January 2024 Monthly Compliance Report

Solid Waste Permit No. 588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-30 | February 9, 2024

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sect	tion			Page
	Intro	duction .		4
1.0	Gas	Collectio	n	4
	1.1	Surface	e and Leachate Collection Emissions	4
		1.1.1	Surface Emissions	4
		1.1.2	Leachate Collection Emissions	5
	1.2	Existing	g Gas Extraction System Performance	7
	1.3	Remote	e Monitoring System	8
		1.3.1	Automated Wellhead Temperature Measurements	8
		1.3.2	Comparison with Manual Temperature Measurements	9
		1.3.3	Monthly Regulatory Wellhead Temperature Measurements	
		1.3.4	LFG Sampling	
	1.4	Large-D	Diameter Dual-Phase Extraction Wells	
	1.5	VDEQ C	Concurrence on Wells	13
2.0	Side	wall Odo	r Mitigation	
	2.1	Perimet	ter Gas Collection System	13
	2.2	Sidewa	Il Odor Mitigation System	
	2.3	Pilot Sy	stem Construction	
	2.4	Full Sys	stem Construction	15
3.0	Wast	te Tempe	erature Monitoring	
	3.1	Temper	rature Monitoring System Design	
	3.2	Temper	rature Monitoring System Installation	
4.0	Lead	hate Ext	raction and Monitoring	
	4.1	Existing	g System Optimization	
	4.2	Samplir	ng and Analysis Plan	
		4.2.1	Sample Collection	
		4.2.2	Quality Assurance and Quality Control	33
		4.2.3	Data Validation	
		4.2.4	Laboratory Analytical Results	
5.0	Settl	ement M	Ionitoring and Management	
	5.1	Settlem	nent Monitoring and Management Plan	
	5.2	Monthly	y Surveys	
		5.2.1	Topographic Data Collection	
		5.2.2	Settlement Plate Surveys	40

Table of Contents

Sect	ion		Page
6.0	Interi	mediate Cover and EVOH Cover System	42
	6.1	Intermediate Cover Installation	43
	6.2	EVOH Cover System Design	43
	6.3	EVOH Cover System Procurement	43
	6.4	EVOH Cover System Installation	43
7.0	Storn	nWater Management	43
	7.1	Stormwater Management Plan Development	43
	7.2	Stormwater Management Basin Design and Construction	44
	7.3	Stormwater Management Plan Implementation	44
	7.4	Long-Term Stormwater Control and Removal	44
	7.5	Stormwater Monitoring	45
8.0	Misce	ellaneous	45
	8.1	Cease Waste Acceptance	45
	8.2	Long-Term Plan	45
	8.3	Monthly Compliance Reports	45
	8.4	Community Outreach Program	45

Figures

Figure 1.	Average Automated Wellhead Temperatures	9
Figure 2.	Automated vs. Manual Temperature Measurements	
Figure 1.	CO and H2 Concentration at EW-80	
Figure 1.	CO and H2 Concentration at EW-83	
Figure 2.	SOMS Phase I As-Built	
Figure 3.	Phase 2 SOMS Wellhead Connections	15
Figure 4.	Phase 2 Sidewall Odor Mitigation System As-Built	
Figure 5.	Temperature Monitoring Probe Locations	17
Figure 6.	TP-1 Average Temperatures for the Months of March 2023 through January 2024	
Figure 7.	TP-2 Average Temperatures for the Months of March 2023 through January 2024	20
Figure 8.	TP-3 Average Temperatures for the Months of March 2023 through January 2024	21
Figure 9.	TP-4 Average Temperatures for the Months of March 2023 through January 2024	22
Figure 10.	TP-5 Average Temperatures for the Months of March 2023 through January 2024	23
Figure 11.	TP-6 Average Temperatures for the Months of March 2023 through January 2024	24
Figure 12.	TP-7 Average Temperatures for the Months of March 2023 through January 2024	25
Figure 13.	TP-8 Average Temperatures for the Months of March 2023 through January 2024	26
Figure 14.	TP-9 Average Temperatures for the Months of March 2023 through January 2024	27
Figure 15.	Estimated Volume of Liquids Removed from Landfill Gas Wells	31
Figure 16.	1-Month Elevation Change Color Map	37

Table of Contents

Section		Page
	3-Month Elevation Change Color Map 1-Year Elevation Change Color Map	
0	Settlement Plate Locations	
Figure 20.	Linear Settlement	42

Tables

Table 1.	Summary of January Surface Emissions Monitoring	5
Table 2.	Leachate Cleanout Pipe Monitoring Results	6
Table 3.	January Temperature Exceedance Summary	10
Table 4.	LFG Wellhead Sampling Summary	11
Table 5.	System Averages of Sidewall Wellhead Gas Quality	15
Table 6.	Summary of Dual Extraction Well Pump Stroke Counter Data	28
Table 7.	Summary of Dual Extraction Well Pump Liquids Removal	29
Table 8.	Monthly LFG-EW Leachate Monitoring Event Summary	34
Table 9.	Elevation and Strain Data at Settlement Plate Locations	41

Appendices

- Appendix A Surface Emissions Monitoring Summary Letters
- Appendix B In-Waste Temperatures on Select Days in January
- Appendix C Daily Wellhead Temperature Averages
- Appendix D Solid Waste Permit 588 Daily Borehole Temperature Averages
- Appendix E Monthly Topography Analysis
- Appendix F Sample Collection Log, Lab Reports, and Historical LFG-EW Leachate Monitoring Results Summary

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report provides updates regarding the progress towards completion of the items outlined in Appendix A of the Consent Decree between the City and VDEQ. The following sections outline progress during the month of January 2024 related to Solid Waste Permit (SWP) No. 588.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

1.1.1.1 Quarterly SEM

SCS performed the Fourth Quarter 2023 surface emissions monitoring event on December 14, 2023. The results of the Quarterly SEM were summarized in the December 2023 Compliance Report for the SWP No. 588 Landfill. A report outlining the results and exceedance locations will be included in the Semi-Annual Report to be submitted to VDEQ prior to March 1, 2024.

The First Quarter 2024 SEM Event is scheduled to be completed by March 31, 2024.

1.1.1.2 Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, SCS performed additional surface emissions monitoring on January 4, 2024; January 12, 2024; January 17, 2024; January 23, 2024; and January 31, 2024. These weekly surface emissions monitoring (SEM) events were performed in accordance item 1.i in Appendix A of the Consent Decree between the City and VDEQ.

The monitoring in January generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint.

The Facility submitted letters to VDEQ outlining the results of the January monitoring events on January 10, 2024; January 17, 2024; January 24, 2024; January 31, 2024; and February 7, 2024.

Description	January 4, 2024	January 12, 2024	January 17, 2024	January 23, 2024	January 31, 2024
Number of Points Sampled	172	172	171	171	171
Number of Points in Serpentine Route	100	100	100	100	100
Number of Points at Surface Cover Penetrations	72	72	71	71	71
Number of Exceedances	1	3	8	1	1
Number of Serpentine Exceedances	0	0	0	0	0
Number of Pipe Penetration Exceedances	1	3	8	1	1

Table 1. Summary of January Surface Emissions Monitoring

There were no serpentine exceedances detected in January 2024. However, new exceedances were detected at pipe penetrations of eight vertical extraction wells (EW-55, EW-58, EW-67, EW-90, EW-94, EW-95 EW-98, and EW-99). The primary cause of these exceedances, particularly the ones identified on January 17, was vacuum loss to portions of the wellfield as a result of system performance issues in excessively cold weather. By the following monitoring event, and once the GCCS was operating as designed, only one exceedance was documented. The other exceedances during this month can be attributed to a variety of factors. Many of these exceedances correspond to periods of pump down time. When operating effectively, the pump lowers the leachate in the well and allows greater gas collection from the area. In addition, insufficient cover soil was identified at a few of the exceedance locations.

By the final weekly monitoring event of the month, the majority of these issues had been resolved. As of the final monitoring event of the month, only one ongoing exceedance still remained (EW-95). Corrective actions taken at this location may include placement of additional soil, addition of a well-bore skirt, installation of a foam or bentonite seal, continued and improved dewatering activities, and well tuning to increase gas extraction. Corrective actions to address the ongoing exceedance are planned for the month of February 2024.

1.1.2 Leachate Collection Emissions

SCS Field Services (SCS-FS) visited the Bristol Landfill on January 11, 2024, and performed monitoring of the leachate, witness zone, and gradient control clean-outs at the northern and southern ends of the landfill. The results of that monitoring are included in Table 2. Table 2 also lists the cleanout pipe description based on site records and a review of correspondence.

LC07 was not monitored during January 2024.

Leachate Cleanout Pipe Monitoring Results

Description	ID#	Record Date	CH4 (% by Vol)	CO2 (% by Vol)	O2 (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H2O)	Adj Static Pressure (in H2O)	System Pressure (in H2O)
Southern Cleanouts Gradient West	LC01	12/15/2023 10:34:56 AM	45.4	49.4	0.2	5.1	49.4	49.1	-16.72	-16.73	-20.64
Southern Cleanouts Gradient East	LC02	12/15/2023 10:36:50 AM	40.7	49.3	1.1	8.9	47.6	47.4	-16.87	-16.83	-21.20
Southern Cleanouts Leachate Center	LC03	12/15/2023 10:41:12 AM	25.1	26.9	12.6	35.4	46.4	46.3	-21.29	-21.20	-21.03
Southern Cleanouts Witness East	LC04	12/15/2023 10:44:12 AM	20.0	21.4	11.4	47.2	45.3	45.2	-28.36	-21.25	-21.53
Southern Cleanouts Leachate West	LC05	12/15/2023 10:46:01 AM	36.0	32.3	0.4	31.3	44.9	44.9	-17.50	-17.50	-21.39
Southern Cleanouts Gradient Center West	LC06	12/15/2023 10:48:05 AM	44.7	38.4	5.2	11.8	44.4	44.2	-21.25	-21.20	-21.22
Southern Cleanouts Leachate East	LC08	12/15/2023 10:50:19 AM	47.5	50.3	0.0	2.2	43.5	43.5	-17.33	-17.33	-19.32
Southern Cleanouts Gradient Center East	LC09	12/15/2023 10:52:35 AM	24.3	28.2	9.5	38.0	42.5	42.4	-18.52	-18.55	-18.44
Southern Cleanouts Leachate West	LC10	12/15/2023 10:54:19 AM	35.4	39.0	3.7	21.9	41.4	41.4	-21.41	-21.20	-21.37
Northern Cleanouts Leachate East	NC01	12/15/2023 12:53:36 PM	0.0	0.1	20.9	79.1	46.9	46.9	-16.22	-16.49	0.00
Northern Cleanouts Leachate Center	NC02	12/15/2023 12:54:41 PM	0.0	0.0	21.1	78.9	47.3	47.3	-16.26	-16.34	0.00
Northern Cleanouts Leachate West	NC03	12/15/2023 12:57:41 PM	0.0	0.0	21.2	78.8	46.2	46.1	-16.49	-16.38	0.00
Northern Cleanouts Witness East	NC04	12/15/2023 12:37:26 PM	14.0	13.0	15.0	58.0	46.9	47.0	-16.22	-15.48	0.00
Northern Cleanouts Witness Center	NC05	12/15/2023 12:40:38 PM	35.9	30.6	8.1	25.5	47.1	46.8	-15.93	-15.82	0.00

Description	ID#	Record Date	CH4 (% by Vol)	CO2 (% by Vol)	O2 (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H2O)	Adj Static Pressure (in H2O)	System Pressure (in H2O)
Northern Cleanouts Witness West	NC06	12/15/2023 12:42:18 PM	20.9	24.5	18.8	35.8	47.0	46.9	-15.94	-15.90	0.00
Northern Cleanouts Gradient East	NC07	12/15/2023 12:45:02 PM	48.5	41.5	1.7	8.4	46.6	46.6	-14.14	-14.14	0.00
Northern Cleanouts Gradient Center East	NC08	12/15/2023 12:48:23 PM	48.8	40.4	2.4	8.4	46.8	46.7	-13.80	-13.80	0.00
Northern Cleanouts Gradient Center West	NC09	12/15/2023 12:50:29 PM	53.3	42.1	0.5	4.1	46.8	46.7	-13.81	-13.80	0.00
Northern Cleanouts Gradient West	NC10	12/15/2023 12:52:04 PM	16.9	17.2	14.9	51.0	46.4	46.6	-13.91	-13.99	0.00

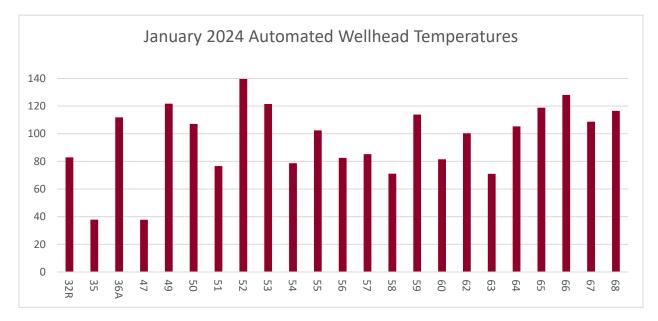
1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in the following sections of this report.

Additional actions taken by SCS-FS include the following:

- Replacing air regulators at individual wells
- Troubleshooting air compressor
- Adjusting blower set-points
- Investigation of high oxygen levels
- Replacing a Kanaflex on wellheads
- Modifications to lateral piping
- Placement of enhanced posi-shell on Quarry sidewalls
- Replacement of sample ports
- Winterizing GCCS components

1.3 **REMOTE MONITORING SYSTEM**

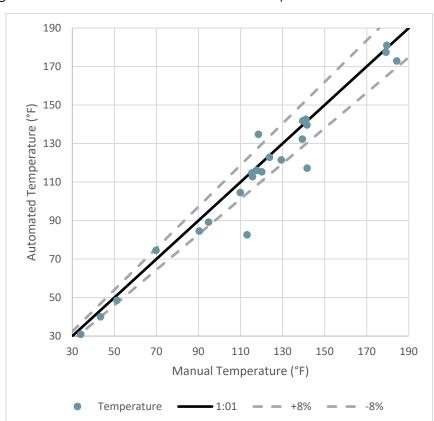

In the Fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas wellheads. The purpose of the sensors is to record and transmit well-head gas temperatures via a cellular connection to a database managed by SCS-RMC.

The City is providing average temperatures recorded by the sensors to VDEQ on a daily basis via email. Average daily temperatures recorded by the remote monitoring system during the month of January are included in Appendix C. In addition, SCS previously prepared semi-monthly status updates to satisfy the conditions of compliance provision #2 of the Environmental Protection Agency (EPA) Region III letter, Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility, dated August 23, 2021. On August 2, 2023, VDEQ requested that such updates be included in the monthly compliance reports going forward. Accordingly, this section is a summary of temperature monitoring activities during the monthly monitoring period of January 2024.

1.3.1 Automated Wellhead Temperature Measurements

SCS reviewed the automated hourly temperature measurements from January 2024, and identified the following trends:

- **Temperature probes removed at decommissioned wells:** Temperature probes at EW-34 and EW-40 were removed in December due to the decommissioning of the wells. In January, SCS and the City searched for the proper fittings to deploy these sensors to 3" CPVC wells where temperature measurements would provide pertinent information.
- **Temperatures over 145°F:** Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded consistently at EW-36A, EW-51, EW-52, EW-53, and EW-54 in January. The highest average temperature, 139.6°F, was measured at EW-52 (see Figure 1). SCS believes that wintry ambient temperatures are reflected in the lower average LFG temperatures recorded by automated wellhead sensors. The highest average automated temperatures in December were between 150 and 160°F while the highest average temperatures in January shown in Figure 1 are between 130 and 140°F.
 - The average temperatures recorded at EW-36A decreased significantly compared to the previous several months. SCS believes that this is the result of a change to the operation of isolation valves in the header pipe that supplies vacuum to EW-36A. In prior months condensate had built up and caused a plug, impeding LFG collection at EW-36A, resulting in heat accumulation. Opening a nearby valve and closing another restored consistent vacuum and allowed hot gas to be removed and the high temperatures alleviated.
- Low average temperatures at certain wells: Average temperatures less than 50°F recorded at EW-35 and EW-47 correlate to very low LFG flowrates through the wellheads; both less than 6 scfm in January.


1.3.2 Comparison with Manual Temperature Measurements

Per the approval issued by VDEQ on August 2, 2023, the Facility ceased dedicated daily manual temperature measurements in the Permit No. 588 Landfill. In lieu of these measurements, the City has agreed to compare instantaneous hourly automated temperature measurements with temperatures measured at each wellhead with a handheld sensor during monthly compliance monitoring. These comparisons are shown in Figure 2, with the $\pm 8\%$ deviation goals as prescribed in the VDEQ approval.

Temperature comparisons outside the $\pm 8\%$ deviation goal lines were found at wells EW-36A, EW-47, EW-51, EW-58 and EW-64. At EW-36A, the stainless-steel well casing appears to be a limiting factor in obtaining precise LFG temperatures with a handheld sensor.

At EW-47 and EW-51, LFG flowrates were consistently low (less than 5 cfm) during the month's wellfield monitoring events, which SCS believes caused the lower automated temperature measurements, just outside the 8% threshold. SCS has historically noted challenges recording precise LFG temperatures at low flow rates when utilizing automated sensors.

The disparity between automated and manual temperature measurements at EW-58 and EW-64 were the most significant in January; 27%, and 17%, respectively. SCS has ruled out known typical causes (battery failure, low LFG flow, and casing material), but is still investigating potential causes of temperature disparity at EW-58 and EW-64 and will provide an update in the February compliance report.

Figure 2. Automated vs. Manual Temperature Measurements

1.3.3 Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted November 6, 2023, with follow-up monitoring several days after. Additionally, SCS typically measures wellhead temperatures at the SWP No. 588 Landfill on a semi-monthly basis. During this monitoring period, temperature exceedances were resolved at EW-36A, 65, and 94. See Table 3 for the status of all exceedances recorded during this monitoring period. An HOV request was submitted for EW-52, EW-64, EW-81, EW-85, EW-88, EW-89, EW-91, and EW-99 on November 8, 2023 and was subsequently approved on January 9, 2024.

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 12/31/23
EW-52	12/18/23	12/27/23 159.6°F	22 days	Resolved within 60 days, HOV approved 1/9/24
EW-52	1/30/24	1/30/24 168.1°F	1 day	Ongoing, within 15-day timeline
EW-53	1/19/24	1/30/24 181.7°F	12 days	Ongoing, within 15-day timeline

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 12/31/23
EW-54	1/19/24	1/24/24 129.8°F	5 days	Resolved within 15-day timeline
EW-77	12/19/23	1/30/24 154.5°F	43 days	Ongoing, within 60-day timeline
EW-79	12/19/23	1/3/24 144.6°F	16 days	Resolved within 60 days
EW-80	12/4/23	1/24/23 152.7°F	58 days	Ongoing, within 60-day timeline
EW-81	9/25/23	1/30/24 174.2°F	106 days	Resolved within 120 days, HOV approved 1/9/24
EW-82	12/18/23	1/10/24 143.2°F	23 days	Resolved within 60 days
EW-83	12/4/23	1/30/24 182.8°F	58 days	Ongoing, within 60-day timeline
EW-85	10/10/23	1/30/24 163.1°F	91 days	Resolved within 120 days, HOV approved 1/9/24
EW-86	1/3/24	1/4/24 147.3°F	1 day	Resolved within 15 days
EW-88	9/25/23	1/19/24 156.8°F	106 days	Resolved within 120 days, HOV approved 1/9/24
EW-89	12/4/23	1/30/24 174.2°F	36 days	Resolved within 60 days, HOV approved 1/9/24
EW-97	1/3/24	1/30/24 157.8°F	28 days	Ongoing, within 60-day timeline

1.3.4 LFG Sampling

SCS collected weekly LFG samples from wells with temperature exceedances lasting more than 7 days using 1.5-L Summa canisters during January. The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H₂) content. As of 1/31/24, the City is in possession of lab results for sampling on December 21, 27, and January 4, 10, and 19 to fulfill the requirement in 40 CFR 63.1961(a)(5). Lab results are summarized in Table 4.

Table 4.	FG Wellhead Samplin	a Summarv
		9

Sample Da	te	12/21/2023	12/27/2023	1/4/2024	1/10/2024	1/19/2024
79	CO (ppmv)	218	240			
19	H2 (Vol. %)	1.97	1.46			
80	CO (ppmv)	ND	ND	ND	ND	94.1
80	H2 (Vol. %)	0.45	0.27	1.76	1.31	1.71
81	CO (ppmv)	189	200	175	255	
01	H2 (Vol. %)	4.12	4.03	3.98	5.32	
82	CO (ppmv)	552	565	530		
02	H2 (Vol. %)	17.6	17.7	21.1		
83	CO (ppmv)	564	564	512	442	716

	H2 (Vol. %)	16.9	17.3	13.6	14.8	20.5
85	CO (ppmv)	273	212			
65	H2 (Vol. %)	5.72	6.49			
88	CO (ppmv)	171	228	284	158	
00	H2 (Vol. %)	5.7	7.22	8.06	5.21	
89	CO (ppmv)	1080	1240	1250	1270	
09	H2 (Vol. %)	27.1	28.3	28.9	26.6	
97	CO (ppmv)			539		572
91	H2 (Vol. %)			10.3		12.8
100	CO (ppmv)					490
100	H2 (Vol. %)					13.3

The presence of hydrogen in the samples collected during this monitoring period indicates that combustion reactions are unlikely.

Carbon monoxide and hydrogen at Wells EW-80 and EW-83 for the last five weeks or more are shown in Figures 3 and 4. There have been low concentrations of carbon monoxide and hydrogen at EW-80 compared to other wells under enhanced monitoring at this site. Neither well is showing trends in either compound.

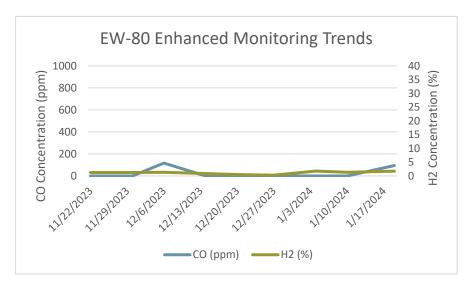
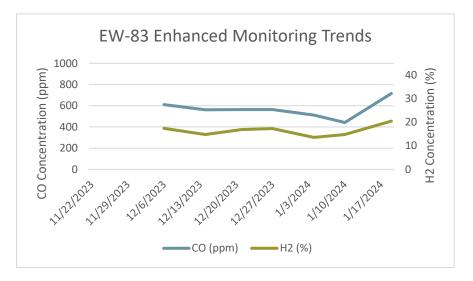



Figure 1. CO and H2 Concentration at EW-80

Figure 1. CO and H2 Concentration at EW-83

1.4 LARGE-DIAMETER DUAL-PHASE EXTRACTION WELLS

SCS completed design work on an expansion of the existing GCCS during the month of December 2022. The proposed expansion includes at least 5 large diameter dual-phase extraction wells. SCS submitted the design to VDEQ prior to December 31, 2022. The City commenced solicitation of contractor's bids for this project by advertising for bids and received one bid for the project from SCS Field Services Construction (SCS-CONS). On January 26, 2023, the City awarded the project to SCS-CONS. The City's construction contractor left site as of the GCCS expansion project completion on October 12, 2023.

1.5 VDEQ CONCURRENCE ON WELLS

As described in previous monthly compliance reports, the City engaged with VDEQ in discussions about the proposed approach for landfill GCCS improvements and expansions. Upon completion of the landfill gas collection system, SCS will submit updated as-built drawings depicting the completed system to VDEQ.

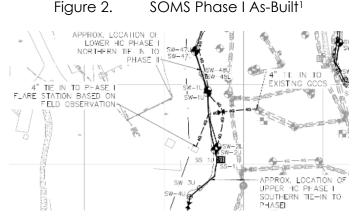
2.0 SIDEWALL ODOR MITIGATION

The City has designed and constructed a system to control fugitive emissions emanating from the quarry sidewalls. Specific aspects of the proposed design features are described in the following sections.

2.1 PERIMETER GAS COLLECTION SYSTEM

SCS's design of the GCCS expansion described in Section 1.4 included perimeter LFG wells. These wells are closer to the sidewall to intercept landfill gas that potentially could migrate to the quarry wall. These wells supplement the sidewall odor mitigation system described in Section 2.2. As described in the April 2023 Monthly Compliance Report for the SWP No. 588 Landfill, construction of

the perimeter gas collection system was completed. SCS submitted a letter to VDEQ documenting completion of the Perimeter Gas Collection System on May 1, 2023.

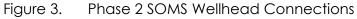

2.2 SIDEWALL ODOR MITIGATION SYSTEM

On behalf of the City and in an effort to capture emissions from the quarry sidewall, SCS designed a sidewall odor mitigation system (SOMS) during the month of October 2022. On October 20, 2022 SCS provided an overview of the proposed system to VDEQ staff. The design of this system was prepared and submitted to VDEQ on November 1, 2022. A project manual detailing the specifications of the system was developed concurrently with the design of the system.

2.3 PILOT SYSTEM CONSTRUCTION

SCS-CONS completed substantial construction of Phase 1 of the SOMS during the month of February 2023, SCS-FS began monitoring Phase 1 connected Horizontal Collector (HC) wellheads during the month of March, and SCS-FS continued weekly wellhead monitoring into the month of May 2023. Phase 1 is considered the pilot system portion of the SOMS. SCS submitted a design engineer certification to VDEQ on February 10, 2023 that documented the substantial completion of Phase 1 of the SOMS. Details of Phase 1 construction progress and monitoring can be found in the monthly compliance reports for the SWP No. 588 landfill.

Figure 5 shows the Phase 1 as-built, which includes the locations of the HC wellheads and HC sumps installed in Phase I, as well as the 4" header connection to the existing LFGCCS. The lower collector installed as part of Phase II was tied-in to the north end of the Phase I lower collector, and the upper collector installed as part of Phase II was tied-in to the south end of the Phase I upper collector.


Both the upper and lower collectors of Phase 1 of the system have been connected to the substantially completed Phase 2 of the system. Collection of landfill gas by both the upper and lower collectors indicates that the system is working as intended. Based on this data, Phase 2 was constructed utilizing the same general configuration.

¹ Location data was collected using mapping grade global positioning system equipment.

2.4 FULL SYSTEM CONSTRUCTION

SCS-CONS substantially completed construction of Phase 2 of the SOMS during the month of June 2023 as Phase 2 was connected to vacuum as of June 14, 2023. Cover soil placement continued into the month of October, and ceased when the construction crew left site on October 12, 2023 upon project final completion. Figure 6 shows SOMS Phase 2 wellhead installation and connections at HC wells along the southeastern perimeter of the landfill.

During the month of January 2024, SCS-FS collected monitoring data at each wellhead under vacuum. A summary of those measurements is shown in Table 5.

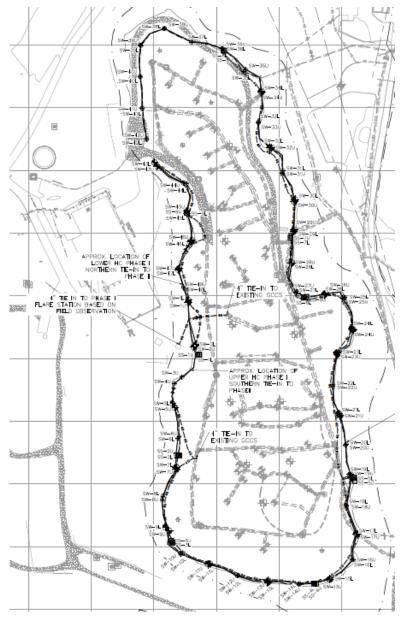

Record Date	Average CH4 [%]	Average CO2 [%]	Average O2 [%]	Average Bal Gas [%]
1/8/2024	3.3	6.8	18.2	71.6
12/(19-26)/2023	5.7	10.1	16.8	67.4

Table 5. System Averages of Sidewall Wellhead Gas Quality

Isolation valves have been installed on the SOMS to allow for manipulation of flow routed to the supplemental flare, currently being leased. The flare was constructed by Perennial Energy Incorporated (PEI). The gas is being re-routed to the supplemental flare because of the lower quality of the gas. The City is attempting to improve the quality of the gas directed to the primary flare and energy generation facility.

The sidewall system average gas composition indicates lower methane content than typical landfill gas collection systems. The gas quality measurements indicate that the SOMS is functioning as designed because landfill gas is being withdrawn and oxygen intrusion is acceptable. The wide-ranged gas composition may indicate that some areas of the landfill may be experiencing higher landfill gas concentrations than areas where methane content is seemingly insignificant. SCS-FS will adjust SOMS wellheads based on gas quality to increase flow from sections of the system with high methane content and reduce flow from sections of the system with low methane content. Phase 2

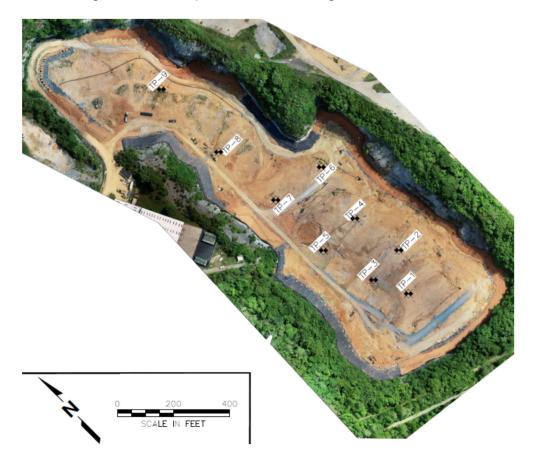
lower and upper collectors locations, including HC wellhead riser and sump locations, are shown in the as-built depicted as Figure 7².

At this time, not every SOMS horizontal collector riser (HC) has a wellhead installed, but HC risers may receive a wellhead at a future date as warranted by field conditions.

² During construction, redundant risers were put in place to accommodate supplemental wellhead and installation in the future. Figure 10 shows all riser and sump locations. The final submittal to VDEQ, Revised June 26, 2023, shows the locations of actual wellhead installation. The facility may relocate wellheads based on field conditions.

³ Location data was collected using mapping grape global positioning system equipment.

3.0 WASTE TEMPERATURE MONITORING


On behalf of the City, SCS designed a temperature monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

3.1 TEMPERATURE MONITORING SYSTEM DESIGN

The temperature monitoring system consists of 9 boreholes drilled into the waste mass. A steel casing was placed in each borehole and the hole was backfilled around the casing with aggregate. A series of temperature sensors was placed inside the steel casing. At the top of each borehole, an IIoT transmitter collects the data from the sensors and transmits it to a cloud-based RMC system. The City submitted design of the temperature monitoring system to VDEQ on November 30, 2022.

3.2 TEMPERATURE MONITORING SYSTEM INSTALLATION

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP No. 588 Landfill. The locations of the temperature probes are shown in Figure 8.

SCS began collecting temperature data daily on February 15, 2023. The temperature sensors continued to transmit temperature data during the month of January. Average daily temperatures recorded by the sensors for the Month of January are included in Appendix D. Each week the average temperatures from a select day of that week are downloaded and compared to temperatures recorded during the previous week. Average daily temperatures recorded on select days during the month of January are shown in Appendix B. The average temperatures recorded during the months of March 2023 through January 2024 are shown in Figures 9 through 17 on the following pages.

Figure 9 shows daily average temperatures record by Temperature Probe 1 (TP-1) during the months of March 2023 through January 2024. Based on the data, temperatures were consistent from March through May and saw increases during the months of June, July and August at depths or 100 feet and below. In September, average temperatures showed little change when compared to August and in some cases, show a small decrease. Temperatures have stayed generally consistent based on measurements collected between September 2023 and December 2024.

TP-1 was originally drilled to a depth of 180 feet, but the contractor was unable to install the casing beyond a depth of 160 feet. TP-1 did not record temperatures between July 23, 2023 and July 30, 2023 due to a dead battery. The battery was replaced and TP-1 began recording temperatures again on July 31, 2023.

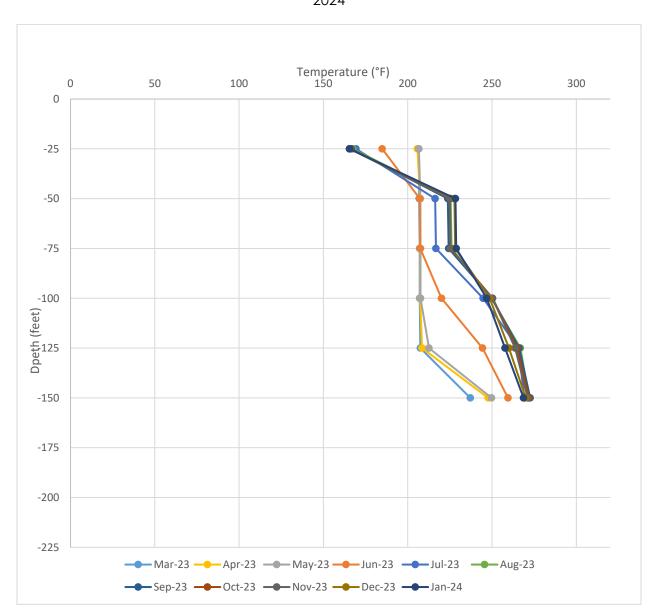
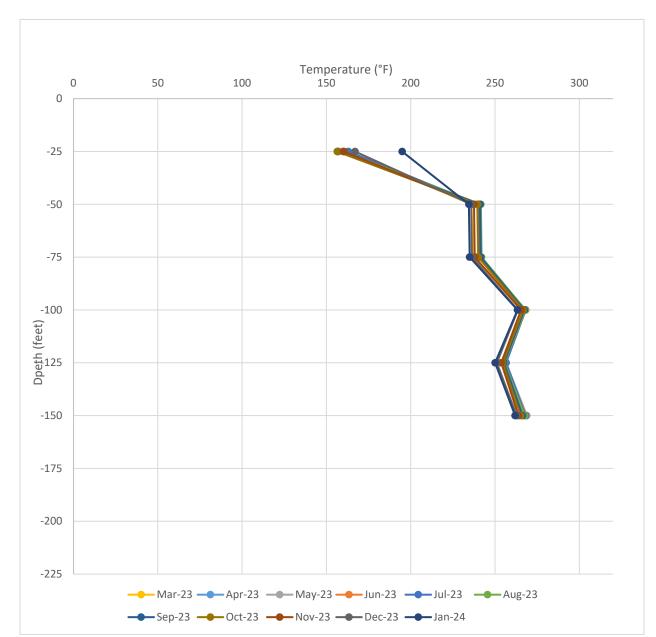



Figure 6. TP-1 Average Temperatures for the Months of March 2023 through January 2024

January 2024 Monthly Compliance Report SWP No. 588

Figure 10 shows daily average temperatures in Temperature Probe 2 (TP-2) during the months of March 2023 through January 2024. Based on the data, temperatures have been consistent during the last eleven months, with an increase at 25 ft. during January 2024.

TP-2 was originally drilled to a depth of 160 feet. TP-2 did not record temperatures between August 15, 2023 and September 17, 2023 due to a dead battery. A replacement battery was installed in September of 2023 and TP-2 recording temperatures again on September 18, 2023.

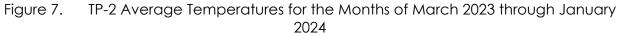


Figure 11 shows daily average temperatures in Temperature Probe 3 (TP-3) during the months of March 2023 through January 2024. Based on the data, temperatures have been generally consistent during the last eleven months. There has been an increase in temperatures during the months of October 2023 through January 2024 at the 50-foot and 75-foot depths. SCS noted that a forcemain check valve near an adjacent well had failed. This may have limited liquids removal in the area and resulted in higher temperatures. Temperatures were consistent during the months of November 2023, December of 2023, and January 2024. SCS will continue to review temperature data recorded by this probe.

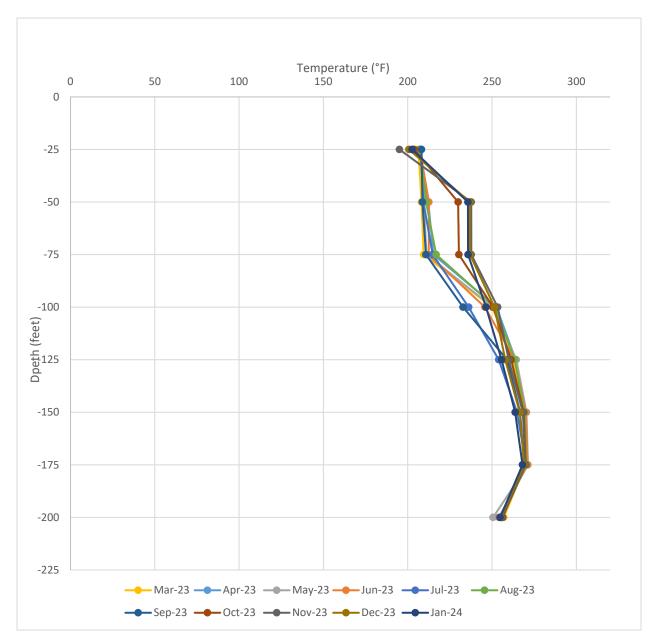
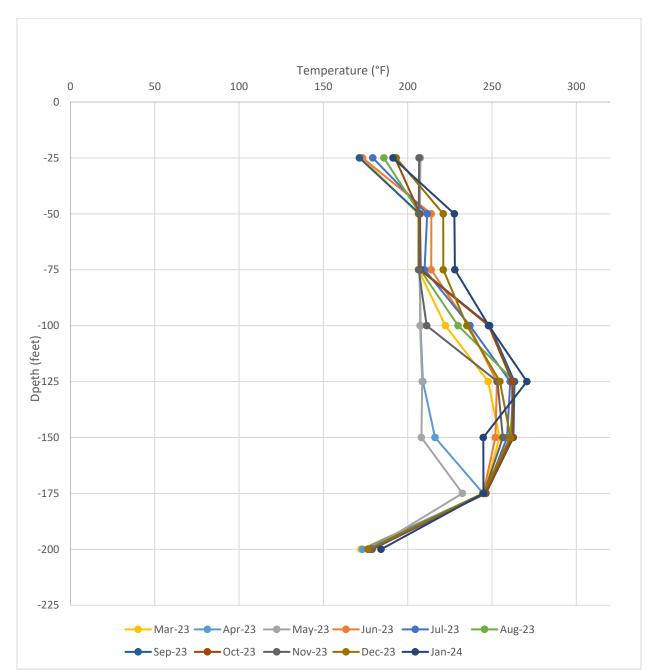



Figure 8. TP-3 Average Temperatures for the Months of March 2023 through January 2024

Figure 12 shows daily average temperatures in Temperature Probe 4 (TP-4) during the months of March 2023 through January 2024. Based on the data, temperatures appeared to drop during the months of April 2023 and May 2023, but returned to levels closer to baseline during the months of June 2023 through January 2024. December temperatures appear to be closer to baseline than the low temperatures observed in April and May.

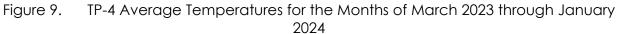


Figure 13 shows daily average temperatures in Temperature Probe 5 (TP-5) during the months of March 2023 through January 2024. Based on the data, temperatures have been consistent during the last nine months.

TP-5 was damaged in late October 2023 and the sensors at the 125-foot, 150-foot, 175-foot, and 200-foot depths stopped functioning. SCS completed troubleshooting during the month of November 2023 and the sensors returned to operation later that month.

Figure 10. TP-5 Average Temperatures for the Months of March 2023 through January 2024

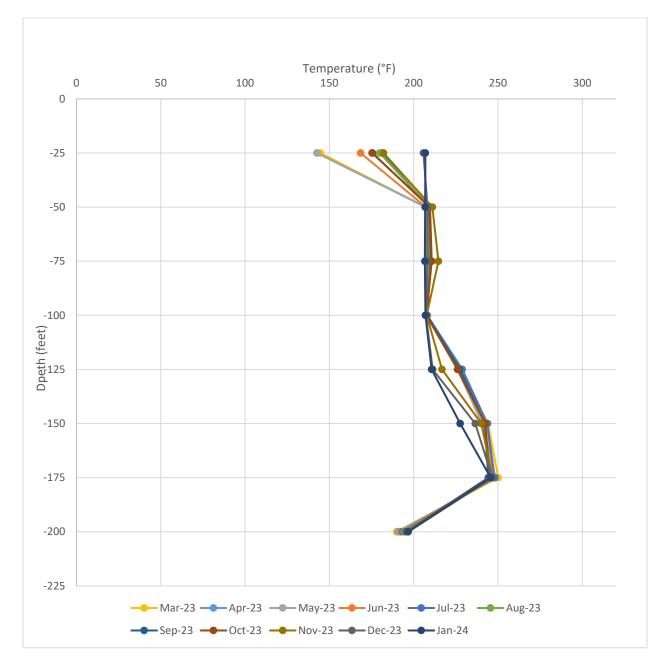
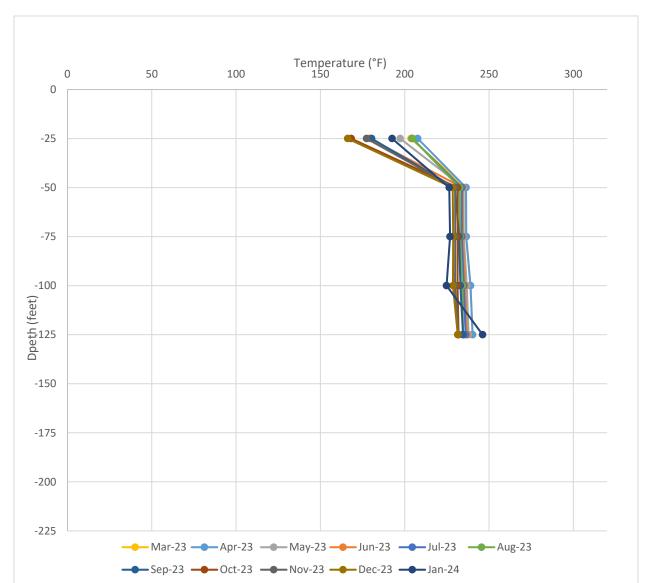



Figure 14 shows daily average temperatures in Temperature Probe 6 (TP-6) during the months of March 2023 through January 2024. Based on the data, temperatures have been generally consistent during the last nine months below the 25-foot level. A decrease at the 25-foot level was observed during the months of June 2023, September 2023, and October 2023. Temperatures returned to baseline during the months of July 2023 and August 2023. Temperatures at the 25-foot level dropped again in December 2023 and rose in January 2024. There was also an increase at the 125-foot level in January 2024.

TP-6 was originally drilled to a depth of 208 feet and casing was installed to the full depth. During the installation of the installation of replacement sensors, a blockage within the casing prevented placement of sensors below the 125-foot depth.

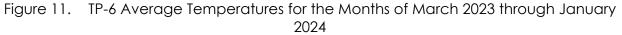


Figure 15 shows daily average temperatures in Temperature Probe 7 (TP-7) during the months of March 2023 through January 2024. Based on the data, temperatures have been consistent during the months of March 2023 through November 2023. Average temperatures dropped during the month of December 2023. Changes in temperatures observed during the month of January 2024 varied by depth. Observations of adjacent wells indicate that there may be below grade settlement of waste occurring in this area.

TP-7 did not record temperatures between August 15, 2023 and September 17, 2023 due to a dead battery. A replacement battery was installed in September of 2023 and TP-7 recording temperatures again on September 18, 2023.

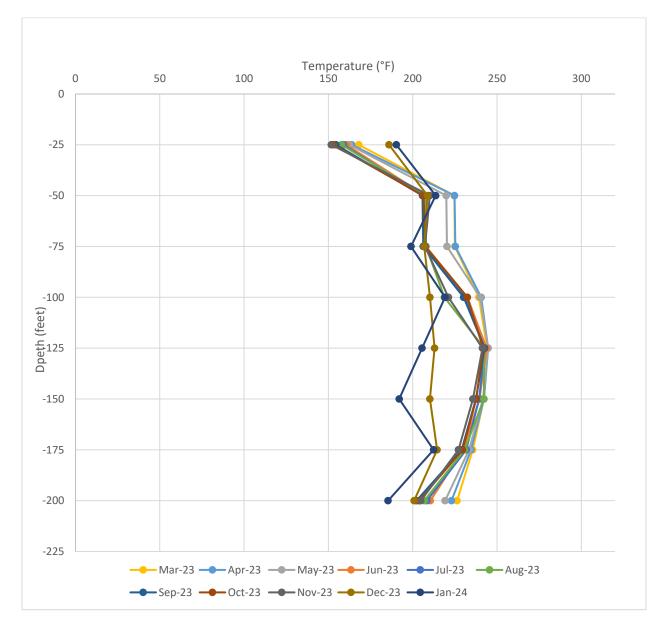


Figure 12. TP-7 Average Temperatures for the Months of March 2023 through January 2024

Figure 16 shows daily average temperatures in Temperature Probe 8 (TP-8) during the months of March 2023 through January 2024. Based on the data, temperatures increased throughout 2023. The rate of increase appears to have slowed between September 2023 and January 2024. At some depths average temperatures decreased in January 2024.

TP-8 Did not read from November 8 to November 27 due to faulty battery which was replaced on November 28.

Figure 13. TP-8 Average Temperatures for the Months of March 2023 through January 2024

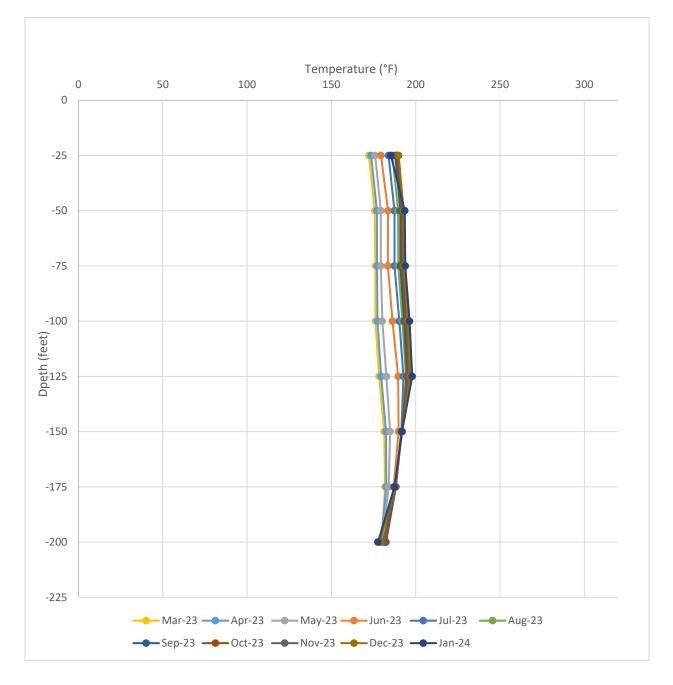
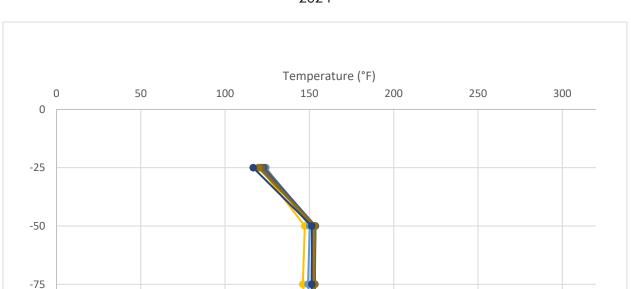
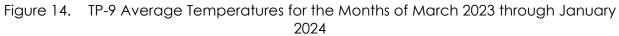




Figure 17 shows daily average temperatures in Temperature Probe 9 (TP-9) during the months of March 2023 through January 2024. Based on the data, temperatures have been consistent during the last eleven months.

-100

Dpeth (feet)

-150

-175

-200

-225

Mar-23 — Apr-23 — May-23 — Jun-23 — Jul-23 — Aug-23

The data indicates that temperatures within the landfill are generally stable and are typical of those observed at elevated temperature landfills (ETLFs). During the months of May 2023 through September 2023, substantial construction occurred at the landfill including deep dual extraction wells that may have impacted temperatures within the waste mass adjacent to the probes. While quantifying the effect of the construction of addition wells is difficult, changes in wellhead temperature have been observed in existing wells adjacent to newly installed wells. The temperatures recorded are substantially lower than those associated with landfill fires or other combustion processes, which can exceed 1000°F. This further indicates that the elevated temperatures are due to sources other than combustion.

4.0 LEACHATE EXTRACTION AND MONITORING

The City has begun taking steps to improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals.

4.1 EXISTING SYSTEM OPTIMIZATION

During bimonthly gas extraction well monitoring, SCS also collected stroke counter data from the pumps installed in the GCCS extraction wells. Stroke count measurements are also collected weekly as part of routine pump maintenance. These stroke counts were collected from 40 wells on 5 consecutive weeks, as shown Table 6. Cells marked with "*" represent dates when the pump was removed from the well for maintenance or had not yet been installed.

Well	1/5/2024	1/12/2024	1/18/2024	1/23/2024	2/1/2024
EW33B	17	17	17	24	28
EW36A	335,026	335,026	335,026	335,026	335,039
EW49	777,893	777,893	777,893	777,893	777,893
EW50	1,389,036	1,395,359	1,398,255	1,398,255	1,404,522
EW51	140,310	153,163	161,853	164,342	169,923
EW52	443,827	451,926	454,804	454,897	471,027
EW53	2,471,563	2,503,204	2,515,110	2,547,136	2,606,985
EW54	597,301	609,757	634,705	651,468	701,908
EW55	713,760	713,760	713,760	713,760	713,760
EW57	44,644	44,644	44,644	44,644	44,644
EW58	*	2,490,489	2,490,489	2,490,489	2,490,489
EW59	2,503,520	2,545,230	2,646,688	2,701,037	2,701,037
EW60	617,075	617,362	617,704	617,720	617,734
EW61	24,065	24,491	25,503	26,480	26,505
EW62	202,629	202,630	202,635	203,402	203,911
EW64	177,605	177,605	177,605	177,605	177,633
EW65	4,817	4,817	4,817	4,817	4,818
EW67	865,688	865,688	865,688	865,688	865,688

Table 6.	Summary	y of Dual Extraction	Well Pump	Stroke Counter Data

Well	1/5/2024	1/12/2024	1/18/2024	1/23/2024	2/1/2024
EW68	2,272,399	2,280,685	2,281,285	2,287,633	2,287,633
EW69	9	9	9	9	15
EW70	*	*	*	*	*
EW74	25	25	25	25	30
EW75	11	11	11	11	12
EW76	23	23	24	24	25
EW78	88,027	90,167	95,426	97,428	100,224
EW81	304,902	329,326	329,326	329,326	329,326
EW82	98,268	105,540	105,540	105,540	105,540
EW83	*	428,888	428,888	428,888	428,902
EW85	144,790	161,388	201,929	210,062	254,137
EW87	940,779	940,819	940,819	940,819	953,645
EW88	413,403	413,407	413,414	413,414	427,990
EW89	529,293	571,881	629,462	670,238	720,561
EW90	170,679	170,679	170,679	170,679	170,679
EW91	265,766	265,766	265,766	265,766	265,766
EW92	391,956	391,973	391,973	391,973	391,973
EW93	302,227	302,227	302,227	302,227	302,227
EW94	520,385	520,385	520,385	520,385	520,385
EW96	596,985	605,564	605,564	605,564	605,564
EW98	1,852,381	1,904,850	1,904,850	2,063,181	2,127,274
EW100	470,180	485,577	486,051	524,903	554,027

Based on this data, SCS can estimate the number of gallons of liquid pumped from each well. SCS assumed that each stroke from a float-style pneumatic pump correlates to approximately 0.3 gallons of liquid removed from the well. Additionally, Blackhawk piston-style pumps remove approximately 0.11 gallons per stroke recorded. This data will then be used to identify pumps for repair or replacements or identify nonfunctional stroke counters for replacement. Estimates of the quantities of liquids removed between the reading dates are shown in Table 7.

Table 7. Summary of Dual Extraction Well Pump Liquids Rer

Well	Liquids Removed (gal) 12/28/23 to 1/5/24	Liquids Removed (gal) 1/5/24 to 1/12/24	Liquids Removed (gal) 1/12/24 to 1/18/24	Liquids Removed (gal) 1/18/24 to 1/23/24	Liquids Removed (gal) 1/23/24 to 2/1/24
EW33B	-	-	-	2	1
EW36A	22,070	-	-	-	1
EW49	-	-	-	-	-
EW50	584	1,897	869	-	1,880
EW51	-	3,856	2,607	747	1,674
EW52	6,652	2,430	863	28	4,839

Well	Liquids Removed (gal) 12/28/23 to 1/5/24	Liquids Removed (gal) 1/5/24 to 1/12/24	Liquids Removed (gal) 1/12/24 to 1/18/24	Liquids Removed (gal) 1/18/24 to 1/23/24	Liquids Removed (gal) 1/23/24 to 2/1/24
EW53	10,899	9,492	3,572	9,608	17,955
EW54	-	3,737	7,484	5,029	15,132
EW55	-	-	-	-	-
EW57	-	-	-	-	-
EW58	-	-	-	-	-
EW59	611	12,513	30,437	16,305	-
EW60	11	86	103	5	4
EW61	503	128	304	293	8
EW62	80	0	2	230	153
EW64	-	-	-	-	8
EW65	-	-	-	-	0
EW67	-	-	-	-	-
EW68	1,960	2,486	180	1,904	-
EW69	-	-	-	-	2
EW70	-	-	-	-	-
EW74	-	-	-	-	2
EW75	-	-	-	-	0
EW76	-	-	0	-	0
EW78	848	642	1,578	601	839
EW81	-	2,735	-	-	-
EW82	-	814	-	-	-
EW83	-	-	-	-	14
EW85	6,200	4,979	12,162	2,440	13,223
EW87	-	4	-	-	1,437
EW88	1,810	1	2	-	4,373
EW89	1,979	4,770	6,449	4,567	5,636
EW90	-	-	-	-	-
EW91	-	-	-	-	-
EW92	274	2	-	-	-
EW93	1	-	-	-	-
EW94	-	-	-	-	-
EW96	2,864	961	-	-	-
EW98	33,785	15,741	-	47,499	19,228
EW100	7	4,619	142	11,656	8,737

These pump stroke counter data and calculations estimate that approximately 426,000 gallons of liquids were removed from the landfill gas collection and control system during the month of January.

SCS-FS continues to implement an aggressive maintenance schedule for landfill gas liquids removal pumps. The pump at EW-98 was the best performing pump at 116,253 gallons in January.

To improve the accuracy of the landfill gas liquids flow rates, two flow meters were installed on the landfill gas liquid forcemains in December 2023. One flow meter was installed on the SWP No. 588 primary landfill gas liquid forcemain. The other was installed on the SWP No. 588 alternate landfill gas liquids forcemain, which also serves as the conduit for condensate from the temporary perennial flare and the SWP No. 588 stormwater pump. The SWP No. 588 alternate landfill gas liquids forcemain will also serve as the SWP No. 498 landfill gas liquids forcemain in the future. In January, the total liquids flow recorded by the SWP No. 588 landfill flowmeters was 337,000 gallons.

The progress in landfill gas liquids removal over the last three months is depicted in Figure 21.

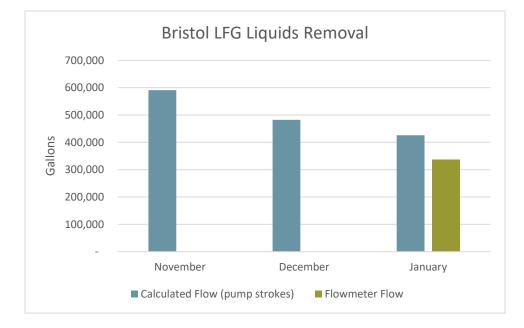


Figure 15. Estimated Volume of Liquids Removed from Landfill Gas Wells

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations. Pumps require servicing after relatively short intervals. During the month of January 2024 pump maintenance occurred on the dates shown in Tables 6 and 7. Freezing temperatures in January impacted the compressed air distribution system used to operate the pumps as well as the forcemain piping, which interfered with pump operations. Additionally, minor pump modifications and repairs were made throughout the month to extend pump runtimes before failure. The SWP No. 588 Landfill's float-style pumps are bump-checked daily, and Blackhawk piston drive rods are cleaned routinely each week.

In some cases, low volumes of landfill liquids removed correlate to low measured liquid levels within the gas wells. During the landfill gas well liquids monitoring event, the following wells were noted to be dry or have low liquid levels: EW-63, EW-69, EW-72, EW-78, and EW-80, EW-81, EW-82, and EW-99. When this condition is identified, pumps may be relocated to wells with consistently higher liquid levels. Pumps that were removed previously due to wells being dry were relocated to EW-65, EW-93, and EW-95 in December 2023.

During the construction of the LFGCCS expansion outlined in Sections 1.4 and 2.1, multiple types of leachate extraction pumps were installed. The City and SCS will continue to evaluate the performance of those pumps in the coming months. Based on that evaluation, the City may replace pumps identified in particularly challenging well with a pump type that has been determined to be more effective.

4.2 SAMPLING AND ANALYSIS PLAN

On November 1, 2022, SCS submitted to VDEQ the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan for the Bristol Integrated Solid Waste Management Facility Solid Waste Permit No. 588 Landfill and the plan was subsequently revised on December 1, 2022. Refer to the November 2022 and December 2022 Compliance Reports for the SWP No. 588 Landfill for additional information.

4.2.1 Sample Collection

On January 8 and 11, 2024, SCS collected leachate samples from three Dual Phase LFG-EWs (EW-51, EW-59, and EW-98). At the time of sample collection dissolved oxygen, oxidation-reduction potential, pH, specific conductance, temperature, and turbidity were measured and recorded. The sample collection log is included in **Appendix F**.

SCS' field staff were not able to collect samples from the following wells for the following reasons:

- Pump was not running at the time of monitoring for the following wells: EW-50, EW-52, EW-54, EW-58, EW-60, EW-61, EW-62, EW-64, EW-68, EW-72, EW-73, EW-74, EW-75, EW-76, EW-78, EW-82, EW-83, EW-85, EW-87, EW-88, EW-91, EW-94, EW-96, and EW-100.
- Pump was disconnected at the time of monitoring for the following wells: EW-49, EW-53, EW-55, EW-57, EW-63, EW-90, and EW-92.
- There was no sample port, and the pump was disconnected at the time of monitoring for the following well: EW-67. The City and SCS-FS are coordinating to get sample port installed on this well.
- Pump was not running and the well appeared dry at the time of monitoring for the following wells: EW-36A and EW-81.
- There is no pump at the time of the monitoring for the following wells: EW-65, EW-69, EW-71, EW-77, EW-79, EW-80, EW-84, EW-86, EW-93, EW-95, EW-97, and EW-99.
- There is no pump and the well appeared dry at the time of monitoring for the following well: EW-56.
- Well EW-70 was not accessible during the monitoring event.
- There was no sample port at the time of monitoring for the following wells: EW-33B and EW-89. The City and SCS-FS are coordinating to get a sample port installed on this well.

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia and Pace Analytical Services, LLC (Pace) in Baton Rouge, Louisiana for analysis. The Enthalpy's and Pace's Virginia Division of Consolidated Laboratory Services (VELAP) certifications are provided on the certificate of analysis (COA) included in **Appendix F**. The samples were analyzed for the parameters utilizing the analytical methods described in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan.

4.2.2 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for VOC analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analyses. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A summary of each of these is presented below:

- Method Blank The method blank is deionized water subjected to the same reagents and manipulations to which site samples are subjected. Positive results in the method blanks may indicate either contamination of the chemical reagents or the glassware and implements used to store or prepare the sample and resulting solutions.
- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis. MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.
- LCS These samples consist of distilled/deionized water injected with the parameters of interest for single parameter methods and selected parameters for multi-parameter methods according to the appropriate analytical method. LCS samples are prepared and analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are like the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

No trip or method blank detects were identified for the January 2024 monitoring event. The laboratory analysis reports for the January 2024 monitoring event trip blanks are included in

Appendix F. The January 2024 monitoring event laboratory QA/QC reports, including the method blank results, are included in the COA in **Appendix F**.

4.2.3 Data Validation

To identify analytical data that may not represent valid results, data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection Agency (EPA) guidance⁴. Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with parameter detections less than five times that of the trip blank, field blank, and/or method blank detection but greater than the laboratory contaminant parameter detections less that 0 times that 0 times that of the trip blank, field blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not validated as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis.

No leachate results were flagged with a "B" qualifier for the January 2024 monitoring event as no detections were identified in the trip or method blanks. The January 2024 detections flagged with a "J" qualifier are shown on **Table 8**.

4.2.4 Laboratory Analytical Results

The analytical results for the January 2024 leachate samples collected from extraction wells EW-51, EW-59, and EW-98 are summarized in **Table 8**. The associated COAs are included in **Appendix F**. Parameter results from January 2024 and previous monitoring events (November 2022 – December 2023) are presented on a table in **Appendix F**. Time-series plots of each VOC for the wells that have historically been sampled are also included in **Appendix F**.

Well ID	EW-51	EW-59	EW-98	LOD	LOQ
Parameter	January	LOD	LOQ		
Ammonia as N (mg/L)	2160	2400	1610	146	200
Biological Oxygen Demand (mg/L)	26000	17100	14000	0.2	2
Chemical Oxygen Demand (mg/L)	48600	59800	38200	5000	5000
Nitrate as N (mg/L)	2.01	ND	ND	1.5	5.5
Nitrite as N (mg/L)	1.7 J	ND	ND	1	5
Total Kjeldahl Nitrogen (mg/L)	2450	3020	1810	100	250
Tatal Deserversible Disanction (mar.(1))	38		22.7	1.5	2.5
Total Recoverable Phenolics (mg/L)		39.2		3	5

Table 8.	Monthly LFG-EW Leachate Monitoring Event Summary

⁴ United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. November 2020.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. November 2020.

Well ID	EW-51	EW-59	EW-98	LOD	100
Parameter	January	January 2024 Concentration			LOQ
SEMI-VOLATILE ORGANIC COMP	OUND (ug/L)				
Anthracene	ND			100	200
			ND	250	500
		ND		1000	2000
TOTAL METALS (mg/L)			'		
Arsenic	0.47	0.23	0.18	0.0025	0.005
Barium		1.92	1.91	0.005	0.025
	3.27			0.01	0.05
Cadmium	ND	ND	ND	0.0005	0.005
Chromium	0.17	0.193	0.128	0.002	0.005
Copper	ND	0.019	ND	0.0015	0.005
Lead	ND	0.0081	ND	0.005	0.005
Mercury	ND	ND	ND	0.001	0.001
Nickel	0.06308	0.04911	0.0326	0.005	0.005
Selenium	ND	ND	ND	0.00425	0.005
Silver	ND	ND	ND	0.0003	0.005
Zinc	0.117	0.0974	0.0261	0.0125	0.025
VOLATILE FATTY ACIDS (mg/L)					
Acetic Acid	4410	5290	3080		250
Butyric Acid	813	1230	594		250
Lactic Acid	629	979	256		250
Propionic Acid	1680	1970	1030		250
Pyruvic Acid	ND	ND	ND		250
VOLATILE ORGANIC COMPOUND	DS (ug/L)				
2-Butanone (MEK)		10800		150	500
	34700		28900	1500	5000
Acetone	96600	22800	47300	3500	5000
Benzene	1410	662	2900	20	50
Ethylbenzene	99	28 J	248	20	50
Tetrahydrofuran	5160	1040	10900	500	500
Toluene	95.5	60	310	25	50
Xylenes, Total	142 J	ND	534	50	150

Table 8. Monthly LFG-EW Leachate Monitoring Event Summary

--- = not available

J = Constituent was detected at a concentration above the laboratory's LOD but below the laboratory's LOQ. Concentration is estimated and not validated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

On behalf of the City, SCS submitted a settlement monitoring and management plan to VDEQ on November 15, 2022. Refer to the 2022 November Monthly Compliance Report for the SWP No. 588 Landfill for additional information.

5.2 MONTHLY SURVEYS

5.2.1 Topographic Data Collection

The City, through SCS, collected topographic data of the Solid Waste Permit No. 588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone). On January 23, 2024, the flight was completed and the topographic data collected. The topographic data collected is shown on Sheet 4 in Appendix E. On the date that the data was collected, there was snow on the ground in parts of the landfill. This may have impacted the imagery used to calculate elevations.

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on December 20, 2024. A drawing depicting the December 20, 2023 topography is included as Sheet 3 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 2,800 cubic yards. During that same time period, calculations indicate approximately 14,000 cubic yards of fill was placed during this time on the landfill. SCS could not identify the source of most of this fill, but suspects that snow on the landfill surface may have impacted elevation measurements. This resulted in a net volume increase of approximately 11,200 cubic yards. During the month of January, there was presence of snow and ice on the ground that likely effected the elevation data captured by the drone. Since there was not any construction-related filling happening during this timeframe, it is reasonable to assume the topography elevations were slightly impacted due to these winter weather conditions.

SCS attempted to delay data collection until later in the month to allow time for snow and ice to melt. Ultimately freezing temperatures prevented melting of snow and ice and topographic data was collected late in the month.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 19. Areas in yellow, orange, and red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 5 in Appendix E.

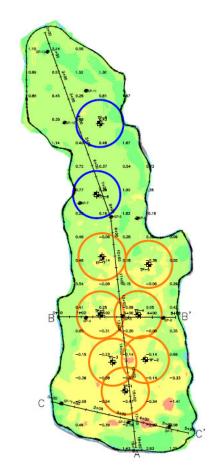


Figure 16. 1-Month Elevation Change Color Map

The locations of in-waste temperature monitoring probes are also shown on Figure 26, Figure 27, and Figure 28. The circles around the probes are indicative of the average borehole temperature. The circles shown are offset from the probes for clarity only and do not necessarily indicate temperatures measured at locations away from the probe. Probes with a blue circle around them typically have an average temperature less than 200°F across the full depth of the probe. Probes with a red circle around them typically have an average temperature greater than 250°F across the full depth of the probe. Probes with a red circle around them typically have an average temperature greater than 250°F across the full depth of the probe. There were no probes measuring average temperatures greater than 250°F and less than 300°F across the full depth of January 2024.

The largest settlement occurred primarily in the middle-southern end of the landfill where the waste settled by approximately 1 foot or more in some areas. The southern end of the landfill is the location of the gas wells and temperature probes exhibiting higher temperatures. The waste is thicker and newer in this region as well. These higher settlement values are typical of elevated temperature landfill conditions. Some areas of the landfill exhibited an increase in elevation, likely due to snow and ice affecting the elevation measurement.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation increase was approximately 0.4 feet. This value likely reflects snow and ice on the ground and the time topographic data was collected.

SCS also compared the topographic data collected in January to the topographic data collected on October 12, 2023. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 23,400 cubic yards. During that same time period calculations indicate approximately 6,200 cubic yards of fill were placed on the landfill. This fill may have been soil placed as part of the maintenance of the sidewall odor mitigation system construction, but this volume may also have been impacted by snow and ice on the ground in January of 2024. This resulted in a net volume decrease of approximately 17,200 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 20. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 6 in Appendix E.

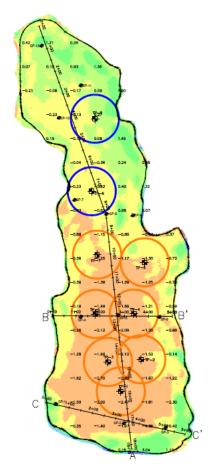


Figure 17. 3-Month Elevation Change Color Map

Based on the area of the landfill and the net volume change, the average elevation decrease was approximately 0.6 feet.

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 3 feet or more in some areas. The southern end of the landfill is the location of the gas wells and temperature probes exhibiting higher temperatures, and where the waste is deepest. Higher settlements are typical of elevated temperature landfill conditions. Settlement in the northern portion of the landfill was generally less substantial or was offset by soil placement associated with construction activities. Changes in elevation in these areas are more representative of typical settlement at municipal landfills. Some portions of the landfill perimeter exhibited an increase in elevation, likely due to sediment deposition during storm events and soil placement associated with construction and maintenance of the sidewall odor mitigation system. There were some large variations in elevation associated with soil stockpiling operations.

SCS also compared the topographic data collected in January to the drone topographic data collected on January 10, 2023 by SCS. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 75,200 cubic yards. During that same time period approximately 21,800 cubic yards of construction-related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 53,400 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 21. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 7 in Appendix E.

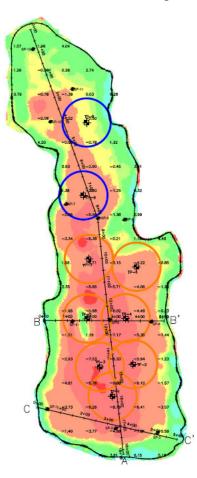


Figure 18. 1-Year Elevation Change Color Map

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 16 feet or more in some areas. These significant settlement values are typical of elevated temperature landfill conditions. The landfill perimeter exhibited an increase in elevation, likely due to soil placement associated with construction of the Sidewall Odor Mitigation System. There were variations in elevation associated with soil stockpiling operations.

Based on the landfill area and the net volume change, the average elevation decrease was approximately 1.9 feet.

SCS will collect topographic data covering the landfill surface again in February using photogrammetric methods via UAV. This data will be compared to the data collected in February 2023, November 2023, and January 2024.

5.2.2 Settlement Plate Surveys

On November 7, 2022 SCS field services installed 12 settlement plates on the Solid Waste Permit No. 588 landfill. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan. The tops of the PVC pipes were spray painted orange to improve visibility. The settlement plate locations are depicted in Figure 22 and on Sheet 1 in Appendix E.

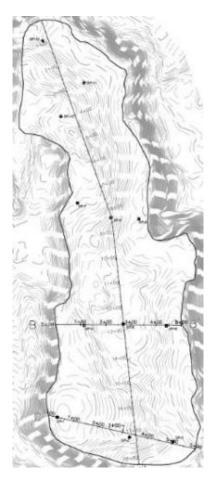


Figure 19. Settlement Plate Locations

The locations of the settlement plates were surveyed by the City's surveyor on November 14, 2022. The settlement plates were surveyed again on December 13, 2022; January 3, 2023; February 6, 2023; March 8, 2023; April 3, 2023; May 11, 2023; June 5, 2023; July 10, 2023; August 17, 2023; September 11, 2023; October 11, 2023; November 6, 2023; December 12, 2023; and January 11, 2024. The surveyed coordinates⁵ and elevation changes of the settlement plates are shown in Table 9.

Settlement Plate	Northing	Easting	Elevation on January 11, 2024	Elevation Change Since December 12, 2023	Strain ⁶ Since December 12, 2023	Elevation Change Since Installation	Strain/Year
SP-1	3,397,887.1	10,412,079.5	1,830.6	-0.1	-0.2%	-3.8	-2.6%
SP-2	3,397,809.9	10,412,365.9	1,802.1	-0.5	-0.3%	-8.5	-3.7%
SP-37	3,397,787.5	10,412,537.9	N/A	N/A	N/A	N/A	N/A
SP-4 ⁸	3,398,250.2	10,412,187.6	1,808.3	-0.4	-0.3%	-9.1	-3.1%
SP-5	3,398,255.8	10,412,338.9	1,793.2	-0.4	-0.2%	-7.6	-2.0%
SP-6	3,398,248.9	10,412,510.4	1,774.9	-0.1	-0.1%	-2.8	-0.8%
SP-7 ⁹	3,398,735.0	10,412,158.4	1,825.5	-0.2	-0.2%	-3.1	-2.6%
SP-8	3,398,678.3	10,412,291.0	1,802.2	-0.3	-0.1%	-5.1	-1.4%
SP-9 ¹⁰	3,398,673.4	10,412,400.9	N/A	N/A	N/A	N/A	N/A
SP-10	3,399,080.3	10,412,092.9	1,838.3	-0.1	0.0%	-1.9	-0.4%
SP-11	3,399,216.3	10,412,184.0	1,815.3	-0.1	0.0%	-1.0	-0.5%
SP-12	3,399,381.9	10,412,019.5	1,810.2	0.0	0.0%	-0.5	0.0%

Table 9. Elevation and Strain Data at Settlement Plate Locations

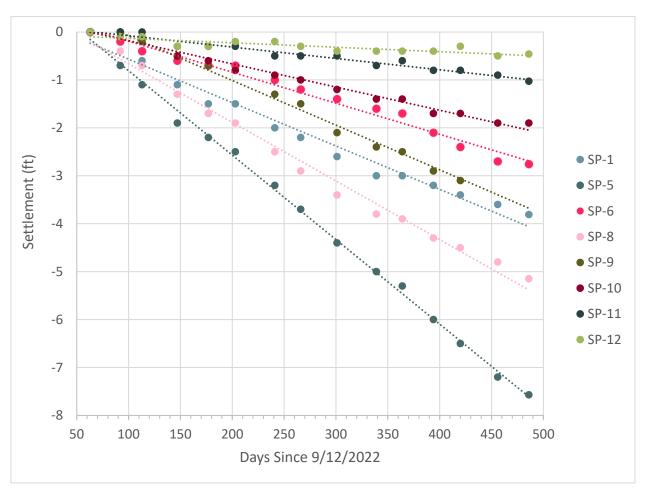
Settlement Plates 1, 2, 4, 5, and 7 demonstrated larger settlements than at other locations. Settlement Plates 4 and 7 were damaged during construction operations. Settlement Plates 1, 2, and 5 are located in the southern end of the landfill. This area is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions.

The change in elevation at Settlement Plates 10, 11, and 12 was lower and more representative of typical settlement at municipal landfills with waste of similar depth. The change in elevation at Settlement Plates 6 and 8 falls somewhere in between these two categories. Settlement Plate 3 was damaged and unable to be measured during September 2023, October 2023, November 2023,

⁵ Settlement plate locations and coordinates are based on a local coordinate system.

⁶ Strain is defined as the change in elevation divided by the estimated waste depth.

⁷ SCS suspects that SP-3 was damaged as a result of construction activities.


⁸ Based on field observations SP-4 appears to have been disturbed during grading on an adjacent roadway.

⁹ Based on field observations SP-7 appears to have been disturbed during grading on an adjacent stockpile.

¹⁰ SCS suspects that SP-9 was damaged as a result of construction activities.

