December 2023 Monthly Compliance Report

Solid Waste Permit No. 588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-30 | January 10, 2023

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sect	tion			Page						
	Introduction									
1.0	Gas	s Collection								
	1.1	Surface and Leachate Collection Emissions								
		1.1.1	Surface Emissions	4						
		1.1.2	Leachate Collection Emissions	5						
	1.2	Existin	g Gas Extraction System Performance	6						
	1.3	Remot	e Monitoring System	7						
		1.3.1	Automated Wellhead Temperature Measurements	7						
		1.3.2	Comparison with Manual Temperature Measurements	8						
		1.3.3	Monthly Regulatory Wellhead Temperature Measurements	9						
		1.3.4	LFG Sampling	10						
	1.4	Large-	Diameter Dual-Phase Extraction Wells	12						
	1.5	VDEQ	Concurrence on Wells	12						
2.0	Side	wall Odd	or Mitigation	13						
	2.1	Perime	eter Gas Collection System	13						
	2.2	Sidewa	all Odor Mitigation System	13						
	2.3	Pilot S	ystem Construction	13						
	2.4	Full Sy	stem Construction							
3.0	Wast	te Temp	erature Monitoring	17						
	3.1	Tempe	erature Monitoring System Design							
	3.2	Tempe	erature Monitoring System Installation							
4.0	Lead	hate Ex	traction and Monitoring							
	4.1	Existin	g System Optimization							
	4.2	Sampl	ing and Analysis Plan	33						
		4.2.1	Sample Collection	33						
		4.2.2	Quality Assurance and Quality Control							
		4.2.3	Data Validation	35						
		4.2.4	Laboratory Analytical Results	35						
5.0	Settl	ement N	Nonitoring and Management							
	5.1	Settler	ment Monitoring and Management Plan							
	5.2	Month	ly Surveys							
		5.2.1	Topographic Data Collection							
		5.2.2	Settlement Plate Surveys							

Table of Contents

Sect	ion		Page			
6.0	Intermediate Cover and EVOH Cover System					
	6.1	Intermediate Cover Installation	44			
	6.2	EVOH Cover System Design	45			
	6.3	EVOH Cover System Procurement	45			
	6.4	EVOH Cover System Installation	45			
7.0	Storn	nWater Management	46			
	7.1	Stormwater Management Plan Development	46			
	7.2	Stormwater Management Basin Design and Construction	46			
	7.3	Stormwater Management Plan Implementation	46			
	7.4	Long-Term Stormwater Control and Removal	47			
	7.5	Stormwater Monitoring	47			
8.0	Misc	ellaneous	47			
	8.1	Cease Waste Acceptance	47			
	8.2	Long-Term Plan	47			
	8.3	Monthly Compliance Reports	48			
	8.4	Community Outreach Program	48			

Figures

Figure 1.	Average Automated Wellhead Temperatures	8
Figure 2.	Automated vs. Manual Temperature Measurements	
Figure 3.	EW-36A Enhanced Monitoring Trends	
Figure 4.	EW-81 Enhanced Monitoring Trends	
Figure 5.	EW-85 Enhanced Monitoring Trends	
Figure 6.	EW-88 Enhanced Monitoring Trends	
Figure 7.	EW-89 Enhanced Monitoring Trends	12
Figure 8.	SOMS Phase I As-Built	14
Figure 9.	Phase 2 SOMS Wellhead Connections	14
Figure 10.	Phase 2 Sidewall Odor Mitigation System As-Built	16
Figure 11.	Temperature Monitoring Probe Locations	18
Figure 12.	Average Temperatures within TP-1 During the Months of March through December	19
Figure 13.	Average Temperatures within TP-2 During the Months of March through December	20
Figure 14.	Average Temperatures within TP-3 During the Months of March through December	21
Figure 15.	Average Temperatures within TP-4 During the Months of March through December	
Figure 16.	Average Temperatures within TP-5 During the Months of March through December	23
Figure 17.	Average Temperatures within TP-6 During the Months of March through December	24
Figure 18.	Average Temperatures within TP-7 During the Months of March through December	25
Figure 19.	Average Temperatures within TP-8 During the Months of March through December	26

Table of Contents

Section		Page
Figure 20. Figure 21. Figure 25.	Average Temperatures within TP-9 During the Months of March through Decemb Estimated Volume of Liquids Removed from Landfill Gas Wells Flow Meter Installation	31
Figure 26.	1-Month Elevation Change Color Map	
Figure 27. Figure 28.	3-Month Elevation Change Color Map 1-Year Elevation Change Color Map	
Figure 28.	Settlement Plate Locations	
Figure 30.	Changes in Settlement Plate Elevations	44

Tables

Table 1.	Summary of December Surface Emissions Monitoring	5
Table 2.	Leachate Cleanout Pipe Monitoring Results	
Table 3.	December Temperature Exceedance Summary	
Table 4.	LFG Wellhead Sampling Summary	
Table 5.	Sidewall HC Wellhead Gas Quality Measurements - System Averages	
Table 6.	Summary of Dual Extraction Well Pump Stroke Counter Data	
Table 7.	Summary of Dual Extraction Well Pump Liquids Removal	
Table 8.	Monthly LFG-EW Leachate Monitoring Event Summary	
Table 9.	Settlement Plate Locations	

Appendices

- Appendix A Surface Emissions Monitoring Summary Letters
- Appendix B In-Waste Temperatures on Select Days in November
- Appendix C Daily Wellhead Temperature Averages
- Appendix D Solid Waste Permit 588 Daily Borehole Temperature Averages
- Appendix E Monthly Topography Analysis
- Appendix F Sample Collection Log, Lab Reports, and Historical LFG-EW Leachate Monitoring Results Summary

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report provides updates regarding the progress towards completion of the items outlined in Appendix A of the Consent Decree between the City and VDEQ. The following sections outline progress during the month of December 2023 related to Solid Waste Permit (SWP) No. 588.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

1.1.1.1 Quarterly SEM

SCS performed the Fourth Quarter surface emissions monitoring event on December 14, 2023. The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint outside of the active filling area.

No exceedances were detected during this quarterly monitoring event on the serpentine route, but two exceedances were detected at the surface cover pipe penetrations. This monitoring event also represented the weekly monitoring event for that week. A quarterly SEM report documenting corrective actions and remonitoring results will be submitted to the VDEQ as part of the Semi-Annual Report. In addition, monitoring results were presented to the VDEQ in a letter dated December 20, 2023.

1.1.1.2 Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, SCS performed additional surface emissions monitoring on December 1, 2023; December 7, 2023; December 14, 2023; and December 21, 2023. These weekly surface emissions monitoring (SEM) events were performed in accordance item 1.i in Appendix A of the Consent Decree between the City and VDEQ.

The monitoring in December generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID)

at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint.

Description	December 1, 2023	December 7, 2023	December 14, 2023	December 21, 2023
Number of Points Sampled	123	172	171	172
Number of Points in Serpentine Route	100	100	100	100
Number of Points at Surface Cover Penetrations	23	72	71	72
Number of Exceedances	0	6	2	5
Number of Serpentine Exceedances	0	0	0	1
Number of Pipe Penetration Exceedances	0	6	2	4

Table 1. Summary of December Surface Emissions Monitoring

There was one serpentine exceedance detected in December 2023. In addition, new exceedances were detected at pipe penetrations of seven vertical extraction wells (EW-51, EW-67, EW-74, EW-95, EW-97, EW-98, and EW-99). Exceedances at these locations can be attributed to a variety of factors. Many of these wells are equipped with a dewatering pump, that when operating effectively, will lower the water in the well and allow greater gas collection from the area. Many of these exceedances correspond to periods of pump down time. In addition, insufficient cover soil was identified at a few of the exceedance locations. Furthermore, reduced available and applied vacuum were identified at some of these wells.

By the final weekly monitoring event of the month, many of these issues had been resolved. However, 5 ongoing exceedances still remained (EW-67, EW-87, EW-95, EW-98, and Tag 74). Corrective actions taken at these locations include placement of additional soil, addition of a wellbore skirt, installation of a foam or bentonite seal, continued and improved dewatering activities, and well tuning to increase gas extraction. Corrective actions to address the 5 ongoing exceedances are planned for the month of January 2024.

1.1.2 Leachate Collection Emissions

SCS Field Services (SCS-FS) visited the Bristol Landfill on December 15, 2023, and performed monitoring of the leachate, witness zone, and gradient control clean-outs at the northern and southern ends of the landfill. The results of that monitoring are included in Table 2. Table 2 also lists the cleanout pipe description based on site records and a review of correspondence.

LC07 was not monitored during December 2023.

Tab	le	2.	
1010		<u>-</u> .	

Leachate Cleanout Pipe Monitoring Results

Description	ID#	Record Date	CH4 (% by Vol)	CO2 (% by Vol)	O2 (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H2O)	Adj Static Pressure (in H2O)	System Pressure (in H2O)
Southern Cleanouts Gradient West	LC01	12/15/2023 10:34:56 AM	24.5	23.5	10.9	41.1	47.1	47.3	-8.12	-8.25	-8.20
Southern Cleanouts Gradient East	LC02	12/15/2023 10:36:50 AM	41.8	44.4	2.1	11.7	48.4	48.5	-7.74	-7.74	-10.24
Southern Cleanouts Leachate Center	LC03	12/15/2023 10:41:12 AM	48.4	30.8	4.3	16.5	49.2	49.2	-9.80	-9.80	-10.13
Southern Cleanouts Witness East	LC04	12/15/2023 10:44:12 AM	3.3	3.2	19.9	73.6	50.0	50.1	-10.10	-10.10	-10.14
Southern Cleanouts Leachate West	LC05	12/15/2023 10:46:01 AM	50.9	46.0	0.3	2.9	50.8	50.9	-7.40	-7.40	-10.14
Southern Cleanouts Gradient Center West	LC06	12/15/2023 10:48:05 AM	38.7	27.4	6.8	27.1	51.6	51.7	-10.10	-10.10	-10.06
Southern Cleanouts Leachate East	LC08	12/15/2023 10:50:19 AM	49.1	47.0	0.1	3.8	52.4	52.4	-7.29	-7.17	-10.18
Southern Cleanouts Gradient Center East	LC09	12/15/2023 10:52:35 AM	29.1	35.9	7.9	27.1	52.1	52.4	-9.43	-9.42	-10.15
Southern Cleanouts Leachate West	LC10	12/15/2023 10:54:19 AM	21.3	46.5	7.0	25.2	50.6	50.7	-10.10	-10.10	-9.91
Northern Cleanouts Leachate East	NC01	12/15/2023 12:53:36 PM	2.5	2.1	20.1	75.3	53.8	53.8	-6.06	-6.06	0.00
Northern Cleanouts Leachate Center	NC02	12/15/2023 12:54:41 PM	3.2	2.9	19.6	74.3	53.4	53.4	-5.88	-5.97	0.00
Northern Cleanouts Leachate West	NC03	12/15/2023 12:57:41 PM	3.6	3.4	19.5	73.6	52.8	52.8	-6.06	-6.06	0.00
Northern Cleanouts Witness East	NC04	12/15/2023 12:37:26 PM	0.0	0.0	21.3	78.7	52.5	52.5	-5.45	-5.43	0.00
Northern Cleanouts Witness Center	NC05	12/15/2023 12:40:38 PM	0.0	0.0	21.4	78.6	53.0	53.0	-5.43	-5.54	0.00
Northern Cleanouts Witness West	NC06	12/15/2023 12:42:18 PM	0.0	0.0	21.4	78.6	53.5	53.5	-2.36	-2.35	0.00
Northern Cleanouts Gradient East	NC07	12/15/2023 12:45:02 PM	0.0	0.0	21.4	78.6	52.3	52.2	-6.06	-6.06	0.00
Northern Cleanouts Gradient Center East	NC08	12/15/2023 12:48:23 PM	0.0	0.0	21.4	78.6	53.0	53.1	-6.06	-6.06	0.00
Northern Cleanouts Gradient Center West	NC09	12/15/2023 12:50:29 PM	0.0	0.0	21.3	78.7	53.4	53.5	-6.12	-6.06	0.00
Northern Cleanouts Gradient West	NC10	12/15/2023 12:52:04 PM	4.8	0.8	19.6	74.9	54.0	53.9	-6.06	-6.06	0.00

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in the following sections of this report.

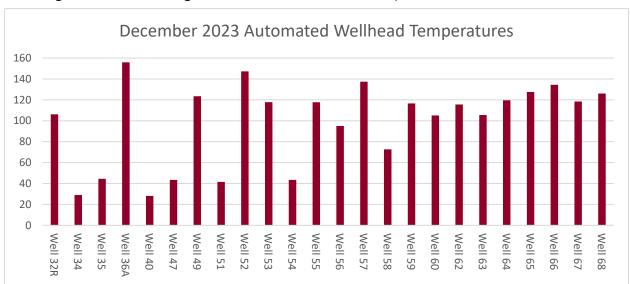
Additional actions taken by SCS-FS include the following:

• Replacing air regulators at individual wells

- Troubleshooting air compressor
- Adjusting blower set-points
- Investigation of high oxygen levels
- Replacing a Kanaflex on wellheads
- Modifications to lateral piping
- Placement of enhanced posi-shell on Quarry sidewalls
- Replacement of sample ports

1.3 REMOTE MONITORING SYSTEM

In the Fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas wellheads. The purpose of the sensors is to record and transmit well-head gas temperatures via a cellular connection to a database managed by SCS-RMC.


The City is providing average temperatures recorded by the sensors to VDEQ on a daily basis via email. Average daily temperatures recorded by the remote monitoring system during the month of December are included in Appendix C. In addition, SCS previously prepared semi-monthly status updates to satisfy the conditions of compliance provision #2 of the Environmental Protection Agency (EPA) Region III letter, Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility, dated August 23, 2021. On August 2, 2023, VDEQ requested that such updates be included in the monthly compliance reports going forward. Accordingly, this section is a summary of temperature monitoring activities during the monthly monitoring period of December 2023.

1.3.1 Automated Wellhead Temperature Measurements

SCS reviewed the automated hourly temperature measurements from December 2023, and identified the following trends:

- **Temperature probes removed at decommissioned wells:** Temperature probes at EW-34 and EW-40 were removed in December due to the decommissioning of the wells. SCS and the City will collaborate on the possible deployment of these sensors elsewhere in the wellfield.
- Temperatures over 145°F: Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded consistently at EW-36A, EW-52, EW-53, and EW-57 in December. The highest average temperatures were measured at EW-36A (see Figure 1). SCS believes that the increase in temperatures at these wellheads suggests that, with the increase of pneumatic pump operations and increased liquids removal, the waste mass is more effectively dewatered. Removal of liquids allows gas from deeper within the waste mass to be extracted. In some cases, gas collected from lower elevations is hotter than gas from higher elevations and this temperature difference is reflected in the temperatures measured by the sensors.

• Low average temperatures at certain wells: Wells with average temperatures under 50°F are being investigated for their accuracy. This requires manual verification of the operation of the probe.

Figure 1. Average Automated Wellhead Temperatures

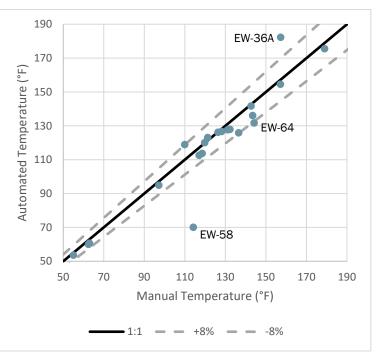

1.3.2 Comparison with Manual Temperature Measurements

Figure 2.

Automated vs. Manual Temperature Measurements

Per the approval issued by VDEQ on August 2, 2023, the Facility ceased dedicated daily manual temperature measurements in the Permit No. 588 Landfill. In lieu of these measurements, the City has agreed to compare instantaneous hourly automated temperature measurements with temperatures measured at each wellhead with a handheld sensor during monthly compliance monitoring. These comparisons are shown in Figure 2, with the $\pm 8\%$ deviation goals as prescribed in the VDEQ approval.

Temperature comparisons outside the $\pm 8\%$ deviation goal lines were found for wells EW-36A and EW-58 and EW-64. At EW-36A, the stainless-steel well casing appears to be a limiting factor in obtaining precise LFG temperatures with a handheld sensor.

The manual temperature reading at EW-58 during compliance monitoring in December was recorded twice in a row, with both measurements showing radically different temperatures. SCS therefore believes that that the disparity between the automated temperature and the manual temperature is due to a one-time instrumentation error.

At EW-64, the wellhead's ball valve was mostly closed during the manual temperature readings, which SCS believes caused the lower automated temperature measurement, just outside the 8% threshold. SCS has historically noted challenges recording precise LFG temperatures at low flow rates when utilizing automated sensors.

1.3.3 Monthly Regulatory Wellhead Temperature Measurements

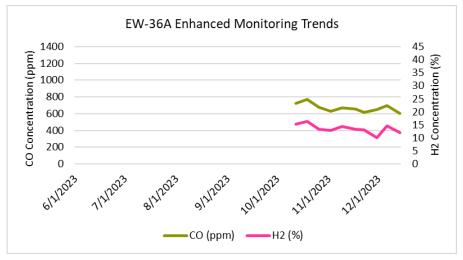
Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted November 6, 2023, with follow-up monitoring several days after. Additionally, SCS typically measures wellhead temperatures at the SWP No. 588 Landfill on a semi-monthly basis. During this monitoring period, temperature exceedances were resolved at EW-36A, 65, and 94. See Table 3 for the status of all exceedances recorded during this monitoring period. An HOV request was submitted for EW-52, EW-64, EW-81, EW-85, EW-88, EW-89, EW-91, and EW-99 on November 8, 2023. The approval of this HOV request remains pending as of 12/31/23.

		Last		
Well ID	Initial Exceedance Date	date/temperature measured	Duration of Exceedance	Status as of 12/31/23
EW-36A	12/14/23	12/14/23 157.3°F	5 days	Resolved, within 15-day timeline
EW-36A	12/21/23	12/21/23 157.3°F	7 days	Resolved, within 15-day timeline
EW-52	12/18/23	12/27/23 159.6°F	14 days	Ongoing, within 15-day timeline
EW-65	11/22/23	12/27/23 143.9°F	35 days	Resolved, within 60-day timeline
EW-77	12/19/23	12/27/23 156.2°F	13 days	Ongoing, within 15-day timeline
EW-79	12/19/23	12/27/23 147.3°F	13 days	Ongoing, within 15-day timeline
EW-80	11/20/23	12/27/23 147.2°F	41 days	Ongoing, within 60-day timeline
EW-81	9/25/23	12/27/23 164.3°F	97 days	Ongoing, within 120-day timeline
EW-82	12/18/23	12/27/23 169.8°F	14 days	Ongoing, within 15-day timeline
EW-83	12/4/23	12/27/23 184.5°F	27 days	Ongoing, within 60-day timeline
EW-85	10/10/23	12/27/23 148.9°F	82 days	Ongoing, within 120-day timeline
EW-88	9/25/23	12/27/23 166.1°F	97 days	Ongoing, within 120-day timeline
EW-89	12/4/23	12/27/23 180.7°F	27 days	Ongoing, within 60-day timeline
EW-94	12/4/23	12/6/23 134.8°F	2 days	Resolved, within 15-day timeline

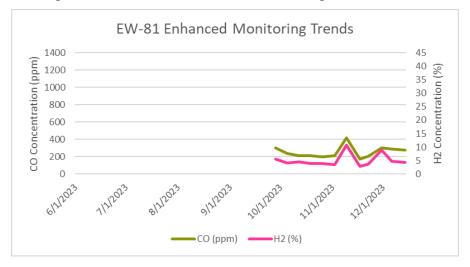
1.3.4 LFG Sampling

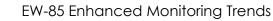
SCS collected weekly LFG samples from wells with temperature exceedances lasting more than 7 days using 1.5-L Summa canisters during December. The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H₂) content. As of 12/31/23, the City is in possession of lab results for sampling on November 17, 22, and 30, and December 6 and 14 to fulfill the requirement in 40 CFR 63.1961(a)(5). Lab results are summarized in Table 4.

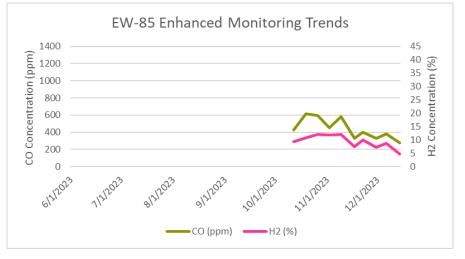
Sample Da	ate	11/17/23	11/22/23	11/30/23	12/6/23	12/14/23
36A	CO (ppmv)	654	616	649	696	601
304	H2 (Vol. %)	13.4	13	10.1	14.6	11.9
52	CO (ppmv)	ND	ND			
52	H2 (Vol. %)	3.54	2.8			
55	CO (ppmv)	477				
55	H2 (Vol. %)	9.36				
60	CO (ppmv)	490				
60	H2 (Vol. %)	12.3				
65	CO (ppmv)		ND	ND	ND	ND
65	H2 (Vol. %)		2.65	1.31	1.77	2.55
80	CO (ppmv)		ND	ND	117	ND
80	H2 (Vol. %)		1.24	1.24	1.31	0.84
81	CO (ppmv)	418	175	205	301	287
01	H2 (Vol. %)	10.8	2.89	3.66	8.92	4.77
83	CO (ppmv)				611	562
03	H2 (Vol. %)				17.4	14.8
85	CO (ppmv)	580	331	401	330	383
00	H2 (Vol. %)	12	7.42	9.89	7.26	8.62
88	CO (ppmv)	153	240	226	192	183
00	H2 (Vol. %)	5.12	6.22	6.25	5.1	5.49
89	CO (ppmv)	1110	1180	1200	1150	1190
09	H2 (Vol. %)	27.4	26.5	27.7	26.8	30.7
0.2	CO (ppmv)	1360	1610			
92	H2 (Vol. %)	23.5	25.5			


Table 4.	LFG Wellhead Sampling Summary

The presence of hydrogen in the samples collected during this monitoring period indicates that combustion reactions are unlikely.


The wells with corresponding charts in Figures 3, 4, 5, 6, and 7 have been sampled for carbon monoxide and hydrogen for the last five weeks or more. Trends appear to be fairly consistent over time at for three wells.


EW-36A Enhanced Monitoring Trends



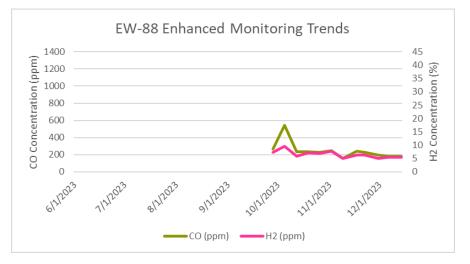
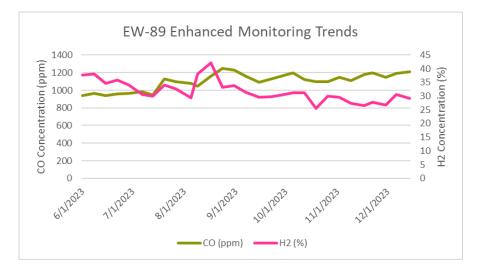



Figure 6. EW-88 Enhanced Monitoring Trends

Figure 7. EW-89 Enhanced Monitoring Trends

1.4 LARGE-DIAMETER DUAL-PHASE EXTRACTION WELLS

SCS completed design work on an expansion of the existing GCCS during the month of December 2022. The proposed expansion includes at least 5 large diameter dual-phase extraction wells. SCS submitted the design to VDEQ prior to December 31, 2022. The City commenced solicitation of contractor's bids for this project by advertising for bids and received one bid for the project from SCS Field Services Construction (SCS-CONS). On January 26, 2023, the City awarded the project to SCS-CONS. The City's construction contractor left site as of the GCCS expansion project completion on October 12, 2023.

1.5 VDEQ CONCURRENCE ON WELLS

As described in previous monthly compliance reports, the City engaged with VDEQ in discussions about the proposed approach for landfill GCCS improvements and expansions. Upon completion of

the landfill gas collection system, SCS will submit updated as-built drawings depicting the completed system to VDEQ. The City intends to delay installation of interim or final cover systems until the City and VDEQ agree that the GCCS is sufficient.

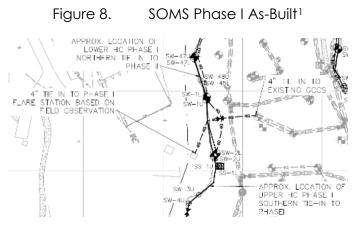
2.0 SIDEWALL ODOR MITIGATION

The City has designed and constructed a system to control fugitive emissions emanating from the quarry sidewalls. Specific aspects of the proposed design features are described in the following sections.

2.1 PERIMETER GAS COLLECTION SYSTEM

SCS's design of the GCCS expansion described in Section 1.4 included perimeter LFG wells. These wells are closer to the sidewall to intercept landfill gas that potentially could migrate to the quarry wall. These wells supplement the sidewall odor mitigation system described in Section 2.2. The City completed bidding and construction for the perimeter LFG wells as part of the large diameter dual extraction well installation described in Section 1.4.

As described in the April 2023 Monthly Compliance Report for the SWP No. 588 Landfill, construction of the perimeter gas collection system was completed. SCS submitted a letter to VDEQ documenting completion of the Perimeter Gas Collection System on May 1, 2023.


2.2 SIDEWALL ODOR MITIGATION SYSTEM

On behalf of the City and in an effort to capture emissions from the quarry sidewall, SCS designed a sidewall odor mitigation system (SOMS) during the month of October 2022. On October 20, 2022 SCS provided an overview of the proposed system to VDEQ staff. The design of this system was prepared and submitted to VDEQ on November 1, 2022. A project manual detailing the specifications of the system was developed concurrently with the design of the system.

2.3 PILOT SYSTEM CONSTRUCTION

SCS-CONS completed substantial construction of Phase 1 of the SOMS during the month of February 2023, SCS-FS began monitoring Phase 1 connected Horizontal Collector (HC) wellheads during the month of March, and SCS-FS continued weekly wellhead monitoring into the month of May 2023. Phase 1 is considered the pilot system portion of the SOMS. SCS submitted a design engineer certification to VDEQ on February 10, 2023 that documented the substantial completion of Phase 1 of the SOMS. Details of Phase 1 construction progress and monitoring can be found in the monthly compliance reports for the SWP No. 588 landfill.

