC									* pH n	prese	e adji	usted	betwe	en 9	.3 - 9.7	7				_	Ana	lyst Ir	itials: _												
H ₂ SO ₄									Na ₂ S Na ₂ S										ionia IaOH																									
Pag	•						H	_									- I	51111												a	Meta dde	als we	re rece	eive n 8 1	d wi Febr	th pl	H = 5 202	5 H.N 4, by	O3 v	vas G in				

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Client Site I.D.:

Laboratory Order ID: 24B0353

Sample Conditions Checklist

Samples Received at:	0.20°C
How were samples received?	Logistics Courier
Were Custody Seals used? If so, were they received intact?	Yes
Are the custody papers filled out completely and correctly?	No
Do all bottle labels agree with custody papers?	No
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	Yes
Are all volatile organic and TOX containers free of headspace?	No
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	No
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis. In addition, field parameters are always received outside holding time and will be marked accordingly.	No

^{*}H2SO4-preserved bottles for both samples were received with a pH greater than 2, and H2SO4 was added to bring the pH to less than 2.

^{*}NaOH-preserved bottles for both samples were received with a pH less than 12, and NaOH was added to bring the pH to greater than 12.

2/29/2024 5:27:44PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-02 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

*All VOAs for both samples were received with headspace.

*No trip blanks were received.

Analysis to proceed per Jennifer Robb via email.

*Samples were logged with a collection date of 02/07/24 per Will Fabrie via email and the bottle labels, which differ from the chain of custody (02/06/24). MRS 02/08/24 1330

February 29, 2024

Virginia Thrasher Enthalpy 1941 Reymet Road Richmond, VA 23237

RE: Project: 24B0353

Pace Project No.: 20306866

Dear Virginia Thrasher:

Enclosed are the analytical results for sample(s) received by the laboratory on February 09, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Baton Rouge

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ruth Webs

Ruth Welsh ruth.welsh@pacelabs.com (225) 769-4900 Project Manager

Enclosures

cc: Andrew Bruner, Enthalpy Daniel Elliott, Enthalpy Meghan Meyer, Enthalpy

7979 Innovation Park Drive Baton Rouge, LA 70820 (225) 769-4900

CERTIFICATIONS

Project: 24B0353
Pace Project No.: 20306866

Pace Analytical Services Baton Rouge

7979 Innovation Park Drive Ste A, Baton Rouge, LA

70820-7402

Louisiana Dept of Environmental Quality (NELAC/LELAP):

01979

Florida Dept of Health (NELAC/FELAP): E87854

DoD ELAP (A2LA) #: 6429.01 Alabama DEM #: 41900 Alaska DEC-DW #: LA00024 Alaska DEC CS-LAP #: 21-001 Arkansas DEQ #: 88-0655 California ELAP #: 3063 Georgia DPD #: C050

Hawaii DOH State Laboratories Division

Illinois EPA #: 200048 Kansas DoHE #: E-10354

Kentucky DEP UST Branch #: 123054

Louisiana DOH #: LA036 Minnesota DOH #: 2233799 Mississippi State Dept of Health Montana Department of Environmental Quality

Nebraska DHHS #: NE-OS-35.21 Nevada DCNR DEP #: LA00024 New York DOH #: 12149

North Carolina DEQ - WW & GW #: 618

North Dakota DEQ #: R195

Ohio EPA #: 87782

Oklahoma Dept of Environmental Quality #: 9403

Oregon ELAP #: 4168

Pennsylvania Dept of Environmental Protection #: 68-

05973

South Carolina DHEC #: 73006001 Texas CEQ #: T104704178-23-15

Utah DOH #: LA00024 Virginia DCLS #: 6460215

Washington Dept of Ecology #: C929 Wisconsin DNR #: 399139510

SAMPLE SUMMARY

Project: 24B0353
Pace Project No.: 20306866

Lab ID	Sample ID	Matrix	Date Collected	Date Received
20306866001	24B0353-01: EW-85	Water	02/07/24 09:30	02/09/24 09:50
20306866002	24B0353-02: EW-88	Water	02/07/24 09:00	02/09/24 09:50

SAMPLE ANALYTE COUNT

Project: 24B0353
Pace Project No.: 20306866

Lab ID	Sample ID	Method	Analysts	Analytes Reported
20306866001	24B0353-01: EW-85	Pace ENV-SOP-BTRO-0042	CCL	10
20306866002	24B0353-02: EW-88	Pace ENV-SOP-BTRO-0042	CCL	10

PASI-BR = Pace Analytical Services - Baton Rouge

PROJECT NARRATIVE

Project: 24B0353 Pace Project No.: 20306866

Method: Pace ENV-SOP-BTRO-0042
Description: BR AM23G Low Level VFA

Client: BR-Enthalpy

Date: February 29, 2024

General Information:

2 samples were analyzed for Pace ENV-SOP-BTRO-0042 by Pace Analytical Services Baton Rouge. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 318777

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

- 24B0353-01: EW-85 (Lab ID: 20306866001)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- 24B0353-02: EW-88 (Lab ID: 20306866002)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid

PROJECT NARRATIVE

Project: 24B0353
Pace Project No.: 20306866

Method: Pace ENV-SOP-BTRO-0042
Description: BR AM23G Low Level VFA

Client: BR-Enthalpy
Date: February 29, 2024

Analyte Comments:

QC Batch: 318777

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

- 24B0353-02: EW-88 (Lab ID: 20306866002)
 - Pentanoic Acid
- BLANK (Lab ID: 1526443)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- LCS (Lab ID: 1526444)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- MS (Lab ID: 1526463)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- MSD (Lab ID: 1526464)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: 24B0353
Pace Project No.: 20306866

Date: 02/29/2024 01:55 PM

Sample: 24B0353-01: EW-85	Lab ID: 2030	06866001	Collected: 02/07/2	24 09:30	Received: 0	2/09/24 09:50 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
BR AM23G Low Level VFA	Analytical Meth	od: Pace E	NV-SOP-BTRO-004	2				
	Pace Analytical	Services -	Baton Rouge					
Pentanoic Acid	ND	mg/L	500	1000		02/27/24 06:05	109-52-4	N2
Acetic Acid	3530	mg/L	500	1000		02/27/24 06:05	64-19-7	
Butyric Acid	1180	mg/L	500	1000		02/27/24 06:05	107-92-6	
Formic acid	2010	mg/L	500	1000		02/27/24 06:05	64-18-6	
Hexanoic Acid	ND	mg/L	500	1000		02/27/24 06:05	142-62-1	N2
-Hexanoic Acid	ND	mg/L	500	1000		02/27/24 06:05	646-07-1	N2
Lactic Acid	756	mg/L	500	1000		02/27/24 06:05	50-21-5	
-Pentanoic Acid	ND	mg/L	500	1000		02/27/24 06:05	503-74-2	N2
Propionic Acid	1980	mg/L	500	1000		02/27/24 06:05	79-09-4	
Pyruvic Acid	ND	mg/L	500	1000		02/27/24 06:05	127-17-3	
0	1 - L ID 000		0-11	24.00.00	Desciond 0	0/00/04 00 50	A-1 \\A/-1	
Sample: 24B0353-02: EW-88 Parameters	Lab ID: 2030	06866002 Units	Collected: 02/07/2	24 09:00 DF			Matrix: Water CAS No.	Qua
Parameters	Results	Units	Report Limit	DF	Received: 0.	2/09/24 09:50 M Analyzed	Matrix: Water CAS No.	Qua
·	Results Analytical Meth	Units od: Pace E	Report Limit NV-SOP-BTRO-004	DF				Qua
Parameters	Results	Units od: Pace E	Report Limit NV-SOP-BTRO-004	DF				Qua
Parameters BR AM23G Low Level VFA	Results Analytical Meth	Units od: Pace E	Report Limit NV-SOP-BTRO-004	DF			CAS No.	Qua N2
Parameters BR AM23G Low Level VFA Pentanoic Acid	Results Analytical Meth Pace Analytical	Units nod: Pace E I Services -	Report Limit NV-SOP-BTRO-004 Baton Rouge	DF 2		Analyzed	CAS No.	
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid	Results Analytical Meth Pace Analytical ND	Units od: Pace E I Services - mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge	DF 2		Analyzed 02/27/24 06:29	CAS No. 109-52-4 64-19-7	
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid	Analytical Meth Pace Analytical ND 6770	Units nod: Pace E Services - mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 500 500	DF 2 1000 1000		Analyzed 02/27/24 06:29 02/27/24 06:29	CAS No. 109-52-4 64-19-7 107-92-6	
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid	Analytical Meth Pace Analytical ND 6770 2980	Units od: Pace E Services - mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 500 500 500	DF 2 1000 1000 1000		Analyzed 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6	
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid	Results Analytical Meth Pace Analytical ND 6770 2980 2940	Units od: Pace E Services - mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 500 500 500 500	DF 2 1000 1000 1000 1000		Analyzed 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6 142-62-1	N2
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid -Hexanoic Acid	Results Analytical Meth Pace Analytical ND 6770 2980 2940 ND	Units od: Pace E Services - mg/L mg/L mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 500 500 500 500 500	DF 2 1000 1000 1000 1000 1000		Analyzed 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6 142-62-1 646-07-1	N2 N2
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid -Hexanoic Acid Lactic Acid	Analytical Meth Pace Analytical ND 6770 2980 2940 ND ND	Units od: Pace E Services - mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 500 500 500 500 500 500	DF 2 1000 1000 1000 1000 1000 1000		Analyzed 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6 142-62-1 646-07-1 50-21-5	N2 N2
Parameters	Analytical Meth Pace Analytical ND 6770 2980 2940 ND ND ND	Units od: Pace E Services - mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 500 500 500 500 500 500 500 500	DF 2 1000 1000 1000 1000 1000 1000 1000		Analyzed 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29 02/27/24 06:29	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6 142-62-1 646-07-1 50-21-5 503-74-2	N2 N2 N2 N2