December 2023, and January 2024. Settlement Plate 9 was located in standing water and was unable to be read for the month of December 2023 and January 2024.

Figure 23 shows the changes in elevation of select settlement plates over time. Best-fit lines for these changes in elevation are also shown on the graph. Currently settlement rates are represented better by best-fit lines generated using linear equations that logarithmic equations. For the purposes of recording data in this figure, times are measured in days since the landfill was required to stop accepting waste.

The settlement plates will be surveyed again during the month of February 2024. The elevations surveyed will be compared to the elevations surveyed the previous months.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City is taking steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below outline the steps taken by the City.

6.1 INTERMEDIATE COVER INSTALLATION

The City completed hauling and placement of a 12-inch-thick intermediate cover across the entire landfill prior to October 10, 2022. The cover was placed in accordance with 9VAC20-81-140(B)(1)(d). SCS coordinated with the City to dig a series of test holes to verify cover thickness in select locations. Details of these verifications were discussed in the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill.

6.2 EVOH COVER SYSTEM DESIGN

On December 4, 2023, SCS submitted a revised stormwater management plan to submit to VDEQ, including revised drawings and calculations. The revised SWMP includes the three quarry basins, additional stormwater pumps, new stormwater force mains, and the preliminary layout of the new electrical infrastructure along the quarry rim.

On December 18, 2023 SCS and VDEQ met to discuss concerns about the impact of settlement on the proposed EVOH Cover System. SCS and VDEQ are engaged in ongoing discussions regarding the timing to the EVOH installation.

6.3 EVOH COVER SYSTEM PROCUREMENT

Drawings used for the purposes of bidding, procurement and construction of the EVOH cover system will generally conform to the layout and details in the drawings described in section 6.2. SCS also prepared and submitted to VDEQ a specification for the EVOH geomembrane on January 30, 2023 based upon industry standards and discussions with material manufacturers. This specification and drawing set represent the first steps in the procurement process. SCS and the City have coordinated with potential suppliers to specify a product that is not currently anticipated to have long lead times. SCS has received a pro-forma data sheet from one manufacturer which is preparing a customized EVOH product for the No. 588 landfill.

6.4 EVOH COVER SYSTEM INSTALLATION

Timeline discussions are ongoing for the EVOH Cover System installation. Ongoing settlement concerns and other work at the site are being considered.

7.0 STORMWATER MANAGEMENT

The City is taking steps to implement a stormwater management plan at the landfill. The sections below outline the steps taken by the City.

7.1 STORMWATER MANAGEMENT PLAN DEVELOPMENT

The initial stormwater management plan (SWMP) was submitted to VDEQ on April 28, 2023.

The revised SWMP was submitted to VDEQ on December 4, 2023. The plan proposes a stormwater pumping system to convey stormwater collected atop the EVOH cover system to an existing discharge point permitted under VPDES permit VAR050053. The proposed system includes the construction of three stormwater collection basins in the quarry and the installation of pairs of skid-

mounted stormwater pumps. The stormwater will be conveyed by force main pipes to the existing stormwater basins located west of the quarry.

The plan proposes modifications to the existing stormwater basins west of the quarry to achieve discharge quantity targets. Modifications include increasing the basin depths and installing new outlet riser structures.

7.2 STORMWATER MANAGEMENT BASIN DESIGN AND CONSTRUCTION

The landfill surface will be regraded to form the SWM basins proposed in the stormwater management plan. The earthwork will be completed as the first stage of the interim EVOH cover system installation project. A revised landfill gas management plan is being prepared to facilitate the regrading of the landfill, which will affect existing landfill gas infrastructure. The landfill gas system will be modified to accommodate the earthwork.

Attention is being given to settlement concerns in the vicinity of the stormwater basin or basins. Calculations provided to VDEQ on June 23, 2023 demonstrate the weight of the ponded water should not cause excessive settlement relative to ongoing settlement observed within the quarry. Including additional stormwater basins within the quarry will distribute the weight of ponded water over a wider area relative to the single stormwater basin design.

7.3 STORMWATER MANAGEMENT PLAN IMPLEMENTATION

The stormwater management plan design drawings are being incorporated into the overall construction drawings for the interim EVOH cover system. The interim EVOH cover system installation and stormwater management features will be bid and constructed as one project to facilitate simultaneous progress and completion.

7.4 LONG-TERM STORMWATER CONTROL AND REMOVAL

The stormwater management plan is designed with resiliency and redundancy to promote long-term operation. Two stormwater pumps will be installed for each basin, with each pump capable of operating independently. The pumps may be operated in parallel in contingency scenarios. The City plans to install a backup generator for the stormwater pumps to allow for continued operation in the event of a temporary power loss. The pumps have been selected to include additional pumping capacity to allow for future settlement.

A variable frequency drive control system is planned for the stormwater pumping system. The water level will be gauged using a transducer cable or comparable monitoring system to allow for automation of the pumping system. Appropriate telemetry will be used to allow for remote monitoring of the pumping system.

The operations manual will be updated to discuss the long-term operation and maintenance of the pumping system and other stormwater management features. Periodic inspections of the stormwater management system will be completed. The regular inspections will include monitoring the rate of settlement. If excessive settlement occurs, repairs will be planned and conducted as necessary to maintain the stormwater management system and cover system integrity.

7.5 STORMWATER MONITORING

Stormwater monitoring will commence upon initial discharge of stormwater from the quarry stormwater pumping system. As stated in the stormwater management plan drawings, the stormwater shall be monitored in accordance with the facility's VPDES general permit for discharge of stormwater associated with industrial activity. Additional requirements include collecting additional stormwater samples at the discharge pipes for the quarry stormwater pumping system. The stormwater from the quarry basins will be sampled on a monthly basis prior to discharge to the upper stormwater ponds. The Operations Manual will be revised to include these additional requirements.

If the stormwater becomes contaminated or sampling indicates contamination above discharge limits, the stormwater will be diverted to the sanitary sewer system. The diversion to the sanitary sewer system will continue until the source of contamination is identified and resolved. The stormwater discharge pipe alignment will pass adjacent to the existing sanitary sewer manhole. A tee with isolation valves will be used to direct the stormwater to the upper basins or the sanitary sewer manhole.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit No. 588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

SCS submitted the Monitoring, Maintenance, and Repair Plan to VDEQ for the SWP No. 588 landfill on December 30, 2022. Refer to the December 2022 Monthly Compliance Report for the SWP No. 588 Landfill for additional information. The City has taken steps to implement the plan that were detailed in the March 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

8.3 MONTHLY COMPLIANCE REPORTS

As described in the introduction this report is intended to provide comprehensive updates regarding progress towards completion of each item described in Appendix A of the Consent Decree between the City and VDEQ,

8.4 COMMUNITY OUTREACH PROGRAM

The City's consultant leading community outreach, McGuireWoods Consulting, described the actions taken as part of their community outreach efforts. For the month of January, those actions include:

- **Ongoing basis**: Four posts on the BristalVALandfill.org site and the existing City of Bristol Landfill Notifications and Information page covering important updates including:
 - Progress updates related to remediation efforts at the quarry landfill

- Included updates as well as related to steps towards closing landfill 498 in order to make sure residents are aware activities are occurring on another site in addition to ongoing work at the 588 landfill
- Weekly updates on landing page on Bristolvalandfill.org titled "Air Sampling and Air Monitoring" that includes a summary of the air sampling and monitoring being conducted by Bristol, VA around the quarry landfill.
 - Website now includes weekly air monitoring reports starting with May 15th, 2023 and running through January 7th of 2024.
- E-mail communication sent to the list of members of the public signed up through the Bristol, VA website, the BristolVALandfill.org website, or at subsequent Open Houses to receive information via e-mail
 - E-mails sent included weekly remediation progress update and links to website updates and latest news articles on the following days:
 - Wednesday, January 3rd
 - Friday, January 5th
 - Friday, January 19th
 - Friday, January 26th

Appendix A

Surface Emissions Monitoring Summary Letters

SCS ENGINEERS

January 10, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – January 4, 2024 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on January 4, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Mr. Jonathan Chapman January 10, 2024 Page 2

Table 1.Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	172
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	72
Number of Exceedances	1
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	1

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	1/4/24 Event	1/4/24 Event Result	Comments
EW-51	12/7/23	30-Day Retest	Passed	Exceedance Resolved
EW-67	12/7/23	30-Day Retest	Passed	Exceedance Resolved
EW-97	12/7/23	30-Day Retest	Passed	Exceedance Resolved
EW-98	12/7/23	30-Day Retest	Passed	Exceedance Resolved
EW-99	12/7/23	30-Day Retest	Passed	Exceedance Resolved
EW-90	12/14/23	N/A	Failed	Requires 2 nd 10-Day Retest
EW-87	12/21/23	2 nd 10-Day Retest	Passed	Requires 30-Day Retest
EW-95	12/21/23	2 nd 10-Day Retest	Passed	Requires 30-Day Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

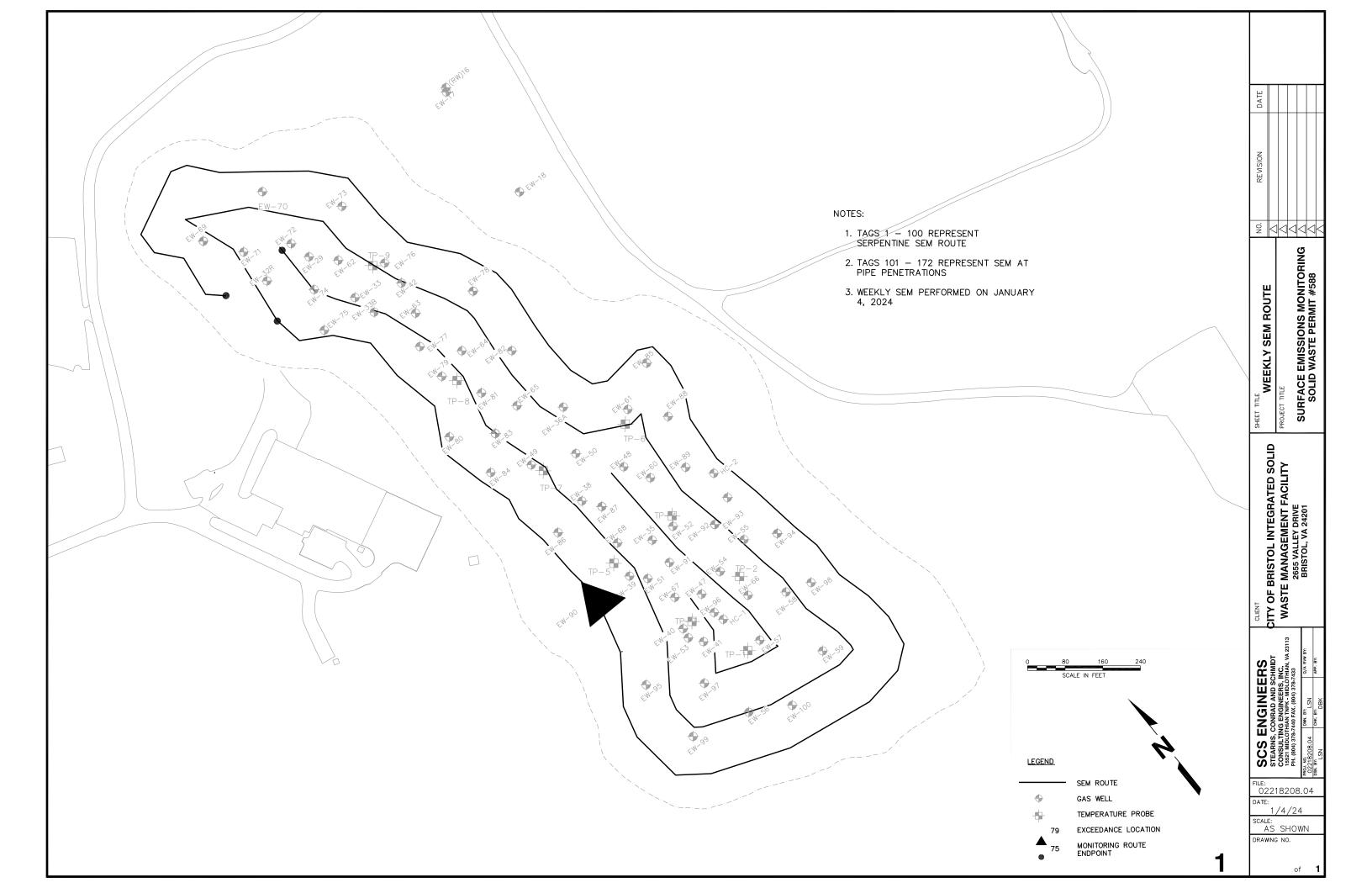
Jim Dorner

Quinn F. Bernier, PE Project Professional SCS Engineers

LSN/WRH/cjw

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers


- cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	1.7 PPM	ОК			Start Serpentine Route
2	2.7 PPM	OK			
3	1.8 PPM	OK			
4	1.8 PPM	OK			
5	1.7 PPM	OK			
6	1.6 PPM	OK			
7	1.6 PPM	OK			
8	1.6 PPM	OK			
9	1.5 PPM	OK			
10	1.5 PPM	OK			
11	1.5 PPM	OK			
12	1.5 PPM	OK			
13	1.4 PPM	OK			
14	1.5 PPM	OK			
15	1.5 PPM	OK			
16	2.1 PPM	OK			
17	2.7 PPM	OK			
18	2.2 PPM	OK			
19	1.8 PPM	OK			
20	2.3 PPM	OK			
21	2.1 PPM	OK			
22	2.1 PPM	OK			
23	2.7 PPM	OK			
24	1.9 PPM	OK			
25	4.3 PPM	OK			
26	2.2 PPM	OK			
27	2.5 PPM	OK			
28	1.7 PPM	OK			
29	2.0 PPM	OK			
30	3.1 PPM	OK			
31	3.1 PPM	OK			
32	10.3 PPM	OK			
33	78.2 PPM	OK			
34	88.6 PPM	OK			
35	14.6 PPM	OK			
36	22.4 PPM	OK			
37	307.0 PPM	OK			
38	4.9 PPM	OK			
39	13.9 PPM	OK			
40	131.0 PPM	OK			
41	1.8 PPM	OK			
42	1.6 PPM	OK			
43	1.6 PPM	OK			
44	1.6 PPM	OK			
45	1.4 PPM	OK			
46	1.4 PPM	OK			
47	1.4 PPM	OK			
48	1.5 PPM	OK			
49	1.3 PPM	OK			

	Methane		GPS Coordinates			
ID #	Concentration	Compliance	Lat.	Long.	Comments	
50	1.3 PPM	OK				
51	1.3 PPM	OK				
52	1.3 PPM	OK				
53	1.3 PPM	OK				
54	1.2 PPM	OK				
55	1.2 PPM	OK				
56	1.2 PPM	OK				
57	1.2 PPM	OK				
58	1.2 PPM	OK				
59	1.2 PPM	OK				
60	1.1 PPM	OK				
61	1.1 PPM	OK				
62	1.1 PPM	OK				
63	1.1 PPM	OK				
64	2.8 PPM	OK				
65	3.1 PPM	OK				
66	1.2 PPM	OK				
67	4.3 PPM	OK				
68	1.3 PPM	OK				
69	2.4 PPM	OK				
70	5.0 PPM	OK				
71	11.4 PPM	OK				
72	5.6 PPM	OK				
73	1.4 PPM	OK				
74	96.0 PPM	OK				
75	32.8 PPM	OK				
76	5.9 PPM	OK				
77	8.2 PPM	OK				
78	1.2 PPM	OK				
79	3.5 PPM	OK				
80	1.3 PPM	OK				
81	1.5 PPM	OK				
82	1.1 PPM	OK				
83	1.1 PPM	OK				
84	1.1 PPM	OK				
85	1.1 PPM	OK				
86	1.1 PPM	OK				
87	1.1 PPM	OK				
88	1.1 PPM	OK				
89	1.1 PPM	OK				
90	1.1 PPM	OK				
91	1.1 PPM	OK				
92	1.1 PPM	OK				
93	4.4 PPM	OK				
94	13.2 PPM	OK				
95	37.4 PPM	OK				
96	14.8 PPM	OK				
97	10.7 PPM	OK				
98	2.0 PPM	OK				

		Methane		ordinates	es	
ID	#	Concentration	Compliance	Lat.	Long.	Comments
99	9	1.7 PPM	OK			
10	0	11.2 PPM	OK			End Serpentine Route
10	1	244.0 PPM	OK			EW-35
10		83.8 PPM	OK			EW-52
10		22.0 PPM	OK			TP-4
10		114.0 PPM	OK			EW-60
10		5.0 PPM	OK			EW-48
10		1.1 PPM	OK			TP-6
10		1.2 PPM	OK			EW-61
10		1.6 PPM	OK			EW-50
10		7.5 PPM	OK			EW-67
11		4.1 PPM	OK			EW-47
11		12.7 PPM	OK			EW-54
11		1.4 PPM	OK			EW-55
11		1.2 PPM	OK			EW-92
11		19.9 PPM	OK			EW-91
11		3.4 PPM	OK			EW-96
11		3.9 PPM	OK			TP-2
11		1.9 PPM	OK			EW-66
11		2.4 PPM	OK			EW-58
11		4.8 PPM	OK			EW-57
12		36.3 PPM	OK			TP-1
12		2.2 PPM	OK			EW-59
12		2.7 PPM	OK			EW-100
12		34.2 PPM	OK			EW-56
12			OK			EW-97
12		7.0 PPM	OK			EW-41
		2.3 PPM				
12 12		1.9 PPM	OK OK			EW-53 TP-3
		1.8 PPM				
12		95.2 PPM	OK			EW-51
12		4.8 PPM	OK			EW-39
13		2.4 PPM	OK			TP-5
13		96.6 PPM	OK			EW-68
13		41.2 PPM	OK			EW-87
13		2.0 PPM	OK			EW-38
13		182.0 PPM	OK			TP-7
13		1.2 PPM	OK			EW-49
13		1.3 PPM	OK			EW-83
13		1.0 PPM	OK			EW-65
13		1.0 PPM	OK			EW-81
13		1.0 PPM	OK			TP-8
14		1.0 PPM	OK			EW-64
14		1.0 PPM	OK			EW-63
14		1.0 PPM	OK			EW-42
14		1.0 PPM	OK			EW-76
14		1.0 PPM	OK			TP-9
14		1.1 PPM	OK			EW-62
14	6	1.0 PPM	OK			EW-29R

	Methane		GPS Coordinates		
ID #	Concentration	Compliance	Lat.	Long.	Comments
147	1.3 PPM	ОК			EW-74
148	15.0 PPM	OK			EW-32R
149	1.1 PPM	OK			EW-69
150	1.0 PPM	OK			EW-71
151	1.0 PPM	OK			EW-72
152	1.0 PPM	OK			EW-70
153	1.0 PPM	OK			EW-73
154	1.0 PPM	OK			EW-78
155	4.0 PPM	OK			EW-82
156	1.4 PPM	OK			EW-36A
157	2.7 PPM	OK			EW-85
158	1.2 PPM	OK			EW-88
159	2.7 PPM	OK			EW-89
160	2.6 PPM	OK			EW-93
161	1.3 PPM	OK			EW-94
162	1.4 PPM	OK			EW-98
163	7.1 PPM	OK			EW-99
164	104.0 PPM	OK			EW-95
165	800.0 PPM	HIGH_ALRM	36.59877	-82.14825	EW-90
166	76.3 PPM	OK	00107077	0200 0020	EW-86
167	1.3 PPM	OK			EW-84
168	1.5 PPM	OK			EW-80
169	1.0 PPM	OK			EW-79
170	1.1 PPM	OK			EW-77
171	1.1 PPM	OK			EW-33B
172	1.5 PPM	OK			EW-75
	Number of Is	ocations sampled:	172]	
		edance locations:	1		
]	
NOTES:					
-	n 100 represent serper				
	ugh 172 represent SEA		ons		
Weather Cond	itions: Cloudy 34°F Wi	nd: 7 SW			
	ration: Methane - 500		••		
1/4/2024	10:38 ZERO		PPM		
1/4/2024	10:40 SPAN	501.0	PPM		
Background Re					
1/4/2024 1/4/2024	10:42 Upwin 10:48 Downwi	d 2.0 nd 1.7	PPM PPM		

SCS ENGINEERS

January 17, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – January 12, 2024 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on January 12, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Mr. Jonathan Chapman January 17, 2024 Page 2

Table 1.Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	172
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	72
Number of Exceedances	3
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	3

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Mr. Jonathan Chapman January 17, 2024 Page 3

Point ID	Initial Exceedance Date	1/12/24 Event	1/12/24 Event Result	Comments
EW-90	12/14/23	30-Day Retest	Passed	Exceedance Resolved
Tag 74	12/21/23	N/A	Passed	Requires 30-Day Retest
EW-87	12/21/23	N/A	Failed	Requires 30-Day Retest
EW-95	12/21/23	N/A	Passed	Requires 30-Day Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

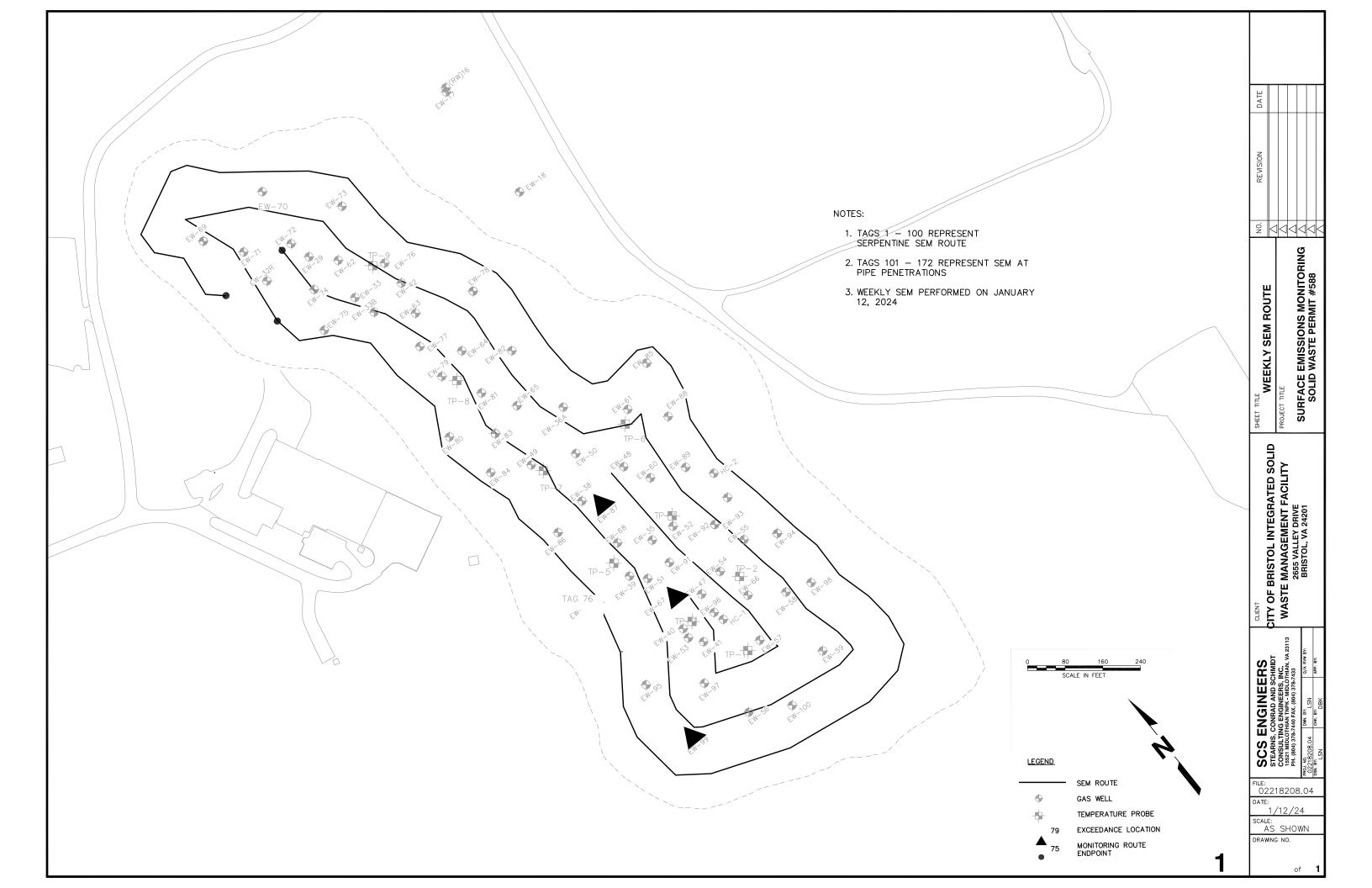
Wylis Hicklin

Wylie R Hicklin Associate Staff Professional SCS Engineers

LSN/WRH/cjw

- cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman


Lucas S. Nachman Senior Project Professional SCS Engineers

	Methane		GPS Coordinates			
ID #	Concentration	Compliance	Lat. Long.	Comments		
1	2.0 PPM	OK		Start Serpentine Route		
2	2.5 PPM	OK				
3	2.0 PPM	OK				
4	1.8 PPM	OK				
5	1.7 PPM	OK				
6	1.6 PPM	OK				
7	1.8 PPM	OK				
8	1.7 PPM	OK				
9	1.8 PPM	OK				
10	1.7 PPM	OK				
11	1.7 PPM	OK				
12	1.8 PPM	OK				
13	1.8 PPM	OK				
14	2.3 PPM	OK				
15	2.9 PPM	OK				
16	2.3 PPM	OK				
17	154.0 PPM	OK				
18	15.7 PPM	OK				
19	8.7 PPM	OK				
20	8.5 PPM	OK				
21	6.4 PPM	OK				
22	29.7 PPM	OK				
23	17.2 PPM	OK				
24	19.4 PPM	OK				
25	24.1 PPM	OK				
26	17.3 PPM	OK				
27	10.8 PPM	OK				
28	41.4 PPM	OK				
29	89.6 PPM	OK				
30	155.0 PPM	OK				
31	111.0 PPM	OK				
32	95.6 PPM	OK				
33	152.0 PPM	OK				
34	83.2 PPM	OK				
35	377.0 PPM	OK				
36	272.0 PPM	OK				
37	5.3 PPM	OK				
38	13.3 PPM	OK				
39	28.0 PPM	OK				
40	12.9 PPM	OK				
41	21.7 PPM	OK				
42	19.1 PPM	OK				
43	1.3 PPM	OK				
44	1.4 PPM	OK				
45	2.3 PPM	OK				
46	1.5 PPM	OK				
47	1.5 PPM	OK				
48 49	1.2 PPM 1.2 PPM	OK OK				

	Methane		GPS Coordinates	
ID #	Concentration	Compliance	Lat. Long.	Comments
50	1.2 PPM	ОК		
51	1.4 PPM	OK		
52	1.2 PPM	OK		
53	1.2 PPM	OK		
54	1.4 PPM	OK		
55	1.2 PPM	OK		
56	1.1 PPM	OK		
57	2.0 PPM	OK		
58	2.0 PPM	OK		
59	2.4 PPM	OK		
60	5.5 PPM	OK		
61	5.9 PPM	OK		
62	5.6 PPM	OK		
63	4.9 PPM	OK		
64	8.8 PPM	OK		
65	12.5 PPM	OK		
66	193.0 PPM	OK		
67	1.7 PPM	OK		
68	199.0 PPM	OK		
69	24.6 PPM	OK		
70	31.1 PPM	OK		
71	1.5 PPM	OK		
72	5.2 PPM	OK		
73	33.7 PPM	OK		
74	13.6 PPM	OK		
75	9.8 PPM	OK		
76	135.0 PPM	OK		
77	8.1 PPM	OK		
78	99.4 PPM	OK		
79	9.6 PPM	OK		
80	6.3 PPM	OK		
81	1.3 PPM	OK		
82	3.1 PPM	OK		
83	3.7 PPM	OK		
84	1.6 PPM	OK		
85	1.5 PPM	OK		
86	1.1 PPM	OK		
87	1.5 PPM	OK		
88	1.2 PPM	OK		
89	1.5 PPM	OK		
90	0.9 PPM	OK		
91	3.9 PPM	OK		
92	17.3 PPM	OK		
93	21.3 PPM	OK		
94	1.3 PPM	OK		
95	0.8 PPM	OK		
96	0.5 PPM	OK		
97	4.1 PPM	OK		
98	5.2 PPM	OK		

	Methane GPS Coordinates						
ID #	Concentration	Compliance	Lat.	Long.	Comments		
99	7.2 PPM	OK					
100	2.6 PPM	OK			End Serpentine Route		
101	150.0 PPM	OK			EW-35		
102	48.1 PPM	OK			EW-52		
103	2.8 PPM	OK			TP-4		
104	89.5 PPM	OK			EW-60		
105	26.3 PPM	OK			EW-48		
106	0.5 PPM	OK			TP-6		
107	0.6 PPM	OK			EW-61		
108	0.9 PPM	OK			EW-50		
109	988.0 PPM	HIGH_ALRM	36.59866	-82.14779	EW-67		
110	0.9 PPM	OK			EW-47		
111	0.5 PPM	OK			EW-54		
112	0.4 PPM	OK			EW-55		
113	27.6 PPM	OK			EW-92		
114	13.9 PPM	OK			EW-91		
115	3.6 PPM	OK			EW-96		
116	0.6 PPM	OK			TP-2		
117	8.4 PPM	OK			EW-66		
118	122.0 PPM	OK			EW-58		
119	14.6 PPM	OK			EW-57		
120	34.7 PPM	OK			TP-1		
120	2.7 PPM	OK			EW-59		
122	1.2 PPM	OK			EW-100		
123	34.7 PPM	OK			EW-56		
124	40.0 PPM	OK			EW-97		
125	252.0 PPM	OK			EW-41		
126	165.0 PPM	OK			EW-53		
127	1.0 PPM	OK			TP-3		
128	11.6 PPM	OK			EW-51		
120	0.9 PPM	OK			EW-39		
130	20.0 PPM	OK			TP-5		
130	12.2 PPM	OK			EW-68		
132	4112.0 PPM	HIGH_ALRM	36.59934	-82.14782	EW-87		
133	60.8 PPM	OK	00.07704	-02.14/02	EW-38		
134	68.8 PPM	OK			TP-7		
135	1.4 PPM	OK			EW-49		
135	4.5 PPM	OK			EW-83		
130	2.0 PPM	OK			EW-65		
132	0.9 PPM	OK			EW-81		
138	0.6 PPM	OK			TP-8		
140	0.9 PPM	OK			EW-64		
		OK			EW-63		
141	0.7 PPM	OK					
142	0.5 PPM 0.6 PPM				EW-42		
143		OK			EW-76		
144	0.4 PPM	OK			TP-9 EW-62		
145 146	0.5 PPM 10.2 PPM	OK OK			EW-62 EW-29R		

ID # 147 148 149 150 151	Concentration 1.1 PPM 4.5 PPM	Compliance	Lat.	Long.	Comments
148 149 150 151	4.5 PPM	ОК			
149 150 151					EW-74
149 150 151	0.0.0044	OK			EW-32R
150 151	0.3 PPM	OK			EW-69
151	0.3 PPM	OK			EW-71
	121.0 PPM	OK			EW-72
152	0.7 PPM	OK			EW-70
153	0.9 PPM	OK			EW-73
154	12.9 PPM	OK			EW-78
155	3.7 PPM	OK			EW-82
156	3.1 PPM	OK			EW-36A
157	2.5 PPM	OK			EW-85
158	3.3 PPM	OK			EW-88
159	19.6 PPM	OK			EW-89
160	3.8 PPM	OK			EW-93
161	6.3 PPM	OK			EW-94
162	144.0 PPM	OK			EW-98
163	2945.0 PPM	HIGH_ALRM	36.59795	-82.14829	EW-99
164	153.0 PPM	OK			EW-95
165	9.5 PPM	OK			EW-90
166	11.7 PPM	OK			EW-86
167	46.9 PPM	OK			EW-84
168	4.7 PPM	OK			EW-80
169	1.1 PPM	OK			EW-79
170	0.9 PPM	OK			EW-77
171	1.4 PPM	OK			EW-33B
172	1.0 PPM	OK			EW-75
	Number of loc	ations sampled:	172		
	Number of excee	-	3		
]	
NOTES:					
-	100 represent serpent				
	gh 172 represent SEM	•	ons		
Weather Conditi	ons: Suny, 51°F Wind:	20 MPH N			
	ation: Methane - 500 p		• •		
1/12/2024	9:37 ZERO	0.0	PPM		
1/12/2024	9:39 SPAN	500.0	PPM		
Background Read		1.0			
1/12/2024 1/12/2024	9:44 Upwind 9:49 Downwin		PPM PPM		

SCS ENGINEERS

January 24, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – January 17, 2024 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on January 17, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Mr. Jonathan Chapman January 24, 2024 Page 2

Table 1. Su	ummary of Surface	Emissions Monitoring
-------------	-------------------	----------------------

Description	Quantity
Number of Points Sampled	171
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	71
Number of Exceedances	8
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	8

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

An increase in exceedances was observed during this monitoring event. This was likely a result of reduced vacuum to select wellheads following a winter storm and extreme cold temperatures. As conditions improve, it is anticipated that adequate vacuum to control emissions at surface cover penetrations will be restored.

A summary of ongoing exceedance points is provided in Table 2.

Table 2.	Ongoing Weekly SEM Exceedances
----------	--------------------------------

Point ID	Initial Exceedance Date	1/17/24 Event	1/17/24 Event Result	Comments
Tag 74	12/21/23	30-Day Retest	Passed	Exceedance Resolved
EW-87	12/21/23	30-Day Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-95	12/21/23	30-Day Retest	Passed	Exceedance Resolved
EW-67	1/12/24	10-Day Retest	Failed	Requires 2 nd 10-Day Retest
EW-99	1/12/24	10-Day Retest	Failed	Requires 2 nd 10-Day Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

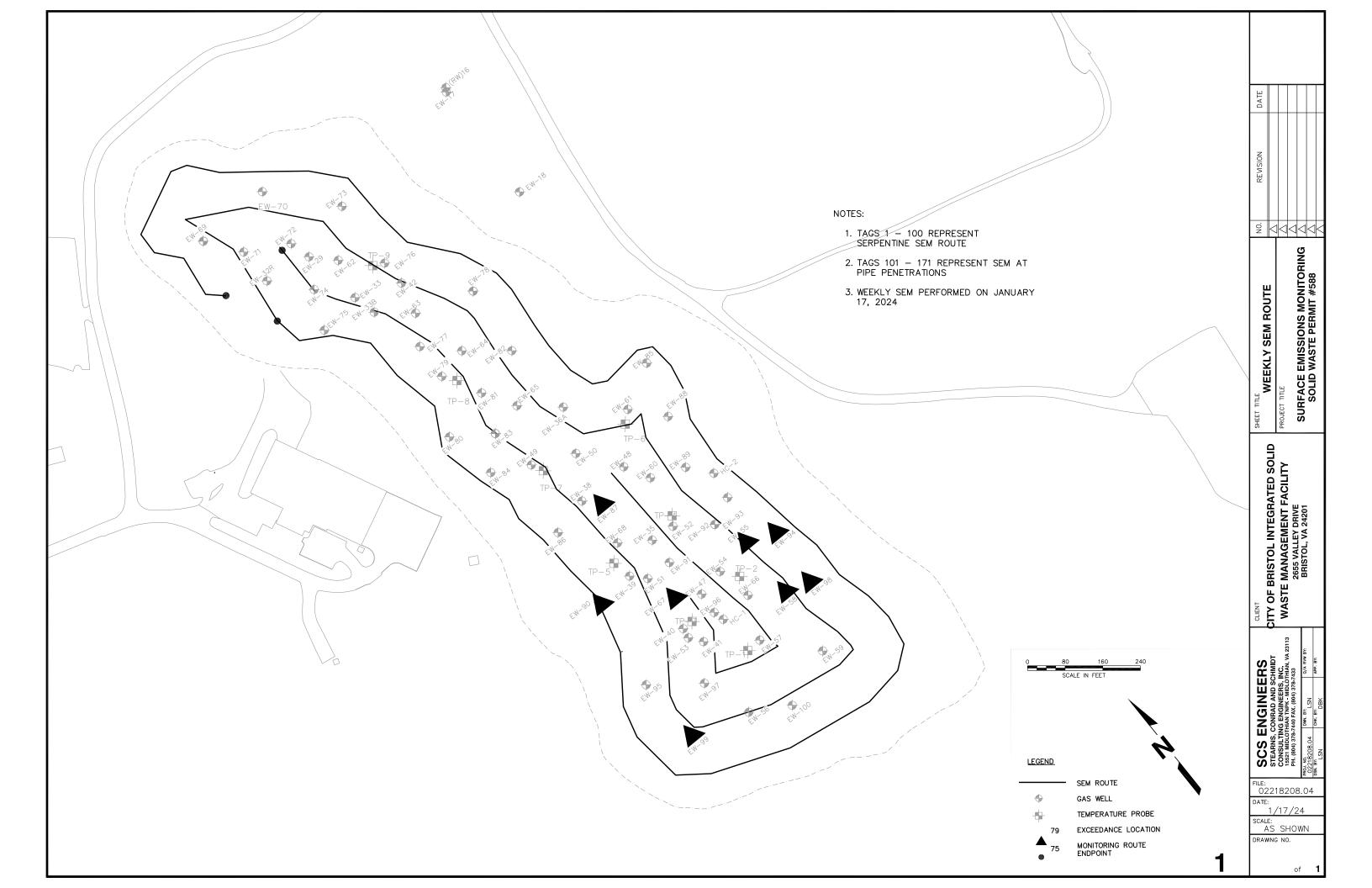
William J. Fabrie

William J. Fabrie Staff Professional SCS Engineers

LSN/WJF/cjw

- cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman


Lucas S. Nachman Senior Project Professional SCS Engineers

	Methane		GPS Coordinates	
ID #	Concentration	Compliance	Lat. Long.	Comments
1	1.8 PPM	OK		Start Serpentine Route
2	1.7 PPM	OK		
3	1.7 PPM	OK		
4	1.6 PPM	OK		
5	1.6 PPM	OK		
6	1.6 PPM	OK		
7	1.6 PPM	OK		
8	1.6 PPM	OK		
9	1.6 PPM	OK		
10	1.6 PPM	OK		
11	1.5 PPM	OK		
12	1.5 PPM	OK		
13	1.5 PPM	OK		
14	1.6 PPM	OK		
15	1.5 PPM	OK		
16	5.6 PPM	OK		
17	2.2 PPM	OK		
18	75.6 PPM	OK		
19	1.7 PPM	OK		
20	2.7 PPM	OK		
20	1.9 PPM	OK		
22	3.9 PPM	OK		
22	70.6 PPM	OK		
23	39.7 PPM	OK		
24 25		OK		
	3.6 PPM			
26 27	4.7 PPM	OK OK		
27	4.4 PPM			
28	4.1 PPM	OK		
	15.5 PPM	OK		
30	11.7 PPM	OK		
31	30.6 PPM	OK		
32	74.2 PPM	OK		
33	101.0 PPM	OK		
34	27.5 PPM	OK		
35	18.6 PPM	OK		
36	7.1 PPM	OK		
37	11.3 PPM	OK		
38	2.6 PPM	OK		
39	1.9 PPM	OK		
40	2.3 PPM	OK		
41	1.5 PPM	OK		
42	1.5 PPM	OK		
43	1.4 PPM	OK		
44	1.4 PPM	OK		
45	1.4 PPM	OK		
46	1.4 PPM	OK		
47	1.4 PPM	OK		
48	1.3 PPM	OK		
49	1.3 PPM	OK		

	Methane GPS Coordinates				
ID #	Concentration	Compliance	Lat.	Long.	Comments
50	1.3 PPM	ОК			
51	1.3 PPM	OK			
52	1.3 PPM	OK			
53	1.3 PPM	OK			
54	1.3 PPM	OK			
55	1.3 PPM	OK			
56	1.3 PPM	OK			
57	1.2 PPM	OK			
58	1.3 PPM	OK			
59	5.2 PPM	OK			
60	3.6 PPM	OK			
61	1.3 PPM	OK			
62	1.4 PPM	OK			
63	4.4 PPM	OK			
64	1.3 PPM	OK			
65	21.3 PPM	OK			
66	5.6 PPM	OK			
67	28.3 PPM	OK			
68	269.0 PPM	OK			
69	74.1 PPM	OK			
70	16.3 PPM	OK			
71	6.6 PPM	OK			
72	7.4 PPM	OK			
73	104.0 PPM	OK			
74	64.6 PPM	OK			
75	7.5 PPM	OK			
76	11.1 PPM	OK			
77	7.3 PPM	OK			
78	1.7 PPM	OK			
79	5.6 PPM	OK			
80	3.5 PPM	OK			
81	2.8 PPM	OK			
82	2.0 PPM	OK			
83	12.9 PPM	OK			
84	2.2 PPM	OK			
85	1.2 PPM	OK			
86	1.1 PPM	OK			
87	1.1 PPM	OK			
88	1.1 PPM	OK			
89	1.1 PPM	OK			
90	1.1 PPM	OK			
91	1.4 PPM	OK			
92	106.0 PPM	OK			
93	14.4 PPM	OK			
94	5.2 PPM	OK			
95	38.6 PPM	OK			
96	18.4 PPM	OK			
97	6.0 PPM	OK			
98	12.1 PPM	OK			

	Methane GPS Coordinates					
ID #	Concentration	Compliance	Lat.	Long.	Comments	
99	7.3 PPM	OK				
100	23.9 PPM	OK			End Serpentine Route	
101	369.0 PPM	OK			EW-35	
102	111.0 PPM	OK			EW-52	
103	4.2 PPM	OK			TP-4	
104	31.0 PPM	OK			EW-60	
105	31.2 PPM	OK			EW-48	
106	38.1 PPM	OK			TP-6	
107	39.7 PPM	OK			EW-61	
108	90.3 PPM	OK			EW-50	
109	1690.0 PPM	HIGH_ALRM	36.59866	-82.14779	EW-67	
110	201.0 PPM	OK			EW-47	
111	128.0 PPM	OK			EW-54	
112	673.0 PPM	HIGH_ALRM	36.59868	-82.14715	EW-55	
113	20.3 PPM	OK			EW-92	
114	5.6 PPM	OK			EW-91	
115	69.8 PPM	OK			EW-96	
116	90.0 PPM	OK			TP-2	
117	6.8 PPM	OK			EW-66	
118	687.0 PPM	HIGH_ALRM	36.59830	-82.14714	EW-58	
119	26.2 PPM	OK	00.07000	02.1147 14	EW-57	
120	9.8 PPM	OK			TP-1	
121	10.5 PPM	OK			EW-59	
122	35.2 PPM	OK			EW-100	
122	286.0 PPM	OK			EW-56	
124	101.0 PPM	OK			EW-97	
125	12.1 PPM	OK			EW-41	
126	288.0 PPM	OK			EW-53	
127	87.3 PPM	OK			TP-3	
128	6.9 PPM	OK			EW-51	
129	10.3 PPM	OK			EW-39	
130	11.1 PPM	OK			TP-5	
131	13.0 PPM	OK			EW-68	
132	1392.0 PPM	HIGH_ALRM	36.59934	-82.14782	EW-87	
133	378.0 PPM	OK	00.07704	-02.14/02	EW-38	
134	164.0 PPM	OK			TP-7	
135	11.3 PPM	OK			EW-49	
136	3.7 PPM	OK			EW-83	
137	140.0 PPM	OK			EW-65	
138	131.0 PPM	OK			EW-81	
138	1.4 PPM	OK			TP-8	
140	1.0 PPM	OK			EW-64	
		OK			EW-63	
141 142	0.9 PPM	OK			EW-42	
	1.5 PPM				EW-42 EW-76	
143 144	1.2 PPM	OK OK			EVV-76 TP-9	
	1.0 PPM					
145 146	0.9 PPM 1.0 PPM	OK OK			EW-62 EW-29R	

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
147	0.8 PPM	ОК			EW-74
148	1.4 PPM	OK			EW-32R
149	1.1 PPM	OK			EW-69
150	1.0 PPM	OK			EW-71
151	0.9 PPM	OK			EW-72
152	0.9 PPM	OK			EW-73
153	0.9 PPM	OK			EW-78
154	46.2 PPM	OK			EW-82
155	2.8 PPM	OK			EW-36A
156	19.2 PPM	OK			EW-85
157	111.0 PPM	ОК			EW-88
158	2.5 PPM	OK			EW-89
159	3.0 PPM	OK			EW-93
160	1256.0 PPM	HIGH_ALRM	36.59860	-82.14692	EW-94
161	1313.0 PPM	HIGH_ALRM	36.59827	-82.14693	EW-98
162	1310.0 PPM	HIGH_ALRM	36.59799	-82.14829	EW-99
163	116.0 PPM	OK			EW-95
164	1069.0 PPM	HIGH_ALRM	36.59892	-82.14826	EW-90
165	37.1 PPM	OK			EW-86
166	7.4 PPM	OK			EW-84
167	1.6 PPM	OK			EW-80
168	1.5 PPM	OK			EW-79
169	1.8 PPM	OK			EW-77
170	0.9 PPM	OK			EW-33B
171	1.0 PPM	ОК			EW-75
	Number of loc	ations sampled:	171		
	Number of excee	-	8		
NOTES:					
	100 represent serpent	ine SEM route.			
	igh 171 represent SEM		ons		
	tions: Sunny, 14°F Wind				
	ration: Methane - 500				
1/17/2024	11:06 ZERO	0.0	PPM		
1/17/2024	11:25 SPAN	502.0	PPM		
Background Rec	<u>ıding:</u>				
1/17/2024 1/17/2024 1/17/2024	11:29 Upwind 11:35 Downwin		PPM PPM		

SCS ENGINEERS

January 31, 2024 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – January 23, 2024 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on January 23, 2024. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Mr. Jonathan Chapman January 31, 2024 Page 2

Table 1. Summary of Surface Emissions Monito	bring
--	-------

Description	Quantity
Number of Points Sampled	171
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	71
Number of Exceedances	1
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	1

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

During the previous monitoring event, an increase of exceedances was observed that were likely attributed to reduced vacuum as a result of a winter storm and extreme cold conditions. As weather conditions returned to seasonal, normal operating conditions of the GCCS were restored. As a result, seven of the eight exceedances observed during the previous event returned to compliance.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	1/23/24 Event	1/23/24 Event Result	Comments
EW-87	12/21/23	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	1/12/24	2 nd 10-Day Retest	Passed	Requires 1-Month Retest
EW-99	1/12/24	2 nd 10-Day Retest	Passed	Requires 1-Month Retest
EW-55	1/17/24	10-Day Retest	Passed	Requires 1-Month Retest
EW-58	1/17/24	10-Day Retest	Passed	Requires 1-Month Retest
EW-98	1/17/24	10-Day Retest	Passed	Requires 1-Month Retest
EW-94	1/17/24	10-Day Retest	Passed	Requires 1-Month Retest
EW-90	1/17/24	10-Day Retest	Failed	Requires 2 nd 10-Day Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

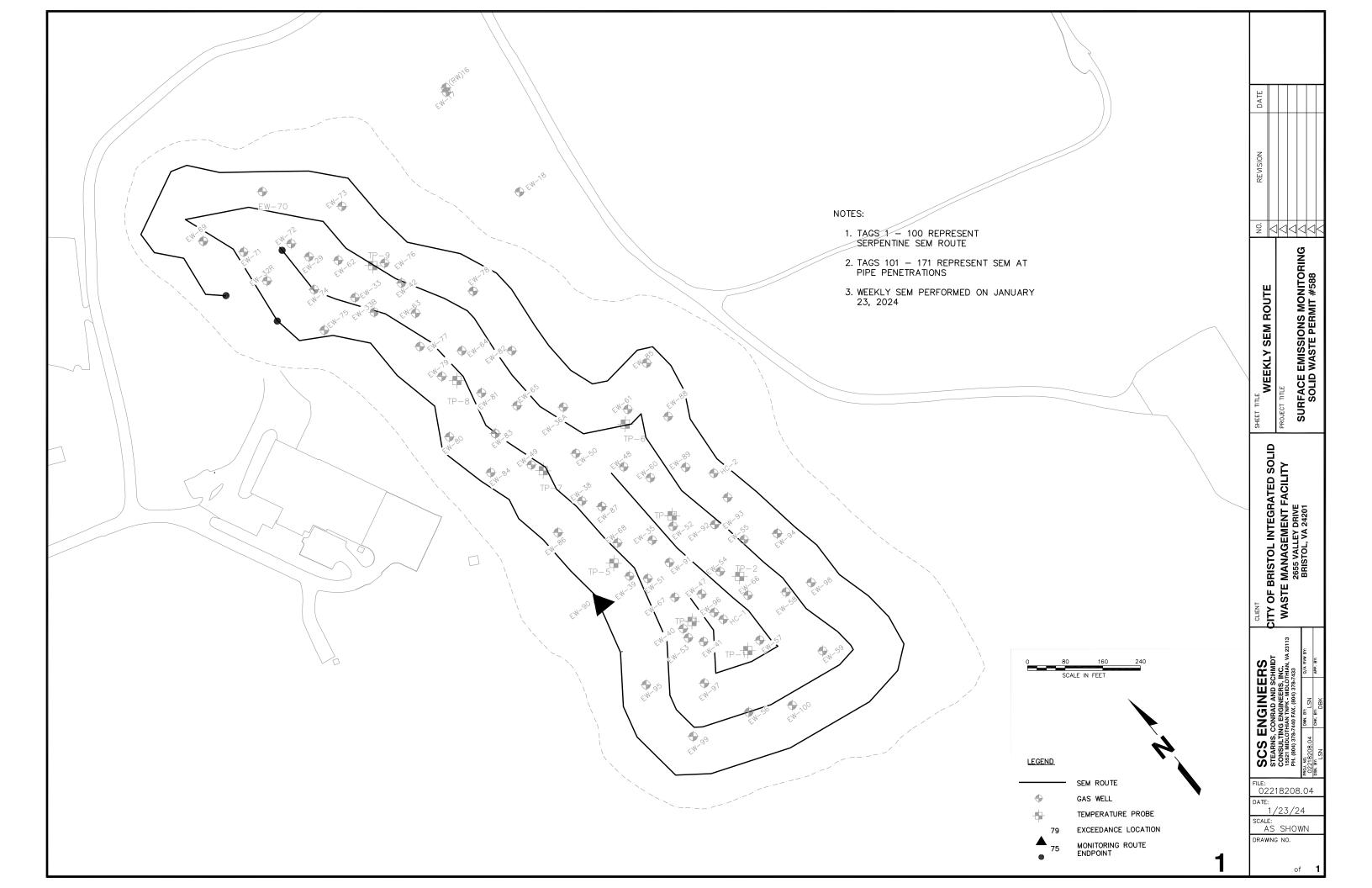
William J. Fabrie

William J. Fabrie Staff Professional SCS Engineers

LSN/WJF/cjw

- cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Laura Socia, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman


Lucas S. Nachman Senior Project Professional SCS Engineers

	Methane		GPS Coord	linates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	6.1 PPM	ОК			Start Serpentine Route
2	2.2 PPM	OK			-
3	8.8 PPM	OK			
4	3.5 PPM	OK			
5	3.2 PPM	OK			
6	3.1 PPM	OK			
7	3.8 PPM	OK			
8	3.2 PPM	OK			
9	3.6 PPM	OK			
10	3.7 PPM	OK			
11	3.8 PPM	OK			
12	3.7 PPM	OK			
13	3.9 PPM	OK			
14	5.3 PPM	ОК			
15	9.2 PPM	OK			
16	37.1 PPM	OK			
17	42.0 PPM	OK			
18	13.7 PPM	OK			
19	6.8 PPM	OK			
20	71.7 PPM	OK			
21	6.7 PPM	OK			
22	11.1 PPM	OK			
23	10.9 PPM	OK			
24	14.5 PPM	OK			
25	18.2 PPM	OK			
26	60.5 PPM	OK			
27	42.0 PPM	OK			
28	36.7 PPM	OK			
29	16.3 PPM	OK			
30	50.3 PPM	OK			
31	186.0 PPM	OK			
32	178.0 PPM	OK			
33	221.0 PPM	OK			
34	366.0 PPM	ОК			
35	5.5 PPM	OK			
36	55.3 PPM	OK			
37	41.4 PPM	OK			
38	87.8 PPM	OK			
39	83.2 PPM	OK			
40	3.2 PPM	OK			
41	1.9 PPM	OK			
42	5.3 PPM	OK			
43	2.4 PPM	OK			
44	2.4 PPM	OK			
45	3.6 PPM	OK			
46	3.2 PPM	OK			
47	1.6 PPM	OK			
48	2.7 PPM	OK			
49	2.6 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
50	3.3 PPM	OK			
51	4.5 PPM	OK			
52	6.2 PPM	OK			
53	3.0 PPM	OK			
54	2.8 PPM	OK			
55	2.8 PPM	OK			
56	4.1 PPM	OK			
57	5.1 PPM	OK			
58	6.3 PPM	OK			
59	11.6 PPM	OK			
60	17.8 PPM	OK			
61	19.0 PPM	OK			
62	16.9 PPM	OK			
63	16.7 PPM	OK			
64	10.0 PPM	OK			
65	27.6 PPM	OK			
66	28.1 PPM	OK			
67	30.5 PPM	OK			
68	57.0 PPM	OK			
69	106.0 PPM	OK			
70	90.2 PPM	OK			
70	81.6 PPM	OK			
72	63.1 PPM	OK			
73	30.9 PPM	OK			
73	94.4 PPM	OK			
74	81.3 PPM	OK			
75	33.6 PPM	OK			
70	14.4 PPM	OK			
78	23.9 PPM	OK			
78	13.7 PPM	OK			
80	5.0 PPM	OK			
81		OK			
82	1.9 PPM 1.7 PPM	OK			
82 83	1.7 PPM 1.7 PPM	OK			
83 84		OK			
84 85	3.0 PPM	OK			
	4.8 PPM				
86 87	3.8 PPM	OK			
87	1.5 PPM	OK			
88	1.4 PPM	OK			
89	1.3 PPM	OK			
90	1.2 PPM	OK			
91	6.8 PPM	OK			
92	15.8 PPM	OK			
93	62.8 PPM	OK			
94	26.6 PPM	OK			
95	77.8 PPM	OK			
96	33.0 PPM	OK			
97 98	36.2 PPM 26.3 PPM	OK OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
99	9.6 PPM	OK			
100	8.7 PPM	OK			End Serpentine Route
101	291.0 PPM	OK			EW-35
102	421.0 PPM	OK			EW-52
103	7.8 PPM	OK			TP-4
104	87.3 PPM	OK			EW-60
105	42.8 PPM	OK			EW-48
106	68.5 PPM	OK			TP-6
107	1.4 PPM	OK			EW-61
108	1.4 PPM	OK			EW-50
109	4.6 PPM	OK			EW-67
110	26.6 PPM	OK			EW-47
111	35.9 PPM	OK			EW-54
112	42.2 PPM	OK			EW-55
112	98.0 PPM	OK			EW-92
113	23.3 PPM	OK			EW-91
115	2.4 PPM	OK			EW-96
115	2.4 PPM	OK			TP-2
117	4.0 PPM	OK			EW-66
118	244.0 PPM	OK			EW-58
110		OK			EW-58
119	146.0 PPM 3.9 PPM	OK			EVV-37 TP-1
		OK			
121	64.0 PPM				EW-59
122	9.1 PPM	OK			EW-100
123	189.0 PPM	OK			EW-56
124	83.8 PPM	OK			EW-97
125	22.9 PPM	OK			EW-41
126	16.5 PPM	OK			EW-53
127	37.2 PPM	OK			TP-3
128	132.0 PPM	OK			EW-51
129	66.0 PPM	OK			EW-39
130	58.7 PPM	OK			TP-5
131	3.4 PPM	OK			EW-68
132	12.3 PPM	OK			EW-87
133	10.7 PPM	OK			EW-38
134	425.0 PPM	OK			TP-7
135	1.5 PPM	OK			EW-49
136	1.5 PPM	OK			EW-83
137	3.0 PPM	OK			EW-65
138	1.7 PPM	OK			EW-81
139	1.6 PPM	OK			TP-8
140	1.6 PPM	OK			EW-64
141	1.7 PPM	OK			EW-63
142	1.7 PPM	OK			EW-42
143	1.6 PPM	OK			EW-76
144	4.3 PPM	OK			TP-9
145	3.0 PPM	OK			EW-62
146	1.9 PPM	OK			EW-29R

	Methane		GPS CO	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
147	2.7 PPM	OK			EW-74
148	3.6 PPM	OK			EW-32R
149	3.0 PPM	OK			EW-69
150	2.8 PPM	OK			EW-71
151	3.0 PPM	OK			EW-72
152	2.5 PPM	OK			EW-73
153	9.8 PPM	OK			EW-78
154	57.7 PPM	OK			EW-82
155	9.4 PPM	OK			EW-36A
156	11.4 PPM	OK			EW-85
157	12.9 PPM	OK			EW-88
158	141.0 PPM	OK			EW-89
159	17.8 PPM	OK			EW-93
160	11.5 PPM	OK			EW-94
161	23.6 PPM	OK			EW-98
162	214.0 PPM	OK			EW-99
163	218.0 PPM	OK			EW-95
164	1205.0 PPM	HIGH_ALRM	36.59892	-82.14826	EW-90
165	2.7 PPM	OK			EW-86
166	3.1 PPM	OK			EW-84
167	1.0 PPM	OK			EW-80
168	1.5 PPM	OK			EW-79
169	2.5 PPM	OK			EW-77
170	1.2 PPM	OK			EW-33B
171	1.2 PPM	OK			EW-75
	Number of loo Number of excee	cations sampled: dance locations:	171 1		
NOTES:					
	100 represent serpen	tine SEM route.			
-	igh 171 represent SEM		ons		
	tions: Overcast 45°F W				
	ration: Methane - 500				
1/23/2024	10:19 ZERO	0.0	PPM		
1/23/2024	10:24 SPAN	500.0	PPM		
<u>Background Rec</u> 1/23/2024		.			
1/73/2024	10:25 Upwind	2.6	PPM		

Appendix B

In-Waste Temperatures on Select Days in January

Appendix B Figures

Figure B - 1 Average Temperatures Recorded by TP-1 on January 3, 2024......B-3 Figure B - 2 Average Temperatures Recorded by TP-1 on January 10, 2024..... B-3 Figure B - 3 Average Temperatures Recorded by TP-1 on January 17, 2024......B-4 Figure B - 4 Average Temperatures Recorded by TP-1 on January 24, 2024..... B-4 Figure B - 5 Average Temperatures Recorded by TP-1 on January 31, 2024......B-5 Figure B - 6 Average Temperatures Recorded by TP-2 on January 3, 2024......B-5 Figure B - 7 Average Temperatures Recorded by TP-2 on January 10, 2024..... B-6 Figure B - 8 Average Temperatures Recorded by TP-2 on January 17, 2024...... B-6 Figure B - 9 Average Temperatures Recorded by TP-2 on January 24, 2024...... B-7 Figure B - 10 Average Temperatures Recorded by TP-2 on January 31, 2024 B-7 Figure B - 11 Average Temperatures Recorded by TP-3 on January 3, 2024..... B-8 Figure B - 12 Average Temperatures Recorded by TP-3 on January 10, 2024 B-8 Figure B - 13 Average Temperatures Recorded by TP-3 on January 17, 2024 B-9 Figure B - 14 Average Temperatures Recorded by TP-3 on January 24, 2024 B-9 Figure B - 15 Average Temperatures Recorded by TP-3 on January 31, 2024B-10 Figure B - 16 Average Temperatures Recorded by TP-4 on January 3, 2024......B-10 Figure B - 17 Average Temperatures Recorded by TP-4 on January 10, 2024 B-11. Figure B - 18 Average Temperatures Recorded by TP-4 on January 17, 2024 B-11 Figure B - 19 Average Temperatures Recorded by TP-4 on January 24, 2024B-12 Figure B - 20 Average Temperatures Recorded by TP-4 on January 24, 2024B-12 Figure B - 21 Average Temperatures Recorded by TP-5 on January 3, 2024..... B-13 Figure B - 22 Average Temperatures Recorded by TP-5 on January 10, 2024B-13 Figure B - 23 Average Temperatures Recorded by TP-5 on January 17, 2024B-14 Figure B - 24 Average Temperatures Recorded by TP-5 on January 24, 2024 B-14 Figure B - 25 Average Temperatures Recorded by TP-5 on January 31, 2024 B-15 Figure B - 26 Average Temperatures Recorded by TP-6 on January 3, 2024......B-15 Figure B - 27 Average Temperatures Recorded by TP-6 on January 10, 2024 B-16 Figure B - 28 Average Temperatures Recorded by TP-6 on January 17, 2024 B-16 Figure B - 29 Average Temperatures Recorded by TP-6 on January 24, 2024 B-17 Figure B - 30 Average Temperatures Recorded by TP-6 on January 31, 2024B-17 Figure B - 31 Average Temperatures Recorded by TP-7 on January 3, 2024......B-18 Figure B - 32 Average Temperatures Recorded by TP-7 on January 10, 2024 B-18 Figure B - 33 Average Temperatures Recorded by TP-7 on January 17, 2024 B-19 Figure B - 34 Average Temperatures Recorded by TP-7 on January 24, 2024 B-19 Figure B - 35 Average Temperatures Recorded by TP-7 on January 31, 2024 B-20 Figure B - 36 Average Temperatures Recorded by TP-8 on January 3, 2024...... B-20 Figure B - 37 Average Temperatures Recorded by TP-8 on January 10, 2024 B-21 Figure B - 38 Average Temperatures Recorded by TP-8 on January 17, 2024 B-21 Figure B - 39 Average Temperatures Recorded by TP-8 on January 24, 2024 B-22 Figure B - 40 Average Temperatures Recorded by TP-8 on January 31, 2024B-22 Figure B - 41 Average Temperatures Recorded by TP-9 on January 3, 2024......B-23 Figure B - 42 Average Temperatures Recorded by TP-9 on January 10, 2024 B-23 Figure B - 43 Average Temperatures Recorded by TP-9 on January 17, 2024 B-24 Figure B - 44 Average Temperatures Recorded by TP-9 on January 24, 2024 B-24 Figure B - 45 Average Temperatures Recorded by TP-9 on January 31, 2024 B-25

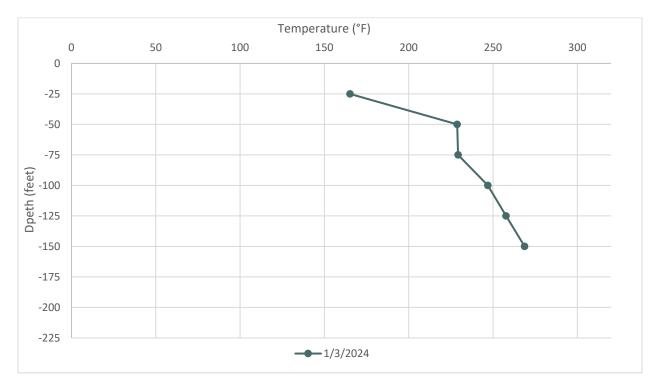
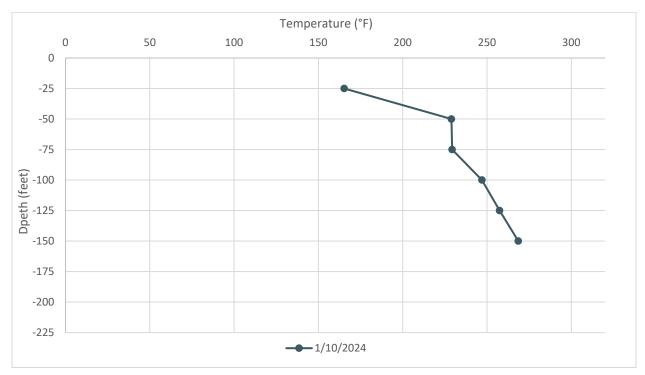



Figure B - 1 Average Temperatures Recorded by TP-1 on January 3, 2024

Figure B - 2 Average Temperatures Recorded by TP-1 on January 10, 2024

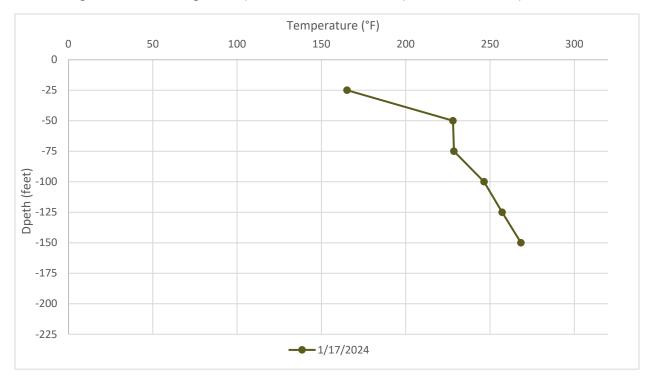
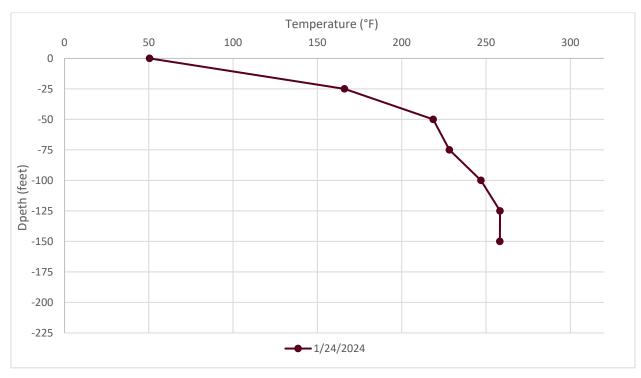



Figure B - 3 Average Temperatures Recorded by TP-1 on January 17, 2024

Figure B - 4 Average Temperatures Recorded by TP-1 on January 24, 2024

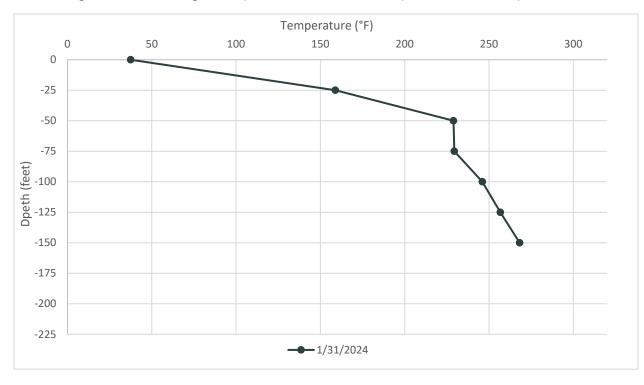
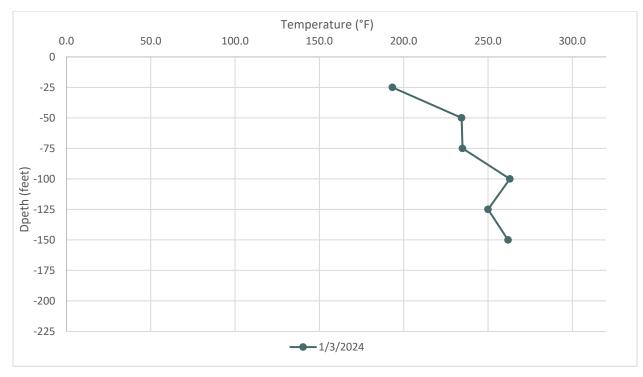



Figure B - 5 Average Temperatures Recorded by TP-1 on January 31, 2024

Figure B - 6 Average Temperatures Recorded by TP-2 on January 3, 2024

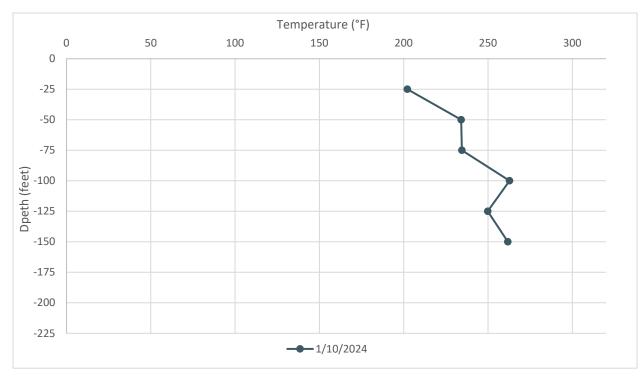
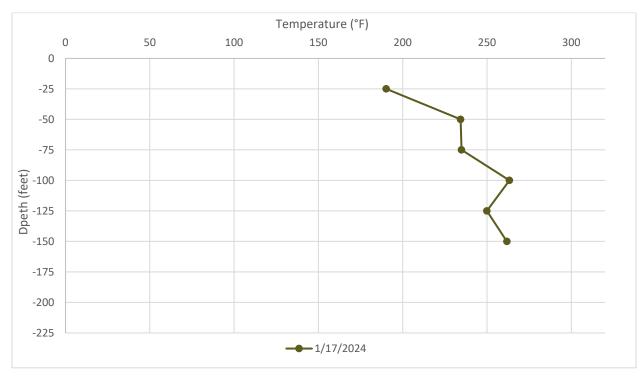



Figure B - 7 Average Temperatures Recorded by TP-2 on January 10, 2024

Figure B - 8 Average Temperatures Recorded by TP-2 on January 17, 2024

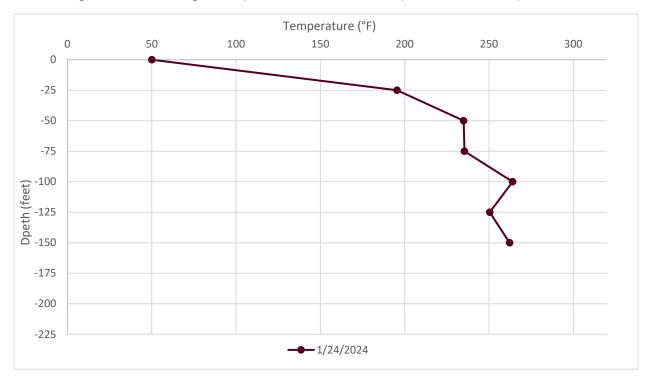
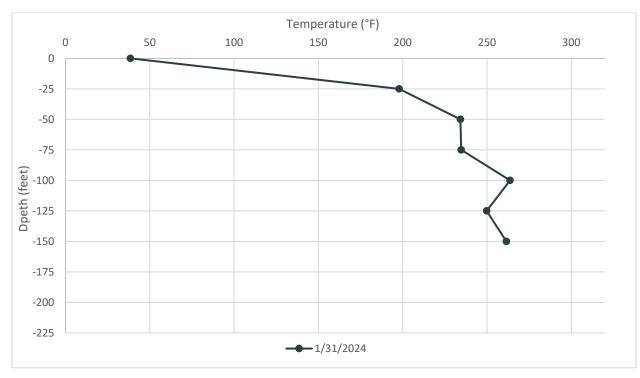



Figure B - 9 Average Temperatures Recorded by TP-2 on January 24, 2024

Figure B - 10 Average Temperatures Recorded by TP-2 on January 31, 2024

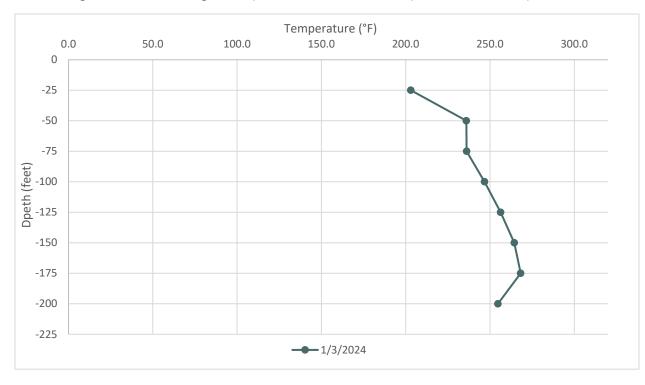
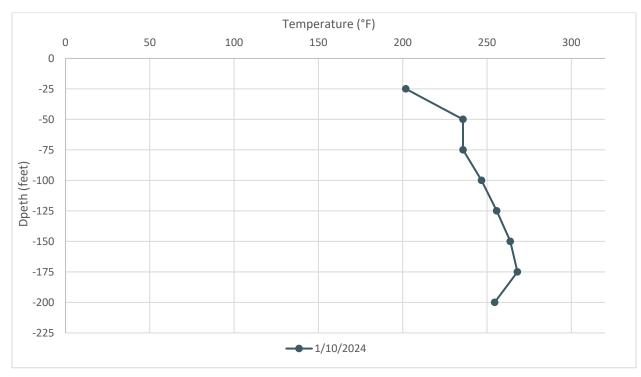



Figure B - 11 Average Temperatures Recorded by TP-3 on January 3, 2024

Figure B - 12 Average Temperatures Recorded by TP-3 on January 10, 2024

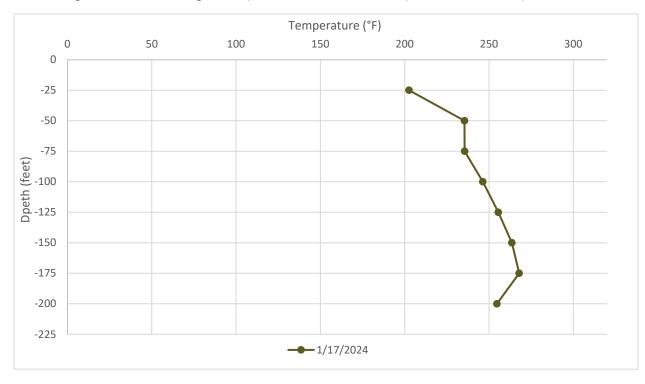
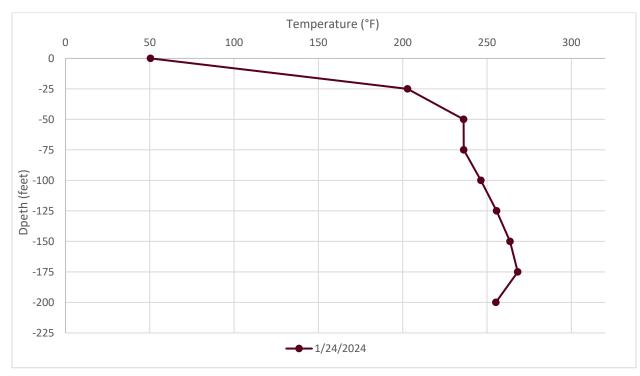