Figure 8 shows the Phase 1 as-built, which includes the locations of the HC wellheads and HC sumps installed in Phase I, as well as the 4" header connection to the existing LFGCCS. The lower collector installed as part of Phase II was tied-in to the north end of the Phase I lower collector, and the upper collector installed as part of Phase II was tied-in to the south end of the Phase I upper collector.

Both the upper and lower collectors of Phase 1 of the system have been connected to the substantially completed Phase 2 of the system. Collection of landfill gas by both the upper and lower collectors indicates that the system is working as intended. Based on this data, Phase 2 was constructed utilizing the same general configuration.

2.4 FULL SYSTEM CONSTRUCTION

SCS-CONS substantially completed construction of Phase 2 of the SOMS during the month of June 2023 as Phase 2 was connected to vacuum as of June 14, 2023. Cover soil placement continued into the month of October, and ceased when the construction crew left site on October 12, 2023 upon project final completion. Figure 9 shows SOMS Phase 2 wellhead installation and connections at HC wells along the southeastern perimeter of the landfill.

During the month of December 2023, SCS-FS collected monitoring data at each wellhead under vacuum. A summary of those measurements is shown in Table 5.

¹ Location data was collected using mapping grade global positioning system equipment.

Record Date	Average CH4 [%]	Average CO2 [%]	Average O2 [%]	Average Bal Gas [%]
12/5/2023	4.0	8.2	17.1	70.7
12/(19-26)/2023	3.7	7.8	18.3	70.3

 Table 5.
 Sidewall HC Wellhead Gas Quality Measurements – System Averages

Isolation valves have been installed on the SOMS to allow for manipulation of flow routed to the supplemental flare, currently being leased. The flare was constructed by Perennial Energy Incorporated (PEI). The gas is being re-routed to the supplemental flare because of the lower quality of the gas. The City is attempting to improve the quality of the gas directed to the primary flare and energy generation facility.

The sidewall system average gas composition indicates lower methane content than typical landfill gas collection systems. The gas quality measurements indicate that the SOMS is functioning as designed because landfill gas is being withdrawn and oxygen intrusion is acceptable. The wide-ranged gas composition may indicate that some areas of the landfill may be experiencing higher landfill gas concentrations than areas where methane content is seemingly insignificant. SCS-FS will adjust SOMS wellheads based on gas quality to increase flow from sections of the system with high methane content and reduce flow from sections of the system with low methane content. Phase 2 lower and upper collectors locations, including HC wellhead riser and sump locations, are shown in the as-built depicted as Figure 10².

² During construction, redundant risers were put in place to accommodate supplemental wellhead and installation in the future. Figure 10 shows all riser and sump locations. The final submittal to VDEQ, Revised June 26, 2023, shows the locations of actual wellhead installation. The facility may relocate wellheads based on field conditions.

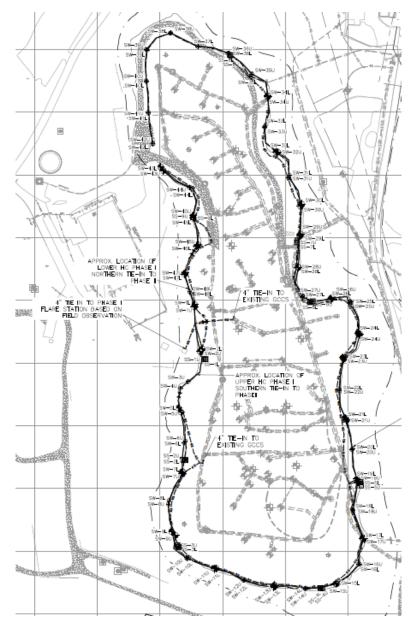


Figure 10. Phase 2 Sidewall Odor Mitigation System As-Built³

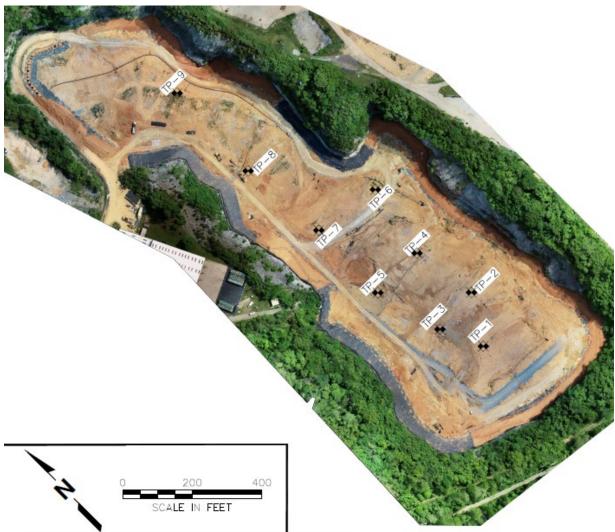
At this time, not every SOMS horizontal collector riser has a wellhead installed, but HC risers may receive a wellhead at a future date as warranted by field conditions.

During the month of December, there were some visible emissions around a few portions of the sidewall. Colder ambient temperatures likely increased visibility of the fugitives in these sections. There were three visible sidewall emissions locations, and these areas of the sidewall received application of an enhanced Posi-Shell® mixture. Posi-Shell® mixture details and application procedures were discussed in the November 2023 Compliance Report.

³ Location data was collected using mapping grape global positioning system equipment.

To further address sidewall emissions, additional wellheads were placed on risers adjacent to areas where visual sidewall emissions were observed. Wellheads were added at locations SW-20U, SW-22L, and SW-22U. Header pipes were installed to connect the wellheads at these locations to the rest of the LFGCCS collection system.

3.0 WASTE TEMPERATURE MONITORING


On behalf of the City, SCS designed a temperature monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

3.1 TEMPERATURE MONITORING SYSTEM DESIGN

The temperature monitoring system consists of 9 boreholes drilled into the waste mass. A steel casing was placed in each borehole and the hole was backfilled around the casing with aggregate. A series of temperature sensors was placed inside the steel casing. At the top of each borehole, an IIoT transmitter collects the data from the sensors and transmits it to a cloud-based RMC system. The City submitted design of the temperature monitoring system to VDEQ on November 30, 2022.

3.2 TEMPERATURE MONITORING SYSTEM INSTALLATION

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP No. 588 Landfill. The locations of the temperature probes are shown in Figure 11.

Figure 11. Temperature Monitoring Probe Locations

SCS began collecting temperature data daily on February 15, 2023. The temperature sensors continued to transmit temperature data during the month of December. Average daily temperatures recorded by the sensors for the Month of December are included in Appendix D. Each week the average temperatures from a select day of that week are downloaded and compared to temperatures recorded during the previous week. Average daily temperatures recorded on select days during the month of December are shown in Appendix B. The average temperatures recorded during the months of March through December are shown in Figures 12 through 20 on the following pages.

Figure 12 shows daily average temperatures record by Temperature Probe 1 (TP-1) during the months of March through December. Based on the data, temperatures were consistent from March through May and saw increases during the months of June, July and August at depths or 100 feet and below. In September, average temperatures showed little change when compared to August and in some cases, show a small decrease. Temperatures have stayed consistent from readings taken in September, October, November, and December of 2023.

TP-1 was originally drilled to a depth of 180 feet, but the contractor was unable to install the casing beyond a depth of 160 feet. TP-1 did not record temperatures between July 23, 2023 and July 30, 2023 due to a dead battery. The battery was replaced and TP-1 began recording temperatures again on July 31, 2023.

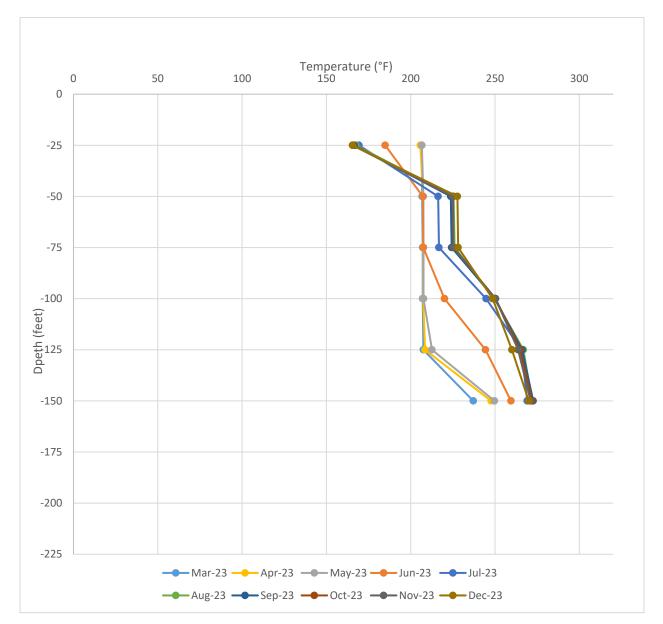
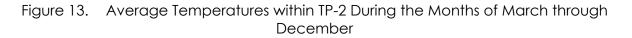



Figure 13 shows daily average temperatures in Temperature Probe 2 (TP-2) during the months of March through December. Based on the data, temperatures have been consistent during the last nine months.

TP-2 was originally drilled to a depth of 160 feet. TP-2 did not record temperatures between August 15, 2023 and September 17, 2023 due to a dead battery. A replacement battery was installed in September of 2023 and TP-2 recording temperatures again on September 18, 2023.

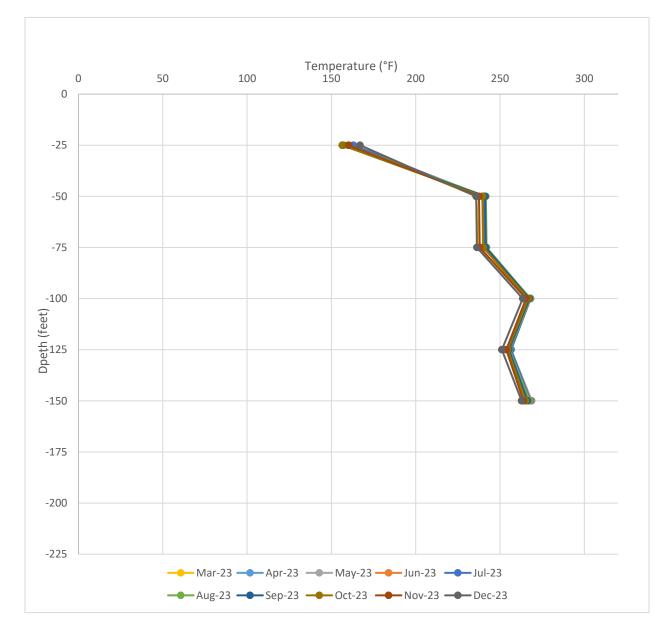
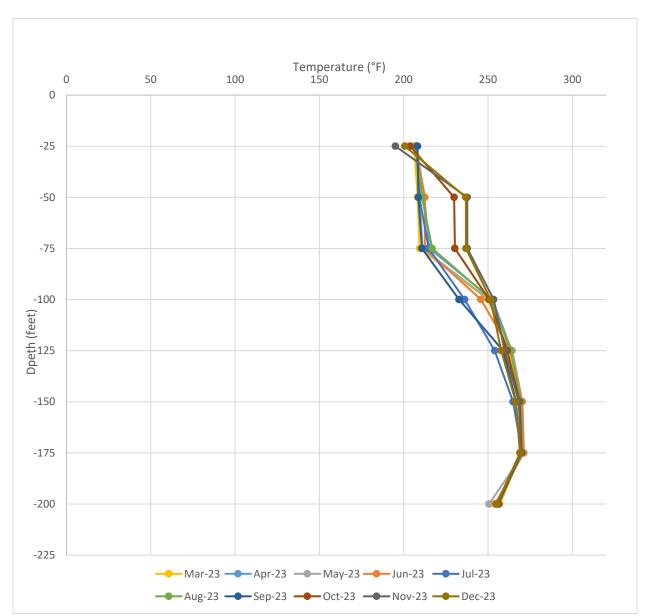



Figure 14 shows daily average temperatures in Temperature Probe 3 (TP-3) during the months of March through December. Based on the data, temperatures have been generally consistent during the last nine months. There has been an increase in temperatures during the months of October, November, and December at the 50-foot and 75-foot depths. SCS noted that a forcemain check valve near an adjacent well had failed. This may have limited liquids removal in the area and resulted in higher temperatures. Temperatures were consistent during the months of November and December of 2023. SCS will continue to review temperature data recorded by this probe.

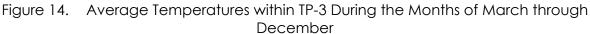
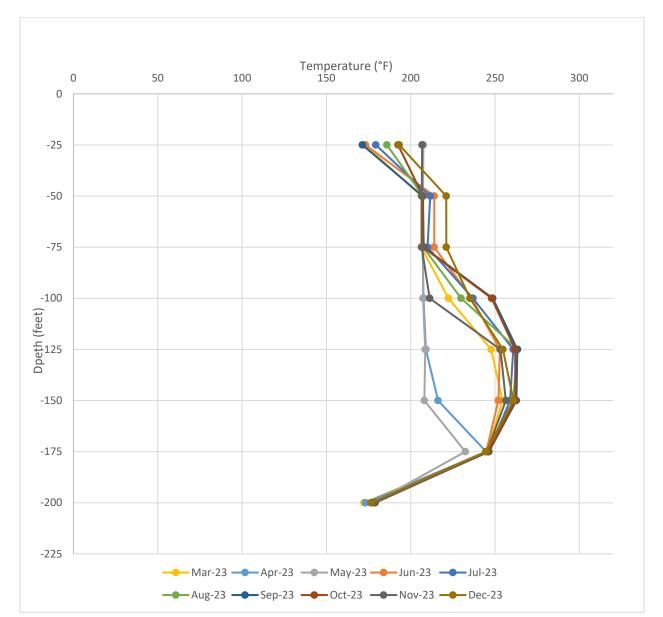



Figure 15 shows daily average temperatures in Temperature Probe 4 (TP-4) during the months of March through December. Based on the data, temperatures appeared to drop during the months of April and May, but returned to levels closer to baseline during the months of June, July, August, September, and October. December temperatures appear to be closer to baseline than the low temperatures observed in April and May.

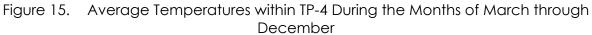
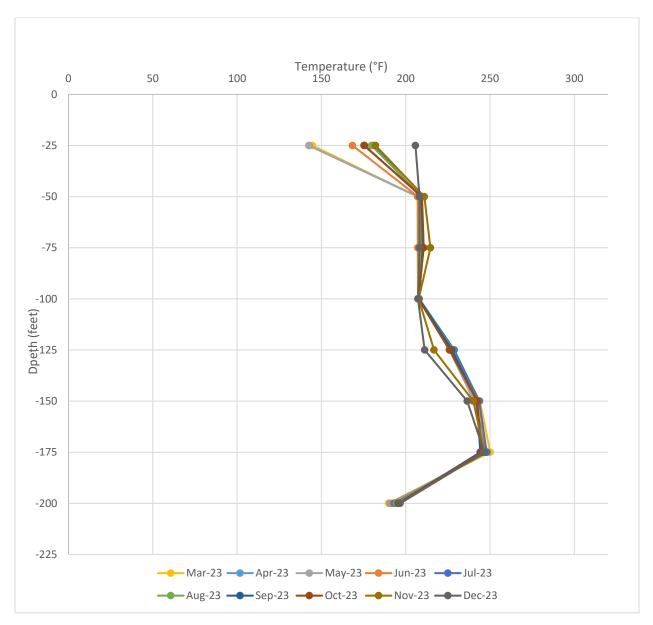



Figure 16 shows daily average temperatures in Temperature Probe 5 (TP-5) during the months of March through December. Based on the data, temperatures have been consistent during the last nine months.

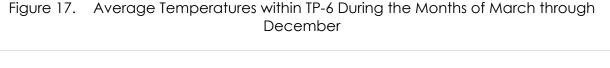

TP-5 was damaged in late October and the sensors at the 125-foot, 150-foot, 175-foot, and 200-foot depths stopped functioning. SCS did troubleshooting and the sensors were repaired for the month of November.

Figure 16. Average Temperatures within TP-5 During the Months of March through December

Figure 17 shows daily average temperatures in Temperature Probe 6 (TP-6) during the months of March through December. Based on the data, temperatures have been generally consistent during the last nine months below the 25-foot level. A decrease at the 25-foot level was observed during the months of June, September, and October. Temperatures returned to baseline during the months of July and August. November saw a slight increase from October. Temperatures at the 25-foot level dropped again in December.

TP-6 was originally drilled to a depth of 208 feet and casing was installed to the full depth. During the installation of the installation of replacement sensors, a blockage within the casing prevented placement of sensors below the 125-foot depth.

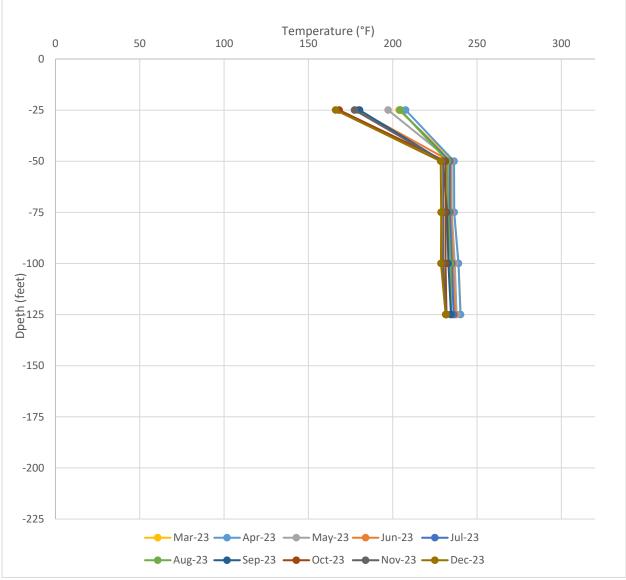


Figure 18 shows daily average temperatures in Temperature Probe 7 (TP-7) during the months of March through December. Based on the data, temperatures have been consistent during the months of March 2023 through November 2023. Average temperatures dropped during the month of December 2023. Observations of adjacent wells indicate that there may be below grade settlement of waste occurring in this area.

TP-7 did not record temperatures between August 15, 2023 and September 17, 2023 due to a dead battery. A replacement battery was installed in September of 2023 and TP-7 recording temperatures again on September 18, 2023.

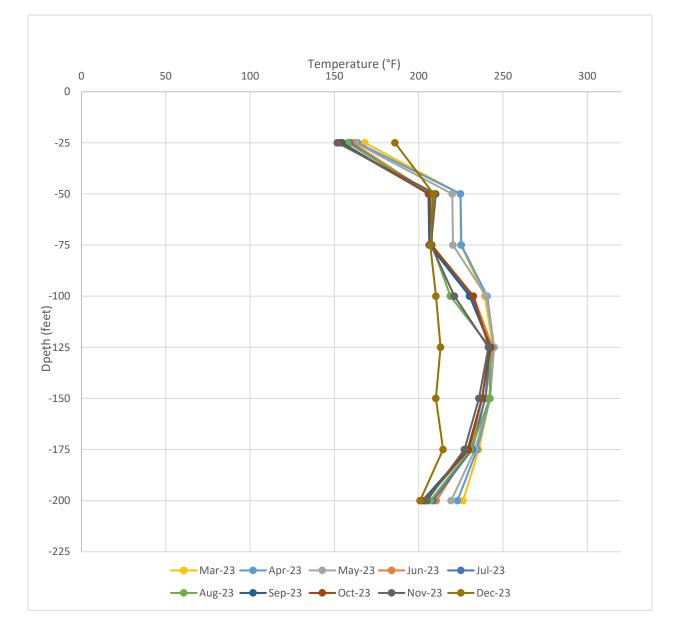
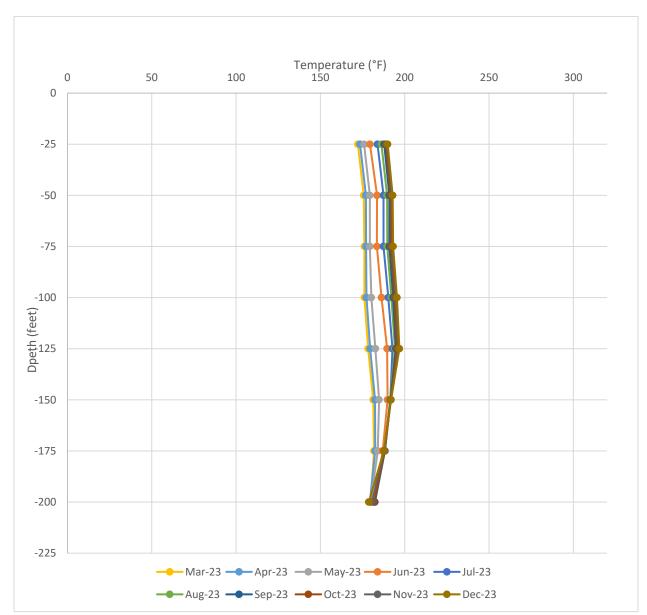



Figure 18. Average Temperatures within TP-7 During the Months of March through December

Figure 19 shows daily average temperatures in Temperature Probe 8 (TP-8) during the months of March through December. Based on the data, temperatures have increased during the last ten months. The rate of increase appears to have slowed between September 2023 and December 2023.

TP-8 Did not read from November 8 to November 27 due to faulty battery which was replaced on November 28.

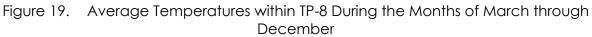
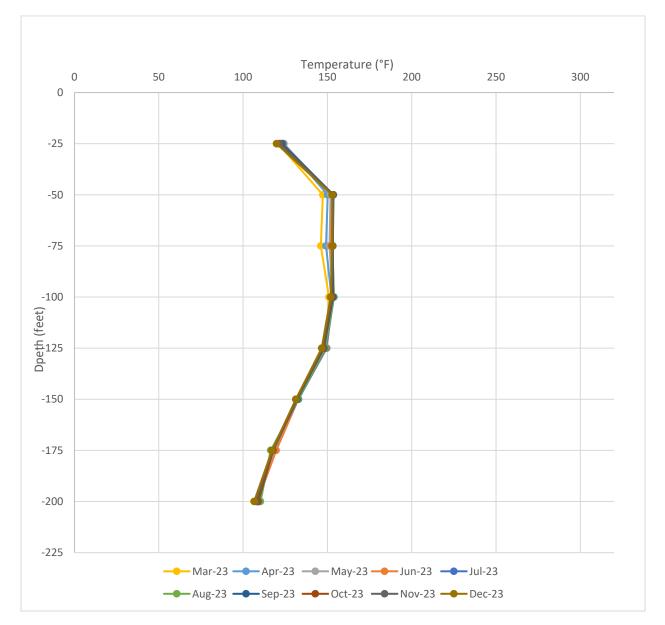




Figure 20 shows daily average temperatures in Temperature Probe 9 (TP-9) during the months of March through December. Based on the data, temperatures have been consistent during the last ten months.

The data indicates that temperatures within the landfill are generally stable and are typical of those observed at elevated temperature landfills (ETLFs). During the months of May through September, there has been substantial construction at the landfill including deep dual extraction wells that may have impacted temperatures within the waste mass adjacent to the probes. While quantifying the effect of the construction of addition wells is difficult, changes in wellhead temperature have been observed in existing wells adjacent to newly installed wells. The temperatures recorded are

substantially lower than those associated with landfill fires or other combustion processes, which can exceed 1000°F. This further indicates that the elevated temperatures are due to sources other than combustion.

4.0 LEACHATE EXTRACTION AND MONITORING

The City has begun taking steps to improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals.

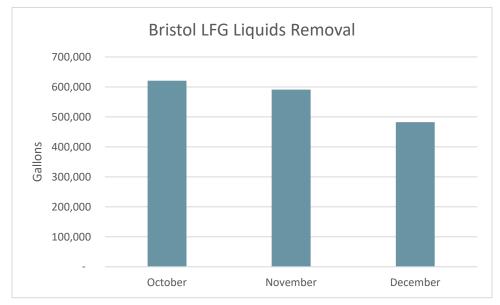
4.1 EXISTING SYSTEM OPTIMIZATION

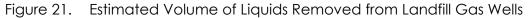
During bimonthly gas extraction well monitoring, SCS also collected stroke counter data from the pumps installed in the GCCS extraction wells. Stroke count measurements are also collected weekly as part of routine pump maintenance. These stroke counts were collected from 42 wells on 5 consecutive weeks, as shown Table 6. Cells marked with "*" represent dates when the pump was removed from the well for maintenance or had not yet been installed.

Well	November 29, 2023	December 4, 2023	December 13, 2023	December 18, 2023	December 28,2023
EW33B	17	17	17	17	17
EW36A	110,426	998,964	109,268	137,975	137,975
EW49	777,885	777,885	777,885	777,893	777,893
EW50	1,316,885	1,334,215	1,340,298	1,358,195	1,387,088
EW52	367,549	367,549	387,345	395,659	421,655
EW53	2,330,786	2,330,796	2,330,797	2,359,272	2,435,234
EW54	597,295	597,295	597,301	597,301	597,301
EW55	713,756	713,759	713,760	713,760	713,760
EW57	24,490	44,625	44,626	44,644	44,644
EW58	*	*	*	*	*
EW59	2,491,012	2,494,036	2,498,097	2,500,102	2,501,483
EW60	616,567	617,025	617,025	617,025	617,039
EW61	11,440	11,440	11,440	11,440	22,389
EW62	202,202	202,202	202,311	202,311	202,363
EW64	177,601	177,601	177,601	177,605	177,605
EW65	4,806	4,806	4,806	4,817	4,817
EW67	864,971	864,971	865,001	865,688	865,688
EW68	2,235,605	2,235,605	2,258,582	2,265,573	2,265,867
EW70	9	9	9	9	9
EW72	15	15	15	15	15
EW73	23	23	23	23	23
EW74	16	16	16	25	25

Table 6.	Summary of Dual Extraction Well Pump Stroke Counter Data

Well	November 29, 2023	December 4, 2023	December 13, 2023	December 18, 2023	December 28,2023
EW75	18	18	18	11	11
EW76	23	23	23	23	23
EW78	71,913	73,405	73,405	78,789	85,201
EW81	283,570	283,570	283,570	304,902	304,902
EW82	98,268	98,268	98,268	98,268	98,268
EW83	417,784	417,784	498,766	498,766	498,766
EW85	124,111	124,111	124,111	124,123	124,123
EW87	940,763	940,763	940,763	940,779	940,779
EW88	342,522	342,522	342,522	397,726	407,370
EW89	*	209,555	421,500	429,757	511,625
EW90	170,676	170,678	170,678	170,679	170,679
EW91	390,250	659,103	937,486	265,766	265,766
EW92	387,453	387,453	387,723	389,507	389,507
EW93	302,222	302,222	302,222	302,222	302,222
EW94	519,848	519,848	519,848	520,385	520,385
EW95	10	10	10	10	10
EW96	527,901	571,413	571,413	571,413	571,413
EW98	1,532,388	1,563,231	1,631,089	1,682,070	1,739,764
EW99	12	12	12	12	12
EW100	376,908	398,247	470,122	470,158	470,158


Based on this data, SCS can estimate the number of gallons of liquid pumped from each well. SCS assumed that each stroke from a float-style pneumatic pump correlates to approximately 0.3 gallons of liquid removed from the well. Additionally, Blackhawk piston-style pumps remove approximately 0.11 gallons per stroke recorded. Five-gallon bucket tests are also used to determine the amount of liquid removal by Blackhawk Pumps. This data will then be used to identify pumps for repair or replacements or identify nonfunctional stroke counters for replacement. Estimates of the quantities of liquids removed between the reading dates are shown in Table 7.