QUALITY CONTROL DATA

Project: 24B0353
Pace Project No.: 20306866

Date: 02/29/2024 01:55 PM

QC Batch: 318777 Analysis Method: Pace ENV-SOP-BTRO-0042
QC Batch Method: Pace ENV-SOP-BTRO-0042 Analysis Description: BR AM23G Low Level VFA

Laboratory: Pace Analytical Services - Baton Rouge

Associated Lab Samples: 20306866001, 20306866002

METHOD BLANK: 1526443 Matrix: Water

Associated Lab Samples: 20306866001, 20306866002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Acetic Acid	mg/L	ND ND	0.50	02/26/24 16:06	
Butyric Acid	mg/L	ND	0.50	02/26/24 16:06	
Formic acid	mg/L	ND	0.50	02/26/24 16:06	
Hexanoic Acid	mg/L	ND	0.50	02/26/24 16:06	N2
i-Hexanoic Acid	mg/L	ND	0.50	02/26/24 16:06	N2
i-Pentanoic Acid	mg/L	ND	0.50	02/26/24 16:06	N2
Lactic Acid	mg/L	ND	0.50	02/26/24 16:06	
Pentanoic Acid	mg/L	ND	0.50	02/26/24 16:06	N2
Propionic Acid	mg/L	ND	0.50	02/26/24 16:06	
Pyruvic Acid	mg/L	ND	0.50	02/26/24 16:06	

LABORATORY CONTROL SAMPLE	: 1526444	Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers
Acetic Acid	mg/L		2.0	99	70-130
Butyric Acid	mg/L	2	1.9	93	70-130
Formic acid	mg/L	2	1.9	96	70-130
Hexanoic Acid	mg/L	2	1.6	81	39-114 N2
i-Hexanoic Acid	mg/L	2	1.8	92	39-114 N2
i-Pentanoic Acid	mg/L	2	1.7	85	59-121 N2
Lactic Acid	mg/L	2	2.1	106	70-130
Pentanoic Acid	mg/L	2	1.7	87	59-121 N2
Propionic Acid	mg/L	2	1.9	93	70-130
Pyruvic Acid	mg/L	2	1.9	96	70-130

MATRIX SPIKE & MATRIX S	PIKE DUPLI	CATE: 1526	463	1526464											
Parameter	2 Units	20306861002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual			
Acetic Acid	mg/L	10.0U	40	40	40.4	40.5	96	97	70-130	0	30	-			
Butyric Acid	mg/L	10.0U	40	40	39.9	41.5	98	102	70-130	4	30				
Formic acid	mg/L	10.0U	40	40	39.6	40.1	97	98	70-130	1	30				
Hexanoic Acid	mg/L	10.0U	40	40	30.8	30.6	77	76	39-114	1	30	N2			
i-Hexanoic Acid	mg/L	10.0U	40	40	42.9	42.3	107	106	39-114	1	30	N2			
i-Pentanoic Acid	mg/L	10.0U	40	40	34.1	32.5	85	81	59-121	5	30	N2			
Lactic Acid	mg/L	7.3J	40	40	47.0	47.4	99	100	70-130	1	30				
Pentanoic Acid	mg/L	10.0U	40	40	35.0	34.2	88	85	59-121	2	30	N2			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: 24B0353
Pace Project No.: 20306866

Date: 02/29/2024 01:55 PM

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1526463 1526464													
		20306861002	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
Propionic Acid	mg/L	10.0U	40	40	37.3	37.8	93	94	70-130	1	30		
Pyruvic Acid	mg/L	10.0U	40	40	36.9	39.4	92	99	70-130	7	30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 24B0353 Pace Project No.: 20306866

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

ANALYTE QUALIFIERS

Date: 02/29/2024 01:55 PM

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 24B0353
Pace Project No.: 20306866

Date: 02/29/2024 01:55 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
20306866001	24B0353-01: EW-85	Pace ENV-SOP-BTRO-	318777		
20306866002	24B0353-02: EW-88	Pace ENV-SOP-BTRO- 0042	318777		

Pace - Gulf Coast 7979 Innovation Park Dr Baton Rouge, LA 70820 1941 | RICHMOND, \ (804) 3! (80 W0#:20306866

Page 57 of 58

CHAIN OF CUSTODY

COMPANY NAME: Enthalpy	INVOICE TO: Enthalpy	PROJECT NAME/Quote #: 24B0353						
CONTACT: Dan Elliott	INVOICE CONTACT:	SITE NAME: 24B0353						
ADDRESS: 1941 Reymet Rd Richmond VA 23237	INVOICE ADDRESS: 1941 Reymet Rd Richmond VA 23237	PROJECT NUMBER: 24B0353						
PHONE #: (804) 358-8295	INVOICE PHONE #: (804) 358-8295	P.O. #: PO-059959						
FAX #: EMAIL:		Pretreatment Program:						
Is sample for compliance reporting? YES NO	Is sample from a chlorinated supply? YES No	PWS I.D. #:						
SAMPLER NAME (PRINT):	SAMPLER SIGNATURE:	Turn Around Time: 10-15						
Matrix Codes: WW=Waste Water/Storm Water GW=Ground Water DW=Drin	nking Water S=Soil/Solids OR=Organic A=Air WP=Wipe OT=Other	COMMENTS						
als)	ANAL	YSIS / (PRESERVATIVE) Preservative Codes: N=Nitric Acid C=Hydrochloric Acid						
	Grab Date or Composite Stop Date Grab Time or Composite Stop Time Time Preserved Matrix (See Codes) Number of Containers Volatile Fatty Acid Low Level	S=Sulfuric Acid H=Sodium Hydroxide A=Ascorbic Acid Z=Zinc Acetate T=Sodium Thiosulfate M=Methanol PLEASE NOTE PRESERVATIVE(S), INTERFERENCE CHECKS or PUMP RATE (L/min)						
1) 24B0353-01: EW-85 X	02/07/24 0930 GW 2 X	TOWN (STE (DIMIT)						
2) 24B0353-02: EW-88 X	02/07/24 0900 GW 3 X	2						
3)								
4)								
5)								
6)								
7)								
8)								
9)								
10)								
RELINQUISHED: DATE / TIME RECEIVED: PELLO DATE / TIME RECEIVED: THE RECEIVED: DATE / TIME RECEIVED: RELINQUISHED: DATE / TIME RECEIVED:	DATE / TIME QC Data Package LA CEYPTES US LY 1552 Level I DATE / TIME Level II DATE / TIME Level III	B USE ONLY COOLER TEMP°C						
DATE / HIVE RECEIVED.	Level IV	Page 12 of 13						

) 18 13 of 13

WO#: 20306866

PM: RW

Due Date: 02/23/24

CLIENT: BR-Enthalpy

Pace

Sample Condition Upon Reciep

Workorde

			r. Baton Rouge, LA 70806 py/date: (1) 12 / 2/9/14									
Means			Pace Client UPS FedEx Other:									
l	Z No	/	Were custody seals present on the cooler?	10000000000000000000000000000000000000								
L			If custody seals were present, were they intact and unbroke									
Method	: LJTerr			rrection Factor:°C								
Cool	er #1		Temp °C: Samples of	` .								
Cool			Temp °C: (Actual/True)									
Cool			Temp °C: (Actual/True) Method of Comp °C: (Actual/True)									
Tracking		Cooler	Temp °C: (Actual/True)	et 🔲 Ice Packs 🗆 Dry Ice 🗀 None								
		778	51 2490 3560									
☐ Yes	Ø No	□ NA	is a temperature blank present?									
Yes	□ No	☐ NA	Was a chain of custody (COC) recieved?									
☐ Yes	Ø No	□ NA	Was the line and profile number listed on the COC?									
Yes	□ No	□ NA	Were all coolers received at or below 6.0°C? If no, notify Project Manager notified via email.									
✓ Yes	□ No		Were proper custody procedures (relinquished/received)									
☐ Yes	No	□ NA	followed? Is the sampler name and signature on the COC?									
Z Yes	□ No		Were sample IDs listed on the COC and all sample									
Z 163			containers? Was collection date & time listed on the COC and all sample									
Z Yes	□ No		containers?									
Yes	□No		Did all container label information (ID, date, time) agree wit the COC?	h								
Z Yes	☐ No		Were tests to be performed listed on the COC?									
4	m.,		Did all samples arrive in the proper containers for each test									
Yes	No لـــا		and/or in good condition (unbroken, lids on, etc.)?									
☑ Yes	☐ No		Was adequate sample volume available?									
⊿ Yes	□No	··	Were all samples received within ½ the holding time or 48 hours, whichever comes first?									
☑ Yes	□ No		Were all samples containers accounted for? (No missing /									
<u> </u>			excess) Were VOA, 8015C (GRO/VPH), and RSK-175 samples free of									
☐ Yes	□ No	P NA	bubbles > "pea size" (1/4" or 6mm in diameter) in any of the									
		[ZData	VOA vials? Trip blank present?									
☐ Yes	Пио	PNA	Filtered volume received for dissolved tests?									
☐ Yes	☐ No	D-NA	If no, list affected sample(s) in comments below.									
☐ Yes	☐ No	NA	Were all metals/nutrient samples received at a pH of < 2?	If No, was preservative added? Yes No If added, record lots. Dispenser/pipette lot #:								
☐ Yes	□No	☑ NA	Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9?	HNO ₃ H ₂ SO ₄ NaOH NaOH								
Comme			samples received at a ph > 5?	Date: Time:								
Comme	1163.											