Figure B - 13 Average Temperatures Recorded by TP-3 on January 17, 2024

Figure B - 14 Average Temperatures Recorded by TP-3 on January 24, 2024

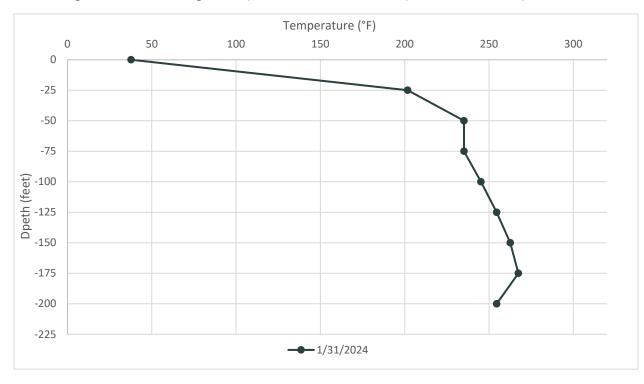
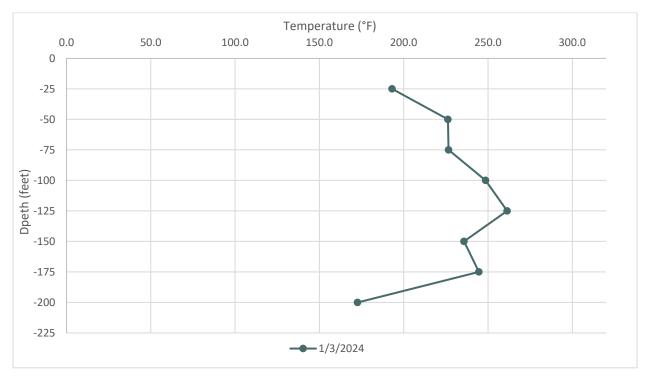



Figure B - 15 Average Temperatures Recorded by TP-3 on January 31, 2024

Figure B - 16 Average Temperatures Recorded by TP-4 on January 3, 2024

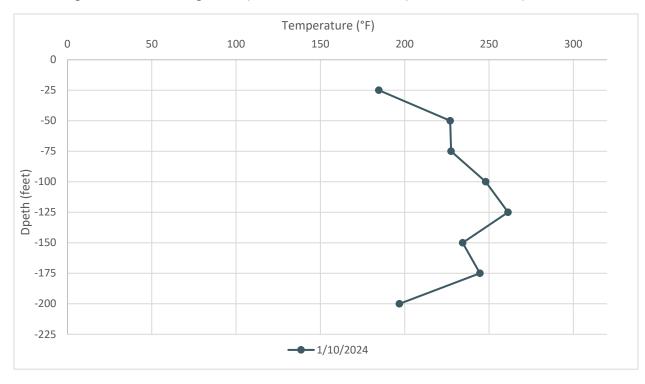
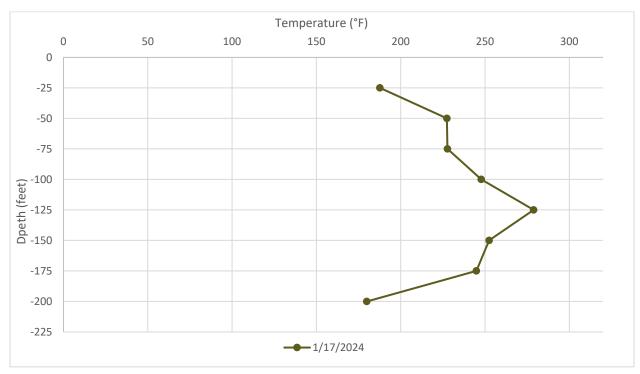



Figure B - 17 Average Temperatures Recorded by TP-4 on January 10, 2024

Figure B - 18 Average Temperatures Recorded by TP-4 on January 17, 2024

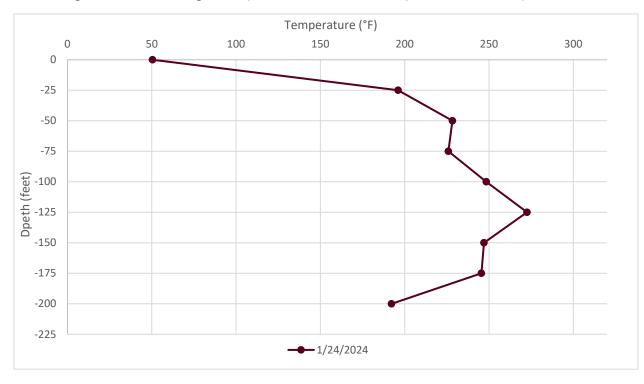
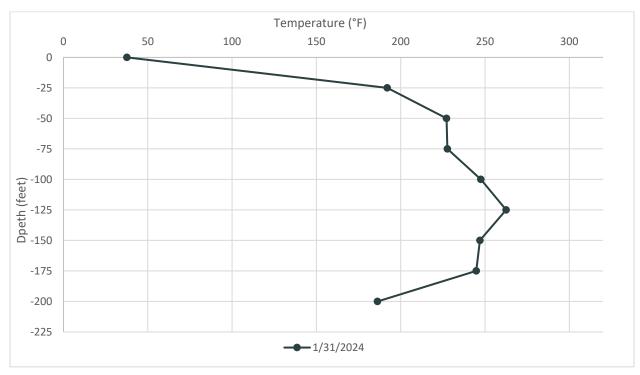



Figure B - 19 Average Temperatures Recorded by TP-4 on January 24, 2024

Figure B - 20 Average Temperatures Recorded by TP-4 on January 24, 2024

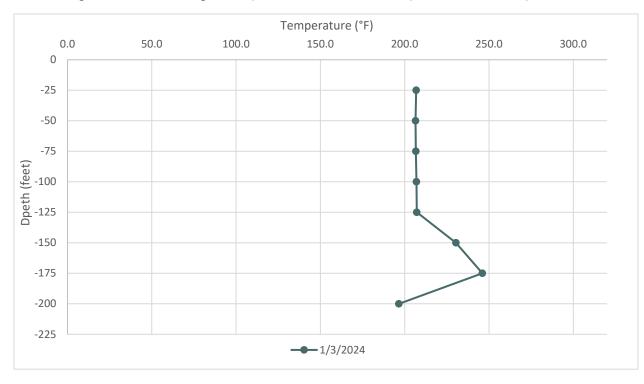
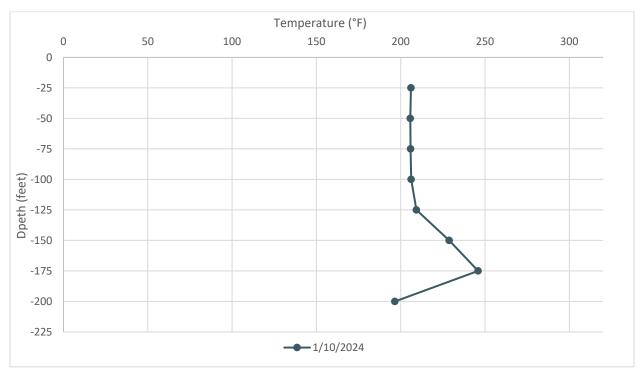



Figure B - 21 Average Temperatures Recorded by TP-5 on January 3, 2024

Figure B - 22 Average Temperatures Recorded by TP-5 on January 10, 2024

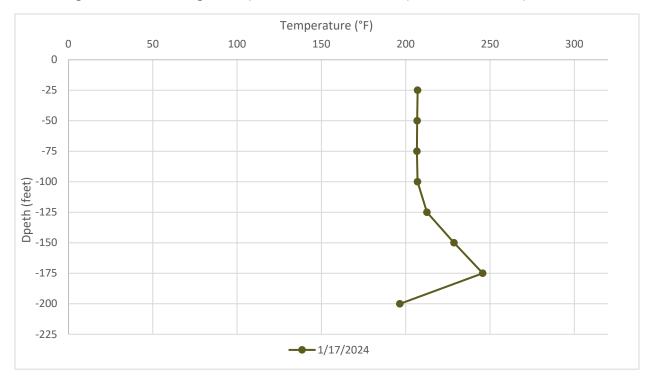
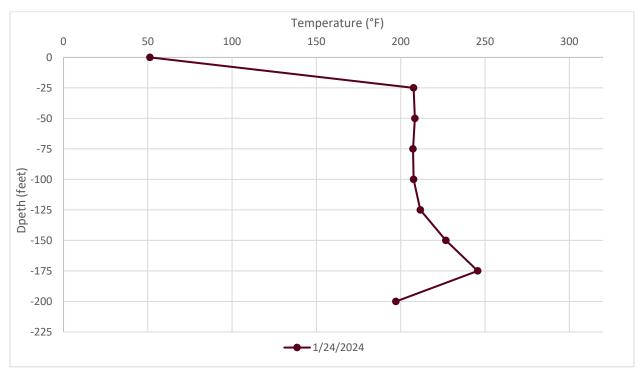



Figure B - 23 Average Temperatures Recorded by TP-5 on January 17, 2024

Figure B - 24 Average Temperatures Recorded by TP-5 on January 24, 2024

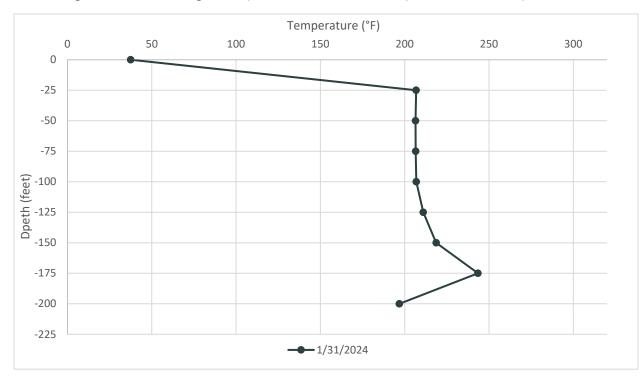
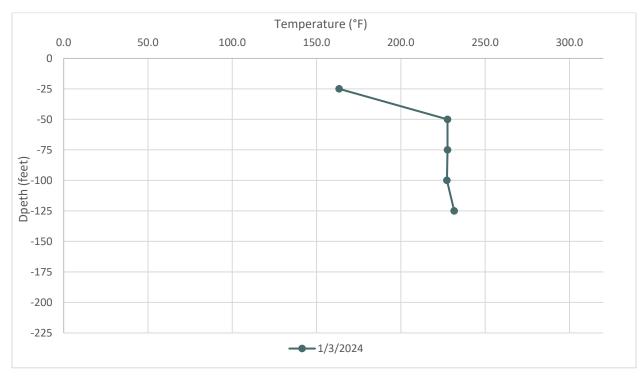



Figure B - 25 Average Temperatures Recorded by TP-5 on January 31, 2024

Figure B - 26 Average Temperatures Recorded by TP-6 on January 3, 2024

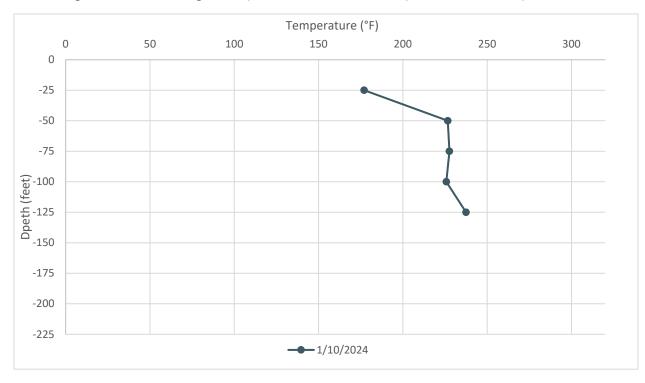
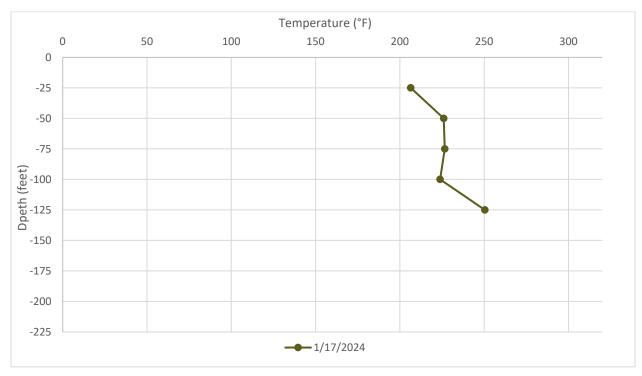



Figure B - 27 Average Temperatures Recorded by TP-6 on January 10, 2024

Figure B - 28 Average Temperatures Recorded by TP-6 on January 17, 2024

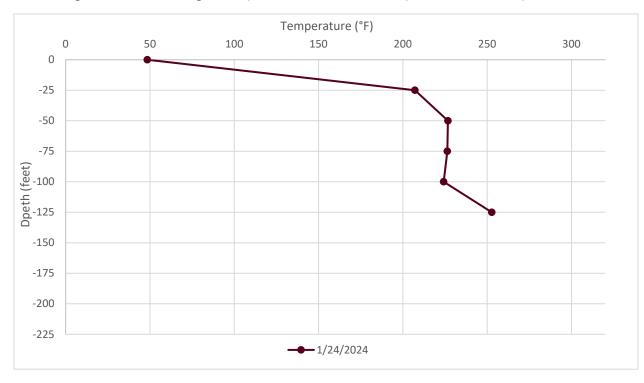
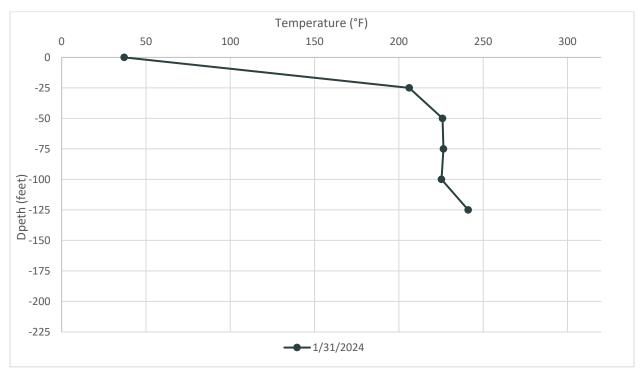



Figure B - 29 Average Temperatures Recorded by TP-6 on January 24, 2024

Figure B - 30 Average Temperatures Recorded by TP-6 on January 31, 2024

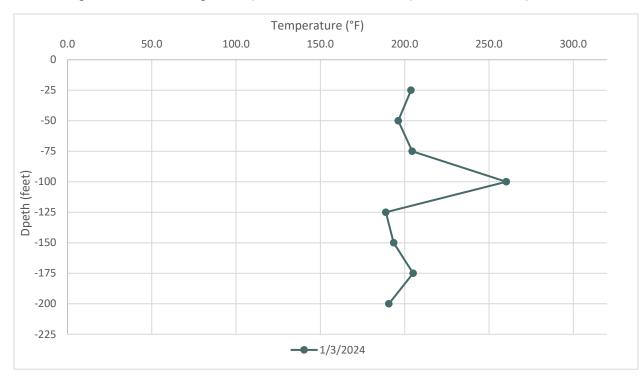
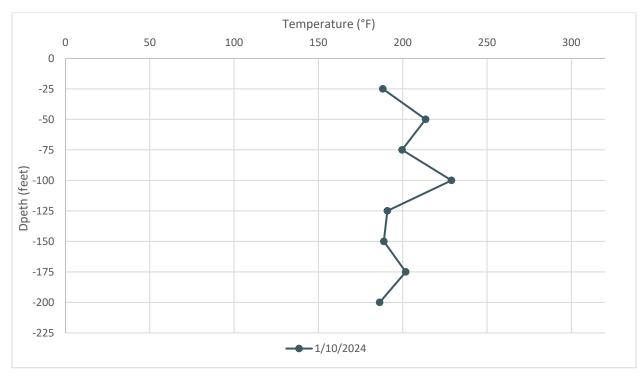



Figure B - 31 Average Temperatures Recorded by TP-7 on January 3, 2024

Figure B - 32 Average Temperatures Recorded by TP-7 on January 10, 2024

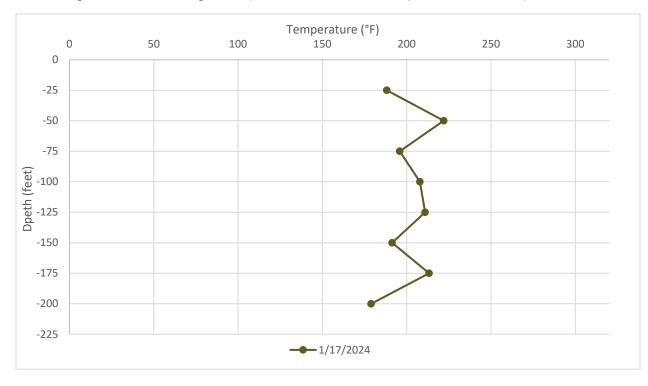
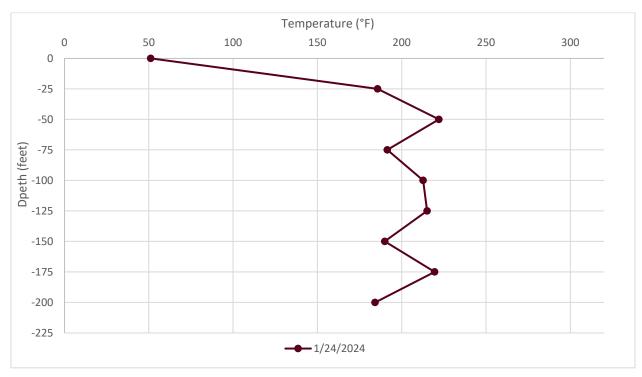



Figure B - 33 Average Temperatures Recorded by TP-7 on January 17, 2024

Figure B - 34 Average Temperatures Recorded by TP-7 on January 24, 2024

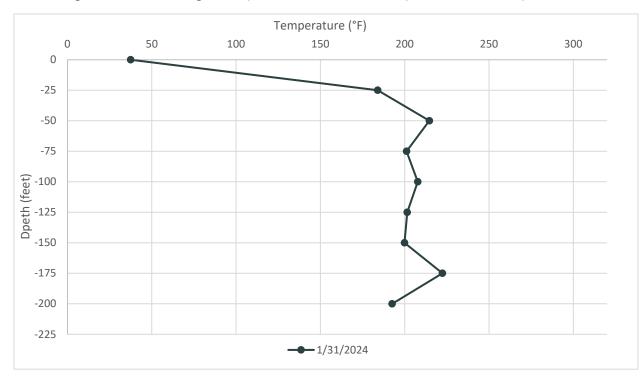
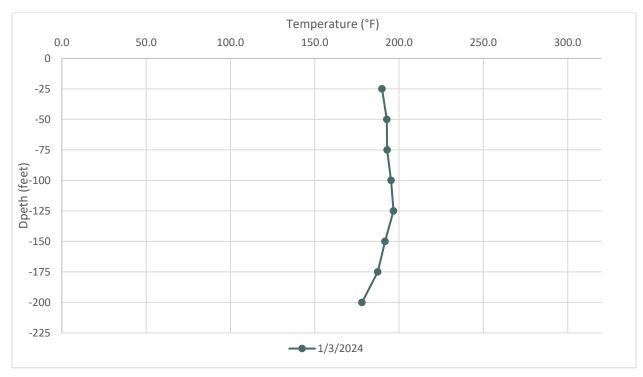



Figure B - 35 Average Temperatures Recorded by TP-7 on January 31, 2024

Figure B - 36 Average Temperatures Recorded by TP-8 on January 3, 2024

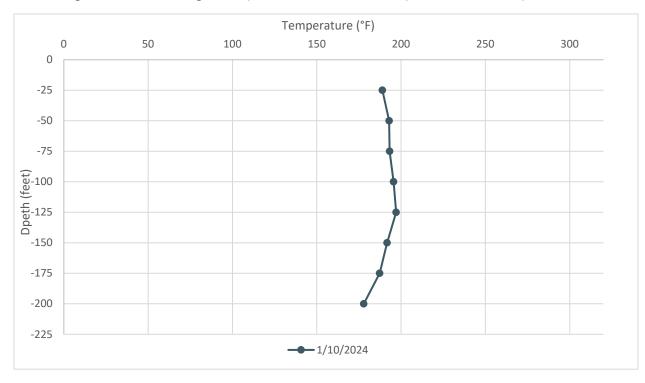
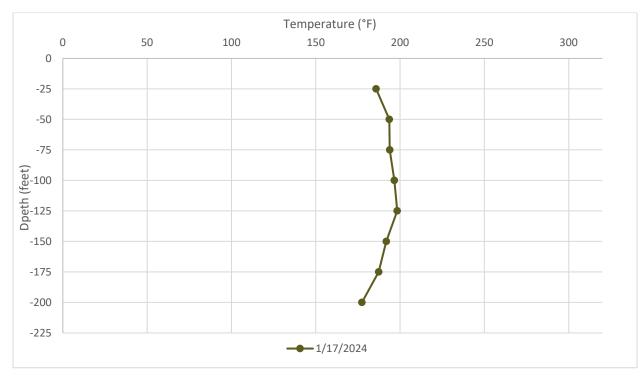



Figure B - 37 Average Temperatures Recorded by TP-8 on January 10, 2024

Figure B - 38 Average Temperatures Recorded by TP-8 on January 17, 2024

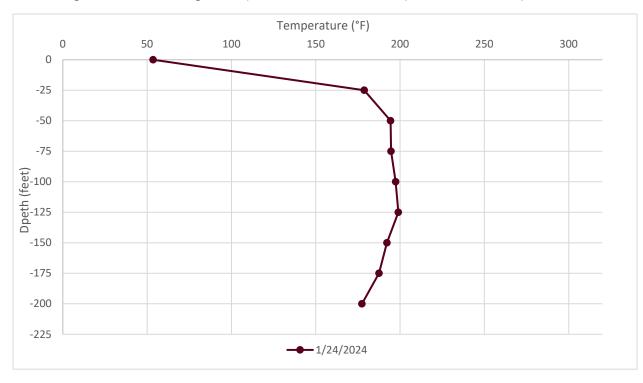
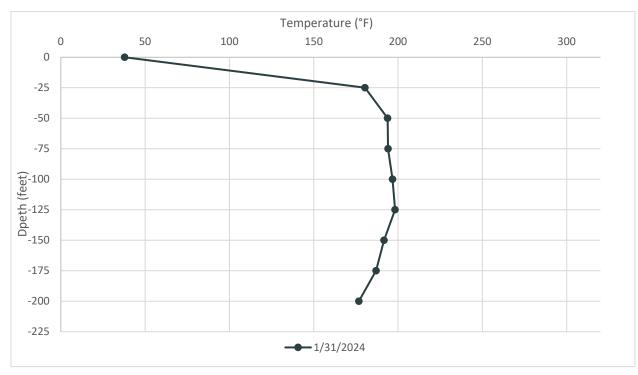



Figure B - 39 Average Temperatures Recorded by TP-8 on January 24, 2024

Figure B - 40 Average Temperatures Recorded by TP-8 on January 31, 2024

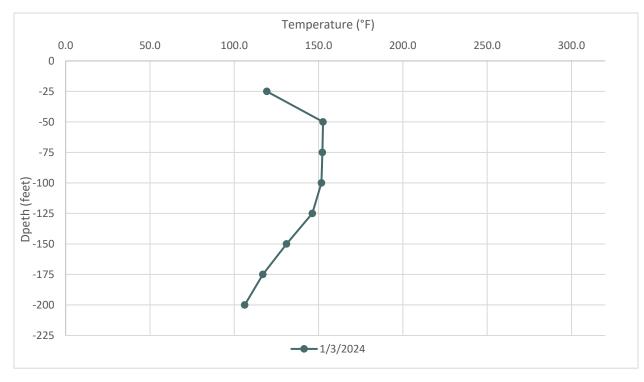
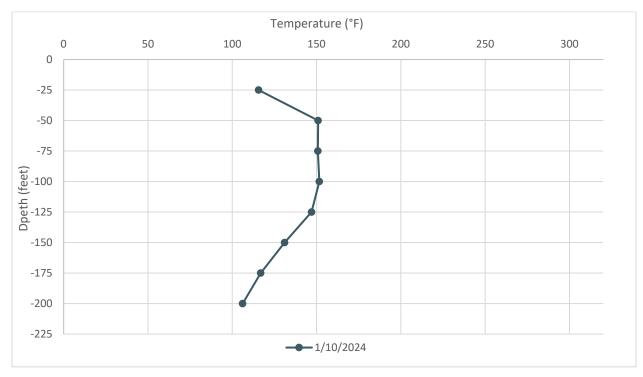



Figure B - 41 Average Temperatures Recorded by TP-9 on January 3, 2024

Figure B - 42 Average Temperatures Recorded by TP-9 on January 10, 2024

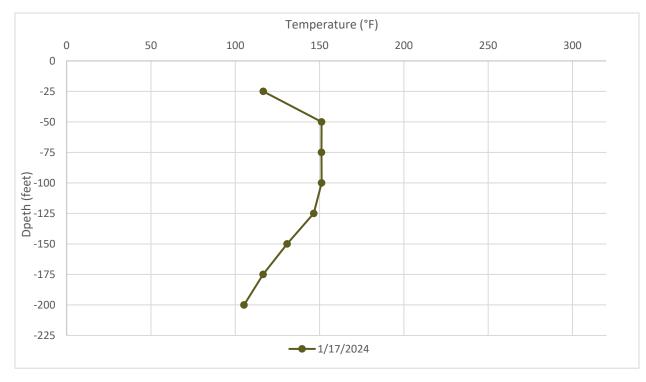
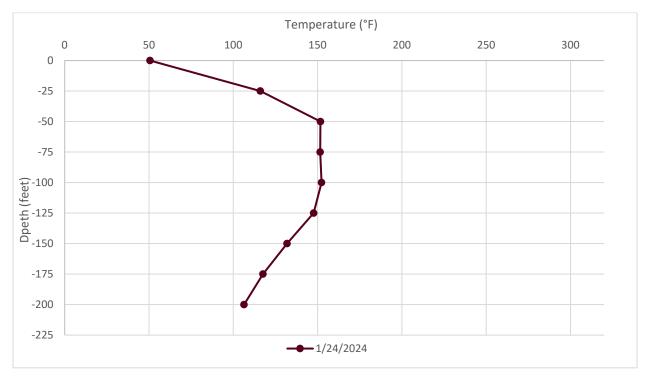



Figure B - 43 Average Temperatures Recorded by TP-9 on January 17, 2024

Figure B - 44 Average Temperatures Recorded by TP-9 on January 24, 2024

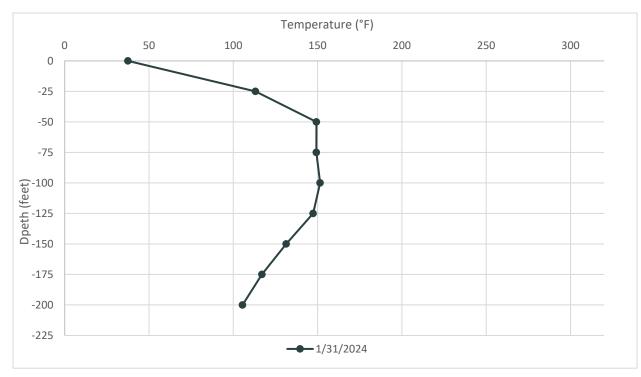


Figure B - 45 Average Temperatures Recorded by TP-9 on January 31, 2024

Appendix C

Daily Wellhead Temperature Averages

Solid Waste Permit 588 Daily Wellhead **Temperature Averages**

The data provided in this report represent initial readings provided by field instrumentation without Validation, analysis, quality assurance review, or context based on operating conditions. This report is subject to revision following quality assurance review and an analysis of operating conditions. SCS will continue to provide a supplemental report with additional information and further analysis on a monthly basis at a minimum.

SCS ENGINEERS

07222143.00 | February 6, 2024

274 Granite Run Drive Lancaster, PA 17601 717-550-6330

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Well 32R

Bristol, Virginia

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	40.0	36.1	45.5
Jan 2	71.5	35.5	122.1
Jan 3	110.0	99.2	116.6
Jan 4	97.7	94.2	100.5
Jan 5	102.3	95.9	111.5
Jan 6	104.2	100.2	109.0
Jan 7	94.2	90.6	99.1
Jan 8	98.9	92.6	109.3
Jan 9	104.1	95.4	113.1
Jan 10	90.5	86.9	95.2
Jan 11	96.8	92.0	102.6
Jan 12	102.3	97.9	107.4
Jan 13	68.9	33.4	102.8
Jan 14	95.1	91.1	100.1
Jan 15	88.1	78.1	97.1
Jan 16	77.2	68.9	86.9
Jan 17	72.7	68.5	79.5
Jan 18	81.9	74.4	89.8
Jan 19	76.4	70.1	81.1
Jan 20	68.4	63.2	76.5
Jan 21	73.2	68.0	83.9
Jan 22	80.8	69.3	97.2
Jan 23	84.7	78.0	92.6
Jan 24	87.4	74.3	99.3
Jan 25	87.3	85.0	91.8
Jan 26	84.1	79.6	88.1
Jan 27	75.1	57.7	85.9
Jan 28	46.5	41.3	58.1
Jan 29	65.8	41.1	84.6
Jan 30	76.7	49.0	90.3
Summary	83.4	40.0	110.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	0.0	31.4	31.4
Jan 2	0.0	31.4	31.4
Jan 3	0.0	31.4	31.4
Jan 4	0.0	31.4	31.4
Jan 5	0.0	31.4	31.4
Jan 6	0.0	31.4	31.4
Jan 7	0.0	31.4	31.4
Jan 8	0.0	31.4	31.4
Jan 9	0.0	31.4	31.4
Jan 10	0.0	31.4	31.4
Jan 11	0.0	31.4	31.4
Jan 12	0.0	31.4	31.4
Jan 13	0.0	31.4	31.4
Jan 14	0.0	31.4	31.4
Jan 15	0.0	31.4	31.4
Jan 16	0.0	31.4	31.4
Jan 17	0.0	31.4	31.4
Jan 18	0.0	31.4	31.4
Jan 19	0.0	31.4	31.4
Jan 20	0.0	31.4	31.4
Jan 21	0.0	31.4	31.4
Jan 22	0.0	31.4	31.4
Jan 23	0.0	31.4	31.4
Jan 24	0.0	31.4	31.4
Jan 25	0.0	31.4	31.4
Jan 26	0.0	31.4	31.4
Jan 27	0.0	31.4	31.4
Jan 28	0.0	31.4	31.4
Jan 29	0.0	31.4	31.4
Jan 30	0.0	31.4	31.4
Summary	0.0	0.0	0.0

	Average (°F)	Minimum (°F)	Maximum (°F)
Date Jan 1	36.8	34.6	40.7
Jan 2	36.9	29.6	50.8
Jan 3	36.4	26.5	52.4
_	34.3	26.5	41.5
Jan 4	37.0	26.5	
Jan 5			58.0
Jan 6	43.7	37.2	47.8
Jan 7	38.7	35.6	43.0
Jan 8	41.1	29.3	57.6
Jan 9	45.3	38.8	53.2
Jan 10	34.1	29.2	36.6
Jan 11	36.4	26.5	56.2
Jan 12	41.3	29.6	55.7
Jan 13	34.2	26.5	41.8
Jan 14	33.1	26.5	47.3
Jan 15	31.6	28.6	34.6
Jan 16	28.6	26.5	32.9
Jan 17	27.7	26.5	35.2
Jan 18	32.2	26.5	48.5
Jan 19	29.8	26.5	35.0
Jan 20	26.5	26.5	26.5
Jan 21	29.8	26.5	41.9
Jan 22	36.1	26.5	64.5
Jan 23	39.0	26.5	54.7
Jan 24	51.2	36.6	71.0
Jan 25	53.0	48.3	61.6
Jan 26	55.9	45.7	65.6
Jan 27	49.1	41.6	56.7
Jan 28	41.6	36.2	52.1
Jan 29	38.9	30.0	50.0
Jan 30	38.9	26.5	55.9
Summary	38.0	26.5	55.9

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	176.8	173.9	179.4
Jan 2	179.4	176.8	180.5
Jan 3	180.2	179.5	181.2
Jan 4	180.3	178.0	182.0
Jan 5	182.1	181.2	183.1
Jan 6	181.5	180.5	182.6
Jan 7	179.9	178.3	182.0
Jan 8	179.4	171.9	182.0
Jan 9	168.7	155.4	178.0
Jan 10	136.4	128.1	148.2
Jan 11	129.2	122.4	136.3
Jan 12	116.9	104.3	125.5
Jan 13	97.5	86.9	112.8
Jan 14	96.1	87.9	104.1
Jan 15	96.3	87.8	105.0
Jan 16	83.5	71.2	104.2
Jan 17	73.1	52.7	81.3
Jan 18	80.9	70.0	96.4
Jan 19	71.9	62.8	80.3
Jan 20	63.4	58.5	69.7
Jan 21	71.7	64.4	84.1
Jan 22	77.5	63.8	100.0
Jan 23	80.6	71.6	92.8
Jan 24	85.8	77.8	97.1
Jan 25	83.6	79.8	87.9
Jan 26	81.2	78.3	84.9
Jan 27	76.7	73.3	82.9
Jan 28	61.4	55.0	79.0
Jan 29	60.5	56.0	71.7
Jan 30	65.4	53.5	77.8
Summary	113.3	60.5	182.1

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	0.0	32.1	32.1
Jan 2	0.0	32.1	32.1
Jan 3	0.0	32.1	32.1
Jan 4	0.0	32.1	32.1
Jan 5	0.0	32.1	32.1
Jan 6	0.0	32.1	32.1
Jan 7	0.0	32.1	32.1
Jan 8	0.0	32.1	32.1
Jan 9	0.0	32.1	32.1
Jan 10	0.0	32.1	32.1
	0.0	32.1	32.1
Jan 11	0.0	32.1	32.1
Jan 12	0.0		
Jan 13		32.1	32.1
Jan 14	0.0	32.1	32.1
Jan 15	0.0	32.1	32.1
Jan 16	0.0	32.1	32.1
Jan 17	0.0	32.1	32.1
Jan 18	0.0	32.1	32.1
Jan 19	0.0	32.1	32.1
Jan 20	0.0	32.1	32.1
Jan 21	0.0	32.1	32.1
Jan 22	0.0	32.1	32.1
Jan 23	0.0	32.1	32.1
Jan 24	0.0	32.1	32.1
Jan 25	0.0	32.1	32.1
Jan 26	0.0	32.1	32.1
Jan 27	0.0	32.1	32.1
Jan 28	0.0	32.1	32.1
Jan 29	0.0	32.1	32.1
Jan 30	0.0	32.1	32.1
Summary	0.0	0.0	0.0

_	_		
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	35.8	33.1	40.6
Jan 2	35.7	28.2	51.9
Jan 3	34.5	26.6	48.1
Jan 4	32.5	26.6	38.1
Jan 5	36.5	26.6	59.4
Jan 6	42.2	34.2	46.7
Jan 7	38.2	35.1	42.3
Jan 8	41.4	27.8	59.5
Jan 9	45.7	38.0	55.0
Jan 10	34.0	27.9	36.5
Jan 11	36.5	26.6	56.8
Jan 12	42.1	30.3	58.5
Jan 13	34.0	26.6	42.3
Jan 14	33.3	26.6	45.8
Jan 15	31.0	28.4	33.0
Jan 16	28.3	26.6	32.3
Jan 17	26.6	26.6	26.6
Jan 18	31.2	26.6	45.4
Jan 19	29.2	26.6	31.4
Jan 20	26.6	26.6	26.6
Jan 21	29.8	26.6	39.6
Jan 22	36.6	26.6	69.3
Jan 23	39.5	26.6	57.4
Jan 24	53.0	37.0	75.4
Jan 25	54.4	49.7	63.4
Jan 26	57.3	47.2	67.2
Jan 27	50.0	43.1	57.5
Jan 28	41.9	36.2	52.9
Jan 29	38.7	29.7	48.7
Jan 30	39.2	26.6	58.4
Summary	37.9	26.6	57.3

Data			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	116.0	105.5	133.6
Jan 2	126.3	115.6	134.2
Jan 3	127.7	118.1	134.3
Jan 4	119.4	103.7	129.1
Jan 5	127.1	115.6	137.3
Jan 6	127.8	118.0	132.6
Jan 7	110.8	94.2	128.4
Jan 8	123.9	104.8	135.1
Jan 9	121.1	108.2	139.0
Jan 10	107.1	92.2	131.5
Jan 11	128.6	119.9	135.9
Jan 12	128.2	117.9	136.8
Jan 13	107.1	90.5	127.6
Jan 14	117.5	103.1	129.0
Jan 15	125.5	115.4	132.4
Jan 16	103.8	82.0	134.3
Jan 17	88.9	54.6	102.6
Jan 18	113.2	77.3	144.9
Jan 19	114.9	99.7	133.9
Jan 20	102.6	93.3	112.7
Jan 21	123.4	109.6	135.2
Jan 22	133.1	124.3	141.1
Jan 23	135.3	130.9	138.7
Jan 24	136.9	109.8	141.4
Jan 25	138.2	136.6	139.7
Jan 26	137.1	134.1	138.4
Jan 27	136.1	130.4	138.2
Jan 28	118.5	109.0	136.8
Jan 29	125.4	112.5	135.0
Jan 30	135.4	99.3	141.7
Summary	121.9	88.9	138.2

	-		
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	111.6	110.4	113.5
Jan 2	112.3	111.3	114.3
Jan 3	112.3	111.0	113.9
Jan 4	111.5	110.3	112.6
Jan 5	112.3	110.6	114.9
Jan 6	113.1	111.4	114.9
Jan 7	113.3	112.2	114.6
Jan 8	112.1	109.9	114.3
Jan 9	110.2	108.2	111.9
Jan 10	107.9	106.8	109.5
Jan 11	109.7	108.2	111.2
Jan 12	109.2	108.1	110.7
Jan 13	107.6	105.6	111.0
Jan 14	107.5	106.6	108.2
Jan 15	108.4	106.7	111.0
Jan 16	105.2	102.5	109.0
Jan 17	76.7	45.5	104.3
Jan 18	91.6	64.4	115.4
Jan 19	106.8	104.8	108.8
Jan 20	104.3	102.8	105.5
Jan 21	107.5	103.9	111.4
Jan 22	110.8	108.2	114.9
Jan 23	111.0	108.0	113.6
Jan 24	109.9	91.2	114.7
Jan 25	109.6	108.7	110.8
Jan 26	109.3	108.6	110.3
Jan 27	108.0	105.4	109.5
Jan 28	103.3	102.0	106.8
Jan 29	106.7	102.3	111.0
Jan 30	111.1	109.9	113.0
Summary	107.7	76.7	113.3

Data		Minimum (%E)	Maximum (9E)
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	35.3	32.6	40.0
Jan 2	34.3	27.6	45.5
Jan 3	73.3	26.0	173.3
Jan 4	177.7	174.7	181.2
Jan 5	182.2	150.8	184.6
Jan 6	49.6	37.9	109.9
Jan 7	37.8	34.0	41.8
Jan 8	83.4	27.3	156.3
Jan 9	165.8	154.7	174.8
Jan 10	166.1	159.7	174.1
Jan 11	153.9	59.4	184.5
Jan 12	175.7	173.0	178.3
Jan 13	175.4	171.6	178.9
Jan 14	111.5	32.1	180.6
Jan 15	67.0	28.9	126.3
Jan 16	39.9	25.9	100.8
Jan 17	26.5	25.9	30.7
Jan 18	35.5	25.9	53.7
Jan 19	37.1	27.8	41.1
Jan 20	27.4	25.9	32.8
Jan 21	41.1	27.4	59.1
Jan 22	43.7	25.9	75.4
Jan 23	47.6	38.7	63.5
Jan 24	56.1	39.2	76.2
Jan 25	60.2	54.4	67.0
Jan 26	62.8	54.8	68.9
Jan 27	55.2	49.6	61.1
Jan 28	43.7	38.1	55.2
Jan 29	40.0	32.7	46.9
Jan 30	39.2	27.4	54.4
Summary	78.2	26.5	182.2

Dete			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	142.5	140.6	146.1
Jan 2	152.8	140.5	176.2
Jan 3	159.0	146.6	178.2
Jan 4	155.7	146.2	177.0
Jan 5	154.8	148.1	175.6
Jan 6	147.8	146.4	149.6
Jan 7	143.4	141.3	145.8
Jan 8	150.6	141.1	171.2
Jan 9	146.7	144.4	149.4
Jan 10	140.5	73.3	144.7
Jan 11	152.7	143.2	177.0
Jan 12	156.2	147.6	177.5
Jan 13	94.4	29.0	150.8
Jan 14	79.2	27.4	154.7
Jan 15	93.8	28.5	153.8
Jan 16	145.4	140.8	151.5
Jan 17	134.9	126.1	143.8
Jan 18	141.1	131.6	150.7
Jan 19	143.7	141.4	146.7
Jan 20	138.8	38.9	147.7
Jan 21	90.5	27.4	150.2
Jan 22	109.7	27.4	151.6
Jan 23	154.0	145.4	174.1
Jan 24	156.4	148.1	176.0
Jan 25	156.0	150.1	171.3
Jan 26	150.2	148.9	151.6
Jan 27	147.7	145.7	148.9
Jan 28	144.2	142.5	146.8
Jan 29	151.3	143.0	169.4
Jan 30	154.8	147.6	171.8
Summary	139.6	79.2	159.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	56.6	52.1	64.0
Jan 2	112.5	51.6	189.1
Jan 3	178.0	143.8	193.4
Jan 4	125.1	112.6	141.6
Jan 5	117.1	106.5	132.5
Jan 6	114.1	104.6	119.3
Jan 7	100.6	93.1	109.7
Jan 8	100.7	92.8	114.9
Jan 9	103.2	94.6	117.7
Jan 10	126.3	88.2	185.1
Jan 11	183.3	151.4	193.1
Jan 12	161.4	128.7	192.6
Jan 13	120.2	110.4	145.6
Jan 14	107.3	98.3	112.6
Jan 15	101.9	95.5	107.3
Jan 16	89.3	69.5	108.9
Jan 17	78.6	66.2	136.3
Jan 18	112.5	64.1	181.4
Jan 19	184.0	143.3	192.7
Jan 20	121.7	98.4	162.9
Jan 21	102.7	92.3	116.2
Jan 22	104.4	88.1	127.9
Jan 23	143.2	96.4	188.7
Jan 24	152.6	118.5	191.2
Jan 25	156.5	107.5	193.0
Jan 26	146.0	122.2	188.0
Jan 27	112.5	103.9	122.0
Jan 28	95.4	87.5	109.0
Jan 29	116.1	84.6	178.1
Jan 30	140.5	96.1	188.9
Summary	122.1	56.6	184.0

_	_		
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	35.2	32.7	40.0
Jan 2	35.6	27.5	55.5
Jan 3	34.5	27.4	48.0
Jan 4	32.2	27.4	37.7
Jan 5	40.6	27.4	69.8
Jan 6	48.7	39.2	53.5
Jan 7	45.2	40.8	51.3
Jan 8	49.9	36.8	74.2
Jan 9	52.3	44.1	69.4
Jan 10	87.3	35.7	177.8
Jan 11	121.2	65.2	178.0
Jan 12	138.9	105.8	178.2
Jan 13	74.3	54.4	123.4
Jan 14	51.8	46.0	62.0
Jan 15	116.0	43.1	177.8
Jan 16	77.9	30.3	134.4
Jan 17	32.9	27.4	50.0
Jan 18	104.3	27.4	178.2
Jan 19	144.4	98.6	177.7
Jan 20	63.6	35.9	98.5
Jan 21	40.3	27.5	61.1
Jan 22	48.8	27.4	90.9
Jan 23	114.7	40.4	179.0
Jan 24	148.0	103.5	179.9
Jan 25	156.6	123.2	181.3
Jan 26	112.5	74.3	148.0
Jan 27	69.3	63.6	97.4
Jan 28	136.2	72.0	179.5
Jan 29	108.4	55.1	177.6
Jan 30	69.9	51.4	98.2
Summary	79.7	32.2	156.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	110.6	102.9	121.0
Jan 2	113.3	107.3	119.8
Jan 3	115.5	109.6	123.1
Jan 4	107.8	101.0	112.8
Jan 5	112.7	102.8	124.1
Jan 6	114.5	111.3	120.8
Jan 7	104.9	96.5	111.7
Jan 8	110.3	94.3	120.1
Jan 9	106.8	95.9	121.1
Jan 10	99.1	91.0	109.3
Jan 11	107.1	99.2	115.5
Jan 12	103.7	97.6	113.2
Jan 13	93.8	84.1	110.7
Jan 14	97.6	85.9	107.4
Jan 15	101.0	93.6	111.4
Jan 16	88.6	75.2	106.4
Jan 17	66.9	49.1	85.9
Jan 18	82.2	50.3	110.0
Jan 19	83.6	63.0	102.6
Jan 20	77.4	62.0	87.3
Jan 21	92.2	77.8	103.6
Jan 22	103.3	86.2	123.6
Jan 23	106.2	95.3	116.8
Jan 24	113.8	101.5	125.4
Jan 25	117.7	112.4	123.5
Jan 26	117.8	111.9	121.0
Jan 27	115.4	110.3	118.8
Jan 28	97.5	88.3	117.5
Jan 29	102.9	94.5	113.4
Jan 30	110.1	99.7	121.0
Summary	102.5	66.9	117.8

		0	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	83.5	78.3	91.1
Jan 2	86.2	82.3	91.4
Jan 3	88.7	82.9	94.5
Jan 4	84.4	79.5	89.2
Jan 5	84.9	75.1	95.3
Jan 6	92.9	81.8	98.6
Jan 7	87.9	82.3	93.0
Jan 8	86.6	79.5	91.0
Jan 9	90.2	83.6	103.6
Jan 10	80.0	76.5	84.7
Jan 11	81.5	75.3	88.6
Jan 12	85.1	74.7	93.3
Jan 13	77.5	70.5	90.1
Jan 14	79.2	75.5	83.7
Jan 15	82.1	78.8	87.2
Jan 16	74.3	52.4	90.1
Jan 17	54.9	46.3	61.0
Jan 18	70.0	47.8	90.3
Jan 19	81.3	68.2	87.5
Jan 20	68.6	64.9	75.2
Jan 21	73.4	66.6	82.3
Jan 22	80.4	71.3	95.2
Jan 23	87.4	78.1	97.1
Jan 24	96.4	88.0	104.2
Jan 25	98.4	91.5	104.0
Jan 26	98.7	95.9	101.9
Jan 27	94.1	89.6	97.7
Jan 28	85.1	79.5	94.8
Jan 29	82.8	78.0	86.9
Jan 30	84.6	73.0	96.5
Summary	83.4	54.9	98.7

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	133.4	128.1	140.0
Jan 2	136.1	132.1	143.5
Jan 3	137.5	130.5	142.5
Jan 4	133.8	127.4	139.4
Jan 5	138.0	128.6	148.4
Jan 6	140.7	135.4	145.0
Jan 7	134.5	127.8	139.6
Jan 8	120.0	88.5	144.2
Jan 9	94.7	89.2	101.5
Jan 10	87.5	84.8	90.0
Jan 11	92.7	87.2	99.1
Jan 12	97.6	91.4	103.4
Jan 13	53.5	32.7	103.7
Jan 14	42.8	32.1	57.0
Jan 15	76.1	35.2	113.7
Jan 16	64.8	32.1	108.2
Jan 17	45.6	32.1	109.1
Jan 18	69.2	32.1	123.7
Jan 19	100.3	91.4	111.1
Jan 20	94.4	90.4	99.7
Jan 21	99.1	88.9	111.1
Jan 22	108.7	97.9	122.2
Jan 23	115.0	109.6	120.4
Jan 24	112.3	67.9	124.9
Jan 25	118.6	115.3	120.6
Jan 26	123.9	126.6	126.6
Jan 27	129.3	132.1	132.1
Jan 28	134.8	137.5	137.5
Jan 29	140.2	142.9	142.9
Jan 30	143.4	138.3	146.2
Summary	107.3	42.8	143.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	66.0	62.3	72.4
Jan 2	66.2	60.7	73.1
Jan 3	66.1	56.7	74.9
Jan 4	66.5	62.7	71.9
Jan 5	69.3	58.1	81.6
Jan 6	72.2	68.8	75.9
Jan 7	67.6	64.2	70.8
Jan 8	71.2	64.6	78.6
Jan 9	71.6	65.9	79.8
Jan 10	65.8	37.6	77.1
Jan 11	75.6	67.6	84.5
Jan 12	78.8	73.2	87.3
Jan 13	72.6	68.4	80.3
Jan 14	73.7	69.7	77.3
Jan 15	73.3	68.9	76.7
Jan 16	66.8	58.5	76.9
Jan 17	36.5	26.7	61.0
Jan 18	48.1	26.7	78.9
Jan 19	70.3	63.7	73.3
Jan 20	64.0	60.4	67.5
Jan 21	70.4	63.0	80.7
Jan 22	75.3	63.5	91.8
Jan 23	80.4	72.2	88.1
Jan 24	84.7	69.6	93.8
Jan 25	86.1	82.0	91.0
Jan 26	88.2	85.8	90.8
Jan 27	85.1	82.4	90.0
Jan 28	74.9	71.5	82.8
Jan 29	77.1	72.9	80.7
Jan 30	78.6	70.7	86.0
Summary	71.4	36.5	88.2

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	114.7	114.0	115.8
Jan 2	114.7	114.1	115.1
Jan 3	114.8	113.8	115.5
Jan 4	114.0	112.2	118.9
Jan 5	113.3	110.2	115.4
Jan 6	115.1	114.6	115.7
Jan 7	113.9	113.1	114.7
Jan 8	118.8	76.1	131.8
Jan 9	118.8	113.2	132.9
Jan 10	112.1	110.7	113.9
Jan 11	119.3	111.3	133.6
Jan 12	122.6	115.5	135.9
Jan 13	113.7	112.2	116.7
Jan 14	113.2	112.6	114.1
Jan 15	123.6	113.4	136.2
Jan 16	130.4	111.6	138.1
Jan 17	94.6	66.1	138.5
Jan 18	102.2	56.2	138.9
Jan 19	127.7	112.0	136.8
Jan 20	111.2	110.4	112.3
Jan 21	111.0	110.1	111.9
Jan 22	112.1	109.8	114.8
Jan 23	113.2	112.0	114.6
Jan 24	113.1	95.1	115.2
Jan 25	113.8	113.0	114.6
Jan 26	113.4	112.9	114.0
Jan 27	112.7	111.7	113.3
Jan 28	111.2	110.4	112.7
Jan 29	111.3	110.4	112.4
Jan 30	112.0	110.6	114.0
Summary	114.4	94.6	130.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	98.9	96.0	103.2
Jan 2	100.6	98.1	104.7
Jan 3	101.0	98.5	104.5
Jan 4	99.5	97.0	102.4
Jan 5	101.4	97.4	106.8
Jan 6	101.5	99.9	102.9
Jan 7	99.0	96.7	101.6
Jan 8	101.7	96.5	106.7
Jan 9	99.2	96.3	104.8
Jan 10	92.7	88.8	94.0
Jan 11	94.1	89.7	100.2
Jan 12	91.6	89.3	97.9
Jan 13	85.7	78.1	93.5
Jan 14	80.0	50.6	89.5
Jan 15	54.9	29.0	84.7
Jan 16	76.8	63.2	88.5
Jan 17	41.2	26.6	67.7
Jan 18	49.6	26.6	81.2
Jan 19	75.2	71.0	79.9
Jan 20	70.2	66.1	77.1
Jan 21	76.6	71.1	85.9
Jan 22	83.5	72.3	97.4
Jan 23	87.0	81.3	93.9
Jan 24	91.0	76.0	98.8
Jan 25	91.1	88.3	95.8
Jan 26	86.2	82.2	89.7
Jan 27	78.1	70.6	83.8
Jan 28	58.0	51.0	71.2
Jan 29	58.2	51.5	68.2
Jan 30	60.0	52.0	73.8
Summary	82.8	41.2	101.7

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	39.3	36.2	44.1
Jan 2	70.7	36.4	119.7
Jan 3	115.5	113.2	119.4
Jan 4	112.5	109.9	114.9
Jan 5	114.4	110.9	119.9
Jan 6	113.2	108.0	115.4
Jan 7	109.8	107.1	112.4
Jan 8	113.3	109.1	120.9
Jan 9	113.0	109.1	118.8
Jan 10	109.3	103.1	113.5
Jan 11	112.9	108.6	116.7
Jan 12	111.1	106.9	114.2
Jan 13	76.7	35.3	111.5
Jan 14	108.1	105.7	109.9
Jan 15	107.6	103.6	110.0
Jan 16	105.5	100.5	110.5
Jan 17	105.4	98.1	109.2
Jan 18	109.0	106.4	113.7
Jan 19	104.4	97.3	107.6
Jan 20	100.8	96.5	104.0
Jan 21	102.3	74.1	108.0
Jan 22	107.3	100.1	115.7
Jan 23	109.7	106.6	118.4
Jan 24	109.8	77.0	118.6
Jan 25	112.2	109.7	115.1
Jan 26	109.1	106.1	112.0
Jan 27	95.1	61.5	107.1
Jan 28	50.4	44.7	62.2
Jan 29	82.1	44.2	107.5
Jan 30	96.4	48.2	105.6
J			

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	36.0	32.9	42.2
Jan 2	53.4	32.2	88.4
Jan 3	81.2	68.6	91.9
Jan 4	79.9	74.1	84.8
Jan 5	88.4	76.8	104.2
Jan 6	84.8	80.1	88.0
Jan 7	76.6	71.7	81.5
Jan 8	82.8	72.8	99.8
Jan 9	78.9	73.5	96.2
Jan 10	71.8	66.9	77.3
Jan 11	80.0	69.7	92.5
Jan 12	77.5	71.4	88.4
Jan 13	55.8	33.0	81.5
Jan 14	72.5	65.5	83.5
Jan 15	70.2	64.5	74.6
Jan 16	63.2	53.8	74.0
Jan 17	63.4	56.5	75.0
Jan 18	76.8	65.6	85.4
Jan 19	67.5	58.5	75.6
Jan 20	56.6	46.6	65.3
Jan 21	66.8	58.3	81.6
Jan 22	73.6	53.5	98.2
Jan 23	78.7	67.6	89.9
Jan 24	86.1	71.1	102.7
Jan 25	85.4	81.5	92.4
Jan 26	84.0	78.2	88.0
Jan 27	72.0	55.5	83.9
Jan 28	43.2	37.3	55.1
Jan 29	48.4	36.6	64.9
Jan 30	65.5	32.7	102.4
Summary	70.7	36.0	88.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	55.1	50.2	60.3
Jan 2	84.9	52.2	121.8
Jan 3	116.6	108.4	123.1
Jan 4	109.7	105.4	112.8
Jan 5	113.4	107.0	118.9
Jan 6	113.0	111.0	115.0
Jan 7	108.2	104.9	112.4
Jan 8	112.3	105.9	117.1
Jan 9	111.4	107.0	120.7
Jan 10	105.9	102.4	112.6
Jan 11	112.2	106.8	118.8
Jan 12	111.3	108.2	116.4
Jan 13	82.1	44.5	116.4
Jan 14	108.8	105.7	112.4
Jan 15	109.4	104.8	112.3
Jan 16	106.2	99.5	113.4
Jan 17	103.9	100.6	107.4
Jan 18	109.2	103.9	114.4
Jan 19	103.8	100.0	108.7
Jan 20	100.4	97.4	105.2
Jan 21	104.7	90.7	109.0
Jan 22	111.2	103.9	119.8
Jan 23	114.3	108.4	119.5
Jan 24	117.4	82.8	126.6
Jan 25	119.9	117.3	123.3
Jan 26	118.9	116.9	120.7
Jan 27	111.5	95.1	119.2
Jan 28	86.5	80.9	99.7
Jan 29	102.9	85.1	114.2
Jan 30	110.3	68.4	117.9
Summary	105.8	55.1	119.9

		. 3	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	130.0	126.8	134.1
Jan 2	131.2	128.4	133.9
Jan 3	132.6	127.6	136.7
Jan 4	131.8	127.6	135.2
Jan 5	135.6	130.4	140.6
Jan 6	136.8	132.5	139.3
Jan 7	134.3	131.1	137.2
Jan 8	135.2	127.7	138.6
Jan 9	134.0	129.8	141.9
Jan 10	135.8	130.1	142.8
Jan 11	141.5	139.4	144.8
Jan 12	138.3	134.8	141.1
Jan 13	131.5	127.9	140.3
Jan 14	130.0	126.1	132.7
Jan 15	126.4	119.3	130.7
Jan 16	113.2	98.4	126.9
Jan 17	47.4	26.5	102.0
Jan 18	66.7	26.5	132.6
Jan 19	123.4	118.1	129.8
Jan 20	119.8	115.7	123.7
Jan 21	120.4	116.8	124.5
Jan 22	122.2	116.1	131.1
Jan 23	119.5	115.6	123.9
Jan 24	118.8	71.3	127.6
Jan 25	121.2	114.4	127.4
Jan 26	121.0	118.2	122.8
Jan 27	115.5	106.1	120.3
Jan 28	94.9	88.3	111.3
Jan 29	99.7	90.4	110.1
Jan 30	100.5	90.5	108.8
Summary	120.3	47.4	141.5

		·	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	132.9	127.7	138.4
Jan 2	134.7	131.7	137.9
Jan 3	135.5	130.9	139.7
Jan 4	133.9	129.2	137.5
Jan 5	136.5	131.5	141.5
Jan 6	137.4	134.5	140.8
Jan 7	133.2	126.9	138.0
Jan 8	134.8	126.9	138.7
Jan 9	135.1	130.5	142.4
Jan 10	131.5	127.4	136.5
Jan 11	133.3	128.6	137.4
Jan 12	134.3	130.3	139.8
Jan 13	127.3	116.1	138.7
Jan 14	130.2	122.5	135.9
Jan 15	131.4	123.2	136.4
Jan 16	123.9	112.4	137.0
Jan 17	76.7	26.6	125.7
Jan 18	86.5	26.6	143.3
Jan 19	129.3	120.5	137.4
Jan 20	124.0	118.3	134.0
Jan 21	131.8	128.4	136.1
Jan 22	134.2	123.5	143.5
Jan 23	128.8	106.5	142.5
Jan 24	129.8	109.6	140.7
Jan 25	139.1	132.7	143.4
Jan 26	137.9	134.2	141.5
Jan 27	135.2	125.1	139.1
Jan 28	119.3	113.6	132.0
Jan 29	126.6	116.8	137.6
Jan 30	132.5	127.2	137.8
Summary	128.6	76.7	139.1

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	104.4	94.0	124.3
Jan 2	112.5	102.4	124.1
Jan 3	114.6	102.6	123.4
Jan 4	103.4	89.1	116.1
Jan 5	110.7	89.5	130.6
Jan 6	115.0	100.4	122.9
Jan 7	105.7	93.6	116.4
Jan 8	107.3	70.2	123.1
Jan 9	112.5	96.9	136.8
Jan 10	102.8	95.4	113.9
Jan 11	110.2	98.9	120.2
Jan 12	108.1	89.9	124.5
Jan 13	100.1	84.4	126.0
Jan 14	104.2	94.0	112.8
Jan 15	109.1	98.6	117.1
Jan 16	96.1	78.5	118.4
Jan 17	91.7	82.1	106.7
Jan 18	106.3	86.2	127.2
Jan 19	102.7	83.4	119.3
Jan 20	87.8	77.5	98.1
Jan 21	104.9	93.0	118.2
Jan 22	115.8	98.2	139.6
Jan 23	119.3	109.7	131.1
Jan 24	129.5	120.9	138.8
Jan 25	130.1	122.5	135.4
Jan 26	128.7	122.9	132.9
Jan 27	120.5	113.1	129.0
Jan 28	107.1	96.2	121.6
Jan 29	105.9	96.5	115.0
Jan 30	114.8	104.1	124.6
Summary	109.4	87.8	130.1

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Jan 1	122.0	120.7	123.8
Jan 2	126.5	121.3	133.7
Jan 3	133.0	124.8	141.1
Jan 4	133.1	129.6	137.2
Jan 5	134.6	124.6	144.5
Jan 6	146.1	137.8	150.7
Jan 7	131.7	126.6	139.1
Jan 8	130.3	125.1	136.9
Jan 9	125.4	120.8	128.6
Jan 10	118.6	116.8	120.0
Jan 11	120.0	118.8	121.9
Jan 12	120.5	118.2	122.3
Jan 13	72.0	33.4	121.9
Jan 14	66.9	31.4	117.7
Jan 15	82.9	38.0	123.4
Jan 16	117.4	108.9	124.7
Jan 17	102.0	84.4	118.3
Jan 18	112.1	94.5	125.6
Jan 19	123.5	121.6	125.8
Jan 20	119.6	55.4	123.6
Jan 21	94.1	48.7	133.8
Jan 22	109.3	39.4	141.8
Jan 23	127.2	124.2	129.3
Jan 24	124.6	107.9	127.3
Jan 25	123.2	121.8	124.5
Jan 26	121.6	120.7	122.3
Jan 27	120.6	115.7	122.4
Jan 28	116.1	114.9	118.6
Jan 29	118.7	115.1	122.9
Jan 30	120.9	119.3	124.3
Summary	117.1	66.9	146.1

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

Appendix D Table of Contents

Section

Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole ${\tt 1}$	D-3
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 2	D-4
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 3	D-5
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 4	D-6
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 5	D-7
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 6	D-8
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 7	D-9
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 8	D-10
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 9	D-11

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft				
1-Jan	165.3	227.0	227.4	247.6	259.0	269.1				
2-Jan	165.5	228.4	228.8	247.6	258.6	269.2				
3-Jan	165.3	229.0	229.4	247.2	257.8	269.0				
4-Jan	165.2	229.1	229.5	247.2	257.8	268.8				
5-Jan	165.5	229.6	230.1	247.6	258.1	269.1				
6-Jan	165.4	229.5	230.0	247.4	257.8	268.9				
7-Jan	165.4	229.2	229.7	247.2	257.7	268.7				
8-Jan	165.6	229.3	229.7	247.5	258.0	269.0				
9-Jan	165.7	229.2	229.6	247.4	257.8	268.9				
10-Jan	165.3	228.9	229.3	247.0	257.4	268.5				
11-Jan	165.6	229.0	229.4	247.3	257.8	269.0				
12-Jan	165.5	228.8	229.3	247.0	257.5	268.7				
13-Jan	165.4	228.6	229.0	246.8	257.4	268.5				
14-Jan	165.4	228.5	229.0	246.8	257.5	268.7				
15-Jan	165.3	228.3	228.7	246.6	257.2	268.4				
16-Jan	165.2	228.2	228.7	246.4	257.1	268.2				
17-Jan	165.2	228.0	228.6	246.5	257.2	268.4				
18-Jan	165.3	228.5	229.0	246.5	257.2	268.3				
19-Jan	165.4	228.5	229.0	246.4	257.1	268.2				
20-Jan	165.1	228.2	228.7	246.2	256.9	268.0				
21-Jan	165.3	228.0	228.5	246.4	257.4	268.4				
22-Jan	165.7	227.6	228.1	246.7	258.0	268.7				
23-Jan	165.6	228.0	228.5	246.5	257.6	268.4				
24-Jan	166.1	227.8	228.3	247.0	258.3	269.0				
25-Jan	165.6	227.0	227.4	246.9	258.5	268.8				
26-Jan	165.9	226.9	227.4	247.0	258.7	269.0				
27-Jan	165.8	226.7	227.2	246.7	258.3	268.6				
28-Jan	165.5	226.4	226.8	246.4	258.0	268.4				
29-Jan	165.6	227.5	228.0	246.4	257.8	268.5				
30-Jan	165.7	229.0	229.4	246.3	257.1	268.6				
31-Jan	165.5	228.9	229.4	246.0	256.7	268.2				
Average	165.5	228.3	228.8	246.8	257.7	268.7				

			Depth fro	m Surface		
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft
1-Jan	190.1	234.8	235.2	262.9	250.1	262.0
2-Jan	187.5	235.0	235.4	263.0	250.1	262.2
3-Jan	192.0	234.7	235.1	262.9	250.1	262.0
4-Jan	191.1	234.7	235.1	262.8	249.9	261.9
5-Jan	191.4	234.8	235.4	263.0	250.2	262.2
6-Jan	199.6	234.4	234.8	262.9	250.1	262.0
7-Jan	197.5	234.4	234.9	262.8	249.9	261.9
8-Jan	192.5	234.9	235.3	263.1	250.3	262.2
9-Jan	203.1	234.2	234.6	263.0	250.0	262.1
10-Jan	202.2	234.1	234.5	262.7	249.8	261.7
11-Jan	196.9	234.5	235.0	263.1	250.2	262.0
12-Jan	197.8	234.2	234.6	263.1	250.2	261.8
13-Jan	199.8	234.0	234.4	262.9	249.8	261.8
14-Jan	194.0	234.3	234.7	263.0	249.9	261.7
15-Jan	191.2	234.3	234.7	263.1	249.9	261.6
16-Jan	194.9	234.0	234.5	263.0	249.6	261.5
17-Jan	190.2	234.4	234.9	263.3	249.9	261.8
18-Jan	191.2	234.4	234.9	263.5	250.1	261.8
19-Jan	195.7	234.2	234.7	263.5	250.1	261.7
20-Jan	190.8	234.5	235.0	263.4	249.8	261.7
21-Jan	185.7	234.7	235.3	263.5	250.0	261.9
22-Jan	186.6	235.0	235.5	263.9	250.4	262.1
23-Jan	190.9	234.9	235.3	263.7	250.2	261.9
24-Jan	195.3	235.0	235.4	264.0	250.4	262.2
25-Jan	199.1	234.8	235.3	263.9	250.4	262.1
26-Jan	199.8	234.8	235.3	264.0	250.4	262.2
27-Jan	200.0	234.5	235.0	263.8	250.2	261.9
28-Jan	202.3	234.1	234.5	263.6	249.9	261.6
29-Jan	197.6	234.4	234.8	263.6	249.9	261.7
30-Jan	198.4	234.4	234.8	263.8	250.0	261.7
31-Jan	197.9	234.2	234.7	263.7	249.8	261.5
Average	195.0	234.5	234.9	263.3	250.1	261.9

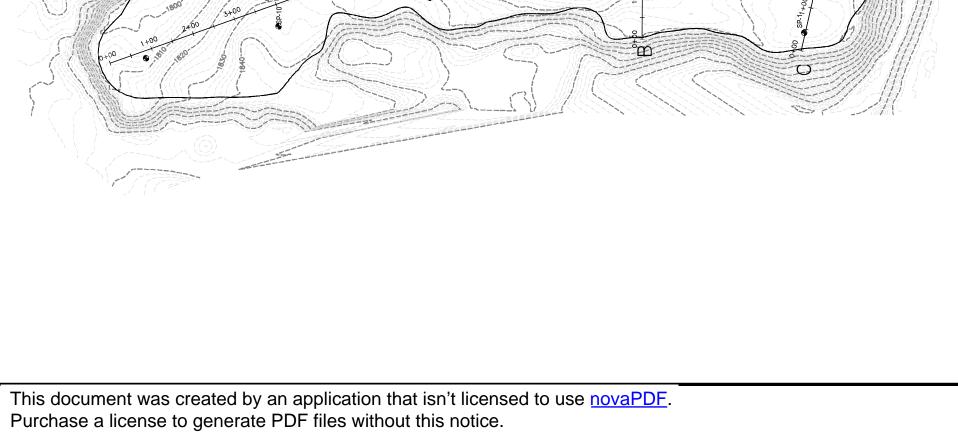
]				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Jan	201.0	236.1	236.2	249.1	256.3	264.6	268.3	254.6
2-Jan	201.5	236.5	236.6	247.9	256.6	264.7	268.6	254.9
3-Jan	202.7	236.2	236.3	247.1	256.5	264.7	268.4	254.8
4-Jan	203.1	235.8	235.9	246.6	256.2	264.3	268.2	254.5
5-Jan	203.5	236.1	236.2	247.1	256.6	264.8	268.6	255.0
6-Jan	203.2	235.9	236.0	247.0	256.3	264.5	268.2	254.7
7-Jan	202.5	235.8	235.9	246.8	256.1	264.3	268.1	254.6
8-Jan	202.7	236.3	236.4	247.3	256.5	264.6	268.6	255.1
9-Jan	202.3	236.1	236.1	247.0	256.1	264.2	268.2	254.8
10-Jan	201.8	235.7	235.8	246.7	255.7	263.8	268.0	254.5
11-Jan	203.0	236.1	236.3	246.8	256.2	264.2	268.5	255.2
12-Jan	203.2	235.7	235.8	246.3	255.9	263.9	268.2	254.8
13-Jan	203.1	235.3	235.4	246.0	255.7	263.7	268.0	254.6
14-Jan	203.3	235.5	235.5	246.3	255.8	263.9	268.1	254.8
15-Jan	203.1	235.4	235.4	246.2	255.6	263.6	267.8	254.6
16-Jan	202.7	235.4	235.4	246.2	255.4	263.5	267.7	254.5
17-Jan	202.5	235.5	235.6	246.4	255.5	263.6	267.9	254.7
18-Jan	202.5	235.6	235.7	246.5	255.5	263.5	268.0	254.7
19-Jan	202.6	235.5	235.5	246.0	255.2	263.2	267.7	254.5
20-Jan	202.4	235.1	235.2	245.5	254.9	262.9	267.5	254.3
21-Jan	202.9	235.4	235.5	245.9	255.3	263.2	267.9	254.8
22-Jan	203.1	235.8	235.9	246.2	255.5	263.5	268.2	255.2
23-Jan	203.0	235.8	235.8	246.2	255.3	263.2	267.9	254.8
24-Jan	202.9	236.1	236.2	246.4	255.7	263.6	268.2	255.2
25-Jan	202.6	235.9	236.0	246.1	255.5	263.4	268.0	255.0
26-Jan	202.5	235.8	235.9	246.0	255.5	263.5	268.2	255.1
27-Jan	202.6	235.4	235.5	245.6	255.1	263.1	267.8	254.8
28-Jan	202.1	235.1	235.2	245.5	254.8	262.8	267.5	254.6
29-Jan	202.1	235.3	235.3	245.6	254.8	262.8	267.6	254.7
30-Jan	202.1	235.4	235.5	245.8	255.0	263.0	267.8	254.9
31-Jan	201.7	235.1	235.2	245.2	254.5	262.6	267.4	254.5
Average	202.6	235.7	235.8	246.4	255.7	263.7	268.0	254.8

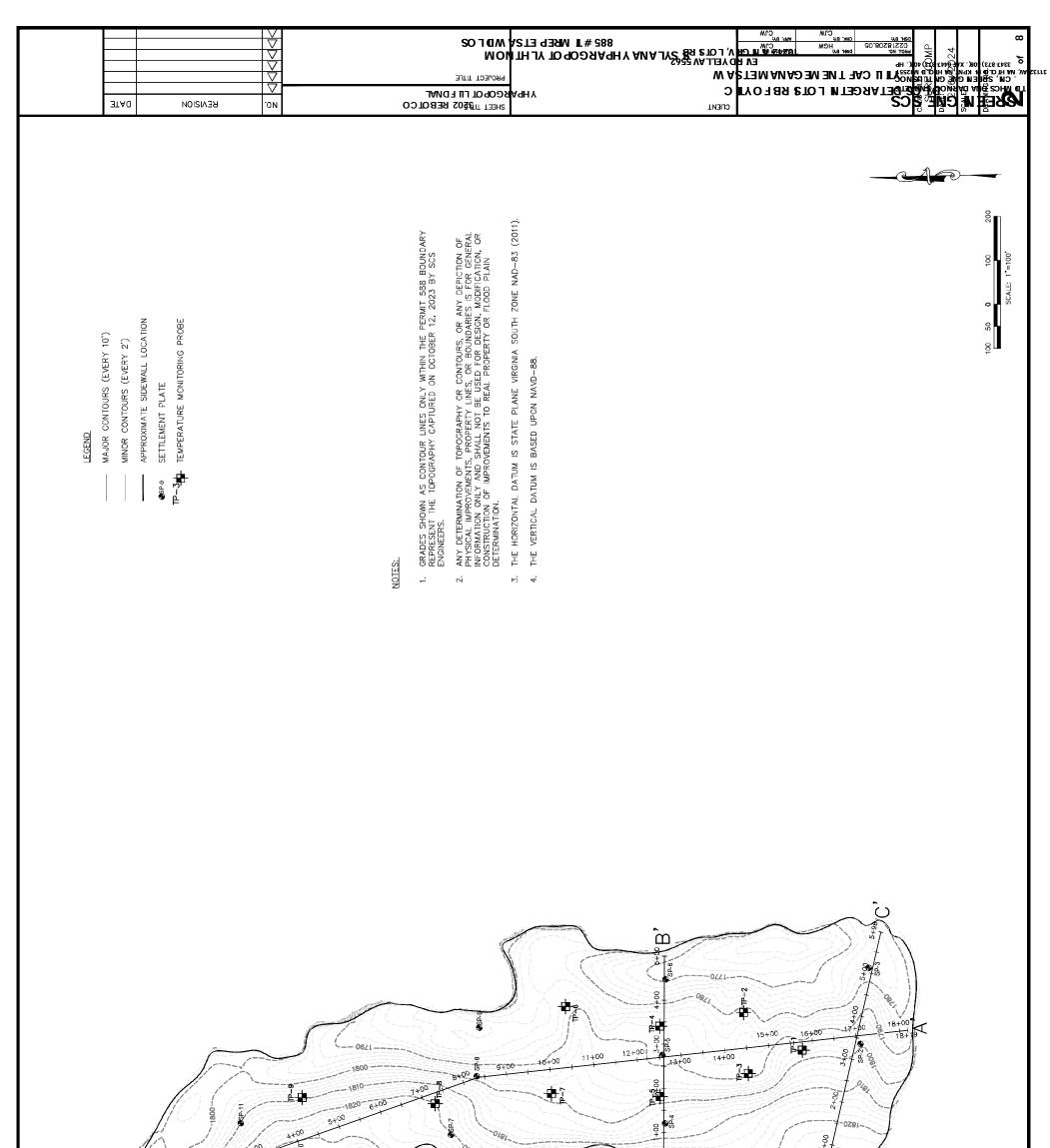
]				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Jan	190.9	228.3	228.6	248.5	261.1	236.9	244.6	174.5
2-Jan	191.7	228.3	228.7	249.0	261.2	237.3	244.9	175.0
3-Jan	192.8	228.9	229.1	248.7	261.4	239.1	244.9	174.6
4-Jan	192.2	228.5	228.9	248.4	260.8	236.9	244.6	175.1
5-Jan	193.4	228.5	228.9	248.8	260.9	237.1	245.0	176.0
6-Jan	190.9	227.7	227.7	248.7	261.0	236.7	244.8	175.6
7-Jan	187.1	228.5	228.8	248.1	260.9	236.8	244.7	179.9
8-Jan	187.9	228.4	228.7	248.5	261.8	236.7	245.2	199.4
9-Jan	186.3	227.9	228.2	248.1	261.6	235.8	244.8	197.5
10-Jan	184.6	227.1	227.6	248.0	261.2	234.4	244.6	196.8
11-Jan	187.4	227.7	228.1	248.3	263.2	236.2	245.1	197.1
12-Jan	188.4	228.7	229.0	247.9	275.2	248.6	244.8	184.4
13-Jan	187.5	227.2	227.3	248.0	276.3	249.3	244.8	181.8
14-Jan	188.9	226.9	227.3	248.1	277.7	250.0	244.9	181.0
15-Jan	188.5	228.3	228.6	247.9	277.0	250.4	244.6	181.9
16-Jan	187.4	228.0	228.3	247.7	277.0	250.2	244.6	181.0
17-Jan	187.7	227.4	227.8	247.8	278.8	252.5	244.9	179.9
18-Jan	188.1	226.8	227.1	247.7	278.7	250.8	244.8	179.1
19-Jan	190.3	227.1	227.6	247.7	276.8	249.5	244.7	181.0
20-Jan	192.7	227.2	227.7	247.5	275.8	248.5	244.7	183.0
21-Jan	194.2	227.2	227.8	247.7	274.0	247.5	245.1	186.8
22-Jan	195.8	226.4	226.9	247.8	273.4	246.3	245.4	189.9
23-Jan	197.1	227.6	228.1	247.8	269.9	244.8	245.0	193.9
24-Jan	196.0	228.4	225.9	248.4	272.4	247.0	245.5	192.3
25-Jan	197.8	227.4	228.0	247.8	276.4	249.1	245.3	188.5
26-Jan	196.2	226.4	227.0	247.9	280.1	250.6	245.4	185.1
27-Jan	195.3	226.4	227.0	247.6	282.4	251.6	245.1	182.2
28-Jan	193.2	228.0	228.3	247.6	281.9	251.8	244.9	181.6
29-Jan	193.6	227.2	227.7	247.6	276.3	250.7	245.0	182.8
30-Jan	193.6	228.0	228.5	247.9	272.2	249.0	245.2	185.6
31-Jan	192.0	227.2	227.7	247.5	262.6	247.0	244.8	186.2
Average	191.3	227.7	228.0	248.0	270.6	244.8	244.9	184.2