Table 7.Summary of Dual Extraction We	ll Pump Liquids Removal
---------------------------------------	-------------------------

Well	Liquids Removed (gal) 11/29/23 to 12/4/23	Liquids Removed (gal) 12/4/23 to 12/13/23	Liquids Removed (gal) 12/13/23 to 12/18/23	Liquids Removed (gal) 12/18/23 to 12/28/23
EW33B	0	0	0	0
EW36A	99,516	12,354	3,215	0
EW49	0	0	2	0
EW50	5,199	1,825	5,369	8,668
EW52	0	5,939	2,494	7,799

Well Liquids Removed (gal) 11/29/23 to 12/4/23	Liquids Removed (gal) 12/4/23 to 12/13/23	Liquids Removed (gal) 12/13/23 to 12/18/23	Liquids Removed (gal) 12/18/23 to 12/28/23
EW53 3	0	8,543	22,789
EW54 0	2	0	0
EW55 1	0	0	0
EW57 6,041	0	5	0
EW58 0	0	0	0
EW59 907	1,218	602	414
EW60 137	0	0	4
EW61 0	0	3,432	3,285
EW62 0	33	0	16
EW64 0	0	1	0
EW65 0	0	3	0
EW67 0	3	77	0
EW68 0	6,893	2,097	88
EW70 0	0	3	0
EW72 0	0	0	0
EW73 0	0	0	0
EW74 0	0	3	0
EW75 0	0	0	0
EW76 0	0	0	0
EW78 448	0	1,615	1,924
EW81 0	0	2,389	0
EW82 0	0	0	0
EW83 0	9,070	0	0
EW85 0	0	1	0
EW87 0	0	2	0
EW88 0	0	6,183	1,080
EW89 23,470	23,738	925	9,169
EW90 1	0	0	0
EW91 30,112	31,179	36,767	0
EW92 0	30	200	0
EW93 0	0	90,667	0
EW94 3	0	60	0
EW95 74,883	41,990	0	0
EW96 4,873	0	0	0
EW98 0	0	15,294	17,308
W100 6,402	21,563	0	0
EW95 74, EW96 4,8 EW98	883 373 0	883 41,990 373 0 0 0	88341,9900373000015,294

SCS estimates that approximately 480,000 gallons of liquids were removed from the landfill gas collection and control system during the month of December. This figure includes the amount of liquids that were removed by the Blackhawk pumps that were installed in September 2023. SCS-FS continues to implement an aggressive maintenance schedule for landfill gas liquids removal pumps. The pump at EW-36A continues was the best performing pump at 115,085 gallons in December. The progress in landfill gas liquids removal over the last three months is depicted in Figure 21.

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations. Pumps require servicing after relatively short intervals. During the month of December 2023, pump maintenance occurred on the dates shown in Tables 6 and 7. Additionally, minor pump modifications and repairs were made throughout the month to extend pump runtimes before failure. The SWP No. 588 Landfill's float-style pumps are bump checked daily and Blackhawk piston drive rods are cleaned routinely each week.

In some cases, low volumes of landfill liquids removed correlate to low measured liquid levels within the gas wells. During the landfill gas well liquids monitoring event, the following wells were noted to be dry or have low liquid levels: EW-36A, EW-63, EW-69, EW-72, EW-79, and EW-80, EW-81, EW-82, and EW-99. When this condition is identified, pumps may be relocated to wells with consistently higher liquid levels. Pumps that were removed previously due to wells being dry were relocated to EW-65, EW-93, and EW-95 in December.

During the construction of the LFGCCS expansion outlined in Sections 1.4 and 2.1, multiple types of leachate extraction pumps were installed. The City and SCS will continue to evaluate the performance of those pumps in the coming months. Based on that evaluation, the City will select the pump type that is most effective given the landfill conditions.

To improve the accuracy of landfill gas liquids flow rate estimates. Two flow meters were installed on the landfill gas liquids forcemains. One flow meter was installed on the SWP No. 588 primary landfill gas liquid forcemain and another was installed on the SWP No. 588 alternate landfill gas liquids forcemain, which also serves as the conduit for condensate from the temporary perennial flare and

the SWP No. 588 stormwater pump. The SWP No. 588 alternate landfill gas liquids forcemain will also serve as the SWP No. 498 landfill gas liquids forcemain in the future. A photo of equipment installed with the flow meter is shown in Figure 25. SCS intends to report the volumes of liquids measured by the flow meters in future compliance reports and compare to volumes calculated using pump stroke counts.

4.2 SAMPLING AND ANALYSIS PLAN

On November 1, 2022, SCS submitted to VDEQ the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan for the Bristol Integrated Solid Waste Management Facility Solid Waste Permit No. 588 Landfill and the plan was subsequently revised on December 1, 2022. Refer to the November 2022 and December 2022 Compliance Reports for the SWP No. 588 Landfill for additional information.

4.2.1 Sample Collection

On December 11 and 12, 2023, SCS collected leachate samples from three Dual Phase LFG-EWs (EW-52, EW-68, and EW-78). At the time of sample collection dissolved oxygen, oxidation-reduction potential, pH, specific conductance, temperature, and turbidity were measured and recorded. The sample collection log is included in **Appendix F**.

SCS' field staff were not able to collect samples from the following wells for the following reasons:

- Pump was not running at the time of monitoring for the following wells: EW-33B, EW-49, EW-50, EW-59, EW-60, EW-61, EW-62, EW-64, EW-74, EW-75, EW-76, EW-83, EW-87, EW-89, EW-90, EW-91, EW-92, EW-96, EW-98, and EW-100.
- Pump was disconnected at the time of monitoring for the following wells: EW-53, EW-54, EW-55, EW-57, EW-58, EW-67, EW-94, and EW-97.
- There was no sample port and the pump was disconnected at the time of monitoring for the following well: EW-85. The City and SCS-FS are coordinating to get sample port installed on this well.
- Pump was running at the time of monitoring, but there is no sample port for the following well: EW-88. The City and SCS-FS are coordinating to get a sample port installed on this well.
- Pump was not running and the well appeared dry at the time of monitoring for the following wells: EW-36A, EW-81, and EW-82.
- There is no pump at the time of the monitoring for the following wells: EW-51, EW-56, EW-63, EW-65, EW-69, EW-71, EW-72, EW-73, EW-77, EW-79, EW-80, EW-84, EW-86, EW-93, EW-95, and EW-99.
- Well EW-70 was not accessible during the monitoring event.

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia and Pace Analytical Services, LLC (Pace) in Baton Rouge, Louisiana for analysis. The Enthalpy's and Pace's Virginia Division of Consolidated Laboratory Services (VELAP) certifications are provided on the certificate of analysis (COA) included in **Appendix F**. The samples were analyzed for the parameters utilizing the analytical methods described in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan.

4.2.2 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for VOC analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analyses. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A summary of each of these is presented below:

- **Method Blank** The method blank is deionized water subjected to the same reagents and manipulations to which site samples are subjected. Positive results in the method blanks may indicate either contamination of the chemical reagents or the glassware and implements used to store or prepare the sample and resulting solutions.
- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis.
 MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.
- LCS These samples consist of distilled/deionized water injected with the parameters of interest for single parameter methods and selected parameters for multi-parameter methods according to the appropriate analytical method. LCS samples are prepared and analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are like the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

Xylenes was detected in the trip blank at a concentration of 2.64 ug/L for the December 2023 monitoring event. No method blank detects were identified for the December 2023 monitoring event. The laboratory analysis reports for the December 2023 monitoring event trip blanks are included in **Appendix F**. The December 2023 monitoring event laboratory QA/QC reports, including the method blank results, are included in the COA in **Appendix F**.

4.2.3 Data Validation

To identify analytical data that may not represent valid results, data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection Agency (EPA) guidance⁴. Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with parameter detections less than five times that of the trip blank, field blank, and/or method blank detection but greater than the laboratory contaminant parameter detections less that 0 times that 0 times that of the trip blank, field blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not validated as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis.

No leachate results were flagged with a "B" qualifier for the December 2023 monitoring event as the xylenes detections in the leachate samples were greater than five times the concentration detected in the trip blank. The December 2023 detections flagged with a "J" qualifier are shown on **Table 8**.

4.2.4 Laboratory Analytical Results

The analytical results for the December 2023 leachate samples collected from extraction wells EW-52, EW-68, and EW-78 are summarized in **Table 8**. The associated COAs are included in **Appendix F**. Parameter results from December 2023 and previous monitoring events (November 2022 – December 2023) are presented on a table in **Appendix F**. Time-series plots of each VOC for the wells that have historically been sampled are also included in **Appendix F**.

Well ID	EW-52	EW-68	EW-78	LOD	100
Parameter	Decemb	December 2023 Concentration			LOQ
			1540	73.1	100
Ammonia as N (mg/L)	2900	2200		146	200
Biological Oxygen Demand (mg/L)	>44105	13700	681	0.2	2
			4870	1000	1000
Chemical Oxygen Demand (mg/L)		19900		5000	5000
	94200			10000	10000
Nitrate as N (mar(1))	ND		ND	1.1	5.1
Nitrate as N (mg/L)		ND		1.5	5.5
Nitrite as N (mg/L)	ND	ND	ND	1	5

Table 8.	Monthly LFG-EW Leachate Monitoring Event Summary
	Monning Li O Livi Ledendici Monnoning Lieni Johnnary

⁴ United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. November 2020.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. November 2020.

Well ID	EW-52	EW-68	EW-78		100
Parameter	Decemb	er 2023 Conc	LOD	LOQ	
		1880		80	200
Total Kjeldahl Nitrogen (mg/L)	3130		1890	100	250
			3.72	0.06	0.1
Total Recoverable Phenolics (mg/L)		23		0.75	1.25
	34.2			1.5	2.5
SEMI-VOLATILE ORGANIC COMPOUND	(ug/L)				
			ND	50	100
Anthracene		ND		100	200
	ND			200	400
TOTAL METALS (mg/L)					
America	0.4	0.26		0.0025	0.005
Arsenic			0.24	0.001	0.002
Deviews	0.68	1.36		0.005	0.025
Barium			0.672	0.002	0.01
Cardaniana	ND	0.000604 J		0.0005	0.0015
Cadmium			ND	0.0002	0.002
Characteria	1.34	0.259		0.002	0.005
Chromium			0.219	0.0008	0.002
Contract	0.00184	ND		0.0015	0.0015
Copper			0.0034	0.0006	0.002
			0.0043	0.002	0.002
Lead	0.16	0.002		0.0015	0.0015
	0.00484	ND		0.001	0.001
Mercury			ND	0.0004	0.0004
	0.6091	0.1447		0.005	0.005
Nickel			0.2127	0.002	0.002
	0.00785	0.00253		0.0015	0.0015
Selenium			0.00215	0.0017	0.002
Cilver	ND	ND		0.00025	0.001
Silver			ND	0.00012	0.002
	52.7			0.25	0.5
Zinc			0.061	0.005	0.01
		0.0462		0.025	0.025

Table 8. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-52	EW-68	EW-78		100				
Parameter	Decemb	er 2023 Cond	LOD	LOQ					
VOLATILE FATTY ACIDS (mg/L)	VOLATILE FATTY ACIDS (mg/L)								
		660			100				
Acetic Acid			ND		250				
	11200				1000				
		336			100				
Butyric Acid			ND		250				
	3390				1000				
		ND			100				
Lactic Acid			ND		250				
	9050				1000				
		996			100				
Propionic Acid			ND		250				
	2280				1000				
		ND			100				
Pyruvic Acid			ND		250				
	ND				1000				
VOLATILE ORGANIC COMPOUNDS (ug/	/L)								
2-Butanone (MEK)	13700	7060	ND	150	500				
		ND		140	200				
Acetone			ND	350	500				
	44300			1750	2500				
Benzene		932		8	20				
Denzene	1330		463	20	50				
Ethylbenzene		46		8	20				
Linyibenzene	69.5		44 J	20	50				
Tetrahydrofuran		4240		200	200				
	2620		502	500	500				
Toluene		73.2		10	20				
TOIDEILE	83.5		74.5	25	50				
Xylenes, Total		167		20	60				
	224		ND	50	150				

Table 8. Monthly LFG-EW Leachate Monitoring Event Summary

--- = not available

J = Constituent was detected at a concentration above the laboratory's LOD but below the laboratory's LOQ. Concentration is estimated and not validated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

On behalf of the City, SCS submitted a settlement monitoring and management plan to VDEQ on November 15, 2022. Refer to the 2022 November Monthly Compliance Report for the SWP No. 588 Landfill for additional information.

5.2 MONTHLY SURVEYS

5.2.1 Topographic Data Collection

The City, through SCS, collected topographic data of the Solid Waste Permit No. 588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone). On December 20, 2023, the flight was completed and the topographic data collected. The topographic data collected is shown on Sheet 4 in Appendix E. On the date that the data was collected, there was snow on the ground in parts of the landfill. This may have impacted the imagery used to calculate elevations.

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on November 16, 2023. A drawing depicting the November 16, 2023 topography is included as Sheet 3 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 14,100 cubic yards. During that same time period, approximately 700 cubic yards of construction related fill were placed on the landfill. SCS could not identify the source of most of this fill, but suspects that snow on the landfill surface may have impacted elevation measurements. This resulted in a net volume decrease of approximately 13,400 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 26. Areas in yellow, orange, and red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 5 in Appendix E.

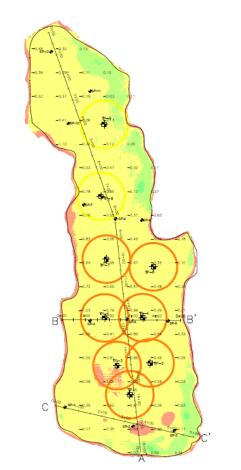


Figure 26. 1-Month Elevation Change Color Map

The locations of in-waste temperature monitoring probes are also shown on Figure 26, Figure 27, and Figure 28. The circles around the probes indicate how high the average temperatures measured by the probe are. The circles shown are offset from the probes for clarity only and do not necessarily indicate temperatures measured at locations away from the probe. Probes with a yellow circle around them, typically measure an average temperature across the full depth of the probe of less than 200°F. Probes with an orange circle around them, typically measure an average temperature across the full depth of the probe greater than 200°F and less than 250°F. Probes with a red circle around them typically measure an average temperature across the full depth of the probe greater than 250 degrees Fahrenheit and less than 300°F. There were no probes measuring average temperatures greater than 250°F and less than 300°F during the month of December.

The largest settlement occurred primarily in the middle-southern end of the landfill where the waste settled by approximately 1 foot or more in some areas. The southern end of the landfill is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions. A small portion of the landfill exhibited an increase in elevation in some areas, likely due to continued soil placement associated with construction of the sidewall odor mitigation system. Some soil stockpile locations associated with the sidewall odor mitigation system showed large elevation changes due to material removal from the stockpiles.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation decrease was approximately 0.48 feet.

SCS also compared the topographic data collected in December to the topographic data collected on September 15, 2023. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 42,200 cubic yards. During that same time period approximately 100 cubic yards of construction-related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 42,100 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 27. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 6 in Appendix E.

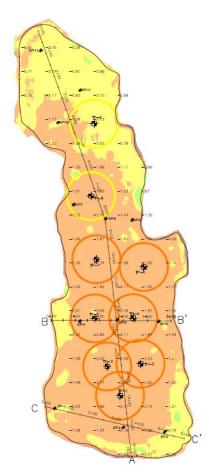


Figure 27. 3-Month Elevation Change Color Map

Based on the area of the landfill and the net volume change, the average elevation decrease was approximately 1.51 feet.

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 3 feet or more in some areas. The southern end of the landfill is the location of the gas wells and temperature probes exhibiting higher temperatures, and where the waste is deepest. Higher settlements are typical of elevated temperature landfill conditions. Settlement in the northern portion of the landfill was generally less substantial or was offset by soil placement associated with construction activities. Changes in elevation in these areas are more representative of typical settlement at municipal landfills. Some portions of the landfill perimeter exhibited an increase in elevation, likely due to sediment deposition during storm events and soil placement associated with construction and maintenance of the sidewall odor mitigation system. There were some large variations in elevation associated with soil stockpiling operations.

SCS also compared the topographic data collected in December to the drone topographic data collected on December 2, 2022 by SCS. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 92,800 cubic yards. During that same time period approximately 11,900 cubic yards of construction-related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 80,800 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 28. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 7 in Appendix E.

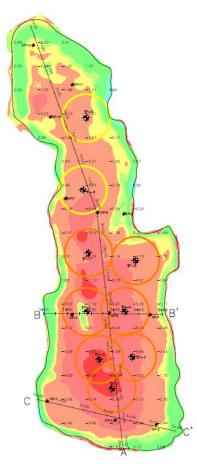


Figure 28. 1-Year Elevation Change Color Map

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 16 feet or more in some areas. These significant settlement values are typical of

elevated temperature landfill conditions. The landfill perimeter exhibited an increase in elevation, likely due to soil placement associated with construction of the Sidewall Odor Mitigation System. There were variations in elevation associated with soil stockpiling operations.

Based on the landfill area and the net volume change, the average elevation decrease was approximately 2.9 feet.

SCS will collect topographic data covering the landfill surface again in January using photogrammetric methods via UAV. This data will be compared to the data collected in October 2023, December 2023, and January 2023.

5.2.2 Settlement Plate Surveys

On November 7, 2022 SCS field services installed 12 settlement plates on the Solid Waste Permit No. 588 landfill. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan. The tops of the PVC pipes were spray painted orange to improve visibility. The settlement plate locations are depicted in Figure 29 and on Sheet 1 in Appendix E.

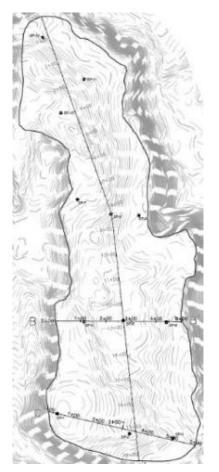


Figure 29. Settlement Plate Locations

The locations of the settlement plates were surveyed by the City's surveyor on November 14, 2022. The settlement plates were surveyed again on December 13, 2022; January 3, 2023; February 6,

2023; March 8, 2023; April 3, 2023; May 11, 2023; June 5, 2023; July 10, 2023; August 17, 2023; September 11, 2023; October 11, 2023; November 6, 2023; and December 12, 2023. The surveyed coordinates⁵ and elevation changes of the settlement plates are shown in Table 9.

Settlement Plate	Northing	Easting	Elevation on December 12, 2023	Elevation Change Since November 6, 2023	Strain ⁶ Since November 6, 2023	Elevation Change Since Installation	Strain Since Installation
SP-1	3,397,887.1	10,412,079.4	1,830.8	-0.2	-0.3%	-3.6	-5.5%
SP-2	3,397,809.8	10,412,365.8	1,802.6	-0.7	-0.4%	-8.0	-4.9%
SP-37	3,397,787.5	10,412,537.9	N/A	N/A	N/A	N/A	N/A
SP-4 ⁸	3,398,250.3	10,412,187.4	1,808.7	-0.7	-0.4%	-8.7	-5.6%
SP-5	3,398,255.9	10,412,339.0	1,793.6	-0.7	-0.3%	-7.2	-2.8%
SP-6	3,398,249.0	10,412,510.4	1,775.0	-0.3	-0.2%	-2.7	-2.0%
SP-7 ⁹	3,398,735.3	10,412,158.1	1,825.7	-0.4	-0.4%	-2.9	-2.6%
SP-8	3,398,678.8	10,412,291.0	1,802.5	-0.3	-0.1%	-4.8	-2.0%
SP-9 ¹⁰	3,398,673.4	10,412,400.9	N/A	N/A	N/A	N/A	N/A
SP-10	3,399,080.1	10,412,093.0	1,838.3	-0.1	-0.1%	-1.9	-0.7%
SP-11	3,399,216.4	10,412,183.7	1,815.4	-0.1	0.0%	-0.9	-0.4%
SP-12	3,399,382.0	10,412,019.7	1,810.2	-0.2	-0.1%	-0.5	-0.4%

Table 9.Settlement Plate Locations

Settlement Plates 2, 4, and 7 demonstrated larger settlements than at other locations. Settlement Plates 4 and 7 were damaged during construction operations. Settlement Plates 2 is located in the southern end of the landfill. This area is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions.

The change in elevation at Settlement Plates 8, 10, 11, and 12 was lower and more representative of typical settlement at municipal landfills with waste of similar depth. The change in elevation at Settlement Plates 1, 5, and 6 falls somewhere in between these two categories. Settlement Plate 3 was damaged and unable to be measured during September, October, November, and December of 2023. Settlement Plate 9 was located in standing water and was unable to be read for the month of December 2023.

Figure 30 shows the changes in elevation of select settlement plates over time. Best fit lines for these changes in elevation are also shown on the graph. Currently settlement rates are represented

⁵ Settlement plate locations and coordinates are based on a local coordinate system.

⁶ Strain is defined as the change in elevation divided by the estimated waste depth.

⁷ SCS suspects that SP-3 was damaged as a result of construction activities.

⁸ Based on field observations SP-4 appears to have been disturbed during grading on an adjacent roadway.

⁹ Based on field observations SP-7 appears to have been disturbed during grading on an adjacent stockpile.

¹⁰ SCS suspects that SP-9 was damaged as a result of construction activities.

better by best fine lines generated using linear equations that logarithmic equations. For the purposes of recording data in this figure, times are measured in days since the landfill was required to stop accepting waste.

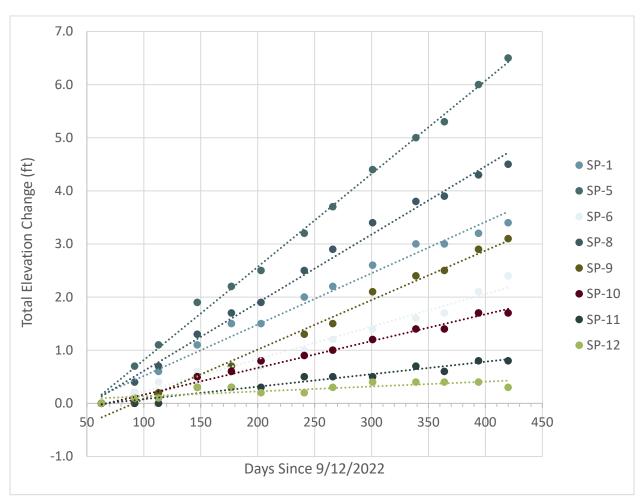


Figure 30. Changes in Settlement Plate Elevations

The settlement plates will be surveyed again during the month of January 2024. The elevations surveyed will be compared to the elevations surveyed the previous months.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City is taking steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below outline the steps taken by the City.

6.1 INTERMEDIATE COVER INSTALLATION

The City completed hauling and placement of a 12-inch thick intermediate cover across the entire landfill prior to October 10, 2022. The cover was placed in accordance with 9VAC20-81-140(B)(1)(d). SCS coordinated with the City to dig a series of test holes to verify cover thickness in select locations.

Details of these verifications were discussed in the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill.

6.2 EVOH COVER SYSTEM DESIGN

SCS submitted responses, including revised documents, on March 20, 2023 to comments received from VDEQ concerning the Interim EVOH Cover System Preliminary Design Plans. The submitted documents included a revised operations manual and settlement calculations for the proposed stormwater basin. On April 28, 2023, SCS submitted the EVOH Cover System Stormwater Management Plan to VDEQ for the No. 588 landfill. SCS received a comment letter dated May 16, 2023 concerning the stormwater management plan. SCS prepared a response letter with revised drawings, documents, and calculations. The response package was submitted to VDEQ on June 23, 2023.

SCS is preparing construction drawings for the EVOH Cover System, including revisions discussed in the response to comments letters. The construction drawings build upon the preliminary design plans and the stormwater management plan. Potential modifications to the stormwater management plan (SWMP) submitted to VDEQ on April 28, 2023 will be included in the construction drawings. Stormwater modeling calculations will be provided as an attachment. Other additions to the construction drawings include additional design cross sections, landfill gas management plans and details, access road design, and other items.

SCS held a call with VDEQ personnel on August 31, 2023 to discuss potential changes to the EVOH Cover System design. The modifications include installing three separate stormwater basins within the quarry rather than one single basin. The proposed stormwater pumping infrastructure will be expanded to meet the requirements of the three basins. SCS submitted a letter to VDEQ on October 17, 2023 documenting the proposed changes.

On December 4, 2023, SCS submitted a revised stormwater management plan to submit to VDEQ, including revised drawings and calculations. The revised SWMP includes the three quarry basins, additional stormwater pumps, new stormwater force mains, and the preliminary layout of the new electrical infrastructure along the quarry rim.

SCS continues to prepare specifications, drawings, and contract documents for the construction of the EVOH Cover System.

6.3 EVOH COVER SYSTEM PROCUREMENT

Drawings used for the purposes of bidding, procurement and construction of the EVOH cover system will generally conform to the layout and details in the drawings described in section 6.2. SCS also prepared and submitted to VDEQ a specification for the EVOH geomembrane on January 30, 2023 based upon industry standards and discussions with material manufacturers. This specification and drawing set represent the first steps in the procurement process. SCS and the City have coordinated with potential suppliers to specify a product that is not currently anticipated to have long lead times. SCS has received a pro-forma data sheet from one manufacturer which is preparing a customized EVOH product for the No. 588 landfill.

6.4 EVOH COVER SYSTEM INSTALLATION

Timeline discussions are ongoing for the EVOH Cover System installation. Ongoing settlement concerns and other work at the site are being considered.