We	All ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	FW-47	EW-68	EW-78	EW-85	EW-87	FW-88	EW-94	FW-98		
Parameter	Monitoring Event	LVV-30	LW-51	LVV-32	LW-33	LW-34	LW-33	LW-37	LW-30	LW-57	L44-00	Concentro		LW-04	LW-03	LVV-07	L 44-00	LVV-70	LW-03	LVV-07	LW-00	LVV-74	LW-70	LOD	LOQ
i didilielei	November-2022		Ι		I					1560		1400			1380	<u> </u>								50	50
		1700		2280				0110			1210					1150	1780								
	December-2022					_ 		2110		1410	1310				1220	1150								100	100
	January-2023	1520							936						1330									50	50
										2440														100	100
	February-2023																1490							100	100
	March-2023								667	1480														73.1	100
	April-2023								1410		1220													73.1	100
	May-2023	1390							1860	2380														146	200
	June-2023									2740		2370		2170										146	200
Ammonia as N	July-2023																	1180						73.1	100
	JUIY-2023	1570						2260														2350	310	146	200
(mg/L)	August-2023					1600		1890														2140	222	146	200
	September-2023																	1720						73.1	100
	3epiember-2023			1250																				146	200
	October-2023						1980											1730		2890				146	200
		1260		2490	1830		2070											1800		2590				146	200
	November-2023												1170										2080	183	250
										2440														366	500
	December-2023																	1540						73.1	100
			01/0	2900						0400							2200						1/10	146	200
	January-2024		2160							2400									1700				1610	146	200
	February-2024		1900		2600					1.5700					 51.40				1780		2380			146	200
	November-2022									15700		5860			5140									0.2	2
	December-2022	6440		12500				11400		9240	3330					8360	6770							0.2	2
	January-2023	9920							999	28100					7060									0.2	2
	February-2023																7230							0.2	2
	March-2023								1570	9190														0.2	2
	April-2023								8430		2860													0.2	2
D: 1 · 10	May-2023	7350							11900	35300														0.2	2
Biological Oxygen	June-2023									20000		27400		23100										0.2	2
Demand (mg/L)	July-2023	6820						32900										330				31800	937	0.2	2
	August-2023					>33045		>33225														>32805	506	0.2	2
	September-2023			40185.5														659						0.2	2
	October-2023						34600											690		37000				0.2	2
	November-2023	1910		30400	27500		32015			29600			3640					480		32135			21500	0.2	2
	December-2023			>44105													13700	681						0.2	2
	January-2024		26000							17100													14000	0.2	2
	February-2024		23200		26200														21400		34300			0.2	2

Wel	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	FW_0Ω		
Parameter	Monitoring Event	E44-30	EW-31	EW-32	EW-33	EVV-34	EW-33	EVV-3/	E44-30	EVV-37	EAA-OO	Concentro		EVV-04	E44-02	EVV-07	EAA-00	EW-/O	EW-03	EVV-0/	E44-00	CVV-74	EW-76	LOD	LOQ
raidificiei	Monitoring Lverii											9790			10800									1000	1000
	November-2022									23500														2000	2000
		7440																						1000	1000
										13200	8000					20300	14100								2000
	December-2022							22400																2000 5000	5000
	-			0/000				22400																	
				86800					2/20															10000	10000
	1	1 4000							3630						0.400									500	500
	January-2023	14900								47.00					8430									2000	2000
	F 1 0000									47600														5000	5000
	February-2023																9210							1000	1000
	March-2023								1690															500	500
										10600														2000	2000
	April-2023										7370													1000	1000
	. 10 2020								16800															2000	2000
	May-2023	7590							18700															2000	2000
	·									44700														4000	4000
	June-2023											44800												5000	5000
Chamical Ourgan	30110 2020									41300				55000										10000	10000
Chemical Oxygen Demand (mg/L)																							2180	500	500
Demana (mg/L)	July-2023	6480																2460						1000	1000
	J01y-2023																					41000		5000	5000
								50100																10000	10000
	August-2023																						1750	500	500
	7109031 2020					59000		58600														60600		5000	5000
	September-2023																	6260						1000	1000
				87400																				10000	10000
	Optobor 2002						 51000											5320						500	500
	October-2023						51000													63600				5000 10000	5000 10000
																		4710						10000	10000
		6200											5620											2000	2000
	November-2023				48100		57900			43700													37600	5000	5000
				77100																63900				10000	10000
																		4870						1000	1000
	December-2023																19900							5000	5000
				94200																				10000	10000
	January-2024		48600							59800													38200	5000	5000
	February-2024		42700		51200														48900					5000	5000
																					68400			10000	10000

Wel	II ID	EW-50	EW-51	FW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	FW-67	EW-68	EW-78	EW-85	EW-87	FW-88	EW-94	EW-98		
Parameter	Monitoring Event	111 30		111 02	211 30	LW 04	LW 00	L11 07	LW 00	LW 07		Concentre		LIV 04	211 00	L11 07	211 00		L11 00	L11 07	LW 00	-11 /-	LW 70	LOD	LOQ
Nitrate+Nitrite as N									 		I	Concenii													
(mg/L)	November-2022									2.91		0.16			0.33									0.1	0.1
																ND								0.2	0.2
	D 0000										ND													0.2	0.6
	December-2022	ND		ND				ND		ND														1.1	5.1
																	ND							1.5	5.5
									ND															0.35	1.35
															ND									1.1	1.1
	January-2023	3.9																						2.1	2.1
										ND														2.2	2.2
	February-2023																ND							0.35	1.35
	March-2023								ND	ND														1.04	5.1
	April-2023								ND		ND													0.6	2.6
		ND																						1.1	5.1
	May-2023								ND	ND														1.2	5.2
										ND				ND										1.1	5.1
	June-2023											ND												1.2	5.2
																		0.355						0.15	0.35
																							ND	0.55	0.75
Nitrate as N (mg/L)	July-2023	ND																						1	3
								ND														ND		1.5	5.5
	A																						ND	0.15	0.35
	August-2023					ND		ND														ND		1.5	3.5
	September-2023																	ND						0.3	1.1
	3CD1C111DC1-2023			ND																				0.7	1.5
																		ND						0.35	1.35
	October-2023						ND																	1	3
																				ND				1.5	3.5
		ND																ND						0.15	0.35
													ND											0.35	1.35
	November-2023						ND																	0.75	1.75
				ND																				1.1	5.1
					ND					ND										ND			ND	1.5	5.5
	December-2023			ND														ND						1.1	5.1
																	ND							1.5	5.5
	January-2024		2.01							ND													ND	1.5	5.5
	February-2024		9.1		ND														ND		ND			1.5	5.5 7.5
					ND																			3.5	7.5

																									
Wel		EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event		1	T	T		1					Concentre	ation								T				
	December-2022										0.12 J													0.1	0.5
	300000. 2022	ND		ND				ND		ND						ND	ND							1	5
									ND															0.25	1.25
	January-2023														ND									1	1
		ND								ND														2	2
	February-2023																0.48 J							0.25	1.25
	March-2023								ND	ND														1	5
	April-2023								ND		ND													0.5	2.5
	May-2023	ND							ND	ND														1	5
	June-2023									2 J		ND		ND										1	5
																		ND					ND	0.05	0.25
Nitrite as N (mg/L)	July-2023	ND																						0.5	2.5
	, , , , , , , , , , , , , , , , , , ,							1.2 J														ND		1	5
																							ND	0.05	0.25
	August-2023					ND		ND														ND		0.5	2.5
	September-2023			ND														ND						0.2	1
	October-2023																	ND						0.25	1.25
	October-2023						ND													ND				0.5	2.5
		0.06 J																ND						0.05	0.25
	November-2023						ND						ND											0.25	1.25
				ND	ND					ND										ND			ND	1	5
	December-2023		171	ND													ND	ND						1	5
	January-2024		1.7 J							ND													ND	1	5
	February-2024		ND		ND							1000			1.470				ND		ND			<u> </u>	5
	November-2022									0110		1290			1470									20	50
	D 0000	1510		2570				1700		2110	1.400					1040	1040							50	125
	December-2022	1510		3570				1790		1830	1490					1340	1940							200	500
	January-2023	1840							881						1410									20	50
										2970														40	100
	February-2023																1870							16.8	50
	March-2023								879	1920														33.6	100
	April-2023								1820		1510													16.8	50
	May-2023	1590							1950	2910														40	100
	June-2023									3080				2750										100	250
Total Kjeldahl												2650												200	500
Nitrogen (mg/L)	July-2023	1670						2960										1670				2720	285	40	100
	August-2023																						279	10	25
	August-2023					2240		2820														2850		100	250
	September-2023			3340														2680						100	250
	October-2023						1050											4400		1320				40	100
							2240											4630						100	250
	November-2023	1440		2200	2420		2240			2520			1120					2270		2170			2120	80	200
				3290	2630					2530			1120				1880	2270		3170				100	250 200
	December-2023			3130													1880	1890						80 100	250
	January-2024		2450							3020													1810	100	250
	February-2024		2540		2890														2470		2970			100	250
	10010019 2024			1							1								2-770		2770			100	