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Jan	206.9	206.5	206.6	207.0	209.7	231.4	246.1	196.4
2-Jan	207.2	206.8	206.9	207.3	210.6	231.4	246.3	196.6
3-Jan	206.9	206.5	206.6	206.9	209.2	230.7	246.0	196.5
4-Jan	207.0	206.5	206.6	207.0	208.9	230.4	246.0	196.5
5-Jan	207.3	206.7	206.9	207.2	209.5	230.5	246.2	196.6
6-Jan	206.4	205.9	206.0	206.4	209.1	229.4	246.1	196.6
7-Jan	206.6	206.2	206.3	206.7	209.7	229.4	246.0	196.5
8-Jan	207.4	206.9	207.0	207.4	210.5	229.8	246.2	196.7
9-Jan	206.0	205.6	205.7	206.1	208.5	228.7	246.1	196.6
10-Jan	206.1	205.7	205.8	206.2	209.4	228.7	245.9	196.5
11-Jan	206.8	206.4	206.5	206.8	209.5	229.2	246.1	196.6
12-Jan	206.3	205.9	206.0	206.4	210.1	228.8	246.1	196.6
13-Jan	206.2	205.8	205.9	206.3	210.4	228.5	246.0	196.5
14-Jan	206.8	206.3	206.5	206.9	211.3	228.9	246.0	196.6
15-Jan	206.7	206.3	206.5	206.9	210.9	228.8	245.9	196.6
16-Jan	206.6	206.2	206.3	206.7	210.3	228.6	245.8	196.6
17-Jan	207.1	206.8	206.7	207.0	212.5	228.7	245.7	196.5
18-Jan	206.9	207.1	206.5	206.9	213.5	228.5	245.7	196.6
19-Jan	206.6	207.0	206.3	206.6	211.6	228.1	245.6	196.7
20-Jan	207.1	206.8	206.8	207.1	210.6	227.2	245.4	196.6
21-Jan	207.7	207.2	207.3	207.7	212.3	227.1	245.4	196.7
22-Jan	207.8	209.9	207.4	207.7	212.0	227.0	245.5	196.8
23-Jan	207.5	209.1	207.2	207.6	212.2	226.9	245.5	196.8
24-Jan	207.6	208.3	207.3	207.7	211.6	226.8	245.7	197.1
25-Jan	207.3	209.1	207.1	207.4	211.4	226.3	245.6	197.2
26-Jan	207.4	207.1	207.1	207.5	211.4	225.7	245.5	197.2
27-Jan	207.0	206.7	206.7	207.1	211.1	223.8	245.0	197.0
28-Jan	206.4	206.0	206.2	206.5	209.9	222.8	244.6	196.9
29-Jan	207.0	206.5	206.6	207.0	210.4	222.7	244.5	196.8
30-Jan	206.9	206.6	206.6	206.9	210.6	220.6	244.1	196.9
31-Jan	206.8	206.4	206.5	206.9	211.0	218.7	243.5	196.8
Average	206.9	206.8	206.6	207.0	210.6	227.5	245.6	196.7

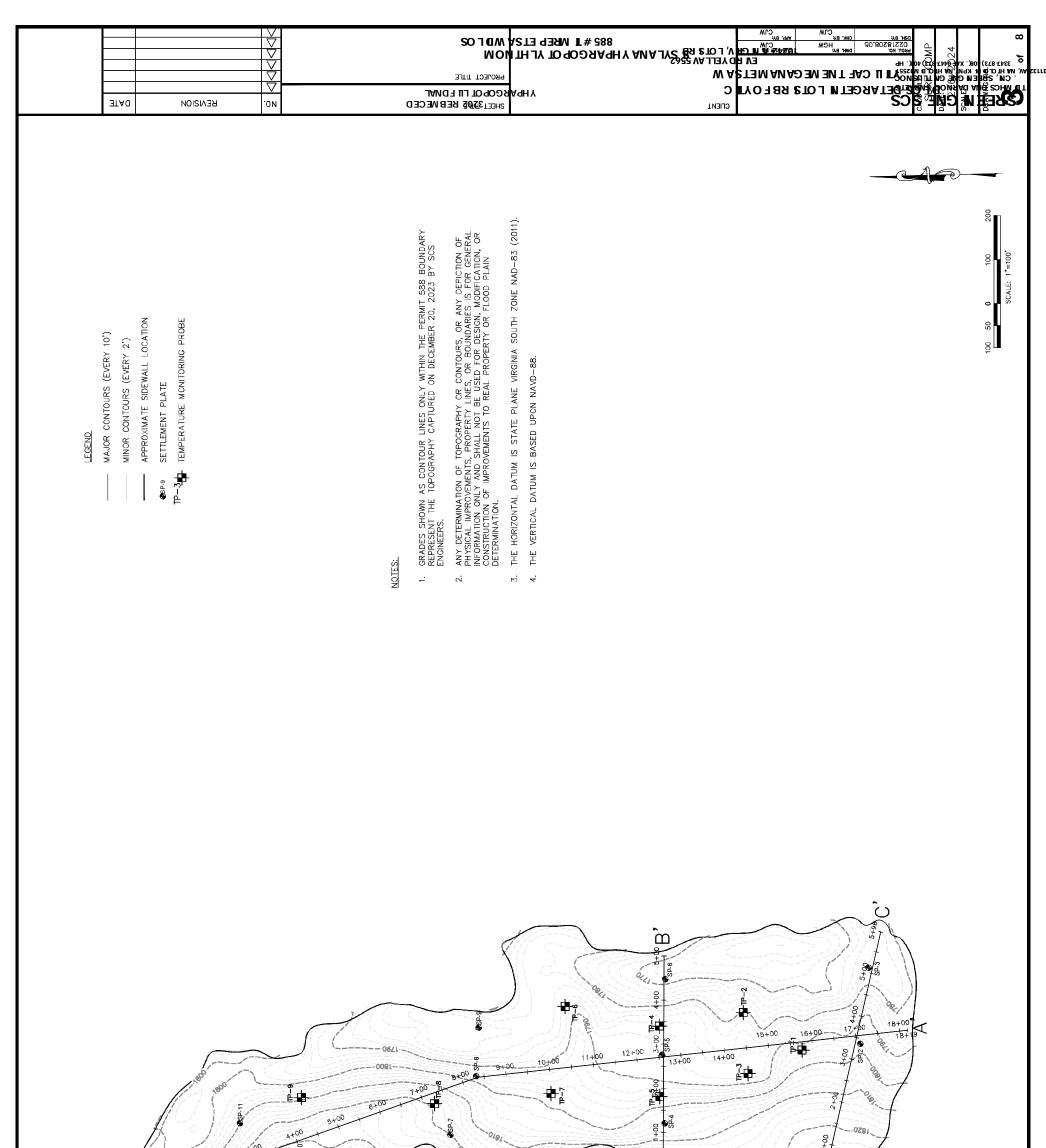
		Dep	th from Su	rface	
Date	25 ft	50 ft	75 ft	100 ft	125 ft
1-Jan	163.7	227.8	227.8	227.4	231.6
2-Jan	163.9	228.0	228.1	227.8	231.7
3-Jan	163.7	227.8	227.9	227.6	231.6
4-Jan	163.5	227.8	227.8	227.4	231.8
5-Jan	163.7	228.0	228.0	227.5	232.7
6-Jan	163.4	227.9	227.9	226.6	234.0
7-Jan	162.6	227.7	227.7	227.0	232.1
8-Jan	162.3	221.9	228.2	228.8	251.4
9-Jan	165.9	225.2	227.9	226.2	244.1
10-Jan	176.7	226.6	227.6	225.8	237.4
11-Jan	191.8	227.3	227.9	225.7	238.4
12-Jan	203.0	227.2	227.7	224.9	240.2
13-Jan	205.8	227.2	227.5	222.0	252.7
14-Jan	206.2	225.8	227.5	223.6	251.2
15-Jan	206.2	225.9	227.3	224.3	246.8
16-Jan	205.9	225.9	226.9	223.8	250.0
17-Jan	206.4	226.0	226.6	223.9	250.4
18-Jan	206.2	226.5	226.8	223.9	248.4
19-Jan	206.0	226.7	226.1	223.2	250.9
20-Jan	206.4	226.7	226.4	223.6	247.9
21-Jan	207.1	226.9	226.6	224.7	248.3
22-Jan	207.3	225.6	226.3	223.5	260.3
23-Jan	207.0	225.2	225.9	222.0	262.5
24-Jan	207.1	226.7	226.3	224.2	252.8
25-Jan	206.9	226.1	225.8	224.6	254.0
26-Jan	207.1	225.9	224.1	221.0	263.6
27-Jan	206.6	226.1	225.1	221.6	257.8
28-Jan	206.1	225.2	225.8	223.2	253.3
29-Jan	206.7	225.3	225.6	223.8	253.4
30-Jan	206.4	225.7	226.0	224.1	249.4
31-Jan	206.1	225.9	226.4	225.4	241.1
Average	192.5	226.4	226.9	224.8	246.2

	Depth from Surface								
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft	
1-Jan	205.8	204.1	205.2	245.7	190.5	193.0	207.4	191.2	
2-Jan	205.6	209.8	205.1	241.1	190.3	192.7	202.8	190.1	
3-Jan	204.8	215.1	204.5	236.9	188.3	191.7	203.4	189.3	
4-Jan	202.6	197.9	204.1	259.8	190.0	191.6	205.0	188.3	
5-Jan	200.9	195.6	203.8	246.9	242.8	191.2	205.3	189.0	
6-Jan	198.7	195.9	203.6	248.6	213.0	191.6	205.2	187.2	
7-Jan	194.7	216.7	204.0	232.7	186.8	191.8	205.3	182.5	
8-Jan	192.2	220.8	204.2	228.4	193.4	189.6	203.6	186.0	
9-Jan	191.2	222.6	200.7	229.4	191.3	186.2	199.2	185.2	
10-Jan	188.3	213.5	199.6	229.0	191.3	188.8	201.7	186.4	
11-Jan	186.4	196.9	197.8	234.6	196.6	189.8	206.3	181.6	
12-Jan	187.8	202.4	196.3	210.8	215.4	192.2	209.1	178.7	
13-Jan	187.3	200.5	193.2	207.8	217.9	191.9	210.9	181.9	
14-Jan	188.8	204.1	195.4	203.6	211.1	191.5	212.0	178.3	
15-Jan	188.8	221.7	196.1	202.3	209.9	190.1	212.4	176.8	
16-Jan	188.6	220.4	196.5	205.5	210.4	190.1	212.6	179.8	
17-Jan	188.1	221.9	195.9	207.8	211.1	191.4	213.3	178.9	
18-Jan	188.1	221.8	195.3	207.3	208.2	190.7	213.9	177.3	
19-Jan	186.2	222.5	195.5	206.0	211.0	191.1	214.3	179.1	
20-Jan	185.6	221.4	194.0	209.2	214.9	189.6	214.9	180.2	
21-Jan	185.7	220.9	197.2	207.7	209.0	193.6	217.2	183.6	
22-Jan	186.4	220.7	197.5	206.2	207.1	194.2	218.1	187.1	
23-Jan	186.3	220.9	195.0	207.0	207.2	192.8	219.2	187.9	
24-Jan	185.7	222.1	191.3	212.7	215.1	189.9	219.6	184.1	
25-Jan	185.4	219.0	196.2	211.2	213.4	191.0	220.3	187.8	
26-Jan	185.1	217.4	199.1	209.7	207.5	192.3	221.0	190.6	
27-Jan	185.4	215.9	199.7	208.9	208.2	191.6	221.8	190.2	
28-Jan	185.4	215.4	199.3	209.2	209.7	192.8	221.6	190.7	
29-Jan	184.9	215.2	200.1	209.6	206.1	197.4	221.7	191.6	
30-Jan	185.0	214.7	200.8	209.4	203.0	199.3	222.4	191.8	
31-Jan	184.0	214.6	201.1	207.7	201.5	199.9	222.4	192.4	
Average	190.3	213.6	199.0	219.1	205.5	192.0	212.4	185.3	

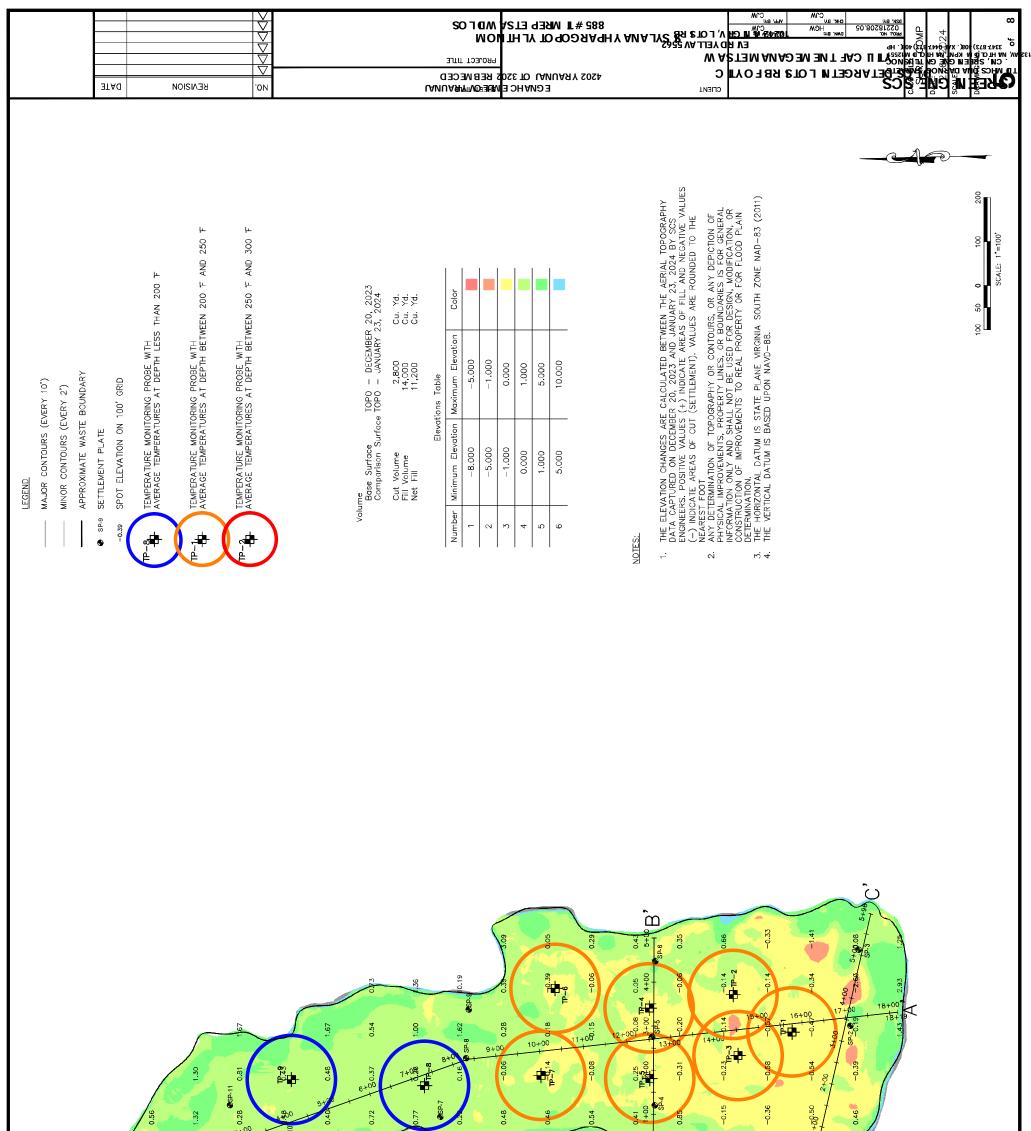

]	Depth from Surface								
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft	
1-Jan	189.2	192.7	193.0	195.2	196.7	191.8	187.4	178.0	
2-Jan	189.8	193.0	193.3	195.6	197.1	192.0	187.6	178.3	
3-Jan	190.1	192.9	193.1	195.4	196.9	192.0	187.5	178.2	
4-Jan	190.1	192.8	193.1	195.4	196.9	191.9	187.4	178.1	
5-Jan	190.3	193.1	193.4	195.7	197.3	192.1	187.8	178.4	
6-Jan	189.9	192.6	192.9	195.3	196.5	192.0	187.4	178.1	
7-Jan	189.9	192.6	192.9	195.2	196.6	192.0	187.4	178.1	
8-Jan	190.3	193.2	193.5	195.8	197.3	192.2	187.8	178.4	
9-Jan	189.7	192.8	193.1	195.4	196.7	192.1	187.5	178.2	
10-Jan	188.9	192.9	193.2	195.6	197.1	191.7	187.3	177.9	
11-Jan	189.3	193.5	193.8	196.3	197.9	192.0	187.7	178.2	
12-Jan	188.2	193.4	193.6	196.1	197.6	191.7	187.4	177.7	
13-Jan	185.9	193.3	193.6	196.2	197.8	191.7	187.4	177.7	
14-Jan	186.0	193.6	193.9	196.4	198.1	191.8	187.4	177.6	
15-Jan	185.7	193.5	193.8	196.4	198.0	191.5	187.1	177.2	
16-Jan	185.6	193.5	193.7	196.4	198.0	191.6	187.2	177.3	
17-Jan	185.9	193.6	193.9	196.6	198.3	191.8	187.4	177.4	
18-Jan	184.4	193.6	193.9	196.6	198.2	191.8	187.2	177.2	
19-Jan	185.2	193.5	193.8	196.4	198.0	191.7	187.1	177.2	
20-Jan	185.5	193.6	193.9	196.6	198.2	191.7	187.1	177.2	
21-Jan	184.2	193.9	194.2	197.1	198.7	191.9	187.4	177.3	
22-Jan	181.0	194.2	194.5	197.4	199.0	192.2	187.6	177.5	
23-Jan	177.9	194.1	194.4	197.1	198.7	191.8	187.2	177.0	
24-Jan	178.8	194.4	194.7	197.4	199.0	192.2	187.5	177.4	
25-Jan	178.4	194.3	194.5	197.2	198.8	192.1	187.4	177.3	
26-Jan	179.0	194.3	194.6	197.3	198.8	192.2	187.5	177.4	
27-Jan	180.1	194.1	194.3	197.0	198.5	191.9	187.2	177.2	
28-Jan	183.1	193.7	194.0	196.6	198.1	191.7	187.0	176.9	
29-Jan	181.6	193.9	194.2	196.9	198.4	191.9	187.2	177.1	
30-Jan	179.5	194.0	194.3	197.0	198.5	192.0	187.3	177.2	
31-Jan	180.4	193.8	194.1	196.7	198.2	191.7	186.9	176.8	
Average	185.3	193.5	193.8	196.3	197.9	191.9	187.4	177.6	

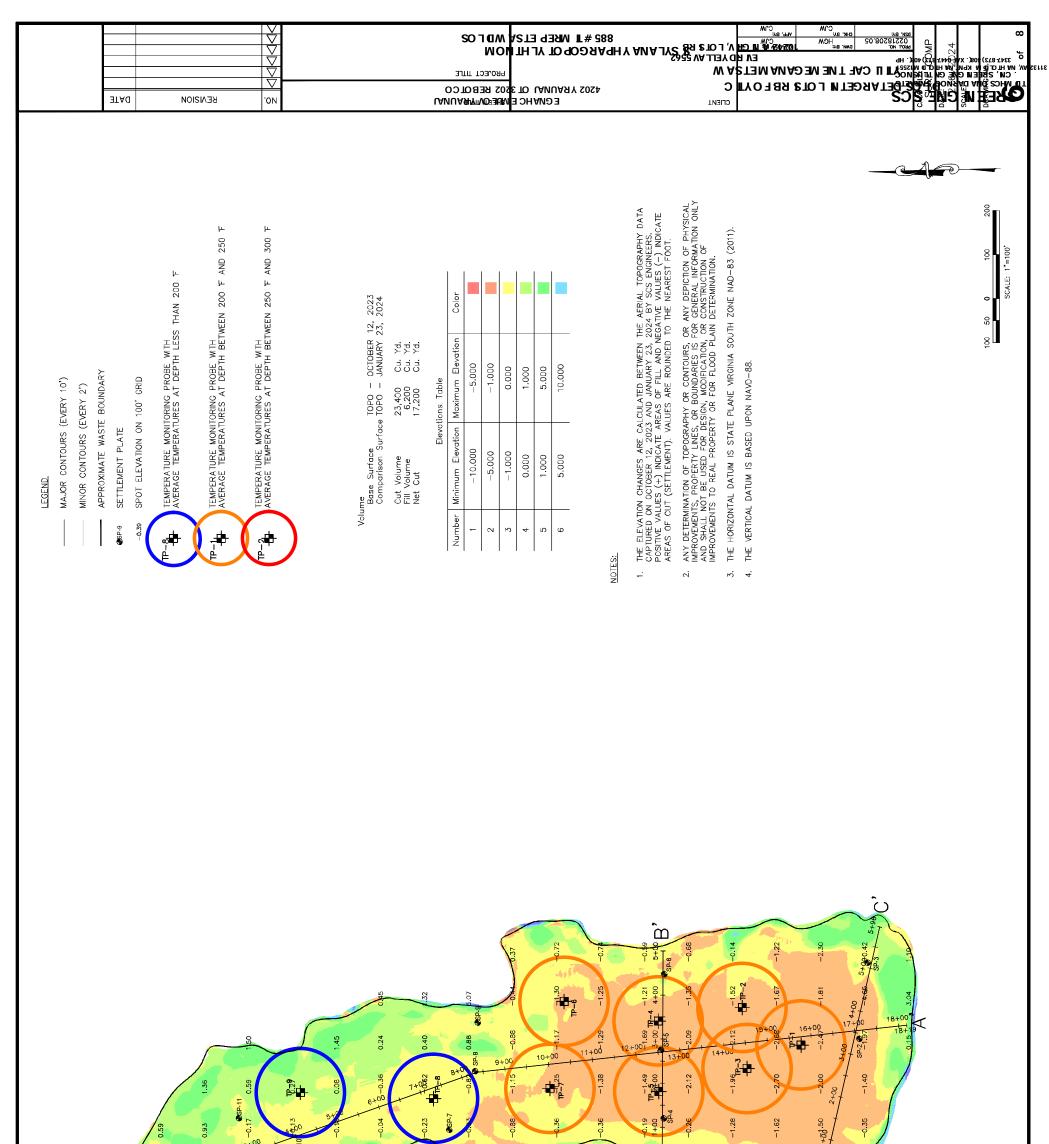

[Depth from Surface								
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft		
1-Jan	119.8	152.7	152.7	151.6	146.3	131.1	116.9	106.2		
2-Jan	119.8	152.8	152.8	151.6	146.4	131.1	116.9	106.2		
3-Jan	119.5	152.5	152.5	151.6	146.2	131.0	116.8	106.1		
4-Jan	119.4	152.5	152.4	151.5	146.3	131.0	116.8	106.1		
5-Jan	119.7	152.7	152.6	151.6	146.3	131.0	116.8	106.2		
6-Jan	118.6	152.5	152.5	151.9	146.7	131.3	117.1	106.5		
7-Jan	118.4	152.2	152.1	151.7	146.9	131.1	117.0	106.4		
8-Jan	119.0	152.6	152.6	151.8	147.0	131.2	117.0	106.4		
9-Jan	116.8	152.0	151.9	152.0	147.2	131.4	117.3	106.7		
10-Jan	115.6	150.9	150.7	151.6	147.0	131.1	116.9	106.1		
11-Jan	117.1	151.7	151.6	151.7	147.0	131.2	116.9	106.0		
12-Jan	117.1	151.8	151.8	151.9	147.1	131.3	117.1	106.1		
13-Jan	116.3	151.3	151.2	151.6	147.0	131.1	116.9	105.8		
14-Jan	117.2	151.7	151.6	151.6	147.0	131.2	116.9	105.7		
15-Jan	117.3	151.7	151.6	151.6	146.8	131.1	116.8	105.6		
16-Jan	116.8	151.3	151.2	151.4	146.8	130.9	116.7	105.4		
17-Jan	116.6	151.2	151.1	151.2	146.5	130.8	116.5	105.2		
18-Jan	116.7	151.4	151.3	151.4	146.7	130.9	116.7	105.4		
19-Jan	116.6	151.2	151.1	151.5	146.8	131.0	116.8	105.6		
20-Jan	116.5	151.0	151.0	151.2	146.4	130.7	116.5	105.3		
21-Jan	116.7	151.3	151.3	151.3	146.6	130.9	116.6	105.4		
22-Jan	116.8	151.6	151.5	151.6	146.9	131.2	116.9	105.7		
23-Jan	116.6	151.6	151.6	151.8	147.1	131.4	117.1	105.9		
24-Jan	116.1	151.7	151.6	152.3	147.7	131.9	117.6	106.4		
25-Jan	115.1	151.4	151.1	152.4	147.8	132.0	117.6	106.3		
26-Jan	114.5	150.9	150.7	152.4	148.0	132.1	117.7	106.3		
27-Jan	114.4	150.5	150.4	152.0	147.6	131.7	117.3	105.8		
28-Jan	113.0	149.7	149.5	151.6	147.4	131.4	117.0	105.5		
29-Jan	113.1	149.8	149.6	151.6	147.3	131.4	117.0	105.5		
30-Jan	113.4	149.7	149.6	151.6	147.4	131.4	117.0	105.5		
31-Jan	113.2	149.3	149.3	151.5	147.4	131.4	117.0	105.5		
Average	116.7	151.5	151.4	151.7	147.0	131.2	117.0	105.9		

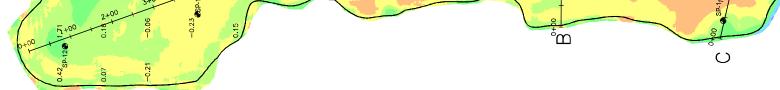
Appendix E

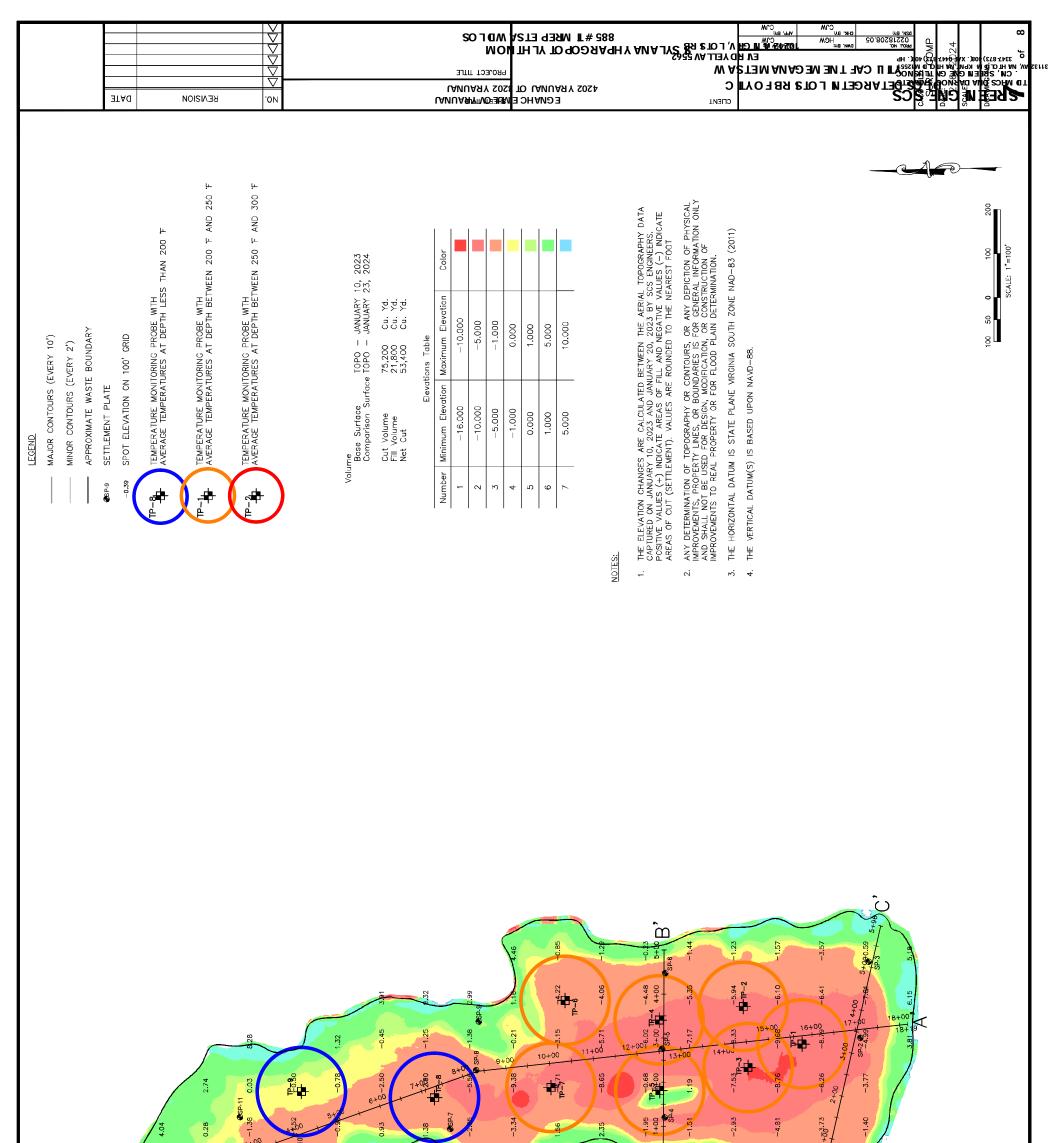

Monthly Topography Analysis

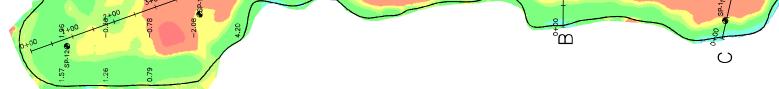
0. REVISION DATE		ү И И СОСОЯ АЧНҮ АИА IYE Вя ето Т ФЕЗЯМ Г # 288	CLU CLU CLU CLU CLU CLU CLU CLU	
LEGEND —— MAJOR CONTOURS (EVERY 10') —— MINOR CONTOURS (EVERY 2') —— APPROXIMATE SIDEWALL LOCATION ④P= SETTLEMENT PLATE TEMPERATURE MONITORING PROBE	NOTES. I. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE FERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON JANUARY 10, 2023 BY SCS ENGINEERS. 2. BUY DETERMINATION OF TOPOGRAPHY CR CONTOURS, OR ANY DEPICTION OF PHYSICAL MPROVEMENTS, PROPERTY UNES, OR BOUNDARTESI IS FOR CENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF MPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION. 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINA SOUTH ZONE NAD-B3 (2011). 4. THE VERTICAL DATUM IS BASED UPON NAVD-B8.			100 50 0 100 200 SCALE: 1*=100*

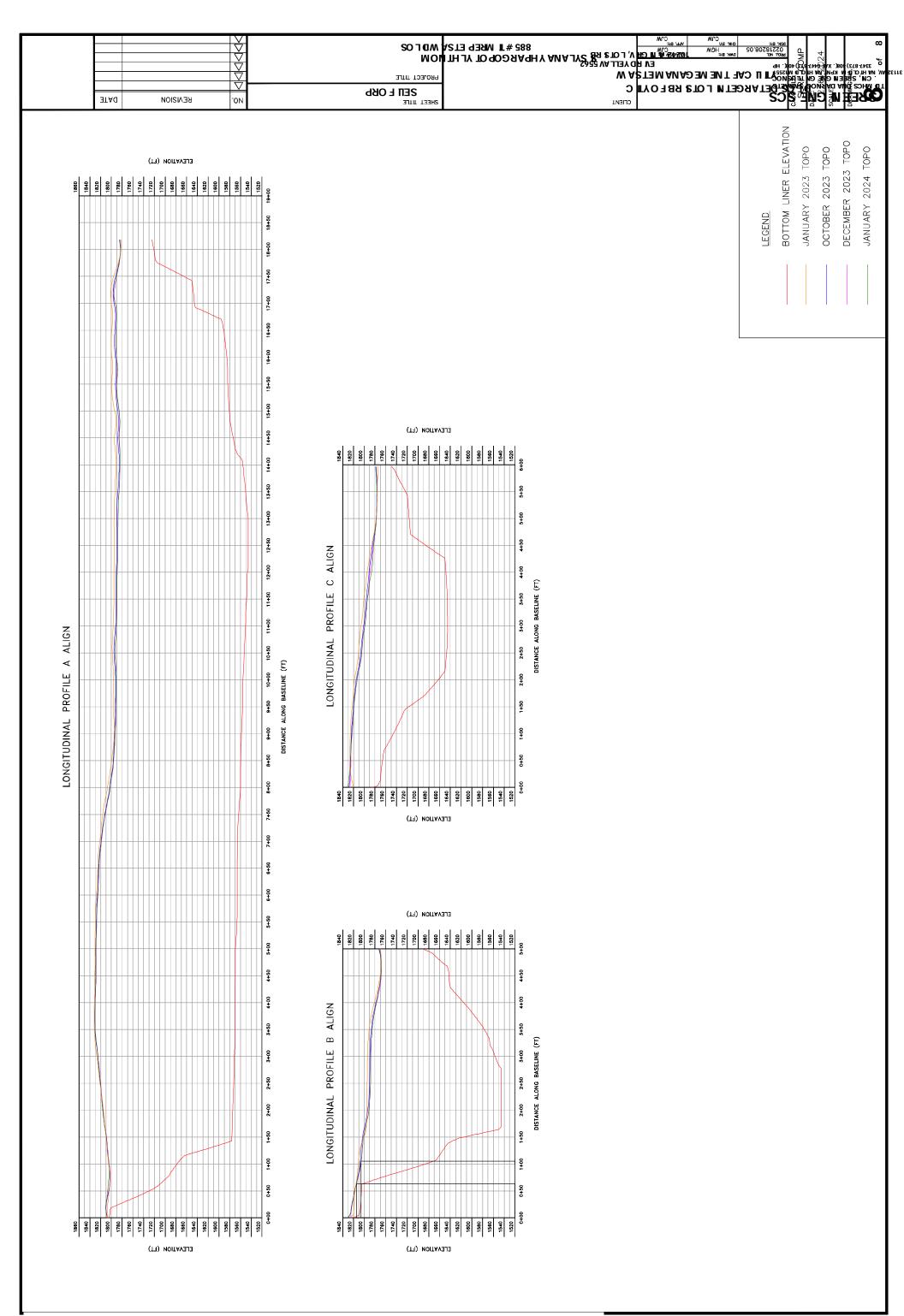



					777777777777777777777777777777777777777	$\overrightarrow{\nabla}$		_	_	_	SO	MDr NOW	г нг ет s e	li MBED 20d Ol <i>V</i>) ЯАЧН \ 888 # 288	25 8 4 15.	<u>ен</u> л'гоц и но легг	COM VEB: BX: COM COM COM COM COM COM COM COM COM COM	ຼີເຕາແ ມີ⊟ເທ	сни:в 3:02 рми:в	ער שר	C.S.S.G.E.E. ≈ LAARE∂©DMP D 22:3 5555 D2 2: 3024	1X ·)en /	5184400
					7	¥ ₹				-16-06-14	37111 1	BROJEC				0/11/10	WAST	о - 1 8 Я (А И А И А В -	NEWEG	ICAFT	ת דע Son ו דע		A DA DA BIENCIA	ин стр ки стр СИ'28 МНС2 МНС2
JTA	₽		NOIS	REN		DN			ſAI		ער דורם ווויז∉205 ג		₩НА								ŜĴ	Ŝ ⁷ E N D		BR
LEGEND MAJOR CONTOURS (EVERY 10')	MINOR CONTOURS (EVERY 2')	APPROXIMATE SIDEWALL LOCATION	r he						NOTES.		 ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO FRAI PROPERTY OR FI OND PI AIN DETERMINATION 	3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).	4. THE VERTICAL DATUM IS BASED UPON NAVD-88.											
							5+00	800.6-	015			9+0	0001-		QQ22	13+00		15+00		1900 592 0 542 0 5490 5490 5490 5490 5490 5490 5490 54	18+00 18+00	Å		


31135







Appendix F

Field Logs

Lab Report

Historical LFG-EW Leachate Monitoring Results Summary

Appendix F

Field Logs Lab Reports Historical LFG-EW Leachate Monitoring Results Summary Time-Series Plots

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date						1/8/2	2024 - 1/11/	2024				
Personnel						W. Fabrie	, L. Howard,	L. Tucker				
Location ID	Date	Measured Well Casing Depth (ft)	Pump Installed	Pump Depth (ft)	Prior Cycle Count (12/28/23)	Cycle Count	Prior Depth to Liquid (ft)	Depth to Liquid (ft)	Casing Stickup (ft)	Liquid Column Thickness (ff)	Sample Collected	
EW-33B	1/10/2024	185.00	Y		17	17	75.17	140.05	4.00	44.95		
EW-36A	1/11/2024	180.00	Y		137975	335039	Dry	74.78	5.00	105.22		
EW-49		96.15	Y	90	777893	777893	65.78					
EW-50	1/10/2024	77.70	Y	83	1387088	1395359	43.1	61.55	4.50	16.15		
EW-51	1/10/2024	92.80	Y	95		148468	43.5	33.15	3.46	59.65	Y	
EW-52	1/10/2024	98.70	Y	93	421655	448412	45.82	44.03	3.33	54.67		
EW-53	1/8/2024	100.70	Y		2435234	2495763	52.04	52.13	5.08	48.57		
EW-54	1/8/2024	82.70	Y	75	597301	602341	38.45	36.37	5.33	46.33		
EW-55	1/8/2024	90.40	Y	90	713760	713760	44.85	42.68	6.33	47.72		
EW-56	1/8/2024	58.50	N	58			44.04	Dry	4.38			
EW-57	1/8/2024	107.40	Y	71	44644	44644	39.78	45.65	4.88	61.75		
EW-58	1/11/2024	84.50	Y	82			32.48	27.88	4.00	56.62		
EW-59	1/8/2024	73.40	Y	64	2501483	2490489	38.95	40.86	4.67	32.54	Y	
EW-60	1/10/2024	81.80	Y	70	617039	617257	35.12	38.22	3.88	43.58		
EW-61	1/10/2024	87.80	Y	66	22389	24275	56.82	66.8	2.63	21.00		
EW-62	1/10/2024	110.60	Y	80	202363	202631	96.11	84.6	3.88	26.00		
EW-63	1/10/2024	62.10	N	64			64.82	69.8	4.96	-7.70		
EW-64	1/10/2024	109.00	Y	113	177605	177605	83.54	81.57	4.46	27.43		
EW-65	1/10/2024	88.40	N	50	4817	4817	61.25	58.12	4.67	30.28		
EW-67	1/8/2024	107.75	Y	62.5	865688	865688	41.16	42.2	5.29	65.55		ا dis
EW-68	1/10/2024	73.57	Y	68	2265867	2280685	4.24	40.31	1.42	33.26		
EW-69	1/10/2024	98.00	N		9	10	94.41	93.02	4.79	4.98		
EW-70		71.00	Y									S
EW-71	1/10/2024	185.80	N				165.58	163.35	5.00	22.45		
EW-72	1/10/2024	141.21	Y				149.63	147.04	4.29	-5.83		
EW-73	1/11/2024	116.00	Y				102.84	107.37	3.92	8.63		

Comments
No sample port
Pump disconnected
Air off
Pump disconnected
Dry
Pump disconnected
Pump disconnected
No sample port, discharge line disconnected, heavy black sludae
Surrounded by water see photo
DRY?

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date						1/8/2	2024 - 1/11/	2024				
Personnel						W. Fabrie	, L. Howard	L. Tucker				
Location ID	Date	Measured Well Casing Depth (ft)	Pump Installed	Pump Depth (ft)	Prior Cycle Count (12/28/23)	Cycle Count	Prior Depth to Liquid (ft)	Depth to Liquid (ft)	Casing Stickup (ft)	Liquid Column Thickness (ff)	Sample Collected	
EW-74	1/10/2024	184.15	Y		25	25	169.38	162.3	5.71	21.85		
EW-75	1/10/2024	124.58	Y		11	11	110.8	66.98	4.96	57.60		
EW-76	1/10/2024	127.00	Y		23	23	35.52		4.21			
EW-77	1/10/2024	185.22	N				142.41	139.86	5.33	45.36		
EW-78	1/10/2024	57.00	Y		85201	91764	48.43	47.13	3.83	9.87		
EW-79	1/11/2024	185.64	N				156.25	154.3	5.42	31.34		
EW-80	1/11/2024	149.00	N				137.78	136.31	4.38	12.69		
EW-81	1/11/2024	151.56	Y		304902	329326	Dry	105.49	5.50	0.00		
EW-82		163.26	Y		98268		Dry			0.00		
EW-83	1/11/2024	167.04	Y			428888	110.19	109.57	4.33	57.47		
EW-84	1/11/2024	130.56	N				74.84	72.61	4.71	57.95		
EW-85	1/10/2024	91.00	Y		124123	161385	55.58	57.01	4.25	33.99		
EW-86	1/10/2024	153.00	N				79.64	76.32	4.25	76.68		
EW-87	1/10/2024	149.57	Y		940779	953643	54.96	55.64	3.92	93.93		
EW-88	1/10/2024	100.00	Y		407370	413409	49.51	44.61	3.75	55.39		
EW-89	1/10/2024	84.57	Y		511625	563451	41.55	41.42	3.33	43.15		
EW-90	1/11/2024	114.00	Y		170679	170679	93.08	91.86	2.58	22.14		
EW-91	1/11/2024	137.70	Y		265766	265809	51.72	42.39	5.46	95.31		
EW-92	1/11/2024	112.99	Y		389507	391973	46.93	47.29	6.71	65.70		
EW-93	1/10/2024	111.00	N		302222		30.25	29.95	3.75	81.05		
EW-94	1/11/2024	50.00	Y		520385	520385	26.34	24.87	4.21	25.13		
EW-95	1/11/2024	68.00	N				25.23	57.44	2.71	10.56		
EW-96	1/8/2024	164.35	Y		571413			59.5	7.38			
EW-97	1/8/2024	67.95	N				92.17	90.67	6.46	-22.72		
EW-98	1/8/2024	51.00	Y		1739764	1859826	26.57	43.68	3.92	7.32	Y	
EW-99	1/8/2024	65.00	N				60.4	60.7	3.96	4.30		
EW-100	1/8/2024	108.50	Y		470158	470465	76.51	74.95	3.88	33.55		

Comments
Lost PVC in well
Lost PVC in well
Standing water, unable to measure
No sample port
Air disconnected
Air off, pump disconnected
Too tall, unable to measure

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (°C)	рН (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-51	1/11/2024	9:30	71.8	5.67	34.83	0.05	-118.9	>1000	
EW-59	1/8/2024	15:45	64.2	5.99	34.7	0.81	-63.8	>1000	
EW-98	1/8/2024	15:30	60.0	6.53	25.3	2.75	-70.1	>1000	

Sampler:

L. Howard, W. Fabrie, L. Tucker

Samples Shipped By: Courier/ Fedex

Log Checked By:

J. Robb

Laboratory: Enthalpy Analytical

1941 Reymet Road

Richmond, Virginia 23237

Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 24A0466

Client Name: SCS Engineers-Winchester 296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Date Received:January 10, 20248:00Date Issued:February 6, 202416:49Project Number:02218208.15 Task 2Purchase Order:

Client Site I.D.: 24-01 LFG-EW Monthly Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 01/10/2024 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTATS

Ted Soyars Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

			Analysis Detec	ts Report					
Client Name:	SCS Engineers-Wi	nchester			Date Issued:	2/6	/2024 4:4	9:57PM	
Client Site ID:	24-01 LFG-EW Mo	nthly Monitoring							
Submitted To:	Jennifer Robb	, 0							
Laboratory Sample ID	: 24A0466-01	Client Sa	mple ID: EW-59						
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Arsenic		01	SW6020B	230		2.5	5.0	5	ug/L
Barium		01	SW6020B	1920		5.00	25.0	5	ug/L
Chromium		01	SW6020B	193		2.00	5.00	5	ug/L
Copper		01	SW6020B	19.0		1.50	5.00	5	ug/L
Lead		01	SW6020B	8.1		5.0	5.0	5	ug/L
Nickel		01	SW6020B	49.11		5.000	5.000	5	ug/L
Zinc		01	SW6020B	97.4		12.5	25.0	5	ug/L
2-Butanone (MEK)		01	SW8260D	10800		150	500	50	ug/L
Acetone		01RE1	SW8260D	22800		3500	5000	500	ug/L
Benzene		01	SW8260D	662		20.0	50.0	50	ug/L
Ethylbenzene		01	SW8260D	28.0	J	20.0	50.0	50	ug/L
Tetrahydrofuran		01	SW8260D	1040		500	500	50	ug/L
Toluene		01	SW8260D	60.0		25.0	50.0	50	ug/L
Ammonia as N		01	EPA350.1 R2.0	2400		146	200	2000	mg/L
BOD		01	SM5210B-2016	17100		0.2	2.0	1	mg/L
COD		01	SM5220D-2011	59800		5000	5000	500	mg/L
Cyanide		01	SW9012B	0.24		0.05	0.05	5	mg/L
Nitrate+Nitrite as N		01	SM4500-NO3F-2016	0.80		0.50	0.50	5	mg/L
TKN as N		01	EPA351.2 R2.0	3020		100	250	500	mg/L
Total Recoverable Pheno	lics	01	SW9065	39.2		3.00	5.00	100	mg/L

			Analysis Detec	<u>ts Report</u>					
Client Name:	SCS Engineers-Wir	nchester			Date Issued:	2/6/	/2024 4:4	9:57PM	
Client Site ID:	24-01 LFG-EW Mor	nthly Monitoring							
		ining monitoring							
Submitted To:	Jennifer Robb								
Laboratory Sample ID:	: 24A0466-02	Client Sa	mple ID: EW-98					5.1	
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Arsenic		02	SW6020B	180		2.5	5.0	5	ug/L
Barium		02	SW6020B	1910		5.00	25.0	5	ug/L
Chromium		02	SW6020B	128		2.00	5.00	5	ug/L
Nickel		02	SW6020B	32.60		5.000	5.000	5	ug/L
Zinc		02	SW6020B	26.1		12.5	25.0	5	ug/L
2-Butanone (MEK)		02RE1	SW8260D	28900		1500	5000	500	ug/L
Acetone		02RE1	SW8260D	47300		3500	5000	500	ug/L
Benzene		02	SW8260D	2900		20.0	50.0	50	ug/L
Ethylbenzene		02	SW8260D	248		20.0	50.0	50	ug/L
Tetrahydrofuran		02	SW8260D	10900		500	500	50	ug/L
Toluene		02	SW8260D	310		25.0	50.0	50	ug/L
Xylenes, Total		02	SW8260D	534		50.0	150	50	ug/L
Ammonia as N		02	EPA350.1 R2.0	1610		146	200	2000	mg/L
BOD		02	SM5210B-2016	14000		0.2	2.0	1	mg/L
COD		02	SM5220D-2011	38200		5000	5000	500	mg/L
Cyanide		02	SW9012B	0.14	CI	0.05	0.05	5	mg/L
TKN as N		02	EPA351.2 R2.0	1810		100	250	500	mg/L
Total Recoverable Phenol	lics	02	SW9065	22.7		1.50	2.50	50	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-59	24A0466-01	Ground Water	01/08/2024 15:45	01/10/2024 08:00
EW-98	24A0466-02	Ground Water	01/08/2024 15:30	01/10/2024 08:00
Trip Blank	24A0466-03	Ground Water	07/10/2023 15:00	01/10/2024 08:00

As requested by Jennifer Robb on February 6, 2024, a revised report has been issued to correct reported VOCs.

Date Issued:

2/6/2024 4:49:57PM

Page 4 of 75

			<u>(</u>	<u>Certificate o</u>	<u>f Analysis</u>							
Client Name:	SCS Engineers-W	/inchester			-	Da	te Issue	d:	2/6/202	4 4:4	9:57PM	
Client Site I.D.:	24-01 LFG-EW M	Ionthly Monitor	ing									
Submitted To:	Jennifer Robb	-	-									
Client Sample ID:	EW-59				Laboratory	/ Sample ID:	24A04	466-01				
			Reference	Sample Prep	Analyzed	Sample	Qual		1.00	DF	Linita	Analys
Parameter	San	ID CAS	Method	Date/Time	Date/Time	Results	Qual	LOD	LOQ	DF	Units	Analys
Metals (Total) by EPA	6000/7000 Series Method	s										
Silver	01	7440-22-4	SW6020B	01/11/2024 12:15	01/12/2024 14:26	BLOD		0.300	5.00	5	ug/L	ACM
Arsenic	01	7440-38-2	SW6020B	01/11/2024 12:15	01/12/2024 14:26	230		2.5	5.0	5	ug/L	ACM
Barium	01	7440-39-3	SW6020B	01/11/2024 12:15	01/12/2024 14:26	1920		5.00	25.0	5	ug/L	ACM
Cadmium	01	7440-43-9	SW6020B	01/11/2024 12:15	01/12/2024 14:26	BLOD		0.500	5.00	5	ug/L	ACM
Chromium	01	7440-47-3	SW6020B	01/11/2024 12:15	01/12/2024 14:26	193		2.00	5.00	5	ug/L	ACM
Copper	01	7440-50-8	SW6020B	01/11/2024 12:15	01/12/2024 14:26	19.0		1.50	5.00	5	ug/L	ACM
Mercury	01	7439-97-6	SW6020B	01/11/2024 12:15	01/12/2024 14:26	BLOD		1.00	1.00	5	ug/L	ACM
Nickel	01	7440-02-0	SW6020B	01/11/2024 12:15	01/12/2024 14:26	49.11		5.000	5.000	5	ug/L	ACM
Lead	01	7439-92-1	SW6020B	01/11/2024 12:15	01/12/2024 14:26	8.1		5.0	5.0	5	ug/L	ACM
Selenium	01	7782-49-2	SW6020B	01/11/2024 12:15	01/12/2024 14:26	BLOD		4.25	5.00	5	ug/L	ACM
Zinc	01	7440-66-6	SW6020B	01/11/2024 12:15	01/12/2024 14:26	97.4		12.5	25.0	5	ug/L	ACM
Volatile Organic Com	pounds by GCMS											
2-Butanone (MEK)	01	78-93-3	SW8260D	01/11/2024 15:03	01/11/2024 15:03	10800		150	500	50	ug/L	JWR
Acetone	01RE	67-64-1	SW8260D	01/12/2024 18:21	01/12/2024 18:21	22800		3500	5000	500	ug/L	RJB
Benzene	01	71-43-2	SW8260D	01/11/2024 15:03	01/11/2024 15:03	662		20.0	50.0	50	ug/L	JWR
Ethylbenzene	01	100-41-4	SW8260D	01/11/2024 15:03	01/11/2024 15:03	28.0	J	20.0	50.0	50	ug/L	JWR
Toluene	01	108-88-3	SW8260D	01/11/2024 15:03	01/11/2024 15:03	60.0		25.0	50.0	50	ug/L	JWR
Xylenes, Total	01	1330-20-7	SW8260D	01/11/2024 15:03	01/11/2024 15:03	BLOD		50.0	150	50	ug/L	JWR
Tetrahydrofuran	01	109-99-9	SW8260D	01/11/2024 15:03	01/11/2024 15:03	1040		500	500	50	ug/L	JWR
Surr: 1,2-Dichloroetha	ne-d4 (Surr) 01	88.7	% 70-120	01/11/2024 15	5:03 01/11/2024 15:	03						
Surr: 4-Bromofluorobe	enzene (Surr) 01	96.3		01/11/2024 15	5:03 01/11/2024 15:	03						
Surr: Dibromofluorome	()	91.7	% 70-130	01/11/2024 15								
Surr: Toluene-d8 (Surr	,	95.8		01/11/2024 15								
Surr: 1,2-Dichloroetha	· · ·			01/12/2024 18								
Surr: 4-Bromofluorobe	enzene (Surr) 01RE	1 96.6	% 75-120	01/12/2024 18	3:21 01/12/2024 18:	21						

					Certificate of	<u>f Analysis</u>							
Client Name:	SCS Engir	neers-Winch	ester	_			Da	ate Issue	d:	2/6/202	4 4:4	19:57PM	
Client Site I.D.:	24-01 LFC	G-EW Month	ly Monitor	ing									
Submitted To:	Jennifer Ro	obb											
Client Sample ID:	EW-59					Laboratory	Sample ID:	24A0	466-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Comp	oounds by GCM	S											
Surr: Dibromofluorome	ethane (Surr)	01RE1	90.6	5 % 70-130	01/12/2024 18:	21 01/12/2024 18:2	1						
Surr: Toluene-d8 (Surr)	01RE1	96.1	70-130	01/12/2024 18:	21 01/12/2024 18:2	1						
Semivolatile Organic	Compounds by	GCMS											
Anthracene		01	120-12-7	SW8270E	01/11/2024 08:45	01/16/2024 19:29	BLOD		1000	2000	50	ug/L	BMS
Surr: 2,4,6-Tribromoph	enol (Surr)	01		% 5-136	01/11/2024 08:	45 01/16/2024 19:2	9						DS
Surr: 2-Fluorobiphenyl	(Surr)	01	38.0	9-117	01/11/2024 08:	45 01/16/2024 19:2	9						
Surr: 2-Fluorophenol (Surr)	01	107	7 % 5-60	01/11/2024 08:	45 01/16/2024 19:2	9						DS
Surr: Nitrobenzene-d5	(Surr)	01	170	0% 5-151	01/11/2024 08:	45 01/16/2024 19:2	9						DS
Surr: Phenol-d5 (Surr)		01	15.0	0 %	01/11/2024 08:	45 01/16/2024 19:2	9						
Surr: p-Terphenyl-d14	(Surr)	01		% 5-141	01/11/2024 08:	45 01/16/2024 19:2	9						DS

					Certificate o	of Analysis							
Client Name:	SCS Engi	neers-Winch	nester				Da	te Issue	d:	2/6/202	4 4:4	9:57PM	
Client Site I.D.:	24-01 LF	G-EW Month	nly Monitor	ing									
Submitted To:	Jennifer R	Robb	-	-									
Client Sample ID:	EW-59					Laborato	ry Sample ID:	24A0	466-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analys	sis												
Ammonia as N		01	7664-41-7	EPA350.1 R2.0	01/16/2024 13:06	01/16/2024 13:06	2400		146	200	2000	mg/L	MGC
BOD		01	E1640606	SM5210B-20 16	01/10/2024 11:43	01/10/2024 11:43	17100		0.2	2.0	1	mg/L	SPH
Cyanide		01	57-12-5	SW9012B	01/11/2024 14:12	01/11/2024 14:12	0.24		0.05	0.05	5	mg/L	LAM
COD		01	NA	SM5220D-20 11	01/23/2024 16:31	01/23/2024 16:31	59800		5000	5000	500	mg/L	TEG
Nitrate as N		01	14797-55-8	Calc.	01/15/2024 13:14	01/15/2024 13:14	BLOD		1.50	5.50	100	mg/L	KJM
Nitrate+Nitrite as N		01	E701177	SM4500-NO 3F-2016	01/15/2024 13:14	01/15/2024 13:14	0.80		0.50	0.50	5	mg/L	MGC
Nitrite as N		01	14797-65-0	SM4500-NO 2B-2011	01/10/2024 11:00	01/10/2024 14:00	BLOD		1.00	5.00	100	mg/L	KJM
Total Recoverable Phe	enolics	01	NA	SW9065	01/12/2024 11:47	01/12/2024 11:47	39.2		3.00	5.00	100	mg/L	LAM
TKN as N		01	E17148461	EPA351.2 R2.0	01/17/2024 16:03	01/17/2024 16:03	3020		100	250	500	mg/L	SPH

				<u>Certificate c</u>	of Analysis						
Client Name:	SCS Engineers-	Ninchester	_			Da	te Issued:	2/6/202	4 4:4	19:57PM	
Client Site I.D.:	24-01 LFG-EW	Monthly Monite	oring								
Submitted To:	Jennifer Robb	-	-								
Client Sample ID:	EW-98				Laboratory	y Sample ID:	24A0466-02				
			Reference	Sample Prep	Analyzed	Sample					
Parameter	Sa	mp ID CAS	Method	Date/Time	Date/Time	Results	Qual LC	D LOQ	DF	Units	Analy
Metals (Total) by EPA	6000/7000 Series Metho	ds									
Silver	02	7440-22-4	\$W6020B	01/11/2024 12:15	01/12/2024 14:29	BLOD	0.3	00 5.00	5	ug/L	ACM
Arsenic	02	7440-38-2	2 SW6020B	01/11/2024 12:15	01/12/2024 14:29	180	2.	5 5.0	5	ug/L	ACM
Barium	02	7440-39-3	3 SW6020B	01/11/2024 12:15	01/12/2024 14:29	1910	5.0	0 25.0	5	ug/L	ACN
Cadmium	02	7440-43-9	9 SW6020B	01/11/2024 12:15	01/12/2024 14:29	BLOD	0.5	5.00	5	ug/L	ACN
Chromium	02	7440-47-3	3 SW6020B	01/11/2024 12:15	01/12/2024 14:29	128	2.0	0 5.00	5	ug/L	ACN
Copper	02	7440-50-8	3 SW6020B	01/11/2024 12:15	01/12/2024 14:29	BLOD	1.5	0 5.00	5	ug/L	ACM
Mercury	02	7439-97-6	SW6020B	01/11/2024 12:15	01/12/2024 14:29	BLOD	1.0	0 1.00	5	ug/L	ACM
Nickel	02	7440-02-0) SW6020B	01/11/2024 12:15	01/12/2024 14:29	32.60	5.0	5.000	5	ug/L	ACM
Lead	02	7439-92-2	SW6020B	01/11/2024 12:15	01/12/2024 14:29	BLOD	5.	5.0	5	ug/L	ACM
Selenium	02	7782-49-2	2 SW6020B	01/11/2024 12:15	01/12/2024 14:29	BLOD	4.2	5 5.00	5	ug/L	ACM
Zinc	02	7440-66-6	5 SW6020B	01/11/2024 12:15	01/12/2024 14:29	26.1	12	5 25.0	5	ug/L	ACM
Volatile Organic Com	pounds by GCMS										
2-Butanone (MEK)	02R	E1 78-93-3	SW8260D	01/12/2024 18:44	01/12/2024 18:44	28900	150	5000	500	ug/L	RJB
Acetone	02R	E1 67-64-1	SW8260D	01/12/2024 18:44	01/12/2024 18:44	47300	350	5000	500	ug/L	RJB
Benzene	02	71-43-2	SW8260D	01/11/2024 15:27	01/11/2024 15:27	2900	20	0 50.0	50	ug/L	JWF
Ethylbenzene	02	100-41-4	SW8260D	01/11/2024 15:27	01/11/2024 15:27	248	20	0 50.0	50	ug/L	JWF
Toluene	02	108-88-3	SW8260D	01/11/2024 15:27	01/11/2024 15:27	310	25	0 50.0	50	ug/L	JWF
Xylenes, Total	02	1330-20-7	7 SW8260D	01/11/2024 15:27	01/11/2024 15:27	534	50	0 150	50	ug/L	JWF
Tetrahydrofuran	02	109-99-9	SW8260D	01/11/2024 15:27	01/11/2024 15:27	10900	50	0 500	50	ug/L	JWF
Surr: 1,2-Dichloroetha	ne-d4 (Surr) 02	90	0.2 % 70-120	01/11/2024 1	5:27 01/11/2024 15:	27					
Surr: 4-Bromofluorobe	enzene (Surr) 02	94	9% 75-120	01/11/2024 1	5:27 01/11/2024 15:	27					
Surr: Dibromofluorome		94	4.3 % 70-130	01/11/2024 1	5:27 01/11/2024 15:	27					
Surr: Toluene-d8 (Surr	,		8.2 % 70-130								
Surr: 1,2-Dichloroetha	ne-d4 (Surr) 02R	E1 88	8.4 % 70-120	01/12/2024 1	8:44 01/12/2024 18:	44					
Surr: 4-Bromofluorobe	enzene (Surr) 02R	E1 96	6.9 % 75-120	01/12/2024 1	8:44 01/12/2024 18:	44					

				(Certificate of	f Analysis							
Client Name:	SCS Engir	neers-Winch	ester	_			Da	ite Issue	d:	2/6/202	4 4:4	19:57PM	
Client Site I.D.:	24-01 LFC	G-EW Month	ly Monitor	ing									
Submitted To:	Jennifer Ro	obb											
Client Sample ID:	EW-98					Laboratory	Sample ID:	24A0	466-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Com	pounds by GCM	S											
Surr: Dibromofluorome Surr: Toluene-d8 (Surr		02RE1 02RE1	89.4 96.2		• · · · = = • = · · • •								
Semivolatile Organic	Compounds by	GCMS											
Anthracene		02	120-12-7	SW8270E	01/11/2024 08:45	01/16/2024 19:59	BLOD		250	500	50	ug/L	BMS
Surr: 2,4,6-Tribromoph	nenol (Surr)	02		% 5-136	01/11/2024 08:4	45 01/16/2024 19:5	59						DS
Surr: 2-Fluorobiphenyl	l (Surr)	02	20.5	% 9-117	01/11/2024 08:4	45 01/16/2024 19:5	59						
Surr: 2-Fluorophenol (Surr)	02	35.2	% 5-60	01/11/2024 08:4	45 01/16/2024 19:5	59						
Surr: Nitrobenzene-d5	(Surr)	02	85.0	% 5-151	01/11/2024 08:4	45 01/16/2024 19:5	59						
Surr: Phenol-d5 (Surr)		02	7.50	% 5-60	01/11/2024 08:4	45 01/16/2024 19:5	59						
Surr: p-Terphenyl-d14	(Surr)	02		% 5-141	01/11/2024 08:4	45 01/16/2024 19:5	59						DS

					Certificate o	of Analysis							
Client Name:	SCS Engi	neers-Winch	nester				Da	te Issue	d:	2/6/202	4 4:4	9:57PM	
Client Site I.D.:	24-01 LF	G-EW Month	nly Monitor	ing									
Submitted To:	Jennifer R			0									
Client Sample ID:	EW-98					Laborator	ry Sample ID:	24A0	466-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analys	sis												
Ammonia as N		02	7664-41-7	EPA350.1 R2.0	01/16/2024 13:06	01/16/2024 13:06	1610		146	200	2000	mg/L	MGC
BOD		02	E1640606	SM5210B-20 16	01/10/2024 11:43	01/10/2024 11:43	14000		0.2	2.0	1	mg/L	SPH
Cyanide		02	57-12-5	SW9012B	01/16/2024 12:06	01/16/2024 12:06	0.14	CI	0.05	0.05	5	mg/L	AAL
COD		02	NA	SM5220D-20 11	01/23/2024 16:31	01/23/2024 16:31	38200		5000	5000	500	mg/L	TEG
Nitrate as N		02	14797-55-8	Calc.	01/15/2024 13:14	01/15/2024 13:14	BLOD		1.50	5.50	100	mg/L	KJM
Nitrate+Nitrite as N		02	E701177	SM4500-NO 3F-2016	01/15/2024 13:14	01/15/2024 13:14	BLOD		0.50	0.50	5	mg/L	MGC
Nitrite as N		02	14797-65-0	SM4500-NO 2B-2011	01/10/2024 11:00	01/10/2024 14:00	BLOD		1.00	5.00	100	mg/L	KJM
Total Recoverable Ph	enolics	02	NA	SW9065	01/12/2024 11:47	01/12/2024 11:47	22.7		1.50	2.50	50	mg/L	LAM
TKN as N		02	E17148461	EPA351.2 R2.0	01/17/2024 16:03	01/17/2024 16:03	1810		100	250	500	mg/L	SPH

				(Certificate o	f Analysis							
Client Name:	SCS Engine	ers-Winch	ester				Da	te Issue	d:	2/6/202	4 4:4	9:57PM	
Client Site I.D.:	24-01 LFG-	-EW Month	ly Monitor	ing									
Submitted To:	Jennifer Ro	bb	-	-									
Client Sample ID:	Trip Blank					Laborator	y Sample ID:	24A0	466-03				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
Volatile Organic Compou	unds by GCMS												
2-Butanone (MEK)		03	78-93-3	SW8260D	01/11/2024 11:57	01/11/2024 11:57	BLOD		3.00	10.0	1	ug/L	JWR
Acetone		03	67-64-1	SW8260D	01/11/2024 11:57	01/11/2024 11:57	BLOD		7.00	10.0	1	ug/L	JWR
Benzene		03	71-43-2	SW8260D	01/11/2024 11:57	01/11/2024 11:57	BLOD		0.40	1.00	1	ug/L	JWR
Ethylbenzene		03	100-41-4	SW8260D	01/11/2024 11:57	01/11/2024 11:57	BLOD		0.40	1.00	1	ug/L	JWR
Toluene		03	108-88-3	SW8260D	01/11/2024 11:57	01/11/2024 11:57	BLOD		0.50	1.00	1	ug/L	JWR
Xylenes, Total		03	1330-20-7	SW8260D	01/11/2024 11:57	01/11/2024 11:57	BLOD		1.00	3.00	1	ug/L	JWR
Tetrahydrofuran		03	109-99-9	SW8260D	01/11/2024 11:57	01/11/2024 11:57	BLOD		10.0	10.0	1	ug/L	JWR
Surr: 1,2-Dichloroethane-	d4 (Surr)	03	90.2	% 70-120	01/11/2024 11	:57 01/11/2024 11	:57						
Surr: 4-Bromofluorobenze	ene (Surr)	03	96.1	% 75-120	01/11/2024 11	:57 01/11/2024 11	:57						
Surr: Dibromofluoromethe	ane (Surr)	03	95.2										
Surr: Toluene-d8 (Surr)		03	98.8	% 70-130	01/11/2024 11	:57 01/11/2024 11	:57						

			<u>C</u>	ertificate o	of Analysi	is				
Client Name:	SCS Engineers-Winchester						Date Issu	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-EW Monthly Mor	nitoring								
	Jennifer Robb	U								
		Metals	(lotal) by	EPA 6000/7000 S	eries Methods - (Quality Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA0366 - EPA20	0.8 R5.4								
Blank (BHA0366-BLK1)				Prepared: 01/11/	2024 Analyzed: 0)1/12/2024				
Mercury	ND	0.200	ug/L		-					
Arsenic	ND	1.0	ug/L							
Barium	ND	5.00	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	1.00	ug/L							
Copper	ND	1.00	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	1.000	ug/L							
Selenium	ND	1.00	ug/L							
Silver	ND	1.00	ug/L							
Zinc	ND	5.00	ug/L							
LCS (BHA0366-BS1)				Prepared: 01/11/	2024 Analyzed: 0)1/12/2024				
Mercury	0.964	0.200	ug/L	1.00		96.4	80-120			
Arsenic	50	1.0	ug/L	50.0		99.7	80-120			
Barium	48.9	5.00	ug/L	50.0		97.8	80-120			
Cadmium	51.0	1.00	ug/L	50.0		102	80-120			
Chromium	49.9	1.00	ug/L	50.0		99.7	80-120			
Copper	51.0	1.00	ug/L	50.0		102	80-120			
Lead	50	1.0	ug/L	50.0		99.0	80-120			
Nickel	50.33	1.000	ug/L	50.0		101	80-120			
Selenium	50.2	1.00	ug/L	50.0		100	80-120			
Silver	10.2	1.00	ug/L	10.0		102	80-120			
Zinc	51.0	5.00	ug/L	50.0		102	80-120			
Matrix Spike (BHA0366-N	IS1) Source	e: 24A0545-0	3	Prepared: 01/11/	2024 Analyzed [.] ()1/12/2024				

2/6/2024 4:49:57PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	3HA0366 - EPA20	0.8 R5.4								
Matrix Spike (BHA0366-MS1)	Sour	ce: 24A0545-03	3	Prepared: 01/11/	2024 Analyzed: ()1/12/2024				
Mercury	1.24	0.200	ug/L	1.00	0.253	99.0	70-130			
Arsenic	52	1.0	ug/L	50.0	3.2	98.2	75-125			
Barium	95.5	5.00	ug/L	50.0	40.9	109	75-125			
Cadmium	41.8	1.00	ug/L	50.0	0.330	83.0	75-125			
Chromium	96.1	1.00	ug/L	50.0	54.4	83.4	75-125			
Copper	73.6	1.00	ug/L	50.0	29.8	87.8	75-125			
Lead	50	1.0	ug/L	50.0	1.7	97.5	75-125			
Nickel	64.84	1.000	ug/L	50.0	22.01	85.7	75-125			
Selenium	38.5	1.00	ug/L	50.0	BLOD	77.0	75-125			
Silver	9.03	1.00	ug/L	10.0	BLOD	90.3	75-125			
Zinc	85.7	5.00	ug/L	50.0	51.5	68.3	75-125			М
/atrix Spike Dup (BHA0366-MSD1)	Sour	ce: 24A0545-03	3	Prepared: 01/11/	2024 Analyzed: ()1/12/2024				
Mercury	1.22	0.200	ug/L	1.00	0.253	96.9	70-130	1.74	20	
Arsenic	53	1.0	ug/L	50.0	3.2	101	75-125	2.20	20	
Barium	98.2	5.00	ug/L	50.0	40.9	115	75-125	2.83	20	
Cadmium	42.3	1.00	ug/L	50.0	0.330	84.0	75-125	1.22	20	
Chromium	94.5	1.00	ug/L	50.0	54.4	80.2	75-125	1.68	20	
Copper	76.0	1.00	ug/L	50.0	29.8	92.4	75-125	3.11	20	
Lead	51	1.0	ug/L	50.0	1.7	98.7	75-125	1.18	20	
Nickel	66.24	1.000	ug/L	50.0	22.01	88.4	75-125	2.13	20	
Selenium	38.1	1.00	ug/L	50.0	BLOD	76.3	75-125	0.934	20	
Silver	9.19	1.00	ug/L	10.0	BLOD	91.9	75-125	1.82	20	
Zinc	86.5	5.00	ug/L	50.0	51.5	70.1	75-125	1.02	20	М

				Cer	tificate c	of Analysi	is				
Client Name:	SCS Engineers	-Winchester						Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 FG-FW	/ Monthly Monit	orina								
			oning								
Submitted To:	Jennifer Robb										
			١	Volatile Organ	ic Compounds b	oy GCMS - Qualit	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BH	1A0377 - SW5030E	B-MS								
Blank (BHA0377-BLK1)				F	Prepared & Analy	/zed: 01/11/2024					
1,1,1-Trichloroethane		ND	1.00	ug/L							
1,1,2,2-Tetrachloroeth	ane	ND	0.40	ug/L							
1,1,2-Trichloroethane		ND	1.00	ug/L							
1,1-Dichloroethane		ND	1.00	ug/L							
1,1-Dichloroethylene		ND	1.00	ug/L							
1,1-Dichloropropene		ND	1.00	ug/L							
1,2,3-Trichlorobenzen	e	ND	1.00	ug/L							
1,2,3-Trichloropropane	е	ND	1.00	ug/L							
1,2,4-Trichlorobenzen	e	ND	1.00	ug/L							
1,2,4-Trimethylbenzer	ne	ND	1.00	ug/L							
1,2-Dibromo-3-chlorop	propane (DBCP)	ND	1.00	ug/L							
1,2-Dibromoethane (E	DB)	ND	1.00	ug/L							
1,2-Dichlorobenzene		ND	0.50	ug/L							
1,2-Dichloroethane		ND	1.00	ug/L							
1,2-Dichloropropane		ND	0.50	ug/L							
1,3,5-Trimethylbenzer	ne	ND	1.00	ug/L							
1,3-Dichlorobenzene		ND	1.00	ug/L							
1,3-Dichloropropane		ND	1.00	ug/L							
1,4-Dichlorobenzene		ND	1.00	ug/L							
1,4-Dioxane		ND	80.0	ug/L							
2,2-Dichloropropane		ND	1.00	ug/L							
2-Butanone (MEK)		ND	10.0	ug/L							
2-Chloroethyl vinyl eth	ner	ND	10.0	ug/L							
2-Chlorotoluene		ND	1.00	ug/L							
2-Hexanone (MBK)		ND	5.00	ug/L							