7.0 STORMWATER MANAGEMENT

The City is taking steps to implement a stormwater management plan at the landfill. The sections below outline the steps taken by the City.

7.1 STORMWATER MANAGEMENT PLAN DEVELOPMENT

The initial stormwater management plan (SWMP) was submitted to VDEQ on April 28, 2023. The plan addressed the stormwater volume calculations, assumptions, design, and control measures. SCS received a comment letter dated May 16, 2023 and prepared a response letter with revised drawings, documents, and calculations. The response package was submitted to VDEQ on June 23, 2023. A follow-up discussion was held with VDEQ on August 31, 2023 to discuss modifications to the SWMP. The new modifications include increasing the number of stormwater basins within the quarry and reducing required earthwork.

The revised SWMP was submitted to VDEQ on December 4, 2023. The plan proposes a stormwater pumping system to convey stormwater collected atop the EVOH cover system to an existing discharge point permitted under VPDES permit VAR050053. The proposed system includes the construction of three stormwater collection basins in the quarry and the installation of pairs of skid-mounted stormwater pumps. The stormwater will be conveyed by force main pipes to the existing stormwater basins located west of the quarry.

The plan proposes modifications to the existing stormwater basins west of the quarry to achieve discharge quantity targets. Modifications include increasing the basin depths and installing new outlet riser structures.

7.2 STORMWATER MANAGEMENT BASIN DESIGN AND CONSTRUCTION

The landfill surface will be regraded to form the SWM basins proposed in the stormwater management plan. The earthwork will be completed as the first stage of the interim EVOH cover system installation project. A revised landfill gas management plan is being prepared to facilitate the regrading of the landfill, which will affect existing landfill gas infrastructure. The landfill gas system will be modified to accommodate the earthwork.

Attention is being given to settlement concerns in the vicinity of the stormwater basin or basins. Calculations provided to VDEQ on June 23, 2023 demonstrate the weight of the ponded water should not cause excessive settlement relative to ongoing settlement observed within the quarry. Including additional stormwater basins within the quarry will distribute the weight of ponded water over a wider area relative to the single stormwater basin design.

7.3 STORMWATER MANAGEMENT PLAN IMPLEMENTATION

The stormwater management plan design drawings are being incorporated into the overall construction drawings for the interim EVOH cover system. The interim EVOH cover system installation and stormwater management features will be bid and constructed as one project to facilitate simultaneous progress and completion.

7.4 LONG-TERM STORMWATER CONTROL AND REMOVAL

The stormwater management plan is designed with resiliency and redundancy to promote long-term operation. Two stormwater pumps will be installed for each basin, with each pump capable of operating independently. The pumps may be operated in parallel in contingency scenarios. The City plans to install a backup generator for the stormwater pumps to allow for continued operation in the event of a temporary power loss. The pumps have been selected to include additional pumping capacity to allow for future settlement.

A variable frequency drive control system is planned for the stormwater pumping system. The water level will be gauged using a transducer cable or comparable monitoring system to allow for automation of the pumping system. Appropriate telemetry will be used to allow for remote monitoring of the pumping system.

The operations manual will be updated to discuss the long-term operation and maintenance of the pumping system and other stormwater management features. Periodic inspections of the stormwater management system will be completed. The regular inspections will include monitoring the rate of settlement. If excessive settlement occurs, repairs will be planned and conducted as necessary to maintain the stormwater management system and cover system integrity.

7.5 STORMWATER MONITORING

Stormwater monitoring will commence upon initial discharge of stormwater from the quarry stormwater pumping system. As stated in the stormwater management plan drawings, the stormwater shall be monitored in accordance with the facility's VPDES general permit for discharge of stormwater associated with industrial activity. Additional requirements include collecting additional stormwater samples at the discharge pipes for the quarry stormwater pumping system. The stormwater from the quarry basins will be sampled on a monthly basis prior to discharge to the upper stormwater ponds. The Operations Manual will be revised to include these additional requirements.

If the stormwater becomes contaminated or sampling indicates contamination above discharge limits, the stormwater will be diverted to the sanitary sewer system. The diversion to the sanitary sewer system will continue until the source of contamination is identified and resolved. The stormwater discharge pipe alignment will pass adjacent to the existing sanitary sewer manhole. A tee with isolation valves will be used to direct the stormwater to the upper basins or the sanitary sewer manhole.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit No. 588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

SCS submitted the Monitoring, Maintenance, and Repair Plan to VDEQ for the SWP No. 588 landfill on December 30, 2022. Refer to the December 2022 Monthly Compliance Report for the SWP No.

588 Landfill for additional information. The City has taken steps to implement the plan that were detailed in the March 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

8.3 MONTHLY COMPLIANCE REPORTS

As described in the introduction this report is intended to provide comprehensive updates regarding progress towards completion of each item described in Appendix A of the Consent Decree between the City and VDEQ,

8.4 COMMUNITY OUTREACH PROGRAM

The City's consultant leading community outreach, McGuireWoods Consulting, described the actions taken as part of their community outreach efforts. For the month of December, those actions include:

- **Ongoing basis**: Nine posts on the BristalVALandfill.org site and the existing City of Bristol Landfill Notifications and Information page covering important updates including:
 - Progress updates related to remediation efforts at the quarry landfill
 - Included updates as well as related to steps towards closing landfill 498 in order to make sure residents are aware activities are occurring on another site in addition to ongoing work at the 588 landfill
 - Public announcement from Bristol, VA about hiring a new Director of Solid Waste
 - Published news articles about the financial aspects of landfill remediation and other relevant news
- Weekly updates on landing page on Bristolvalandfill.org titled "Air Sampling and Air Monitoring" that includes a summary of the air sampling and monitoring being conducted by Bristol, VA around the quarry landfill.
 - Website now includes twenty-seven weekly monitoring reports starting with May 15th, 2023 and running through December 17th of 2023
- E-mail communication sent to the list of members of the public signed up through the Bristol, VA website, the BristolVALandfill.org website, or at subsequent Open Houses to receive information via e-mail
 - E-mails sent included weekly remediation progress update and links to website updates and latest news articles on the following days:
 - Friday, December 1st
 - Friday, December 8th
 - Monday, December 18th

Appendix A

Surface Emissions Monitoring Summary Letters

SCS ENGINEERS

December 6, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – December 1, 2023 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on December 1, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at 23 surface cover penetrations within the waste footprint, including at the temperature probes. Note that due to an instrument error, sampling was unable to be performed at several of the cover penetrations during this monitoring event. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Mr. Jonathan Chapman December 6, 2023 Page 2

Description	Quantity
Number of Points Sampled	123
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations ¹	23
Number of Exceedances	0
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	0

Table 1.Summary of Surface Emissions Monitoring

Note: Sampling was unable to performed at several Surface Cover Penetrations due to an instrument error

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	12/1/23 Event	12/1/23 Event Result ¹	Comments
EW-90	8/11/23	N/A	NM	Subject to 40 CFR 63.1960(c)(4)(v)
EW-66	10/30/23	30-Day Retest	NM	Not monitored; Requires 30-Day Retest
EW-87	11/15/23	N/A	NM	Not monitored; Requires 30-Day Retest
EW-88	11/15/23	N/A	NM	Not monitored; Requires 30-Day Retest
EW-39	11/20/23	10-Day Retest	NM	Not monitored; Requires 10-Day Retest
EW-76	11/20/23	10-Day Retest	Passed	Requires 30-Day Retest

Table 2. Ongoing Weekly SEM Exceedances

Note: NM = Not Monitored due to Instrument Error

Mr. Jonathan Chapman December 6, 2023 Page 3

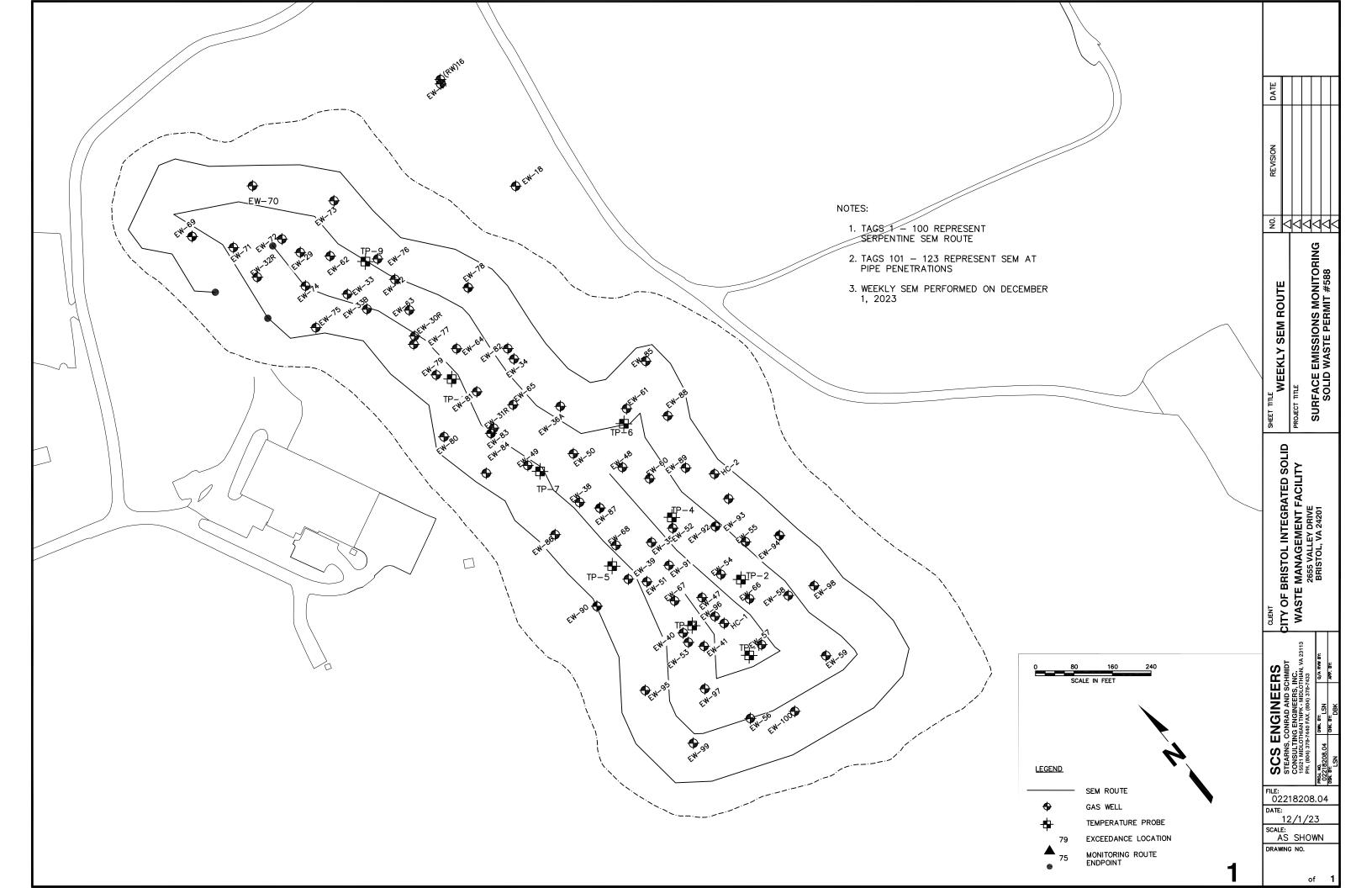
If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylis Hicklin

Wylie R Hicklin Associate Staff Professional SCS Engineers

Lucus D. Nachman


Lucas S. Nachman Senior Project Professional SCS Engineers

LSN/WRH/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Methane		GPS Coo	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	4.0 PPM	OK			Start Serpentine Route
2	0.0 PPM	OK			
3	0.2 PPM	OK			
4	0.1 PPM	OK			
5	0.1 PPM	OK			
6	0.1 PPM	OK			
7	0.2 PPM	OK			
8	0.1 PPM	OK			
9	6.8 PPM	OK			
10	7.5 PPM	OK			
11	12.3 PPM	OK			
12	9.7 PPM	OK			
13	7.9 PPM	OK			
14	9.0 PPM	OK			
15	8.2 PPM	OK			
16	11.7 PPM	OK			
17	11.7 PPM	OK			
18	12.5 PPM	OK			
19	8.4 PPM	OK			
20	12.0 PPM	OK			
21	8.6 PPM	OK			
22	8.5 PPM	OK			
23	8.7 PPM	OK			
24	7.2 PPM	OK			
25	9.7 PPM	OK			
26	8.8 PPM	OK			
27	9.0 PPM	OK			
28	4.9 PPM	OK			
29	3.3 PPM	OK			
30	9.2 PPM	OK			
31	8.6 PPM	OK			
32	5.3 PPM	OK			
33	18.8 PPM	OK			
34	38.7 PPM	OK			
35	64.1 PPM	OK			
36	77.2 PPM	OK			
37	42.0 PPM	OK			
38	31.6 PPM	OK			
39	6.5 PPM	OK			
40	3.9 PPM	OK			
41	8.6 PPM	OK			
42	3.2 PPM	OK			
43	1.4 PPM	OK			
44	2.0 PPM	OK			
45	4.0 PPM	OK			
46	2.8 PPM	OK			
47	2.2 PPM	OK			
48 49	1.3 PPM 1.8 PPM	OK OK			

	Methane		GPS Coordi	nates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
 50	0.5 PPM	OK			
51	0.3 PPM 0.1 PPM	OK			
52		OK			
	0.2 PPM				
53	0.4 PPM	OK			
54	0.4 PPM	OK			
55	0.9 PPM	OK			
56	4.1 PPM	OK			
57	1.6 PPM	OK			
58	1.7 PPM	OK			
59	2.8 PPM	OK			
60	41.5 PPM	OK			
61	10.1 PPM	OK			
62	14.1 PPM	OK			
63	16.5 PPM	OK			
64	2.2 PPM	OK			
65	244.0 PPM	OK			
66	3.1 PPM	OK			
67	2.3 PPM	OK			
68	4.1 PPM	OK			
69	13.1 PPM	OK			
70	12.7 PPM	OK			
71	9.6 PPM	OK			
72	151.0 PPM	OK			
73	298.0 PPM	OK			
74	197.0 PPM	OK			
75	106.0 PPM	OK			
76	157.0 PPM	OK			
77	98.0 PPM	OK			
78	147.0 PPM	OK			
79	11.1 PPM	OK			
80	26.7 PPM	OK			
81	72.1 PPM	OK			
82	40.1 PPM	OK			
83	45.1 PPM	OK			
84	13.0 PPM	OK			
85	10.6 PPM	OK			
86	5.5 PPM	OK			
87	3.9 PPM	OK			
88	4.2 PPM	OK			
89	30.8 PPM	OK			
90	7.5 PPM	OK			
91	11.8 PPM	OK			
92	11.5 PPM	OK			
93	11.2 PPM	OK			
94	9.8 PPM	OK			
95	9.7 PPM	OK			
96	1.1 PPM	OK			
97	1.3 PPM	OK			
98	1.4 PPM	OK			

SCS ENGINEERS

December 13, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – December 7, 2023 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on December 7, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Mr. Jonathan Chapman December 13, 2023 Page 2

Table 1. Summary of Surface Emissions Mo	onitoring
--	-----------

Description	Quantity
Number of Points Sampled	172
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	72
Number of Exceedances	6
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	6

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	12/7/23 Event	12/7/23 Event Result	Comments
EW-66	10/30/23	30-Day Retest	Passed	Exceedance Resolved
EW-87	11/15/23	N/A	Failed	Requires 2 nd 10-Day Retest
EW-88	11/15/23	N/A	Passed	Requires 30-Day Retest
EW-39	11/20/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-76	11/20/23	N/A	Passed	Requires 30-Day Retest

Mr. Jonathan Chapman December 13, 2023 Page 3

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

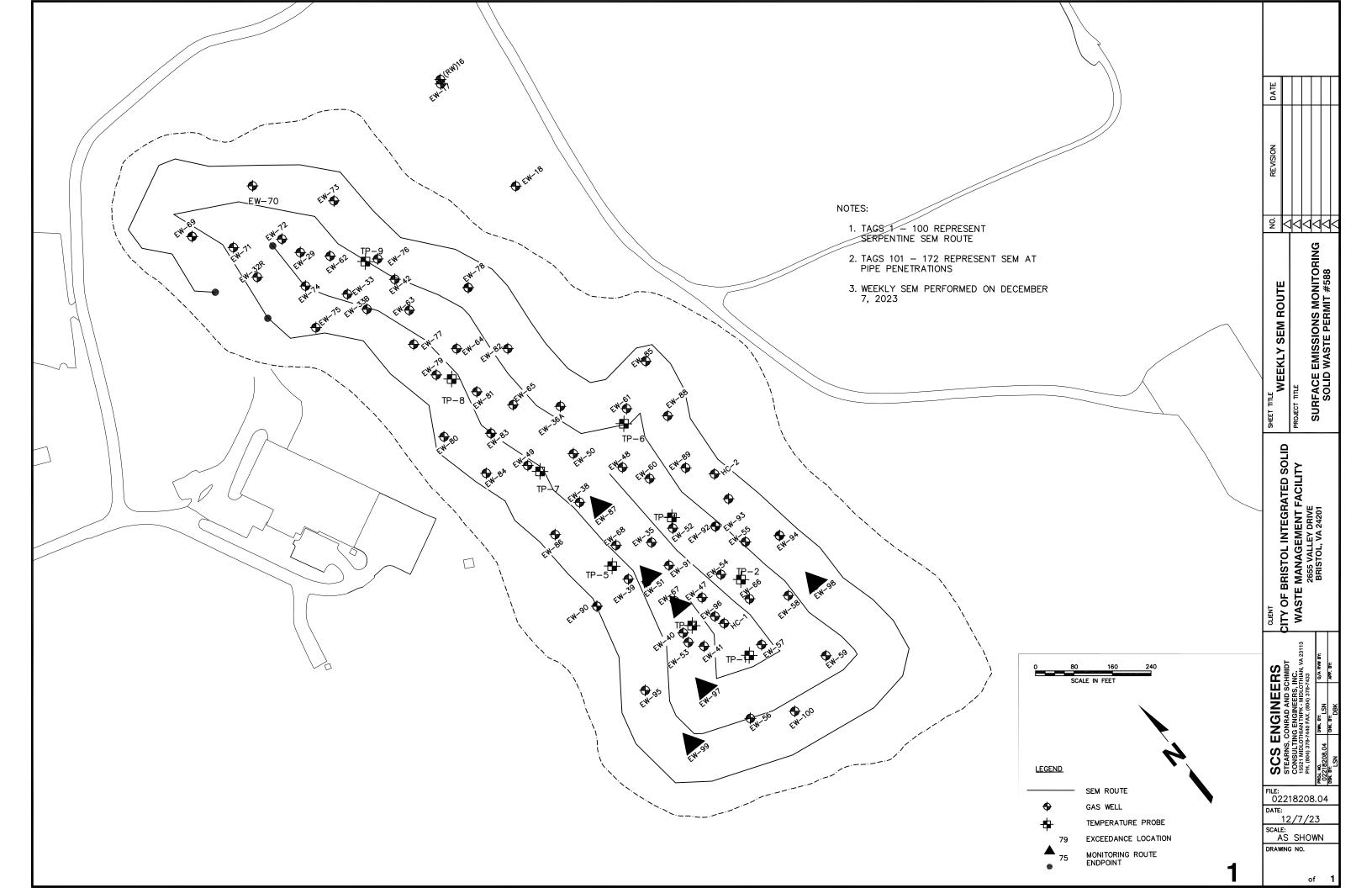
Wylis Hicklin

Wylie R Hicklin Associate Staff Professional SCS Engineers

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

LSN/WRH/cjw


- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Methane		GPS Coording	ates	
ID #	Concentration	n Compliance	Lat.	Long.	Comments
1	1.7 PPM	ОК			Start Serpentine Route
2	4.8 PPM	OK			
3	1.5 PPM	OK			
4	1.3 PPM	OK			
5	1.3 PPM	OK			
6	1.4 PPM	OK			
7	1.5 PPM	OK			
8	1.3 PPM	OK			
9	1.4 PPM	OK			
10	1.2 PPM	OK			
11	1.2 PPM	OK			
12	1.2 PPM	OK			
13	4.0 PPM	OK			
14	1.6 PPM	OK			
15	1.6 PPM	OK			
16	1.7 PPM	OK			
17	2.8 PPM	OK			
18	3.2 PPM	OK			
19	11.6 PPM	OK			
20	1.5 PPM	OK			
21	1.3 PPM	OK			
22	1.3 PPM	OK			
23	1.2 PPM	OK			
24	1.1 PPM	OK			
25	1.1 PPM	OK			
26	4.1 PPM	OK			
20	4.4 PPM	OK			
28	5.6 PPM	OK			
29	41.4 PPM	OK			
30	76.2 PPM	OK			
31	15.7 PPM	OK			
32	84.1 PPM	OK			
33	109.0 PPM	OK			
34	113.0 PPM	OK			
35	11.1 PPM	OK			
36	75.6 PPM	OK			
37	47.2 PPM	OK			
38	5.2 PPM	OK			
39	4.3 PPM	OK			
40	5.5 PPM	OK			
41	3.7 PPM	OK			
42	6.5 PPM	OK			
43	2.5 PPM	OK			
44	2.0 PPM	OK			
45	2.0 PPM	OK			
46	1.4 PPM	OK			
47	1.3 PPM	OK			
48	2.0 PPM	OK			
49	1.5 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comment
50	2.7 PPM	ОК			
51	1.9 PPM	OK			
52	11.8 PPM	OK			
53	1.8 PPM	OK			
54	4.3 PPM	OK			
55	101.0 PPM	OK			
56	41.6 PPM	OK			
57	1.7 PPM	OK			
58	4.2 PPM	OK			
59	1.8 PPM	OK			
60	1.4 PPM	OK			
61	2.8 PPM	OK			
62	9.2 PPM	OK			
63	2.2 PPM	OK			
64	1.2 PPM	OK			
65	1.4 PPM	OK			
66	26.1 PPM	OK			
67	3.5 PPM	OK			
68	16.7 PPM	OK			
69	22.9 PPM	OK			
70	23.1 PPM	OK			
71	96.3 PPM	OK			
72	266.0 PPM	OK			
73	342.0 PPM	OK			
74	3.5 PPM	OK			
75	5.5 PPM	OK			
76	40.4 PPM	OK			
77	15.6 PPM	OK			
78	13.1 PPM	OK			
79	68.9 PPM	OK			
80	4.0 PPM	OK			
81	3.2 PPM	OK			
82	2.9 PPM	OK			
83	1.6 PPM	OK			
84	1.4 PPM	OK			
85	1.4 PPM	OK			
86	1.5 PPM	OK			
87	1.6 PPM	OK			
88	1.1 PPM	OK			
89	0.7 PPM	OK			
90	0.9 PPM	OK			
91	1.4 PPM	OK			
92	0.9 PPM	OK			
93	1.1 PPM	OK			
94	1.0 PPM	OK			
95	0.9 PPM	OK			
96	0.8 PPM	OK			
97	0.8 PPM	OK			
98	0.8 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
99	0.7 PPM	OK			
100	0.7 PPM	OK			End Serpentine Route
101	0.8 PPM	OK			EW-69
102	1.9 PPM	OK			EW-71
103	0.8 PPM	OK			EW-32R
104	0.9 PPM	OK			EW-72
105	0.7 PPM	OK			EW-29R
106	0.7 PPM	OK			EW-74
107	1.4 PPM	OK			EW-62
108	1.3 PPM	OK			EW-75
109	0.6 PPM	OK			EW-33B
110	0.6 PPM	OK			EW-63
111	1.3 PPM	OK			EW-77
112	2.2 PPM	OK			EW-64
113	0.5 PPM	OK			EW-79
114	0.6 PPM	OK			TP-8
115	1.3 PPM	OK			EW-81
116	0.8 PPM	OK			EW-42
117	0.5 PPM	OK			EW-80
118	1.1 PPM	OK			EW-84
119	2.0 PPM	OK			EW-83
120	7.9 PPM	OK			EW-65
121	4.8 PPM	OK			EW-50
122	438.0 PPM	OK			TP-7
123	1.4 PPM	OK			EW-49
124	248.0 PPM	OK			EW-86
125	68.6 PPM	OK			EW-38
126	1617.0 PPM	HIGH_ALRM	36.59934	-82.14782	EW-87
127	25.8 PPM	OK	00107704	02.1147 02	EW-48
128	9.8 PPM	OK			EW-60
129	7.3 PPM	OK			TP-4
130	224.0 PPM	OK			EW-52
131	310.0 PPM	OK			EW-35
132	4.7 PPM	OK			TP-5
133	156.0 PPM	OK			EW-39
134	17.8 PPM	OK			EW-68
135	28.7 PPM	OK			EW-90
136	801.0 PPM	HIGH_ALRM	36.59884	-82.14787	EW-51
137	26.7 PPM	OK	30.37004	-02.14/0/	EW-91
138	4124.0 PPM	HIGH_ALRM	36.59866	-82.14779	EW-67
139	14.5 PPM	OK	00.07000	-02.14///	TP-3
140	13.3 PPM	OK			EW-53
140	153.0 PPM	OK			EW-41
	10.3 PPM				EW-96
142 143	166.0 PPM	OK OK			EW-47
144	34.7 PPM	OK			EW-54
145 146	2.5 PPM 7.3 PPM	OK OK			TP-2 EW-55

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
147	21.3 PPM	ОК			EW-92
148	112.0 PPM	OK			EW-95
149	1715.0 PPM	HIGH_ALRM	36.59816	-82.14799	EW-97
150	2188.0 PPM	HIGH_ALRM	36.59795	-82.14829	EW-99
151	125.0 PPM	OK			EW-56
152	22.0 PPM	OK			EW-100
153	7.1 PPM	OK			EW-59
154	11.9 PPM	OK			TP-1
155	55.2 PPM	OK			EW-57
156	48.0 PPM	OK			EW-66
157	15.8 PPM	OK			EW-58
158	1395.0 PPM	HIGH_ALRM	36.59826	-82.14693	EW-98
159	27.4 PPM	OK			EW-94
160	3.0 PPM	OK			EW-93
161	1.6 PPM	OK			EW-89
162	155.0 PPM	OK			EW-88
163	1.5 PPM	OK			EW-85
164	5.5 PPM	OK			EW-61
165	2.6 PPM	OK			TP-6
166	28.4 PPM	OK			EW-36A
167	274.0 PPM	OK			EW-82
168	3.7 PPM	OK			EW-78
169	29.7 PPM	OK			EW-76
170	198.0 PPM	OK			TP-9
170	13.8 PPM	OK			EW-73
172	0.3 PPM	OK			EW-70
	Number of loc Number of exceed	ations sampled: dance locations:	172 6		
Points 101 throu Weather Condi Sampling Calib 12/7/2023	n 100 represent serpent ugh 172 represent SEM tions: Sunny, 44°F Wind ration: Methane - 500 p 11:09 ZERO	at Pipe Penetratic I: E 10 MPH opm, Zero Air - 0.0 0.0	<u>) ppm</u> PPM		
12/7/2023	11:11 SPAN	499.0	PPM		
Background Rea	ading:				
12/7/2023 12/7/2023	11:11 Upwind 11:20 Downwine		PPM PPM		