Wel	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	100
Parameter	Monitoring Event											Concentre	ation											LOD	LOQ
												5.68			3									0.3	0.5
	November-2022									28.8														0.75	1.25
											8.94													0.3	0.5
	December-2022	24.9		54.6				28.3		32						20.2	36							1.5	2.5
		27.2							1.3						20.2									0.75	1.25
	January-2023									56.5														1.5	2.5
	February-2023																22.4							1.5	2.5
									0.4															0.03	0.05
	March-2023									13.9														0.3	0.5
	April-2023								18.7		5.1													0.3	0.5
	May-2023	18.6							20	50														1.5	2.5
	June-2023									39.1		45.6		80.6										1.5	2.5
	30110 2020																	0.7						0.15	0.25
	July-2023																						2.92	0.3	0.5
Total Recoverable	3017 2020	11.6						47.9														37.3		1.5	2.5
Phenolics (mg/L)																							1.46	0.15	0.25
	August-2023					28.6		31.4														40.4		1.5	2.5
	Co																	4.58						0.3	0.5
	September-2023			38.2																				3	5
	October-2023																	4.13						0.15	0.25
	OC100C1-2023						37													38.7				0.6	1
																		3.65						0.15	0.25
	November-2023	7.88			36.4								4.76											0.6	1
	-			38.8			47.4			44.0										47.1				0.75	1.25
										46.9								3.72					29.1	1.5 0.06	2.5 0.1
	December-2023																23	3.72						0.06	1.25
	DCCC111DC1-2023			34.2																				1.5	2.5
			38																				22.7	1.5	2.5
	January-2024									39.2														3	5
	February-2024		37.3		42.9														50.2		43.1			1.5	2.5

Wel	All ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	FW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event	LW-30	LW-51	LVV-JZ	LVV-33	LW-34	LW-33	LVV-37	LVV-30	LW-57	L VV - 00	Concentr		LVV-04	LW-03	LVV-07	LVV-00	LW-70	LW-03	LVV-07	LW-00	LW-74	LVV-70	LOD	LOQ
	GANIC COMPOUND (ua/I)										Concenii	ulion												
SEMI-VOLATILE ORG	GANIC COMPOUND (I	1								ND			ND						1	1		47.7	02.5
	November-2022											ND			ND									46.7	93.5
										ND														93.5	187
	_									ND	ND						ND							9.35	9.35
	December-2022							ND								ND								11.7	11.7
				ND																				23.4	23.4
		ND																						485	971
									ND															243	485
	January-2023														ND									253	505
	Juliudiy-2023	ND																						490	980
										ND														500	1000
	February-2023																ND							187	374
										ND														51	102
	March-2023								ND															117	234
									ND															37.4	74.8
	April-2023										ND													38.8	77.7
		ND								ND														93.5	187
	May-2023								ND																935
																								467	
	June-2023									ND				ND										485	971
												ND												490	980
	_																						ND	46.7	93.5
Anthracene	July-2023	ND																						100	200
	331, 2323																	ND						250	500
								ND														ND		1000	2000
	August-2023																						ND	19.6	39.2
	_					ND		ND														ND		1000	2000
	September-2023			ND														ND						40	80
																				ND				40 50	80
	October-2023																	ND						30	100
		ND					ND																	500	1000
	-	ND											ND					 ND						20 50	100
	November-2023																						ND	100	200
	14040111001 2020				ND		ND			ND										ND				400	800
				ND																				1000	2000
																		ND						50	100
	December-2023																ND							100	200
				ND																				200	400
			ND																					100	200
	January-2024																						ND	250	500
										ND														1000	2000
					ND																			200	400
	February-2024		ND																					250	500
																			ND		ND			400000	800000

Wel	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event	L111-30	LW-SI	LW-JZ	L11-30	LW-54	LW-33	L11-57	L11-30	LW-57		Concentre		LW-04	LW-03	L11-07	L11-00	L11-70	LW-03	L11-07	L111-00	LW-74	LW-70	LOD	LOQ
TOTAL METALS (mg/												Concenii	alloll												
TOTAL METALS (IIIg/	November-2022									0.863		0.464			1 2						T			0.02	0.04
		1.00		0.406				0.174			0.40				1.3	0.150	0.574								
	December-2022	1.02						0.174	0.504	1.69	0.49					0.159	0.574							0.02	0.04
	January-2023	0.285							0.596	0.225					0.846									0.01	0.02
	February-2023																0.29							0.005	0.01
	March-2023								1.07	1														0.01	0.02
	April-2023										0.11													0.0005	0.001
									0.36															0.005	0.01
	May-2023	0.26							0.3	0.27														0.0025	0.005
	June-2023									0.26		0.5		0.14										0.0025	0.005
Arsenic	July-2023	0.23																0.24				0.19	0.06	0.0005	0.001
Alsonic	J01y-2023							0.7																0.0025	0.005
	August-2023																						0.15	0.0025	0.005
	_					0.32		0.43														0.29		0.005	0.01
	September-2023			0.42														0.25						0.005	0.01
	October-2023																	0.24		0.31				0.0005	0.001
							0.36																	0.001	0.002
	November-2023	0.23		0.33	0.53		0.43			0.35			0.78					0.34		0.27			0.2	0.003	0.003
	December-2023			0.4													0.26	0.04						0.0025	0.005
	January-2024		0.47							0.23								0.24					0.18	0.001 0.0025	0.002
	February-2024		0.47		0.42														0.33		0.23			0.0023	0.003
	November-2022									0.871		0.485			0.36									0.002	0.002
	December-2022	0.566		0.803				0.978		0.438	0.214					0.856	0.793							0.01	0.02
	January-2023	0.643								1.92					0.554									0.005	0.02
									0.683								1.04								
	February-2023								0.407	0.400							1.04							0.01	0.05
	March-2023								0.406	0.683														0.005	0.01
	April-2023								1.21		0.326													0.01	0.05
	May-2023	0.636																						0.005	0.025
	,								1.2	1.83														0.01	0.05
	June-2023									1.69				1.65										0.005	0.025
	00110 2020											3.01												0.01	0.05
																							0.217	0.001	0.005
Barium	July-2023																	0.558						0.002	0.01
		0.542						2.28														1.02		0.005	0.025
	August-2023																						0.218	0.005	0.025
						1.61		1.58														1.48		0.01	0.05
	September-2023			0.72														0.649						0.01	0.05
	October-2023																	0.664						0.002	0.01
							2.56													1.93				0.005	0.025
	November-2023	0.572		0.81	2.28		2.51			1.96			0.418				1.27	0.67		2.06			2.84	0.01	0.05
	December-2023			0.68													1.36	0.472						0.005 0.002	0.025
										1.92								0.672					1.91	0.002	0.01
	January-2024		3.27																					0.003	0.023
	February-2024		3.03		4.41														2.65		0.925			0.005	0.025
	10010019 2024		3.00		7,71														2.00		3.723			0.000	0.020

We	ell ID	EW-50	EW-51	FW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	FW-47	EW-68	EW-78	EW-85	EW-87	FW-88	EW-94	EW-98		
Parameter	Monitoring Event	111 30	LW 01	211 32	111 00	LW 04	LW 55	LIV 07	211 30	L11 07		Concentre		LW 04	LW 00	LW 07	211 00		L11 00	LVI 07	111 00		211 70	LOD	LOQ
raramerer	November-2022									ND		ND			ND									0.004	0.008
	December-2022	 ND		0.0104				ND		ND	ND					ND	ND							0.004	0.008
	January-2023	ND							ND	ND					ND									0.004	0.004
	·																0.000297 J								
	February-2023		_ 						ND.															0.0001	0.001
	March-2023		_ 						ND 0 0001 F0 1	ND														0.002	0.004
	April-2023								0.000158 J		0.000333 J													0.0001	0.001
	May-2023	ND							ND	ND														0.0005	0.005
	June-2023									ND		ND		ND										0.0005	0.005
Cadmium	July-2023 (0.000219 J						0.000156 J										0.000186 J				ND	ND	0.0001	0.001
	August-2023																						ND	0.0005	0.005
						ND		ND														ND		0.001	0.01
	September-2023			ND														ND						0.001	0.01
	October-2023		_ 				ND											0.000171 J		ND		_ 		0.0001	0.001
	November-2023	 ND		ND	ND		ND ND			ND			ND					 ND		 ND			ND	0.0002	0.002
				ND													0.000604 J							0.0005	0.003
	December-2023																	ND						0.0003	0.0013
	January-2024		ND							ND													ND	0.0002	0.002
	February-2024		ND		ND														0.0175		ND			0.0005	0.005
	November-2022									0.208		0.112			0.354									0.016	0.02
	December-2022	0.503		1.08				1.76		0.274	0.319					0.499	0.822							0.016	0.02
	January-2023	0.31							0.488	0.178					0.155									0.008	0.01
	February-2023																0.277							0.004	0.01
	March-2023								0.213	0.188														0.008	0.01
											0.142													0.0004	0.001
	April-2023								0.306															0.004	0.01
	May-2023	0.422		<u> </u>					0.300	0.237														0.004	0.005
	June-2023											0.191		0.272										0.002	0.005
		0.200						0.525		0.251								0.001				0.015	0.0072		
Chromium	July-2023	0.308	_ 					0.535										0.231				0.215	0.0265 0.0276	0.0004	0.001
CHIOHIOH	August-2023					0.606		0.449														0.259		0.002 0.004	0.005
	September-2023			1.17														0.234						0.004	0.01
																		0.144		0.194				0.0004	0.001
	October-2023						0.273																	0.0008	0.001
		0.391																						0.0000	0.002
	November-2023				0.51													0.251		0.403				0.003	0.003
				1.04			0.402			0.246			0.343										0.222	0.004	0.01
	Docombor 2002			1.34													0.259							0.002	0.005
	December-2023																	0.219						0.0008	0.002
	January-2024		0.17							0.193													0.128	0.002	0.005
	February-2024		0.23		0.272														0.203		0.336			0.002	0.005