				Cer	tificate c	of Analysi	is				
Client Name:	SCS Engine	ers-Winchester						Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-	-EW Monthly Mon	itorina								
	Jennifer Rol	•	lioning								
Submitted To:	Jennier Rou	DD									
			١	/olatile Organ	ic Compounds b	oy GCMS - Qualit	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch	h BHA0377 - SW503	DB-MS								
Blank (BHA0377-BLK	1)			F	Prepared & Analy	/zed: 01/11/2024					
4-Chlorotoluene		ND	1.00	ug/L							
4-Isopropyltoluene		ND	1.00	ug/L							
4-Methyl-2-pentanc	one (MIBK)	ND	5.00	ug/L							
Acetone		ND	10.0	ug/L							
Acetonitrile		ND	10.0	ug/L							
Acrolein		ND	10.0	ug/L							
Acrylonitrile		ND	5.00	ug/L							
Allyl chloride		ND	1.00	ug/L							
Benzene		ND	1.00	ug/L							
Bromobenzene		ND	1.00	ug/L							
Bromochlorometha	ne	ND	1.00	ug/L							
Bromodichlorometh	ane	ND	0.50	ug/L							
Bromoform		ND	1.00	ug/L							
Bromomethane		ND	1.00	ug/L							
Carbon disulfide		ND	10.0	ug/L							
Carbon tetrachlorid	e	ND	1.00	ug/L							
Chlorobenzene		ND	1.00	ug/L							
Chloroethane		ND	1.00	ug/L							
Chloroform		ND	0.50	ug/L							
Chloromethane		ND	1.00	ug/L							
Chloroprene		ND	5.00	ug/L							
cis-1,2-Dichloroeth	•	ND	1.00	ug/L							
cis-1,3-Dichloropro	pene	ND	1.00	ug/L							
Cyclohexane		ND	1.00	ug/L							
Dibromochlorometh	nane	ND	0.50	ug/L							

			<u>Cer</u>	tificate c	of Analysi	is				
Client Name:	SCS Engineers-Wincheste	r					Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-EW Monthly M	onitorina								
Submitted To:	Jennifer Robb									
Submitted 10.	Jennier Robb									
		,	Volatile Orgar	iic Compounds b	oy GCMS - Qualit	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA0377 - SW5	030B-MS								
Blank (BHA0377-BLK	1)		F	Prepared & Analy	/zed: 01/11/2024					
Dibromomethane	ND	1.00	ug/L	•						
Dichlorodifluoromet		1.00	ug/L							
Di-isopropyl ether (I		5.00	ug/L							
Ethanol	ND	80.0	ug/L							
Ethyl methacrylate	ND	5.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Ethyl-t-butyl ether (I	ETBE) ND	25.0	ug/L							
Hexachlorobutadier	ne ND	0.80	ug/L							
lodomethane	ND	10.0	ug/L							
Isopropylbenzene	ND	1.00	ug/L							
m+p-Xylenes	ND	2.00	ug/L							
Methacrylonitrile	ND	1.50	ug/L							
Methyl acetate	ND	4.00	ug/L							
Methyl cyclohexane	e ND	1.00	ug/L							
Methyl methacrylate	e ND	2.00	ug/L							
Methylene chloride	ND	4.00	ug/L							
Methyl-t-butyl ether	(MTBE) ND	1.00	ug/L							
Naphthalene	ND	1.00	ug/L							
n-Butylbenzene	ND	1.00	ug/L							
n-Propylbenzene	ND	1.00	ug/L							
o-Xylene	ND	1.00	ug/L							
Pentachloroethane		10.0	ug/L							
Propionitrile	ND	40.0	ug/L							
sec-Butylbenzene	ND	1.00	ug/L							
Styrene	ND	1.00	ug/L							

			<u>Ce</u>	ertificate o	of Analysi	<u>s</u>				
Client Name: SC	S Engineers-Winchester						Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.: 24	-01 LFG-EW Monthly Monit	toring								
Submitted To: Jer	nifer Robb	•								
		,	Valatila Ora	anic Compounds I		v Control				
			volatile Orga		-	y Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA0377 - SW5030	B-MS								
Blank (BHA0377-BLK1)				Prepared & Anal	/zed: 01/11/2024					
TAEE	ND	5.00	ug/L							
TAME	ND	5.00	ug/L							
ТВА	ND	100	ug/L							
tert-Butylbenzene	ND	1.00	ug/L							
Tetrachloroethylene (PCE)	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
trans-1,2-Dichloroethylene		1.00	ug/L							
trans-1,3-Dichloropropene	ND	1.00	ug/L							
trans-1,4-Dichloro-2-buten	e ND	4.00	ug/L							
Trichloroethylene	ND	1.00	ug/L							
Trichlorofluoromethane	ND	1.00	ug/L							
Vinyl acetate	ND	10.0	ug/L							
Vinyl chloride	ND	0.50	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d	4 (Surr) 47.4		ug/L	50.0		94.8	70-120			
Surr: 4-Bromofluorobenzer	ne (Surr) 48.6		ug/L	50.0		97.3	75-120			
Surr: Dibromofluoromethar	ne (Surr) 49.1		ug/L	50.0		98.2	70-130			
Surr: Toluene-d8 (Surr)	48.7		ug/L	50.0		97.4	70-130			
LCS (BHA0377-BS1)				Prepared & Anal	/zed: 01/11/2024					
1,1,1,2-Tetrachloroethane	48.5	0.4	ug/L	50.0		97.0	80-130			
1,1,1-Trichloroethane	54.4	1	ug/L	50.0		109	65-130			
1,1,2,2-Tetrachloroethane	45.8	0.4	ug/L	50.0		91.7	65-130			
1,1,2-Trichloroethane	50.8	1	ug/L	50.0		102	75-125			
1,1-Dichloroethane	52.6	1	ug/L	50.0		105	70-135			

				Cer	tificate c	of Analysi	is				
Client Name: S	SCS Engineers	-Winchester						Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-EW	/ Monthly Mon	itorina								
-	lennifer Robb		lioning								
Submitted to: J											
			١	/olatile Organ	ic Compounds b	y GCMS - Qualit	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BH	A0377 - SW5030	B-MS								
LCS (BHA0377-BS1)	Baton Bri			P	repared & Analy	/zed: 01/11/2024					
1,1-Dichloroethylene		59.1	1	ug/L	50.0	200.01/11/2024	118	70-130			
1,1-Dichloropropene		58.0	1	ug/L	50.0		116	75-135			
1,2,3-Trichlorobenzene		47.2	1	ug/L	50.0		94.4	55-140			
1,2,3-Trichloropropane		44.3	1	ug/L	50.0		88.6	75-125			
1,2,4-Trichlorobenzene		47.7	1	ug/L	50.0		95.5	65-135			
1,2,4-Trimethylbenzene		44.4	1	ug/L	50.0		88.8	75-130			
1,2-Dibromo-3-chloropro	opane (DBCP)	39.2	1	ug/L	50.0		78.4	50-130			
1,2-Dibromoethane (ED)B)	46.9	1	ug/L	50.0		93.8	80-120			
1,2-Dichlorobenzene		47.0	0.5	ug/L	50.0		94.0	70-120			
1,2-Dichloroethane		44.1	1	ug/L	50.0		88.1	70-130			
1,2-Dichloropropane		48.2	0.5	ug/L	50.0		96.4	75-125			
1,3,5-Trimethylbenzene		43.9	1	ug/L	50.0		87.8	75-125			
1,3-Dichlorobenzene		47.2	1	ug/L	50.0		94.3	75-125			
1,3-Dichloropropane		47.4	1	ug/L	50.0		94.9	75-125			
1,4-Dichlorobenzene		45.9	1	ug/L	50.0		91.8	75-125			
2,2-Dichloropropane		55.3	1	ug/L	50.0		111	70-135			
2-Butanone (MEK)		46.7	10	ug/L	50.0		93.4	30-150			
2-Chlorotoluene		48.9	1	ug/L	50.0		97.8	75-125			
2-Hexanone (MBK)		39.9	5	ug/L	50.0		79.8	55-130			
4-Chlorotoluene		47.4	1	ug/L	50.0		94.8	75-130			
4-Isopropyltoluene		48.6	1	ug/L	50.0		97.1	75-130			
4-Methyl-2-pentanone (MIBK)	42.6	5	ug/L	50.0		85.1	60-135			
Acetone		45.9	10	ug/L	50.0		91.8	40-140			
Benzene		50.0	1	ug/L	50.0		100	80-120			
Bromobenzene		51.9	1	ug/L	50.0		104	75-125			

			Cer	tificate c	of Analysi	is					
Client Name:	SCS Engineers-Winchester				-		Date Issue	ed:	2/6/2024	4:49:57PM	
Client Site I.D.:	-										
		lioning									
Submitted To:	Jennifer Robb										
		١	Volatile Organ	ic Compounds b	oy GCMS - Qualit	ty Control					
				Enthalpy Ar	nalytical						
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual	
	Batch BHA0377 - SW5030)B-MS									
LCS (BHA0377-BS1)			F	Prepared & Analy	/zed: 01/11/2024						
Bromochloromethane	e 52.6	1	ug/L	50.0		105	65-130				
Bromodichlorometha	ne 49.3	0.5	ug/L	50.0		98.7	75-120				
Bromoform	48.4	1	ug/L	50.0		96.9	70-130				
Bromomethane	44.5	1	ug/L	50.0		89.0	30-145				
Carbon disulfide	47.7	10	ug/L	50.0		95.3	35-160				
Carbon tetrachloride	57.1	1	ug/L	50.0		114	65-140				
Chlorobenzene	50.3	1	ug/L	50.0		101	80-120				
Chloroethane	48.4	1	ug/L	50.0		96.8	60-135				
Chloroform	49.6	0.5	ug/L	50.0		99.3	65-135				
Chloromethane	41.1	1	ug/L	50.0		82.2	40-125				
cis-1,2-Dichloroethyle	ene 53.8	1	ug/L	50.0		108	70-125				
cis-1,3-Dichloroprope	ene 49.7	1	ug/L	50.0		99.4	70-130				
Dibromochlorometha	ne 52.5	0.5	ug/L	50.0		105	60-135				
Dibromomethane	49.1	1	ug/L	50.0		98.3	75-125				
Dichlorodifluorometh	ane 41.1	1	ug/L	50.0		82.1	30-155				
Ethylbenzene	50.3	1	ug/L	50.0		101	75-125				
Hexachlorobutadiene	e 53.9	0.8	ug/L	50.0		108	50-140				
lsopropylbenzene	47.4	1	ug/L	50.0		94.7	75-125				
m+p-Xylenes	104	2	ug/L	100		104	75-130				
Methylene chloride	53.3	4	ug/L	50.0		107	55-140				
Methyl-t-butyl ether (MTBE) 46.7	1	ug/L	50.0		93.3	65-125				
Naphthalene	46.0	1	ug/L	50.0		92.1	55-140				
n-Butylbenzene	45.5	1	ug/L	50.0		91.0	70-135				
n-Propylbenzene	48.4	1	ug/L	50.0		96.7	70-130				
o-Xylene	50.1	1	ug/L	50.0		100	80-120				

				<u>Ce</u>	ertificate o	of Analysi	is				
Client Name:	SCS Engineers	s-Winchester						Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-EW Monthly Monitoring										
	Jennifer Robb	,	0								
Submitted 10.			,				0				
			V	olatile Org	anic Compounds I	•	ty Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch Bl	HA0377 - SW503	0B-MS								
LCS (BHA0377-BS1)					Prepared & Anal	/zed: 01/11/2024					
sec-Butylbenzene		50.2	1	ug/L	50.0		100	70-125			
Styrene		47.6	1	ug/L	50.0		95.3	65-135			
tert-Butylbenzene		46.4	1	ug/L	50.0		92.9	70-130			
Tetrachloroethylene (P	CE)	60.1	1	ug/L	50.0		120	45-150			
Toluene		53.6	1	ug/L	50.0		107	75-120			
trans-1,2-Dichloroethyl	lene	57.0	1	ug/L	50.0		114	60-140			
trans-1,3-Dichloroprop	ene	50.3	1	ug/L	50.0		101	55-140			
Trichloroethylene		54.2	1	ug/L	50.0		108	70-125			
Trichlorofluoromethane	e	58.0	1	ug/L	50.0		116	60-145			
Vinyl chloride		49.4	0.5	ug/L	50.0		98.8	50-145			
Surr: 1,2-Dichloroethai	ne-d4 (Surr)	49.6		ug/L	50.0		99.3	70-120			
Surr: 4-Bromofluorobenzene (Surr)		48.6		ug/L	50.0		97.3	75-120			
Surr: Dibromofluorome	ethane (Surr)	52.2		ug/L	50.0		104	70-130			
Surr: Toluene-d8 (Surr)	48.4		ug/L	50.0		96.7	70-130			
Duplicate (BHA0377-DUP1) Source: 24		e: 24A0475-0	1	Prepared & Anal	/zed: 01/11/2024						
1,1,1,2-Tetrachloroetha	ane	ND	8.00	ug/L		BLOD			NA	30	
1,1,1-Trichloroethane		ND	20.0	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroetha	ane	ND	8.00	ug/L		BLOD			NA	30	
1,1,2-Trichloroethane		ND	20.0	ug/L		BLOD			NA	30	
1,1-Dichloroethane		ND	20.0	ug/L		BLOD			NA	30	
1,1-Dichloroethylene		ND	20.0	ug/L		BLOD			NA	30	
1,1-Dichloropropene		ND	20.0	ug/L		BLOD			NA	30	
1,2,3-Trichlorobenzene	e	ND	20.0	ug/L		BLOD			NA	30	
1,2,3-Trichloropropane)	ND	20.0	ug/L		BLOD			NA	30	

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:49:57PM 24-01 LFG-EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0377 - SW5030B-MS Duplicate (BHA0377-DUP1) Source: 24A0475-01 Prepared & Analyzed: 01/11/2024 ug/L 1.2.4-Trichlorobenzene ND 20.0 BLOD NA 30 1,2,4-Trimethylbenzene ND 20.0 ug/L BLOD NA 30 BLOD 1,2-Dibromo-3-chloropropane (DBCP) ND 20.0 ug/L NA 30 1.2-Dibromoethane (EDB) 20.0 BLOD 30 ND ug/L NA 1.2-Dichlorobenzene ND 10.0 ug/L BI OD NA 30 BLOD 1.2-Dichloroethane ND 20.0 ua/L NA 30 1,2-Dichloropropane ND 10.0 ug/L BI OD NA 30 BLOD 1,3,5-Trimethylbenzene ND 20.0 ua/L NA 30 BLOD 1.3-Dichlorobenzene ND 20.0 ug/L NA 30 20.0 BLOD 30 1,3-Dichloropropane ND ua/L NA 1,4-Dichlorobenzene ND 20.0 ug/L BLOD NA 30 1.4-Dioxane ND 1600 ug/L BLOD NA 30 2,2-Dichloropropane ND 20.0 BLOD 30 ug/L NA BLOD 2-Butanone (MEK) ND 200 ug/L NA 30 2-Chloroethyl vinyl ether 200 BI OD 30 ND ug/L NA BLOD 30 2-Chlorotoluene ND 20.0 ug/L NA 2-Hexanone (MBK) ND 100 ug/L BLOD NA 30 20.0 BLOD 30 4-Chlorotoluene ND ug/L NA 4-Isopropyltoluene ND 20.0 BLOD 30 ug/L NA BLOD 30 4-Methyl-2-pentanone (MIBK) ND 100 ug/L NA 200 BLOD 30 Acetone ND ug/L NA Acetonitrile ND 200 ug/L BI OD NA 30 Acrolein BLOD ND 200 ug/L NA 30 Acrylonitrile ND 100 ug/L BI OD NA 30 Allyl chloride ND 20.0 ug/L BLOD NA 30

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:49:57PM 24-01 LFG-EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0377 - SW5030B-MS Duplicate (BHA0377-DUP1) Source: 24A0475-01 Prepared & Analyzed: 01/11/2024 Benzene ND 20.0 ug/L BLOD NA 30 Bromobenzene ND 20.0 ug/L BLOD NA 30 BLOD Bromochloromethane ND 20.0 ug/L NA 30 Bromodichloromethane 10.0 BLOD 30 ND ug/L NA Bromoform ND 20.0 ug/L BI OD NA 30 BLOD Bromomethane ND 20.0 ug/L NA 30 Carbon disulfide ND 200 ug/L BI OD NA 30 BLOD Carbon tetrachloride ND 20.0 ua/L NA 30 BLOD Chlorobenzene ND 20.0 ug/L NA 30 20.0 BLOD 30 Chloroethane ND ua/L NA Chloroform ND 10.0 BLOD NA 30 ug/L Chloromethane ND 20.0 ug/L BLOD NA 30 ND 100 BLOD 30 Chloroprene ug/L NA BLOD cis-1,2-Dichloroethylene ND 20.0 ug/L NA 30 cis-1,3-Dichloropropene 20.0 BI OD 30 ND ug/L NA BLOD Cvclohexane ND 20.0 ug/L NA 30 Dibromochloromethane ND 10.0 ug/L BLOD NA 30 Dibromomethane 20.0 BLOD 30 ND ug/L NA Dichlorodifluoromethane ND 20.0 BLOD 30 ug/L NA BLOD 30 Di-isopropyl ether (DIPE) ND 100 ug/L NA 1600 BLOD 30 Ethanol ND ug/L NA Ethyl methacrylate ND 100 ug/L BLOD NA 30 Ethylbenzene BLOD ND 20.0 ug/L NA 30 Ethyl-t-butyl ether (ETBE) ND 500 ug/L BI OD NA 30 Hexachlorobutadiene ND 16.0 ug/L BLOD NA 30

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:49:57PM 24-01 LFG-EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** RPD Spike Source %REC Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0377 - SW5030B-MS Duplicate (BHA0377-DUP1) Source: 24A0475-01 Prepared & Analyzed: 01/11/2024 ug/L lodomethane ND 200 BLOD NA 30 Isopropylbenzene ND 20.0 ug/L BLOD NA 30 BLOD m+p-Xylenes ND 40.0 ug/L NA 30 Methacrylonitrile 30.0 BLOD 30 ND ug/L NA BLOD Methyl acetate ND 80.0 ug/L NA 30 Methyl cyclohexane BLOD ND 20.0 ug/L NA 30 Methyl methacrylate ND 40.0 ug/L BI OD NA 30 Methylene chloride BLOD ND 80.0 ua/L NA 30 Methyl-t-butyl ether (MTBE) BLOD ND 20.0 ug/L NA 30 Naphthalene 20.0 BLOD 30 ND ua/L NA n-Butylbenzene ND 20.0 ug/L BLOD NA 30 n-Propylbenzene ND 20.0 ug/L BLOD NA 30 o-Xylene ND 20.0 ug/L BLOD 30 NA 200 BLOD Pentachloroethane ND ug/L NA 30 Propionitrile ND 800 BLOD 30 ug/L NA BLOD 30 sec-Butylbenzene ND 20.0 ug/L NA Styrene ND 20.0 ug/L BLOD NA 30 TAEE BLOD 30 ND 100 ug/L NA TAME ND 100 BLOD 30 ug/L NA TBA BLOD 30 ND 2000 ug/L NA 20.0 BLOD 30 tert-Butylbenzene ND ug/L NA Tetrachloroethylene (PCE) ND 20.0 ug/L BLOD NA 30 Toluene BLOD ND 20.0 ug/L NA 30 ug/L trans-1,2-Dichloroethylene ND 20.0 BI OD NA 30 ND trans-1,3-Dichloropropene 20.0 ug/L BLOD NA 30

				<u>Ce</u>	ertificate o	of Analysis	<u>s</u>				
Client Name:	SCS Engineers-V	Vinchester				-		Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-EW N	Monthly Mor	nitoring								
	Jennifer Robb	,	0								
Submitted 10. C							0 1 1				
			Ve	platile Org		by GCMS - Quality	Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA	0377 - SW503	0B-MS								
Duplicate (BHA0377-DUP	1)	Sourc	e: 24A0475-0 [,]	1	Prepared & Anal	yzed: 01/11/2024					
trans-1,4-Dichloro-2-bu	tene	ND	80.0	ug/L		BLOD			NA	30	
Trichloroethylene		ND	20.0	ug/L		BLOD			NA	30	
Trichlorofluoromethane	1	ND	20.0	ug/L		BLOD			NA	30	
Vinyl acetate		ND	200	ug/L		BLOD			NA	30	
Vinyl chloride		ND	10.0	ug/L		BLOD			NA	30	
Xylenes, Total		ND	60.0	ug/L		BLOD			NA	30	
Tetrahydrofuran		ND	200	ug/L		BLOD			NA	30	
Diethyl ether		ND	100	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroethan	ne-d4 (Surr)	45.8		ug/L	50.0		91.6	70-120			
Surr: 4-Bromofluorober	nzene (Surr)	48.4		ug/L	50.0		96.7	75-120			
Surr: Dibromofluorome	thane (Surr)	48.0		ug/L	50.0		96.1	70-130			
Surr: Toluene-d8 (Surr)		48.0		ug/L	50.0		95.9	70-130			
Matrix Spike (BHA0377-M	IS1)	Sourc	e: 24A0475-0 [,]	1	Prepared & Anal	yzed: 01/11/2024					
1,1,1,2-Tetrachloroetha	ne	48.7	0.4	ug/L	50.0	BLOD	97.4	80-130			
1,1,1-Trichloroethane		51.6	1	ug/L	50.0	BLOD	103	65-130			
1,1,2,2-Tetrachloroetha	ine	47.4	0.4	ug/L	50.0	BLOD	94.8	65-130			
1,1,2-Trichloroethane		51.7	1	ug/L	50.0	BLOD	103	75-125			
1,1-Dichloroethane		51.1	1	ug/L	50.0	BLOD	102	70-135			
1,1-Dichloroethylene		57.3	1	ug/L	50.0	BLOD	115	50-145			
1,1-Dichloropropene		55.2	1	ug/L	50.0	BLOD	110	75-135			
1,2,3-Trichlorobenzene	1	48.7	1	ug/L	50.0	BLOD	97.4	55-140			
1,2,3-Trichloropropane		45.3	1	ug/L	50.0	BLOD	90.7	75-125			
1,2,4-Trichlorobenzene	1	48.4	1	ug/L	50.0	BLOD	96.8	65-135			
1,2,4-Trimethylbenzene	e	43.9	1	ug/L	50.0	BLOD	87.9	75-130			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:49:57PM 24-01 LFG-EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0377 - SW5030B-MS Matrix Spike (BHA0377-MS1) Source: 24A0475-01 Prepared & Analyzed: 01/11/2024 41.2 82.4 1,2-Dibromo-3-chloropropane (DBCP) 1 ug/L 50.0 BLOD 50-130 1,2-Dibromoethane (EDB) 48.7 1 ug/L 50.0 BLOD 97.4 80-120 0.5 50.0 BLOD 93.4 1.2-Dichlorobenzene 46.7 ug/L 70-120 1.2-Dichloroethane 42.8 1 50.0 BLOD 85.7 70-130 ug/L 0.5 1,2-Dichloropropane 48.7 ug/L 50.0 BI OD 97.5 75-125 BI OD 86.8 75-124 1,3,5-Trimethylbenzene 43.4 1 ug/L 50.0 1,3-Dichlorobenzene 474 1 ug/L 50.0 BI OD 94.8 75-125 48.0 1 BLOD 96.0 75-125 1.3-Dichloropropane ua/L 50.0 BLOD 75-125 1.4-Dichlorobenzene 45.9 1 ug/L 50.0 91.8 53.4 1 50.0 BLOD 107 70-135 2,2-Dichloropropane ua/L 2-Butanone (MEK) 46.1 10 50.0 BLOD 92.2 30-150 ug/L 2-Chlorotoluene 48.1 1 ug/L 50.0 BLOD 96.3 75-125 2-Hexanone (MBK) 44.5 5 50.0 BI OD 88.9 55-130 ug/L BLOD 75-130 4-Chlorotoluene 45.8 1 ug/L 50.0 91.6 4-Isopropyltoluene 46.9 1 50.0 BI OD 93.8 75-130 ug/L 5 47.7 BLOD 95.4 60-135 4-Methyl-2-pentanone (MIBK) ug/L 50.0 Acetone 49.2 10 ug/L 50.0 BLOD 98.5 40-140 49.3 1 50.0 BLOD 98.6 80-120 Benzene ug/L 51.5 1 50.0 BLOD 103 75-125 Bromobenzene ug/L Bromochloromethane 51.8 1 ug/L 50.0 BLOD 104 65-130 Bromodichloromethane 48.9 0.5 50.0 BLOD 97.8 75-136 ug/L Bromoform 49.6 1 ug/L 50.0 BI OD 99.2 70-130 45.6 1 BI OD 30-145 Bromomethane ug/L 50.0 91.3 Carbon disulfide 58.1 10 ug/L 50.0 BI OD 116 35-160 55.6 1 Carbon tetrachloride ug/L 50.0 BLOD 111 65-140

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:49:57PM 24-01 LFG-EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0377 - SW5030B-MS Matrix Spike (BHA0377-MS1) Prepared & Analyzed: 01/11/2024 Source: 24A0475-01 50.2 Chlorobenzene 1 ug/L 50.0 BLOD 100 80-120 Chloroethane 46.7 1 ug/L 50.0 BLOD 93.4 60-135 0.5 50.0 BLOD 65-135 Chloroform 47.9 ug/L 95.9 Chloromethane 39.8 1 50.0 BLOD 79.5 40-125 ug/L cis-1,2-Dichloroethylene 52.9 1 ug/L 50.0 BI OD 106 70-125 49.4 1 BI OD 47-136 cis-1,3-Dichloropropene ug/L 50.0 98.9 Dibromochloromethane 52.2 0.5 ug/L 50.0 BI OD 104 60-135 Dibromomethane 49.2 1 BLOD 98.4 75-125 ug/L 50.0 Dichlorodifluoromethane 1 BLOD 30-155 40.7 ug/L 50.0 81.5 48.0 1 50.0 BLOD 96.0 75-125 Ethvlbenzene ua/L Hexachlorobutadiene 53.8 0.8 ug/L 50.0 BLOD 108 50-140 Isopropylbenzene 45.7 1 ug/L 50.0 BLOD 91.5 75-125 m+p-Xylenes 100 2 100 BLOD 100 75-130 ug/L 50.0 BLOD 55-140 Methylene chloride 51.4 4 ug/L 103 Methyl-t-butyl ether (MTBE) 45.6 1 50.0 BI OD 65-125 ug/L 91.1 49.1 1 BLOD 98.2 55-140 Naphthalene ug/L 50.0 n-Butylbenzene 45.0 1 ug/L 50.0 BLOD 89.9 70-135 47.6 1 50.0 BLOD 95.2 70-130 n-Propylbenzene ug/L 49.9 1 50.0 BLOD 99.8 80-120 o-Xylene ug/L sec-Butylbenzene 49.5 1 ug/L 50.0 BLOD 99.0 70-125 47.1 1 50.0 BLOD 94.3 65-135 Styrene ug/L tert-Butylbenzene 47.4 1 ug/L 50.0 BI OD 94.7 70-130 Tetrachloroethylene (PCE) 1 BLOD 51-231 58.9 ug/L 50.0 118 Toluene 54.0 1 ug/L 50.0 BI OD 108 75-120 54.8 1 trans-1,2-Dichloroethylene ug/L 50.0 BLOD 110 60-140

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:49:57PM 24-01 LFG-EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0377 - SW5030B-MS Matrix Spike (BHA0377-MS1) Prepared & Analyzed: 01/11/2024 Source: 24A0475-01 51.0 trans-1,3-Dichloropropene 1 ug/L 50.0 BLOD 102 55-140 Trichloroethylene 54.3 1 ug/L 50.0 BLOD 109 70-125 50.0 BLOD Trichlorofluoromethane 57.2 1 ug/L 114 60-145 Vinvl chloride 46.6 0.5 50.0 BLOD 93.1 50-145 ug/L 50.0 92.6 70-120 Surr: 1,2-Dichloroethane-d4 (Surr) 46.3 ug/L Surr: 4-Bromofluorobenzene (Surr) 47.3 50.0 94.6 75-120 ug/L Surr: Dibromofluoromethane (Surr) 50.0 100 70-130 ug/L 50.0 Surr: Toluene-d8 (Surr) 48.3 ug/L 50.0 96.6 70-130 Batch BHA0433 - SW5030B-MS Blank (BHA0433-BLK1) Prepared & Analyzed: 01/12/2024 1,1,1,2-Tetrachloroethane ND 0.40 ug/L ND 1.1.1-Trichloroethane 1.00 ug/L 1,1,2,2-Tetrachloroethane ND 0.40 ug/L 1.1.2-Trichloroethane ND 1.00 ug/L 1.1-Dichloroethane ND 1.00 ug/L 1,1-Dichloroethylene ND 1.00 ug/L 1,1-Dichloropropene ND 1.00 ug/L 1,2,3-Trichlorobenzene ND 1.00 ug/L ND 1.00 1,2,3-Trichloropropane ug/L 1.2.4-Trichlorobenzene ND 1.00 ug/L 1,2,4-Trimethylbenzene ND 1.00 ug/L 1,2-Dibromo-3-chloropropane (DBCP) ND 1.00 ug/L 1,2-Dibromoethane (EDB) ND 1.00 ug/L 1.2-Dichlorobenzene ND 0.50 ug/L

			Cer	tificate c	of Analysi	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-EW Monthly Mo	onitorina								
Submitted To:	Jennifer Robb									
Submitted to.										
		١	Volatile Organ	iic Compounds b	y GCMS - Qualit	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA0433 - SW50	30B-MS								
Blank (BHA0433-BLK1))		F	Prepared & Analy	/zed: 01/12/2024					
1,2-Dichloroethane	ND	1.00	ug/L							
1,2-Dichloropropane	ND	0.50	ug/L							
1,3,5-Trimethylbenze	ne ND	1.00	ug/L							
1,3-Dichlorobenzene	ND	1.00	ug/L							
1,3-Dichloropropane	ND	1.00	ug/L							
1,4-Dichlorobenzene	ND	1.00	ug/L							
2,2-Dichloropropane	ND	1.00	ug/L							
2-Butanone (MEK)	ND	10.0	ug/L							
2-Chlorotoluene	ND	1.00	ug/L							
2-Hexanone (MBK)	ND	5.00	ug/L							
4-Chlorotoluene	ND	1.00	ug/L							
4-Isopropyltoluene	ND	1.00	ug/L							
4-Methyl-2-pentanone		5.00	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Bromobenzene	ND	1.00	ug/L							
Bromochloromethane		1.00	ug/L							
Bromodichloromethar		0.50	ug/L							
Bromoform	ND	1.00	ug/L							
Bromomethane	ND	1.00	ug/L							
Carbon disulfide	ND	10.0	ug/L							
Carbon tetrachloride	ND	1.00	ug/L							
Chlorobenzene	ND	1.00	ug/L							
Chloroethane	ND	1.00	ug/L							
Chloroform	ND	0.50	ug/L							

				Cer	tificate o	of Analysi	<u>is</u>				
Client Name:	SCS Enginee	rs-Winchester				-		Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-E	W Monthly Mor	nitorina								
Submitted To:	Jennifer Robb										
Submitted 10.)									
			\	Volatile Organ	ic Compounds I	oy GCMS - Quali	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch	BHA0433 - SW503		0							
Blank (BHA0433-BLK		BIIA0433 - 344303	00-1013	F	Prenared & Analy	yzed: 01/12/2024	1				
Chloromethane	,	ND	1.00	ug/L	Toparou & Allar	y200. 01/12/2024	r				
cis-1,2-Dichloroeth	vlene	ND	1.00	ug/L							
cis-1,3-Dichloropro	•	ND	1.00	ug/L							
Dibromochlorometh	•	ND	0.50	ug/L							
Dibromomethane		ND	1.00	ug/L							
Dichlorodifluorome	thane	ND	1.00	ug/L							
Di-isopropyl ether ((DIPE)	ND	5.00	ug/L							
Ethylbenzene		ND	1.00	ug/L							
Hexachlorobutadie	ne	ND	0.80	ug/L							
lodomethane		ND	10.0	ug/L							
Isopropylbenzene		ND	1.00	ug/L							
m+p-Xylenes		ND	2.00	ug/L							
Methylene chloride	•	ND	4.00	ug/L							
Methyl-t-butyl ether	r (MTBE)	ND	1.00	ug/L							
Naphthalene		ND	1.00	ug/L							
n-Butylbenzene		ND	1.00	ug/L							
n-Propylbenzene		ND	1.00	ug/L							
o-Xylene		ND	1.00	ug/L							
sec-Butylbenzene		ND	1.00	ug/L							
Styrene		ND	1.00	ug/L							
tert-Butylbenzene		ND	1.00	ug/L							
Tetrachloroethylene	e (PCE)	ND	1.00	ug/L							
Toluene		ND	1.00	ug/L							
trans-1,2-Dichloroe	-	ND	1.00	ug/L							
trans-1,3-Dichlorop	propene	ND	1.00	ug/L							

				Cer	tificate c	of Analysi	is				
Client Name:	SCS Engineers	-Winchester						Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-EW	Monthly Moni	torina								
	Jennifer Robb	·····,									
Submitted 10.											
			```	Volatile Organ	ic Compounds b	y GCMS - Qualit	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BH	A0433 - SW5030	B-MS								
Blank (BHA0433-BLK1)				F	Prepared & Analy	/zed: 01/12/2024					
Trichloroethylene		ND	1.00	ug/L							
Trichlorofluoromethane	e	ND	1.00	ug/L							
Vinyl acetate		ND	10.0	ug/L							
Vinyl chloride		ND	0.50	ug/L							
Xylenes, Total		ND	3.00	ug/L							
Surr: 1,2-Dichloroetha	ne-d4 (Surr)	43.6		ug/L	50.0		87.1	70-120			
Surr: 4-Bromofluorobe	nzene (Surr)	48.0		ug/L	50.0		95.9	75-120			
Surr: Dibromofluorome	ethane (Surr)	45.1		ug/L	50.0		90.3	70-130			
Surr: Toluene-d8 (Surr	)	48.2		ug/L	50.0		96.3	70-130			
LCS (BHA0433-BS1)				F	Prepared & Analy	/zed: 01/12/2024					
1,1,1,2-Tetrachloroetha	ane	46.6	0.4	ug/L	50.0		93.3	80-130			
1,1,1-Trichloroethane		51.0	1	ug/L	50.0		102	65-130			
1,1,2,2-Tetrachloroetha	ane	44.2	0.4	ug/L	50.0		88.4	65-130			
1,1,2-Trichloroethane		49.2	1	ug/L	50.0		98.4	75-125			
1,1-Dichloroethane		49.6	1	ug/L	50.0		99.3	70-135			
1,1-Dichloroethylene		54.2	1	ug/L	50.0		108	70-130			
1,1-Dichloropropene		53.9	1	ug/L	50.0		108	75-135			
1,2,3-Trichlorobenzene	е	46.6	1	ug/L	50.0		93.1	55-140			
1,2,3-Trichloropropane		42.7	1	ug/L	50.0		85.3	75-125			
1,2,4-Trichlorobenzene	9	47.9	1	ug/L	50.0		95.8	65-135			
1,2,4-Trimethylbenzen		43.8	1	ug/L	50.0		87.6	75-130			
1,2-Dibromo-3-chlorop		38.2	1	ug/L	50.0		76.4	50-130			
1,2-Dibromoethane (E	DB)	45.5	1	ug/L	50.0		91.0	80-120			
1,2-Dichlorobenzene		46.3	0.5	ug/L	50.0		92.6	70-120			



				<u>Cer</u>	tificate c	of Analysi	is				
Client Name:	SCS Engineers	s-Winchester				-		Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-EV	V Monthly Mor	nitoring								
Submitted To:	Jennifer Robb		U								
Submitted 10.			,								
			١	/olatile Organ	ic Compounds t	y GCMS - Qualit	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch Bl	HA0433 - SW503	0B-MS								
LCS (BHA0433-BS1)				P	Prepared & Analy	/zed: 01/12/2024					
1,2-Dichloroethane		42.3	1	ug/L	50.0		84.6	70-130			
1,2-Dichloropropane	9	46.8	0.5	ug/L	50.0		93.7	75-125			
1,3,5-Trimethylbenze	ene	42.8	1	ug/L	50.0		85.6	75-125			
1,3-Dichlorobenzene	e	45.8	1	ug/L	50.0		91.7	75-125			
1,3-Dichloropropane	9	45.4	1	ug/L	50.0		90.9	75-125			
1,4-Dichlorobenzene	e	44.6	1	ug/L	50.0		89.1	75-125			
2,2-Dichloropropane	9	52.4	1	ug/L	50.0		105	70-135			
2-Butanone (MEK)		50.0	10	ug/L	50.0		100	30-150			
2-Chlorotoluene		47.4	1	ug/L	50.0		94.8	75-125			
2-Hexanone (MBK)		40.4	5	ug/L	50.0		80.8	55-130			
4-Chlorotoluene		45.8	1	ug/L	50.0		91.5	75-130			
4-Isopropyltoluene		46.6	1	ug/L	50.0		93.1	75-130			
4-Methyl-2-pentanor	ne (MIBK)	42.8	5	ug/L	50.0		85.7	60-135			
Acetone		42.2	10	ug/L	50.0		84.3	40-140			
Benzene		47.6	1	ug/L	50.0		95.3	80-120			
Bromobenzene		50.1	1	ug/L	50.0		100	75-125			
Bromochloromethan	ie	50.9	1	ug/L	50.0		102	65-130			
Bromodichlorometha	ane	47.4	0.5	ug/L	50.0		94.7	75-120			
Bromoform		46.6	1	ug/L	50.0		93.2	70-130			
Bromomethane		41.0	1	ug/L	50.0		82.0	30-145			
Carbon disulfide		46.7	10	ug/L	50.0		93.3	35-160			
Carbon tetrachloride	)	55.1	1	ug/L	50.0		110	65-140			
Chlorobenzene		48.4	1	ug/L	50.0		96.8	80-120			
Chloroethane		46.8	1	ug/L	50.0		93.5	60-135			
Chloroform		47.5	0.5	ug/L	50.0		95.0	65-135			



				Cer	tificate c	of Analysi	is				
Client Name:	SCS Engineers-	Winchester						Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-EW	Monthly Mon	itorina								
-	Jennifer Robb	monthly mon	litoring								
Submitted To:											
			١	/olatile Organ	ic Compounds b	y GCMS - Qualit	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BH/	A0433 - SW503									
LCS (BHA0433-BS1)		-0400 - 040000			Prenared & Analy	/zed: 01/12/2024	1				
Chloromethane		37.6	1	ug/L	50.0	126u. 01/12/2024	75.2	40-125			
cis-1,2-Dichloroethy	lene	52.2	1	ug/L	50.0 50.0		104	70-125			
cis-1,3-Dichloroprop		47.1	1	ug/L	50.0		94.3	70-123			
Dibromochlorometh		49.8	0.5	ug/L	50.0		99.6	60-135			
Dibromomethane		47.1	0.0	ug/L	50.0		94.2	75-125			
Dichlorodifluoromet	hane	38.9	1	ug/L	50.0		77.7	30-155			
Ethylbenzene		47.6	1	ug/L	50.0		95.2	75-125			
Hexachlorobutadien	ne	52.1	0.8	ug/L	50.0		104	50-140			
Isopropylbenzene		45.5	1	ug/L	50.0		91.0	75-125			
m+p-Xylenes		99.4	2	ug/L	100		99.4	75-130			
Methylene chloride		49.5	4	ug/L	50.0		99.0	55-140			
Methyl-t-butyl ether	(MTBE)	43.4	1	ug/L	50.0		86.7	65-125			
Naphthalene		44.4	1	ug/L	50.0		88.8	55-140			
n-Butylbenzene		44.8	1	ug/L	50.0		89.7	70-135			
n-Propylbenzene		47.8	1	ug/L	50.0		95.6	70-130			
o-Xylene		48.4	1	ug/L	50.0		96.9	80-120			
sec-Butylbenzene		48.8	1	ug/L	50.0		97.7	70-125			
Styrene		45.7	1	ug/L	50.0		91.4	65-135			
tert-Butylbenzene		47.0	1	ug/L	50.0		94.0	70-130			
Tetrachloroethylene	e (PCE)	55.4	1	ug/L	50.0		111	45-150			
Toluene		51.1	1	ug/L	50.0		102	75-120			
trans-1,2-Dichloroet	thylene	53.9	1	ug/L	50.0		108	60-140			
trans-1,3-Dichloropr	ropene	48.9	1	ug/L	50.0		97.7	55-140			
Trichloroethylene		51.8	1	ug/L	50.0		104	70-125			
Trichlorofluorometha	ane	53.8	1	ug/L	50.0		108	60-145			



				<u>Ce</u>	ertificate o	of Analysis	<u> </u>				
Client Name:	SCS Engineers	s-Winchester						Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-EV	V Monthly Monit	oring								
Submitted To:	Jennifer Robb	,	0								
oublinited to.			,	(alatila Ora			Control				
			```	/olatile Org	anic Compounds I	by GCMS - Quality	Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B	HA0433 - SW5030I	B-MS								
LCS (BHA0433-BS1)					Prepared & Anal	yzed: 01/12/2024					
Vinyl chloride		45.4	0.5	ug/L	50.0		90.8	50-145			
Surr: 1,2-Dichloroeti	hane-d4 (Surr)	45.9		ug/L	50.0		91.7	70-120			
Surr: 4-Bromofluoro	. ,	47.4		ug/L	50.0		94.9	75-120			
Surr: Dibromofluoro	methane (Surr)	48.5		ug/L	50.0		97.1	70-130			
Surr: Toluene-d8 (Si	urr)	47.6		ug/L	50.0		95.2	70-130			
Duplicate (BHA0433-D	0UP1)	Source:	24A0505-0)1	Prepared & Anal	yzed: 01/12/2024					
1,1,1,2-Tetrachloroe	thane	ND	8.00	ug/L		BLOD			NA	30	
1,1,1-Trichloroethan	ie	ND	20.0	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroe	ethane	ND	8.00	ug/L		BLOD			NA	30	
1,1,2-Trichloroethan	e	ND	20.0	ug/L		BLOD			NA	30	
1,1-Dichloroethane		ND	20.0	ug/L		BLOD			NA	30	
1,1-Dichloroethylene	9	ND	20.0	ug/L		BLOD			NA	30	
1,1-Dichloropropene	e	ND	20.0	ug/L		BLOD			NA	30	
1,2,3-Trichlorobenze	ene	ND	20.0	ug/L		BLOD			NA	30	
1,2,3-Trichloropropa	ane	ND	20.0	ug/L		BLOD			NA	30	
1,2,4-Trichlorobenze		ND	20.0	ug/L		BLOD			NA	30	
1,2,4-Trimethylbenz		ND	20.0	ug/L		BLOD			NA	30	
1,2-Dibromo-3-chlor	,	ND	20.0	ug/L		BLOD			NA	30	
1,2-Dibromoethane	(EDB)	ND	20.0	ug/L		BLOD			NA	30	
1,2-Dichlorobenzene	е	ND	10.0	ug/L		BLOD			NA	30	
1,2-Dichloroethane		ND	20.0	ug/L		BLOD			NA	30	
1,2-Dichloropropane	e	ND	10.0	ug/L		BLOD			NA	30	
1,3,5-Trimethylbenz	ene	ND	20.0	ug/L		BLOD			NA	30	
1,3-Dichlorobenzene	е	ND	20.0	ug/L		BLOD			NA	30	

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:49:57PM 24-01 LFG-EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0433 - SW5030B-MS Duplicate (BHA0433-DUP1) Source: 24A0505-01 Prepared & Analyzed: 01/12/2024 1,3-Dichloropropane ND 20.0 ug/L BLOD NA 30 1,4-Dichlorobenzene ND 20.0 ug/L BLOD NA 30 BLOD 2,2-Dichloropropane ND 20.0 ug/L NA 30 305 200 345 12.2 30 2-Butanone (MEK) ug/L 2-Chlorotoluene ND 20.0 ug/L BI OD NA 30 BLOD 2-Hexanone (MBK) ND 100 ug/L NA 30 4-Chlorotoluene ND 20.0 ug/L BI OD NA 30 BLOD 4-Isopropyltoluene ND 20.0 ua/L NA 30 4-Methyl-2-pentanone (MIBK) 66.4 100 ug/L 71.6 NA 30 ND 200 BLOD 30 Acetone ua/L NA Benzene ND 20.0 BLOD NA 30 ug/L Bromobenzene ND 20.0 ug/L BLOD NA 30 Bromochloromethane ND 20.0 BLOD 30 ug/L NA Bromodichloromethane BLOD ND 10.0 ug/L NA 30 Bromoform 20.0 BI OD 30 ND ug/L NA Bromomethane 20.0 BLOD ND ug/L NA 30 Carbon disulfide ND 200 ug/L BLOD NA 30 20.0 BLOD 30 Carbon tetrachloride ND ug/L NA Chlorobenzene ND 20.0 BLOD 30 ug/L NA BLOD Chloroethane ND 20.0 ug/L NA 30 Chloroform 10.0 BLOD 30 ND ug/L NA Chloromethane ND 20.0 ug/L BLOD NA 30 BLOD cis-1,2-Dichloroethylene ND 20.0 ug/L NA 30 cis-1,3-Dichloropropene ND 20.0 ug/L BI OD NA 30 Dibromochloromethane ND 10.0 ug/L BLOD NA 30

Page 34 of 75

			Ce	ertificate o	of Analysi	S				
Client Name:	SCS Engineers-Winchest	er				_	Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-EW Monthly	Monitoring								
Submitted To:	Jennifer Robb	0								
Submitted 10.					00140 0 1	0.1.1				
			volatile Org	anic Compounds b	by GCMS - Qualit	y Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
_	Batch BHA0433 - SW	/5030B-MS								
Duplicate (BHA0433-D	DUP1) S	ource: 24A0505-	01	Prepared & Analy	/zed: 01/12/2024					
Dibromomethane	ND	20.0	ug/L		BLOD			NA	30	
Dichlorodifluorometl	hane ND	20.0	ug/L		BLOD			NA	30	
Di-isopropyl ether ([DIPE) ND	100	ug/L		BLOD			NA	30	
Ethylbenzene	ND	20.0	ug/L		BLOD			NA	30	
Hexachlorobutadien	ne ND	16.0	ug/L		BLOD			NA	30	
lodomethane	ND	200	ug/L		BLOD			NA	30	
Isopropylbenzene	ND	20.0	ug/L		BLOD			NA	30	
m+p-Xylenes	ND	40.0	ug/L		BLOD			NA	30	
Methylene chloride	ND	80.0	ug/L		BLOD			NA	30	
Methyl-t-butyl ether	(MTBE) ND	20.0	ug/L		BLOD			NA	30	
Naphthalene	ND	20.0	ug/L		BLOD			NA	30	
n-Butylbenzene	ND	20.0	ug/L		BLOD			NA	30	
n-Propylbenzene	ND	20.0	ug/L		BLOD			NA	30	
o-Xylene	ND	20.0	ug/L		BLOD			NA	30	
sec-Butylbenzene	ND	20.0	ug/L		BLOD			NA	30	
Styrene	ND	20.0	ug/L		BLOD			NA	30	
tert-Butylbenzene	ND	20.0	ug/L		BLOD			NA	30	
Tetrachloroethylene	PCE) ND	20.0	ug/L		BLOD			NA	30	
Toluene	64.4	20.0	ug/L		62.8			2.52	30	
trans-1,2-Dichloroet	thylene ND	20.0	ug/L		BLOD			NA	30	
trans-1,3-Dichloropr	ropene ND	20.0	ug/L		BLOD			NA	30	
Trichloroethylene	ND	20.0	ug/L		BLOD			NA	30	
Trichlorofluorometha	ane ND	20.0	ug/L		BLOD			NA	30	
Vinyl acetate	ND	200	ug/L		BLOD			NA	30	
Vinyl chloride	ND	10.0	ug/L		BLOD			NA	30	

				Ce	ertificate o	of Analysis	<u>s</u>				
Client Name:	SCS Engineers	s-Winchester						Date Issu	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-EV	V Monthly Moni	orina								
Submitted To:	Jennifer Robb	·									
Submitted 10.											
			V	olatile Org	anic Compounds	by GCMS - Quality	/ Control				
					Enthalpy A	nalytical					
A markets		Desult	1.00	1.1	Spike	Source	0/ DE0	%REC		RPD	Qual
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch Bł	HA0433 - SW5030	3-MS								
Duplicate (BHA0433-D	UP1)	Source:	24A0505-0	1	Prepared & Anal	yzed: 01/12/2024					
Xylenes, Total		ND	60.0	ug/L		BLOD			NA	30	
Tetrahydrofuran		ND	200	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroet	hane-d4 (Surr)	43.3		ug/L	50.0		86.6	70-120			
Surr: 4-Bromofluoro	benzene (Surr)	48.0		ug/L	50.0		96.0	75-120			
Surr: Dibromofluoro	methane (Surr)	42.2		ug/L	50.0		84.5	70-130			
Surr: Toluene-d8 (S	urr)	48.8		ug/L	50.0		97.6	70-130			
Matrix Spike (BHA043	3-MS1)	Source:	24A0505-0	1	Prepared & Anal	yzed: 01/12/2024					
1,1,1,2-Tetrachloroe	thane	46.1	0.4	ug/L	50.0	BLOD	92.3	80-130			
1,1,1-Trichloroethan	e	46.3	1	ug/L	50.0	BLOD	92.6	65-130			
1,1,2,2-Tetrachloroe	thane	44.8	0.4	ug/L	50.0	BLOD	89.6	65-130			
1,1,2-Trichloroethan	e	49.4	1	ug/L	50.0	BLOD	98.9	75-125			
1,1-Dichloroethane		42.8	1	ug/L	50.0	BLOD	85.7	70-135			
1,1-Dichloroethylene	e	48.7	1	ug/L	50.0	BLOD	97.4	50-145			
1,1-Dichloropropene	9	50.0	1	ug/L	50.0	BLOD	100	75-135			
1,2,3-Trichlorobenze		48.9	1	ug/L	50.0	BLOD	97.8	55-140			
1,2,3-Trichloropropa		42.9	1	ug/L	50.0	BLOD	85.9	75-125			
1,2,4-Trichlorobenze		48.7	1	ug/L	50.0	BLOD	97.3	65-135			
1,2,4-Trimethylbenz		43.3	1	ug/L	50.0	BLOD	86.6	75-130			
1,2-Dibromo-3-chlor	,	38.1	1	ug/L	50.0	BLOD	76.2	50-130			
1,2-Dibromoethane	, ,	46.0	1	ug/L	50.0	BLOD	92.1	80-120			
1,2-Dichlorobenzen	9	45.7	0.5	ug/L	50.0	BLOD	91.5	70-120			
1,2-Dichloroethane		38.7	1	ug/L	50.0	BLOD	77.4	70-130			
1,2-Dichloropropane		46.8	0.5	ug/L	50.0	BLOD	93.6	75-125			
1,3,5-Trimethylbenz	ene	42.6	1	ug/L	50.0	BLOD	85.1	75-124			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:49:57PM 24-01 LFG-EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0433 - SW5030B-MS Matrix Spike (BHA0433-MS1) Source: 24A0505-01 Prepared & Analyzed: 01/12/2024 45.5 1.3-Dichlorobenzene 1 ug/L 50.0 BLOD 91.1 75-125 1,3-Dichloropropane 46.2 1 ug/L 50.0 BLOD 92.4 75-125 BLOD 89.8 75-125 1,4-Dichlorobenzene 44.9 1 ug/L 50.0 46.9 1 50.0 BLOD 93.8 70-135 2.2-Dichloropropane ug/L 2-Butanone (MEK) 57.2 10 ug/L 50.0 17.2 79.9 30-150 46 4 1 BI OD 75-125 2-Chlorotoluene ug/L 50.0 92.7 2-Hexanone (MBK) 42.2 5 ug/L 50.0 BI OD 84.5 55-130 1 ug/L BLOD 89.8 75-130 4-Chlorotoluene 44.9 50.0 4-Isopropyltoluene 47.4 1 ug/L 50.0 BLOD 94.9 75-130 48.0 5 50.0 3.58 88.8 60-135 4-Methyl-2-pentanone (MIBK) ua/L 42.3 10 50.0 BLOD 84.7 40-140 Acetone ug/L Benzene 48.5 1 ug/L 50.0 BLOD 97.1 80-120 50.3 1 50.0 BLOD 101 75-125 Bromobenzene ug/L 1 BLOD 65-130 Bromochloromethane 44.6 ug/L 50.0 89.1 Bromodichloromethane 47.2 0.5 50.0 BI OD 75-136 ug/L 94.4 Bromoform 46.0 BLOD 92.0 70-130 1 ug/L 50.0 Bromomethane 40.2 1 ug/L 50.0 BLOD 80.3 30-145 Carbon disulfide 42.4 50.0 BLOD 84.8 35-160 10 ug/L Carbon tetrachloride 55.0 1 50.0 BLOD 110 65-140 ug/L Chlorobenzene 47.8 1 ug/L 50.0 BLOD 95.5 80-120 Chloroethane 41.3 1 50.0 BLOD 82.6 60-135 ug/L Chloroform 42.9 0.5 ug/L 50.0 BI OD 85.9 65-135 Chloromethane 1 BI OD 40-125 34.5 ug/L 50.0 69.0 cis-1,2-Dichloroethylene 43.8 1 ug/L 50.0 BI OD 87.6 70-125 47.2 1 94.4 cis-1,3-Dichloropropene ug/L 50.0 BLOD 47-136

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:49:57PM 24-01 LFG-EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0433 - SW5030B-MS Prepared & Analyzed: 01/12/2024 Matrix Spike (BHA0433-MS1) Source: 24A0505-01 Dibromochloromethane 50.5 0.5 ug/L 50.0 BLOD 101 60-135 Dibromomethane 47.6 1 ug/L 50.0 BLOD 95.1 75-125 Dichlorodifluoromethane 36.1 50.0 BLOD 72.2 1 ug/L 30-155 Ethvlbenzene 47.8 1 50.0 BLOD 95.5 75-125 ug/L Hexachlorobutadiene 52.0 0.8 ug/L 50.0 BI OD 104 50-140 Isopropylbenzene 45.7 1 BI OD 75-125 ug/L 50.0 91.4 m+p-Xylenes 97.6 2 ug/L 100 BI OD 97.1 75-130 4 50.0 BLOD 86.3 55-140 Methylene chloride 43.6 ug/L BLOD Methyl-t-butyl ether (MTBE) 37.4 1 ug/L 50.0 74.8 65-125 Naphthalene 47.6 1 50.0 BLOD 95.3 55-140 ua/L n-Butylbenzene 44.8 1 50.0 BLOD 89.6 70-135 ug/L n-Propylbenzene 47.6 1 ug/L 50.0 BLOD 95.2 70-130 o-Xylene 48.9 1 50.0 BLOD 97.7 80-120 ug/L BLOD 70-125 sec-Butylbenzene 48.6 1 ug/L 50.0 97.2 Styrene 45.9 1 50.0 BI OD 91.8 65-135 ug/L 47.2 1 50.0 BLOD 70-130 tert-Butylbenzene ug/L 94.4 Tetrachloroethylene (PCE) 57.1 1 ug/L 50.0 BLOD 114 51-231 56.0 1 50.0 75-120 Toluene ug/L 3.14 106 trans-1,2-Dichloroethylene 45.3 1 50.0 BLOD 90.5 60-140 ug/L 55-140 trans-1,3-Dichloropropene 48.5 1 ug/L 50.0 BLOD 97.0 Trichloroethylene 52.2 1 50.0 BLOD 104 70-125 ug/L Trichlorofluoromethane 49.7 1 ug/L 50.0 BI OD 99.3 60-145 Vinvl chloride 0.5 BLOD 50-145 41.4 ug/L 50.0 82.8 70-120 Surr: 1,2-Dichloroethane-d4 (Surr) 44.1 ug/L 50.0 88.2 Surr: 4-Bromofluorobenzene (Surr) 48.9 50.0 97.7 75-120 ug/L

				<u>C</u>	ertificate c	of Analysi	<u>s</u>				
Client Name: S	CS Engineers-	Winchester						Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.: 2	4-01 LFG-EW	Monthly Mor	nitoring								
Submitted To: Je	ennifer Robb										
			,	Volatile Org	ganic Compounds b	by GCMS - Quality	/ Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BH/	0433 - SW503	0B-MS								
Matrix Spike (BHA0433-MS	\$1)	Sourc	e: 24A0505-	01	Prepared & Anal	yzed: 01/12/2024					
Surr: Dibromofluorometh	nane (Surr)	45.1		ug/L	50.0		90.2	70-130			
Surr: Toluene-d8 (Surr)		48.0		ug/L	50.0		96.1	70-130			

				<u>Cer</u>	tificate o	of Analysi	is				
Client Name:	SCS Enginee	ers-Winchester						Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-E	W Monthly Mon	itoring								
Submitted To:	Jennifer Rob	2	U								
Submitted 10.			0	a la tilla Ora		1. h. 0010. 0.	- lite : O - set - l				
			Sei	nivolatile Org		ls by GCMS - Qua	ality Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch	BHA0355 - SW3510	C/EPA600	-MS							
Blank (BHA0355-BLK1)				F	Prepared & Anal	yzed: 01/11/2024					
Anthracene		ND	10.0	ug/L							
Surr: 2,4,6-Tribromop	henol (Surr)	73.8		ug/L	200		36.9	5-136			
Surr: 2-Fluorobipheny		31.6		ug/L	100		31.6	9-117			
Surr: 2-Fluorophenol	(Surr)	19.3		ug/L	200		9.66	5-60			
Surr: Nitrobenzene-d	5 (Surr)	38.2		ug/L	100		38.2	5-151			
Surr: Phenol-d5 (Surr	r)	26.9		ug/L	200		13.5	5-60			
Surr: p-Terphenyl-d14	4 (Surr)	34.8		ug/L	100		34.8	5-141			
LCS (BHA0355-BS1)				F	Prepared & Anal	yzed: 01/11/2024					
1,2,4-Trichlorobenzen	ne	24.9	10.0	ug/L	50.0		49.8	57-130			L
1,2-Dichlorobenzene		28.6	10.0	ug/L	50.0		57.2	22-115			
1,3-Dichlorobenzene		26.2	10.0	ug/L	50.0		52.4	22-112			
1,4-Dichlorobenzene		30.4	10.0	ug/L	50.0		60.8	13-112			
2,4,6-Trichlorophenol		32.1	10.0	ug/L	50.0		64.2	52-129			
2,4-Dichlorophenol		28.4	10.0	ug/L	50.0		56.9	53-122			
2,4-Dimethylphenol		29.7	5.00	ug/L	50.0		59.4	42-120			
2,4-Dinitrophenol		33.3	50.0	ug/L	50.0		66.5	48-127			
2,4-Dinitrotoluene		33.1	10.0	ug/L	50.0		66.2	10-173			
2,6-Dinitrotoluene		29.0	10.0	ug/L	50.0		58.0	68-137			L
2-Chloronaphthalene		30.7	10.0	ug/L	50.0		61.4	65-120			L
2-Chlorophenol		29.3	10.0	ug/L	50.0		58.7	36-120			
2-Nitrophenol		27.3	10.0	ug/L	50.0		54.6	45-167			
3,3'-Dichlorobenzidine	e	26.9	10.0	ug/L	50.0		53.8	10-213			
4,6-Dinitro-2-methylpl	henol	29.6	50.0	ug/L	50.0		59.2	53-130			
4-Bromophenyl pheny	yl ether	27.7	10.0	ug/L	50.0		55.3	65-120			L

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:49:57PM 24-01 LFG-EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0355 - SW3510C/EPA600-MS LCS (BHA0355-BS1) Prepared & Analyzed: 01/11/2024 27.5 4-Chlorophenyl phenyl ether 10.0 ug/L 50.0 55.0 38-145 4-Nitrophenol 10.9 50.0 ug/L 50.0 21.8 13-129 50.0 60-132 Acenaphthene 33.4 10.0 ug/L 66.8 Acenaphthylene 36.0 50.0 72.0 54-126 10.0 ug/L Acetophenone 32.8 20.0 ug/L 50.0 65.7 0-200 Anthracene 29.0 43-120 10.0 ug/L 50.0 58.0 Benzo (a) anthracene 33.3 10.0 ug/L 50.0 66 5 42-133 35.8 71.5 32-148 Benzo (a) pyrene 10.0 ua/L 50.0 77.3 Benzo (b) fluoranthene 38.6 10.0 ug/L 50.0 42-140 30.2 50.0 60.3 10-195 Benzo (g,h,i) perylene 10.0 ua/L Benzo (k) fluoranthene 34.8 10.0 50.0 69.5 25-146 ug/L bis (2-Chloroethoxy) methane 28.0 10.0 ug/L 50.0 55.9 49-165 bis (2-Chloroethyl) ether 28.0 10.0 50.0 56.0 43-126 ug/L 29.7 50.0 63-139 2,2'-Oxybis (1-chloropropane) 10.0 ug/L 59.5 L bis (2-Ethylhexyl) phthalate 31.2 50.0 62.4 29-137 10.0 ug/L 29.4 50.0 58.9 10-140 Butyl benzyl phthalate 10.0 ug/L Chrysene 34.1 10.0 ug/L 50.0 68.2 44-140 35.1 50.0 70.1 10-200 Dibenz (a,h) anthracene 10.0 ug/L Diethyl phthalate 34.9 10.0 50.0 69.7 10-120 ug/L 29.2 Dimethyl phthalate 10.0 ug/L 50.0 58.4 10-120 Di-n-butyl phthalate 44.9 50.0 89.8 10-120 10.0 ug/L Di-n-octyl phthalate 41.6 10.0 ug/L 50.0 83.3 19-132 Fluoranthene 79.6 43-121 39.8 10.0 ug/L 50.0 Fluorene 34.5 10.0 ug/L 50.0 68.9 70-120 L 23.6 47.1 10-142 Hexachlorobenzene 1.00 ug/L 50.0

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:49:57PM 24-01 LFG-EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0355 - SW3510C/EPA600-MS LCS (BHA0355-BS1) Prepared & Analyzed: 01/11/2024 27.8 55.5 Hexachlorobutadiene 10.0 ug/L 50.0 38-120 Hexachlorocyclopentadiene 17.5 10.0 ug/L 50.0 35.1 10-76 33.2 50.0 Hexachloroethane 10.0 ug/L 66.5 55-120 32.5 50.0 64.9 10-151 Indeno (1,2,3-cd) pyrene 10.0 ug/L Isophorone 21.4 10.0 ug/L 50.0 42.9 47-180 L 32.7 65.3 36-120 Naphthalene 5.00 ug/L 50.0 Nitrobenzene 36.8 10.0 ug/L 50.0 73.6 54-158 20.8 10-85 n-Nitrosodimethylamine 10.4 10.0 ua/L 50.0 n-Nitrosodi-n-propylamine 34.3 10.0 ug/L 50.0 68.6 14-198 26.6 50.0 53.1 12-97 n-Nitrosodiphenylamine 10.0 ua/L p-Chloro-m-cresol 30.5 10.0 50.0 61.0 10-142 ug/L Pentachlorophenol 22.9 20.0 ug/L 50.0 45.7 38-152 Phenanthrene 34.5 10.0 50.0 69.0 65-120 ug/L Phenol 17-120 11.6 10.0 ug/L 50.5 23.0 28.6 50.0 57.3 70-120 L Pyrene 10.0 ug/L Pyridine 50.0 22.2 10-103 11.1 10.0 ug/L Surr: 2,4,6-Tribromophenol (Surr) 69.7 200 34.8 5-136 ug/L Surr: 2-Fluorobiphenyl (Surr) 30.4 ug/L 100 30.4 9-117 Surr: 2-Fluorophenol (Surr) 20.2 200 10.1 5-60 ug/L 35.4 Surr: Nitrobenzene-d5 (Surr) 35.4 ug/L 100 5-151 Surr: Phenol-d5 (Surr) 25.6 200 12.8 5-60 ug/L Surr: p-Terphenyl-d14 (Surr) 27.3 ug/L 100 27.3 5-141

			<u>C</u>	ertificate of Analy	<u>sis</u>				
Client Name:	SCS Engineers-Wincheste	r				Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-EW Monthly M	onitoring							
Submitted To:	Jennifer Robb								
			We	Chemistry Analysis - Quality Co	ontrol				
				Enthalpy Analytical					
Analyte	Result	LOQ	Units	Spike Source Level Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA0320 - No P	rep Wet Chen	n						
Blank (BHA0320-BLK	1)			Prepared & Analyzed: 01/10/2)24				
BOD	ND	2.0	mg/L						
LCS (BHA0320-BS1)				Prepared & Analyzed: 01/10/2)24				
BOD	208	2	mg/L	198	105	84.6-115.4			
Duplicate (BHA0320-D		irce: 24A0404-0)5	Prepared & Analyzed: 01/10/2)24				
BOD	ND	2.0	mg/L	BLOD			NA	20	
	Batch BHA0336 - No P	rep Wet Chen	n						
Blank (BHA0336-BLK	1)			Prepared & Analyzed: 01/10/2)24				
Nitrite as N	ND	0.05	mg/L						
LCS (BHA0336-BS1)				Prepared & Analyzed: 01/10/2)24				
Nitrite as N	0.10	0.05	mg/L	0.100	104	80-120			
Matrix Spike (BHA033	6-MS1) Sou	ırce: 24A0481-0	01	Prepared & Analyzed: 01/10/2)24				
Nitrite as N	0.40	0.10	mg/L	0.200 0.25	77.0	80-120			Μ
Matrix Spike Dup (BH	A0336-MSD1) Sou	ırce: 24A0481-0)1	Prepared & Analyzed: 01/10/2)24				
Nitrite as N	0.40	0.10	mg/L	0.200 0.25	75.0	80-120	1.00	20	Μ
	Batch BHA0386 - No P	rep Wet Chen	n						
Blank (BHA0386-BLK	1)			Prepared & Analyzed: 01/11/20)24				
Cyanide	ND	0.01	mg/L						

				<u>C</u> e	ertificate of	Analysi	<u>s</u>					
Client Name:	SCS Engineers-Win	nchester						Date Issue	ed:	2/6/2024	4:49:57PM	
Client Site I.D.:	24-01 LFG-EW Mo	nthly Mon	itoring									
Submitted To:	Jennifer Robb											
				Wet	Chemistry Analysis	- Quality Contro	bl					
					Enthalpy Ana	lytical						
Analyte	F	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual	
	Batch BHA038	36 - No Prep	o Wet Chem	1								
LCS (BHA0386-BS1)					Prepared & Analyz	ed: 01/11/2024						
Cyanide		0.25	0.01	mg/L	0.250		98.8	80-120				
Matrix Spike (BHA038	6-MS1)	Source	e: 24A0526-0	1	Prepared & Analyz	ed: 01/11/2024						
Cyanide		0.27	0.01	mg/L	0.250	BLOD	106	80-120				
Matrix Spike Dup (BH/	A0386-MSD1)		e: 24A0526-0	1	Prepared & Analyz	ed: 01/11/2024						
Cyanide		0.27	0.01	mg/L	0.250	BLOD	107	80-120	1.38	20		
	Batch BHA045	58 - No Prep	o Wet Chem	ı								
Blank (BHA0458-BLK1	1)				Prepared & Analyz	ed: 01/12/2024						
Total Recoverable P	Phenolics	ND	0.050	mg/L								
LCS (BHA0458-BS1)					Prepared & Analyz	ed: 01/12/2024						
Total Recoverable P	Phenolics	0.41	0.050	mg/L	0.505		81.2	80-120				
Matrix Spike (BHA045	8-MS1)	Source	e: 24A0471-0	3	Prepared & Analyz	ed: 01/12/2024						
Total Recoverable P	Phenolics	0.45	0.050	mg/L	0.500	BLOD	90.8	70-130				
Matrix Spike Dup (BHA0458-MSD1)		Source	e: 24A0471-0	3	Prepared & Analyz	ed: 01/12/2024						
Total Recoverable P	Phenolics	0.46	0.050	mg/L	0.500	BLOD	92.4	70-130	1.75	20		
	Batch BHA048	34 - No Prep	o Wet Chem	ı								
Blank (BHA0484-BLK1	1)				Prepared & Analyz	ed: 01/15/2024						
Nitrate+Nitrite as N		ND	0.10	mg/L	· · ·							

				<u>Ce</u>	ertificate of	f Analysis	<u>S</u>					
Client Name:	SCS Engineers-W	/inchester						Date Issue	ed:	2/6/2024	4:49:57PM	
Client Site I.D.:	24-01 LFG-EW M	lonthly Moni	itoring									
Submitted To:	Jennifer Robb											
				Wet	Chemistry Analysis	- Quality Contro	I					
					Enthalpy Ana	llytical						
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual	
	Batch BHA0	484 - No Prep	Wet Chen	n								
LCS (BHA0484-BS1)					Prepared & Analyz	ed: 01/15/2024						
Nitrate+Nitrite as N		1.02	0.1	mg/L	1.00		102	90-110				
Matrix Spike (BHA0484	4-MS1)	Source	: 24A0679-0	1	Prepared & Analyz	ed: 01/15/2024						
Nitrate+Nitrite as N		1.34	0.1	mg/L	1.00	0.30	103	90-120				
Matrix Spike Dup (BHA	A0484-MSD1)		: 24A0679-0	1	Prepared & Analyz	ed: 01/15/2024						
Nitrate+Nitrite as N		1.34	0.1	mg/L	1.00	0.30	104	90-120	0.597	20		
	Batch BHA0	526 - No Prep	Wet Chen	n								
Blank (BHA0526-BLK1	1)				Prepared & Analyz	ed: 01/16/2024						
Cyanide		ND	0.01	mg/L								
LCS (BHA0526-BS1)					Prepared & Analyz	ed: 01/16/2024						
Cyanide		0.22	0.01	mg/L	0.250		89.3	80-120				
Matrix Spike (BHA052	6-MS1)	Source	: 24A0630-0	1	Prepared & Analyz	ed: 01/16/2024						
Cyanide		0.25	0.01	mg/L	0.250	BLOD	99.9	80-120			CI	
Matrix Spike Dup (BHA	A0526-MSD1)	Source	: 24A0630-0	1	Prepared & Analyz	ed: 01/16/2024						
Cyanide		0.26	0.01	mg/L	0.250	BLOD	104	80-120	3.77	20	CI	
	Batch BHA0	533 - No Prep	Wet Chen	n								
Blank (BHA0533-BLK1	I)				Prepared & Analyz	ed: 01/16/2024						
Ammonia as N		ND	0.10	mg/L								

				<u>Ce</u>	ertificate o	of Analysis	<u> </u>					
Client Name:	SCS Engineers-W	/inchester					Date Issue	ed:	2/6/2024	4:49:57PM		
Client Site I.D.:	24-01 LFG-EW M	lonthly Moni	itoring									
Submitted To:	Jennifer Robb	-	-									
				Wet	Chemistry Analys	is - Quality Contro						
					Enthalpy A	nalytical						
					Spille	Source		%REC		RPD		
Analyte		Result	LOQ	Units	Spike Level	Result	%REC	Limits	RPD	Limit	Qual	
	Batch BHA0	533 - No Prep	Wet Chen	n								
LCS (BHA0533-BS1)					Prepared & Anal	yzed: 01/16/2024						
Ammonia as N		1.02	0.1	mg/L	1.00	<u>,</u>	102	90-110				
Matrix Spike (BHA0533-MS1)		Source	: 24A0716-0	01	Prepared & Anal	yzed: 01/16/2024						
Ammonia as N		1.01	0.1	mg/L	1.00	BLOD	98.9	89.3-131				
Matrix Spike (BHA0533-MS2)		Source	: 24A0547-0)3	Prepared & Anal	yzed: 01/16/2024						
Ammonia as N		1.04	0.1	mg/L	1.00	BLOD	101	89.3-131				
Matrix Spike Dup (BH	A0533-MSD1)	Source	: 24A0716-0)1	Prepared & Anal	yzed: 01/16/2024						
Ammonia as N		1.01	0.1	mg/L	1.00	BLOD	99.3	89.3-131	0.396	20		
Matrix Spike Dup (BH	A0533-MSD2)	Source	: 24A0547-0)3	Prepared & Anal	yzed: 01/16/2024						
Ammonia as N		1.03	0.1	mg/L	1.00	BLOD	100	89.3-131	0.965	20		
	Batch BHA0	585 - No Prep	Wet Chen	n								
Blank (BHA0585-BLK	1)				Prepared & Anal	yzed: 01/17/2024						
TKN as N		ND	0.50	mg/L								
LCS (BHA0585-BS1)					Prepared & Anal	yzed: 01/17/2024						
TKN as N		5.20	0.50	mg/L	5.00		104	90-110				
Matrix Spike (BHA058	85-MS1)	Source	: 24A0817-0)1	Prepared & Anal	yzed: 01/17/2024						
TKN as N		4.61	0.50	mg/L	5.00	BLOD	92.1	90-110				
Matrix Spike (BHA058	85-MS2)	Source	: 24A0476-0	01	Prepared & Anal	yzed: 01/17/2024						
TKN as N		5.20	0.50	mg/L	5.00	0.33	97.3	90-110				