SCS ENGINEERS

December 27, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject:Weekly Surface Emissions Monitoring Event - December 21, 2023Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on December 21, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Mr. Jonathan Chapman December 27, 2023 Page 2

Table 1.Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	172
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	72
Number of Exceedances	5
Number of Serpentine Exceedances	1
Number of Pipe Penetration Exceedances	4

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	12/21/23 Event	12/21/23 Event Result	Comments
EW-39	11/20/23	30-Day Retest	Passed	Exceedance Resolved
EW-76	11/20/23	30-Day Retest	Passed	Exceedance Resolved
EW-51	12/7/23	N/A	Passed	Requires 30-Day Retest
EW-67	12/7/23	N/A	Failed	Requires 2 nd 10-Day Retest
EW-97	12/7/23	N/A	Passed	Requires 30-Day Retest
EW-98	12/7/23	N/A	Failed	Requires 2 nd 10-Day Retest
EW-99	12/7/23	N/A	Passed	Requires 30-Day Retest
EW-90	12/14/23	10-Day Retest	Passed	Requires 30-Day Retest

Table 2.Ongoing Weekly SEM Exceedances
--

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

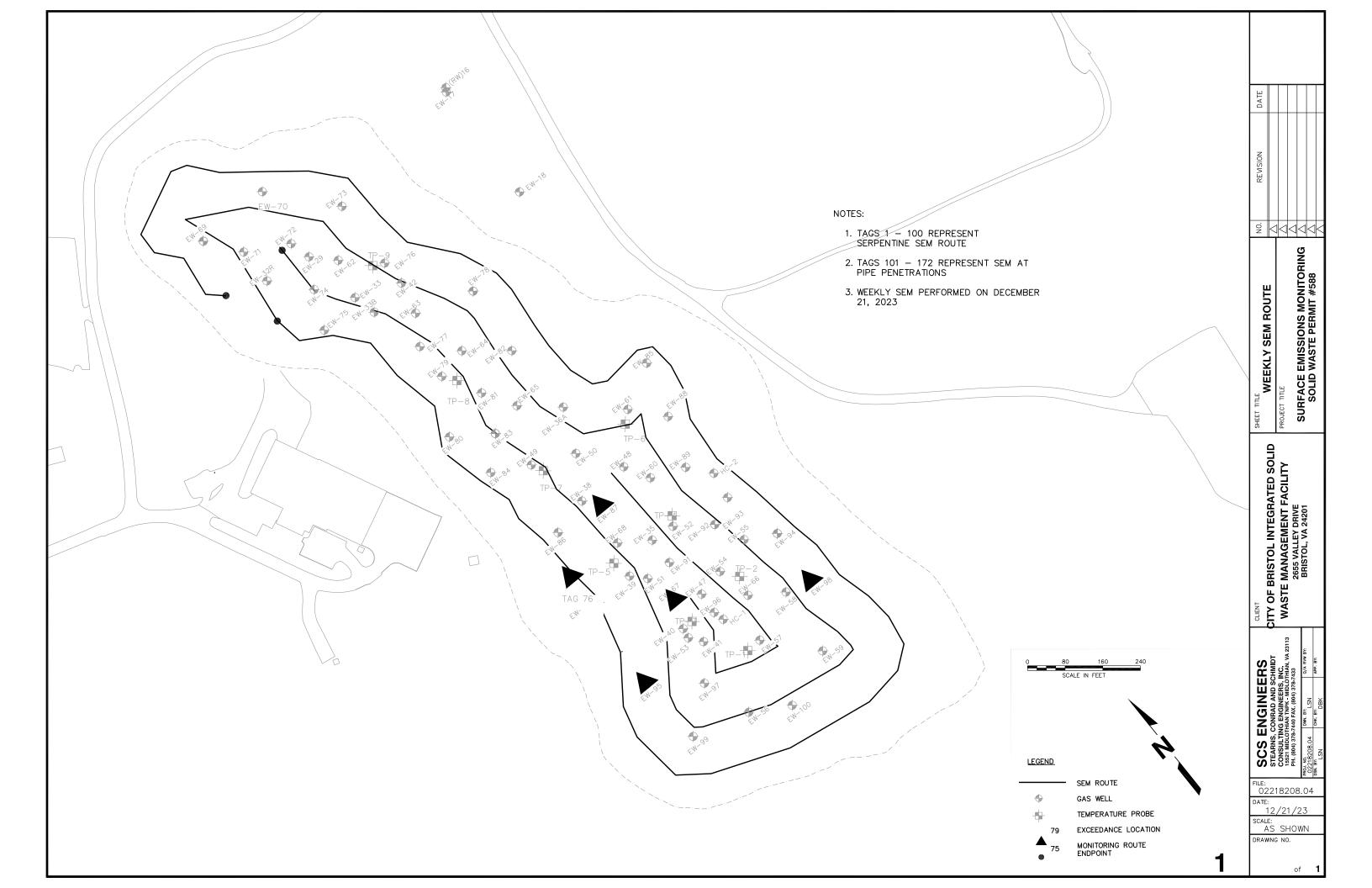
Wylis Hicklin

Wylie R Hicklin Associate Staff Professional SCS Engineers

LSN/WRH/cjw

- cc: Randall Eads, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman


Lucas S. Nachman Senior Project Professional SCS Engineers

	Methane		GPS Coordinates	
ID #	Concentration	Compliance	Lat. Long.	Comments
1	6.0 PPM	OK		Start Serpentine Route
2	3.2 PPM	OK		
3	4.3 PPM	OK		
4	3.6 PPM	OK		
5	3.7 PPM	OK		
6	3.6 PPM	OK		
7	2.9 PPM	OK		
8	3.7 PPM	OK		
9	3.5 PPM	OK		
10	4.9 PPM	OK		
11	6.9 PPM	OK		
12	7.0 PPM	OK		
13	5.2 PPM	OK		
14	4.8 PPM	OK		
15	6.1 PPM	OK		
16	7.0 PPM	OK		
17	30.5 PPM	OK		
18	39.4 PPM	OK		
19	70.2 PPM	OK		
20	353.0 PPM	OK		
21	10.4 PPM	OK		
22	10.2 PPM	OK		
23	10.4 PPM	OK		
24	10.0 PPM	OK		
25	36.5 PPM	OK		
26	7.9 PPM	OK		
27	34.0 PPM	OK		
28	61.1 PPM	OK		
29	182.0 PPM	OK		
30	7.9 PPM	OK		
31	78.8 PPM	OK		
32	262.0 PPM	OK		
33	231.0 PPM	OK		
34	16.3 PPM	OK		
35	7.6 PPM	OK		
36	14.7 PPM	OK		
37	10.8 PPM	OK		
38	6.8 PPM	OK		
39	5.5 PPM	OK		
40	7.8 PPM	OK		
41	4.9 PPM	OK		
42	3.7 PPM	OK		
43	1.9 PPM	OK		
44	2.2 PPM	OK		
45	4.5 PPM	OK		
46	3.8 PPM	OK		
47	3.1 PPM	OK		
48	3.6 PPM	OK		
49	3.5 PPM	OK		

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
50	3.5 PPM	OK			
51	2.6 PPM	OK			
52	3.4 PPM	OK			
53	3.7 PPM	OK			
54	5.2 PPM	OK			
55	3.1 PPM	OK			
56	2.4 PPM	OK			
57	1.9 PPM	OK			
58	3.2 PPM	OK			
59	12.4 PPM	OK			
60	4.1 PPM	OK			
61	7.6 PPM	OK			
62	11.0 PPM	OK			
63	3.7 PPM	OK			
64	5.2 PPM	OK			
65	6.6 PPM	OK			
66	58.9 PPM	OK			
67	63.6 PPM	OK			
68	1.4 PPM	OK			
69	1.3 PPM	OK			
70	1.4 PPM	OK			
71	91.9 PPM	OK			
72	25.7 PPM	OK			
73	3.5 PPM	OK			
74	3274.0 PPM	HIGH_ALRM	36.59823	-82.14790	
75	36.1 PPM	OK	30.37023	-02.14770	
76	143.0 PPM	OK			
77	4.0 PPM	OK			
78	46.9 PPM	OK			
70 79	13.2 PPM	OK			
80	14.8 PPM	OK			
81	2.0 PPM	OK			
82	2.0 PPM	OK			
83	94.0 PPM	OK			
84	13.4 PPM	OK			
85	3.3 PPM	OK			
86	2.9 PPM	OK			
87	2.3 PPM	OK			
88	2.3 PPM	OK			
89	1.9 PPM	OK			
90	2.0 PPM	OK			
91	4.0 PPM	OK			
92	35.4 PPM	OK			
93	54.1 PPM	OK			
94	71.9 PPM	OK			
95	48.8 PPM	OK			
96	5.2 PPM	OK			
97	5.1 PPM	OK			
98	6.0 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
99	64.1 PPM	OK			
100	5.8 PPM	OK			End Serpentine Route
101	149.0 PPM	OK			EW-35
102	286.0 PPM	OK			EW-52
103	159.0 PPM	OK			TP-4
104	302.0 PPM	OK			EW-60
105	12.6 PPM	OK			EW-48
106	6.1 PPM	OK			TP-6
107	5.9 PPM	OK			EW-61
108	7.6 PPM	OK			EW-50
109	10600.0 PPM	HIGH_ALRM	36.59866	-82.14779	EW-67
110	20.8 PPM	OK			EW-47
111	4.8 PPM	OK			EW-54
112	24.0 PPM	OK			EW-55
113	15.1 PPM	OK			EW-92
114	6.9 PPM	OK			EW-91
115	11.1 PPM	OK			EW-96
116	10.4 PPM	OK			TP-2
117	6.6 PPM	OK			EW-66
118	14.6 PPM	OK			EW-58
119	77.4 PPM	OK			EW-57
120	64.4 PPM	OK			TP-1
120	23.6 PPM	OK			EW-59
122	11.1 PPM	OK			EW-100
122	267.0 PPM	OK			EW-56
124	106.0 PPM	OK			EW-97
125	25.3 PPM	OK			EW-41
125	78.0 PPM	OK			EW-53
120	6.5 PPM	OK			TP-3
128	6.1 PPM	OK			EW-51
120	8.8 PPM	OK			EW-39
130	5.0 PPM	OK			TP-5
131	279.0 PPM	OK			EW-68
132	2729.0 PPM	HIGH_ALRM	36.59934	-82.14782	EW-87
133	347.0 PPM	OK	00.07704	-02.14/02	EW-38
134	163.0 PPM	OK			TP-7
135	3.0 PPM	OK			EW-49
135	2.5 PPM	OK			EW-83
137	1.7 PPM	OK			EW-65
138	3.3 PPM	OK			EW-81
138	1.0 PPM	OK			TP-8
139	0.9 PPM	OK			EW-64
	3.1 PPM	OK			EW-63
141		OK			
142	6.8 PPM				EW-42
143	23.1 PPM	OK			EW-76
144	297.0 PPM	OK			TP-9
145 146	2.5 PPM 1.0 PPM	OK OK			EW-62 EW-29R

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
147	53.5 PPM	OK			EW-74
148	9.0 PPM	OK			EW-32R
149	1.0 PPM	OK			EW-69
150	1.2 PPM	OK			EW-71
151	74.2 PPM	OK			EW-72
152	0.8 PPM	OK			EW-70
153	407.0 PPM	OK			EW-73
154	1.0 PPM	OK			EW-78
155	1.8 PPM	OK			EW-82
156	7.4 PPM	OK			EW-36A
157	5.3 PPM	OK			EW-85
158	1.3 PPM	OK			EW-88
159	10.3 PPM	OK			EW-89
160	3.3 PPM	OK			EW-93
161	67.1 PPM	OK			EW-94
162	2017.0 PPM	HIGH_ALRM	36.59842	-82.14692	EW-98
163	190.0 PPM	OK			EW-99
164	1052.0 PPM	HIGH_ALRM	36.59828	-82.14833	EW-95
165	11.4 PPM	OK			EW-90
166	24.1 PPM	OK			EW-86
167	2.0 PPM	OK			EW-84
168	1.4 PPM	OK			EW-80
169	0.9 PPM	OK			EW-79
170	1.0 PPM	OK			EW-77
171	144.0 PPM	OK			EW-33B
172	13.0 PPM	OK			EW-75
			170		
	Number of exceed	ations sampled: Jance locations:	172 5		
NOTES:					
•	100 represent serpent				
	ugh 172 represent SEM		ons		
Weather Condi	tions: Sunny, 41°F Wind	: None			
	ration: Methane - 500 p				
12/21/2023	11:22 ZERO	0.0	PPM		
12/21/2023	11:27 SPAN	502.0	PPM		
Background Rec		2.0			
12/21/2023	11:29 Upwind	3.8	PPM		
12/21/2023	11:31 Downwine	d 3.4	PPM		

SCS ENGINEERS

December 20, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – December 14, 2023 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on December 14, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1. Summary of Surface Emissions Mo	onitoring
--	-----------

Description	Quantity
Number of Points Sampled	171
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	71
Number of Exceedances	2
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	2

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	12/14/23 Event	12/14/23 Event Result	Comments
EW-87	11/15/23	30-Day Retest	Passed	Exceedance Resolved
EW-88	11/15/23	30-Day Retest	Passed	Exceedance Resolved
EW-39	11/20/23	N/A	Passed	Requires 30-Day Retest
EW-76	11/20/23	N/A	Failed	Requires 30-Day Retest
EW-51	12/7/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-67	12/7/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-97	12/7/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-98	12/7/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-99	12/7/23	10-Day Retest	Passed	Requires 30-Day Retest

Table 2.Ongoing Weekly SEM Exceedances

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

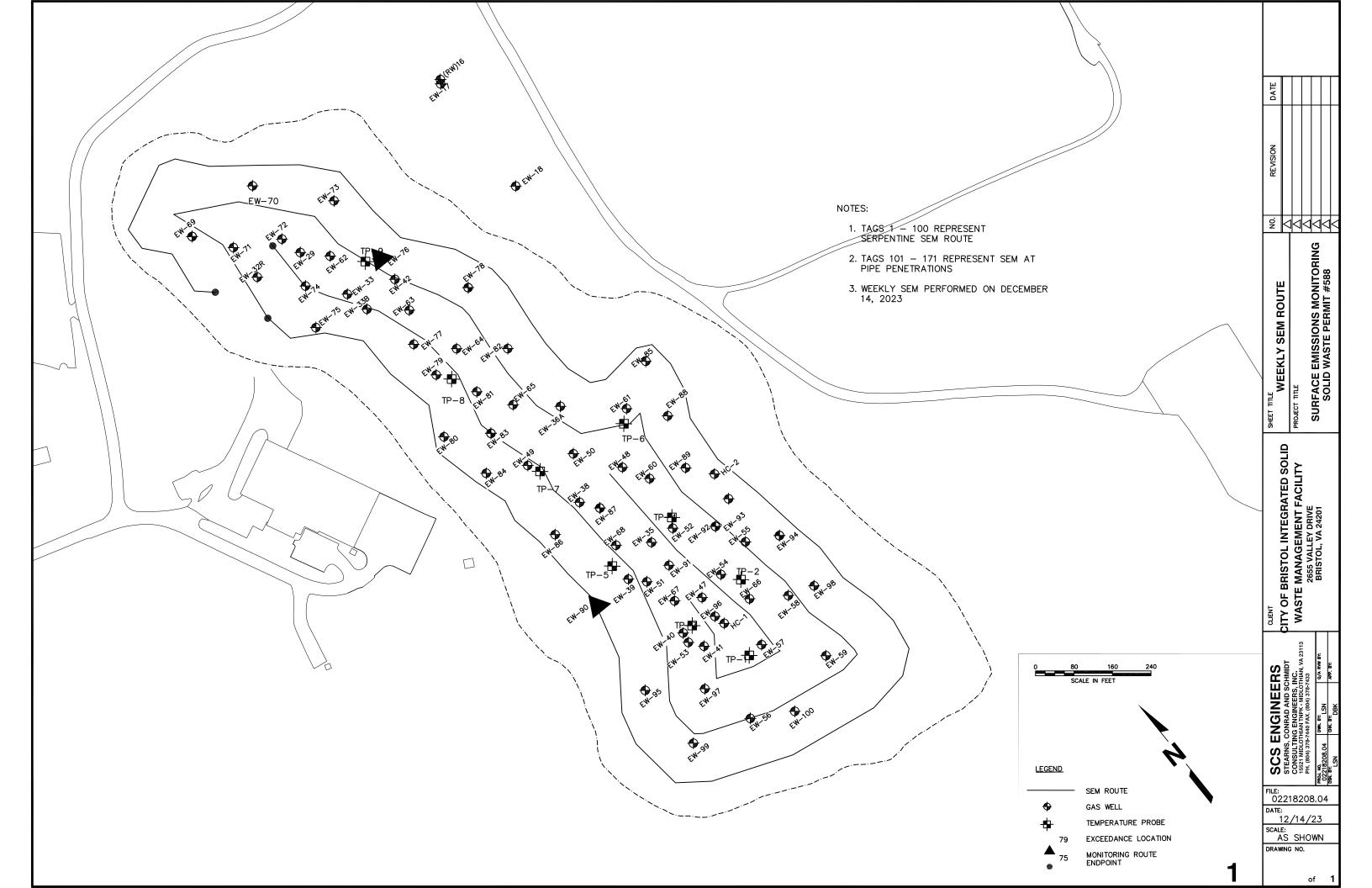
Wylie Hicklin

Wylie R Hicklin Associate Staff Professional SCS Engineers

LSN/WRH/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman


Lucas S. Nachman Senior Project Professional SCS Engineers

	Methane			
ID #	Concentration	Compliance	Lat. Long.	Comments
1	2.6 PPM	OK		Start Serpentine Route
2	7.6 PPM	OK		
3	4.8 PPM	OK		
4	4.9 PPM	OK		
5	4.9 PPM	OK		
6	4.4 PPM	OK		
7	3.8 PPM	OK		
8	3.6 PPM	OK		
9	3.4 PPM	OK		
10	3.5 PPM	OK		
11	4.1 PPM	OK		
12	4.9 PPM	OK		
13	20.7 PPM	OK		
14	3.8 PPM	OK		
15	2.7 PPM	OK		
16	2.5 PPM	OK		
17	11.3 PPM	OK		
18	4.6 PPM	OK		
19	16.3 PPM	OK		
20	7.0 PPM	OK		
21	8.3 PPM	OK		
22	4.1 PPM	OK		
23	4.9 PPM	OK		
24	2.7 PPM	OK		
25	3.1 PPM	OK		
26	6.1 PPM	OK		
27	14.5 PPM	OK		
28	3.8 PPM	OK		
29	28.6 PPM	OK		
30	126.0 PPM	OK		
31	4.4 PPM	OK		
32	5.8 PPM	OK		
33	5.6 PPM	OK		
34	28.0 PPM	OK		
35	13.2 PPM	OK		
36	6.5 PPM	OK		
37	25.1 PPM	OK		
38	5.5 PPM	OK		
39	1.9 PPM	OK		
40	2.4 PPM	OK		
41	1.9 PPM	OK		
42	1.8 PPM	OK		
43	2.1 PPM	OK		
44	1.9 PPM	OK		
45	1.8 PPM	OK		
46	1.9 PPM	OK		
47	1.9 PPM	OK		
48	1.7 PPM	OK		
49	3.0 PPM	OK		

ID #				ordinates	
	Concentration	Compliance	Lat.	Long.	Comments
50	5.1 PPM	OK			
51	2.9 PPM	OK			
52	2.0 PPM	OK			
53	2.1 PPM	OK			
54	1.9 PPM	OK			
55	2.2 PPM	OK			
56	1.7 PPM	OK			
57	1.9 PPM	OK			
58	2.3 PPM	OK			
59	2.6 PPM	OK			
60	6.5 PPM	OK			
61	14.5 PPM	OK			
62	2.7 PPM	OK			
63	27.9 PPM	OK			
64	11.5 PPM	OK			
65	2.8 PPM	OK			
66	6.6 PPM	OK			
67	10.4 PPM	OK			
68	9.2 PPM	OK			
69	34.7 PPM	OK			
70	413.0 PPM	OK			
71	242.0 PPM	OK			
72	256.0 PPM	OK			
73	14.6 PPM	OK			
74	9.4 PPM	OK			
75	12.0 PPM	OK			
76	18.5 PPM	OK			
77	3.3 PPM	OK			
78	40.7 PPM	OK			
79	2.6 PPM	OK			
80	2.7 PPM	OK			
81	8.0 PPM	OK			
82	1.8 PPM	OK			
83	1.5 PPM	OK			
84	1.7 PPM	OK			
85	2.3 PPM	OK			
86	1.7 PPM	OK			
87	1.3 PPM	OK			
88	1.7 PPM	OK			
89	1.7 PPM	OK			
90	1.7 PPM	OK			
91	2.7 PPM	OK			
92	3.1 PPM	OK			
93	421.0 PPM	OK			
94	112.0 PPM	OK			
95	6.1 PPM	OK			
96	1.8 PPM	OK			
97 98	1.7 PPM 13.4 PPM	OK OK			

	Methane GPS Coordinates				
ID #	Concentration	Compliance	Lat.	Long.	Comments
99	22.3 PPM	ОК			
100	9.2 PPM	OK			End Serpentine Route
101	118.0 PPM	OK			EW-35
102	181.0 PPM	OK			EW-52
103	100.0 PPM	OK			TP-4
104	332.0 PPM	OK			EW-60
105	62.5 PPM	OK			EW-48
106	8.0 PPM	OK			TP-6
107	4.4 PPM	OK			EW-61
108	3.9 PPM	OK			EW-50
109	23.8 PPM	OK			EW-67
110	4.8 PPM	OK			EW-47
111	3.2 PPM	OK			EW-54
112	1.7 PPM	OK			EW-55
113	19.7 PPM	OK			EW-92
114	20.2 PPM	OK			EW-91
115	1.5 PPM	OK			EW-96
116	4.9 PPM	OK			TP-2
117	11.5 PPM	OK			EW-66
118	7.5 PPM	OK			EW-58
119	76.9 PPM	OK			EW-57
120	25.0 PPM	OK			TP-1
121	28.4 PPM	OK			EW-59
122	15.4 PPM	OK			EW-100
123	32.9 PPM	OK			EW-56
124	3.6 PPM	OK			EW-97
125	2.3 PPM	OK			EW-41
126	5.1 PPM	OK			EW-53
127	1.8 PPM	OK			TP-3
128	14.3 PPM	OK			EW-51
129	37.3 PPM	OK			EW-39
130	3.5 PPM	OK			TP-5
131	5.1 PPM	OK			EW-68
132	1.7 PPM	OK			EW-87
133	23.3 PPM	OK			EW-38
134	126.0 PPM	OK			TP-7
135	3.8 PPM	OK			EW-49
136	1.6 PPM	OK			EW-65
137	0.9 PPM	OK			EW-81
138	1.1 PPM	OK			TP-8
139	1.1 PPM	OK			EW-64
140	0.7 PPM	OK			EW-63
140	0.7 PPM	OK			EW-42
141	1584.0 PPM		36.60124	-82.14803	EW-76
142	93.7 PPM	OK	30.00124	-02.1-4000	TP-9
145	0.8 PPM	OK			EW-62
144	0.8 PPM	OK			EW-29R
145	0.6 PPM	OK			EW-74

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
147	1.3 PPM	OK			EW-32R
148	0.6 PPM	OK			EW-69
149	0.7 PPM	OK			EW-71
150	1.1 PPM	OK			EW-72
151	2.6 PPM	OK			EW-70
152	3.9 PPM	OK			EW-73
153	17.8 PPM	OK			EW-78
154	34.0 PPM	OK			EW-82
155	7.1 PPM	OK			EW-36A
156	1.0 PPM	OK			EW-85
157	1.1 PPM	OK			EW-88
158	17.2 PPM	OK			EW-89
159	5.6 PPM	OK			EW-93
160	1.0 PPM	OK			EW-94
161	0.9 PPM	OK			EW-98
162	69.6 PPM	OK			EW-99
163	325.0 PPM	OK			EW-95
164	1180.0 PPM	HIGH_ALRM	36.59877	-82.14825	EW-90
165	4.1 PPM	OK			EW-86
166	1.0 PPM	OK			EW-84
167	2.1 PPM	OK			EW-80
168	0.9 PPM	OK			EW-79
169	1.0 PPM	OK			EW-77
170	0.9 PPM	OK			EW-33B
171	0.6 PPM	ОК			EW-75
			171		
	Number of loo Number of excee	ations sampled: dance locations:	171 2		
Points 101 throu	100 represent serpent igh 171 represent SEM itions: Sunny, 47°F Winc	at Pipe Penetratio	ons		
Sampling Calibi	ration: Methane - 500	opm, Zero Air - 0.0) ppm		
12/14/2023	10:57 ZERO	0.1	PPM		
12/14/2023	10:59 SPAN	501.0	PPM		
D	ıdına.				
<u>Background Rec</u> 12/14/2023 12/14/2023	11:01 Upwind 11:04 Downwin		PPM PPM		

Appendix B

In-Waste Temperatures on Select Days in December

Appendix B Figures

Average Temperatures Recorded by TP-1 on December 6, 2023..... B-4 Figure B-1. Figure B-2. Average Temperatures Recorded by TP-1 on December 13, 2023..... B-4 Average Temperatures Recorded by TP-1 on December 20, 2023..... B-5 Figure B-3. Figure B-4. Average Temperatures Recorded by TP-1 on December 27, 2023..... B-5 Figure B-5. Average Temperatures Recorded by TP-2 on December 6, 2023..... B-Error! Bookmark not defined. Figure B- 6. Average Temperatures Recorded by TP-2 on December 13, 2023...... B-6 Figure B-7. Average Temperatures Recorded by TP-2 on December 20, 2023...... B-6 Figure B-8. Average Temperatures Recorded by TP-2 on December 27, 2023...... B-7 Figure B-9. Average Temperatures Recorded by TP-3 on December 6, 2023..... B-7 Figure B-10. Average Temperatures Recorded by TP-3 on December 13, 2023... B-Error! Bookmark not defined. Figure B-11. Average Temperatures Recorded by TP-3 on December 27, 2023...... B-8 Figure B-12. Figure B-13. Average Temperatures Recorded by TP-4 on December 6, 2023 B-9 Figure B-14. Figure B-15. Average Temperatures Recorded by TP-4 on December 20, 2023 ... B-Error! Bookmark not defined. Figure B-16. Average Temperatures Recorded by TP-4 on December 27, 2023 B-10 Figure B-17. Average Temperatures Recorded by TP-5 on December 13, 2023...... B-11 Figure B- 18. Figure B-19. Average Temperatures Recorded by TP-5 on December 20, 2023 B-11 Figure B-20. Average Temperatures Recorded by TP-5 on December 27, 2023 ... B-Error! Bookmark not defined. Figure B-21. Average Temperatures Recorded by TP-6 on December 13, 2023 B-12 Figure B-22. Figure B-23. Average Temperatures Recorded by TP-6 on December 20, 2023 B-13 Figure B-24. Average Temperatures Recorded by TP-6 on December 27, 2023 B-13 Figure B-25. Average Temperatures Recorded by TP-7 on December 6, 2023 B-Error! Bookmark not defined. Figure B-26. Average Temperatures Recorded by TP-7 on December 13, 2023 B-14 Average Temperatures Recorded by TP-7 on December 20, 2023 B-14 Figure B-27. Average Temperatures Recorded by TP-7 on December 27, 2023...... B-15 Figure B-28. Figure B-29. Figure B- 30. Average Temperatures Recorded by TP-8 on December 13, 2023... B-Error! Bookmark not defined. Figure B-31. Average Temperatures Recorded by TP-8 on December 20, 2023 B-16 Figure B- 32. Average Temperatures Recorded by TP-8 on December 27, 2023 B-16 Figure B- 33. Average Temperatures Recorded by TP-9 on December 6, 2023 B-17 Figure B- 34. Average Temperatures Recorded by TP-9 on December 13, 2023 B-17 Figure B-35. Average Temperatures Recorded by TP-9 on December 20, 2023 ... B-Error! Bookmark not defined.