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW 47	EW-68	EW-78	EW-85	EW-87	EW QQ	EW-94	EW-98		
Parameter	Monitoring Event	EW-30	EW-31	LW-32	EW-33	E44-24	EW-33	EW-37	EVV-30	LW-37	E44-90	Concentre		LVV-04	LW-03	LW-07	LVV-00	LVV-/O	E44-02	LVV-07	L44-00	LVV-74	LW-76	LOD	LOQ
raidillelei										ND					ND									0.017	0.02
	November-2022									ND		ND												0.016	
	December-2022	ND		ND				ND	0.0107	ND 0.0057	ND					ND	ND							0.016	0.02
	January-2023	ND							0.0127	0.0256					ND									0.008	0.01
	February-2023																0.00365							0.0003	0.001
	March-2023								ND	ND														0.008	0.01
	April-2023								0.00664		0.00767													0.0003	0.001
	May-2023	ND							ND	ND														0.0015	0.005
	June-2023									0.00154 J		0.00362 J		0.00269 J										0.0015	0.005
Copper	July-2023	0.00124						0.00163										0.00811				ND	0.0027	0.0003	0.001
''	August-2023																						ND	0.0015	0.005
	_					0.00343 J		0.0176										0.00407.1				ND		0.003	0.01
	September-2023			ND 														0.00407 J 0.00361		0.000609 J				0.003	0.01
	October-2023						0.00806																	0.0003	0.001
	November-2023	0.00607		0.00352	0.0212		0.00756			ND			0.00341					0.00387		ND			ND	0.003	0.003
				0.00184													ND							0.0015	0.0015
	December-2023																	0.0034						0.0006	0.002
	January-2024		ND							0.019													ND	0.0015	0.005
	February-2024		ND		0.00201														ND		ND			0.0015	0.002
	November-2022									ND		ND			0.017 J									0.012	0.02
	December-2022	ND		0.0381				ND		ND	ND					ND	ND							0.012	0.02
	January-2023	ND							ND	ND					ND									0.006	0.01
	February-2023																0.006							0.001	0.001
	March-2023								ND	ND														0.006	0.01
	April-2023								0.0022		0.0067													0.001	0.001
	May-2023	ND							ND	ND														0.005	0.005
	June-2023									ND		ND		0.0069										0.005	0.005
Load	July-2023	0.0014						0.019										0.0092				ND	0.0017	0.001	0.001
Lead	August-2023																						ND	0.005	0.005
						0.014		ND														0.013		0.01	0.01
	September-2023			0.12														ND						0.01	0.01
	October-2023																	0.0036		0.0034				0.001	0.001
				0.12			0.0077											0.0000		0.0042				0.002	0.002
	November-2023	ND		0.13	0.0046		0.014			ND			ND					0.0032		0.0043			ND	0.003	0.003
	December-2023			0.16													0.002	0.0043						0.002	0.002
	January-2024		ND							0.0081													ND	0.0013	0.0013
	February-2024		0.0065		0.01														0.051		0.012			0.000	0.002
	10010019 2024		0.000		0.01														0.501		0.012			0.001	0.002

147	II ID	FW 50	F\4/ F3	FW 50	FW 50	F14/ F.4	F14/ F.F	F\A(F7	F)4/ 50	FW 50	FW 40	F147 2 2	F147 4 0	F14/ / /	F147 4 F	F147 47	FW 40	F)4/ 70	FW 05	FW 07	FW 00	F147 0.4	F14/ 00		
	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event		ı	ı						1		Concentro	ation	l										0.0004	
	November-2022											0.00169			0.00053									0.0004	0.0004
										ND														0.0008	0.0008
		0.00051																						0.0004	0.0004
	December-2022							0.00118		ND	0.00588					0.0048	ND							0.0008	0.0008
				ND																				0.004	0.004
	January-2023	ND							ND						ND									0.0004	0.0004
	Juliudiy-2023									ND														0.004	0.004
	February-2023																ND							0.0004	0.0004
									ND															0.0002	0.0002
	March-2023									ND														0.0004	0.0004
											0.00128													0.0002	0.0002
	April-2023								ND															0.0004	0.0004
	May-2023	ND							ND	ND														0.0004	0.0004
Mercury	June-2023									ND		ND		ND										0.0002	0.0002
						_ 												ND					NID		
	July-2023	0.000306						0.0107										ND					ND	0.0002	0.0002
								0.0107														ND		0.001	0.001
	August-2023					0.00212		0.00207						 								ND	ND	0.001	0.001
	September-2023			0.00503		0.00312		0.00397						 				ND.				ND		0.002	0.002
	October-2023						0.00165											ND ND		0.00055				0.002	0.002
	OC10De1-2023	 ND											ND											0.00004	0.00004
	November-2023																	 ND						0.0000002	0.0000002
	110101111111111111111111111111111111111			0.00576			0.00578			ND										0.00954			ND	0.000004	0.000004
				0.00484													ND							0.001	0.001
	December-2023																	ND						0.0004	0.0004
	January-2024		ND							ND													ND	0.001	0.001
	February-2024		0.00376		0.0115														0.00238		0.00284			0.001	0.001
	November-2022									0.0866		0.1344			0.173									0.014	0.02
	December-2022	0.1722		0.5025				0.2989		0.1299	0.287					0.1853	0.346							0.014	0.02
	January-2023	0.1074							0.1442	0.0407					0.0769									0.007	0.01
	February-2023																0.1726							0.001	0.001
	March-2023								0.1254	0.1033														0.007	0.01
	April-2023								0.1143		0.1732													0.001	0.001
	May-2023								0.09726	0.05657														0.005	0.005
	June-2023									0.05978		0.05892		0.07161										0.005	0.005
								0.00222										0.157/				0.02074	0.01402		
Nickel	July-2023							0.08332										0.1576				0.03074	0.01403	0.001	0.001
	August-2023					0.1457		0.09673														0.0513		0.005	0.005
	September-2023			0.5152														0.2387						0.01	0.01
																		0.2387		0.09206				0.001	0.001
	October-2023						0.104																	0.001	0.001
	November-2023	0.1178		0.4227	0.1242		0.104			0.05944			0.1493					0.2492		0.1332			0.05277	0.002	0.002
				0.6091													0.1447							0.005	0.005
	December-2023																	0.2127						0.002	0.002
	January-2024		0.06308							0.04911													0.0326	0.005	0.005
	February-2024		0.07945		0.07013														0.09174		0.06183			0.005	0.005
	1.0.00.00 / 2021																								

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event											Concentre												LOD	LOQ
- I di di ilioioi	November-2022									ND		ND			ND									0.08	0.1
	December-2022	ND		ND				ND		ND	ND					ND	ND							0.08	0.1
	January-2023	ND							ND	ND					ND									0.04	0.05
	February-2023																0.00199							0.00085	0.001
	March-2023								ND	ND														0.04	0.05
	April-2023								0.00189		0.00185													0.00085	0.001
	May-2023	ND							ND	0.00569														0.00425	0.005
	June-2023									ND		ND		ND										0.00425	0.005
	July-2023	0.00101						0.00331										0.00116				0.00251	ND	0.00085	0.001
Selenium																							ND	0.00425	0.005
	August-2023					ND		ND														ND		0.0085	0.01
	September-2023			ND														ND						0.0085	0.01
	October-2023																	0.00186		0.0044				0.00085	0.001
	OC10ber-2023						0.00332																	0.0017	0.002
	November-2023	ND		0.00425	0.00314		0.00315			ND			ND					ND		0.0032			ND	0.003	0.003
	December-2023			0.00785													0.00253							0.0015	0.0015
																		0.00215						0.0017	0.002
	January-2024		ND							ND									0.00571				ND	0.00425	0.005
	February-2024		ND		ND					ND		ND			ND				0.00571		0.00651			0.00425	0.005
	November-2022			0.0107.1						ND		ND			ND									0.01	0.02
	December-2022	ND		0.0187 J				ND	ND	ND	ND				ND.	ND	ND							0.01	0.02
	January-2023	ND							ND	ND					ND									0.005	0.01
	February-2023																ND							0.00006	0.001
	March-2023								ND	ND														0.005	0.01
	April-2023								ND		0.00011 J													0.00006	0.001
	May-2023	ND							ND	ND														0.0003	0.005
	June-2023									ND		ND		ND										0.0003	0.005
Silver	July-2023	ND						ND										ND				ND	ND	0.00006	0.001
	August-2023					ND		 ND														ND	ND	0.0003	0.005
	September-2023			ND														ND						0.0006	0.01
																		ND		ND				0.00006	0.001
	October-2023						ND																	0.00012	0.002
	November-2023	ND		ND	ND		ND			ND			ND					ND		ND			ND	0.0006	0.01
	December-2023			ND													ND							0.00025	0.001
	December-2023																	ND						0.00012	0.002
	January-2024		ND							ND													ND	0.0003	0.005
	February-2024		ND		ND														ND		ND			0.0003	0.005