			<u>C</u>	ertificate o	of Analysis	6				
Client Name: S	SCS Engineers-Winchester						Date Issue	ed:	2/6/2024	4:49:57PM
Client Site I.D.:	24-01 LFG-EW Monthly Mor	nitoring								
	Jennifer Robb	U								
			We	t Chemistry Analys	sis - Quality Control					
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA0585 - No Pre	p Wet Chem	ı							
Matrix Spike Dup (BHA05	85-MSD1) Sourc	e: 24A0817-0	1	Prepared & Anal	yzed: 01/17/2024					
TKN as N	5.27	0.50	mg/L	5.00	BLOD	105	90-110	13.4	20	
Matrix Spike Dup (BHA05	85-MSD2) Sourc	e: 24A0476-0	1	Prepared & Anal	yzed: 01/17/2024					
TKN as N	5.39	0.50	mg/L	5.00	0.33	101	90-110	3.66	20	
	Batch BHA0769 - No Pre	p Wet Chem	า							
Blank (BHA0769-BLK1)				Prepared & Anal	yzed: 01/23/2024					
COD	ND	10.0	mg/L		-					
LCS (BHA0769-BS1)				Prepared & Anal	yzed: 01/23/2024					
COD	52.5	10.0	mg/L	50.0		105	88-119			
Matrix Spike (BHA0769-M	IS1) Sourc	e: 24A0941-0	1	Prepared & Anal	yzed: 01/23/2024					
COD	57.9	10.0	mg/L	50.0	BLOD	116	72.4-130			
Matrix Spike Dup (BHA07	69-MSD1) Sourc	Source: 24A0941-01			Prepared & Analyzed: 01/23/2024					
COD	58.3	10.0	mg/L	50.0	BLOD	117	72.4-130	0.585	20	

			Certificate	of Analysis		
Client Name:	SCS Engineers-Wincl	nester			Date Issued:	2/6/2024 4:49
Client Site I.D.:	24-01 LFG-EW Mont	hly Monitoring				
Submitted To:	Jennifer Robb					
	Analytical Summary					
24A0466-01 24A0466-02		Subcontract Subcontract				
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Metals (Total) by EPA 6	6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4		
24A0466-01	50.0 mL / 50.0 mL	SW6020B	BHA0366	SHA0392	AA40219	
24A0466-02	50.0 mL / 50.0 mL	SW6020B	BHA0366	SHA0392	AA40219	
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Wet Chemistry Analysi	is		Preparation Method:	No Prep Wet Chem		
24A0466-01	300 mL / 300 mL	SM5210B-2016	BHA0320	SHA0416		
24A0466-02	300 mL / 300 mL	SM5210B-2016	BHA0320	SHA0416		
24A0466-01	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHA0336	SHA0300	AJ30297	
24A0466-02	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHA0336	SHA0300	AJ30297	
24A0466-01	6.00 mL / 6.00 mL	SW9012B	BHA0386	SHA0346	AA40210	
24A0466-01	5.00 mL / 10.0 mL	SW9065	BHA0458	SHA0461	AA40228	
24A0466-02	5.00 mL / 10.0 mL	SW9065	BHA0458	SHA0461	AA40228	
24A0466-01	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHA0484	SHA0426	AA40225	
24A0466-02	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHA0484	SHA0426	AA40225	
24A0466-02RE1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHA0484	SHA0426	AA40225	
24A0466-02	6.00 mL / 6.00 mL	SW9012B	BHA0526	SHA0473	AA40231	
24A0466-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0533	SHA0476	AA40233	
24A0466-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0533	SHA0476	AA40233	
24A0466-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0585	SHA0545	AA40244	
24A0466-02	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0585	SHA0545	AA40244	
24A0466-01	2.00 mL / 2.00 mL	SM5220D-2011	BHA0769	SHA0700	AL30274	
24A0466-02	2.00 mL / 2.00 mL	SM5220D-2011	BHA0769	SHA0700	AL30274	

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:49:57PM 24-01 LFG-EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: **Preparation Factors** Calibration ID Sample ID Method Batch ID Sequence ID Initial / Final Wet Chemistry Analysis Preparation Method: No Prep Wet Chem Preparation Factors Sample ID Method Batch ID Sequence ID Calibration ID Initial / Final Semivolatile Organic Compounds by GCMS SW3510C/EPA600-MS Preparation Method: 24A0466-01 500 mL / 2.00 mL SW8270E BHA0355 SHA0508 AK30271 24A0466-02 500 mL / 0.500 mL SW8270E BHA0355 SHA0508 AK30271 Preparation Factors Sample ID Method Batch ID Sequence ID Calibration ID Initial / Final Volatile Organic Compounds by GCMS **Preparation Method:** SW5030B-MS BHA0377 SHA0352 AJ30373 24A0466-01 5.00 mL / 5.00 mL SW8260D 24A0466-02 5.00 mL / 5.00 mL SW8260D BHA0377 SHA0352 AJ30373 24A0466-03 5.00 mL / 5.00 mL SW8260D BHA0377 SHA0352 AJ30373 24A0466-01RE1 5.00 mL / 5.00 mL SW8260D BHA0433 SHA0389 AJ30373 24A0466-02RE1 5.00 mL / 5.00 mL SW8260D BHA0433 SHA0389 AJ30373

Page 49 of 75

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

QC Analytical Summary

Sample ID Preparation Factors Initial / Final		Method	Batch ID	Sequence ID	Calibration ID			
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4				
BHA0366-BLK1	50.0 mL / 50.0 mL	SW6020B	BHA0366	SHA0392	AA40219			
BHA0366-BS1	50.0 mL / 50.0 mL	SW6020B	BHA0366	SHA0392	AA40219			
BHA0366-MS1	50.0 mL / 50.0 mL	SW6020B	BHA0366	SHA0392	AA40219			
BHA0366-MSD1	50.0 mL / 50.0 mL	SW6020B	BHA0366	SHA0392	AA40219			
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID			
Wet Chemistry Analy	/sis		Preparation Method:	No Prep Wet Chem				
BHA0320-BLK1	300 mL / 300 mL	SM5210B-2016	BHA0320	SHA0416				
BHA0320-BS1	300 mL / 300 mL	SM5210B-2016	BHA0320	SHA0416				
BHA0320-DUP1	300 mL / 300 mL	SM5210B-2016	BHA0320	SHA0416				
BHA0336-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHA0336	SHA0300	AJ30297			
BHA0336-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHA0336	SHA0300	AJ30297			
BHA0336-MRL1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHA0336	SHA0300	AJ30297			
BHA0336-MS1	12.5 mL / 25.0 mL	SM4500-NO2B-2011	BHA0336	SHA0300	AJ30297			
BHA0336-MSD1	12.5 mL / 25.0 mL	SM4500-NO2B-2011	BHA0336	SHA0300	AJ30297			
BHA0386-BLK1	6.00 mL / 6.00 mL	SW9012B	BHA0386	SHA0346	AA40210			
BHA0386-BS1	6.00 mL / 6.00 mL	SW9012B	BHA0386	SHA0346	AA40210			
BHA0386-MRL1	6.00 mL / 6.00 mL	SW9012B	BHA0386	SHA0346	AA40210			
BHA0386-MS1	6.00 mL / 6.00 mL	SW9012B	BHA0386	SHA0346	AA40210			
BHA0386-MSD1	6.00 mL / 6.00 mL SW9012B BHA0386 SHA034		SHA0346	AA40210				
BHA0458-BLK1	5.00 mL / 10.0 mL	SW9065	BHA0458	SHA0461	AA40228			
BHA0458-BS1	5.00 mL / 10.0 mL	SW9065	BHA0458	SHA0461	AA40228			
BHA0458-MRL1	5.00 mL / 10.0 mL	SW9065	BHA0458	SHA0461	AA40228			

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	/sis		Preparation Method:	No Prep Wet Chem	
BHA0458-MS1	5.00 mL / 10.0 mL	SW9065	BHA0458	SHA0461	AA40228
BHA0458-MSD1	5.00 mL / 10.0 mL	SW9065	BHA0458	SHA0461	AA40228
BHA0484-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHA0484	SHA0426	AA40225
BHA0484-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHA0484	SHA0426	AA40225
BHA0484-MS1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BHA0484	SHA0426	AA40225
BHA0484-MSD1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BHA0484	SHA0426	AA40225
BHA0526-BLK1	6.00 mL / 6.00 mL	SW9012B	BHA0526	SHA0473	AA40231
BHA0526-BS1	6.00 mL / 6.00 mL	SW9012B	BHA0526	SHA0473	AA40231
BHA0526-MRL1	6.00 mL / 6.00 mL	SW9012B	BHA0526	SHA0473	AA40231
BHA0526-MS1	6.00 mL / 6.00 mL	SW9012B	BHA0526	SHA0473	AA40231
BHA0526-MSD1	6.00 mL / 6.00 mL	SW9012B	BHA0526	SHA0473	AA40231
BHA0533-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0533	SHA0476	AA40233
BHA0533-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0533	SHA0476	AA40233
BHA0533-MRL1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0533	SHA0476	AA40233
BHA0533-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0533	SHA0476	AA40233
BHA0533-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0533	SHA0476	AA40233
BHA0533-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0533	SHA0476	AA40233
BHA0533-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0533	SHA0476	AA40233
BHA0585-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0585	SHA0545	AA40244
BHA0585-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0585	SHA0545	AA40244
BHA0585-MRL1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0585	SHA0545	AA40244
BHA0585-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0585	SHA0545	AA40244
BHA0585-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0585	SHA0545	AA40244
BHA0585-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0585	SHA0545	AA40244
BHA0585-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0585	SHA0545	AA40244
BHA0769-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BHA0769	SHA0700	AL30274
BHA0769-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BHA0769	SHA0700	AL30274
BHA0769-MRL1	2.00 mL / 2.00 mL	SM5220D-2011	BHA0769	SHA0700	AL30274
BHA0769-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BHA0769	SHA0700	AL30274

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Preparation Factors Sample ID Method Batch ID Sequence ID Calibration ID Initial / Final Wet Chemistry Analysis **Preparation Method:** No Prep Wet Chem BHA0769-MSD1 2.00 mL / 2.00 mL SM5220D-2011 BHA0769 SHA0700 AL30274 **Preparation Factors** Batch ID Calibration ID Sample ID Method Sequence ID Initial / Final Semivolatile Organic Compounds by GCMS **Preparation Method:** SW3510C/EPA600-MS BHA0355-BLK1 1000 mL / 1.00 mL SW8270E BHA0355 SHA0337 AK30271 BHA0355-BLK2 SW8270E BHA0355 SHA0343 AL30202 BHA0355-BLK3 SW8270E BHA0355 SHA0443 AK30275 SW8270E AK30271 BHA0355-BS1 1000 mL / 1.00 mL BHA0355 SHA0337 **Preparation Factors** Sample ID Method Batch ID Sequence ID Calibration ID Initial / Final SW5030B-MS Volatile Organic Compounds by GCMS Preparation Method: BHA0377-BLK1 5.00 mL / 5.00 mL SW8260D BHA0377 SHA0352 AJ30373 BHA0377-BS1 5.00 mL / 5.00 mL SW8260D BHA0377 SHA0352 AJ30373 SW8260D BHA0377 SHA0352 AJ30373 BHA0377-DUP1 5.00 mL / 5.00 mL BHA0377-MS1 SW8260D BHA0377 SHA0352 AJ30373 5.00 mL / 5.00 mL AJ30373 BHA0433-BLK1 5.00 mL / 5.00 mL SW8260D BHA0433 SHA0389 AJ30373 BHA0433-BLK2 5.00 mL / 5.00 mL SW8260D BHA0433 SHA0389 BHA0433-BS1 5.00 mL / 5.00 mL SW8260D BHA0433 SHA0389 AJ30373 BHA0433-BS2 5.00 mL / 5.00 mL SW8260D BHA0433 SHA0389 AJ30373 BHA0433-DUP1 0.250 mL / 5.00 mL SW8260D BHA0433 SHA0389 AJ30373 SW8260D AJ30373 BHA0433-MS1 0.250 mL / 5.00 mL BHA0433 SHA0389

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Date Issued:

		Certificate of Analysis		
Client Name:	SCS Engineers-Winchester		Date Issued:	2/6/2024 4:49:57PM
Client Site I.D.:	24-01 LFG-EW Monthly Monitoring			
Submitted To:	Jennifer Robb			
Certified Analys	ses included in this Report			
Analyte		Certifications		
EPA350.1 R2.0 in N	Non-Potable Water			
Ammonia as N		VELAP,NCDEQ,PADEP,WVDEP		
EPA351.2 R2.0 in N	Non-Potable Water			
TKN as N		VELAP,NCDEQ,WVDEP		
SM4500-NO2B-201	11 in Non-Potable Water			
Nitrite as N		VELAP,WVDEP,NCDEQ		
SM4500-NO3F-201	6 in Non-Potable Water			
Nitrate+Nitrite as N		VELAP,WVDEP		
SM5210B-2016 in l	Non-Potable Water			
BOD		VELAP,NCDEQ,WVDEP		
	Non-Potable Water			
COD		VELAP,NCDEQ,PADEP,WVDEP		
SW6020B in Non-P	Potable Water			
Mercury		VELAP		
Arsenic		VELAP,WVDEP		
Barium		VELAP,WVDEP		
Cadmium		VELAP,WVDEP		
Chromium		VELAP,WVDEP		
Copper		VELAP,WVDEP		
Lead		VELAP,WVDEP		
Nickel		VELAP,WVDEP		
Selenium		VELAP,WVDEP		
Silver		VELAP,WVDEP		
Zinc		VELAP,WVDEP		

		Certificate of Analysis		
Client Name:	SCS Engineers-Winchester		Date Issued:	2/6/2024 4:49:57PM
Client Site I.D.:	24-01 LFG-EW Monthly Monitoring			
Submitted To:	Jennifer Robb			
Certified Analys	es included in this Report			
Analyte		Certifications		
2-Butanone (MEK)		VELAP,NCDEQ,PADEP,WVDEP		
Acetone		VELAP,NCDEQ,PADEP,WVDEP		
Benzene		VELAP,NCDEQ,PADEP,WVDEP		
Ethylbenzene		VELAP,NCDEQ,PADEP,WVDEP		
Toluene		VELAP,NCDEQ,PADEP,WVDEP		
Xylenes, Total		VELAP,NCDEQ,PADEP,WVDEP		
Tetrahydrofuran		VELAP,PADEP		
SW8270E in Non-Pe	otable Water			
Anthracene		NCDEQ,WVDEP,VELAP,PADEP		
SW9012B in Non-Pe	otable Water			
Cyanide		VELAP,WVDEP		
SW9065 in Non-Pot	table Water			
Total Recoverable P	henolics	VELAP,WVDEP		

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2024
NCDEQ	North Carolina DEQ	495	12/31/2024
NCDOH	North Carolina Department of Health	51714	07/31/2024
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #009	68-03503	10/31/2024
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/14/2024
TXCEQ	Texas Comm on Environmental Quality #T104704576-23-1	T104704576	05/31/2024
VELAP	NELAP-Virginia Certificate #12617	460021	06/14/2024
WVDEP	West Virginia DEP	350	11/30/2024

Date Issued:

		Certificate of Analysis			
Client Na	ame:	SCS Engineers-Winchester	Date Issued:	2/6/2024	4:49:57PM
Client Si	te I.D.:	24-01 LFG-EW Monthly Monitoring			
Submitte	ed To:	Jennifer Robb			
		Qualifiers and Definitions			
CI	Residual (Chlorine or other oxidizing agent was detected in the container used to analyze this sample.			
DS	Surrogate	concentration reflects a dilution factor.			
J	The report	ed result is an estimated value.			
L	LCS recov	ery is outside of established acceptance limits			
Μ	Matrix spil	e recovery is outside established acceptance limits			
RPD	Relative Pe	rcent Difference			
Qual	Qualifers				
-RE	Denotes sa	mple was re-analyzed			
LOD	Limit of Det	ection			
BLOD	Below Limit	of Detection			
LOQ	Limit of Qua	antitation			
DF	Dilution Fac	tor			
TIC	library. A TI	dentified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral C spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations nd are calculated using an internal standard response factor of 1.			
PCBs, Tota	al Total PC	Bs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.			

CHAIN OF CUSTODY

PAGE 1 OF 1

COMPANY NAME: SCS Eng	gineer	S		IN	OICE TO			S	AM	E			P	ROJ	ECT	NAN	1E/C)uot	:e #:	(City	of Bristol Landfill #588
CONTACT: Jennifer Robb	l.			IN	VOICE CO	NTACT	:						S	ITE I	NAM	1E:	24	-01	LFG	EW	Moi	nthly Monitoring
ADDRESS: 296 Victory Road				INV	VOICE AD	DRESS	S:						P	ROJ	DJECT NUMBER: 02218208.15						Task 2	
Winchester, VA 226	502			INV	VOICE PH	ONE #:							P.	.O. #	:							
PHONE #: 703-471-6150			EMAIL:	irobb@	scsengin	ers.co	m	62.					P	retre	atm	ent Pr	ogra	am:				
Is sample for compliance reporti	ng?	(YE	NO Re	gulator	y State:	V A	ls sam	ple fro	m a	chl	orina	ated	supply'	?	YE	s 🗥	10)		PWS	S I.D.	#:	
SAMPLER NAME (PRINT):	an	Ho	word		SA	MPLEF	R SIGN	IATUR	E:	/	~	her	R					Tu	rn Ar	ound	Tim	ne: 10 Day(s)
Matrix Codes: WW=Waste Water/Storm Wa	ater GW:	=Groun	d Water DW=	Drinking	Water S=Soi	/Solids C	R=Orga	nic A=Ati	WP	≣Wip	e OT	=Other	r									COMMENTS
	Π							2					VALYS	IS /	(PR	ESEF	NA7	LIVE	Ξ)			Preservative Codes: N=Nitric Acid C=Hydrochloric Acid S=Sulfuric Acid
		olved Meta	ate	me	ate	posite Stop		(1	lers	50.1	B-2021	2	3F-2011 Vitrite)	IO3F-2011	e) 8270	a, Cd, Cr, Zn) 6020	R2.0		e	st) 8015	8260	H=Sodium Hydroxide A=Ascorbic Acid Z=Zinc Acetate T=Sodium Thiosulfate M=Methanol
CLIENT SAMPLE I.D.	4	composite Field Filtered (Dissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Time Preserved	Matrix (See Codes)	Number of Containers	Ammonia - EPA 350.1	- SM22 5210B-2021	COU - SM22 5220D-201 Cvanide - SW9012		Nitrite SM22 450-NO3F-2011	SVOC (Anthracene) 8270	Total Metals (As, Ba, Cd, Cr, Cu, Pb, Ni, Se, Ag, Zn) 6020	TKN - EPA 351.2 R2.0	ry - 6020	Total Recoverable	(C)	VOCs (See List) 8	Note VOC 8260 no HCl
	Grab	Composite Field Filter	Compo	Compo			Time P			Ammo	BOD -	COD - SM	Nitrate (report s	Nitrite	SVOC	Total M Cu, Pb,	TKN -	Mercury -	Total Reco	V. Fatty	vocs	PLEASE NOTE PRESERVATIVE(S), INTERFERENCE CHECKS or PUMP RATE (L/min)
1) Ew-59	X				010824			GW	13	-	-	_					-			-		
2) EW-98	X	_			010824	1530		GW	12	_				_			-			_	-	
3)	++	-						GW GW				-		-				-			+	
4)	++	-						GW						-			-			+	-	
5) 6)								GW									\mathbf{T}					
7)	++							GW														
8)								GW														
9)								GW														
10) Trip Blank	X	/ 7.8.15	DEOEW		071023	1500	DATE /	DI	2				LABU			The		D:	271		X	ERTEMP 22°C 1.6
RELINGUISHED)092	TME	RECEIVE	-CW	1		DATE /	TIVIE		, Dat	a Pa	ckage	Custod	y Seal	s use	d and int	act?(YY M		_ 0	001	Received on ice? (YN)
RELINQUISHED:	DATE		RECEIV				DATE /		Leve	el III	[10000000000	CS-						24	A0	466
RELINQUISHED:	DATE	/ TIME	RECEIV	D.			DATE /		Leve	el IV	[G EV				01		2024
							ξ.		1				- Re	ecd:	01	/10/2	024	1	Jue:	01/2		2024

Sample Preservation Log Form #: F1301 Rev # 15.0 Effective: July 13, 2023 Page 1 of 1

.

.

Sample Preservation Log

.

ANALIIICAL																						RCT																					
Order 1D_24A0466														Date Performed: 1-10-24												An	Analyst Performing Check:					<u> </u>											
	Metals								Sulfid	e	Ammonia							Phos, Tot						DRO		(6	Pesticide (6081/608/508) PCB DW only			SVOC (525/8270/825)			CrVi * **		Pest/PCB (508) / SVOC(525)			COD			Phenolics		
Q	9	- pH							pH as Received		pH as Received		Ŧ	pH as Received E		P Re	pH as Received Ta		pH as Received Ta		Re	pH as Received I		Rø	Received Res. Ci final +		Ro	Roceived Res. Cl final +		Received	Final pH		Has ceived Ha		pH Rec	as alved	Final pH	ph Rec	tas bevic	Final pH			
Sample ID	Container ID			Final pH		Other	Finel pH		Other	Final pH		Other	Final pH		Other	Final pH	Γ	Other	Final pH		Othe		< 2	Other	Final pH	<u>.</u>	-	or	•	<u> </u>	or -	. 2 2 2 2 2 2 2	Ela	<2	Other	Fin		Other	El	 	Other	- E	
	A	+	other 5	5	~ 12	OURI			Juni										Γ		Τ																				<u> </u>	<u> </u>	
10 16	R)		┢							Ч	5		ч	6	Γ			Τ	L	62	-															4	62		 '		
01	Ō					8	212																			•															<u> </u> '		
01	F	\square				0																																			4	ら	
01	6																													-								<u> </u>					
02	A		5	62	\square															Τ																							
50	B						1					ч	4		4	62					4	2	٢										ļ			ļ		4	22				
08	D					ъ	712																										L		<u> </u>								
60	F	┢				<u> </u>	1	Γ																										_							Ч	4	
02	6				_		1_		_		-			-		-				-						- <u> </u> -			-	-	-										$\left - \right $		
	Ť										\square									·											<u> </u>				ļ	<u> </u>					 		
		┢		+	┢			1					[<u> </u>										
		┼╴		╞╴	╞		\uparrow						1																_			ļ		1_	<u> </u>								
	-	╋			\uparrow			T					Γ															\bot			_	ļ	ļ			-					$\left - \right $		
<u> </u>	+		-	1-				\uparrow																																			
NaOH ID: 2H 00468 HNO3 ID: 3603650 H2SO4 ID: 5002567 NazSzO3 ID:													CrVI preserved date/time: Analyst Initials:																														
H2SO4 ID: うんのようの Na2S2O3 ID:																																											
HCL ID: Na2SO3 ID:													5N NaOH ID:																														
Τ																																				•							
age				M	etals	we	re re	ecei	ved	with	n pł	H =4	4 H)3 74																												
59 0				/as	add RC	led a LI in	it 11 the	.00 Lo:	on I g-In	oth roo	oi. mt	Janu o bi	lary	20. pH	24, =																												
Page 59 of 75									<2	•			•	-																				F1301 Sample Preservation Log 1									
	only certif	les Di	SS Cr	VI and	not T	CrVI a:	s an aj	pprov	ed ana	lyte un	der 40	0CFR	138 for	wast	te wate	¥.																					H13	01 583	npio Pi	I CSCIVI		~J 13_0	

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

Date Issued:

2/6/2024 4:49:57PM

	Certificate of Analysis													
Client Name:		Date Issued:	2/6/2024	4:49:57PM										
Client Site I.D.:	24-01 LFG-EW Monthly Monitoring													
Submitted To:	Jennifer Robb													
	Laboratory Order ID: 24A0466													
Sample Conditions Checklist														
	Samples Received at:		1.60°C											
	How were samples received?		Logistics Courier											
	Were Custody Seals used? If so, were they received intact?		Yes											
	Are the custody papers filled out completely and correctly?		Yes											
	Do all bottle labels agree with custody papers?		Yes											
	Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?		Yes											
	Are all samples within holding time for requested laboratory tests?		Yes											
	Is a sufficient amount of sample provided to perform the tests included?		Yes											
	Are all samples in appropriate containers for the analyses requested?		Yes											
	Were volatile organic containers received?		Yes											
	Are all volatile organic and TOX containers free of headspace?		Yes											
	Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.		Yes											
	Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis. In addition, field parameters are always received outside holding time and will be mar accordingly.		No											
	*For samples -01: EW-59 and -02: EW-98 - H2SO4-preserved containers were received with a pH greater than 2, and was added to bring the pH to less than 2. - NaOH-preserved containers were received with a pH less than 12, and Na													

2/6/2024 4:49:57PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG-EW Monthly Monitoring

Submitted To: Jennifer Robb

added to bring the pH to greater than 12. Jennifer Robb notified via email. MRS 01/10/24 1447

Pace Analytical Services, LLC 7979 Innovation Park Drive Baton Rouge, LA 70820 (225) 769-4900

January 21, 2024

Virginia Thrasher Enthalpy 1941 Reymet Road Richmond, VA 23237

RE: Project: 24A0466 Pace Project No.: 20303668

Dear Virginia Thrasher:

Enclosed are the analytical results for sample(s) received by the laboratory on January 11, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Baton Rouge

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ruth Webs

Ruth Welsh ruth.welsh@pacelabs.com (225) 769-4900 Project Manager

Enclosures

cc: Andrew Bruner, Enthalpy Daniel Elliott, Enthalpy Meghan Meyer, Enthalpy

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pa	ae '	1_∩f	13
Page	63	of	75

Pace Analytical Services, LLC 7979 Innovation Park Drive Baton Rouge, LA 70820 (225) 769-4900

CERTIFICATIONS

Project: 24A0466 Pace Project No.: 20303668

Pace Analytical Services Baton Rouge

7979 Innovation Park Drive Ste A, Baton Rouge, LA 70820-7402 Louisiana Dept of Enviromental Quality (NELAC/LELAP): 01979 Florida Dept of Health (NELAC/FELAP): E87854 DoD ELAP (A2LA) #: 6429.01 Alabama DEM #: 41900 Alaska DEC-DW #: LA00024 Alaska DEC CS-LAP #: 21-001 Arkansas DEQ #: 88-0655 California ELAP #: 3063 Georgia DPD #: C050 Hawaii DOH State Laboratories Division Illinois EPA #: 200048 Kansas DoHE #: E-10354 Kentucky DEP UST Branch #: 123054 Louisiana DOH #: LA036 Minnesota DOH #: 2233799 Mississippi State Dept of Health

Montana Department of Environmental Quality Nebraska DHHS #: NE-OS-35.21 Nevada DCNR DEP #: LA00024 New York DOH #: 12149 North Carolina DEQ - WW & GW #: 618 North Dakota DEQ #: R195 Ohio EPA #: 87782 Oklahoma Dept of Environmental Quality #: 9403 Oregon ELAP #: 4168 Pennsylvania Dept of Environmental Protection #: 68-05973 South Carolina DHEC #: 73006001 Texas CEQ #: T104704178-23-15 Utah DOH #: LA00024 Virginia DCLS #: 6460215 Washington Dept of Ecology #: C929 Wisconsin DNR #: 399139510

SAMPLE SUMMARY

Project: Pace Project No	24A0466 b.: 20303668							
Lab ID	Sample ID	Matrix	Date Collected	Date Received				
20303668001	24A0466-01:EW-59	Water	01/08/24 15:45	01/11/24 09:55				
20303668002	24A0466-02: EW-98	Water	01/08/24 15:30	01/11/24 09:55				

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project:	24A0466
Pace Project No .:	20303668

Lab ID	Sample ID	Method	Analysts	Analytes Reported
20303668001	24A0466-01:EW-59	Pace ENV-SOP-BTRO-0042	LHM	10
20303668002	24A0466-02: EW-98	Pace ENV-SOP-BTRO-0042	LHM	10

PASI-BR = Pace Analytical Services - Baton Rouge

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical Services, LLC 7979 Innovation Park Drive Baton Rouge, LA 70820 (225) 769-4900

PROJECT NARRATIVE

 Project:
 24A0466

 Pace Project No.:
 20303668

Method: Pace ENV-SOP-BTRO-0042

Description:BR AM23G Low Level VFAClient:BR-EnthalpyDate:January 21, 2024

General Information:

2 samples were analyzed for Pace ENV-SOP-BTRO-0042 by Pace Analytical Services Baton Rouge. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 315700

- D4: Sample was diluted due to the presence of high levels of target analytes.
 - 24A0466-01:EW-59 (Lab ID: 20303668001)
 - Lactic Acid
 - 24A0466-02: EW-98 (Lab ID: 20303668002)
 - Lactic Acid

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

- 24A0466-01:EW-59 (Lab ID: 20303668001)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid

PROJECT NARRATIVE

 Project:
 24A0466

 Pace Project No.:
 20303668

Method: Pace ENV-SOP-BTRO-0042

Description:BR AM23G Low Level VFAClient:BR-EnthalpyDate:January 21, 2024

Analyte Comments:

QC Batch: 315700

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

- 24A0466-01:EW-59 (Lab ID: 20303668001)
 - Pentanoic Acid
- 24A0466-02: EW-98 (Lab ID: 20303668002)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- BLANK (Lab ID: 1511083)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- LCS (Lab ID: 1511084)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid

This data package has been reviewed for quality and completeness and is approved for release.

Pa	iae (<u>5 of</u>	13
Page			

ANALYTICAL RESULTS

Project: 24A0466

Pace Project No.: 20303668

Sample: 24A0466-01:EW-59	Lab ID: 2030	03668001	Collected: 01/08/2	24 15:45	Received: 0	1/11/24 09:55 I	Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
BR AM23G Low Level VFA	Analytical Meth	od: Pace E	NV-SOP-BTRO-004	2						
	Pace Analytical Services - Baton Rouge									
Pentanoic Acid	ND	mg/L	250	500		01/15/24 16:38	109-52-4	N2		
Acetic Acid	5290	mg/L	500	1000		01/16/24 13:14	64-19-7			
Butyric Acid	1230	mg/L	250	500		01/15/24 16:38	107-92-6			
Formic acid	880	mg/L	250	500		01/15/24 16:38	64-18-6			
Hexanoic Acid	ND	mg/L	250	500		01/15/24 16:38	142-62-1	N2		
i-Hexanoic Acid	ND	mg/L	250	500		01/15/24 16:38	646-07-1	N2		
Lactic Acid	979	mg/L	250	500		01/15/24 16:38	50-21-5	D4		
i-Pentanoic Acid	ND	mg/L	250	500		01/15/24 16:38	503-74-2	N2		
Propionic Acid	1970	mg/L	250	500		01/15/24 16:38	79-09-4			
Pyruvic Acid	ND	mg/L	250	500		01/15/24 16:38	127-17-3			
Sample: 24A0466-02: EW-98	Lab ID: 2030	03668002	Collected: 01/08/2	24 15:30	Received: 0	1/11/24 09:55 I	Matrix: Water			
Sample: 24A0466-02: EW-98 Parameters	Lab ID: 2030	03668002 Units	Collected: 01/08/2 Report Limit	24 15:30 DF	Received: 0 Prepared	1/11/24 09:55	Matrix: Water CAS No.	Qual		
•	Results	Units		DF				Qual		
Parameters	Results	Units lod: Pace E	Report Limit	DF				Qual		
Parameters BR AM23G Low Level VFA	Results Analytical Meth	Units lod: Pace E	Report Limit	DF			CAS No.	Qual		
Parameters BR AM23G Low Level VFA Pentanoic Acid	Results Analytical Meth Pace Analytical	Units lod: Pace E I Services -	Report Limit NV-SOP-BTRO-004 Baton Rouge	DF 2		Analyzed	CAS No.			
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid	Results Analytical Meth Pace Analytical ND	Units od: Pace E I Services - mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 250	DF 2 500		Analyzed 01/15/24 17:03	CAS No. 109-52-4 64-19-7			
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid	Results Analytical Meth Pace Analytical ND 3080	Units nod: Pace E I Services - mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 250 250	DF 2 500 500		Analyzed 01/15/24 17:03 01/15/24 17:03	CAS No. 109-52-4 64-19-7 107-92-6			
Parameters	Results Analytical Meth Pace Analytical ND 3080 594	Units nod: Pace E I Services - mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 250 250 250	DF 2 500 500 500		Analyzed 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6			
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid	Results Analytical Meth Pace Analytical ND 3080 594 486	Units Ind: Pace E Services - mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 250 250 250 250	DF 2 500 500 500 500 500		Analyzed 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6 142-62-1	N2		
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid	Results Analytical Meth Pace Analytical ND 3080 594 486 ND	Units I Services - mg/L mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 250 250 250 250 250	DF 2 500 500 500 500 500 500		Analyzed 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6 142-62-1 646-07-1	N2 N2		
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid i-Hexanoic Acid	Results Analytical Meth Pace Analytical ND 3080 594 486 ND ND	Units I Services - mg/L mg/L mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 250 250 250 250 250 250 250	DF 2 500 500 500 500 500 500 500		Analyzed 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6 142-62-1 646-07-1 50-21-5	N2 N2 N2 N2		
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid i-Hexanoic Acid Lactic Acid	Results Analytical Meth Pace Analytical ND 3080 594 486 ND ND ND 256	Units I Services - mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 250 250 250 250 250 250 250	DF 2 500 500 500 500 500 500 500 500		Analyzed 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03 01/15/24 17:03	CAS No. 109-52-4 64-19-7 107-92-6 64-18-6 142-62-1 646-07-1 50-21-5 503-74-2	N2 N2 N2 N2 D4		

QUALITY CONTROL DATA

Project:	24A04	66								
Pace Project No.:	20303	668								
QC Batch:	3157	00		Analysis	Method:	Pa	ace ENV-SOP-			
QC Batch Method:	Pace	ENV-SOP-	BTRO-0042	Analysis Description:			R AM23G Low			
				Laborato	ry:	Pa	ace Analytical S	ton Rouge		
Associated Lab Samples: 20303668001, 20303668002									-	
METHOD BLANK:	15110	83		Ma	trix: Water					
Associated Lab Sar	mples:	20303668	001, 20303668002							
				Blank	Rep	orting				
Parar	neter		Units	Result	Li	mit	Analyzed	Qual	ifiers	
Acetic Acid			mg/L	1	ND	0.50	01/15/24 15:	24		
Butyric Acid			mg/L	1	ND	0.50	01/15/24 15:	24		
Formic acid			mg/L	1	ND	0.50	01/15/24 15:	24		
Hexanoic Acid			mg/L	1	ND	0.50	01/15/24 15:	24 N2		
i-Hexanoic Acid			mg/L	1	ND	0.50	01/15/24 15:	24 N2		
i-Pentanoic Acid			mg/L	1	ND	0.50	01/15/24 15:	24 N2		
Lactic Acid			mg/L	1	ND	0.50	01/15/24 15:	24		
Pentanoic Acid			mg/L	1	ND	0.50	01/15/24 15:	24 N2		
Propionic Acid			mg/L	1	ND	0.50	01/15/24 15:	24		
Pyruvic Acid			mg/L	1	ND	0.50	01/15/24 15:	24		
LABORATORY CO	NTROL	SAMPLE:	1511084							
				Spike	LCS		LCS	% Rec		
Parar	neter		Units	Conc.	Result		% Rec	Limits	Qualifiers	
Acetic Acid			mg/L	2		2.0	98	70-130		
Butyric Acid			mg/L	2		1.7	87	70-130		
Formic acid			mg/L	2		1.9	95	70-130		

2

2

2

2

2

2

2

1.1

1.4

1.7

2.1

1.4

1.8

1.8

54

69

83

105

70

92

91

70-130

70-130

70-130

39-114 N2

39-114 N2

59-121 N2

59-121 N2

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Hexanoic Acid

i-Hexanoic Acid

i-Pentanoic Acid

Pentanoic Acid

Propionic Acid

Pyruvic Acid

Lactic Acid

QUALITY CONTROL DATA

Project: 24A0	0466													
Pace Project No.: 2030)3668													
QC Batch: 315	5767		Analy	ysis Metho	d: F	Pace ENV-SOP-BTRO-0042								
QC Batch Method: Pad	ce ENV-SOP-B	TRO-0042	Analy	ysis Descri	iption: E	BR AM23G	Low Level	VFA						
			Labo	oratory:	F	Pace Analyt	ical Service	es - Baton	Rouge					
Associated Lab Samples:	203036680	01												
METHOD BLANK: 1511	321			Matrix: W	/ater									
Associated Lab Samples:	203036680	01												
			Blai	nk	Reporting									
Parameter		Units	Res	ult	Limit	Analy	/zed	Qualifier	S					
Acetic Acid					0.50		40.00							
Acetic Acid		mg/L		ND	0.50	01/16/2	4 12:00							
Acetic Acid		mg/∟		ND	0.50	01/16/24	4 12:00							
Acetic Acid	L SAMPLE:	mg/∟ 1511322												
LABORATORY CONTRO	DL SAMPLE:	1511322	Spike	LC	cs	LCS	% Re							
	DL SAMPLE:		Spike Conc.	LC					Qualifiers					
LABORATORY CONTRO	DL SAMPLE:	1511322	Conc.	LC	cs	LCS	% Re Limi		Qualifiers					
LABORATORY CONTRO Parameter	DL SAMPLE:	1511322 Units	Conc.	LC Res	CS sult	LCS % Rec	% Re Limi	ts	Qualifiers					
LABORATORY CONTRO Parameter		1511322 Units mg/L	Conc.	 2	CS sult	LCS % Rec	% Re Limi	ts	Qualifiers	_				
LABORATORY CONTRO Parameter Acetic Acid		1511322 Units mg/L .ICATE: 1511:	Conc. 361 MS	2 2 MSD	2S sult 2.0 1511362	LCS % Rec 9	% Re 	ro-130		_				
LABORATORY CONTRO Parameter Acetic Acid MATRIX SPIKE & MATRI	X SPIKE DUPL	1511322 Units mg/L ICATE: 1511	Conc. 361 MS Spike	2 2 MSD Spike	2S sult 2.0 1511362 MS	LCS % Rec 94	% Re Limi 3 7 MS	ts 70-130 MSD	% Rec	-	Max			
LABORATORY CONTRO Parameter Acetic Acid		1511322 Units mg/L .ICATE: 1511:	Conc. 361 MS	2 2 MSD	2S sult 2.0 1511362	LCS % Rec 9	% Re 	ro-130		RPD	Max RPD	Qual		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project:	24A0466
Pace Project No.:	20303668

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

ANALYTE QUALIFIERS

- D4 Sample was diluted due to the presence of high levels of target analytes.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 24A0466

 Pace Project No.:
 20303668

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
20303668001	24A0466-01:EW-59	Pace ENV-SOP-BTRO- 0042	315700		
20303668001	24A0466-01:EW-59	Pace ENV-SOP-BTRO- 0042	315767		
20303668002	24A0466-02: EW-98	Pace ENV-SOP-BTRO- 0042	315700		

ENT ANAI	F	L	A		Y	7979 li	Gulf Connovatio Generation Rouge,	on Park	c Dr 320				F	RICHI	1941 VIOND, (804) : (80			#:2	20	303	36	68	Page 74 of 75
	L. L.	1.	<u>8</u> . <u>8</u> .	Not I	h. Ilar			CHAI	N OF	CUS	то	DY					2030	3668					age
COMPANY NAME: Enthalpy					1	INVOI	CE TO:	En	thalpy					F	ROJE	СТ	NAM	E/Quo	te #:	24A	046	6	
CONTACT: Dan Elliott						INVOICE CONTACT: SITE NAME: 24A0466									20000								
ADDRESS: 1941 Reymet Rd Richmond VA 23237							CE ADD			1 Reymet	Rd R	ichmond '	VA 23237		ROJE					1466			
PHONE #: (804) 358-8295							CE PHC		-	358-82	95				P.O. #:					543	26		
FAX #:				EMAIL:					(00.)					_	retrea	_						/	
Is sample for compliance reportir	nd.5	Y				19.9	sample f	rom a	chlorin	ated s	Innl	v?	YES	NO				9.000	-	6 I.D. ‡	#:		
· · · · · ·	ig :						•				аррі	y .	120	110								Times 12	
SAMPLER NAME (PRINT):						SAMP	LER SIG	JNAIU	JRE:		_								Turr	i Arou	ma	Time: (🔿	
Matrix Codes: WW=Waste Water/Storm Wat	er G	W=G	Found	d Water D	W=Drinl	king Wate	er S=Soil/S	Solids O	R=Organ	ic A=Air	WP=	Wipe O	f=Other									COMMENT	
			als)										AN	ALY:	SIS / (F	PRE	SER\	/ATIV	E)			Preservative Codes: N Acid C=Hydrochloric S=Sulfuric Acid H=Sc	Acid
CLIENT SAMPLE I.D.		Composite	Field Filtered (Dissolved Metals)	Composite Start Date	Composite Start Time		Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Time Preserved	Matrix (See Codes)	Number of Containers	Volatile Fatty Acid Low Level										Hydroxide A=Ascorbid Z=Zinc Acetate T=So Thiosulfate M=Meth PLEASE NOTE PRESERVATIVE(S	dium anol
	Grab	Con	Field	Con			Graf	Graf	Time	Mati	Nun	Vola										INTERFERENCE CHEC PUMP RATE (L/mi	CKS or
1) 24A0466-01: EW-59	x	-					/08/24	1545		GW	3	Х								-		1	
2) 24A0466-02: EW-98	Х					01	/08/24	1530		GW	2	Х										2	
3)																							
4)																				_	\square		
5)																				_	\square		
6)								9													$ \rightarrow$		
7)																			<u> </u>				
8)																							
9)																					\square		
10)																							
RELINQUISHED:		10		RECE		Expre	ess	1/10/2	DATE /	11	QC Leve Beve	el I	ackage	LAE	USE	ONL	_Y		COC	IER 1	ΓΕΙV	P°(;
RELINQUISHED:	DAT	re /	<u>967</u> тіме		EIVED:	ræ	A		/ DATE /	124	Leve	el III										Page 12 of	13

Pace Gulf Coast

Pace

Sample Condition Upon Reciept

PM: RW

Due Date: 01/25/24

CLIENT: BR-Enthalpy

WO#:20303668

Cooler Inspected by/date: <u>////////////////////////////////////</u>	<u>></u>		
Means of receipt: Pace Client UPS FedEx Ot	her:		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Yes No Were custody seals present on the cooler?			
Yes 🔲 No 🔲 NA If custody seals were present, were they int	act and unbroken	?	
Method: 🗆 Temperature Blank 🖉 Against Bottles IR Gun ID: 🗾 🖉	IR Gun Corr	ection Factor:	Q_°¢
Cooler #1 Cooler Temp °C: 2. (Actual/True)	Samples on	ice	pH Strip Lot #
Cooler #2 Cooler Temp °C: (Actual/True)	Yes	i 🗆 No	
Cooler #3 Cooler Temp °C: (Actual/True)	Method of		
Cooler #4 Cooler Temp °C: (Actual/True)	Wet	Ice Packs	
Tracking #: 7747 5716 0	615		
□ Yes □ No □ NA Is a temperature blank present?		T	
→ Yes □ No □ NA Was a chain of custody (COC) recieved?	· · · · · · · · · · · · · · · · · · ·		
Yes No NA Was the line and profile number listed on the			
Were all coolers received at or below 6 0°C			· · · · · · · · · · · · · · · · · · ·
Yes I No NA Project Manager notified via email.			
Yes No Were proper custody procedures (relinquish followed?	hed/received)		
Yes No NA Is the sampler name and signature on the C			
Were sample IDs listed on the COC and all s		+	·····
Yes No containers?			
Yes No Was collection date & time listed on the CO containers?	C and all sample		
Did all container label information (ID, date	, time) agree with		
the COC?			
Yes No Were tests to be performed listed on the CC			
Did all samples arrive in the proper containe	ers for each test		
Yes No and/or in good condition (unbroken, lids on, etc.)?			
Yes No Was adequate sample volume available?			
Ware all camples resolved within 1/ the held	ding time or 48		· · · · · · · · · · · · · · · · · · ·
Yes No hours, whichever comes first?	-		
Yes No Were all samples containers accounted for?	? (No missing /		
Were VOA, 8015C (GRO/VPH), and RSK-175	samples free of		
Yes 🔲 No 🚰 NA bubbles > "pea size" (1/4" or 6mm in diame	•		
VOA vials?			
Yes No NA Trip blank present?			
Yes No NA Filtered volume received for dissolved tests			CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR
Yes No No NA Were all metals/nutrient samples received a			ervative added? Yes No flots. Dispenser/pipette lot #:
\square Yes \square No \square NA Were all cyanide samples received at a pH > samples received at a pH > 9?	> 12 and sulfide	HNO3	H2SO₄NaOH Time:

1941 Reymet Road

Richmond, Virginia 23237

Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 24A0675

Client Name: SCS Engineers-Winchester 296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Date Received:January 12, 20249:40Date Issued:February 6, 202416:48Project Number:02218208.15 Task 2Purchase Order:

Client Site I.D.: 24-01 LFG EW Monthly Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 01/12/2024 09:40. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTATS

Ted Soyars Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

			Analysis Detec	ts Report					
Client Name:	SCS Engineers-Wi	nchester			Date Issued:	2/6	/2024 4:4	8:43PM	
Client Site ID:	24-01 LFG EW Mo	nthly Monitoring							
Submitted To:	Jennifer Robb	, ,							
Laboratory Sample ID:	24A0675-01	Client Sa	mple ID: EW-51						
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Arsenic		01	SW6020B	470		2.5	5.0	5	ug/L
Barium		01RE1	SW6020B	3270	E	10.0	50.0	10	ug/L
Chromium		01	SW6020B	170		2.00	5.00	5	ug/L
Nickel		01	SW6020B	63.08		5.000	5.000	5	ug/L
Zinc		01	SW6020B	117		12.5	25.0	5	ug/L
2-Butanone (MEK)		01RE1	SW8260D	34700		1500	5000	500	ug/L
Acetone		01RE1	SW8260D	96600		3500	5000	500	ug/L
Benzene		01	SW8260D	1410		20.0	50.0	50	ug/L
Ethylbenzene		01	SW8260D	99.0		20.0	50.0	50	ug/L
Tetrahydrofuran		01	SW8260D	5160		500	500	50	ug/L
Toluene		01	SW8260D	95.5		25.0	50.0	50	ug/L
Xylenes, Total		01	SW8260D	142	J	50.0	150	50	ug/L
Ammonia as N		01	EPA350.1 R2.0	2160		146	200	2000	mg/L
BOD		01	SM5210B-2016	26000		0.2	2.0	1	mg/L
COD		01	SM5220D-2011	48600		5000	5000	500	mg/L
Cyanide		01	SW9012B	0.14	Cl	0.05	0.05	5	mg/L
Nitrate as N		01	Calc.	2.01		1.50	5.50	100	mg/L
Nitrate+Nitrite as N		01	SM4500-NO3F-2016	3.71		0.50	0.50	5	mg/L
Nitrite as N		01	SM4500-NO2B-2011	1.70	J	1.00	5.00	100	mg/L
TKN as N		01	EPA351.2 R2.0	2450		100	250	500	mg/L
Total Recoverable Phenoli	CS	01	SW9065	38.0		1.50	2.50	50	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

2/6/2024 4:48:43PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG EW Monthly Monitoring

Submitted To: Jennifer Robb

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-51	24A0675-01	Ground Water	01/11/2024 09:30	01/12/2024 09:40
Trip Blank	24A0675-02	Ground Water	08/09/2023 16:15	01/12/2024 09:40

Analysis for Volatile Fatty Acids was subcontracted to Pace. The subcontracted results are attached at the end of this Certificate of Analysis.

As requested by Jennifer Robb on February 6, 2024, a revised report has been issued to correct reported VOCs.

				<u>c</u>	<u>Certificate c</u>	of Analysis							
Client Name:	SCS Enginee	rs-Winch	ester				Da	te Issue	d:	2/6/202	4 4:4	8:43PM	
Client Site I.D.:	24-01 LFG E	W Month	ly Monitori	ng									
Submitted To:	Jennifer Robb			0									
		-											
Client Sample ID:	EW-51					Laboratory	Sample ID:	24A0	675-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analy
Metals (Total) by EPA	6000/7000 Series Me	ethods											
Silver		01	7440-22-4	SW6020B	01/15/2024 09:30	01/16/2024 15:11	BLOD		0.300	5.00	5	ug/L	AB
Arsenic		01	7440-38-2	SW6020B	01/15/2024 09:30	01/16/2024 15:11	470		2.5	5.0	5	ug/L	AB
Barium		01RE1	7440-39-3	SW6020B	01/15/2024 09:30	01/16/2024 14:07	3270	Е	10.0	50.0	10	ug/L	AB
Cadmium		01	7440-43-9	SW6020B	01/15/2024 09:30	01/16/2024 15:11	BLOD		0.500	5.00	5	ug/L	AB
Chromium		01	7440-47-3	SW6020B	01/15/2024 09:30	01/16/2024 15:11	170		2.00	5.00	5	ug/L	AB
Copper		01	7440-50-8	SW6020B	01/15/2024 09:30	01/16/2024 15:11	BLOD		1.50	5.00	5	ug/L	AB
Mercury		01	7439-97-6	SW6020B	01/15/2024 09:30	01/16/2024 15:11	BLOD		1.00	1.00	5	ug/L	AB
Nickel		01	7440-02-0	SW6020B	01/15/2024 09:30	01/16/2024 15:11	63.08		5.000	5.000	5	ug/L	AB
Lead		01	7439-92-1	SW6020B	01/15/2024 09:30	01/16/2024 15:11	BLOD		5.0	5.0	5	ug/L	AB
Selenium		01	7782-49-2	SW6020B	01/15/2024 09:30	01/16/2024 15:11	BLOD		4.25	5.00	5	ug/L	AB
Zinc		01	7440-66-6	SW6020B	01/15/2024 09:30	01/16/2024 15:11	117		12.5	25.0	5	ug/L	AB
Volatile Organic Com	pounds by GCMS												
2-Butanone (MEK)		01RE1	78-93-3	SW8260D	01/16/2024 17:58	01/16/2024 17:58	34700		1500	5000	500	ug/L	TLH
Acetone		01RE1	67-64-1	SW8260D	01/16/2024 17:58	01/16/2024 17:58	96600		3500	5000	500	ug/L	TLH
Benzene		01	71-43-2	SW8260D	01/12/2024 17:34	01/12/2024 17:34	1410		20.0	50.0	50	ug/L	RJB
Ethylbenzene		01	100-41-4	SW8260D	01/12/2024 17:34	01/12/2024 17:34	99.0		20.0	50.0	50	ug/L	RJB
Toluene		01	108-88-3	SW8260D	01/12/2024 17:34	01/12/2024 17:34	95.5		25.0	50.0	50	ug/L	RJB
Xylenes, Total		01	1330-20-7	SW8260D	01/12/2024 17:34	01/12/2024 17:34	142	J	50.0	150	50	ug/L	RJB
Tetrahydrofuran		01	109-99-9	SW8260D	01/12/2024 17:34	01/12/2024 17:34	5160		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroetha	nne-d4 (Surr)	01	81.2	% 70-120	01/12/2024 1	7:34 01/12/2024 17::	34						
Surr: 4-Bromofluorobe	enzene (Surr)	01	97.6		01/12/2024 1	7:34 01/12/2024 17:	34						
Surr: Dibromofluorom	ethane (Surr)	01	87.3	% 70-130	01/12/2024 1	7:34 01/12/2024 17:3	34						
Surr: Toluene-d8 (Sur	,	01	95.3		01/12/2024 1								
Surr: 1,2-Dichloroetha	()	01RE1	116		01/16/2024 1								
Surr: 4-Bromofluorobe	enzene (Surr)	01RE1	99.9	% 75-120	01/16/2024 1	7:58 01/16/2024 17:	58						

				<u>(</u>	Certificate of	Analysis							
Client Name:	SCS Engir	neers-Winch	ester				Da	ite Issue	d:	2/6/202	4 4:4	8:43PM	
Client Site I.D.:	24-01 LF0	G EW Month	ly Monitori	ng									
Submitted To:	Jennifer R	obb											
Client Sample ID:	EW-51					Laboratory	Sample ID:	24A0	675-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Com	pounds by GCM	IS											
Surr: Dibromofluorom	ethane (Surr)	01RE1	112	% 70-130	01/16/2024 17:5	58 01/16/2024 17:5	8						
Surr: Toluene-d8 (Sur	r)	01RE1	108	% 70-130	01/16/2024 17:5	58 01/16/2024 17:5	8						
Semivolatile Organic	Compounds by	GCMS											
Anthracene		01	120-12-7	SW8270E	01/15/2024 08:30	01/16/2024 16:02	BLOD		100	200	10	ug/L	BMS
Surr: 2,4,6-Tribromopl	henol (Surr)	01		% 5-136	01/15/2024 08:3	30 01/16/2024 16:0	2						DS
Surr: 2-Fluorobipheny	l (Surr)	01		% 9-117	01/15/2024 08:3	30 01/16/2024 16:0	2						DS
Surr: 2-Fluorophenol ((Surr)	01	35.2	% 5-60	01/15/2024 08:3	30 01/16/2024 16:0	2						
Surr: Nitrobenzene-d5	5 (Surr)	01		% 5-151	01/15/2024 08:3	30 01/16/2024 16:0	2						DS
Surr: Phenol-d5 (Surr))	01	0.200	% 5-60	01/15/2024 08:3	30 01/16/2024 16:0	2						DS
Surr: p-Terphenyl-d14	(Surr)	01	31.4	% 5-141	01/15/2024 08:3	30 01/16/2024 16:0	2						

				(Certificate o	of Analysis							
Client Name:	SCS Engir	neers-Winch	nester				Da	te Issue	d:	2/6/202	4 4:4	8:43PM	
Client Site I.D.:	24-01 LFC	G EW Month	nly Monitor	ing									
Submitted To:	Jennifer R	obb	-	-									
Client Sample ID:	EW-51					Laborator	y Sample ID:	24A0	675-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
Wet Chemistry Analys	is												
Ammonia as N		01	7664-41-7	EPA350.1 R2.0	01/22/2024 12:38	01/22/2024 12:38	2160		146	200	2000	mg/L	MGC
BOD		01	E1640606	SM5210B-20 16	01/12/2024 09:00	01/12/2024 09:00	26000		0.2	2.0	1	mg/L	TEG
Cyanide		01	57-12-5	SW9012B	01/19/2024 12:29	01/19/2024 12:29	0.14	CI	0.05	0.05	5	mg/L	MGC
COD		01	NA	SM5220D-20 11	01/25/2024 16:23	01/25/2024 16:23	48600		5000	5000	500	mg/L	MGC
Nitrate as N		01	14797-55-8	Calc.	01/17/2024 13:03	01/17/2024 13:03	2.01		1.50	5.50	100	mg/L	AJM
Nitrate+Nitrite as N		01	E701177	SM4500-NO 3F-2016	01/17/2024 13:03	01/17/2024 13:03	3.71		0.50	0.50	5	mg/L	MGC
Nitrite as N		01	14797-65-0	SM4500-NO 2B-2011	01/12/2024 11:30	01/12/2024 11:30	1.70	J	1.00	5.00	100	mg/L	AJM
Total Recoverable Phe	enolics	01	NA	SW9065	01/22/2024 12:54	01/22/2024 12:54	38.0		1.50	2.50	50	mg/L	AAL
TKN as N		01	E17148461	EPA351.2 R2.0	01/23/2024 16:02	01/23/2024 16:02	2450		100	250	500	mg/L	AJM

				(Certificate o	of Analysis							
Client Name: S	SCS Engine	ers-Winch	ester	_			Da	te Issue	d:	2/6/202	4 4:4	8:43PM	
Client Site I.D.: 2	24-01 LFG	EW Month	ly Monitor	ing									
Submitted To: J	lennifer Rol	bb	-	-									
Client Sample ID: T	rip Blank					Laborator	y Sample ID:	24A0	675-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
Volatile Organic Compou	nds by GCMS												
2-Butanone (MEK)		02	78-93-3	SW8260D	01/12/2024 16:01	01/12/2024 16:01	BLOD		3.00	10.0	1	ug/L	RJB
Acetone		02	67-64-1	SW8260D	01/12/2024 16:01	01/12/2024 16:01	BLOD		7.00	10.0	1	ug/L	RJB
Benzene		02	71-43-2	SW8260D	01/12/2024 16:01	01/12/2024 16:01	BLOD		0.40	1.00	1	ug/L	RJB
Ethylbenzene		02	100-41-4	SW8260D	01/12/2024 16:01	01/12/2024 16:01	BLOD		0.40	1.00	1	ug/L	RJB
Toluene		02	108-88-3	SW8260D	01/12/2024 16:01	01/12/2024 16:01	BLOD		0.50	1.00	1	ug/L	RJB
Xylenes, Total		02	1330-20-7	SW8260D	01/12/2024 16:01	01/12/2024 16:01	BLOD		1.00	3.00	1	ug/L	RJB
Tetrahydrofuran		02	109-99-9	SW8260D	01/12/2024 16:01	01/12/2024 16:01	BLOD		10.0	10.0	1	ug/L	RJB
Surr: 1,2-Dichloroethane-c	d4 (Surr)	02	83.2	% 70-120	01/12/2024 16	6:01 01/12/2024 16	5:01						
Surr: 4-Bromofluorobenze	ene (Surr)	02	95.0	% 75-120	01/12/2024 16	6:01 01/12/2024 16	5:01						
Surr: Dibromofluorometha	nne (Surr)	02	86.8										
Surr: Toluene-d8 (Surr)		02	94.4	% 70-130	01/12/2024 16	6:01 01/12/2024 16	5:01						

			<u>C</u>	ertificate c	of Analysi	<u>is</u>				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG EW Monthly Mon	toring								
Submitted To:	Jennifer Robb	U								
oublinition to.			(- ())							
		Metals	s (Total) by	/ EPA 6000/7000 S	eries Methods - (Quality Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA0466 - EPA200	.8 R5.4								
Blank (BHA0466-BLK1)				Prepared: 01/15/	2024 Analyzed: (01/16/2024				
Mercury	ND	0.200	ug/L							
Arsenic	ND	1.0	ug/L							
Barium	ND	5.00	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	1.00	ug/L							
Copper	ND	1.00	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	1.000	ug/L							
Selenium	ND	1.00	ug/L							
Silver	ND	1.00	ug/L							
Zinc	ND	5.00	ug/L							
LCS (BHA0466-BS1)				Prepared: 01/15/	2024 Analyzed: (01/16/2024				
Mercury	0.999	0.200	ug/L	1.00		99.9	80-120			
Arsenic	48	1.0	ug/L	50.0		96.4	80-120			
Barium	49.8	5.00	ug/L	50.0		99.6	80-120			
Cadmium	49.9	1.00	ug/L	50.0		99.7	80-120			
Chromium	48.9	1.00	ug/L	50.0		97.9	80-120			
Copper	49.2	1.00	ug/L	50.0		98.4	80-120			
Lead	51	1.0	ug/L	50.0		102	80-120			
Nickel	48.81	1.000	ug/L	50.0		97.6	80-120			
Selenium	47.1	1.00	ug/L	50.0		94.3	80-120			
Silver	10.1	1.00	ug/L	10.0		101	80-120			
Zinc	48.8	5.00	ug/L	50.0		97.7	80-120			
Matrix Spike (BHA0466-	-MS1) Source	: 24A0675-0	1	Prepared: 01/15/	2024 Analyzed: (01/16/2024				

2/6/2024 4:48:43PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG EW Monthly Monitoring

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	3HA0466 - EPA20	0.8 R5.4								
Matrix Spike (BHA0466-MS1)	Sour	ce: 24A0675-0	01	Prepared: 01/15/	2024 Analyzed: (01/16/2024				
Mercury	1.02	1.00	ug/L	1.00	BLOD	102	70-130			
Arsenic	490	5.0	ug/L	50.0	470	42.4	75-125			M2
Cadmium	42.4	5.00	ug/L	50.0	BLOD	84.8	75-125			
Chromium	198	5.00	ug/L	50.0	170	56.5	75-125			M2
Copper	44.7	5.00	ug/L	50.0	BLOD	89.3	75-125			
Lead	49	5.0	ug/L	50.0	BLOD	97.8	75-125			
Nickel	103.7	5.000	ug/L	50.0	63.08	81.2	75-125			
Selenium	38.5	5.00	ug/L	50.0	BLOD	77.0	75-125			
Silver	8.78	5.00	ug/L	10.0	BLOD	87.8	75-125			
Zinc	149	25.0	ug/L	50.0	117	63.9	75-125			M2
Matrix Spike (BHA0466-MS2)	Sour	ce: 24A0675-0	01RE1	Prepared: 01/15/	2024 Analyzed: (01/16/2024				
Barium	3310	50.0	ug/L	100	3270	37.3	75-125			M2, E
Matrix Spike Dup (BHA0466-MSD1)	Sour	ce: 24A0675-0	01	Prepared: 01/15/	2024 Analyzed: (01/16/2024				
Mercury	1.05	1.00	ug/L	1.00	BLOD	105	70-130	2.67	20	
Arsenic	500	5.0	ug/L	50.0	470	56.6	75-125	1.43	20	M2
Cadmium	43.6	5.00	ug/L	50.0	BLOD	87.1	75-125	2.69	20	
Chromium	191	5.00	ug/L	50.0	170	42.0	75-125	3.75	20	M2
Copper	45.1	5.00	ug/L	50.0	BLOD	90.1	75-125	0.870	20	
Lead	49	5.0	ug/L	50.0	BLOD	98.2	75-125	0.446	20	
Nickel	103.8	5.000	ug/L	50.0	63.08	81.5	75-125	0.133	20	
Selenium	39.7	5.00	ug/L	50.0	BLOD	79.5	75-125	3.17	20	
Silver	9.01	5.00	ug/L	10.0	BLOD	90.1	75-125	2.65	20	
Zinc	150	25.0	ug/L	50.0	117	65.3	75-125	0.462	20	M2
Matrix Spike Dup (BHA0466-MSD2)	Sour	ce: 24A0675-0		Prepared: 01/15	/2024 Analyzed: (1/16/2024				

				<u>Ce</u>	ertificate o	of Analysi	is				
Client Name:	SCS Engineers-	Winchester				-		Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG EW	Monthly Mor	nitoring								
Submitted To:	Jennifer Robb										
			Metal	s (Total) by	EPA 6000/7000 S	eries Methods - (Quality Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA	0466 - EPA20	0.8 R5.4								
Matrix Spike Dup (BH	A0466-MSD2)	Sourc	e: 24A0675-	01RE1	Prepared: 01/15/	2024 Analyzed: (01/16/2024				
Barium		3360	50.0	ug/L	100	3270	90.4	75-125	1.59	20	E

				Cer	tificate c	of Analysi	is				
Client Name:	SCS Engineers	-Winchester						Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG EW	/ Monthly Mon	itoring								
	Jennifer Robb	,	0								
Submitted to.											
			1	/olatile Organ	iic Compounds I	oy GCMS - Qualit	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BH	1A0433 - SW503									
Blank (BHA0433-BLK1)	Baton Br			F	Prepared & Anal	/zed: 01/12/2024	L				
1,1,1,2-Tetrachloroetha	ine	ND	0.40	ug/L		,, , , _ _, _ _, _ _, _ _, _					
1,1,1-Trichloroethane		ND	1.00	ug/L							
1,1,2,2-Tetrachloroetha	ine	ND	0.40	ug/L							
1,1,2-Trichloroethane		ND	1.00	ug/L							
1,1-Dichloroethane		ND	1.00	ug/L							
1,1-Dichloroethylene		ND	1.00	ug/L							
1,1-Dichloropropene		ND	1.00	ug/L							
1,2,3-Trichlorobenzene	•	ND	1.00	ug/L							
1,2,3-Trichloropropane		ND	1.00	ug/L							
1,2,4-Trichlorobenzene	•	ND	1.00	ug/L							
1,2,4-Trimethylbenzene	Э	ND	1.00	ug/L							
1,2-Dibromo-3-chloropr		ND	1.00	ug/L							
1,2-Dibromoethane (ED	OB)	ND	1.00	ug/L							
1,2-Dichlorobenzene		ND	0.50	ug/L							
1,2-Dichloroethane		ND	1.00	ug/L							
1,2-Dichloropropane		ND	0.50	ug/L							
1,3,5-Trimethylbenzene	e	ND	1.00	ug/L							
1,3-Dichlorobenzene		ND	1.00	ug/L							
1,3-Dichloropropane		ND	1.00	ug/L							
1,4-Dichlorobenzene		ND	1.00	ug/L							
2,2-Dichloropropane		ND	1.00	ug/L							
2-Butanone (MEK)		ND	10.0	ug/L							
2-Chlorotoluene		ND	1.00	ug/L							
2-Hexanone (MBK)		ND	5.00	ug/L							
4-Chlorotoluene		ND	1.00	ug/L							

				Cer	tificate c	of Analysi	is				
Client Name:	SCS Engine	ers-Winchester						Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG	EW Monthly Mon	itorina								
	Jennifer Rob	•	litering								
Submitted To:	Jennier Rot	UC OC									
			١	Volatile Organ	iic Compounds I	oy GCMS - Quali	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch	n BHA0433 - SW503	0B-MS								
Blank (BHA0433-BLK	1)			F	Prepared & Analy	/zed: 01/12/2024	Ļ				
4-Isopropyltoluene		ND	1.00	ug/L							
4-Methyl-2-pentano	ne (MIBK)	ND	5.00	ug/L							
Acetone		ND	10.0	ug/L							
Benzene		ND	1.00	ug/L							
Bromobenzene		ND	1.00	ug/L							
Bromochlorometha	ne	ND	1.00	ug/L							
Bromodichlorometh	ane	ND	0.50	ug/L							
Bromoform		ND	1.00	ug/L							
Bromomethane		ND	1.00	ug/L							
Carbon disulfide		ND	10.0	ug/L							
Carbon tetrachlorid	е	ND	1.00	ug/L							
Chlorobenzene		ND	1.00	ug/L							
Chloroethane		ND	1.00	ug/L							
Chloroform		ND	0.50	ug/L							
Chloromethane		ND	1.00	ug/L							
cis-1,2-Dichloroethy		ND	1.00	ug/L							
cis-1,3-Dichloroprop		ND	1.00	ug/L							
Dibromochlorometh	ane	ND	0.50	ug/L							
Dibromomethane		ND	1.00	ug/L							
Dichlorodifluoromet		ND	1.00	ug/L							
Di-isopropyl ether (I	DIPE)	ND	5.00	ug/L							
Ethylbenzene		ND	1.00	ug/L							
Hexachlorobutadier	ne	ND	0.80	ug/L							
lodomethane		ND	10.0	ug/L							
Isopropylbenzene		ND	1.00	ug/L							