Figure B-36. Average Temperatures Recorded by TP-9 on December 27, 2023 B-18

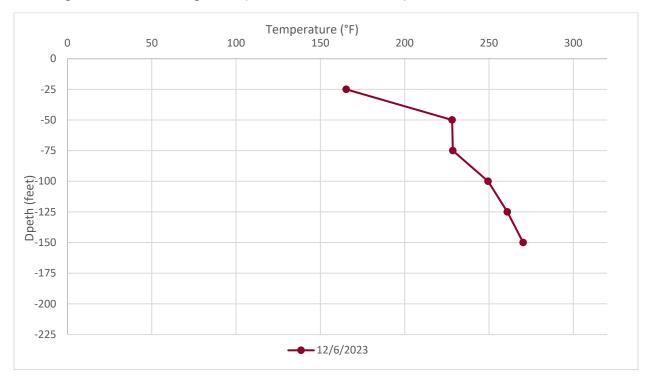
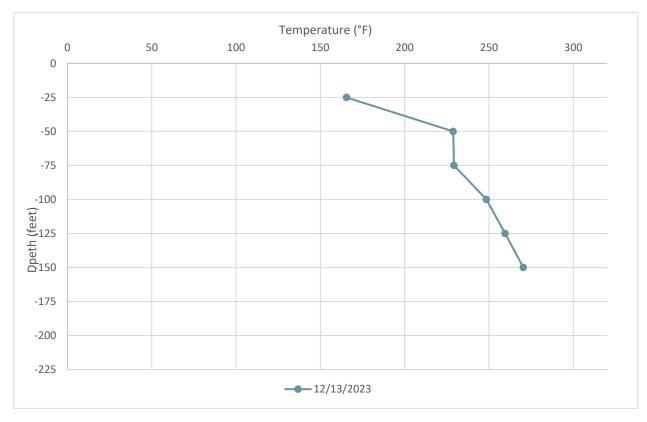
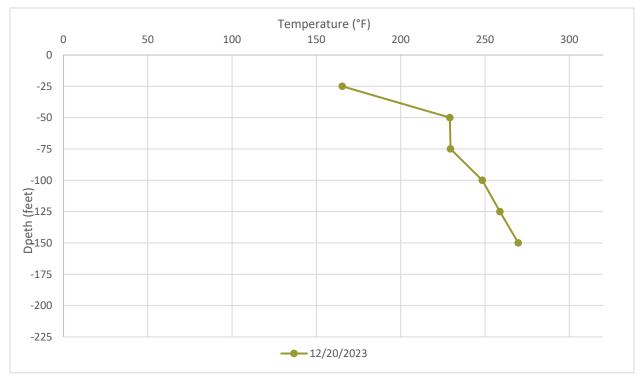
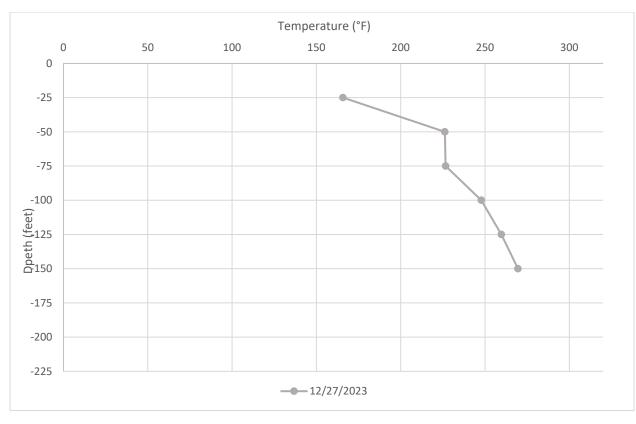




Figure B-1. Average Temperatures Recorded by TP-1 on December 6, 2023



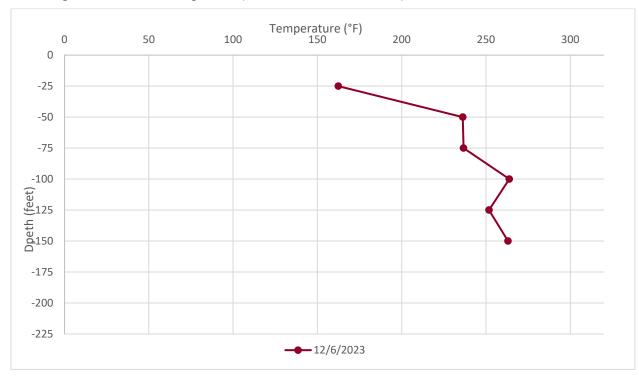
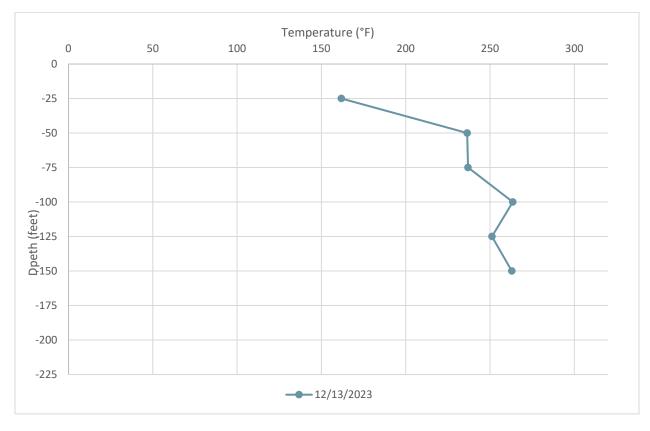
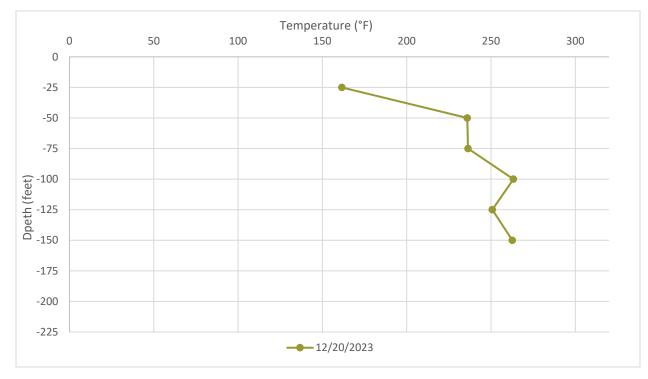
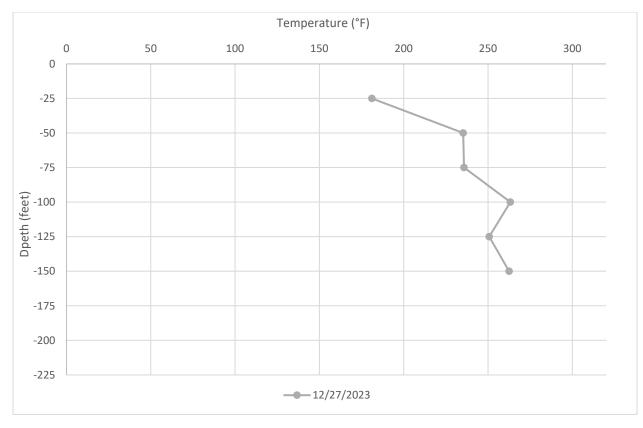
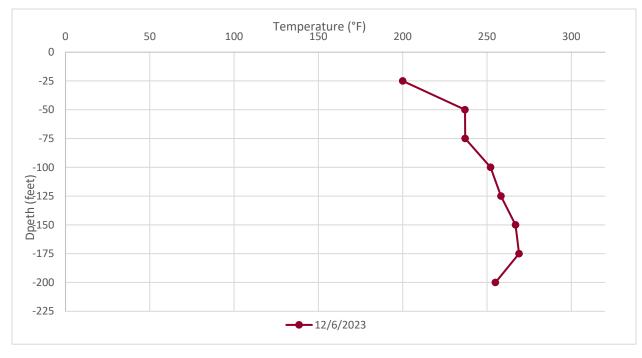
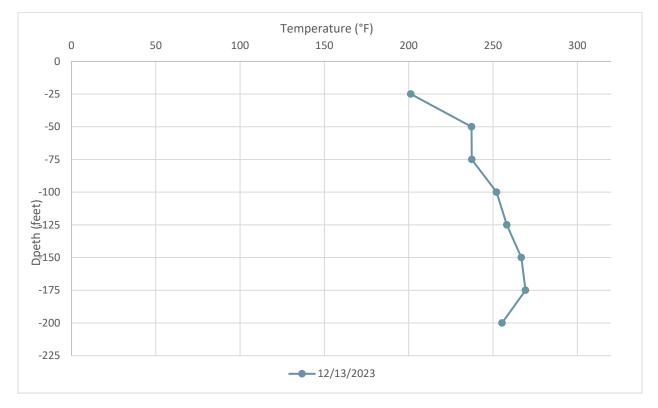




Figure B-5. Average Temperatures Recorded by TP-2 on December 6, 2023







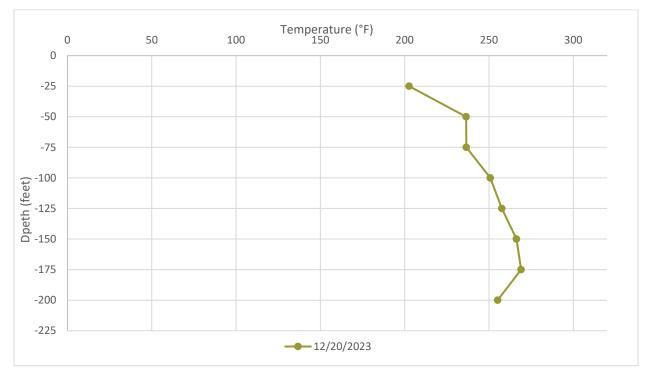
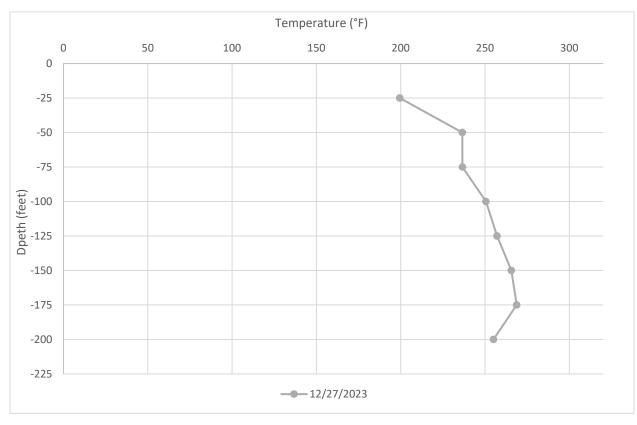



Figure B-11. Average Temperatures Recorded by TP-3 on December 20, 2023

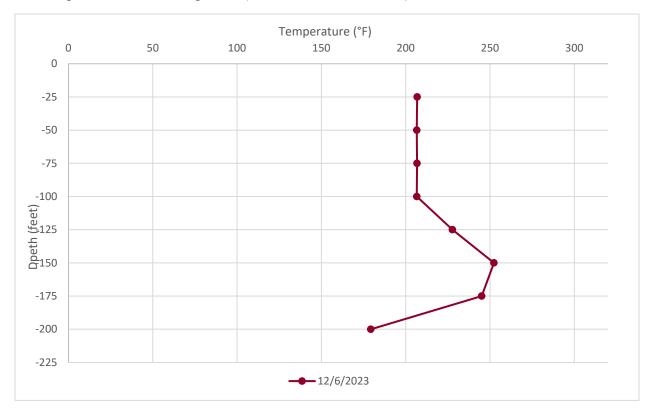
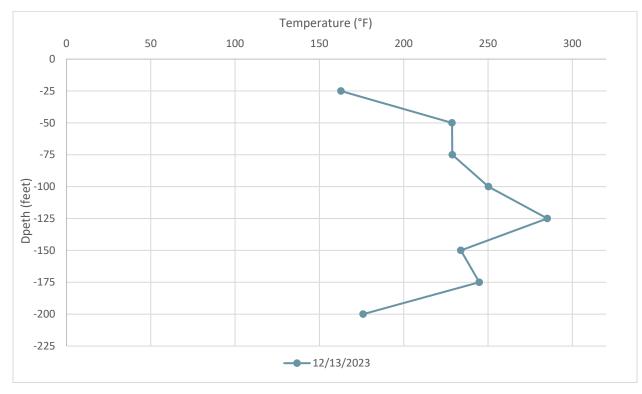



Figure B-13. Average Temperatures Recorded by TP-4 on December 6, 2023

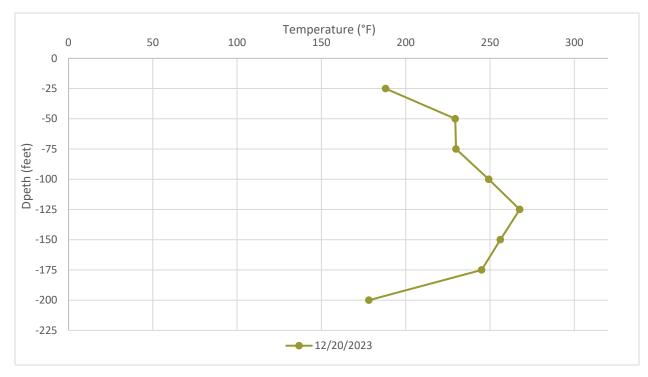
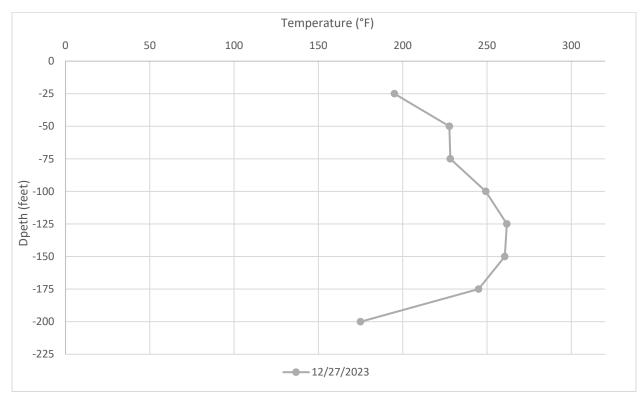



Figure B-15. Average Temperatures Recorded by TP-4 on December 20, 2023

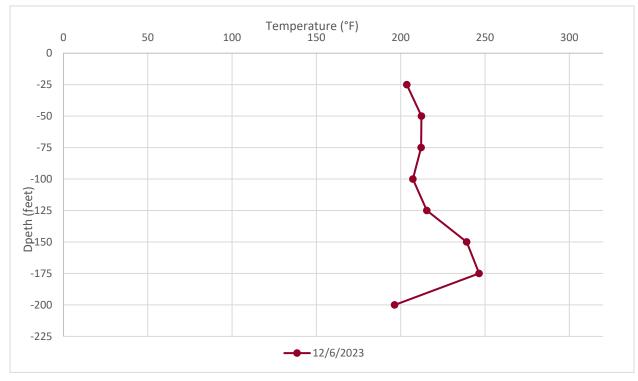
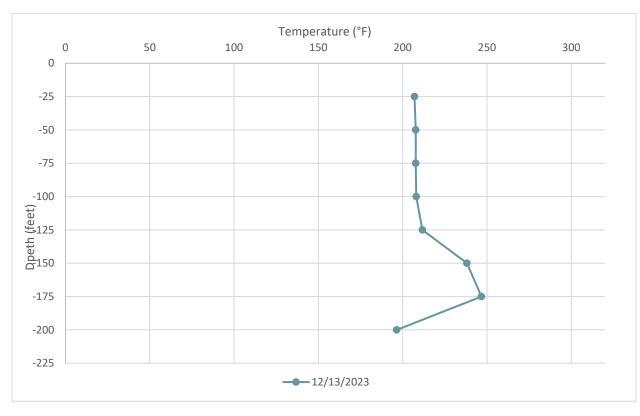



Figure B-17. Average Temperatures Recorded by TP-5 on December 6, 2023

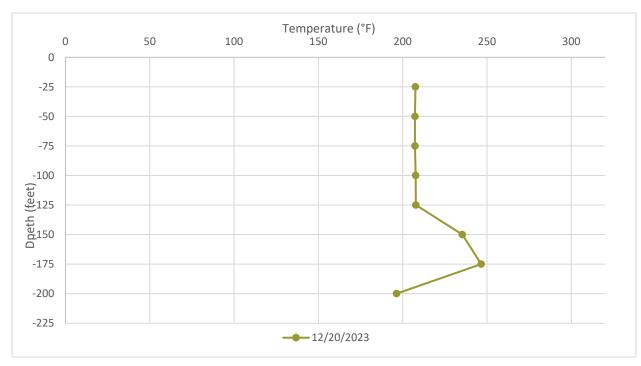
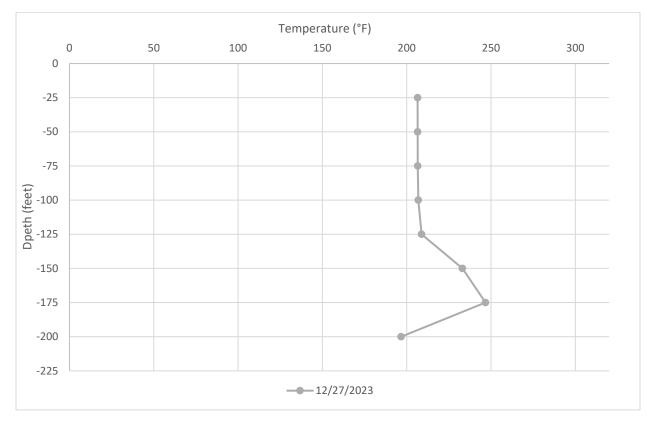



Figure B-19. Average Temperatures Recorded by TP-5 on December 20, 2023

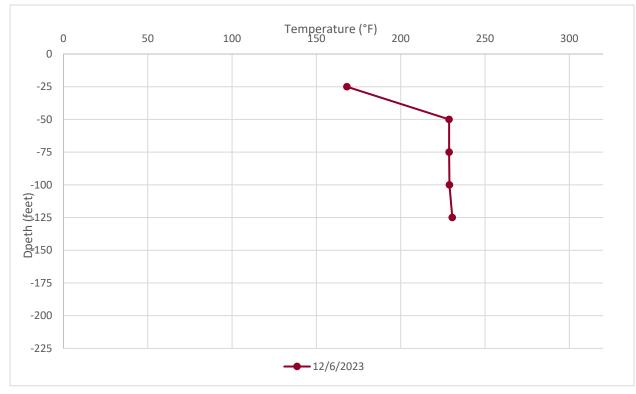
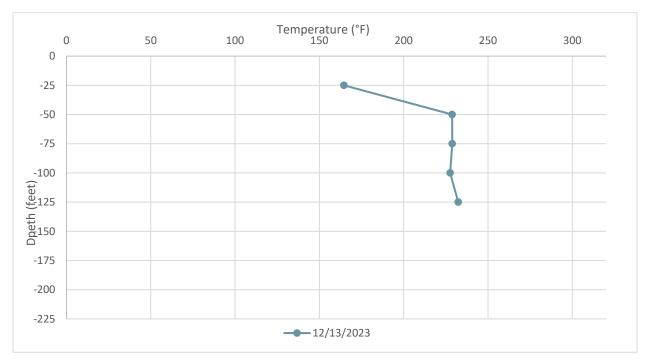



Figure B-21. Average Temperatures Recorded by TP-6 on December 6, 2023

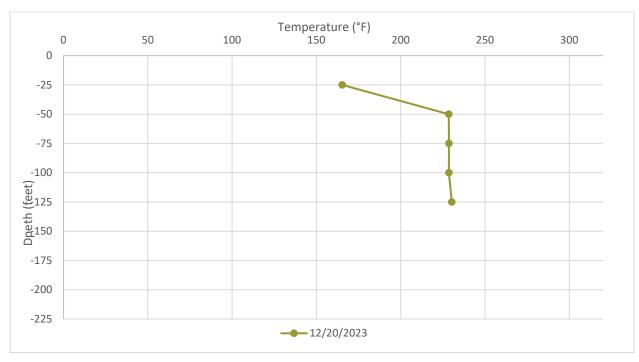
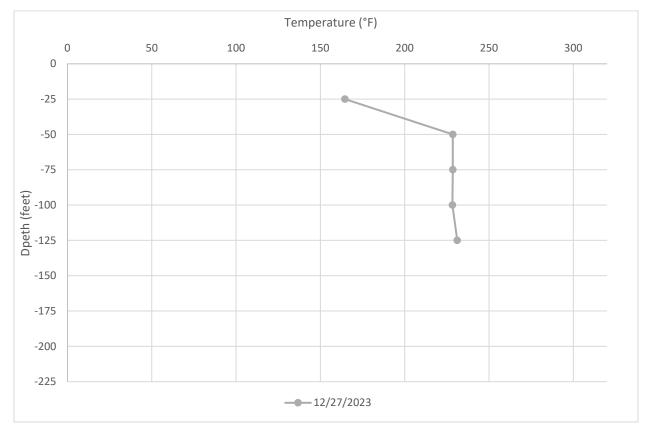



Figure B-23. Average Temperatures Recorded by TP-6 on December 20, 2023

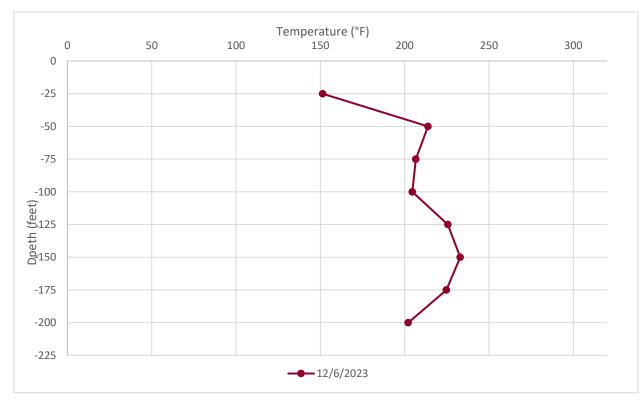


Figure B-25. Average Temperatures Recorded by TP-7 on December 6, 2023

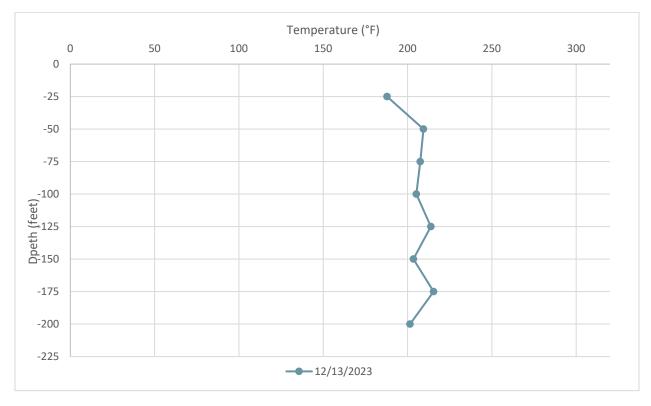


Figure B-27. Average Temperatures Recorded by TP-7 on December 20, 2023

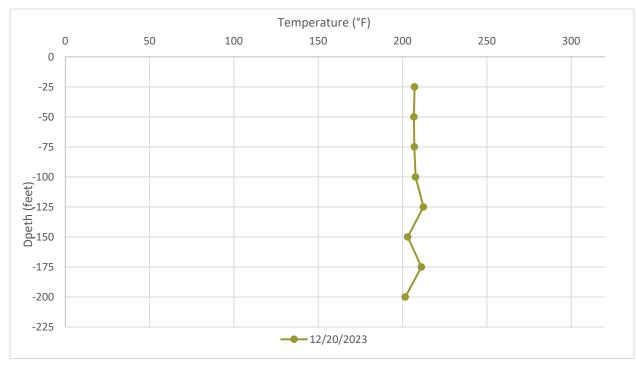
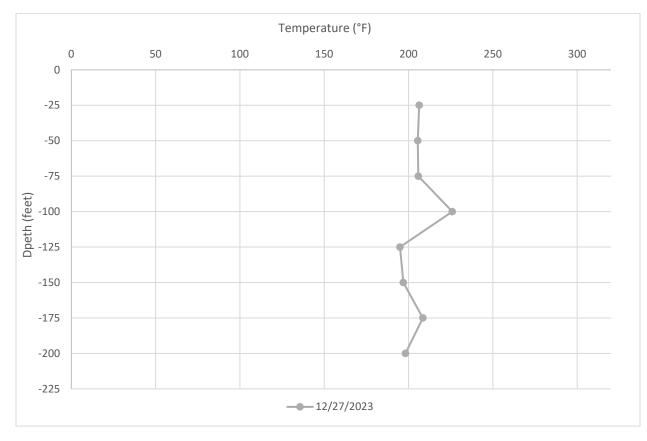