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event											Concentro												LOD	LOQ
	November-2022									ND		0.032			0.694									0.02	0.02
	December-2022	0.208		29.7				0.162		0.0686	0.75					0.364	0.286							0.02	0.02
	January-2023	0.133							0.15	0.074					0.0752									0.01	0.01
	February-2023																0.0851							0.0025	0.005
	March-2023								0.0689	0.0538														0.0023	0.003
	MUICI1-2023																								
	April-2023					_ 			0.0539		0.41.4													0.0025	0.005
											0.414													0.025	0.05
	May-2023	0.079							0.0635	0.0519														0.0125	0.025
	June-2023									0.0538		0.0253		0.945										0.0125	0.025
	July-2023	0.0488																0.0714				0.354	0.0782	0.0025	0.005
	33.7 = 3=3							2.03																0.0125	0.025
Zinc																							0.112	0.0125	0.025
	August-2023							1.71														0.914		0.025	0.05
						5.92																		0.05	0.1
	September-2023			 AE		 												0.0788						0.025	0.05
				45														0.0422						0.25	0.5
	October-2023			 		 	0.203											0.0622		422				0.0025	0.005
		0.0471 J			0.0524		0.203			0.052			0.0/10					0.0722		633			0.0212.1	0.005 0.025	0.01
	November-2023			30.4	0.0534					0.053			0.0618					0.0722		0.845			0.0313 J	0.025	0.05
				52.7																				0.25	
	December-2023																	0.061						0.25	0.5
	December-2023																0.0462							0.005	0.01
	January-2024		0.117							0.0974													0.0261	0.025	0.025
	February-2024		0.0879		0.0554														0.475		0.809			0.0125	0.025
VOLATILE FATTY AC			0.0077		0.0334														0.473		0.007			0.0123	0.023
VOLAIILL TAITT AC												1400												25	100
	November-2022									2500		1600			150 1									25	100
	5 1 2222									3500					150 J									62	250
	December-2022	1800																						62	250
	January-2023	ND							ND	4400					ND										500
	February-2023																ND								500
	March-2023								ND	640															500
	April-2023								1200		520													370	500
	May-2023	990							1800	3000														370	500
	June-2023									5900		4100		5000										750	1000
																							ND	150	200
	July-2023	ND																ND						370	500
Acetic Acid	3017 2020							6100														750		750	1000
Acelic Acid	August 2022																						ND		500
	August-2023			7400		3300		5300														4200		270	
	September-2023			7400			2000											ND 700		4100				370	500
	October-2023						3200											720		4100			41.40	370	500
	Navarrala cono	ND			40.50								ND					ND					4160	250	500
	November-2023				4950		6650			5350										7300				500	1000
				9900																				1000	2000
																	660								100
	December-2023																	ND							250
				11200																					1000
	I I I I I I I I I I I I I I I I I I I		4410							5290													3080		250
	January-2024																								
	February-2024		3130		3530														3530		6770				250 500

Parameter		650 1600	ND ND ND	- 29 - 29 - 29 - 330 - 330 - 650 D 130 - 330 - 650 D 330 - 500 10 - 10 - 10 - 11 - 27	2 100 9 250 9 250 - 500 - 500 - 500 80 500 80 500 80 200 80 200 80 500 80 5
November 2022 N.D. N.D.		650 1600	ND ND 740 594	- 29 - 29 - 29 - 330 - 330 - 650 D 130 - 650 D - 330 - 650 D - 330 - 500 - 10 250 - 500	9 250 9 250 500 500 30 500 30 500 30 200 30 200 30 500 50 1000 500 30 500 50 1000 500 1000 100 250 250 250 250 250 500 1 100 250 250 250 250 250 250 250
Bulyric Acid Bulyric Acid Agenta 2022 ND		650 1600	ND ND 740 594	- 29	9 250 500 500 500 500 500 500 500 500 500 500 500 500 500 500 100 100 250 250 250 250 500 1 100 250 250 250 250 250 250 500 1 100
Johnson John		650 1600	ND ND 740 594		500 500 500 500 500 500 500 500
February-2023		650 1600	ND ND 740 594		500 500 500 500 500 500 500 500
March 2023		 650 1600 	ND ND ND 740 594		500 500 500 500 500 500 500 500
April-2023		 650 1600 	ND ND 740 594	330 650 D 130 330 650 D 650 D 330 330 330 330 330 330 310 500 11 27	30 500 30 500 30 500 30 200 30 500 30 500 30 500 30 500 30 500 30 500 30 500 30 1000 30 500 30 500 30 500 30 500 30 500 30 500 30 500 30 500 30 500 30 500 4 100 30 500 4 100 5 100 7 250
Butyric Acid May-2023		 650 1600 	ND ND ND 740 594	330 650 D 130 330 650 D 330 330 330 330 34 11 27	30 500 50 1000 30 200 30 500 50 1000 50 500 30 500 50 500 50 100 50 100 50 100 50 250 50 250 500 100 7 250
Butyric Acid July-2023		 650 1600 	ND ND 740 594	- 650 D 130 - 330 - 650 D 650 D 330 - 330 - 500 10 - 500	50 1000 30 200 30 500 30 500 30 500 30 500 30 500 50 500 50 100 100 250 250 500 1 100 7 250
Butyric Acid July-2023		 650 1600 	ND ND ND 740 594	D 130 - 330 - 650 D 330 - 330 - 500	30 200 30 500 30 500 30 500 30 500 30 500 30 500 30 500 40 1000 41 100 42 250 43 250 44 250
Butyric Acid July-2023		 650 1600 	ND 740 594	- 330 - 650 D 330 - 330 - 330 - 500 - 500	30 500 50 1000 500 1000 30 500 30 500 50 500 50 1000 250 250 250 500 1 100 7 250
August-2023 - 1400 - 1700		650 1600 	ND 740 594	- 650 D 330 - 330 - 500 - 500 11	500 1000 500 80 500 80 500 80 500 00 1000 100 250 1000 250 250 500 1 100 7 250
August-2023 1400 - 1700	16	1600 	ND 740 594	D 330 - 330 - 500 - 500 11 - 27	500 500 500 500 500 500 500 1000 1
September-2023			740 594 	330 330 10 250 500 11 27	30 500 30 500 30 500 50 500 00 1000 250 250 250 500 1 100 7 250
October-2023			740 594 	330 250 500 11	30 500 50 500 50 1000 100 100 250 1000 250 250 500 100 7 250
November-2023 ND 1670 1760 1370 ND ND ND 2730 2730 1760 3420 3420		 	740 594 	10 250 - 500 	500 500 1000 1000 100 250 1000 250 250 500 1 100 7 250
November-2023		 	594 	500 11 27	100 100 100 250 1000 250 250 250 1000 1000 250 250
December-2023		 	594 		100 250 1000 250 250 500 1 100 7 250
December-2023			594 		- 250 - 1000 - 250 - 250 - 500 1 100 7 250
January-2024		 	 594 	11 27	1000 250 250 500 1 100 7 250
January-2024				 11 27	- 250 - 250 - 500 1 100 7 250
November-2022 November-2022 November-2022 November-2022 November-2022 November-2022 November-2023 November-202				11 - 27	- 500 1 100 7 250
November-2022 ND ND	 			- 11 - 27	1 100 7 250
November-2022 90 J				- 27	7 250
December-2022 90 J				_	
Lactic Acid ND 968 1800 969 ND ND ND 1170 Lactic Acid 6030 <t< td=""><td></td><td></td><td></td><td> つフ</td><td>7 050</td></t<>				つフ	7 050
Lactic Acid November-2023			_		7 250
Lactic Acid December-2023 9050			324	24 250	500
December-2023				- 500	
9050					
					- 250
January-2024 629 7/9	_		05/		
324 180	_		256		0.50
February-2024 1650					500
620				1.1	
November-2022 1600 73 J				0.7	
December-2022 640				0.7	
January-2023 ND ND 2000 ND ND	_				500
February-2023 ND					500
March-2023 ND ND					500
April-2023 600 ND				0.46	
May-2023 520 800 1400				0.46	
June-2023 2900 2000 2900	_			400	
5010 2025			ND		
July-2023 ND					
Propionic Acid 3100	_	680		404	
August-2023 1200 2000	_	1900	ND		500
September-2023 1800				0.46	
October-2023 1300 ND 2000				0.46	
ND 2170 2210 2090 397 ND 2350			1420		
November-2023 ND 2170 2310 2000 367 ND 3390	_			500	
					100
December-2023 ND					0.50
2280					- 1000
January-2024 1680 1970			1030	30	
February-2024 1210 1510					
1 CDIOCIY-2024 1980 1980 2900					- 500

VA/ -	II IB	FW 50	F14/ F3	F)4/ F0	F14/ 50	F147 F 4	FM 55	F\4/ F7	FW 50	F147 50	F14/ 40	F14/ / 4	F14/ / 0	F147 7 4	F14/ / F	F144 47	FW 40	F144 70	FW 05	FW 07	FW 00	5 14/ 0.4	FW 00		
	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event		1		T	1			ı	1		Concentr	ation		ı	1			1 1		1	l		10	100
	November-2022											46 J												12	100
										98 J					ND									30	250
	December-2022	ND																						30	250
	November-2023	ND			ND		ND			ND			ND					ND		ND			ND	250	500
Pyruvic Acid				ND																				500	1000
I yrovic / cia	Doombor 2022																ND								100
	December-2023			ND														ND							250 1000
	January-2024		ND							ND													ND		250
			ND		ND																				250
	February-2024																		ND		ND				500
VOLATILE ORGANIC	C COMPOUNDS (ug/I	.)			<u> </u>																				
										3510					1140									30	100
	November-2022											15600												300	1000
	D 1 2222	3140									3390													30	100
	December-2022			26800				27700		5670						21700	7150							300	1000
		3480							632															30	100
	January-2023									7840					5470									300	1000
	February-2023																14400							600	2000
	March-2023								257	2770														30	100
	April-2023								3420		5530													750	2500
		5360							5970															150	500
	May-2023									13600														750	2500
										13800														750	2500
	June-2023											20100		22600										1500	5000
		5860																 ND						60	200
	July-2023																						12500	750	2500
	JUIY-2023							20400														21/00	13500		+
2-Butanone (MEK)								38400														31600	5950	3000	10000
																						7350	373U 	60 150	200 500
	August-2023							3000																750	2500
						25600																		1500	5000
	0. 1. 1. 0000																	439						60	200
	September-2023			17500																				750	2500
	October-2023																	211						15	50
	OC100e1-2023						17800													33400				1500	5000
																		78.8 J						30	100
							17700			10600														150	500
	November-2023	3990																						300	1000
				25700									17/00							0/700			21000	750	2500
	December 2002			13700	22300								17600				7040	ND		26700			31200	1500	5000
	December-2023			13700						10800							7060	ND 						150 150	500 500
	January-2024		34700																				28900	1500	5000
																			12700					150	500
	February-2024		30500		28900																17400			1500	5000
			1 20200		20700																17400			1300	