			<u>Ce</u>	ertificate o	of Analysi	S				
Client Name: SC	CS Engineers-Winchester				-		Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.: 24	4-01 LFG EW Monthly Monit	oring								
	nnifer Robb	U								
						a				
		```	Volatile Org	anic Compounds b	by GCMS - Qualit	y Control				
				Enthalpy An	alytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
			Units	Level	Result		Linits		LIIIII	Quai
	Batch BHA0433 - SW5030	B-MS								
Blank (BHA0433-BLK1)				Prepared & Analy	zed: 01/12/2024					
m+p-Xylenes	ND	2.00	ug/L							
Methylene chloride	ND	4.00	ug/L							
Methyl-t-butyl ether (MTB		1.00	ug/L							
Naphthalene	ND	1.00	ug/L							
n-Butylbenzene	ND	1.00	ug/L							
n-Propylbenzene	ND	1.00	ug/L							
o-Xylene	ND	1.00	ug/L							
sec-Butylbenzene	ND	1.00	ug/L							
Styrene	ND	1.00	ug/L							
tert-Butylbenzene	ND	1.00	ug/L							
Tetrachloroethylene (PCE		1.00	ug/L							
Toluene	ND	1.00	ug/L							
trans-1,2-Dichloroethylen		1.00	ug/L							
trans-1,3-Dichloropropene		1.00	ug/L							
Trichloroethylene	ND	1.00	ug/L							
Trichlorofluoromethane	ND	1.00	ug/L							
Vinyl acetate	ND	10.0	ug/L							
Vinyl chloride	ND	0.50	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-			ug/L	50.0		87.1	70-120			
Surr: 4-Bromofluorobenze			ug/L	50.0		95.9	75-120			
Surr: Dibromofluoromethe			ug/L	50.0		90.3	70-130			
Surr: Toluene-d8 (Surr)	48.2		ug/L	50.0		96.3	70-130			
LCS (BHA0433-BS1)				Prepared & Analy	zed: 01/12/2024					



				Cer	tificate c	of Analysi	is				
Client Name:	SCS Engineers	s-Winchester						Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG EW	Monthly Mon	nitorina								
-	Jennifer Robb	,									
Submitted to.											
			١	/olatile Organ	ic Compounds b	by GCMS - Quali	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch Bł	HA0433 - SW503	0B-MS								
LCS (BHA0433-BS1)				P	Prepared & Anal	/zed: 01/12/2024					
1,1,1,2-Tetrachloroetha	ane	46.6	0.4	ug/L	50.0		93.3	80-130			
1,1,1-Trichloroethane		51.0	1	ug/L	50.0		102	65-130			
1,1,2,2-Tetrachloroetha	ane	44.2	0.4	ug/L	50.0		88.4	65-130			
1,1,2-Trichloroethane		49.2	1	ug/L	50.0		98.4	75-125			
1,1-Dichloroethane		49.6	1	ug/L	50.0		99.3	70-135			
1,1-Dichloroethylene		54.2	1	ug/L	50.0		108	70-130			
1,1-Dichloropropene		53.9	1	ug/L	50.0		108	75-135			
1,2,3-Trichlorobenzene	e	46.6	1	ug/L	50.0		93.1	55-140			
1,2,3-Trichloropropane	)	42.7	1	ug/L	50.0		85.3	75-125			
1,2,4-Trichlorobenzene	e	47.9	1	ug/L	50.0		95.8	65-135			
1,2,4-Trimethylbenzen	e	43.8	1	ug/L	50.0		87.6	75-130			
1,2-Dibromo-3-chlorop	ropane (DBCP)	38.2	1	ug/L	50.0		76.4	50-130			
1,2-Dibromoethane (El	DB)	45.5	1	ug/L	50.0		91.0	80-120			
1,2-Dichlorobenzene		46.3	0.5	ug/L	50.0		92.6	70-120			
1,2-Dichloroethane		42.3	1	ug/L	50.0		84.6	70-130			
1,2-Dichloropropane		46.8	0.5	ug/L	50.0		93.7	75-125			
1,3,5-Trimethylbenzen	e	42.8	1	ug/L	50.0		85.6	75-125			
1,3-Dichlorobenzene		45.8	1	ug/L	50.0		91.7	75-125			
1,3-Dichloropropane		45.4	1	ug/L	50.0		90.9	75-125			
1,4-Dichlorobenzene		44.6	1	ug/L	50.0		89.1	75-125			
2,2-Dichloropropane		52.4	1	ug/L	50.0		105	70-135			
2-Butanone (MEK)		50.0	10	ug/L	50.0		100	30-150			
2-Chlorotoluene		47.4	1	ug/L	50.0		94.8	75-125			
2-Hexanone (MBK)		40.4	5	ug/L	50.0		80.8	55-130			
4-Chlorotoluene		45.8	1	ug/L	50.0		91.5	75-130			



				Cer	tificate o	of Analysi	is				
Client Name:	SCS Engine	ers-Winchester				-		Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01   FG F	EW Monthly Mon	itorina								
		-	ltoring								
Submitted To:	Jennifer Rob	D									
			١	/olatile Organ	ic Compounds b	oy GCMS - Qualit	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
, indigio				onno	20101	rtooun	, or (20	Linito	14 0	2	Quu
	Batch	BHA0433 - SW5030	IB-MS								
LCS (BHA0433-BS1)		40.0			•	/zed: 01/12/2024		75 400			
4-Isopropyltoluene		46.6	1	ug/L	50.0 50.0		93.1 85.7	75-130 60-135			
4-Methyl-2-pentanone Acetone		42.8 42.2	5 10	ug/L	50.0 50.0		85.7 84.3	60-135 40-140			
Benzene		42.2 47.6	10	ug/L	50.0 50.0		84.3 95.3	40-140 80-120			
Benzene Bromobenzene		47.6 50.1	1	ug/L ug/L	50.0 50.0		95.3 100	80-120 75-125			
Bromochloromethane		50.9	1	ug/L	50.0		100	65-130			
Bromodichloromethar		47.4	0.5	ug/L	50.0		94.7	75-120			
Bromoform		46.6	0.5	ug/L	50.0		93.2	70-130			
Bromomethane		41.0	1	ug/L	50.0		82.0	30-145			
Carbon disulfide		46.7	10	ug/L	50.0		93.3	35-160			
Carbon tetrachloride		55.1	1	ug/L	50.0		110	65-140			
Chlorobenzene		48.4	1	ug/L	50.0		96.8	80-120			
Chloroethane		46.8	1	ug/L	50.0		93.5	60-135			
Chloroform		47.5	0.5	ug/L	50.0		95.0	65-135			
Chloromethane		37.6	1	ug/L	50.0		75.2	40-125			
cis-1,2-Dichloroethyle	ene	52.2	1	ug/L	50.0		104	70-125			
cis-1,3-Dichloroprope		47.1	1	ug/L	50.0		94.3	70-130			
Dibromochlorometha		49.8	0.5	ug/L	50.0		99.6	60-135			
Dibromomethane		47.1	1	ug/L	50.0		94.2	75-125			
Dichlorodifluorometha	ane	38.9	1	ug/L	50.0		77.7	30-155			
Ethylbenzene		47.6	1	ug/L	50.0		95.2	75-125			
Hexachlorobutadiene		52.1	0.8	ug/L	50.0		104	50-140			
Isopropylbenzene		45.5	1	ug/L	50.0		91.0	75-125			
m+p-Xylenes		99.4	2	ug/L	100		99.4	75-130			
Methylene chloride		49.5	4	ug/L	50.0		99.0	55-140			



			<u>Ce</u>	ertificate o	of Analysi	<u>is</u>				
Client Name: SCS	Engineers-Winchester				_		Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.: 24-0	1 LFG EW Monthly Monit	toring								
	ifer Robb	0								
					0010 0 1					
		١	/olatile Orga	anic Compounds I	by GCMS - Qualit	ty Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA0433 - SW5030	B-MS								
LCS (BHA0433-BS1)				Prepared & Anal	yzed: 01/12/2024					
Methyl-t-butyl ether (MTBE)	43.4	1	ug/L	50.0		86.7	65-125			
Naphthalene	44.4	1	ug/L	50.0		88.8	55-140			
n-Butylbenzene	44.8	1	ug/L	50.0		89.7	70-135			
n-Propylbenzene	47.8	1	ug/L	50.0		95.6	70-130			
o-Xylene	48.4	1	ug/L	50.0		96.9	80-120			
sec-Butylbenzene	48.8	1	ug/L	50.0		97.7	70-125			
Styrene	45.7	1	ug/L	50.0		91.4	65-135			
tert-Butylbenzene	47.0	1	ug/L	50.0		94.0	70-130			
Tetrachloroethylene (PCE)	55.4	1	ug/L	50.0		111	45-150			
Toluene	51.1	1	ug/L	50.0		102	75-120			
trans-1,2-Dichloroethylene	53.9	1	ug/L	50.0		108	60-140			
trans-1,3-Dichloropropene	48.9	1	ug/L	50.0		97.7	55-140			
Trichloroethylene	51.8	1	ug/L	50.0		104	70-125			
Trichlorofluoromethane	53.8	1	ug/L	50.0		108	60-145			
Vinyl chloride	45.4	0.5	ug/L	50.0		90.8	50-145			
Surr: 1,2-Dichloroethane-d4	(Surr) 45.9		ug/L	50.0		91.7	70-120			
Surr: 4-Bromofluorobenzene	(Surr) 47.4		ug/L	50.0		94.9	75-120			
Surr: Dibromofluoromethane	(Surr) 48.5		ug/L	50.0		97.1	70-130			
Surr: Toluene-d8 (Surr)	47.6		ug/L	50.0		95.2	70-130			
Duplicate (BHA0433-DUP1)	Source	: 24A0505-0	01	Prepared & Anal	yzed: 01/12/2024					
1,1,1,2-Tetrachloroethane	ND	8.00	ug/L		BLOD			NA	30	
1,1,1-Trichloroethane	ND	20.0	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroethane	ND	8.00	ug/L		BLOD			NA	30	
1,1,2-Trichloroethane	ND	20.0	ug/L		BLOD			NA	30	



#### **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:48:43PM 24-01 LFG EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0433 - SW5030B-MS Duplicate (BHA0433-DUP1) Source: 24A0505-01 Prepared & Analyzed: 01/12/2024 ug/L 1.1-Dichloroethane ND 20.0 BLOD NA 30 1,1-Dichloroethylene ND 20.0 ug/L BLOD NA 30 BLOD 1,1-Dichloropropene ND 20.0 ug/L NA 30 20.0 BLOD 30 1.2.3-Trichlorobenzene ND ug/L NA 1,2,3-Trichloropropane ND 20.0 ug/L BLOD NA 30 BLOD 1.2.4-Trichlorobenzene ND 20.0 ua/L NA 30 1,2,4-Trimethylbenzene ND 20.0 ug/L BI OD NA 30 BLOD 1,2-Dibromo-3-chloropropane (DBCP) ND 20.0 ua/L NA 30 BLOD 1,2-Dibromoethane (EDB) ND 20.0 ug/L NA 30 BLOD 30 1.2-Dichlorobenzene ND 10.0 ua/L NA 1,2-Dichloroethane ND 20.0 BLOD NA 30 ug/L 1,2-Dichloropropane ND 10.0 ug/L BLOD NA 30 1,3,5-Trimethylbenzene ND 20.0 BLOD 30 ug/L NA BLOD 1.3-Dichlorobenzene ND 20.0 ug/L NA 30 20.0 BLOD 30 1,3-Dichloropropane ND ug/L NA BLOD 1.4-Dichlorobenzene ND 20.0 ug/L NA 30 2,2-Dichloropropane ND 20.0 ug/L BLOD NA 30 200 345 12.2 30 2-Butanone (MEK) 305 ug/L 2-Chlorotoluene ND 20.0 BLOD 30 ug/L NA BLOD 2-Hexanone (MBK) ND 100 ug/L NA 30 4-Chlorotoluene 20.0 BLOD 30 ND ug/L NA 4-Isopropyltoluene ND 20.0 ug/L BLOD NA 30 71.6 4-Methyl-2-pentanone (MIBK) 66.4 100 ug/L NA 30 Acetone ND 200 ug/L BI OD NA 30 ND 20.0 ug/L BLOD NA 30 Benzene



#### **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:48:43PM 24-01 LFG EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0433 - SW5030B-MS Duplicate (BHA0433-DUP1) Source: 24A0505-01 Prepared & Analyzed: 01/12/2024 ug/L Bromobenzene ND 20.0 BLOD NA 30 Bromochloromethane ND 20.0 ug/L BLOD NA 30 BLOD Bromodichloromethane ND 10.0 ug/L NA 30 Bromoform 20.0 BLOD 30 ND ug/L NA Bromomethane ND 20.0 ug/L BI OD NA 30 Carbon disulfide 200 BLOD ND ug/L NA 30 Carbon tetrachloride ND 20.0 ug/L BI OD NA 30 Chlorobenzene BLOD ND 20.0 ua/L NA 30 BLOD Chloroethane ND 20.0 ug/L NA 30 10.0 BLOD 30 Chloroform ND ua/L NA Chloromethane ND 20.0 ug/L BLOD NA 30 cis-1,2-Dichloroethylene ND 20.0 ug/L BLOD NA 30 cis-1,3-Dichloropropene ND 20.0 BLOD 30 ug/L NA Dibromochloromethane BLOD ND 10.0 ug/L NA 30 Dibromomethane 20.0 BI OD 30 ND ug/L NA Dichlorodifluoromethane BLOD 30 ND 20.0 ug/L NA Di-isopropyl ether (DIPE) ND 100 ug/L BLOD NA 30 20.0 BLOD 30 Ethylbenzene ND ug/L NA Hexachlorobutadiene ND 16.0 BLOD 30 ug/L NA BLOD 30 lodomethane ND 200 ug/L NA Isopropylbenzene 20.0 BLOD 30 ND ug/L NA m+p-Xylenes ND 40.0 ug/L BI OD NA 30 BLOD Methylene chloride ND 80.0 ug/L NA 30 Methyl-t-butyl ether (MTBE) ND 20.0 ug/L BI OD NA 30 Naphthalene ND 20.0 ug/L BLOD NA 30



			C	ertificate o	of Analysis	S				
Client Name: SC	S Engineers-Winchester					_	Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.: 24	-01 LFG EW Monthly Mor	nitorina								
	•	litoring								
Submitted To: Jer	nnifer Robb									
		V	olatile Org	janic Compounds b	by GCMS - Quality	/ Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA0433 - SW503	0B-MS								
Duplicate (BHA0433-DUP1)	Source	e: 24A0505-0	1	Prepared & Analy	/zed: 01/12/2024					
n-Butylbenzene	ND	20.0	ug/L		BLOD			NA	30	
n-Propylbenzene	ND	20.0	ug/L		BLOD			NA	30	
o-Xylene	ND	20.0	ug/L		BLOD			NA	30	
sec-Butylbenzene	ND	20.0	ug/L		BLOD			NA	30	
Styrene	ND	20.0	ug/L		BLOD			NA	30	
tert-Butylbenzene	ND	20.0	ug/L		BLOD			NA	30	
Tetrachloroethylene (PCE)	) ND	20.0	ug/L		BLOD			NA	30	
Toluene	64.4	20.0	ug/L		62.8			2.52	30	
trans-1,2-Dichloroethylene		20.0	ug/L		BLOD			NA	30	
trans-1,3-Dichloropropene	ND	20.0	ug/L		BLOD			NA	30	
Trichloroethylene	ND	20.0	ug/L		BLOD			NA	30	
Trichlorofluoromethane	ND	20.0	ug/L		BLOD			NA	30	
Vinyl acetate	ND	200	ug/L		BLOD			NA	30	
Vinyl chloride	ND	10.0	ug/L		BLOD			NA	30	
Xylenes, Total	ND	60.0	ug/L		BLOD			NA	30	
Tetrahydrofuran	ND	200	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroethane-c	14 (Surr) 43.3		ug/L	50.0		86.6	70-120			
Surr: 4-Bromofluorobenze	ne (Surr) 48.0		ug/L	50.0		96.0	75-120			
Surr: Dibromofluorometha	ne (Surr) 42.2		ug/L	50.0		84.5	70-130			
Surr: Toluene-d8 (Surr)	48.8		ug/L	50.0		97.6	70-130			
Matrix Spike (BHA0433-MS1	) Sourc	e: 24A0505-0	1	Prepared & Analy	/zed: 01/12/2024					
1,1,1,2-Tetrachloroethane	46.1	0.4	ug/L	50.0	BLOD	92.3	80-130			
1,1,1-Trichloroethane	46.3	1	ug/L	50.0	BLOD	92.6	65-130			
1,1,2,2-Tetrachloroethane	44.8	0.4	ug/L	50.0	BLOD	89.6	65-130			



#### **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:48:43PM 24-01 LFG EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0433 - SW5030B-MS Prepared & Analyzed: 01/12/2024 Matrix Spike (BHA0433-MS1) Source: 24A0505-01 49.4 1.1.2-Trichloroethane 1 ug/L 50.0 BLOD 98.9 75-125 1.1-Dichloroethane 42.8 1 ug/L 50.0 BLOD 85.7 70-135 50.0 BLOD 97.4 1,1-Dichloroethylene 48.7 1 ug/L 50-145 50.0 1 50.0 BLOD 100 75-135 1,1-Dichloropropene ug/L 1.2.3-Trichlorobenzene 48.9 1 ug/L 50.0 BI OD 97.8 55-140 1 BI OD 85.9 75-125 1,2,3-Trichloropropane 42.9 ug/L 50.0 1,2,4-Trichlorobenzene 48.7 1 ug/L 50.0 BI OD 97.3 65-135 1 BLOD 86.6 75-130 1.2.4-Trimethylbenzene 43.3 ua/L 50.0 1,2-Dibromo-3-chloropropane (DBCP) 1 BLOD 76.2 38.1 ug/L 50.0 50-130 46.0 1 50.0 BLOD 92.1 80-120 1,2-Dibromoethane (EDB) ua/L 1.2-Dichlorobenzene 45.7 0.5 50.0 BLOD 91.5 70-120 ug/L 1,2-Dichloroethane 38.7 1 ug/L 50.0 BLOD 77.4 70-130 46.8 0.5 50.0 BLOD 93.6 75-125 1,2-Dichloropropane ug/L BLOD 75-124 1,3,5-Trimethylbenzene 42.6 1 ug/L 50.0 85.1 1,3-Dichlorobenzene 45.5 1 50.0 BI OD 91.1 75-125 ug/L 46.2 1 BLOD 92.4 75-125 1,3-Dichloropropane ug/L 50.0 1.4-Dichlorobenzene 44.9 1 ug/L 50.0 BLOD 89.8 75-125 46.9 1 50.0 BLOD 93.8 70-135 2,2-Dichloropropane ug/L 57.2 10 50.0 17.2 79.9 30-150 2-Butanone (MEK) ug/L BLOD 75-125 2-Chlorotoluene 46.4 1 ug/L 50.0 92.7 2-Hexanone (MBK) 42.2 5 50.0 BLOD 84.5 55-130 ug/L 4-Chlorotoluene 44.9 1 ug/L 50.0 BI OD 89.8 75-130 47.4 1 BLOD 75-130 4-Isopropyltoluene ug/L 50.0 94.9 5 4-Methyl-2-pentanone (MIBK) 48.0 ug/L 50.0 3 58 88.8 60-135 42.3 10 84.7 Acetone ug/L 50.0 BLOD 40-140



## **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:48:43PM 24-01 LFG EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0433 - SW5030B-MS Matrix Spike (BHA0433-MS1) Source: 24A0505-01 Prepared & Analyzed: 01/12/2024 48.5 97.1 Benzene 1 ug/L 50.0 BLOD 80-120 Bromobenzene 50.3 1 ug/L 50.0 BLOD 101 75-125 1 50.0 BLOD 89.1 Bromochloromethane 44.6 ug/L 65-130 Bromodichloromethane 47.2 0.5 50.0 BLOD 94.4 75-136 ug/L Bromoform 46.0 1 ug/L 50.0 BI OD 92.0 70-130 40.2 1 BI OD 30-145 Bromomethane ug/L 50.0 80.3 Carbon disulfide 42.4 10 ug/L 50.0 BI OD 84.8 35-160 55.0 1 BLOD 110 65-140 Carbon tetrachloride ug/L 50.0 BLOD 95.5 Chlorobenzene 47.8 1 ug/L 50.0 80-120 41.3 1 50.0 BLOD 82.6 60-135 Chloroethane ua/L Chloroform 42.9 0.5 50.0 BLOD 85.9 65-135 ug/L Chloromethane 34.5 1 ug/L 50.0 BLOD 69.0 40-125 cis-1,2-Dichloroethylene 43.8 1 50.0 BLOD 87.6 70-125 ug/L 47.2 1 BLOD 47-136 cis-1,3-Dichloropropene ug/L 50.0 94.4 Dibromochloromethane 50.5 0.5 50.0 BI OD 60-135 ug/L 101 Dibromomethane 47.6 BLOD 95.1 75-125 1 ug/L 50.0 Dichlorodifluoromethane 36.1 1 ug/L 50.0 BLOD 72.2 30-155 47.8 1 50.0 BLOD 95.5 75-125 Ethylbenzene ug/L Hexachlorobutadiene 52.0 0.8 50.0 BLOD 104 50-140 ug/L 75-125 Isopropylbenzene 45.7 1 ug/L 50.0 BLOD 91.4 97.6 2 100 BLOD 97.1 75-130 m+p-Xylenes ug/L Methylene chloride 43.6 4 ug/L 50.0 BI OD 86.3 55-140 37.4 1 BLOD Methyl-t-butyl ether (MTBE) ug/L 50.0 74.8 65-125 Naphthalene 47.6 1 ug/L 50.0 BI OD 95.3 55-140 1 89.6 n-Butylbenzene 44.8 ug/L 50.0 BLOD 70-135



				<u>Ce</u>	ertificate o	of Analysi	is				
Client Name: SC	S Engineers-Win	chester				-		Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.: 24-	-01 LFG EW Mor	thlv Mor	nitorina								
	nifer Robb	5	5								
Submitted to. Jen											
			Vo	platile Org	anic Compounds b	by GCMS - Quali	ty Control				
					Enthalpy Ar	nalytical					
Analyte	R	esult	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA043	3 - SW503	0B-MS								
Matrix Spike (BHA0433-MS1)		Sourc	e: 24A0505-01		Prepared & Analy	/zed: 01/12/2024					
n-Propylbenzene		47.6	1	ug/L	50.0	BLOD	95.2	70-130			
o-Xylene		48.9	1	ug/L	50.0	BLOD	97.7	80-120			
sec-Butylbenzene		48.6	1	ug/L	50.0	BLOD	97.2	70-125			
Styrene		45.9	1	ug/L	50.0	BLOD	91.8	65-135			
tert-Butylbenzene		47.2	1	ug/L	50.0	BLOD	94.4	70-130			
Tetrachloroethylene (PCE)		57.1	1	ug/L	50.0	BLOD	114	51-231			
Toluene		56.0	1	ug/L	50.0	3.14	106	75-120			
trans-1,2-Dichloroethylene		45.3	1	ug/L	50.0	BLOD	90.5	60-140			
trans-1,3-Dichloropropene		48.5	1	ug/L	50.0	BLOD	97.0	55-140			
Trichloroethylene		52.2	1	ug/L	50.0	BLOD	104	70-125			
Trichlorofluoromethane		49.7	1	ug/L	50.0	BLOD	99.3	60-145			
Vinyl chloride		41.4	0.5	ug/L	50.0	BLOD	82.8	50-145			
Surr: 1,2-Dichloroethane-d-	4 (Surr)	44.1		ug/L	50.0		88.2	70-120			
Surr: 4-Bromofluorobenzen		48.9		ug/L	50.0		97.7	75-120			
Surr: Dibromofluoromethan	ne (Surr)	45.1		ug/L	50.0		90.2	70-130			
Surr: Toluene-d8 (Surr)		48.0		ug/L	50.0		96.1	70-130			
	Batch BHA052	3 - SW503	0B-MS								
Blank (BHA0523-BLK1)					Prepared & Analy	/zed: 01/16/2024					
1,1,1,2-Tetrachloroethane		ND	0.40	ug/L							
1,1,1-Trichloroethane		ND	1.00	ug/L							
1,1,2,2-Tetrachloroethane		ND	0.40	ug/L							
1,1,2-Trichloroethane		ND	1.00	ug/L							
1,1-Dichloroethane		ND	1.00	ug/L							
1,1-Dichloroethylene		ND	1.00	ug/L							



				<u>Cer</u>	tificate c	of Analysi	<u>is</u>				
Client Name:	SCS Engineers	-Winchester						Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG EW	/ Monthly Mon	itorina								
Submitted To:	Jennifer Robb	,, <b>,</b>									
Submitted To.											
			١	/olatile Organ	iic Compounds I	by GCMS - Qualit	ty Control				
					Enthalpy Ar	nalytical					
					Spike	Source		%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BH	1A0523 - SW503	0B-MS								
Blank (BHA0523-BLK1)	)			F	Prepared & Anal	yzed: 01/16/2024	L				
1,1-Dichloropropene		ND	1.00	ug/L							
1,2,3-Trichlorobenzer	ne	ND	1.00	ug/L							
1,2,3-Trichloropropan	ne	ND	1.00	ug/L							
1,2,4-Trichlorobenzer	ne	ND	1.00	ug/L							
1,2,4-Trimethylbenze	ene	ND	1.00	ug/L							
1,2-Dibromo-3-chloro		ND	1.00	ug/L							
1,2-Dibromoethane (I	EDB)	ND	1.00	ug/L							
1,2-Dichlorobenzene		ND	0.50	ug/L							
1,2-Dichloroethane		ND	1.00	ug/L							
1,2-Dichloropropane		ND	0.50	ug/L							
1,3,5-Trimethylbenze		ND	1.00	ug/L							
1,3-Dichlorobenzene		ND	1.00	ug/L							
1,3-Dichloropropane		ND	1.00	ug/L							
1,4-Dichlorobenzene		ND	1.00	ug/L							
2,2-Dichloropropane		ND	1.00	ug/L							
2-Butanone (MEK)		ND	10.0	ug/L							
2-Chlorotoluene		ND	1.00	ug/L							
2-Hexanone (MBK)		ND	5.00	ug/L							
4-Chlorotoluene		ND	1.00	ug/L							
4-Isopropyltoluene		ND	1.00	ug/L							
4-Methyl-2-pentanone	e (MIBK)	ND	5.00	ug/L							
Acetone		ND	10.0	ug/L							
Benzene		ND	1.00	ug/L							
Bromobenzene		ND	1.00	ug/L							
Bromochloromethane	e	ND	1.00	ug/L							



			<u>Cer</u>	tificate c	of Analysi	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG EW Monthly Mo	nitorina								
Submitted To:	Jennifer Robb									
Submitted 10.	Jennier Robb									
		,	Volatile Organ	lic Compounds I	oy GCMS - Qualit	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA0523 - SW50	30B-MS								
Blank (BHA0523-BLK1)	)		F	Prepared & Analy	/zed: 01/16/2024					
Bromodichlorometha		0.50	ug/L	· · ·						
Bromoform	ND	1.00	ug/L							
Bromomethane	ND	1.00	ug/L							
Carbon disulfide	ND	10.0	ug/L							
Carbon tetrachloride	ND	1.00	ug/L							
Chlorobenzene	ND	1.00	ug/L							
Chloroethane	ND	1.00	ug/L							
Chloroform	ND	0.50	ug/L							
Chloromethane	ND	1.00	ug/L							
cis-1,2-Dichloroethyle	ene ND	1.00	ug/L							
cis-1,3-Dichloroprope	ene ND	1.00	ug/L							
Dibromochlorometha	ane ND	0.50	ug/L							
Dibromomethane	ND	1.00	ug/L							
Dichlorodifluorometh	ane ND	1.00	ug/L							
Di-isopropyl ether (D	NPE) ND	5.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Hexachlorobutadiene	e ND	0.80	ug/L							
lodomethane	ND	10.0	ug/L							
Isopropylbenzene	ND	1.00	ug/L							
m+p-Xylenes	ND	2.00	ug/L							
Methylene chloride	ND	4.00	ug/L							
Methyl-t-butyl ether (	(MTBE) ND	1.00	ug/L							
Naphthalene	ND	1.00	ug/L							
n-Butylbenzene	ND	1.00	ug/L							
n-Propylbenzene	ND	1.00	ug/L							



				<u>Cer</u>	<u>tificate c</u>	of Analysi	is				
Client Name:	SCS Engineer	s-Winchester						Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG E\	N Monthly Mor	itorina								
Submitted To:	Jennifer Robb	•	5								
Submitted 10.											
			١	/olatile Organ	ic Compounds b	oy GCMS - Quali	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B	3HA0523 - SW503									
Plank (PHA0522 PI K4)		0HA0525 - 5W505	00-1013		Dronarad & Analy	uzadi 01/16/2024	1				
Blank (BHA0523-BLK1) o-Xylene	1	ND	1.00		riepared & Analy	yzed: 01/16/2024	+				
o-xylene sec-Butylbenzene		ND	1.00	ug/L ug/L							
Styrene		ND	1.00	ug/L							
tert-Butylbenzene		ND	1.00	ug/L							
Tetrachloroethylene (	PCE)	ND	1.00	ug/L							
Toluene	/	ND	1.00	ug/L							
trans-1,2-Dichloroeth	lylene	ND	1.00	ug/L							
trans-1,3-Dichloropro		ND	1.00	ug/L							
Trichloroethylene		ND	1.00	ug/L							
Trichlorofluoromethar	ne	ND	1.00	ug/L							
Vinyl acetate		ND	10.0	ug/L							
Vinyl chloride		ND	0.50	ug/L							
Xylenes, Total		ND	3.00	ug/L							
Surr: 1,2-Dichloroeth	ane-d4 (Surr)	54.6		ug/L	50.0		109	70-120			
Surr: 4-Bromofluorob		49.2		ug/L	50.0		98.5	75-120			
Surr: Dibromofluorom		55.5		ug/L	50.0		111	70-130			
Surr: Toluene-d8 (Su	rr)	50.9		ug/L	50.0		102	70-130			
LCS (BHA0523-BS1)				F	Prepared & Analy	yzed: 01/16/2024					
1,1,1,2-Tetrachloroetl	hane	57.0	0.4	ug/L	50.0		114	80-130			
1,1,1-Trichloroethane	9	58.9	1	ug/L	50.0		118	65-130			
1,1,2,2-Tetrachloroetl	hane	54.2	0.4	ug/L	50.0		108	65-130			
1,1,2-Trichloroethane	9	55.0	1	ug/L	50.0		110	75-125			
1,1-Dichloroethane		55.8	1	ug/L	50.0		112	70-135			
1,1-Dichloroethylene		56.8	1	ug/L	50.0		114	70-130			



				<u>Cer</u>	tificate c	of Analysi	is				
Client Name:	SCS Engineers	s-Winchester				-		Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG EW	Monthly Mon	itoring								
Submitted To:	Jennifer Robb	,	Ũ								
Submitted 10.						00140 0 1					
			١	/olatile Organ	ic Compounds I	oy GCMS - Qualit	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch Bł	HA0523 - SW5030	)B-MS								
LCS (BHA0523-BS1)				P	repared & Anal	/zed: 01/16/2024					
1,1-Dichloropropen	e	56.6	1	ug/L	50.0		113	75-135			
1,2,3-Trichlorobenz	ene	61.9	1	ug/L	50.0		124	55-140			
1,2,3-Trichloropropa	ane	53.1	1	ug/L	50.0		106	75-125			
1,2,4-Trichlorobenz	ene	63.4	1	ug/L	50.0		127	65-135			
1,2,4-Trimethylbenz	tene	62.2	1	ug/L	50.0		124	75-130			
1,2-Dibromo-3-chlo	ropropane (DBCP)	52.1	1	ug/L	50.0		104	50-130			
1,2-Dibromoethane	(EDB)	56.8	1	ug/L	50.0		114	80-120			
1,2-Dichlorobenzen	e	60.4	0.5	ug/L	50.0		121	70-120			L
1,2-Dichloroethane		48.6	1	ug/L	50.0		97.3	70-130			
1,2-Dichloropropan	е	52.8	0.5	ug/L	50.0		106	75-125			
1,3,5-Trimethylbenz	zene	62.6	1	ug/L	50.0		125	75-125			L
1,3-Dichlorobenzen	e	61.6	1	ug/L	50.0		123	75-125			
1,3-Dichloropropan	е	52.6	1	ug/L	50.0		105	75-125			
1,4-Dichlorobenzen	e	59.1	1	ug/L	50.0		118	75-125			
2,2-Dichloropropan	е	61.6	1	ug/L	50.0		123	70-135			
2-Butanone (MEK)		48.4	10	ug/L	50.0		96.7	30-150			
2-Chlorotoluene		60.6	1	ug/L	50.0		121	75-125			
2-Hexanone (MBK)		45.6	5	ug/L	50.0		91.2	55-130			
4-Chlorotoluene		59.1	1	ug/L	50.0		118	75-130			
4-Isopropyltoluene		67.1	1	ug/L	50.0		134	75-130			L
4-Methyl-2-pentano	ne (MIBK)	44.2	5	ug/L	50.0		88.5	60-135			
Acetone		49.2	10	ug/L	50.0		98.5	40-140			
Benzene		52.8	1	ug/L	50.0		106	80-120			
Bromobenzene		55.5	1	ug/L	50.0		111	75-125			
Bromochlorometha	ne	53.3	1	ug/L	50.0		107	65-130			



			<u>Cer</u>	tificate o	of Analysi	is				
Client Name:	SCS Engineers-Winchester				_		Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG EW Monthly Monit	oring								
Submitted To:	Jennifer Robb	0								
Submitted 10.										
		,	Volatile Organ	ic Compounds I	oy GCMS - Qualit	ty Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA0523 - SW5030B	B-MS								
LCS (BHA0523-BS1)			P	repared & Anal	/zed: 01/16/2024					
Bromodichlorometha	ane 55.3	0.5	ug/L	50.0		111	75-120			
Bromoform	60.3	1	ug/L	50.0		121	70-130			
Bromomethane	34.9	1	ug/L	50.0		69.8	30-145			
Carbon disulfide	54.4	10	ug/L	50.0		109	35-160			
Carbon tetrachloride	e 56.4	1	ug/L	50.0		113	65-140			
Chlorobenzene	57.5	1	ug/L	50.0		115	80-120			
Chloroethane	49.2	1	ug/L	50.0		98.5	60-135			
Chloroform	53.3	0.5	ug/L	50.0		107	65-135			
Chloromethane	40.8	1	ug/L	50.0		81.5	40-125			
cis-1,2-Dichloroethyl	lene 55.9	1	ug/L	50.0		112	70-125			
cis-1,3-Dichloroprop	ene 54.5	1	ug/L	50.0		109	70-130			
Dibromochlorometha	ane 57.2	0.5	ug/L	50.0		114	60-135			
Dibromomethane	53.4	1	ug/L	50.0		107	75-125			
Dichlorodifluorometh		1	ug/L	50.0		76.6	30-155			
Ethylbenzene	57.8	1	ug/L	50.0		116	75-125			
Hexachlorobutadien	e 72.8	0.8	ug/L	50.0		146	50-140			L
Isopropylbenzene	55.3	1	ug/L	50.0		111	75-125			
m+p-Xylenes	113	2	ug/L	100		113	75-130			
Methylene chloride	49.3	4	ug/L	50.0		98.7	55-140			
Methyl-t-butyl ether	(MTBE) 55.7	1	ug/L	50.0		111	65-125			
Naphthalene	58.6	1	ug/L	50.0		117	55-140			
n-Butylbenzene	68.4	1	ug/L	50.0		137	70-135			L
n-Propylbenzene	63.2	1	ug/L	50.0		126	70-130			
o-Xylene	57.4	1	ug/L	50.0		115	80-120			
sec-Butylbenzene	68.2	1	ug/L	50.0		136	70-125			L



			<u>Ce</u>	ertificate o	of Analysi	S				
Client Name: SC	S Engineers-Winchester						Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.: 24	-01 LFG EW Monthly Mor	itoring								
	nnifer Robb	0								
Submitted 10. Jer		,				0 1 1				
		,	Volatile Org	anic Compounds I	by GCMS - Qualit	y Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA0523 - SW503	0B-MS								
LCS (BHA0523-BS1)				Prepared & Anal	yzed: 01/16/2024					
Styrene	56.1	1	ug/L	50.0		112	65-135			
tert-Butylbenzene	63.9	1	ug/L	50.0		128	70-130			
Tetrachloroethylene (PCE)	60.7	1	ug/L	50.0		121	45-150			
Toluene	53.7	1	ug/L	50.0		107	75-120			
trans-1,2-Dichloroethylene	57.8	1	ug/L	50.0		116	60-140			
trans-1,3-Dichloropropene	57.0	1	ug/L	50.0		114	55-140			
Trichloroethylene	54.8	1	ug/L	50.0		110	70-125			
Trichlorofluoromethane	56.5	1	ug/L	50.0		113	60-145			
Vinyl chloride	46.0	0.5	ug/L	50.0		92.1	50-145			
Surr: 1,2-Dichloroethane-o	14 (Surr) 52.3		ug/L	50.0		105	70-120			
Surr: 4-Bromofluorobenzei	ne (Surr) 48.5		ug/L	50.0		96.9	75-120			
Surr: Dibromofluorometha	ne (Surr) 53.6		ug/L	50.0		107	70-130			
Surr: Toluene-d8 (Surr)	49.9		ug/L	50.0		99.8	70-130			
Duplicate (BHA0523-DUP1)	Sourc	e: 24A0853-(	02	Prepared & Anal	yzed: 01/16/2024					
1,1,1,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,1-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,2-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichloropropane	ND	1.00	ug/L		BLOD			NA	30	
1,2,4-Trichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	



## **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:48:43PM 24-01 LFG EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0523 - SW5030B-MS Duplicate (BHA0523-DUP1) Source: 24A0853-02 Prepared & Analyzed: 01/16/2024 ug/L 1,2,4-Trimethylbenzene ND 1.00 BLOD NA 30 1,2-Dibromo-3-chloropropane (DBCP) ND 1.00 ug/L BLOD NA 30 BLOD 1,2-Dibromoethane (EDB) ND 1.00 ug/L NA 30 1.2-Dichlorobenzene 0.50 BLOD 30 ND ug/L NA 1.2-Dichloroethane ND 1.00 ug/L BI OD NA 30 BLOD 1,2-Dichloropropane ND 0.50 ua/L NA 30 1,3,5-Trimethylbenzene ND 1.00 ug/L BI OD NA 30 BLOD 1.3-Dichlorobenzene ND 1.00 ua/L NA 30 BLOD 1,3-Dichloropropane ND 1.00 ug/L NA 30 BLOD 30 1.4-Dichlorobenzene ND 1.00 ua/L NA 2,2-Dichloropropane ND 1.00 BLOD NA 30 ug/L 2-Butanone (MEK) ND 10.0 ug/L BLOD NA 30 2-Chlorotoluene ND 1.00 BLOD 30 ug/L NA BLOD 2-Hexanone (MBK) ND 5.00 ug/L NA 30 4-Chlorotoluene BI OD 30 ND 1.00 ug/L NA BLOD 4-Isopropyltoluene ND 1.00 ug/L NA 30 4-Methyl-2-pentanone (MIBK) ND 5.00 ug/L BLOD NA 30 7.22 8.43 30 Acetone 10.0 ug/L NA ND 1.00 BLOD 30 Benzene ug/L NA BLOD Bromobenzene ND 1.00 ug/L NA 30 Bromochloromethane BLOD 30 ND 1.00 ug/L NA Bromodichloromethane ND 0.50 ug/L BLOD NA 30 Bromoform BLOD ND 1.00 ug/L NA 30 Bromomethane ND 1.00 ug/L BI OD NA 30 Carbon disulfide ND 10.0 ug/L BLOD NA 30

## Page 29 of 69



## **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:48:43PM 24-01 LFG EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** RPD Spike Source %REC Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0523 - SW5030B-MS Duplicate (BHA0523-DUP1) Source: 24A0853-02 Prepared & Analyzed: 01/16/2024 ug/L Carbon tetrachloride ND 1.00 BLOD NA 30 Chlorobenzene ND 1.00 ug/L BLOD NA 30 BLOD 30 Chloroethane ND 1.00 ug/L NA Chloroform 0.50 BLOD 30 ND ug/L NA BI OD Chloromethane ND 1.00 ug/L NA 30 BLOD cis-1,2-Dichloroethylene ND 1.00 ua/L NA 30 cis-1.3-Dichloropropene ND 1.00 ug/L BI OD NA 30 Dibromochloromethane BLOD ND 0.50 ua/L NA 30 BLOD Dibromomethane ND 1.00 ug/L NA 30 Dichlorodifluoromethane ND 1.00 BLOD 30 ua/L NA Di-isopropyl ether (DIPE) ND 5.00 ug/L BLOD NA 30 Ethylbenzene ND 1.00 ug/L BLOD NA 30 Hexachlorobutadiene ND 0.80 BLOD 30 ug/L NA lodomethane BLOD ND 10.0 ug/L NA 30 Isopropylbenzene BI OD 30 ND 1.00 ug/L NA 2.00 BLOD 30 m+p-Xylenes ND ug/L NA Methylene chloride ND 4.00 ug/L BLOD NA 30 BLOD 30 Methyl-t-butyl ether (MTBE) ND 1.00 ug/L NA Naphthalene ND 1.00 BLOD 30 ug/L NA BLOD 30 n-Butylbenzene ND 1.00 ug/L NA n-Propylbenzene BLOD 30 ND 1.00 ug/L NA o-Xylene ND 1.00 ug/L BI OD NA 30 sec-Butylbenzene BLOD ND 1.00 ug/L NA 30 ug/L Styrene ND 1.00 BI OD NA 30 ND tert-Butylbenzene 1.00 ug/L BLOD NA 30



				<u>Ce</u>	ertificate o	of Analysis	<u>S</u>				
Client Name:	SCS Engineers	s-Winchester						Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG EV	V Monthly Mon	itorina								
Submitted To:	Jennifer Robb	·									
Submitted to.											
			V	olatile Org	anic Compounds l	by GCMS - Quality	Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B	HA0523 - SW5030	B-MS								
Duplicate (BHA0523-D	0UP1)	Source	: 24A0853-0	2	Prepared & Anal	yzed: 01/16/2024					
Tetrachloroethylene	(PCE)	ND	1.00	ug/L		BLOD			NA	30	
Toluene		ND	1.00	ug/L		BLOD			NA	30	
trans-1,2-Dichloroet	hylene	ND	1.00	ug/L		BLOD			NA	30	
trans-1,3-Dichloropr	opene	ND	1.00	ug/L		BLOD			NA	30	
Trichloroethylene		ND	1.00	ug/L		BLOD			NA	30	
Trichlorofluorometha	ane	ND	1.00	ug/L		BLOD			NA	30	
Vinyl acetate		ND	10.0	ug/L		BLOD			NA	30	
Vinyl chloride		ND	0.50	ug/L		BLOD			NA	30	
Xylenes, Total		ND	3.00	ug/L		BLOD			NA	30	
Tetrahydrofuran		ND	10.0	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroetl	hane-d4 (Surr)	57.1		ug/L	50.0		114	70-120			
Surr: 4-Bromofluoro		49.1		ug/L	50.0		98.2	75-120			
Surr: Dibromofluoro	methane (Surr)	54.5		ug/L	50.0		109	70-130			
Surr: Toluene-d8 (Si	urr)	50.7		ug/L	50.0		101	70-130			
Matrix Spike (BHA052	3-MS1)	Source	: 24A0853-0 ⁻	I	Prepared & Anal	yzed: 01/16/2024					
1,1,1,2-Tetrachloroe		57.1	0.4	ug/L	50.0	BLOD	114	80-130			
1,1,1-Trichloroethan		62.5	1	ug/L	50.0	BLOD	125	65-130			
1,1,2,2-Tetrachloroe	ethane	58.1	0.4	ug/L	50.0	BLOD	116	65-130			
1,1,2-Trichloroethan	ie	55.6	1	ug/L	50.0	BLOD	111	75-125			
1,1-Dichloroethane		56.5	1	ug/L	50.0	BLOD	113	70-135			
1,1-Dichloroethylene	е	60.5	1	ug/L	50.0	BLOD	121	50-145			
1,1-Dichloropropene	e	60.3	1	ug/L	50.0	BLOD	121	75-135			
1,2,3-Trichlorobenze	ene	60.3	1	ug/L	50.0	BLOD	121	55-140			
1,2,3-Trichloropropa	ane	56.9	1	ug/L	50.0	BLOD	114	75-125			



## **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:48:43PM 24-01 LFG EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0523 - SW5030B-MS Prepared & Analyzed: 01/16/2024 Matrix Spike (BHA0523-MS1) Source: 24A0853-01 121 1.2.4-Trichlorobenzene 60.6 1 ug/L 50.0 BLOD 65-135 1,2,4-Trimethylbenzene 60.2 1 ug/L 50.0 BLOD 120 75-130 60.3 50.0 BLOD 121 1,2-Dibromo-3-chloropropane (DBCP) 1 ug/L 50-130 1.2-Dibromoethane (EDB) 56.0 1 50.0 BLOD 112 80-120 ug/L 0.5 1.2-Dichlorobenzene 58.8 ug/L 50.0 BI OD 118 70-120 48.2 1 BI OD 70-130 1.2-Dichloroethane ug/L 50.0 96.4 1,2-Dichloropropane 53.3 0.5 ug/L 50.0 BI OD 107 75-125 1 BLOD 122 75-124 1,3,5-Trimethylbenzene 60.8 ua/L 50.0 BLOD 75-125 1.3-Dichlorobenzene 60.0 1 ug/L 50.0 120 52.2 1 50.0 BLOD 104 75-125 1,3-Dichloropropane ua/L 1,4-Dichlorobenzene 57.7 1 50.0 BLOD 115 75-125 ug/L 2,2-Dichloropropane 65.1 1 ug/L 50.0 BLOD 130 70-135 2-Butanone (MEK) 58.2 10 50.0 BI OD 112 30-150 ug/L 58.9 BLOD 75-125 2-Chlorotoluene 1 ug/L 50.0 118 2-Hexanone (MBK) 53 4 5 50.0 BI OD 107 55-130 ug/L 4-Chlorotoluene 58.6 1 BLOD 75-130 ug/L 50.0 117 4-Isopropyltoluene 63.9 1 ug/L 50.0 BLOD 128 75-130 51.2 5 50.0 BLOD 102 60-135 4-Methyl-2-pentanone (MIBK) ug/L 64.2 10 50.0 15.4 97.7 40-140 Acetone ug/L BLOD Benzene 55.2 1 ug/L 50.0 110 80-120 56.5 1 50.0 BLOD 75-125 Bromobenzene ug/L 113 Bromochloromethane 54.3 1 ug/L 50.0 BI OD 109 65-130 Bromodichloromethane 56.1 0.5 BI OD 75-136 ug/L 50.0 112 Bromoform 61.6 1 ug/L 50.0 BI OD 123 70-130 1 83.5 Bromomethane 41.8 ug/L 50.0 BLOD 30-145



## **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:48:43PM 24-01 LFG EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0523 - SW5030B-MS Matrix Spike (BHA0523-MS1) Prepared & Analyzed: 01/16/2024 Source: 24A0853-01 56.2 112 Carbon disulfide 10 ug/L 50.0 BLOD 35-160 Carbon tetrachloride 59.7 1 ug/L 50.0 BLOD 119 65-140 58.7 50.0 BLOD 80-120 Chlorobenzene 1 ug/L 117 Chloroethane 52.2 1 50.0 BLOD 104 60-135 ug/L 0.5 Chloroform 53.7 ug/L 50.0 BI OD 107 65-135 Chloromethane 1 BI OD 40-125 43.0 ug/L 50.0 86.0 cis-1,2-Dichloroethylene 57.5 1 ug/L 50.0 BI OD 115 70-125 55.0 1 BLOD 110 47-136 cis-1.3-Dichloropropene ug/L 50.0 0.5 BLOD Dibromochloromethane 56.7 ug/L 50.0 113 60-135 Dibromomethane 52.0 1 50.0 BLOD 104 75-125 ua/L Dichlorodifluoromethane 41.5 1 50.0 BLOD 83.1 30-155 ug/L Ethvlbenzene 59.3 1 ug/L 50.0 BLOD 119 75-125 Hexachlorobutadiene 66.3 0.8 50.0 BI OD 133 50-140 ug/L Isopropylbenzene BLOD 75-125 56.0 1 ug/L 50.0 112 116 2 BI OD 116 75-130 m+p-Xylenes ug/L 100 50.7 4 50.0 BLOD 55-140 Methylene chloride ug/L 101 Methyl-t-butyl ether (MTBE) 55.8 1 ug/L 50.0 BLOD 112 65-125 63.2 1 50.0 BLOD 126 55-140 Naphthalene ug/L n-Butylbenzene 65.3 1 50.0 BLOD 131 70-135 ug/L BLOD 122 n-Propylbenzene 60.9 1 ug/L 50.0 70-130 58.0 1 50.0 BLOD 116 80-120 o-Xylene ug/L sec-Butylbenzene 65.4 1 ug/L 50.0 BI OD 131 70-125 Μ Stvrene 56.9 1 BI OD 65-135 ug/L 50.0 114 tert-Butylbenzene 62.2 1 ug/L 50.0 BI OD 124 70-130 63.2 1 126 Tetrachloroethylene (PCE) ug/L 50.0 BLOD 51-231



## **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:48:43PM Client Site I.D.: 24-01 LFG EW Monthly Monitoring Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** RPD Spike Source %REC Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0523 - SW5030B-MS Matrix Spike (BHA0523-MS1) Prepared & Analyzed: 01/16/2024 Source: 24A0853-01 55.7 BLOD 111 75-120 Toluene 1 ug/L 50.0 trans-1,2-Dichloroethylene 60.4 1 ug/L 50.0 BLOD 121 60-140 trans-1,3-Dichloropropene 56.3 1 50.0 BLOD 113 55-140 ug/L Trichloroethylene 57.6 1 50.0 BLOD 115 70-125 ug/L Trichlorofluoromethane BLOD 61.8 1 ug/L 50.0 124 60-145 Vinyl chloride 49.6 0.5 50.0 BLOD 99.2 50-145 ug/L Surr: 1,2-Dichloroethane-d4 (Surr) 70-120 53.6 ug/L 50.0 107 Surr: 4-Bromofluorobenzene (Surr) 48.0 ug/L 50.0 96.0 75-120 Surr: Dibromofluoromethane (Surr) 70-130 55.0 ug/L 50.0 110 Surr: Toluene-d8 (Surr) 50.5 50.0 70-130 ug/L 101



				Ce	rtificate o	of Analysi	is				
Client Name:	SCS Enginee	ers-Winchester						Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG E	W Monthly Mon	itoring								
Submitted To:	Jennifer Rob	-	U								
Cubinitiou 10.		•	Sou	mivolatila Ori	ania Compound	ls by GCMS - Qu	ality Control				
			361			•					
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch	BHA0472 - SW351	0C/EPA600	-MS							
Blank (BHA0472-BLK	1)			I	Prepared: 01/15	/2024 Analyzed: (	)1/16/2024				
Anthracene		ND	10.0	ug/L							
Surr: 2,4,6-Tribromo	ophenol (Surr)	68.5		ug/L	200		34.3	5-136			
Surr: 2-Fluorobiphe	nyl (Surr)	31.1		ug/L	100		31.1	9-117			
Surr: 2-Fluorophend	ol (Surr)	45.8		ug/L	200		22.9	5-60			
Surr: Nitrobenzene-	-d5 (Surr)	37.8		ug/L	100		37.8	5-151			
Surr: Phenol-d5 (Su	ırr)	26.5		ug/L	200		13.2	5-60			
Surr: p-Terphenyl-d	14 (Surr)	33.7		ug/L	100		33.7	5-141			
LCS (BHA0472-BS1)				l	Prepared: 01/15	/2024 Analyzed: (	)1/16/2024				
1,2,4-Trichlorobenz	ene	32.5	10.0	ug/L	50.0		65.0	57-130			
1,2-Dichlorobenzen	e	33.3	10.0	ug/L	50.0		66.5	22-115			
1,3-Dichlorobenzen	e	30.6	10.0	ug/L	50.0		61.2	22-112			
1,4-Dichlorobenzen	e	35.9	10.0	ug/L	50.0		71.8	13-112			
2,4,6-Trichlorophen	ol	35.6	10.0	ug/L	50.0		71.2	52-129			
2,4-Dichlorophenol		35.1	10.0	ug/L	50.0		70.3	53-122			
2,4-Dimethylphenol		38.3	5.00	ug/L	50.0		76.7	42-120			
2,4-Dinitrophenol		35.2	50.0	ug/L	50.0		70.5	48-127			
2,4-Dinitrotoluene		37.4	10.0	ug/L	50.0		74.7	10-173			
2,6-Dinitrotoluene		33.4	10.0	ug/L	50.0		66.7	68-137			L
2-Chloronaphthalen	ne	36.0	10.0	ug/L	50.0		71.9	65-120			
2-Chlorophenol		34.8	10.0	ug/L	50.0		69.5	36-120			
2-Nitrophenol		35.9	10.0	ug/L	50.0		71.7	45-167			
3,3'-Dichlorobenzidi	ine	35.1	10.0	ug/L	50.0		70.2	10-213			
4,6-Dinitro-2-methyl	Iphenol	33.1	50.0	ug/L	50.0		66.2	53-130			
4-Bromophenyl phe	enyl ether	31.0	10.0	ug/L	50.0		62.1	65-120			L



# Certificate of Analysis Date Issued:

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG EW Monthly Monitoring

34.3

38.5

41.2

43.5

29.3

36.6

35.6

33.6

34.9

32.5

36.5

33.1

37.4

40.4

32.9

32.7

41.3

33.0

39.8

25.9

Submitted To: Jennifer Robb

Anthracene

Benzo (a) anthracene

Benzo (b) fluoranthene

Benzo (g,h,i) perylene

Benzo (k) fluoranthene

bis (2-Chloroethyl) ether

Butyl benzyl phthalate

Dibenz (a,h) anthracene

Diethyl phthalate

Dimethyl phthalate

Di-n-butyl phthalate

Di-n-octyl phthalate

Hexachlorobenzene

Fluoranthene

Fluorene

Chrysene

bis (2-Chloroethoxy) methane

2,2'-Oxybis (1-chloropropane)

bis (2-Ethylhexyl) phthalate

Benzo (a) pyrene

43-120

42-133

32-148

42-140

10-195

25-146

49-165

43-126

63-139

29-137

10-140

44-140

10-200

10-120

10-120

10-120

19-132

43-121

70-120

10-142

68.7

76.9

82.4

87.0

58.7

73.1

71.2

67.2

69.8

65.1

72.9

66.2

74.9

80.9

65.9

65.4

82.6

66.0

79.6

51.8

2/6/2024 4:48:43PM

Semivolatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batc	h BHA0472 - SW351	0C/EPA600	-MS							
LCS (BHA0472-BS1)			F	Prepared: 01/15/	2024 Analyzed: 0	)1/16/2024				
4-Chlorophenyl phenyl ether	31.2	10.0	ug/L	50.0		62.4	38-145			
4-Nitrophenol	8.90	50.0	ug/L	50.0		17.8	13-129			
Acenaphthene	38.5	10.0	ug/L	50.0		77.0	60-132			
Acenaphthylene	39.1	10.0	ug/L	50.0		78.3	54-126			
Acetophenone	39.2	20.0	ug/L	50.0		78.3	0-200			

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

ug/L

ug/L

ug/L

ug/L

ua/L

ug/L

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

1.00



## **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:48:43PM 24-01 LFG EW Monthly Monitoring Client Site I.D.: Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BHA0472 - SW3510C/EPA600-MS LCS (BHA0472-BS1) Prepared: 01/15/2024 Analyzed: 01/16/2024 Hexachlorobutadiene 35.8 10.0 ug/L 50.0 71.6 38-120 Hexachlorocyclopentadiene 22.9 10.0 ug/L 50.0 45.8 10-76 50.0 80.6 Hexachloroethane 40.3 10.0 ug/L 55-120 35.3 50.0 70.6 10-151 Indeno (1,2,3-cd) pyrene 10.0 ug/L Isophorone 27.3 10.0 ug/L 50.0 54.6 47-180 39.3 78.6 36-120 Naphthalene 5.00 ug/L 50.0 Nitrobenzene 44.0 10.0 ug/L 50.0 88.0 54-158 47.9 10-85 n-Nitrosodimethylamine 24.0 10.0 ua/L 50.0 n-Nitrosodi-n-propylamine 42.0 10.0 ug/L 50.0 84.1 14-198 30.6 50.0 61.2 12-97 n-Nitrosodiphenylamine 10.0 ua/L p-Chloro-m-cresol 36.0 10.0 50.0 71.9 10-142 ug/L Pentachlorophenol 19.6 20.0 ug/L 50.0 39.2 38-152 Phenanthrene 45.8 10.0 50.0 91.7 65-120 ug/L Phenol 17-120 16.4 10.0 ug/L 50.5 32.6 28.4 50.0 56.9 70-120 L Pyrene 10.0 ug/L Pyridine 30.2 50.0 10-103 10.0 ug/L 60.4 Surr: 2,4,6-Tribromophenol (Surr) 73.3 200 36.7 5-136 ug/L Surr: 2-Fluorobiphenyl (Surr) 30.4 ug/L 100 30.4 9-117 Surr: 2-Fluorophenol (Surr) 44.5 200 222 5-60 ug/L 37.0 Surr: Nitrobenzene-d5 (Surr) 37.0 ug/L 100 5-151 Surr: Phenol-d5 (Surr) 27.5 200 13.7 5-60 ug/L Surr: p-Terphenyl-d14 (Surr) 27.7 ug/L 100 27.7 5-141



			<u>C</u>	ertificate of	f Analysis	5				
Client Name:	SCS Engineers-Winchester						Date Issue	d:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG EW Monthly Mo	onitoring								
Submitted To:	Jennifer Robb									
			We	t Chemistry Analysis	- Quality Control					
				Enthalpy Ana	llytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA0412 - No P	ep Wet Cher	n							
Blank (BHA0412-BLK	1)			Prepared & Analyz	ed: 01/12/2024					
BOD	ND	2.0	mg/L							
LCS (BHA0412-BS1)				Prepared & Analyz	ed: 01/12/2024					
BOD	209	2	mg/L	198		106	84.6-115.4			
Duplicate (BHA0412-D		rce: 24A0547-0	)4	Prepared & Analyz	ed: 01/12/2024					
BOD	2.1	2.0	mg/L		BLOD			NA	20	
	Batch BHA0421 - No P	ep Wet Cher	n							
Blank (BHA0421-BLK	1)			Prepared & Analyz	ed: 01/12/2024					
Nitrite as N	ND	0.05	mg/L							
LCS (BHA0421-BS1)				Prepared & Analyz	ed: 01/12/2024					
Nitrite as N	0.11	0.05	mg/L	0.100		108	80-120			
Matrix Spike (BHA042	1-MS1) Sou	rce: 24A0693-0	02	Prepared & Analyz	ed: 01/12/2024					
Nitrite as N	0.16	0.05	mg/L	0.100	0.07	93.0	80-120			
Matrix Spike Dup (BH	A0421-MSD1) Sou	rce: 24A0693-0	)2	Prepared & Analyz	ed: 01/12/2024					
Nitrite as N	0.16	0.05	mg/L	0.100	0.07	92.0	80-120	0.619	20	
	Batch BHA0569 - No P	ep Wet Cher	n							
Blank (BHA0569-BLK	1)			Prepared & Analyz	ed: 01/17/2024					
Nitrate+Nitrite as N	ND	0.10	mg/L							



			<u>Ce</u>	ertificate o	of Analysis	<u> </u>				
Client Name: S	CS Engineers-Winches	ter					Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.: 2	4-01 LFG EW Monthly	Monitoring								
Submitted To: Je	ennifer Robb									
			Wet	t Chemistry Analysi	s - Quality Control					
				Enthalpy An	alytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BHA0569 - No	Prep Wet Chem	ı							
LCS (BHA0569-BS1)				Prepared & Analy	/zed: 01/17/2024					
Nitrate+Nitrite as N	0.92	0.1	mg/L	1.00		92.5	90-110			
Matrix Spike (BHA0569-MS	\$1) s	Source: 24A0693-0	2	Prepared & Analy	/zed: 01/17/2024					
Nitrate+Nitrite as N	2.11	0.1	mg/L	1.00	1.19	92.2	90-120			
Matrix Spike Dup (BHA056	9-MSD1) S	Source: 24A0693-0	2	Prepared & Analy	/zed: 01/17/2024					
Nitrate+Nitrite as N	2.09	0.1	mg/L	1.00	1.19	90.1	90-120	1.00	20	
	Batch BHA0656 - No	Prep Wet Chem	1							
Blank (BHA0656-BLK1)				Prepared & Analy	/zed: 01/19/2024					
Cyanide	ND	0.01	mg/L							
LCS (BHA0656-BS1)				Prepared & Analy	/zed: 01/19/2024					
Cyanide	0.24	0.01	mg/L	0.250		97.6	80-120			
Matrix Spike (BHA0656-MS	\$1) S	Source: 24A0955-0	1	Prepared & Analy	/zed: 01/19/2024					
Cyanide	0.25	0.01	mg/L	0.250	BLOD	101	80-120			
Matrix Spike (BHA0656-MS		Source: 24A1101-0		Prepared & Analy						
Cyanide	0.26	0.01	mg/L	0.250	BLOD	104	80-120			
Matrix Spike Dup (BHA065	6-MSD2) S	Source: 24A1101-0 ⁻	1	Prepared & Analy	/zed: 01/19/2024					
Cyanide	0.25	0.01	mg/L	0.250	BLOD	101	80-120	2.90	20	
	Batch BHA0697 - No	Prep Wet Chem	1							
Blank (BHA0697-BLK1)				Prepared & Analy	/zed: 01/22/2024					
Ammonia as N	ND	0.10	mg/L							



				<u>Ce</u>	ertificate o	of Analysis	<u>}</u>				
Client Name:	SCS Engineers-Wi	nchester				-		Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG EW Mo	onthly Mon	itoring								
Submitted To:	Jennifer Robb										
				Wet	Chemistry Analys	is - Quality Control					
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
<u>y</u>	Batch BHA06	97 - No Pror	- Wot Chor								
	Batch BHA00	ST - NO FIEL	J Wet Chen		Droporod & Apol	waad. 01/22/2024					
LCS (BHA0697-BS1) Ammonia as N		1.05	0.1	mg/L	Prepared & Anar	yzed: 01/22/2024	105	90-110			
Matrix Spike (BHA069	07-MS1)		e: 24A1106-0	-		yzed: 01/22/2024	100	00 110			
Ammonia as N		2.06	0.1	mg/L	1.00	1.01	105	89.3-131			
Matrix Spike (BHA0697-MS2)		Source	e: 24A0923-0	1	Prepared & Anal	yzed: 01/22/2024					
Ammonia as N		1.06	0.1	mg/L	1.00	BLOD	103	89.3-131			
Matrix Spike Dup (BH	A0697-MSD1)	Source	e: 24A1106-0	4	Prepared & Anal	yzed: 01/22/2024					
Ammonia as N		2.06	0.1	mg/L	1.00	1.01	104	89.3-131	0.388	20	
Matrix Spike Dup (BH	A0697-MSD2)	Source	e: 24A0923-0	1	Prepared & Anal	yzed: 01/22/2024					
Ammonia as N		1.06	0.1	mg/L	1.00	BLOD	104	89.3-131	0.659	20	
	Batch BHA06	98 - No Prep	o Wet Chen	n							
Blank (BHA0698-BLK	1)				Prepared & Anal	yzed: 01/22/2024					
Total Recoverable F	Phenolics	ND	0.050	mg/L							
LCS (BHA0698-BS1)					Prepared & Anal	yzed: 01/22/2024					
Total Recoverable F	al Recoverable Phenolics 0.42 0.050 mg/L 0.505			82.4	80-120						
Matrix Spike (BHA069	98-MS1)	Source	e: 24A1018-0	1	Prepared & Anal	yzed: 01/22/2024					
Total Recoverable F	Recoverable Phenolics 0.40 0.050 mg/L 0.500 BLOD 79.6		79.6	70-130							
Matrix Spike Dup (BH	A0698-MSD1)	Source	e: 24A1018-0	1	Prepared & Anal	yzed: 01/22/2024					
Total Recoverable F	Phenolics	0.37	0.050	mg/L	0.500	BLOD	74.8	70-130	6.22	20	



				<u>Ce</u>	ertificate o	of Analysi	is				
Client Name:	SCS Engineers-V	Vinchester						Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG EW M	Monthly Moni	toring								
Submitted To:	Jennifer Robb										
				Wet	Chemistry Analys	is - Quality Contr	ol				
					Enthalpy A	nalytical					
					Spike	Source		%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BHA	0767 - No Prep	Wet Chen	n							
Blank (BHA0767-BLK	1)				Prepared & Anal	yzed: 01/23/2024					
TKN as N		ND	0.50	mg/L							
LCS (BHA0767-BS1)					Prepared & Anal	yzed: 01/23/2024					
TKN as N		5.20	0.50	mg/L	5.00		104	90-110			
Matrix Spike (BHA0767-MS1)			: 24A0832-0	)1	Prepared & Anal						Μ
TKN as N		6.20	0.50	mg/L	5.00	0.58	113	90-110			
Matrix Spike (BHA076	67-MS2)	Source	: 24A1306-0	)1	Prepared: 01/23/	2024 Analyzed: (	)1/24/2024				
TKN as N		5.80	0.50	mg/L	5.00	0.59	104	90-110			
Matrix Spike Dup (BH	IA0767-MSD1)	Source	: 24A0832-0	)1	Prepared & Anal	yzed: 01/23/2024					
TKN as N		6.02	0.50	mg/L	5.00	0.58	109	90-110	2.93	20	
Matrix Spike Dup (BH	A0767-MSD2)	Source	: 24A1306-0	)1	Prepared: 01/23/						
TKN as N		5.75	0.50	mg/L	5.00	0.59	103	90-110	0.884	20	
	Batch BHA	0851 - No Prep	Wet Chen	n							
Blank (BHA0851-BLK	1)				Prepared & Anal	yzed: 01/25/2024					
COD		ND	10.0	mg/L							
LCS (BHA0851-BS1)					Prepared & Anal	yzed: 01/25/2024					
COD		51.9	10.0	mg/L	50.0		104	88-119			
Matrix Spike (BHA085	51-MS1)	Source	: 24A0680-0	)1	Prepared & Anal	yzed: 01/25/2024					
COD		60.0	10.0	mg/L	50.0	10.0	99.9	72.4-130			



				<u>Ce</u>	ertificate o	of Analysi	S				
Client Name:	SCS Engineer	s-Winchester				-		Date Issue	ed:	2/6/2024	4:48:43PM
Client Site I.D.:	24-01 LFG EV	W Monthly Mo	nitoring								
Submitted To:	Jennifer Robb										
				Wet	Chemistry Analys	is - Quality Contro	ol				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B	HA0851 - No Pre	ep Wet Cher	n							
Matrix Spike Dup (BH	A0851-MSD1)	Sourc	ce: 24A0680-0	01	Prepared & Anal	yzed: 01/25/2024					
COD		55.1	10.0	mg/L	50.0	10.0	90.1	72.4-130	8.46	20	



			Certificate of	of Analysis			
Client Name:	SCS Engineers-Winch	nester			Date Issued:	2/6/2024	4:48:4
Client Site I.D.:	24-01 LFG EW Montl	nly Monitoring					
Submitted To:	Jennifer Robb	, ,					
	Analytical Summary						
24A0675-01		Subcontract					
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID		
Metals (Total) by EPA 6	6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4			
24A0675-01	50.0 mL / 50.0 mL	SW6020B	BHA0466	SHA0479	AA40230		
24A0675-01RE1	50.0 mL / 50.0 mL	SW6020B	BHA0466	SHA0479	AA40230		
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID		
Wet Chemistry Analysi	is		Preparation Method:	No Prep Wet Chem			
24A0675-01	300 mL / 300 mL	SM5210B-2016	BHA0412	SHA0527			
24A0675-01	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHA0421	SHA0374	AJ30297		
24A0675-01	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHA0569	SHA0512	AA40239		
24A0675-01	6.00 mL / 6.00 mL	SW9012B	BHA0656	SHA0601	AA40256		
24A0675-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0697	SHA0650	AA40270		
24A0675-01	5.00 mL / 10.0 mL	SW9065	BHA0698	SHA0641	AA40268		
24A0675-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0767	SHA0739	AA40286		
24A0675-01	2.00 mL / 2.00 mL	SM5220D-2011	BHA0851	SHA0796	AA40295		
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID		
Semivolatile Organic C	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-M	S		
24A0675-01	500 mL / 1.00 mL	SW8270E	BHA0472	SHA0508	AK30271		
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID		
Volatile Organic Comp	ounds by GCMS		Preparation Method:	SW5030B-MS			
24A0675-01	5.00 mL / 5.00 mL	SW8260D	BHA0433	SHA0389	AJ30373		



## **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 2/6/2024 4:48:43PM Client Site I.D.: 24-01 LFG EW Monthly Monitoring Submitted To: Jennifer Robb **Preparation Factors** Sample ID Method Batch ID Sequence ID Calibration ID Initial / Final Volatile Organic Compounds by GCMS **Preparation Method:** SW5030B-MS BHA0433 24A0675-02 5.00 mL / 5.00 mL SW8260D SHA0389 AJ30373 5.00 mL / 5.00 mL SW8260D BHA0523 SHA0483 AL30322 24A0675-01RE1

Page 44 of 69



## **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG EW Monthly Monitoring

Submitted To: Jennifer Robb

QC Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
BHA0466-BLK1	50.0 mL / 50.0 mL	SW6020B	BHA0466	SHA0479	AA40230
BHA0466-BS1	50.0 mL / 50.0 mL	SW6020B	BHA0466	SHA0479	AA40230
BHA0466-MS1	50.0 mL / 50.0 mL	SW6020B	BHA0466	SHA0479	AA40230
BHA0466-MS2		SW6020B	BHA0466	SHA0479	AA40230
BHA0466-MS2	50.0 mL / 50.0 mL	SW6020B	BHA0466	SHA0479	AA40230
BHA0466-MSD1	50.0 mL / 50.0 mL	SW6020B	BHA0466	SHA0479	AA40230
BHA0466-MSD2		SW6020B	BHA0466	SHA0479	AA40230
BHA0466-MSD2	50.0 mL / 50.0 mL	SW6020B	BHA0466	SHA0479	AA40230
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	/sis		Preparation Method:	No Prep Wet Chem	
BHA0412-BLK1	300 mL / 300 mL	SM5210B-2016	BHA0412	SHA0527	
BHA0412-BS1	300 mL / 300 mL	SM5210B-2016	BHA0412	SHA0527	
BHA0412-DUP1	300 mL / 300 mL	SM5210B-2016	BHA0412	SHA0527	
BHA0421-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHA0421	SHA0374	AJ30297
BHA0421-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHA0421	SHA0374	AJ30297
BHA0421-MRL1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHA0421	SHA0374	AJ30297
BHA0421-MS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHA0421	SHA0374	AJ30297
BHA0421-MSD1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BHA0421	SHA0374	AJ30297
BHA0569-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHA0569	SHA0512	AA40239
BHA0569-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BHA0569	SHA0512	AA40239
DULASESS NO.			BHA0569	SHA0512	AA40239
BHA0569-MS1	12.5 mL / 25.0 mL	SM4500-NO3F-2016	DHAU309	3HAU312	AA40239

Date Issued:



## **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG EW Monthly Monitoring

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	sis		Preparation Method:	No Prep Wet Chem	
BHA0656-BLK1	6.00 mL / 6.00 mL	SW9012B	BHA0656	SHA0601	AA40256
BHA0656-BS1	6.00 mL / 6.00 mL	SW9012B	BHA0656	SHA0601	AA40256
BHA0656-MRL1	6.00 mL / 6.00 mL	SW9012B	BHA0656	SHA0601	AA40256
BHA0656-MS1	6.00 mL / 6.00 mL	SW9012B	BHA0656	SHA0601	AA40256
BHA0656-MS2	6.00 mL / 6.00 mL	SW9012B	BHA0656	SHA0601	AA40256
BHA0656-MSD1		SW9012B	BHA0656	SHA0601	AA40256
BHA0656-MSD2	6.00 mL / 6.00 mL	SW9012B	BHA0656	SHA0601	AA40256
BHA0697-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0697	SHA0650	AA40270
BHA0697-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0697	SHA0650	AA40270
BHA0697-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0697	SHA0650	AA40270
BHA0697-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0697	SHA0650	AA40270
BHA0697-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0697	SHA0650	AA40270
BHA0697-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BHA0697	SHA0650	AA40270
BHA0698-BLK1	5.00 mL / 10.0 mL	SW9065	BHA0698	SHA0641	AA40268
BHA0698-BS1	5.00 mL / 10.0 mL	SW9065	BHA0698	SHA0641	AA40268
BHA0698-MRL1	5.00 mL / 10.0 mL	SW9065	BHA0698	SHA0641	AA40268
BHA0698-MS1	5.00 mL / 10.0 mL	SW9065	BHA0698	SHA0641	AA40268
BHA0698-MSD1	5.00 mL / 10.0 mL	SW9065	BHA0698	SHA0641	AA40268
BHA0767-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0767	SHA0739	AA40286
BHA0767-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0767	SHA0739	AA40286
BHA0767-MRL1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0767	SHA0739	AA40286
BHA0767-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0767	SHA0739	AA40286
BHA0767-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0767	SHA0739	AA40286
BHA0767-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0767	SHA0739	AA40286
BHA0767-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BHA0767	SHA0739	AA40286
BHA0851-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BHA0851	SHA0796	AA40295
BHA0851-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BHA0851	SHA0796	AA40295
BHA0851-MRL1	2.00 mL / 2.00 mL	SM5220D-2011	BHA0851	SHA0796	AA40295
BHA0851-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BHA0851	SHA0796	AA40295

Date Issued:



## **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG EW Monthly Monitoring

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	/sis		Preparation Method:	No Prep Wet Che	m
BHA0851-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BHA0851	SHA0796	AA40295
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA60	D-MS
BHA0472-BLK1	1000 mL / 1.00 mL	1.00 mL SW8270E BHA0472		SHA0508	AK30271
BHA0472-BLK2		SW8270E	BHA0472	SHA0579	AL30202
BHA0472-BLK3		SW8270E	BHA0472	SHA0732	AA40272
BHA0472-BS1	1000 mL / 1.00 mL	SW8270E	BHA0472	SHA0508	AK30271
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
BHA0433-BLK1	5.00 mL / 5.00 mL	SW8260D	BHA0433	SHA0389	AJ30373
BHA0433-BLK2	5.00 mL / 5.00 mL	SW8260D	BHA0433	SHA0389	AJ30373
BHA0433-BS1	5.00 mL / 5.00 mL	SW8260D	BHA0433	SHA0389	AJ30373
BHA0433-BS2	5.00 mL / 5.00 mL	SW8260D	BHA0433	SHA0389	AJ30373
BHA0433-DUP1	0.250 mL / 5.00 mL	SW8260D	BHA0433	SHA0389	AJ30373
BHA0433-MS1	0.250 mL / 5.00 mL	SW8260D	BHA0433	SHA0389	AJ30373
BHA0523-BLK1	5.00 mL / 5.00 mL	SW8260D	BHA0523	SHA0483	AL30322
BHA0523-BLK2	5.00 mL / 5.00 mL	SW8260D	BHA0523	SHA0483	AL30322
BHA0523-BS1	5.00 mL / 5.00 mL	SW8260D	BHA0523	SHA0483	AL30322
BHA0523-BS2	5.00 mL / 5.00 mL	SW8260D	BHA0523	BHA0523 SHA0483	
BHA0523-DUP1	5.00 mL / 5.00 mL	SW8260D	BHA0523	SHA0483	AL30322
BHA0523-MS1	5.00 mL / 5.00 mL	SW8260D	BHA0523	SHA0483	AL30322

Date Issued:



## **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG EW Monthly Monitoring

Submitted To: Jennifer Robb

Date Issued:



		<u>Certificate of Analysis</u>		
Client Name:	SCS Engineers-Winchester		Date Issued:	2/6/2024 4:48:43PM
Client Site I.D.:	24-01 LFG EW Monthly Monitoring			
Submitted To:	Jennifer Robb			
Certified Analys	ses included in this Report			
Analyte		Certifications		
EPA350.1 R2.0 in N	Non-Potable Water			
Ammonia as N		VELAP,NCDEQ,PADEP,WVDEP		
EPA351.2 R2.0 in N	Non-Potable Water			
TKN as N		VELAP,NCDEQ,WVDEP		
SM4500-NO2B-201	11 in Non-Potable Water			
Nitrite as N		VELAP,WVDEP,NCDEQ		
SM4500-NO3F-201	6 in Non-Potable Water			
Nitrate+Nitrite as N		VELAP,WVDEP		
SM5210B-2016 in I	Non-Potable Water			
BOD		VELAP,NCDEQ,WVDEP		
	Non-Potable Water			
COD		VELAP,NCDEQ,PADEP,WVDEP		
SW6020B in Non-P	Potable Water			
Mercury		VELAP		
Arsenic		VELAP,WVDEP		
Barium		VELAP,WVDEP		
Cadmium		VELAP,WVDEP		
Chromium		VELAP,WVDEP		
Copper		VELAP,WVDEP		
Lead		VELAP,WVDEP		
Nickel		VELAP,WVDEP		
Selenium		VELAP,WVDEP		
Silver		VELAP,WVDEP		
Zinc		VELAP,WVDEP		



		<b>Certificate of Analysis</b>		
Client Name:	SCS Engineers-Winchester		Date Issued:	2/6/2024 4:48:43PM
Client Site I.D.:	24-01 LFG EW Monthly Monitoring			
Submitted To:	Jennifer Robb			
Certified Analys	ses included in this Report			
Analyte		Certifications		
2-Butanone (MEK)		VELAP,NCDEQ,PADEP,WVDEP		
Acetone		VELAP,NCDEQ,PADEP,WVDEP		
Benzene		VELAP,NCDEQ,PADEP,WVDEP		
Ethylbenzene		VELAP,NCDEQ,PADEP,WVDEP		
Toluene		VELAP,NCDEQ,PADEP,WVDEP		
Xylenes, Total		VELAP,NCDEQ,PADEP,WVDEP		
Tetrahydrofuran		VELAP,PADEP		
SW8270E in Non-P	Potable Water			
Anthracene		NCDEQ,WVDEP,VELAP,PADEP		
SW9012B in Non-P	Potable Water			
Cyanide		VELAP,WVDEP		
SW9065 in Non-Po	table Water			
Total Recoverable F	Phenolics	VELAP,WVDEP		



## **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG EW Monthly Monitoring

Submitted To: Jennifer Robb

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2024
NCDEQ	North Carolina DEQ	495	12/31/2024
NCDOH	North Carolina Department of Health	51714	07/31/2024
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #009	68-03503	10/31/2024
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/14/2024
TXCEQ	Texas Comm on Environmental Quality #T104704576-23-1	T104704576	05/31/2024
VELAP	NELAP-Virginia Certificate #12617	460021	06/14/2024
WVDEP	West Virginia DEP	350	11/30/2024

Date Issued:



		Certificate of Analysis			
Client Na	ame:	SCS Engineers-Winchester	Date Issued:	2/6/2024	4:48:43PM
Client Si	te I.D.:	24-01 LFG EW Monthly Monitoring			
Submitte	ed To:	Jennifer Robb			
		Qualifiers and Definitions			
CI	Residual (	Chlorine or other oxidizing agent was detected in the container used to analyze this sample.			
DS	Surrogate	concentration reflects a dilution factor.			
E	Estimated	concentration, outside calibration range			
J	The report	red result is an estimated value.			
L	LCS recov	very is outside of established acceptance limits			
Μ	Matrix spil	e recovery is outside established acceptance limits			
M2	Sample w	as diluted due to matrix interference.			
RPD	Relative Pe	rcent Difference			
Qual	Qualifers				
-RE	Denotes sa	mple was re-analyzed			
LOD	Limit of Det	ection			
BLOD	Below Limit	of Detection			
LOQ	Limit of Qua	antitation			
DF	Dilution Fac	stor			
TIC	library. A TI	Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral C spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations a nd are calculated using an internal standard response factor of 1.	re		
PCBs, Tota	al Total PC	CBs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.			



## CHAIN OF CUSTODY

PAGE 1 OF 1

COMPANY NAME: SCS Eng					CE TO			S	AM	E			PF	PROJECT NAME/Quote #: City of Bristol Landfill #588								
CONTACT: Jennifer Robb	1			INVOI	CE CO	NTACT	Γ:	2					SI	TEN	IAN	1E:	24	-01	LFG-I	EW	Mon	thly Monitoring
ADDRESS: 296 Victory Road				INVOI	CE AD	DRESS	S:	1					PF	PROJECT NUMBER: 02218208.15 Task 2								
Winchester, VA 226	602			INVOI	DICE PHONE #: P.O. #:																	
PHONE #: 703-471-6150		E	EMAIL: jro	bb@sc	sengin	ers.co	m	E.					Pr	etrea	atme	ent P	rogra	am:				
Is sample for compliance reportir	ng?	YES	NO Regul	atory S	tate:	VA	ls sam	ple fro	m a	chlo	ring	ted s	upply?		YE	s (	10	>	PWS	I.D.	#:	
SAMPLER NAME (PRINT):	III E	ob	ric		SA	MPLEF	RSIGN	ATUR	E:	Win	1	1						Tu	n Aro	und	Tim	e: 10 Day(s)
Matrix Codes: WW=Waste Water/Storm Wa				king Wate	er S=Soi	/Solids C	R=Orga	nic A=Ai	WP						_							COMMENTS
e     Start Time       e     Start Date       f     Containers       a     - EPA 350.1       f     Start Colors       f     Start Colors       f     Start Start Colors       f     Start Colors       f								Preservative Codes: N=Nitric Acid C=Hydrochloric Acid S=Sulfuric Acid H=Sodium Hydroxide A=Ascorbic Acid Z=Zinc Acetate T=Sodium Thiosulfate M=Methanol														
	. Grab Composite	Field Fi	Compo			Grab Time	Time P			Ammo		Cyanide -	Nitrate S (report se	Nitrite	SVOC	Total M. Cu, Pb,	TKN - E	Mercury	Total Reco	A A	Which	PLEASE NOTE PRESERVATIVE(S), INTERFERENCE CHECKS or PUMP RATE (L/min)
1) EW-51	X	$\vdash$		11	124	9:30		GW	13	7							F			-		
2)		$\vdash$						GW		_	_			$\vdash$	-		╀			+	$\left  \right $	
3)								GW GW	$\left  \right $	+	+	+		$\left  \right $	+		+			+	$\vdash$	
4)	+ + -							GW			+	+			-		+-	-		+	$\vdash$	
5) 6)								GW		-	-	-			-		+	$\square$		1	$\vdash$	338
7)								GW			-						+			1	$\vdash$	0.8°C
8)								GW													$\square$	onice
9)								GW														Sealed
10) Trip Blank	X			08	10923			DI	2													VOU 8260
RELINQUISHED	DATE /	7140	the second se	edi	хĒ		DATE /		QC Leve		Pac		LAB U Custody	Seals	useo		erm I tact?			_	1	ER TEMP°C Received on ice? (Y / N)
RELINQUISHED:	DATE /		RECEIVED:	AQO	emu	, 1/12	241	) 9 40 TIME	Leve				0.000	S-V 01 1		G EV	N			24	406	0/0
Recd: 01/12/2024 Due: 01/26/2024																						

Sample Preservation Log Form #: F1301 Rev # 15.0 Effective: July 13, 2023 Page 1 of 1



# **Sample Preservation Log**

Order 10_24 A0675

Date Performed: 1-12-24

Analyst Performing Check:

the second se

RCI

		Metals			Cyanide				Sulfide		Ammonia		nia	TKN			P	hos, '	ios, Tot		NO3+NO2			DRO			Pesticide (8081/608/508) PCB DW only			(323/82/0/025)			CrV	¶ <b>* *</b> *	Pest/PCB (508) / SVOC(525)		(0)			Phenolic			
	Der 10	pi Rec	l as elved	H	pi Rec	l as elved	H	P Rei	H as celved	H		as elved	Ha	pi Rec	H as bovie:	Hd	p Rec	H as colved	H	P Re	H as ceived	E	Re	oH as icelved	H		Recei Res.	~	final +	Rec	elved I. Cl	final +	Lved H	Hd	P Rei	H as ceived	Ha	pi Rec	i äs olved	Ha	Rec	eived	Hql
Sample ID	Container ID		Other	Finel pH		Other	Final pH		Other		П	Other	Final pH		Other	Final pH	<2	Other	Finel pH	<2	Othe	Finel pH	<2	Othe	Finat pH		+		or •	٠	-	or -	Received pH	Final pH	<2	other	Fine	ৎ৵	Other	Final pH	62	Other	Fina
DI	Ā	Γ	7	62																																							
01	C					R	7/2																																				
01												7	Kd		7	<2					)	62																	7	4			
σ١	F	Γ		Γ																																						7	دكم