Figure B-28. Average Temperatures Recorded by TP-7 on December 27, 2023

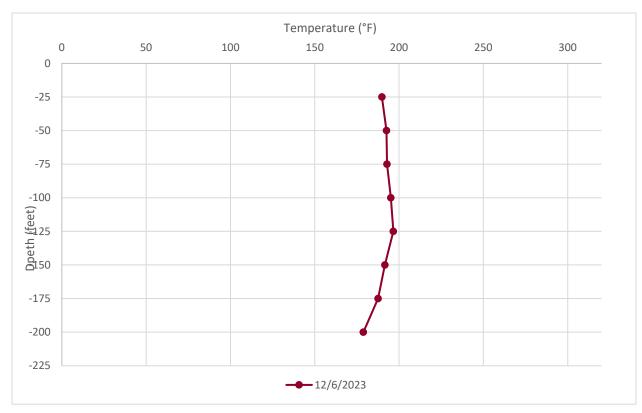
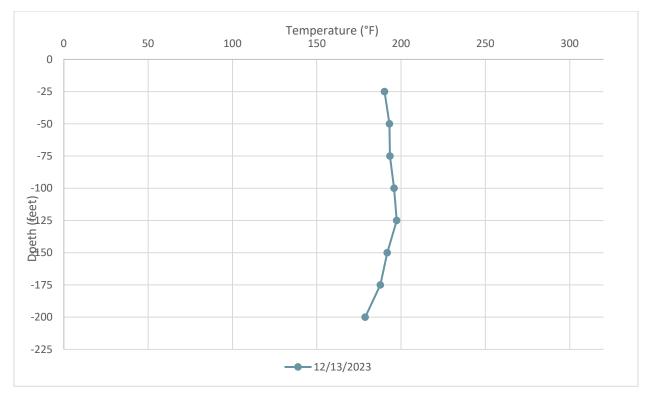



Figure B-29. Average Temperatures Recorded by TP-8 on December 6, 2023

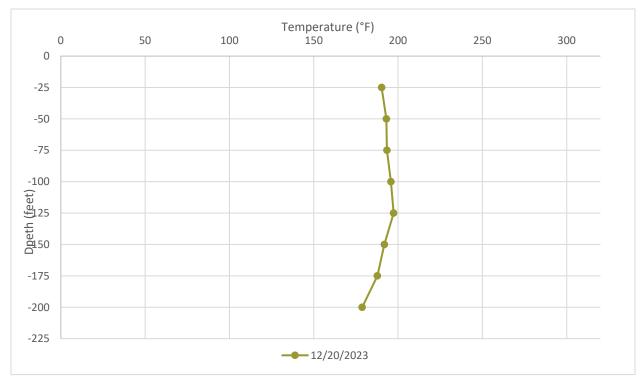
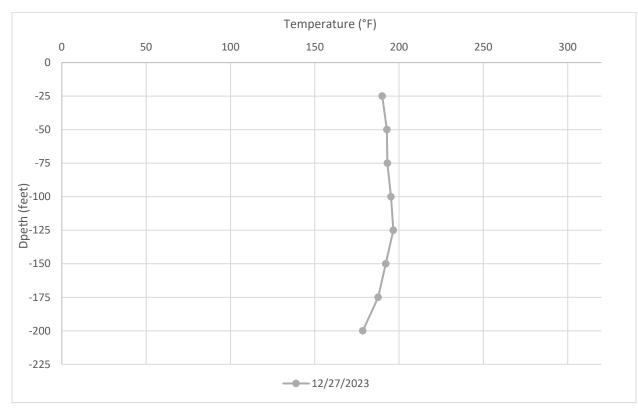



Figure B-31. Average Temperatures Recorded by TP-8 on December 20, 2023

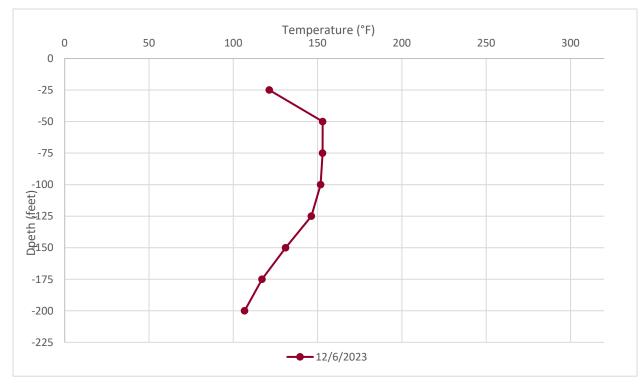
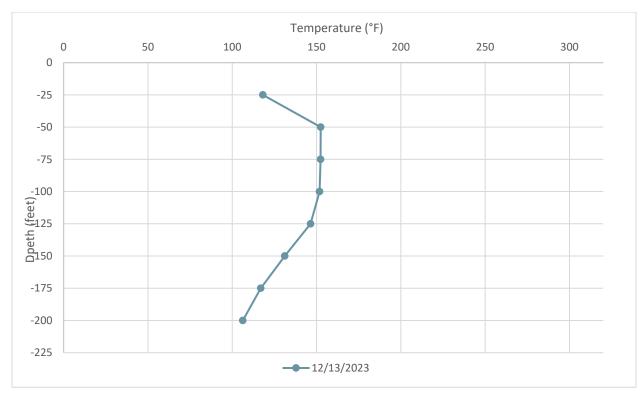



Figure B-33. Average Temperatures Recorded by TP-9 on December 6, 2023

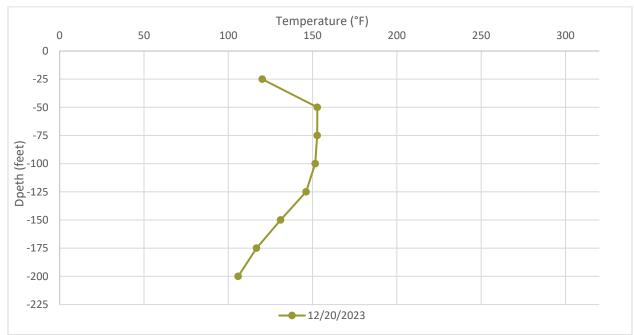
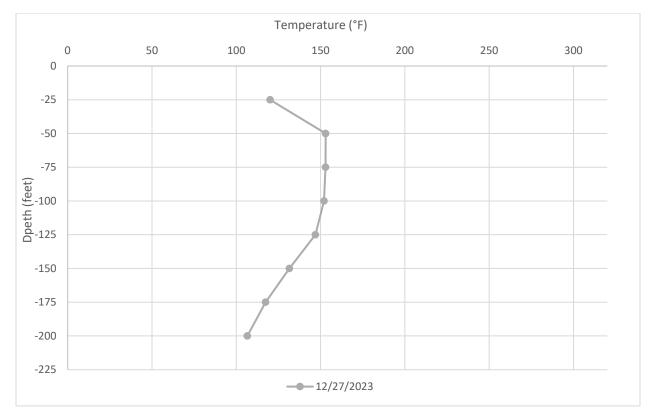



Figure B-35. Average Temperatures Recorded by TP-9 on December 20, 2023

Appendix C

Daily Wellhead Temperature Averages

Solid Waste Permit 588 Daily Wellhead Temperature Averages

The data provided in this report represent initial readings provided by field instrumentation without Validation, analysis, quality assurance review, or context based on operating conditions. This report is subject to revision following quality assurance review and an analysis of operating conditions. SCS will continue to provide a supplemental report with additional information and further analysis on a monthly basis at a minimum.

SCS ENGINEERS

07222143.00 | January 7, 2024

274 Granite Run Drive Lancaster, PA 17601 717-550-6330

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Well 32R

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	111.8	110.2	114.9
Dec 2	112.3	110.2	115.1
Dec 3	111.2	107.5	114.6
Dec 4	109.7	106.5	113.7
Dec 5	111.5	109.4	113.4
Dec 6	107.3	56.9	111.2
Dec 7	111.8	108.2	115.7
Dec 8	113.4	110.0	118.6
Dec 9	114.0	109.5	120.3
Dec 10	112.2	106.6	117.1
Dec 11	107.4	105.3	111.4
Dec 12	109.0	105.5	113.4
Dec 13	110.7	106.9	114.7
Dec 14	112.1	108.2	116.8
Dec 15	114.1	110.1	120.3
Dec 16	114.2	111.1	118.7
Dec 17	116.0	114.0	117.8
Dec 18	96.2	27.1	114.8
Dec 19	79.8	27.1	112.4
Dec 20	106.8	39.8	114.9
Dec 21	81.5	27.1	118.7
Dec 22	114.0	111.3	118.1
Dec 23	113.6	111.2	117.3
Dec 24	114.5	112.2	119.7
Dec 25	114.6	113.0	116.7
Dec 26	111.2	86.7	115.9
Dec 27	113.7	111.7	115.3
Dec 28	112.5	110.8	116.1
Dec 29	110.0	108.2	112.3
Dec 30	83.1	40.6	109.6
Summary	108.3	79.8	116.0

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Well 34

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	45.9	34.7	55.0
Dec 2	52.9	43.6	64.6
Dec 3	56.1	42.6	67.5
Dec 4	42.8	34.3	68.8
Dec 5	40.8	35.6	47.3
Dec 6	40.2	33.1	60.8
Dec 7	38.3	26.3	62.3
Dec 8	44.0	29.3	74.6
Dec 9	49.0	36.5	78.4
Dec 10	48.8	37.5	54.6
Dec 11	36.8	27.1	55.8
Dec 12	35.9	26.3	61.0
Dec 13	38.4	26.3	64.9
Dec 14	39.1	26.3	71.7
Dec 15	40.8	26.3	77.8
Dec 16	44.1	28.0	70.7
Dec 17	47.9	44.7	52.0
Dec 18	39.5	26.3	51.1
Dec 19	32.5	26.3	54.5
Dec 20	35.4	26.3	65.6
Dec 21	36.3	26.3	69.8
Dec 22	31.4	27.7	34.8
Dec 23	0.0	31.4	31.4
Dec 24	0.0	31.4	31.4
Dec 25	0.0	31.4	31.4
Dec 26	0.0	31.4	31.4
Dec 27	0.0	31.4	31.4
Dec 28	0.0	31.4	31.4
Dec 29	0.0	31.4	31.4
Dec 30	0.0	31.4	31.4
Summary	30.6	0.0	56.1

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Well 35

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	50.6	42.5	58.4
Dec 2	56.2	49.3	64.8
Dec 3	58.0	47.8	65.4
Dec 4	47.1	40.3	65.5
Dec 5	46.0	41.5	51.3
Dec 6	41.9	33.3	53.1
Dec 7	41.0	26.7	59.7
Dec 8	48.4	36.1	68.6
Dec 9	52.3	43.2	70.0
Dec 10	50.0	37.7	56.7
Dec 11	37.3	29.5	51.0
Dec 12	36.1	26.5	54.1
Dec 13	38.9	26.5	57.8
Dec 14	39.5	26.8	60.6
Dec 15	41.8	26.5	67.4
Dec 16	45.6	31.7	62.0
Dec 17	48.8	47.0	50.8
Dec 18	40.3	26.5	47.5
Dec 19	32.2	26.5	46.2
Dec 20	34.6	26.5	54.3
Dec 21	36.8	26.5	60.8
Dec 22	44.1	31.3	63.6
Dec 23	44.4	32.3	61.6
Dec 24	50.3	37.0	71.8
Dec 25	53.9	41.5	59.5
Dec 26	54.8	52.0	62.1
Dec 27	49.7	38.2	54.4
Dec 28	43.0	36.2	57.5
Dec 29	37.6	35.3	40.7
Dec 30	37.0	34.9	40.7
Summary	44.6	32.2	58.0

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Well 36A

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	185.6	97.8	194.8
Dec 2	72.7	66.6	89.6
Dec 3	64.4	58.6	71.9
Dec 4	119.5	47.6	196.7
Dec 5	146.3	57.0	195.8
Dec 6	145.6	53.3	194.0
Dec 7	191.6	190.7	192.2
Dec 8	191.1	187.3	192.2
Dec 9	82.4	56.7	190.7
Dec 10	52.8	39.5	61.3
Dec 11	120.6	39.4	195.2
Dec 12	144.0	68.9	192.6
Dec 13	145.2	61.6	190.0
Dec 14	176.2	171.4	183.5
Dec 15	173.6	166.7	178.3
Dec 16	177.6	174.8	179.6
Dec 17	178.3	176.2	179.6
Dec 18	173.4	168.5	176.7
Dec 19	178.7	168.6	182.0
Dec 20	182.9	178.8	184.9
Dec 21	185.2	183.7	187.1
Dec 22	185.9	184.2	186.6
Dec 23	186.0	185.0	186.9
Dec 24	178.0	152.0	186.1
Dec 25	152.2	143.9	165.8
Dec 26	163.8	124.0	176.3
Dec 27	176.0	173.8	177.0
Dec 28	176.5	175.4	177.4
Dec 29	175.4	173.4	176.8
Dec 29 Dec 30	175.4 174.9	173.4 173.2	176.8 176.8

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Well 40

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	46.6	36.3	55.1
Dec 2	53.0	44.6	63.3
Dec 3	55.2	41.4	65.8
Dec 4	42.0	33.7	64.6
Dec 5	40.4	34.7	47.1
Dec 6	39.1	31.4	56.6
Dec 7	36.8	27.0	53.7
Dec 8	42.2	29.4	67.6
Dec 9	48.4	38.8	63.8
Dec 10	47.4	34.8	54.4
Dec 11	33.6	27.0	43.5
Dec 12	33.6	27.0	54.3
Dec 13	36.6	27.0	61.0
Dec 14	38.2	27.0	65.5
Dec 15	40.4	27.0	66.7
Dec 16	45.5	30.0	65.8
Dec 17	48.1	46.4	50.6
Dec 18	39.6	27.0	48.6
Dec 19	29.7	27.0	44.3
Dec 20	33.6	27.0	55.7
Dec 21	34.7	27.0	49.8
Dec 22	31.9	28.3	34.8
Dec 23	0.0	32.1	32.1
Dec 24	0.0	32.1	32.1
Dec 25	0.0	32.1	32.1
Dec 26	0.0	32.1	32.1
Dec 27	0.0	32.1	32.1
Dec 28	0.0	32.1	32.1
Dec 29	0.0	32.1	32.1
Dec 30	0.0	32.1	32.1
Summary	29.9	0.0	55.2

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	48.0	35.6	57.7
	54.7		
Dec 2		46.1	64.4
Dec 3	56.8	44.6	68.9
Dec 4	43.7	34.3	60.6
Dec 5	41.5	35.9	46.7
Dec 6	38.8	32.4	49.1
Dec 7	37.6	26.6	55.0
Dec 8	44.2	30.2	69.7
Dec 9	49.3	37.7	72.7
Dec 10	47.4	34.2	55.0
Dec 11	34.5	26.6	45.0
Dec 12	35.9	26.6	56.9
Dec 13	38.8	26.6	60.9
Dec 14	39.5	27.2	64.0
Dec 15	41.8	26.9	72.0
Dec 16	46.6	30.3	67.7
Dec 17	49.4	47.1	51.6
Dec 18	39.9	26.6	49.6
Dec 19	31.3	26.6	46.2
Dec 20	35.7	26.6	61.6
Dec 21	37.1	26.6	66.2
Dec 22	45.0	29.5	70.0
Dec 23	44.9	31.3	68.8
Dec 24	51.8	35.6	78.1
Dec 25	54.8	41.2	60.7
Dec 26	55.6	52.3	62.8
Dec 27	50.1	39.0	54.2
Dec 28	41.8	35.1	57.5
Dec 29	36.2	33.8	40.0
Dec 30	35.5	33.4	38.6
Summary	43.6	31.3	56.8
-			

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	125.0	116.5	131.1
Dec 2	128.5	120.1	132.9
Dec 3	126.6	120.3	133.5
Dec 4	122.3	109.3	133.0
Dec 5	121.9	114.1	125.3
Dec 6	95.8	56.7	122.3
Dec 7	108.3	65.4	131.5
Dec 8	127.2	118.3	138.7
Dec 9	128.2	118.8	139.7
Dec 10	121.2	103.1	135.1
Dec 11	108.2	85.7	118.9
Dec 12	107.7	29.9	126.0
Dec 13	121.8	105.5	130.8
Dec 14	123.4	114.3	135.1
Dec 15	126.5	113.6	140.5
Dec 16	128.0	123.1	136.7
Dec 17	130.3	122.7	136.0
Dec 18	111.6	93.5	121.8
Dec 19	114.9	97.1	128.4
Dec 20	126.4	108.1	138.5
Dec 21	132.2	126.9	138.8
Dec 22	134.1	129.0	138.3
Dec 23	134.4	130.7	137.1
Dec 24	135.0	130.4	138.9
Dec 25	131.4	126.4	134.9
Dec 26	132.4	124.8	136.1
Dec 27	133.9	129.2	137.1
Dec 28	132.2	127.9	135.0
Dec 29	123.9	108.1	131.8
Dec 30	115.0	106.0	123.4
Summary	123.6	95.8	135.0

Dec 1 119.9 118.8 120.7 Dec 2 120.4 118.9 120.9 Dec 3 119.7 118.9 120.9 Dec 4 118.6 117.0 120.6 Dec 5 117.8 115.4 118.4 Dec 6 107.5 87.1 118.0 Dec 7 106.2 87.6 118.4 Dec 8 116.2 114.5 118.7 Dec 9 116.4 115.2 118.7 Dec 10 114.5 111.3 116.5 Dec 11 110.8 93.3 113.6 Dec 12 108.5 69.2 116.7 Dec 13 115.0 108.9 117.7 Dec 14 116.3 114.8 118.9 Dec 15 117.2 116.0 118.9 Dec 16 117.2 116.0 118.9 Dec 17 117.5 116.5 118.4 Dec 18 115.1 112.1 116.5 Dec 20	Deta			
Dec 2120.4118.9120.5Dec 3119.7118.9120.6Dec 4118.6117.0120.6Dec 5117.8115.4118.4Dec 6107.587.1118.4Dec 7106.287.6118.4Dec 8116.2114.5118.5Dec 9116.4115.2118.7Dec 10114.5111.3116.5Dec 11110.893.3113.6Dec 12108.569.2116.2Dec 13115.0108.9117.7Dec 14116.3114.8118.0Dec 15117.2116.6119.9Dec 16117.2116.5118.4Dec 17117.5116.5118.4Dec 18115.1112.1116.5Dec 19113.6105.9116.4Dec 20114.5108.8117.6Dec 23116.1114.2117.7Dec 24118.2116.4118.7Dec 25117.5116.4118.4Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 29115.0114.1116.1Dec 29115.0114.1116.1Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 3 119.7 118.9 120.6 Dec 4 118.6 117.0 120.6 Dec 5 117.8 115.4 118.4 Dec 6 107.5 87.1 118.6 Dec 7 106.2 87.6 118.4 Dec 8 116.2 114.5 118.5 Dec 9 116.4 115.2 118.5 Dec 10 114.5 111.3 116.5 Dec 11 110.8 93.3 113.6 Dec 12 108.5 69.2 116.2 Dec 13 115.0 108.9 117.7 Dec 14 116.3 114.8 118.0 Dec 15 117.2 115.6 119.9 Dec 16 117.2 116.0 118.9 Dec 17 117.5 116.5 118.4 Dec 18 115.1 112.1 116.5 Dec 20 114.5 108.8 117.6 Dec 21 116.3 112.3 119.9 Dec 22				
Dec 4 118.6 117.0 120.6 Dec 5 117.8 115.4 118.4 Dec 6 107.5 87.1 118.0 Dec 7 106.2 87.6 118.4 Dec 8 116.2 114.5 118.5 Dec 9 116.4 115.2 118.7 Dec 10 114.5 111.3 116.5 Dec 11 110.8 93.3 113.6 Dec 12 108.5 69.2 116.2 Dec 13 115.0 108.9 117.7 Dec 14 116.3 114.8 118.0 Dec 15 117.2 115.6 119.9 Dec 16 117.2 116.0 118.9 Dec 17 117.5 116.5 118.4 Dec 18 115.1 112.1 116.5 Dec 19 113.6 105.9 116.4 Dec 20 114.5 108.8 117.6 Dec 21 116.3 112.3 119.9 Dec 22				
Dec 5117.8115.4118.4Dec 6107.587.1118.0Dec 7106.287.6118.4Dec 8116.2114.5118.5Dec 9116.4115.2118.7Dec 10114.5111.3116.5Dec 11110.893.3113.6Dec 12108.569.2116.2Dec 13115.0108.9117.7Dec 14116.3114.8118.9Dec 15117.2115.6119.9Dec 16117.2116.0118.9Dec 17117.5116.5118.4Dec 18115.1112.1116.5Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 22117.0114.5118.7Dec 23116.1114.2117.7Dec 24118.2116.4118.2Dec 25117.5116.4118.2Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 29115.0114.1116.1Dec 30113.0111.9113.6				
Dec 6107.587.1118.0Dec 7106.287.6118.4Dec 8116.2114.5118.5Dec 9116.4115.2118.7Dec 10114.5111.3116.5Dec 11110.893.3113.6Dec 12108.569.2116.2Dec 13115.0108.9117.7Dec 14116.3114.8118.0Dec 15117.2115.6119.9Dec 16117.2116.0118.9Dec 17117.5116.5118.4Dec 18115.1112.1116.5Dec 20114.5108.8117.4Dec 21116.3112.3119.9Dec 22117.0114.5118.7Dec 23116.1114.2117.7Dec 24118.2116.4118.1Dec 25117.5116.8118.2Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 29115.0114.1116.1Dec 30113.0111.9113.6				
Dec 7106.287.6118.4Dec 8116.2114.5118.5Dec 9116.4115.2118.7Dec 10114.5111.3116.5Dec 11110.893.3113.6Dec 12108.569.2116.2Dec 13115.0108.9117.7Dec 14116.3114.8118.0Dec 15117.2115.6119.9Dec 16117.2116.0118.9Dec 17117.5116.5118.4Dec 18115.1112.1116.5Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 23116.1114.2117.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.4Dec 29115.0114.1116.1Dec 30113.0111.9113.6				
Dec 8116.2114.5118.5Dec 9116.4115.2118.7Dec 10114.5111.3116.5Dec 11110.893.3113.6Dec 12108.569.2116.2Dec 13115.0108.9117.7Dec 14116.3114.8118.0Dec 15117.2115.6119.9Dec 16117.2116.0118.9Dec 17117.5116.5118.4Dec 18115.1112.1116.5Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 23116.1114.2117.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 6	107.5	87.1	118.0
Dec 9116.4115.2118.7Dec 10114.5111.3116.5Dec 11110.893.3113.6Dec 12108.569.2116.2Dec 13115.0108.9117.7Dec 14116.3114.8118.0Dec 15117.2115.6119.9Dec 16117.2116.0118.9Dec 17117.5116.5118.4Dec 18115.1112.1116.5Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 23116.1114.2117.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.6115.3Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 7	106.2	87.6	118.4
Dec 10114.5111.3116.5Dec 11110.893.3113.6Dec 12108.569.2116.2Dec 13115.0108.9117.7Dec 14116.3114.8118.0Dec 15117.2115.6119.9Dec 16117.2116.0118.9Dec 17117.5116.5118.4Dec 18115.1112.1116.5Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 23116.1114.5118.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.4118.1Dec 28116.6115.9118.4Dec 29115.0114.1116.1Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 8	116.2	114.5	118.5
Dec 11110.893.3113.6Dec 12108.569.2116.2Dec 13115.0108.9117.7Dec 14116.3114.8118.0Dec 15117.2115.6119.9Dec 16117.2116.0118.9Dec 17117.5116.5118.4Dec 18115.1112.1116.5Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 23116.1114.5118.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 9	116.4	115.2	118.7
Dec 12108.569.2116.2Dec 13115.0108.9117.7Dec 14116.3114.8118.0Dec 15117.2115.6119.9Dec 16117.2116.0118.9Dec 17117.5116.5118.4Dec 18115.1112.1116.5Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 23116.1114.5118.7Dec 24118.2116.4118.1Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 10	114.5	111.3	116.5
Dec 13115.0108.9117.7Dec 14116.3114.8118.0Dec 15117.2115.6119.9Dec 16117.2116.0118.9Dec 17117.5116.5118.4Dec 18115.1112.1116.5Dec 19113.6105.9116.4Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 22117.0114.5118.7Dec 23116.1114.2117.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 11	110.8	93.3	113.6
Dec 14116.3114.8118.0Dec 15117.2115.6119.9Dec 16117.2116.0118.9Dec 17117.5116.5118.4Dec 18115.1112.1116.5Dec 19113.6105.9116.4Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 22117.0114.5118.7Dec 23116.1114.2117.7Dec 24118.2116.4120.3Dec 25117.5116.4118.4Dec 26117.6115.3118.4Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 12	108.5	69.2	116.2
Dec 15117.2115.6119.9Dec 16117.2116.0118.9Dec 17117.5116.5118.4Dec 18115.1112.1116.5Dec 19113.6105.9116.4Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 22117.0114.5118.7Dec 23116.1114.2117.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.2Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 13	115.0	108.9	117.7
Dec 16117.2116.0118.9Dec 17117.5116.5118.4Dec 18115.1112.1116.5Dec 19113.6105.9116.4Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 22117.0114.5118.7Dec 23116.1114.2117.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 14	116.3	114.8	118.0
Dec 17117.5116.5118.4Dec 18115.1112.1116.5Dec 19113.6105.9116.4Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 22117.0114.5118.7Dec 23116.1114.2117.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 15	117.2	115.6	119.9
Dec 18115.1112.1116.5Dec 19113.6105.9116.4Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 22117.0114.5118.7Dec 23116.1114.2117.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 16	117.2	116.0	118.9
Dec 19113.6105.9116.4Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 22117.0114.5118.7Dec 23116.1114.2117.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 17	117.5	116.5	118.4
Dec 20114.5108.8117.6Dec 21116.3112.3119.9Dec 22117.0114.5118.7Dec 23116.1114.2117.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 18	115.1	112.1	116.5
Dec 21116.3112.3119.9Dec 22117.0114.5118.7Dec 23116.1114.2117.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 19	113.6	105.9	116.4
Dec 22117.0114.5118.7Dec 23116.1114.2117.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 20	114.5	108.8	117.6
Dec 23116.1114.2117.7Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 21	116.3	112.3	119.9
Dec 24118.2116.4120.3Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 22	117.0	114.5	118.7
Dec 25117.5116.4118.1Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 23	116.1	114.2	117.7
Dec 26117.6115.3118.4Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 24	118.2	116.4	120.3
Dec 27117.5116.8118.2Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.6	Dec 25	117.5	116.4	118.1
Dec 28116.6115.9118.0Dec 29115.0114.1116.1Dec 30113.0111.9113.0	Dec 26	117.6	115.3	118.4
Dec 29115.0114.1116.1Dec 30113.0111.9113.0	Dec 27	117.5	116.8	118.2
Dec 30 113.0 111.9 113.6	Dec 28	116.6	115.9	118.0
	Dec 29	115.0	114.1	116.1
Summary 115.6 106.2 120.4	Dec 30	113.0	111.9	113.6
	Summary	115.6	106.2	120.4