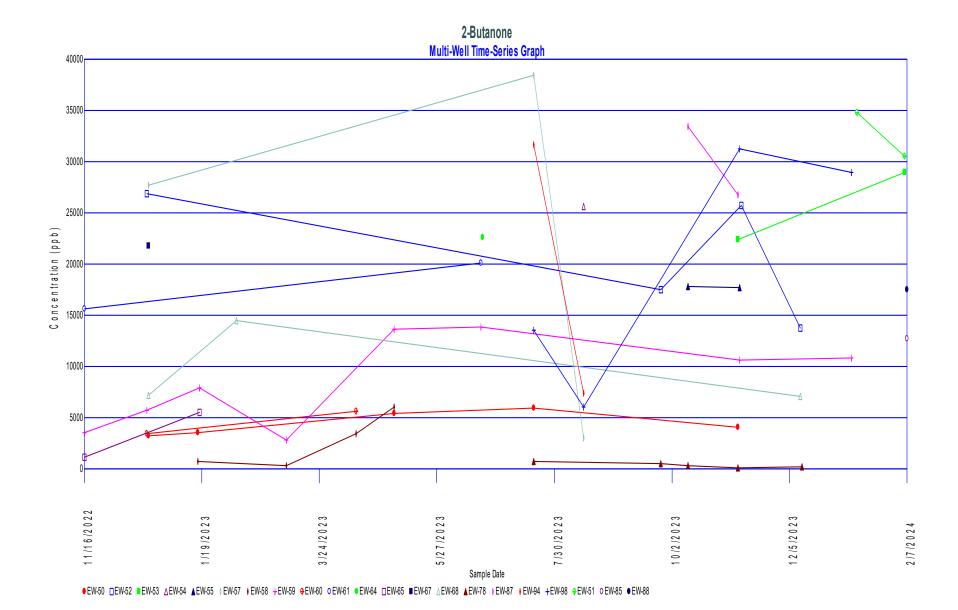
Well ID		EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event											Concentre					, , , ,							LOD	LOQ
1 01 01 01 01 01															4420									70	100
	November-2022									16100		38300												700	1000
										15600	5170						9800							700	1000
	December-2022	8500																						1750	2500
	2 0 0 0 1 1 1 1 2 1 2 2 2 2			53100				49900								45600								3500	5000
									1530															70	100
	January-2023									22200					14000									700	1000
		8130																						1750	2500
	February-2023																23900							1400	2000
									375															70	100
	March-2023									6810														700	1000
	April-2023								8290		7560													1750	2500
		10700							11700															350	500
	May-2023									29600														1750	2500
										29600														1750	2500
	June-2023											61800		50800										3500	5000
																		1180						140	200
Acetone		9780																						700	1000
	July-2023																						11600	1750	2500
								77200														69700		7000	10000
																							20900	700	1000
	August-2023							18700																1750	2500
						72500																87700		3500	5000
	September-2023																	188 J						140	200
	3epiember-2023			40100																				1750	2500
	October-2023																	79						35	50
	0 010.001 2020						66900													92900				3500	5000
	-																	104						70	100
	November-2023	5560		64700																				700 1750	1000 2500
					43100		61100			36800			32800							53900			67800	3500	5000
																	ND							140	200
	December-2023																	ND						350	500
				44300																				1750	2500
	January-2024		96600							22800													47300	3500	5000
	February-2024		81600		70200														45600		63100			3500	5000

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event											Concentro												LOD	LOQ
	November-2022									7.4 J		2860			50.4									4	10
		301		2960						6.3 J	622					1750	179							4	10
	December-2022							6550																40	100
	January-2023	240							28.7	1620					167									4	10
	February-2023																1370							4	10
	March-2023								1540	727														4	10
	April-2023								3740		320													4	10
	May-2023	814							4890	3370														20	50
										2630														8	20
	June-2023											1400		1590										20	50
		824																80.8						8	20
	July-2023							4050														1420		20	50
	301y 2023																						11800	100	250
Benzene																							379	8	20
	August-2023					2320		168														ND		20	50
	September-2023																	193						8	20
				468																				100	250
	October 2023																	399						2	5
	October-2023						576													3100				20	50
		80.8											31.3											2	5
	November-2023																	323						4	10
					1070		654			982										1960			1190	20	50
				870													020							100	250
	December-2023			1330													932	463						<u>8</u> 20	20 50
	January-2024		1410							662													2900	20	50
	February-2024		906		884														346		484			20	50
	December-2022	67.3		172				287		ND	48.5					108	27.4							4	10
	November-2022									ND		194			16.2									4	10
	January-2023	65.1							ND	93.9					20.8									4	10
	February-2023																151							4	10
	, March-2023								131	71.5														4	10
	April-2023								186		43.4													4	10
	May-2023	124							276	144														20	50
										104														8	20
	June-2023											98		116										20	50
																							666	4	10
	July-2023	128																82						8	20
	, , , , , , , , , , , , , , , , , , ,							224														87.5		20	50
Ethylbenzene	4 1 0000																						16.8 J	8	20
	August-2023					80		ND														ND		20	50
	September-2023																	22.8						8	20
	3epiember-2023			ND																				100	250
	October-2023																	34.8						2	5
	3.3331 2020						42.5 J													247				20	50
		26.3											45.4											2	5
	November-2023				42		 EA			76.5								26.9		224			40 F	20	50
	-			ND	62		54													224			60.5	100	250
	_																46							8	20
	December-2023			69.5														44 J						20	50
	January-2024		99							28 J													248	20	50
	February-2024		51		43 J														31 J		41 J			20	50

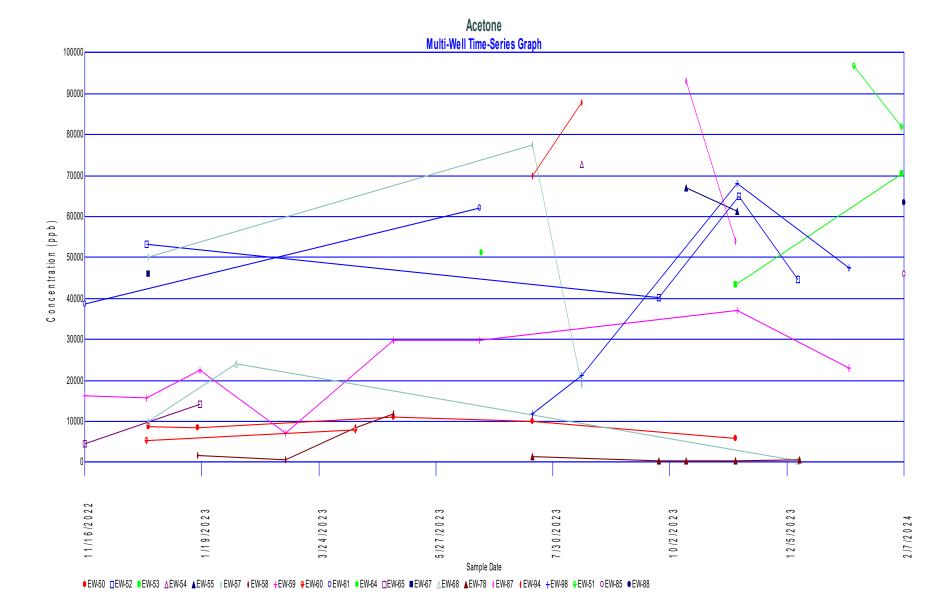
Wel	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98	LOD	100
Parameter	Monitoring Event											Concentro	ation											LOD	LOQ
	N 0000									309					176									100	100
	November-2022											8530												1000	1000
	D 1 0000	151								170	1120						663							100	100
	December-2022			5210				19800								6130								1000	1000
	January-2023	183							566	1810					352									100	100
	February-2023																3760							2000	2000
	March-2023								353	464														100	100
	April-2023								2410		4790													100	100
	May-2023	ND							2740	2380														500	500
										2100														200	200
	June-2023											7320		6670										500	500
																							2960	100	100
	July-2023	411																616						200	200
Tetrahydrofuran	J01y-2023					_ 		8380														5310		500	500
						 																	2880	200	200
	August-2023					7370		3210														1200		500	500
																		343						200	200
	September-2023			ND																				2500	2500
	0.11.0000																	606						50	50
	October-2023						4870													9140				500	500
		199											325											50	50
	November-2023																	358						100	100
	November-2023				4780		3320			785										5370			4600	500	500
				4620																				2500	2500
	December-2023																4240							200	200
				2620						1040								502					10000	500	500
	January-2024		5160		4500					1040									2500		4010		10900	500	500
	February-2024		3500		4580							01.4			20.0				3520		4910			500	500
	November-2022	100		175				105		ND	110	214			32.8	110	40.0							5	10
	December-2022	122		175				195		ND	113					113	48.3							5	10
	January-2023	122							8 J	139					35.3									5	10
	February-2023																224							5	10
	March-2023								182	98.1														5	10
	April-2023								303		94.4													5	10
	May-2023	258							371	239														25	50
	June-2023									165														10	20
	30110 2020											67		212										25	50
																							965	5	10
	July-2023	248																107						10	20
								218														118		25	50
Toluene	August-2023																						36.6	10	20
	A09031-2023					105		ND														ND		25	50
	September-2023																	40.6						10	20
	00,000000000000000000000000000000000000			ND																				125	250
	October-2023																	59.2						2.5	5
		47.2					37 J						 50.4							235				25	50
	-	47.3											50.4					 19.7						2.5 5	5
	November-2023				42 5		51.5			114								48.7		147			114	25	10 50
	-			ND	62.5		51.5													167 				125	250
				ND													73.2							10	20
	December-2023			83.5														74.5						25	50
	January-2024		95.5							60													310	25	50
	February-2024		49 J		37 J														ND		30.5 J			25	50
	,																								