01	6																														-												
	Ť	$\square$			1									Γ						Γ																							
	1	Τ			T		$\square$							Γ																													
													1																														
		T			1						Ĺ																																
				-				1				-				·																							-				
								Τ													Τ																						
<b> </b>		┢	1			1		1									Γ			Γ																							-
							1-	Τ																																			
		╀	-	$\top$		1	-	┢		1-	Γ			Γ			Γ			Γ																							
		╢			Γ		1-	T		1										I		Τ																					
NaOH ID: 2460468 HNO3 ID: 3203050						_	CrV	CrVI preserved date/time: Analyst Initials:																																			
NaOH ID: 2460468 HNO3 ID: 3203050 H2SO4 ID: 3202567 Na2S2O3 ID:							_	* pH must be adjusted between 9.3 - 9.7 Ammonia Buffer Sol'n ID:																																			
HCL ID: Na2SO3 ID:							5N I	5N NaOH ID:																																			
Page 54 of 69																			1	lei as i	tals add n th	wer led a e Lo	e re at 1 Dg-1	ceiv 105 n ro	ved on j om	wii 12 Io	th p Jan bri	0H = 20 ing	= 7. 24 ( p= <	НN Уу R <2.	(03 (CJ												



## **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 24-01 LFG EW Monthly Monitoring

Submitted To: Jennifer Robb

Date Issued:



Certificate of Analysis									
Client Name: Client Site I.D.: Submitted To:	SCS Engineers-Winchester 24-01 LFG EW Monthly Monitoring Jennifer Robb	Date Issued:	2/6/2024 4:48:43PM						
	Laboratory Order ID: 24A0675								
	Sample Conditions Checklist								
	Samples Received at:		0.80°C						
	How were samples received?	Fe	edEx Express						
	Were Custody Seals used? If so, were they received intact?		Yes						
	Are the custody papers filled out completely and correctly?		Yes						
	Do all bottle labels agree with custody papers?	Do all bottle labels agree with custody papers?							
	Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?		Yes						
	Are all samples within holding time for requested laboratory tests?		Yes						
	Is a sufficient amount of sample provided to perform the tests included?		Yes						
	Are all samples in appropriate containers for the analyses requested?		Yes						
	Were volatile organic containers received?		Yes						
	Are all volatile organic and TOX containers free of headspace?	Are all volatile organic and TOX containers free of headspace?							
	Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624 EPA8015 GRO, EPA8021, EPA524, and RSK-175.	Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.							
	Are all samples received appropriately preserved? Note that metals containers do not require field preservation but preservation may delay analysis. In addition, field parameters are always received outside holding time and will be n accordingly.		Yes						



Pace Analytical Services, LLC 7979 Innovation Park Drive Baton Rouge, LA 70820 (225) 769-4900

January 29, 2024

Virginia Thrasher Enthalpy 1941 Reymet Road Richmond, VA 23237

RE: Project: 24A0675 Pace Project No.: 20304472

Dear Virginia Thrasher:

Enclosed are the analytical results for sample(s) received by the laboratory on January 19, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Baton Rouge

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ruth Webs

Ruth Welsh ruth.welsh@pacelabs.com (225) 769-4900 Project Manager

Enclosures

cc: Andrew Bruner, Enthalpy Daniel Elliott, Enthalpy Meghan Meyer, Enthalpy



# **REPORT OF LABORATORY ANALYSIS**



Pace Analytical Services, LLC 7979 Innovation Park Drive Baton Rouge, LA 70820 (225) 769-4900

## CERTIFICATIONS

 Project:
 24A0675

 Pace Project No.:
 20304472

#### Pace Analytical Services Baton Rouge

7979 Innovation Park Drive Ste A, Baton Rouge, LA 70820-7402 Louisiana Dept of Enviromental Quality (NELAC/LELAP): 01979 Florida Dept of Health (NELAC/FELAP): E87854 DoD ELAP (A2LA) #: 6429.01 Alabama DEM #: 41900 Alaska DEC-DW #: LA00024 Alaska DEC CS-LAP #: 21-001 Arkansas DEQ #: 88-0655 California ELAP #: 3063 Georgia DPD #: C050 Hawaii DOH State Laboratories Division Illinois EPA #: 200048 Kansas DoHE #: E-10354 Kentucky DEP UST Branch #: 123054 Louisiana DOH #: LA036 Minnesota DOH #: 2233799 Mississippi State Dept of Health

Montana Department of Environmental Quality Nebraska DHHS #: NE-OS-35.21 Nevada DCNR DEP #: LA00024 New York DOH #: 12149 North Carolina DEQ - WW & GW #: 618 North Dakota DEQ #: R195 Ohio EPA #: 87782 Oklahoma Dept of Environmental Quality #: 9403 Oregon ELAP #: 4168 Pennsylvania Dept of Environmental Protection #: 68-05973 South Carolina DHEC #: 73006001 Texas CEQ #: T104704178-23-15 Utah DOH #: LA00024 Virginia DCLS #: 6460215 Washington Dept of Ecology #: C929 Wisconsin DNR #: 399139510

**REPORT OF LABORATORY ANALYSIS** 



# SAMPLE SUMMARY

Project: Pace Project No	24A0675 b.: 20304472			
Lab ID	Sample ID	Matrix	Date Collected	Date Received
20304472001	24A0675:EW-51	Water	01/11/24 09:30	01/19/24 12:30

**REPORT OF LABORATORY ANALYSIS** 



# SAMPLE ANALYTE COUNT

Project: 24A0675 Pace Project No.: 20304472

Lab ID	Sample ID	Method	Analysts	Analytes Reported
20304472001	24A0675:EW-51	Pace ENV-SOP-BTRO-0042	LHM	10

PASI-BR = Pace Analytical Services - Baton Rouge

**REPORT OF LABORATORY ANALYSIS** 





Pace Analytical Services, LLC 7979 Innovation Park Drive Baton Rouge, LA 70820 (225) 769-4900

## **PROJECT NARRATIVE**

 Project:
 24A0675

 Pace Project No.:
 20304472

#### Method: Pace ENV-SOP-BTRO-0042

Description:BR AM23G Low Level VFAClient:BR-EnthalpyDate:January 29, 2024

## **General Information:**

1 sample was analyzed for Pace ENV-SOP-BTRO-0042 by Pace Analytical Services Baton Rouge. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

## Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

## Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

## **Internal Standards:**

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

## Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

## Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### Additional Comments:

Analyte Comments:

#### QC Batch: 316640

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- MS (Lab ID: 1517509)
- Lactic Acid
- MSD (Lab ID: 1517508)
  - Lactic Acid

D4: Sample was diluted due to the presence of high levels of target analytes.

- 24A0675:EW-51 (Lab ID: 20304472001)
  - Lactic Acid

Pag	<u>e 5 o</u>	£13
Page 6		



## **PROJECT NARRATIVE**

 Project:
 24A0675

 Pace Project No.:
 20304472

#### Method: Pace ENV-SOP-BTRO-0042

Description:BR AM23G Low Level VFAClient:BR-EnthalpyDate:January 29, 2024

Analyte Comments:

QC Batch: 316640

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

• 24A0675:EW-51 (Lab ID: 20304472001)

- Hexanoic Acid
- i-Hexanoic Acid
- i-Pentanoic Acid
- Pentanoic Acid
- BLANK (Lab ID: 1515816)
  - Hexanoic Acid
  - i-Hexanoic Acid
  - i-Pentanoic Acid
  - Pentanoic Acid
- LCS (Lab ID: 1515817)
  - Hexanoic Acid
  - i-Hexanoic Acid
  - i-Pentanoic Acid
  - Pentanoic Acid
- MS (Lab ID: 1517509)
  - Hexanoic Acid
  - i-Hexanoic Acid
  - i-Pentanoic Acid
  - Pentanoic Acid
- MSD (Lab ID: 1517508)
  - Hexanoic Acid
  - i-Hexanoic Acid
  - i-Pentanoic Acid
  - Pentanoic Acid

This data package has been reviewed for quality and completeness and is approved for release.



# ANALYTICAL RESULTS

Project: 24A0675

Pace Project No.: 20304472

Sample: 24A0675:EW-51	Lab ID: 20	0304472001	Collected: 01/11/2	24 09:30	Received: 07	1/19/24 12:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
BR AM23G Low Level VFA	Analytical Me	ethod: Pace E	NV-SOP-BTRO-004	2				
	Pace Analyti	cal Services -	Baton Rouge					
Pentanoic Acid	ND	mg/L	250	500		01/24/24 23:43	109-52-4	N2
Acetic Acid	4410	mg/L	250	500		01/24/24 23:43	64-19-7	
Butyric Acid	813	mg/L	250	500		01/24/24 23:43	107-92-6	
Formic acid	1840	mg/L	250	500		01/24/24 23:43	64-18-6	
Hexanoic Acid	ND	mg/L	250	500		01/24/24 23:43	142-62-1	N2
i-Hexanoic Acid	ND	mg/L	250	500		01/24/24 23:43	646-07-1	N2
Lactic Acid	629	mg/L	250	500		01/24/24 23:43	50-21-5	D4
i-Pentanoic Acid	301	mg/L	250	500		01/24/24 23:43	503-74-2	N2
Propionic Acid	1680	mg/L	250	500		01/24/24 23:43	79-09-4	
Pyruvic Acid	ND	mg/L	250	500		01/24/24 23:43	127-17-3	



# **QUALITY CONTROL DATA**

Project: 24A0675											
Pace Project No.: 20304472											
QC Batch: 316640		Analysis	Method:	Pa	Pace ENV-SOP-BTRO-0042						
QC Batch Method: Pace ENV-S	OP-BTRO-0042	Analysis Description:			R AM23G Lov	V Level VFA					
		Laborato	ory:	Pa	ace Analytical	Services - Ba	aton Rouge				
Associated Lab Samples: 20304	4472001						Ū				
METHOD BLANK: 1515816		Ма	trix: Water								
Associated Lab Samples: 20304	4472001										
		Blank	Reporti	ng							
Parameter	Units	Result	Limit	•	Analyzed	d Qua	lifiers				
Acetic Acid	mg/L		ND	0.50	01/24/24 16	6:44					
Butyric Acid	mg/L		ND	0.50	01/24/24 16	6:44					
Formic acid	mg/L		ND	0.50	01/24/24 16	5:44					
Hexanoic Acid	mg/L	ļ	ND	0.50	01/24/24 16	6:44 N2					
i-Hexanoic Acid	mg/L	I	ND	0.50	01/24/24 16	6:44 N2					
i-Pentanoic Acid	mg/L	I	ND	0.50	01/24/24 16	6:44 N2					
Lactic Acid	mg/L	I	ND	0.50	01/24/24 16	6:44					
Pentanoic Acid	mg/L		ND	0.50	01/24/24 16	6:44 N2					
Propionic Acid	mg/L		ND	0.50	01/24/24 16	6:44					
Pyruvic Acid	mg/L	I	ND	0.50	01/24/24 16	5:44					
LABORATORY CONTROL SAMPL	.E: 1515817										
		Spike	LCS		LCS	% Rec					
Parameter	Units	Conc.	Result	ç	% Rec	Limits	Qualifiers				
Acetic Acid	mg/L	2	2.1		107	70-130	)				
Butyric Acid	mg/L	2	2.0		98	70-130	)				
Formic acid	mg/L	2	2.0		101	70-130	)				
Hexanoic Acid	mg/L	2	0.96		48	39-114	N2				
i-Hexanoic Acid	ma/l	2	1 3		64	30-11/	L N2				

Tiexanolic Aciu	ing/∟	2	0.30	40	33-114 NZ	
i-Hexanoic Acid	mg/L	2	1.3	64	39-114 N2	
i-Pentanoic Acid	mg/L	2	2.0	101	59-121 N2	
Lactic Acid	mg/L	2	2.3	115	70-130	
Pentanoic Acid	mg/L	2	1.5	75	59-121 N2	
Propionic Acid	mg/L	2	2.1	103	70-130	
Pyruvic Acid	mg/L	2	2.0	99	70-130	

MATRIX SPIKE & MATRIX		1517508										
			MS	MSD					_			
		20304688001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Acetic Acid	mg/L	25.9	20	20	43.9	44.6	90	94	70-130	2	30	
Butyric Acid	mg/L	ND	20	20	18.6	19.2	90	93	70-130	3	30	
Formic acid	mg/L	ND	20	20	19.8	20.4	97	100	70-130	3	30	
Hexanoic Acid	mg/L	ND	20	20	9.6	8.0	47	39	39-114	18	30	N2
i-Hexanoic Acid	mg/L	ND	20	20	13.6	13.1	68	65	39-114	4	30	N2
i-Pentanoic Acid	mg/L	ND	20	20	17.3	17.6	85	86	59-121	2	30	N2
Lactic Acid	mg/L	6.3	20	20	22.2	23.4	79	85	70-130	5	30	D3
Pentanoic Acid	mg/L	ND	20	20	14.2	14.3	69	69	59-121	1	30	N2

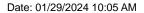
Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



# **QUALITY CONTROL DATA**

 Project:
 24A0675


 Pace Project No.:
 20304472

MATRIX SPIKE & MATRIX SI	PIKE DUPLIC	CATE: 1517	509		1517508							
	2	0304688001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Propionic Acid	mg/L	ND	20	20	23.5	24.3	96	100	70-130	3	30	
Pyruvic Acid	mg/L	ND	20	20	19.4	19.9	95	98	70-130	3	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Page 9 of 13 Page 65 of 69



## QUALIFIERS

Project:	24A0675
Pace Project No .:	20304472

## DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

## ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- D4 Sample was diluted due to the presence of high levels of target analytes.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

20304472001		Pace ENV-SOP-BTRO-	316640		
Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
Project: Pace Project No.:	24A0675 20304472				

0042



Pace - Gulf Coast 7979 Innovation Park Dr Baton Rouge, LA 70820

1941 REY RICHMOND, VIRG (804) 358-8: (804)35



# CHAIN OF CUSTODY

ENT ANAI	H	[] / 1		JPY A	797 Bat	'9 Innovatio on Rouge, I	n Park LA 708	Dr 20				R	ICH	MOND, V (804) 35 (804	IRE					Parte 68 of 69
<b>M M A N A N A N A N A N</b>	ar d	10.100 Long					СНАП	N OF	CUST	rot	YC				2	03044	72			e e e e e e e e e e e e e e e e e e e
COMPANY NAME: Enthalpy	ar				linγ	OICE TO:		halpy			-		Ti	PROJEC	T NAM	E/Quot	te #:	24A06	375	ů
CONTACT: Dan Elliot						OICE CON						un/ : 1 ¹¹¹¹¹¹		SITE NAI						
ADDRESS: 1941 Reymet Rd Richmo	and V	/A 21	3237			OICE ADD			Reymet I	Rd Ri	chmond '	VA 23237		PROJEC				375		
PHONE #: (804) 358-8295						OICE PHO								P.O. #:						
FAX #:			lc	I EMAIL:	1			(004) (	500 020					Pretreatn						
Is sample for compliance reportin	a2	(	<u> </u> ES 1			Is sample f	rom a c	blorin	atod su	nnh	0	YES N	10	Tellealli		ogram.	1	I.D. #:		
	y i	11	_0 1			•••••••••••••••••••••••••••••••••••••••	anna an		aleu su	ppij	/ :		10							ana ang ang ang ang ang ang ang ang ang
SAMPLER NAME (PRINT):					SA	MPLER SIG	SNATU	RE:									Turn	Aroun	d Time: 1	0
Matrix Codes: WW=Waste Water/Storm Wate	er G\	W=G	round	Water DW=Dri	nking \	Nater S=Soil/S	olids OR:	=Organic	: A=Air V	VP=V	Vipe OT	=Other							COMM	ENTS
			als)									ANA	۱LY	SIS / (PF	RESER	VATIVI	Ξ)		Preservative Co Acid C=Hydro	chloric Acid
CLIENT SAMPLE I.D.	Grab	Composite	Field Filtered (Dissolved Metals)		Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Time Preserved	Matrix (See Codes)	Number of Containers	Volatile Fatty Acid								S=Sulfuric Acid Hydroxide A=A Z=Zinc Acetate Thiosulfate M PLEASE PRESERVA INTERFERENCE	scorbic Acid T=Sodium =Methanol NOTE TIVE(S), E CHECKS or
1) 24A0675: EW-51					0	1/11/24	0930		 ₩W	2	<u></u> X								PUMP RATI	= (D/min)
2)	Ê						0000			Ť					1	1			The product of the second s	nes (s. 67), an sing
3)		1																		· · ·
4)	1																			
5)																				
6)												<u> </u>			ļ	ļ				
7)																				
8)		<b>_</b>										<u> </u>				<b>_</b>				
9)		<u> </u>										┨────┨-				<u> </u>	<u> </u>			
10) RELINQUISHED:				RECEIVED:				DATE /			Data P			B USE OI		L			MD	°C
RELINQUISHED: Mini Mini 1/15/2 RELINQUISHED: RELINQUISHED:	4 DA	16 те / З		RECEIVED	L.	MCCU	<u>a</u> 1.	DATE / -  9-2 DATE /	TIME 2:3	Leve Leve	el T el TR el TRI		∟At		NL Î		COOL	ER TE		<b>°C</b> e 12 of 13
1				1						Leve	el IV								Pace Gulf Coa	st

Pace

7979 Innovation Park Dr. Baton Rouge, LA 70806

# WO#:20304472

Sample Condition Upon Reciept ( PM: RW

Due Date: 02/02/24

CLIENT: BR-Enthalpy

Workorder #

7979 Innovation Park Ur. Bator			
Cooler Inspected by/da	ate: <u>BRP / 1/19/24</u>		
Means of receipt: Pace	Client UPS FedEx Other:		
Yes No Were	custody seals present on the cooler?		
Yes 🗌 No 🗌 NA If cust	tody seals were present, were they intact ar	1d unbroken?	
Method: Temperature Blan	Against Bottles IR Gun ID: 1=43	IR Gun Correction Factor	:_ <b></b> С
Cooler #1 Cooler Temp °	C: (Actual/True)	Samples on ice	pH Strip Lot #
Cooler #2 Cooler Temp *	°C: (Actual/True)	Tes No	
Cooler #3 Cooler Temp °	°C: (Actual/True)	Method of coolant:	
Cooler #4 Cooler Temp *	°C:(Actual/True)	Wet Clice Pa	acks  Dry Ice  None
Tracking #: 7748	1883 1771		
🗌 Yes 🔍 No 🔲 NA Is a te	emperature blank present?		

			n cascoa y scala mare present, nore may mere s			
Method:	Tem	peratur	e Blank Against Bottles IR Gun ID: 1=43	IR Gun Corre	ction Factor:	<u>0</u> °C
Cooler			emp °C: (Actual/True)	Samples on i	ice	pH Strip Lot #
Cooler		Cooler T	Temp °C: (Actual/True)	Yes	🗆 No	
Cooler	#3	Cooler 1	emp °C: (Actual/True)	Method of c	oolant:	
Cooler	r #4	Cooler 1	emp °C: (Actual/True)	Wet	□lce Packs	Dry Ice None
Tracking	#: -/	7 74	1883 1771			
🗆 Yes ไ	No No		Is a temperature blank present?			
Yes [		🗆 NA	Was a chain of custody (COC) recieved?			
🖓 Yes 1	S No	🗌 NA	Was the line and profile number listed on the COC			
		🗆 NA	Were all coolers received at or below 6.0°C? If no, Project Manager notified via email.	notify		
Yes	□ No		Were proper custody procedures (relinquished/re followed?	eceived)		
🗌 Yes	No	🗆 NA	Is the sampler name and signature on the COC?			
🔊 Yes	🗆 No		Were sample IDs listed on the COC and all sample containers?			
🔍 Yes	🗆 No		Was collection date & time listed on the COC and containers?	all sample		
🛛 Yes	🗌 No		Did all container label information (ID, date, time) the COC?	) agree with		
Yes	🗌 No		Were tests to be performed listed on the COC?			
<b>D</b> Yes	□ No		Did all samples arrive in the proper containers for and/or in good condition (unbroken, lids on, etc.)?	each test		
Yes	🗌 No		Was adequate sample volume available?			
Yes	ΠNο		Were all samples received within ½ the holding ti hours, whichever comes first?	me or 48		
🔊 Yes	🗌 No		Were all samples containers accounted for? (No r excess)			
🖾 Yes	🗌 No		Were VOA, 8015C (GRO/VPH), and RSK-175 samp bubbles > "pea size" (1/4" or 6mm in diameter) in VOA vials?			
🗆 Yes	🗌 No		Trip blank present?			
🗆 Yes	🗌 No		Filtered volume received for dissolved tests? If no, list affected sample(s) in comments below.			
🗌 Yes	🗌 No		Were all metals/nutrient samples received at a pl	+ of < 2?		ervative added? □Yes □No d lots. Dispenser/pipette lot #:
🗆 Yes	🗌 No		Were all cyanide samples received at a pH > 12 ar samples received at a pH > 9?	nd sulfide	HNO3 Date:	H2SO4NaOH Time:
Commer	its:					

Wel	I ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		100
Parameter	Monitoring Event										Concent	ration	I									LOD	LOQ
	November-2022									1560		1400			1380							50	50
	December-2022	1700		2280				2110		1410	1310					1150	1780					100	100
		1520							936						1330							50	50
	January-2023 -									2440												100	100
	February-2023																1490					100	100
	March-2023								667	1480												73.1	100
	April-2023								1410		1220											73.1	100
	May-2023	1390							1410	2380												146	200
	June-2023									2380		2370		2170								146	200
Ammonia as N	JULIE-2023																	1180				73.1	
(mg/L)	July-2023 -	1570																			210		100
	August 2022	1570						2260												2350	310	146	200
	August-2023					1600		1890										1720		2140	222	146 73.1	200 100
	September-2023			1250																		146	200
	October-2023						1980											1730	2890			146	200
		1260		2490	1830		2070											1800	2590			146	200
	November-2023												1170								2080	183	250
										2440												366	500
	December-2023																	1540				73.1	100
				2900													2200					146	200
	January-2024		2160							2400											1610	146	200
	November-2022									15700		5860			5140							0.2	2
	December-2022	6440		12500				11400		9240	3330					8360	6770					0.2	2
	January-2023	9920							999	28100					7060							0.2	2
	February-2023																7230					0.2	2
	March-2023								1570	9190												0.2	2
	April-2023								8430		2860											0.2	2
Biological Oxygen	May-2023	7350							11900	35300												0.2	2
Demand (mg/L)	June-2023									20000		27400		23100								0.2	2
	July-2023	6820						32900										330		31800	937	0.2	2
	August-2023					>33045		>33225												>32805	506	0.2	2
	September-2023			40185.5														659				0.2	2
	October-2023						34600											690	37000			0.2	2
	November-2023	1910		30400	27500		32015			29600			3640					480	32135		21500	0.2	2
	December-2023			>44105													13700	681				0.2	2
	January-2024		26000							17100											14000	0.2	2

Wel	ll ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98	105	100
Parameter	Monitoring Event				11						Concen	1										LOD	LOQ
												9790			10800							1000	1000
	November-2022									23500												2000	2000
		7440																				1000	1000
	-									13200	8000					20300	14100					2000	2000
	December-2022							22400														5000	5000
	-			86800																		10000	10000
									3630													500	500
	January-2023	14900													8430							2000	2000
	JUNUU y-2023									47600												5000	5000
	<b>Felere</b> (2002)																						
	February-2023																9210					1000	1000
	March-2023								1690													500	500
										10600												2000	2000
	April-2023										7370											1000	1000
									16800													2000	2000
	May-2023	7590							18700													2000	2000
										44700												4000	4000
	June-2023											44800										5000	5000
Chemical Oxygen	JULIE-2023									41300				55000								10000	10000
Demand (mg/L)																					2180	500	500
		6480																2460				1000	1000
	July-2023 -																			41000		5000	5000
								50100														10000	10000
	August 2002																				1750	500	500
	August-2023 -					59000		58600												60600		5000	5000
	September-2023																	6260				1000	1000
				87400																		10000	10000
																		5320				500	500
	October-2023						51000															5000	5000
																			63600			10000	10000
	-																	4710				1000	1000
	November-2023	6200			49100		 57000			42700			5620									2000	2000
				77100	48100		57900			43700									63900		37600	5000	5000
																		4870				10000	10000
	December-2023																19900	40/0				5000	5000
				94200																		10000	10000
	January-2024		48600							59800											38200	5000	5000

Wel	I ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
Parameter	Monitoring Event										Concent											LOD	LOQ
Nitrate+Nitrite as N (mg/L)	November-2022									2.91		0.16			0.33							0.1	0.1
																ND						0.2	0.2
	December-2022										ND											0.2	0.6
	December-2022	ND		ND				ND		ND												1.1	5.1
																	ND					1.5	5.5
									ND													0.35	1.35
															ND							1.1	1.1
	January-2023 -	3.9																				2.1	2.1
										ND												2.2	2.2
	February-2023																ND					0.35	1.35
	March-2023								ND	ND												1.04	5.1
	April-2023								ND		ND											0.6	2.6
	Mary 2002	ND																				1.1	5.1
	May-2023 -								ND	ND												1.2	5.2
	lune 0002									ND				ND								1.1	5.1
	June-2023 -											ND										1.2	5.2
																		0.355				0.15	0.35
Nitrate as N (mg/L)																					ND	0.55	0.75
	July-2023 -	ND																				1	3
								ND												ND		1.5	5.5
	August-2023 -																				ND	0.15	0.35
	A09031-2023					ND		ND												ND		1.5	3.5
	September-2023																	ND				0.3	1.1
				ND																		0.7	1.5
	October-2023																	ND				0.35	1.35
							ND												ND			1.5	3 3.5
		ND																ND				0.15	0.35
	-												ND									0.35	1.35
	November-2023						ND															0.75	1.75
				ND																		1.1	5.1
					ND					ND									ND		ND	1.5	5.5
	December-2023			ND														ND				1.1	5.1
																	ND					1.5	5.5
	January-2024		2.01							ND											ND	1.5	5.5

Well	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
Parameter	Monitoring Event			111 02		211 04		211 07			Concent		111 02		211 00	211 07		111 / 0	111 07		211 70	LOD	LOQ
	Monitoling Eveni										0.12 J											0.1	0.5
	December-2022	ND		ND				ND		ND						ND	ND					1	5
																						0.05	
									ND													0.25	1.25
	January-2023														ND							1	l
		ND								ND												2	2
	February-2023																0.48 J					0.25	1.25
	March-2023								ND	ND												1	5
	April-2023								ND		ND											0.5	2.5
	May-2023	ND							ND	ND												1	5
	June-2023									2 J		ND		ND								1	5
Nitrite as N (mg/L)																		ND			ND	0.05	0.25
	July-2023	ND																				0.5	2.5
								1.2 J												ND		1	5
	August 2002																				ND	0.05	0.25
	August-2023					ND		ND												ND		0.5	2.5
	September-2023			ND														ND				0.2	1
	October-2023																	ND				0.25	1.25
							ND												ND			0.5	2.5
		0.06 J																ND				0.05	0.25
	November-2023						ND						ND									0.25	1.25
				ND	ND					ND									ND		ND	1	5
	December-2023			ND													ND	ND				1	5
	January-2024		1.7 J							ND											ND	1	5
	November-2022											1290			1470							20	50
										2110												50	125
	December-2022	1510		3570				1790		1830	1490					1340	1940					200	500
	January-2023 -	1840							881						1410							20	50
										2970												40	100
	February-2023																1870					16.8	50
	March-2023								879	1920												33.6	100
	April-2023								1820		1510											16.8	50
	May-2023	1590							1950	2910												40	100
	1 0000									3080				2750								100	250
Total Kjeldahl	June-2023 -											2650										200	500
Nitrogen (mg/L)	July-2023	1670						2960										1670		2720	285	40	100
																					279	10	25
	August-2023					2240		2820												2850		100	250
	September-2023			3340														2680				100	250
							1050												1320			40	100
	October-2023																	4630				100	250
	November-2023						2240														2120	80	200
		1440		3290	2630					2530			1120					2270	3170			100	250
	December-2023																1880					80	200
				3130														1890				100	250
/	January-2024		2450							3020											1810	100	250

We	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		100
Parameter	Monitoring Event				·					·	Concent	ration							<u> </u>			LOD	LOQ
	Neverals ar 0000											5.68			3							0.3	0.5
	November-2022									28.8												0.75	1.25
											8.94											0.3	0.5
	December-2022	24.9		54.6				28.3		32						20.2	36					1.5	2.5
	1	27.2							1.3						20.2							0.75	1.25
	January-2023									56.5												1.5	2.5
	February-2023																22.4					1.5	2.5
	Marrah 0000								0.4													0.03	0.05
	March-2023									13.9												0.3	0.5
	April-2023								18.7		5.1											0.3	0.5
	May-2023	18.6							20	50												1.5	2.5
	June-2023									39.1		45.6		80.6								1.5	2.5
																		0.7				0.15	0.25
Total Recoverable	July-2023																				2.92	0.3	0.5
Phenolics (mg/L)		11.6						47.9												37.3		1.5	2.5
	August-2023																				1.46	0.15	0.25
	A09031-2023					28.6		31.4												40.4		1.5	2.5
	September-2023																	4.58				0.3	0.5
				38.2																		3	5
	October-2023						37											4.13	38.7			0.15	0.25
																		3.65				0.8	0.25
		7.88			36.4								4.76									0.6	1
	November-2023			38.8			47.4												47.1			0.75	1.25
										46.9											29.1	1.5	2.5
																		3.72				0.06	0.1
	December-2023																23					0.75	1.25
				34.2																		1.5	2.5
	January-2024		38																		22.7	1.5	2.5
	,									39.2												3	5

SEMI-VOLATILE ORGAN	Nonitoring Event IIC COMPOUND (U November-2022	ıg/L) 					·1				•											LOD	LOQ
SEMI-VOLATILE ORGAN	IIC COMPOUND (L										Concent	ration											
																					1		
	November-2022											ND			ND							46.7	93.5
										ND												93.5	187
1	-																						
										ND	ND						ND					9.35	9.35
	December-2022							ND								ND						11.7	11.7
	-			ND																		23.4	23.4
		ND																				485	971
	_								ND													243	485
	January-2023														ND							253	505
		ND																				490	980
										ND												500	1000
	February-2023																ND					187	374
	March-2023									ND												51	102
	MUICI-2023								ND													117	234
	A								ND													37.4	74.8
	April-2023 –										ND											38.8	77.7
		ND								ND												93.5	187
	May-2023 -								ND													467	935
										ND				ND								485	971
	June-2023 -											ND										490	980
Anthracene																					ND	46.7	93.5
	-	ND																				100	200
	July-2023																	ND				250	500
								ND												ND		1000	2000
																					ND	19.6	39.2
	August-2023					ND		ND												ND		1000	2000
(	September-2023			ND														ND				40	80
																			ND			40	80
	October-2023																	ND				50	100
							ND															500	1000
		ND											ND									20	40
																		ND				50	100
	November-2023																				ND	100	200
	_				ND		ND			ND									ND			400	800
				ND																		1000	2000
	December 2002																	ND				50	100
	December-2023																ND					100	200
			ND	ND																		200	400 200
	January-2024																				ND	250	500
	Junuary-2024									ND												1000	2000

We	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
Parameter	Monitoring Event		_								Concent											LOD	LOQ
TOTAL METALS (mg/																							
	November-2022									0.863		0.464			1.3							0.02	0.04
	December-2022	1.02		0.406				0.174		1.69	0.49					0.159	0.574					0.02	0.04
	January-2023	0.285							0.596	0.225					0.846							0.01	0.02
	February-2023																0.29					0.005	0.01
	March-2023								1.07	1												0.01	0.02
	April 2022										0.11											0.0005	0.001
	April-2023								0.36													0.005	0.01
	May-2023	0.26							0.3	0.27												0.0025	0.005
	June-2023									0.26		0.5		0.14								0.0025	0.005
Arsenic	July-2023	0.23																0.24		0.19	0.06	0.0005	0.001
	JUIY-2023							0.7														0.0025	0.005
	August-2023																				0.15	0.0025	0.005
	_					0.32		0.43												0.29		0.005	0.01
	September-2023			0.42														0.25				0.005	0.01
	October-2023						0.36											0.24	0.31			0.0005	0.001 0.002
	November-2023	0.23		0.33	0.53		0.38			0.35			0.78					0.34	0.27		0.2	0.001	0.002
				0.4													0.26					0.0025	0.005
	December-2023																	0.24				0.001	0.002
	January-2024		0.47							0.23											0.18	0.0025	0.005
	November-2022									0.871		0.485			0.36							0.01	0.02
	December-2022	0.566		0.803				0.978		0.438	0.214					0.856	0.793					0.01	0.02
	January-2023	0.643							0.683	1.92					0.554							0.005	0.01
	February-2023																1.04					0.01	0.05
	March-2023								0.406	0.683												0.005	0.01
	April-2023								1.21		0.326											0.01	0.05
	May-2023	0.636																				0.005	0.025
									1.2	1.83												0.01	0.05
	June-2023									1.69				1.65								0.005	0.025
												3.01										0.01	0.05
Barium																					0.217	0.001	0.005
	July-2023																	0.558				0.002	0.01
		0.542						2.28												1.02		0.005	0.025
	August-2023																				0.218	0.005	0.025
						1.61		1.58												1.48		0.01	0.05
	September-2023			0.72														0.649				0.01	0.05
	October-2023						2.56												1.93			0.002	0.01
	November-2023	0.572		0.81	2.28		2.50			1.96			0.418					0.67	2.06		2.84	0.000	0.025
				0.68													1.36					0.005	0.025
	December-2023																	0.672				0.002	0.01
	January-2024									1.92											1.91	0.005	0.025
			3.27																			0.01	0.05

We	II ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98	100	100
Parameter	Monitoring Event										Concent	ration	· · · · · ·									LOD	LOQ
	November-2022									ND		ND			ND							0.004	0.008
	December-2022	ND		0.0104				ND		ND	ND					ND	ND					0.004	0.008
	January-2023	ND							ND	ND					ND							0.002	0.004
	February-2023																0.000297 J					0.0001	0.001
	March-2023								ND	ND												0.002	0.004
	April-2023								0.000158 J		0.000333 J											0.0001	0.001
	May-2023	ND							ND	ND												0.0005	0.005
	June-2023									ND		ND		ND								0.0005	0.005
Cadmium	July-2023							0.000156 J										0.000186 J		ND	ND	0.0001	0.001
																					ND	0.0005	0.005
	August-2023					ND		ND												ND		0.001	0.01
	September-2023			ND														ND				0.001	0.01
																		0.000171 J	ND			0.0001	0.001
	October-2023						ND															0.0002	0.002
	November-2023	ND		ND	ND		ND			ND			ND					ND	ND		ND	0.001	0.003
	December-2023			ND													0.000604 J					0.0005	0.0015
																		ND				0.0002	0.002
	January-2024		ND							ND											ND	0.0005	0.005
	November-2022									0.208		0.112			0.354							0.016	0.02
	December-2022	0.503		1.08				1.76		0.274	0.319					0.499	0.822					0.016	0.02
	January-2023	0.31							0.488	0.178					0.155							0.008	0.01
	February-2023																0.277					0.004	0.01
	March-2023								0.213	0.188												0.008	0.01
	Amril 0000										0.142											0.0004	0.001
	April-2023								0.306													0.004	0.01
	May-2023	0.422							0.281	0.237												0.002	0.005
	June-2023									0.251		0.191		0.272								0.002	0.005
Chromium	July-2023	0.308						0.535										0.231		0.215	0.0265	0.0004	0.001
Chiomiom																					0.0276	0.002	0.005
	August-2023					0.606		0.449												0.259		0.004	0.01
	September-2023			1.17														0.234				0.004	0.01
	October-2023																	0.144	0.194			0.0004	0.001
							0.273															0.0008	0.002
		0.391																				0	0.003
	November-2023				0.51													0.251	0.403			0.003	0.003
				1.04			0.402			0.246			0.343								0.222	0.004	0.01
	December-2023			1.34													0.259					0.002	0.005
																		0.219				0.0008	0.002
	January-2024		0.17							0.193											0.128	0.002	0.005

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98	105	100
Parameter	Monitoring Event		1								Concent											LOD	LOQ
	November-2022									ND		ND			ND							0.016	0.02
	December-2022	ND		ND				ND		ND	ND					ND	ND					0.016	0.02
	January-2023	ND							0.0127	0.0256					ND							0.008	0.01
	February-2023																0.00365					0.0003	0.001
	March-2023								ND	ND												0.008	0.01
	April-2023								0.00664		0.00767											0.0003	0.001
	May-2023	ND							ND	ND												0.0015	0.001
	June-2023									0.00154 J		0.00362 J		0.00269 J								0.0015	0.005
Copper	July-2023	0.00124						0.00163										0.00811		ND	0.0027	0.0003	0.003
																					ND	0.0015	0.005
	August-2023					0.00343 J		0.0176												ND		0.003	0.000
	September-2023			ND														0.00407 J				0.003	0.01
	·																	0.00361	0.000609 J			0.0003	0.001
	October-2023						0.00806															0.0006	0.002
	November-2023	0.00607		0.00352	0.0212		0.00756			ND			0.00341					0.00387	ND		ND	0.003	0.003
	December-2023			0.00184													ND					0.0015	0.0015
																		0.0034				0.0006	0.002
	January-2024		ND							0.019											ND	0.0015	0.005
	November-2022									ND		ND			0.017 J							0.012	0.02
	December-2022	ND		0.0381				ND		ND	ND					ND	ND					0.012	0.02
	January-2023	ND							ND	ND					ND							0.006	0.01
	February-2023																0.006					0.001	0.001
	March-2023								ND	ND												0.006	0.01
	April-2023								0.0022		0.0067											0.001	0.001
	May-2023	ND							ND	ND												0.005	0.005
	June-2023									ND		ND		0.0069								0.005	0.005
Lead	July-2023	0.0014						0.019										0.0092		ND	0.0017	0.001	0.001
	August-2023																				ND	0.005	0.005
						0.014		ND												0.013		0.01	0.01
	September-2023			0.12														ND				0.01	0.01
	October-2023																	0.0036	0.0034			0.001	0.001
							0.0077															0.002	0.002
	November-2023	ND		0.13	0.0046		0.014			ND			ND					0.0032	0.0043		ND	0.003	0.003
	December-2023			0.16													0.002	0.0043				0.002	0.002
	January-2024		ND							0.0081											ND	0.0013	0.0013

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
Parameter	Monitoring Event	LW-50		LW-JZ	LW-33		LW-33	LW-57	LW-30	LW-J/	Concent		LW-02		LW-05	LW-07		LW-70	LW-07		LW-70	LOD	LOQ
raidineiei	Monitoring Eveni									1		0.00169			0.00053							0.0004	0.0004
	November-2022									ND												0.0004	0.0004
	December-2022	0.00051																				0.0004	0.0004
	December-2022							0.00118		ND	0.00588					0.0048	ND					0.0008	0.0008
				ND																		0.004	0.004
	January-2023	ND							ND						ND							0.0004	0.0004
	February 2002									ND												0.004	0.004
	February-2023																ND					0.0004	0.0004
	March-2023								ND													0.0002	0.0002
										ND												0.0004	0.0004
	April-2023										0.00128											0.0002	0.0002
									ND													0.0004	0.0004
Mercury	May-2023	ND							ND	ND												0.0002	0.0002
	June-2023									ND		ND		ND								0.004	0.004
	July-2023	0.000306																ND			ND	0.0002	0.0002
								0.0107												ND		0.001	0.001
	August-2023																				ND	0.001	0.001
						0.00312		0.00397												ND		0.002	0.002
	September-2023			0.00503														ND				0.002	0.002
	October-2023						0.00165											ND	0.00055			0.0004	0.0004
	November-2023	ND 											ND 					ND				0.0000002	0.0000002
				0.00576	0.00606		0.00578			ND									0.00954		ND	0.0000004	0.000004
				0.00484													ND					0.001	0.001
	December-2023																	ND				0.0004	0.0004
	January-2024		ND							ND											ND	0.001	0.001
	November-2022									0.0866		0.1344			0.173							0.014	0.02
	December-2022	0.1722		0.5025				0.2989		0.1299	0.287					0.1853	0.346					0.014	0.02
	January-2023	0.1074							0.1442	0.0407					0.0769							0.007	0.01
	February-2023																0.1726					0.001	0.001
	March-2023								0.1254	0.1033												0.007	0.01
	April-2023								0.1143		0.1732											0.001	0.001
	May-2023	0.113							0.09726	0.05657												0.005	0.005
	June-2023									0.05978		0.05892		0.07161								0.005	0.005
Nickel	July-2023							0.08332										0.1576		0.03074	0.01403	0.001	0.001
																					0.02029	0.005	0.005
	August-2023					0.1457		0.09673												0.0513		0.01	0.01
	September-2023			0.5152														0.2387				0.01	0.01
	October-2023																	0.2019	0.09206			0.001	0.001
							0.104															0.002	0.002
	November-2023	0.1178		0.4227	0.1242		0.07791			0.05944			0.1493					0.2492	0.1332		0.05277	0.01	0.01
	December-2023			0.6091													0.1447					0.005	0.005
																		0.2127				0.002	0.002
	January-2024		0.06308							0.04911											0.0326	0.005	0.005

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98	100	100
Parameter	Monitoring Event										Concentr	ation								·1		LOD	LOQ
	November-2022									ND		ND			ND							0.08	0.1
	December-2022	ND		ND				ND		ND	ND					ND	ND					0.08	0.1
	January-2023	ND							ND	ND					ND							0.04	0.05
	February-2023																0.00199					0.00085	0.001
	March-2023								ND	ND												0.04	0.05
	April-2023								0.00189		0.00185											0.00085	0.001
	May-2023	ND							ND	0.00569												0.00425	0.005
	June-2023									ND		ND		ND								0.00425	0.005
Selenium	July-2023	0.00101						0.00331										0.00116		0.00251	ND	0.00085	0.001
																					ND	0.00425	0.005
	August-2023					ND		ND												ND		0.0085	0.01
	September-2023			ND														ND				0.0085	0.01
	October-2023																	0.00186	0.0044			0.00085	0.001
							0.00332															0.0017	0.002
	November-2023	ND		0.00425	0.00314		0.00315			ND			ND					ND	0.0032		ND	0.003	0.003
	December-2023			0.00785													0.00253					0.0015	0.0015
	January-2024		ND							ND								0.00215			ND	0.0017 0.00425	0.002 0.005
	November-2022									ND		ND			ND							0.00420	0.00
	December-2022	ND		0.0187 J				ND		ND	ND					ND	ND					0.01	0.02
	January-2023	ND							ND	ND					ND							0.005	0.02
	February-2023																ND					0.00006	0.001
	March-2023								ND	ND												0.0000	0.01
	April-2023								ND		 0.00011 J											0.00006	0.001
	May-2023	ND							ND	ND												0.0003	0.001
	June-2023									ND		ND		 ND								0.0003	0.005
Silver	July-2023	 ND						 ND										ND		ND	 ND	0.00006	0.003
311401	JUIY-2023																				ND	0.0008	0.001
	August-2023					ND		ND												ND		0.0005	0.003
	September-2023			ND														ND				0.0006	0.01
																		ND	ND			0.00006	0.001
	October-2023						ND															0.00012	0.002
	November-2023	ND		ND	ND		ND			ND			ND					ND	ND		ND	0.0006	0.01
	December-2023			ND													ND					0.00025	0.001
																		ND				0.00012	0.002
	January-2024		ND							ND											ND	0.0003	0.005

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
		LW-30	LW-JI	LW-JZ	LW-33	LW-34	LW-33	LVV-57	LW-30	LW-J7	Concent		LW-02	L W-04	LW-0J	LW-07	LW-00	LW-70	LW-07	L VV - 74	LW-70	LOD	LOQ
Parameter	Monitoring Event														0 / 0 4							0.00	0.00
	November-2022									ND		0.032			0.694							0.02	0.02
	December-2022	0.208		29.7				0.162		0.0686	0.75					0.364	0.286					0.02	0.02
	January-2023	0.133							0.15	0.074					0.0752							0.01	0.01
	February-2023																0.0851					0.0025	0.005
	March-2023								0.0689	0.0538												0.01	0.01
									0.0539													0.0025	0.005
	April-2023										0.414											0.025	0.05
	May-2023	0.079							0.0635	0.0519												0.0125	0.025
	June-2023									0.0538		0.0253		0.945								0.0125	0.025
	30110 2020	0.0488																0.0714		0.354	0.0782	0.0025	0.005
	July-2023																						
Zinc								2.03														0.0125	0.025
	August 2022																				0.112	0.0125	0.025
	August-2023							1.71												0.914		0.025	0.05
						5.92												0.0788				0.05	0.1
	September-2023			 A E																		0.025	0.05
				45														0.0622				0.25	0.5 0.005
	October-2023						0.203												633			0.0025	0.005
		0.0471 J			0.0534		0.203			0.053			0.0618					0.0722	0.845		 0.0313 J	0.003	0.01
	November-2023			30.4																		0.025	0.05
				52.7																		0.25	0.5
	December-2023																	0.061				0.23	0.01
																	0.0462					0.005	0.01
	January-2024		0.117							0.0974											0.0261	0.0125	0.025
VOLATILE FATTY AC			•••••							0.0171						11		L I			0.0201	0.0120	0.020
												1600										25	100
	November-2022									3500					150 J							62	250
	December-2022	1800																				62	250
	January-2023	ND							ND	4400					ND								500
	February-2023																ND						500
	March-2023								ND	640													500
	April-2023								1200		520											370	500
	May-2023	990							1800	3000												370	500
	June-2023									5900		4100		5000								750	1000
																					ND	150	200
Acetic Acid	July-2023	ND																ND				370	500
								6100												750		750	1000
	August-2023					3300		5300												4200	ND		500
	September-2023			7400														ND				370	500
	October-2023						3200											720	4100			370	500
		 ND											ND					ND			4160	250	500
	November-2023				4050					 5250									7200				
					4950		6650			5350									7300			500	1000
				9900																		1000	2000
	December 0000																660						100
	December-2023																	ND					250
				11200						 5000											2000		1000
	January-2024		4410							5290											3080		250

Parameter         Nonvinto formational matrix	Wel	ll ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98	100	100
Normitser         <																							LOD	LOQ
Intermed NUP         Image NUP																							12	100
back         back <th< td=""><td></td><td>November-2022</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>830</td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td>29</td><td>250</td></th<>		November-2022									830					ND							29	250
Includy         Imp         Im		December-2022	ND																				29	250
Import			ND							ND	1800					ND								500
Matrix         Matrix<																		ND						500
Apple 2023         ···         ···         ···         ···         ···         ND         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ····<         ····<         ····<         ····<         ····<           Apple 2022         ···         ···         ···         ···         ···         ···<		· · · ·								ND	ND													500
More         More <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>330</td><td>500</td></t<>												ND											330	500
blue 2018         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ····<         ····<         ····<         ····<         ····<         ····<         ····         ·····         ·····         ·····         ·····         ····         ····         ····         ····         ····         ····         ····         ·····         ·····         ·····     ·····         ····· <t< td=""><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1200</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>330</td><td>500</td></t<>			ND								1200												330	500
Burylit Acid         An													1500		2900								650	1000
Bylin Arid         MU         MU         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td>130</td><td>200</td></t<>																						ND	130	200
Image         Image <t< td=""><td>ric Acid</td><td>July-2023</td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>330</td><td>500</td></t<>	ric Acid	July-2023	ND																ND				330	500
August2003         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ·····         ····         ····         ·									2800												650		650	1000
September233         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···<         ···<         ···<         ···<         ···<         ···<         ···         ···         ···         ···         ···         ···         ···         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···         ···           0        0        0        0       0       0       0       0       0       0       0       0       0       0       0       0        0        0        0        0        0       0        0        0        0       0       0       0 <td< td=""><td></td><td>August-2023</td><td></td><td></td><td></td><td></td><td>1400</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td>500</td></td<>		August-2023					1400															ND		500
October/202         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ···<         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····         ····        ···· <td></td> <td>330</td> <td>500</td>																							330	500
November 202         ND         is         ND																							330	500
November 2002         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·        <																				1		740	250	500
Image         Image <t< td=""><td></td><td>November-2023</td><td></td><td></td><td>3420</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>500</td><td>1000</td></t<>		November-2023			3420																		500	1000
Image         image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>336</td><td></td><td></td><td></td><td></td><td></td><td>100</td></t<>																		336						100
Induciny         Indication         Indicati		December-2023																	ND					250
November         -         -         -         -         -         -         N         N         N         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -					3390																			1000
November-2022         im         im         im         im         im         ND         im         ND         im		January-2024		813							1230											594		250
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		November-2022											ND										11	100
November-2023         ND         i         mage											ND					ND							27	250
November-2023           6030		December-2022	90 J																				27	250
Indication of the state         Indication of	4° - <b>A</b> - ° - I	November-2023	ND			968		1800			969			ND					ND	1170		324	250	500
December 203                                                                                                        <	IC ACIO				6030																		500	1000
Image with two problems         Image with tw																		ND						100
Index         Image         Image <t< td=""><td></td><td>December-2023</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>250</td></t<>		December-2023																						250
hore merry regr $nore metry regr         nore metry regr nore metry regr         nore metry$		lanuary 2024			9050																	256		1000 250
November:202               1.00           1.00		Junioury-2024																					11	100
December-202         640		November-2022																					27	250
January-2023         ND           ND          ND          ND              ND          ND          ND           ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND         ND          ND         ND          ND         ND          ND         ND          ND         ND          ND         ND          ND         ND          ND         ND          ND          ND          ND          ND          ND          ND          ND          ND         -		December-2022																					27	250
February 2023               ND          ND                   ND          ND          ND             ND         ND          ND          ND           ND          ND           ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND          ND																								500
March-2023            ND         ND         ND																								500
April-2023																								500
May-2023         520           800         1400																							340	500
June-2023																							340	500
Propionic Acid																								
Propionic Acid July-2023 ND		JULIE-2023																					680 140	1000 200
3019-2023 ND	oionic Acid	1.1.4.2022																				ND		
2100 / 00	ppionic Acid	JUIY-2023																					340	500
		August 0000																					680	1000
																						ND		500
																							340	500
		October-2023																				1420	340	500
NOVember-7073		November-2023																				1420	250	500
																							500	1000
		December-2023																						250
																								1000
		Januarv-2024																				1030		250

We	ll ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
Parameter	Monitoring Event	211 30	LIII OI	211 02	211 30	211 04					Concent											LOD	LOQ
Tutullelel									1			46 J							1			12	100
	November-2022																						250
										98 J					ND							30	
	December-2022	ND																				30	250
Pyruvic Acid	November-2023	ND			ND		ND			ND			ND					ND	ND		ND	250	500
				ND																		500	1000
	December-2023																ND	ND					100 250
	December-2023			ND																			1000
	January-2024		ND							ND											ND		250
	COMPOUNDS (ug/L		ND							ND											ND		230
		-								3510					1140							30	100
	November-2022																						1000
		2140										15600										300	
	December-2022	3140									3390											30	100
				26800				27700		5670						21700	7150					300	1000
	January-2023	3480							632													30	100
										7840					5470							300	1000
	February-2023																14400					600	2000
	March-2023								257	2770												30	100
	April-2023								3420		5530											750	2500
	May-2023 -	5360							5970													150	500
	1010y-2023									13600												750	2500
	June-2023									13800												750	2500
	JUNE-2023											20100		22600								1500	5000
		5860																ND				60	200
	July-2023																				13500	750	2500
2-Butanone (MEK)								38400												31600		3000	10000
																					5950	60	200
	August 2022																			7350		150	500
	August-2023							3000														750	2500
						25600																1500	5000
	September-2023																	439				60	200
				17500																		750	2500
	October-2023																	211				15	50
							17800												33400			1500	5000
																		78.8 J				30	100
	November 0000	2000					17700			10600												150	500
	November-2023																					300	1000
				25700	22200																21200	750	2500 5000
	December-2023			13700	22300								17600				7060	ND	26700		31200	1500 150	5000
										10800												150	500
	January-2024		34700																		28900	1500	5000
			007700		1																20700	1000	0000

W	/ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		100
Parameter	Monitoring Event						·				Concen	ration										LOD	LOQ
															4420							70	100
	November-2022									16100		38300										700	1000
										15600	5170						9800					700	1000
	December-2022	8500																				1750	2500
				53100				49900								45600						3500	5000
									1530													70	100
	January-2023									22200					14000							700	1000
		8130																				1750	2500
	February-2023																23900					1400	2000
									375													70	100
	March-2023									6810												700	1000
	April-2023								8290		7560											1750	2500
	Mary 0002	10700							11700													350	500
	May-2023									29600												1750	2500
	hurs 0000									29600												1750	2500
	June-2023											61800		50800								3500	5000
Acetone																		1180				140	200
		9780																				700	1000
	July-2023																				11600	1750	2500
								77200												69700		7000	10000
																					20900	700	1000
	August-2023							18700														1750	2500
						72500														87700		3500	5000
	September-2023																	188 J				140	200
				40100																		1750	2500
	October-2023																	79				35	50
							66900												92900			3500	5000
																		104				70	100
	November-2023	5560																				700	1000
				64700																		1750	2500
					43100		61100			36800			32800						53900		67800	3500	5000
																	ND					140	200
	December-2023																	ND				350	500
				44300																		1750	2500
	January-2024		96600							22800											47300	3500	5000

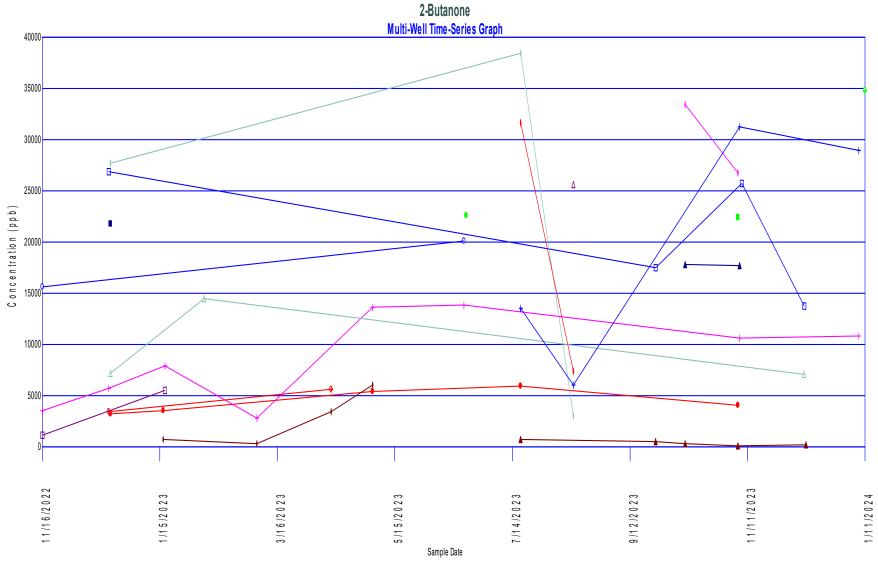
W	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
Parameter	Monitoring Event	211-30	201-51	L11-J2	211-33	L11-34	L11-33	L#1-37	L11-30	L11-37	Concent		211-02	211-04	L#-05	L11-07	L11-00	L11-70	L11-07	L / I - 74	211-70	LOD	LOQ
Turumerer	November-2022									7.4 J		2860			50.4							4	10
	NOVEITIDEI-2022	301		2960						6.3 J	622					1750	179					4	10
	December-2022																						
	1							6550														40	100
	January-2023	240							28.7	1620					167							4	10
	February-2023																1370					4	10
	March-2023								1540	727												4	10
	April-2023								3740		320											4	10
	May-2023	814							4890	3370												20	50
	June-2023									2630												8	20
												1400		1590								20	50
		824																80.8				8	20
	July-2023							4050												1420		20	50
Benzene																					11800	100	250
	August-2023																				379	8	20
	, (09031 2020					2320		168												ND		20	50
	September-2023																	193				8	20
				468																		100	250
	October-2023						 576											399	2100			2	5
		80.8											31.3						3100			20	50 5
													 					323				4	10
	November-2023				1070		654			982									1960		1190	20	50
				870																		100	250
																	932					8	20
	December-2023			1330														463				20	50
	January-2024		1410							662											2900	20	50
	December-2022	67.3		172				287		ND	48.5					108	27.4					4	10
	November-2022									ND		194			16.2							4	10
	January-2023	65.1							ND	93.9					20.8							4	10
	February-2023																151					4	10
	March-2023								131	71.5												4	10
	April-2023								186		43.4											4	10
	May-2023	124							276	144												20	50
										104												8	20
	June-2023 -											98		116								20	50
																					666	4	10
	July-2023	128																82				8	20
<b>E</b> 11 11	JUIY-2020							224												87.5		20	50
Ethylbenzene																					16.8 J	8	20
	August-2023					80		ND												ND		20	50
																		22.8				8	20
	September-2023			ND																		100	250
	October 2002																	34.8				2	5
	October-2023						42.5 J												247			20	50
		26.3											45.4									2	5
	November-2023																	26.9				4	10
					62		54			76.5									224		60.5	20	50
				ND																		100	250
	December-2023																46					8	20
				69.5						 28 J								44 J			 248	20 20	50
	January-2024		99							781											748	.)()	50

We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
Parameter	Monitoring Event					-					Concent		-									LOD	LOQ
										309					176							100	100
	November-2022											8530										1000	1000
		151								170	1120						663					100	100
	December-2022			5210				19800								6130						1000	1000
	January-2023	183							566	1810					352							100	100
	February-2023																3760					2000	2000
	March-2023								353	464												100	100
	April-2023								2410		4790											100	100
	May-2023	ND							2740	2380												500	500
	1VICIy-2023																						
	June-2023									2100												200	200
												7320		6670								500	500
																					2960	100	100
Tetrahydrofuran	July-2023	411																616				200	200
								8380												5310		500	500
	August-2023																				2880	200	200
	, (09031 2020					7370		3210												1200		500	500
	September-2023																	343				200	200
				ND																		2500	2500
	October-2023																	606				50	50
							4870												9140			500	500
		199											325									50	50
	November-2023				4700		2200											358				100	100
	-				4780		3320			785									5370		4600	500	500
				4620													4240					2500 200	2500 200
	December-2023			2620														502				500	500
	January-2024		5160							1040											10900	500	500
	November-2022									ND		214			32.8							5	10
	December-2022	122		175						ND	113					113	48.3					5	10
								195														5	
	January-2023	122							8 J	139					35.3							5	10
	February-2023																224					5	10
	March-2023								182	98.1												5	10
	April-2023								303		94.4											5	10
	May-2023	258							371	239												25	50
	June-2023									165												10	20
												67		212								25	50
																					965	5	10
	July-2023	248																107				10	20
Toluene								218												118		25	50
	A																				36.6	10	20
	August-2023					105		ND												ND		25	50
	Sontomber 2022																	40.6				10	20
	September-2023			ND																		125	250
	October-2023																	59.2				2.5	5
							37 J												235			25	50
		47.3											50.4									2.5	5
	November-2023																	48.7				5	10
					62.5		51.5			114									167		114	25	50
				ND																		125	250
	December-2023																73.2					10	20
				83.5														74.5				25	50
	January-2024		95.5							60											310	25	50

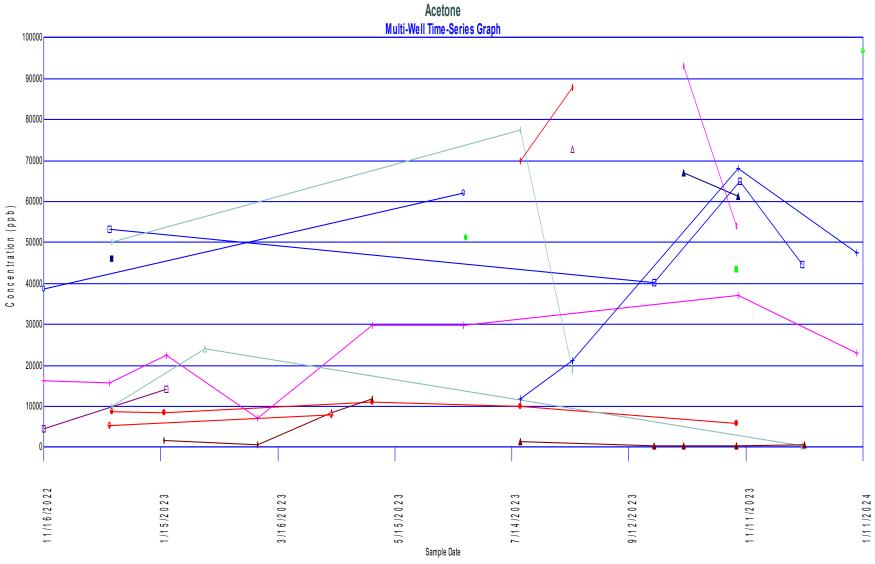
We	ell ID	EW-50	EW-51	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98	100	100
Parameter	Monitoring Event										Concent					. <u> </u>						LOD	LOQ
	November-2022									ND		185			37.8							10	30
	December-2022	161		222				186		ND	112					197	59.9					10	30
	January-2023	138							ND	134					38.1							10	30
	February-2023																240					10	30
	March-2023								240	111												10	30
	April-2023								329		97.4											10	30
	May-2023	274							441	230												50	150
										177												20	60
	June-2023											92 J		136 J								50	150
																					1130	10	30
	July-2023	257																74.4				20	60
Xylenes, Total								230												174		50	150
Aylenes, Iolai	A., much 0002																				48.4 J	20	60
	August-2023					180		ND												ND		50	150
	September-2023																	ND				20	60
				ND																		250	750
	October-2023																	30.6				5	15
							134 J												328			50	150
		56											48									5	15
	November-2023				 116 J		104 1			 120 I								25.3 J	306		120	10 50	30 150
	November-2023			ND			104 J			132 J											138 J	250	750
																	167					20	60
	December-2023			224														ND				50	150
	January-2024		142 J							ND											534	50	150

--- = not applicable/available

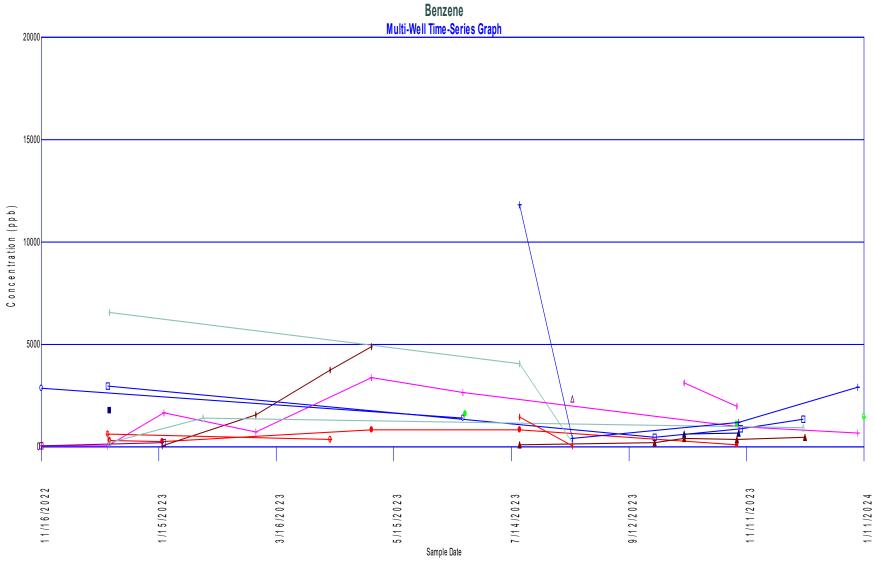
J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.


LOD = laboratory's Limit of Detection

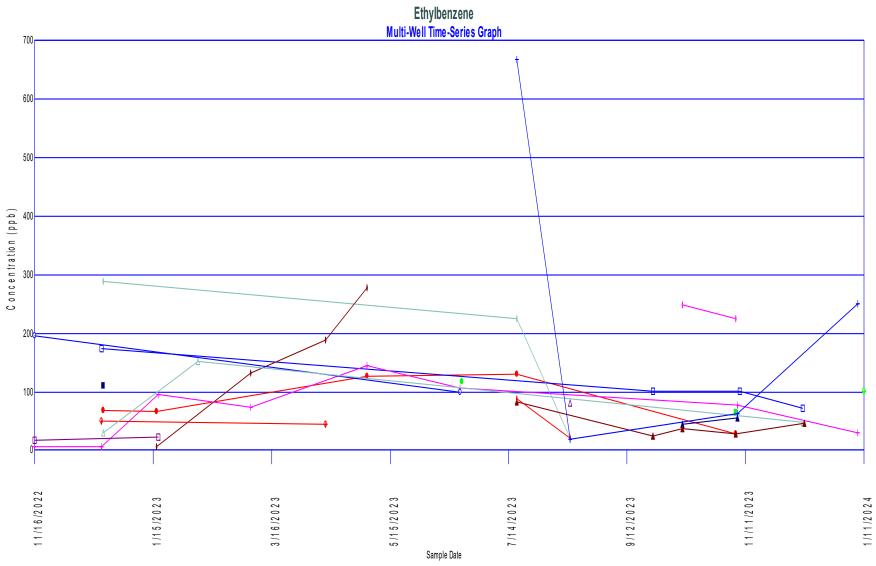
LOQ = laboratory's Limit of Quantitation


mg/L = milligrams per liter

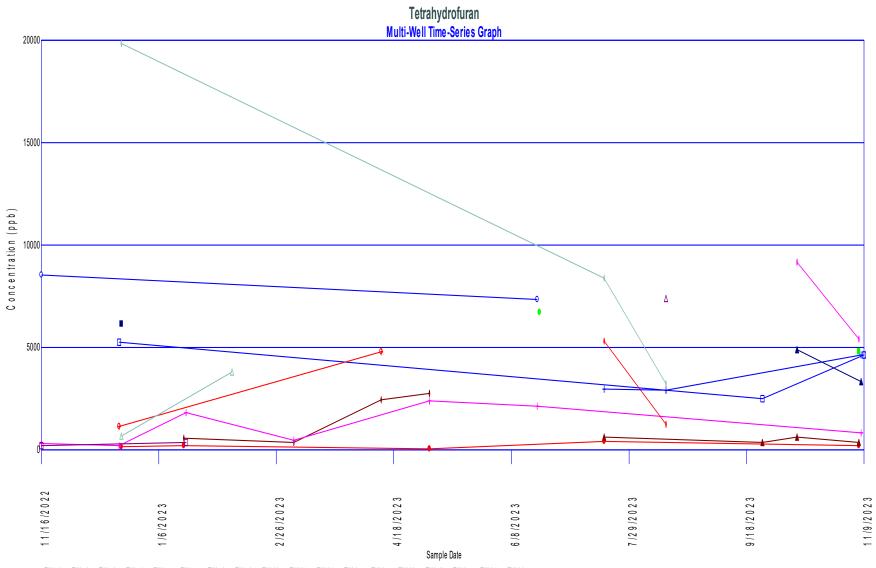
ND = Not Detected


ug/L = micrograms per liter




●EW-50 □EW-52 ■EW-53 △EW-54 ▲EW-55 ↓EW-57 ↓EW-58 +EW-59 <del></del> ●EW-60 ○EW-61 ●EW-64 □EW-65 ■EW-67 △EW-68 ▲EW-78 ↓EW-87 ↓EW-94 +EW-98 ●EW-51

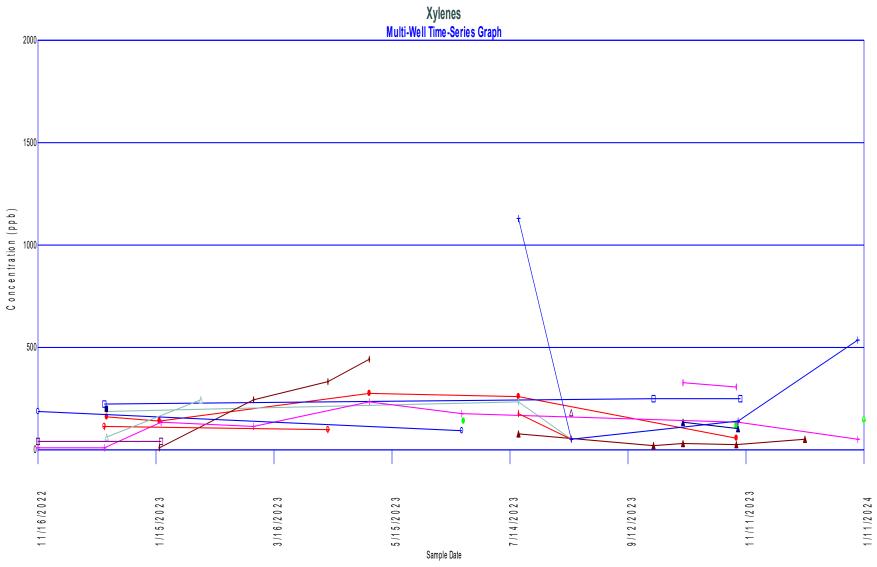



●EW-50 □EW-52 ■EW-53 △EW-54 ▲EW-55 ↓EW-57 ↓EW-58 +EW-59 ●EW-60 ○EW-61 ●EW-64 □EW-65 ■EW-67 △EW-68 ▲EW-78 ↓EW-87 ↓EW-98 ●EW-51



●EW-50 □EW-52 ■EW-53 △EW-54 ▲EW-55 ↓EW-57 ↓EW-58 +EW-59 ●EW-60 ○EW-61 ●EW-64 □EW-65 ■EW-67 △EW-68 ▲EW-78 ↓EW-87 ↓EW-94 +EW-98 ●EW-51




●EW-50 □EW-52 ■EW-53 △EW-54 ▲EW-55 ↓EW-57 ↓EW-58 +EW-59 <del></del> ●EW-60 ○EW-61 ●EW-64 □EW-65 ■EW-67 △EW-68 ▲EW-78 ↓EW-87 ↓EW-94 +EW-98 ●EW-51



●EW-50 □EW-52 ■EW-53 △EW-54 ▲EW-55 ↓EW-57 ↓EW-58 +EW-59 <del>●</del>EW-60 ○EW-61 ●EW-64 □EW-65 ■EW-67 △EW-68 ▲EW-78 ↓EW-87 ↓EW-94 +EW-98



●EW-50 □EW-52 ■EW-53 △EW-54 ▲EW-55 ↓EW-57 ↓EW-58 +EW-59 ●EW-60 ○EW-61 ●EW-64 □EW-65 ■EW-67 △EW-68 ▲EW-78 ↓EW-87 ↓EW-94 +EW-98 @EW-51



●EW-50 □EW-52 ■EW-53 △EW-54 ▲EW-55 ↓EW-57 ↓EW-58 +EW-59 ⊕EW-60 ○EW-61 ●EW-64 □EW-65 ■EW-67 △EW-68 ▲EW-78 ↓EW-87 ↓EW-94 +EW-98 ⊕EW-51