Historical LFG-EW Leachate Monitoring Results Summary

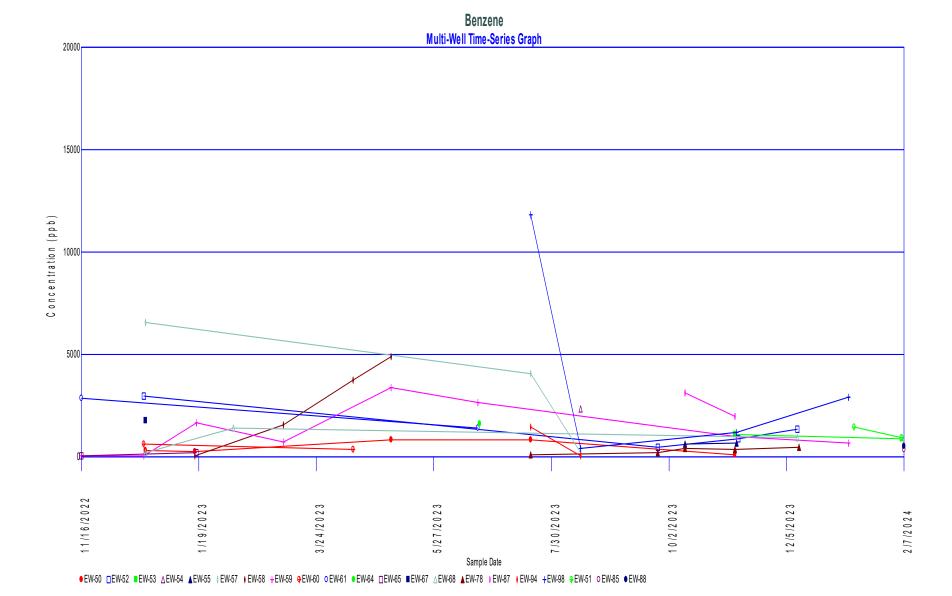
We	Well ID		EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-85	EW-87	EW-88	EW-94	EW-98		
Parameter	Monitoring Event	EW-50										Concentro												LOD	LOQ
	November-2022									ND		185			37.8									10	30
	December-2022	161		222				186		ND	112					197	59.9							10	30
	January-2023	138							ND	134					38.1									10	30
	February-2023																240							10	30
	March-2023								240	111														10	30
	April-2023								329		97.4													10	30
	May-2023	274							441	230														50	150
	June-2023 -									177														20	60
	J011 6- 2023											92 J		136 J										50	150
	July-2023																						1130	10	30
		257																74.4						20	60
								230														174		50	150
Xylenes, Total	August-2023																						48.4 J	20	60
						180		ND														ND		50	150
	September-2023																	ND						20	60
				ND														30.6						250	750 15
	October-2023						134 J													328				<u>5</u>	150
		56											48											5	15
	Navarala ar 0000																	25.3 J						10	30
	November-2023				116 J		104 J			132 J										306			138 J	50	150
				ND																				250	750
	December-2023																167							20	60
				224														ND						50	150
	January-2024		142 J							ND													534	50	150
	February-2024		63 J		59 J														ND		ND			50	150

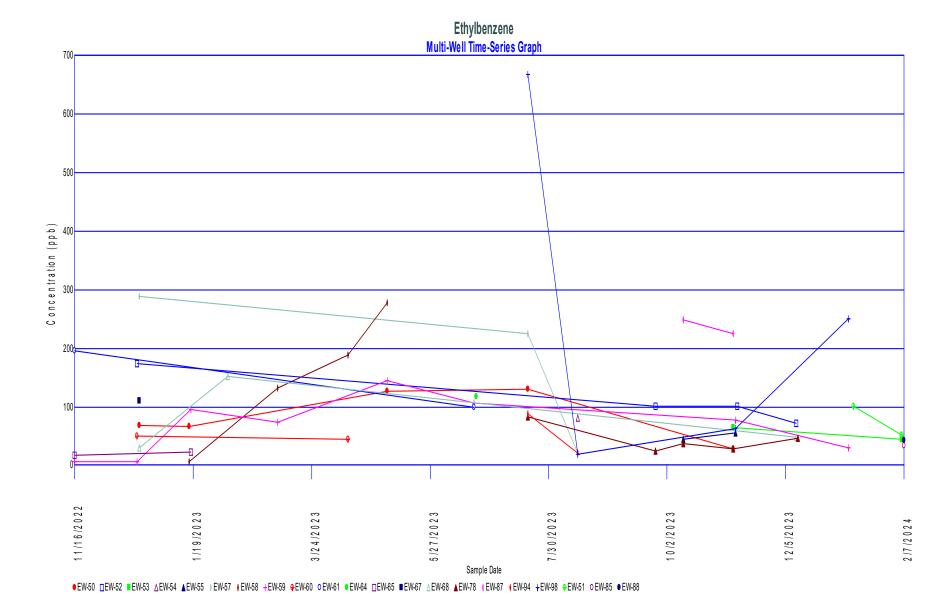

^{--- =} not applicable/available

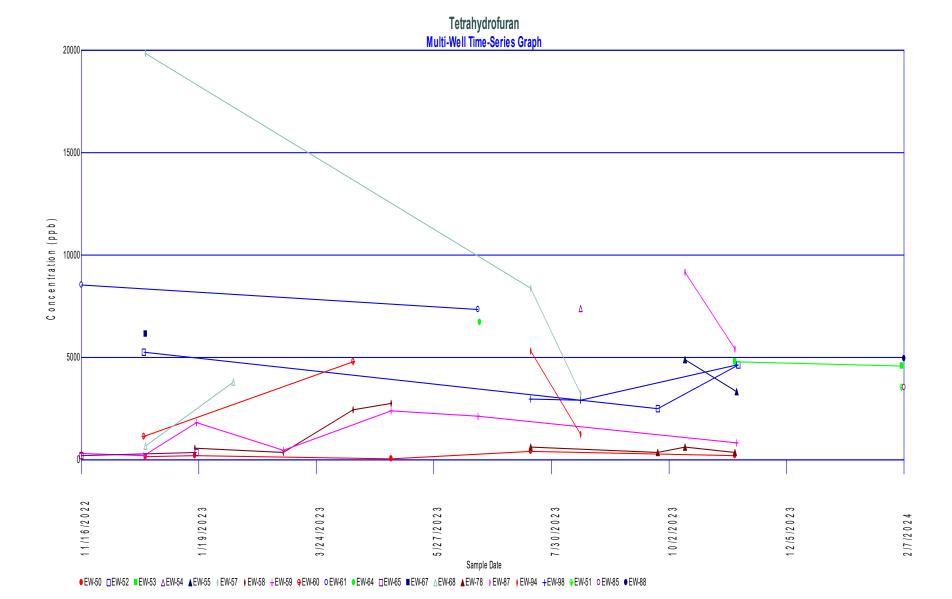
LOQ = laboratory's Limit of Quantitation

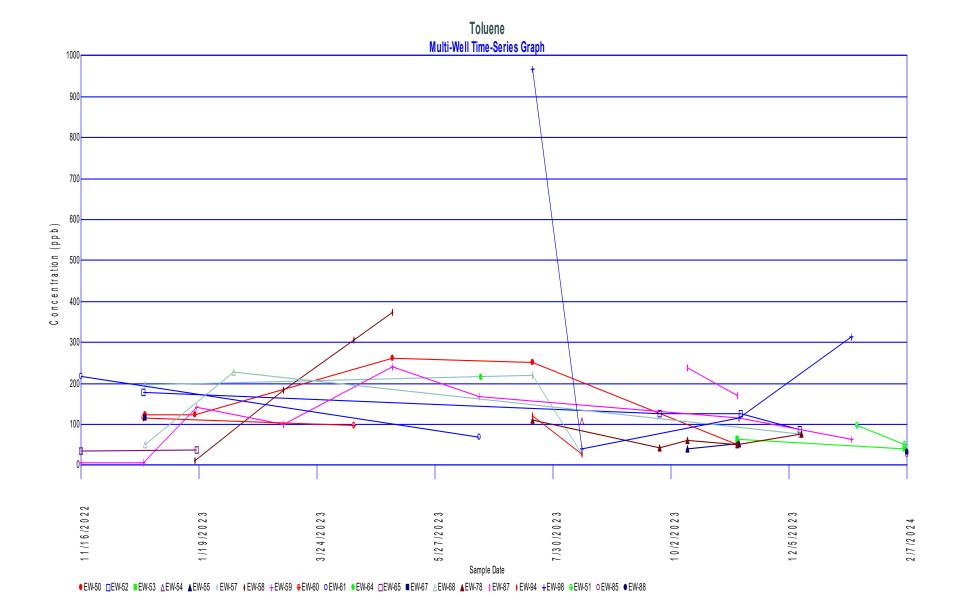

mg/L = milligrams per liter

ND = Not Detected ug/L = micrograms per liter


J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated. LOD = laboratory's Limit of Detection


Page 1


Page 2


Page 3


Page 4

Page 5

Page 6

Page 7