Data			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	46.8	37.1	55.3
Dec 2	53.0	45.1	61.1
Dec 3	54.9	43.6	63.2
Dec 4	41.9	33.6	55.1
Dec 5	40.0	36.0	45.4
Dec 6	37.7	32.3	44.6
Dec 7	36.6	26.0	54.6
Dec 8	42.9	29.9	66.3
Dec 9	48.2	37.3	65.7
Dec 10	46.6	33.5	54.0
Dec 11	33.4	26.0	44.5
Dec 12	34.0	25.9	51.3
Dec 13	37.4	25.9	54.1
Dec 14	38.0	26.7	58.6
Dec 15	40.0	26.3	66.7
Dec 16	45.1	30.2	61.3
Dec 17	48.9	47.5	51.2
Dec 18	38.8	26.0	47.6
Dec 19	29.2	26.0	38.9
Dec 20	33.1	25.9	51.5
Dec 21	34.8	26.0	56.3
Dec 22	42.7	29.2	60.4
Dec 23	43.5	31.3	61.1
Dec 24	49.7	35.3	67.7
Dec 25	54.7	41.2	59.6
Dec 26	55.0	51.9	59.6
Dec 27	49.0	36.5	54.3
Dec 28	40.6	34.9	49.6
Dec 29	35.4	33.2	39.3
Dec 30	35.1	33.0	37.1
Summary	42.2	29.2	55.0
-			

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	142.5	136.0	146.3
Dec 2	142.5	135.5	146.2
Dec 3	142.3	140.5	140.2
Dec 3			
	151.5	133.8	174.6
Dec 5	152.7	146.1	174.0
Dec 6	139.8	128.9	147.5
Dec 7	139.1	131.9	144.3
Dec 8	141.9	140.3	144.4
Dec 9	142.2	139.9	145.5
Dec 10	141.3	137.7	143.8
Dec 11	151.9	129.1	177.3
Dec 12	149.5	138.3	158.7
Dec 13	147.6	140.0	167.0
Dec 14	147.4	141.7	167.7
Dec 15	155.9	142.2	177.6
Dec 16	148.0	145.2	149.9
Dec 17	145.6	143.6	146.5
Dec 18	153.9	140.7	175.6
Dec 19	145.2	142.9	146.8
Dec 20	142.8	138.2	145.4
Dec 21	157.2	140.0	181.1
Dec 22	149.0	146.3	151.0
Dec 23	145.6	144.4	147.3
Dec 24	144.6	142.5	146.5
Dec 25	142.7	141.8	143.7
Dec 26	155.3	140.7	178.9
Dec 27	157.1	148.4	179.5
Dec 28	146.6	144.7	148.0
Dec 29	158.8	143.3	178.4
Dec 30	152.5	147.0	172.9
Summary	147.8	139.1	158.8

_	_		· · · · · · · · · · · · · · · · · ·
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	114.0	101.6	122.2
Dec 2	116.9	112.2	122.5
Dec 3	109.4	99.3	116.7
Dec 4	93.6	76.1	120.4
Dec 5	92.3	74.3	106.1
Dec 6	91.0	74.4	104.4
Dec 7	97.3	72.8	115.0
Dec 8	97.2	70.6	123.5
Dec 9	106.3	86.9	125.1
Dec 10	94.8	67.7	110.7
Dec 11	76.1	60.6	100.8
Dec 12	90.8	72.2	110.2
Dec 13	130.3	84.8	187.3
Dec 14	169.8	131.6	192.2
Dec 15	129.4	106.1	176.1
Dec 16	108.1	97.7	121.5
Dec 17	104.4	98.0	110.9
Dec 18	140.2	92.2	188.1
Dec 19	180.4	142.2	193.8
Dec 20	146.2	116.9	193.6
Dec 21	156.8	109.9	194.4
Dec 22	139.2	127.2	150.9
Dec 23	125.6	117.7	134.7
Dec 24	124.1	115.6	137.4
Dec 25	117.8	113.1	120.4
Dec 26	141.5	109.5	189.4
Dec 27	168.0	136.5	192.8
Dec 28	129.4	122.7	135.2
Dec 29	129.6	110.7	180.3
Dec 30	67.7	62.6	107.8
Summary	119.6	67.7	180.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	46.2	34.8	55.2
Dec 2	52.9	44.7	62.6
Dec 3	55.8	43.4	67.3
Dec 4	43.3	33.5	61.4
Dec 5	40.2	35.0	46.0
Dec 6	38.9	32.9	48.5
Dec 7	38.5	27.4	59.5
Dec 8	44.5	30.0	74.3
Dec 9	48.7	37.3	75.6
Dec 10	46.7	34.2	53.8
Dec 11	37.2	32.2	52.6
Dec 12	38.7	27.4	57.9
Dec 13	42.6	31.3	62.6
Dec 14	42.7	32.4	64.4
Dec 15	44.1	31.8	75.1
Dec 16	45.3	29.8	67.2
Dec 17	48.6	46.6	50.4
Dec 18	39.8	27.4	47.7
Dec 19	32.5	27.4	48.8
Dec 20	35.5	27.4	61.7
Dec 21	36.6	27.4	66.1
Dec 22	43.6	29.4	72.3
Dec 23	43.9	31.0	71.4
Dec 24	50.8	35.4	78.4
Dec 25	54.0	40.6	59.9
Dec 26	54.7	51.6	62.5
Dec 27	49.1	36.9	53.1
Dec 28	41.8	34.7	58.3
Dec 29	35.5	33.3	39.2
Dec 30	34.9	32.8	37.7
Summary	43.6	32.5	55.8

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	123.6	116.6	129.8
Dec 2	127.1	120.1	131.6
Dec 3	123.9	117.1	129.8
Dec 4	121.8	115.7	130.5
Dec 5	120.7	116.1	125.8
Dec 6	103.8	71.8	120.5
Dec 7	109.0	85.9	127.4
Dec 8	126.6	118.9	138.3
Dec 9	129.1	123.4	136.5
Dec 10	124.0	111.4	134.5
Dec 11	116.7	85.0	132.1
Dec 12	120.9	71.3	138.3
Dec 13	123.9	115.4	131.4
Dec 14	121.7	116.9	130.6
Dec 15	122.9	112.4	134.3
Dec 16	120.4	116.4	130.7
Dec 17	122.4	114.6	126.4
Dec 18	102.9	90.2	112.0
Dec 19	105.8	89.4	118.0
Dec 20	114.0	102.5	125.7
Dec 21	114.9	105.0	127.0
Dec 22	117.2	108.4	124.4
Dec 23	117.6	112.7	126.4
Dec 24	120.2	114.6	128.5
Dec 25	116.4	111.4	121.3
Dec 26	119.8	113.7	124.6
Dec 27	119.2	113.9	124.3
Dec 28	118.5	111.1	121.7
Dec 29	110.9	103.3	118.4
Dec 30	106.3	99.8	110.9
Summary	118.1	102.9	129.1

Data	Avorago (°E)	Minimum (°E)	Maximum (°E)
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	108.9	102.1	114.3
Dec 2	111.8	109.4	115.0
Dec 3	112.6	106.9	116.2
Dec 4	102.1	91.6	108.3
Dec 5	99.8	95.5	102.5
Dec 6	90.2	81.1	98.6
Dec 7	91.1	77.4	99.8
Dec 8	99.2	94.9	102.0
Dec 9	101.3	92.8	108.1
Dec 10	98.1	88.7	105.6
Dec 11	88.1	80.8	91.1
Dec 12	88.8	69.6	98.3
Dec 13	95.2	88.1	99.6
Dec 14	93.6	85.5	98.0
Dec 15	96.8	92.9	101.2
Dec 16	98.5	90.7	105.0
Dec 17	101.6	95.8	106.7
Dec 18	92.4	79.0	99.8
Dec 19	82.3	75.8	87.1
Dec 20	84.7	78.1	90.7
Dec 21	84.9	75.1	93.4
Dec 22	91.8	85.5	99.1
Dec 23	93.2	87.0	100.8
Dec 24	95.3	90.3	100.2
Dec 25	96.7	93.3	98.7
Dec 26	96.5	90.6	101.7
Dec 27	98.2	94.2	100.8
Dec 28	93.8	91.4	95.9
Dec 29	88.7	85.9	93.4
Dec 30	85.3	83.8	87.1
Summary	95.4	82.3	112.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	151.2	136.0	175.8
Dec 2	149.5	145.8	153.7
Dec 3	167.1	128.3	176.5
Dec 4	147.0	114.3	176.2
Dec 5	125.7	115.6	133.0
Dec 6	118.0	110.2	123.5
Dec 7	128.3	117.4	138.3
Dec 8	135.0	128.0	147.7
Dec 9	137.7	129.5	147.4
Dec 10	135.8	126.4	142.7
Dec 11	124.5	116.6	141.2
Dec 12	129.1	109.9	143.6
Dec 13	138.9	131.4	147.1
Dec 14	139.5	134.6	144.7
Dec 15	142.6	135.7	152.1
Dec 16	143.4	134.5	151.8
Dec 17	144.9	140.2	149.9
Dec 18	135.7	125.3	143.1
Dec 19	133.3	121.9	145.6
Dec 20	139.5	127.4	150.9
Dec 21	141.5	136.4	149.7
Dec 22	144.5	137.4	152.0
Dec 23	143.1	137.9	149.2
Dec 24	145.6	140.0	154.2
Dec 25	144.4	143.1	146.1
Dec 26	144.0	137.4	147.3
Dec 27	145.1	141.1	148.2
Dec 28	143.4	140.4	147.2
Dec 29	139.5	136.1	142.2
Dec 30	136.5	134.6	138.0
Summary	139.8	118.0	167.1

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	79.3	72.5	85.2
Dec 2	82.9	77.2	88.4
Dec 3	83.4	79.7	87.7
Dec 4	75.5	67.9	90.6
Dec 5	74.7	70.9	79.2
Dec 6	63.2	41.4	78.8
Dec 7	58.2	32.7	77.6
Dec 8	74.7	65.5	88.9
Dec 9	79.5	71.6	91.2
Dec 10	76.1	66.3	82.6
Dec 11	65.5	59.3	71.0
Dec 12	63.7	30.5	80.7
Dec 13	71.8	61.8	81.6
Dec 14	72.1	63.0	82.6
Dec 15	73.7	63.2	88.7
Dec 16	76.7	64.9	88.5
Dec 17	78.5	74.9	81.1
Dec 18	67.7	56.9	74.4
Dec 19	62.1	52.7	72.3
Dec 20	67.2	53.2	83.6
Dec 21	69.8	61.5	80.6
Dec 22	74.7	63.2	86.9
Dec 23	74.5	66.0	84.4
Dec 24	78.7	71.4	92.3
Dec 25	80.2	73.0	83.4
Dec 26	80.3	75.3	83.8
Dec 27	76.9	68.2	81.7
Dec 28	73.5	69.2	78.7
Dec 29	67.9	65.0	71.2
Dec 30	66.0	64.7	67.8
Summary	73.0	58.2	83.4

Data			
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	119.2	118.4	120.1
Dec 2	119.6	118.2	121.9
Dec 3	120.1	119.0	121.8
Dec 4	119.7	118.3	121.0
Dec 5	119.5	119.0	120.1
Dec 6	112.6	96.2	119.2
Dec 7	113.1	99.9	127.8
Dec 8	117.6	116.2	120.0
Dec 9	118.8	117.3	120.0
Dec 10	118.4	117.0	119.4
Dec 11	116.8	113.3	118.3
Dec 12	115.1	88.2	122.1
Dec 13	117.4	115.6	119.7
Dec 14	116.9	116.2	117.8
Dec 15	117.4	116.3	119.4
Dec 16	117.5	115.9	118.3
Dec 17	118.0	117.5	118.3
Dec 18	116.7	114.8	120.0
Dec 19	115.4	113.7	116.6
Dec 20	116.0	114.1	117.2
Dec 21	115.8	103.3	117.3
Dec 22	116.6	115.9	117.4
Dec 23	116.6	115.8	117.5
Dec 24	116.8	116.0	117.4
Dec 25	116.9	116.3	117.1
Dec 26	116.9	116.3	117.6
Dec 27	116.8	116.1	117.3
Dec 28	116.2	115.7	116.5
Dec 29	115.5	115.0	116.4
Dec 30	114.9	114.5	115.2
Summary	117.0	112.6	120.1
,			

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	115.0	113.0	117.3
Dec 2	116.2	113.5	117.8
Dec 3	115.3	114.3	117.0
Dec 4	113.6	112.1	117.0
Dec 5	112.4	109.0	113.8
Dec 6	98.4	72.5	112.8
Dec 7	96.8	71.4	114.1
Dec 8	111.9	109.2	115.8
Dec 9	113.1	110.7	117.4
Dec 10	110.9	106.8	114.6
Dec 11	105.9	96.5	109.8
Dec 12	99.9	55.7	109.7
Dec 13	105.1	97.8	111.2
Dec 14	104.6	100.7	108.9
Dec 15	105.8	101.7	112.4
Dec 16	105.2	102.4	109.5
Dec 17	106.1	103.4	108.5
Dec 18	99.8	92.9	104.1
Dec 19	96.7	82.7	104.1
Dec 20	101.1	89.1	107.7
Dec 21	102.2	90.5	108.9
Dec 22	104.1	100.6	109.1
Dec 23	103.8	100.2	109.7
Dec 24	105.3	101.6	110.4
Dec 25	104.6	102.3	106.7
Dec 26	105.4	102.0	110.9
Dec 27	104.5	100.3	107.1
Dec 28	103.5	100.4	107.1
Dec 29	100.5	97.1	103.3
Dec 30	98.6	95.9	99.9
Summary	105.5	96.7	116.2

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	126.0	125.0	126.9
Dec 2	126.5	124.8	127.2
Dec 3	126.1	125.2	126.9
Dec 4	125.0	122.2	127.4
Dec 5	124.9	123.6	125.7
Dec 6	123.6	121.1	125.2
Dec 7	124.4	122.6	126.3
Dec 8	125.4	123.6	128.1
Dec 9	125.6	122.7	128.5
Dec 10	124.2	121.9	126.3
Dec 11	122.5	121.6	124.2
Dec 12	122.6	118.7	125.0
Dec 13	123.0	121.5	124.6
Dec 14	123.0	117.1	125.5
Dec 15	124.0	121.8	127.1
Dec 16	123.8	122.4	125.8
Dec 17	124.3	122.6	125.5
Dec 18	108.1	43.5	123.9
Dec 19	90.3	33.8	121.8
Dec 20	115.1	50.8	123.3
Dec 21	88.4	30.4	125.6
Dec 22	121.8	119.3	125.4
Dec 23	121.6	119.3	124.7
Dec 24	122.0	119.8	125.5
Dec 25	120.5	119.5	122.4
Dec 26	112.8	83.0	120.9
Dec 27	117.9	114.2	120.4
Dec 28	118.4	117.0	121.0
Dec 29	115.4	113.0	117.0
Dec 30	85.3	40.1	113.4
Summary	118.4	85.3	126.5

		, ,	
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	127.3	125.7	128.9
Dec 2	128.8	125.1	130.5
Dec 3	127.7	125.8	129.1
Dec 4	125.6	118.0	129.7
Dec 5	125.4	123.1	126.8
Dec 6	120.6	97.9	125.2
Dec 7	123.5	119.6	127.2
Dec 8	125.6	121.0	131.4
Dec 9	126.2	121.6	132.6
Dec 10	124.2	119.9	127.7
Dec 11	121.7	119.4	126.7
Dec 12	122.5	118.7	126.7
Dec 13	123.0	120.1	127.2
Dec 14	122.1	104.1	127.9
Dec 15	124.8	120.4	130.4
Dec 16	123.7	121.7	128.9
Dec 17	124.2	120.6	125.7
Dec 18	102.6	26.6	121.9
Dec 19	78.9	26.6	116.3
Dec 20	103.5	34.6	116.7
Dec 21	75.9	26.6	121.9
Dec 22	101.8	91.9	112.6
Dec 23	91.9	82.8	103.1
Dec 24	94.7	85.3	113.1
Dec 25	87.7	83.5	90.5
Dec 26	80.6	59.0	90.8
Dec 27	85.0	79.1	88.7
Dec 28	83.3	78.9	93.6
Dec 29	73.9	68.3	78.2
Dec 30	54.2	35.8	68.7
Summary	107.7	54.2	128.8

Date		Minimum (°E)	Maximum (°E)
	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	132.2	130.2	133.8
Dec 2	133.7	130.7	134.5
Dec 3	132.5	131.2	133.4
Dec 4	131.0	126.7	132.9
Dec 5	130.2	127.1	131.7
Dec 6	126.9	124.1	130.3
Dec 7	127.9	124.7	131.2
Dec 8	130.7	128.3	133.3
Dec 9	131.3	128.0	134.7
Dec 10	130.1	126.5	133.2
Dec 11	127.4	126.2	128.8
Dec 12	128.4	126.1	131.5
Dec 13	128.7	127.0	131.4
Dec 14	128.6	124.6	132.1
Dec 15	130.7	127.7	134.3
Dec 16	130.6	129.1	133.0
Dec 17	131.1	129.2	132.5
Dec 18	112.5	42.8	129.1
Dec 19	87.4	39.4	124.4
Dec 20	112.5	55.5	120.3
Dec 21	85.4	34.1	124.2
Dec 22	120.4	116.0	125.0
Dec 23	120.8	117.6	124.0
Dec 24	122.1	118.9	126.3
Dec 25	120.0	118.0	122.1
Dec 26	116.1	92.6	121.5
Dec 27	119.2	115.9	121.2
Dec 28	117.3	114.9	119.6
Dec 29	113.2	110.2	114.8
Dec 30	89.3	56.9	112.4
Summary	121.6	85.4	133.7

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	149.2	148.6	149.7
Dec 1	63.1	45.7	148.7
Dec 2 Dec 3	56.1	43.7	65.0
Dec 3	109.2	34.2	
			156.5
Dec 5	132.4	41.7	154.7
Dec 6	133.4	37.4	152.1
Dec 7	147.6	146.5	148.4
Dec 8	147.3	145.9	149.1
Dec 9	100.9	48.2	147.1
Dec 10	47.5	34.9	54.7
Dec 11	100.9	32.4	154.2
Dec 12	111.9	26.5	154.3
Dec 13	116.2	26.5	152.9
Dec 14	147.4	146.3	148.6
Dec 15	146.6	144.7	148.6
Dec 16	145.8	144.6	147.1
Dec 17	145.5	143.7	146.5
Dec 18	141.0	136.6	143.7
Dec 19	138.8	130.7	143.2
Dec 20	141.0	132.3	144.8
Dec 21	141.9	130.9	146.4
Dec 22	143.2	140.3	145.9
Dec 23	142.6	140.4	145.0
Dec 24	143.0	141.2	145.9
Dec 25	140.4	138.4	143.0
Dec 26	140.8	134.8	143.0
Dec 27	140.6	137.1	143.5
Dec 28	139.0	137.0	140.7
Dec 29	135.9	132.4	138.2
Dec 30	132.8	130.9	134.2
Summary	127.4	47.5	149.2

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	138.2	133.4	140.6
Dec 2	139.5	135.7	141.2
Dec 3	138.6	135.4	141.2
Dec 4	136.6	130.7	141.7
Dec 5	136.8	134.6	139.5
Dec 6	118.6	82.9	137.2
Dec 7	115.6	85.9	137.4
Dec 8	134.9	128.5	140.3
Dec 9	137.9	134.4	142.2
Dec 10	135.2	129.2	140.2
Dec 11	129.1	113.2	133.2
Dec 12	127.3	76.5	141.1
Dec 13	136.3	124.4	142.2
Dec 14	135.8	132.0	140.6
Dec 15	136.8	132.1	142.0
Dec 16	137.0	131.5	141.8
Dec 17	138.5	134.2	141.6
Dec 18	130.1	123.6	134.7
Dec 19	130.0	117.0	138.0
Dec 20	134.7	122.5	141.5
Dec 21	136.0	119.0	140.8
Dec 22	138.1	133.6	141.5
Dec 23	137.9	133.6	142.7
Dec 24	139.5	134.7	144.4
Dec 25	137.1	133.7	139.9
Dec 26	138.5	134.4	141.2
Dec 27	138.6	135.3	141.6
Dec 28	138.0	134.5	139.7
Dec 29	135.3	131.3	138.7
Dec 30	133.0	127.7	134.6
Summary	134.7	115.6	139.5

Data		Minimum (°E)	Maximum (°E)
Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	126.2	110.4	135.9
Dec 2	128.9	123.6	134.2
Dec 3	128.3	123.8	132.2
Dec 4	121.5	104.9	133.4
Dec 5	122.4	115.6	129.0
Dec 6	105.0	88.7	120.7
Dec 7	114.8	102.8	127.4
Dec 8	123.4	111.2	140.3
Dec 9	126.8	110.4	142.2
Dec 10	120.8	100.6	136.0
Dec 11	106.4	87.2	124.9
Dec 12	113.6	97.0	128.8
Dec 13	117.0	105.3	129.6
Dec 14	115.6	98.9	129.8
Dec 15	121.7	105.5	139.8
Dec 16	120.7	104.4	132.3
Dec 17	122.4	112.4	136.0
Dec 18	106.0	84.5	115.8
Dec 19	103.7	87.0	121.1
Dec 20	112.9	96.7	131.2
Dec 21	118.2	105.0	136.5
Dec 22	124.9	111.4	136.8
Dec 23	124.2	113.7	133.1
Dec 24	127.1	119.0	138.5
Dec 25	119.8	115.8	126.2
Dec 26	117.7	100.8	127.7
Dec 27	124.9	117.3	130.4
Dec 28	121.8	114.7	125.9
Dec 29	113.0	101.5	120.7
Dec 30	108.1	99.2	113.3
Summary	118.6	103.7	128.9
e anninar y			.20.9

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Dec 1	129.6	128.2	130.7
Dec 2	128.0	126.4	128.9
Dec 3	127.0	126.1	127.8
Dec 4	125.9	121.2	127.8
Dec 5	132.9	125.5	141.2
Dec 6	135.6	128.1	141.1
Dec 7	130.5	121.9	139.0
Dec 8	130.1	128.6	132.0
Dec 9	128.4	126.8	130.4
Dec 10	126.0	120.7	128.8
Dec 11	124.1	105.0	135.8
Dec 12	123.7	98.0	131.8
Dec 13	125.7	118.9	127.8
Dec 14	129.1	123.5	136.0
Dec 15	131.3	126.0	139.8
Dec 16	128.0	123.0	129.8
Dec 17	126.7	125.1	127.8
Dec 18	123.8	121.2	128.4
Dec 19	122.4	113.8	125.8
Dec 20	122.9	106.3	127.4
Dec 21	124.7	112.7	126.7
Dec 22	125.4	124.1	126.7
Dec 23	124.9	123.5	126.2
Dec 24	125.4	124.2	126.9
Dec 25	124.7	124.2	125.3
Dec 26	124.6	122.9	127.2
Dec 27	124.4	123.7	125.1
Dec 28	124.0	123.3	124.8
Dec 29	123.2	122.2	124.4
Dec 30	122.3	121.5	123.3
Summary	126.5	122.3	135.6

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

Appendix D Table of Contents

Section

Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 1	D-3
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 2	D-4
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 3	D-5
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 4	D-6
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 5	D-7
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 6	D-8
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 7	D-9
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 8	D-10
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 9	D-11

			Depth fro	m Surface		
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft
1-Dec	165.4	225.2	225.7	249.9	262.9	270.4
2-Dec	165.7	225.6	226.1	250.3	262.8	270.7
3-Dec	165.8	226.1	226.5	250.3	262.3	270.8
4-Dec	165.4	226.8	227.3	250.1	261.7	270.6
5-Dec	165.3	227.4	227.8	249.5	260.9	270.2
6-Dec	165.3	228.1	228.5	249.4	260.8	270.3
7-Dec	165.4	228.3	228.8	249.2	260.8	270.3
8-Dec	165.6	228.4	228.8	249.1	260.5	270.6
9-Dec	165.6	228.9	229.4	249.3	260.6	270.4
10-Dec	165.6	228.3	228.8	248.5	260.1	270.2
11-Dec	165.3	228.0	228.4	248.1	259.5	269.9
12-Dec	165.4	228.2	228.6	248.3	259.8	270.2
13-Dec	165.5	228.7	229.2	248.5	259.6	270.4
14-Dec	165.5	228.8	229.2	248.4	259.3	270.1
15-Dec	165.6	228.8	229.3	248.3	259.5	270.2
16-Dec	165.6	228.8	229.2	248.2	259.3	270.2
17-Dec	165.6	228.8	229.1	248.1	259.3	270.1
18-Dec	165.4	228.9	229.3	248.1	259.0	269.8
19-Dec	165.3	228.9	229.4	248.3	259.1	269.9
20-Dec	165.4	229.1	229.5	248.4	258.9	269.7
21-Dec	165.3	229.3	229.6	248.4	258.8	269.4
22-Dec	165.6	229.4	229.8	248.5	259.0	269.7
23-Dec	165.5	228.7	229.2	248.0	258.9	269.6
24-Dec	165.8	228.1	228.7	248.4	259.6	270.1
25-Dec	165.7	227.6	228.0	248.1	259.6	269.7
26-Dec	165.9	226.9	227.3	248.0	259.8	269.8
27-Dec	165.7	226.2	226.6	247.8	259.7	269.5
28-Dec	165.6	225.9	226.3	247.6	259.8	269.5
29-Dec	165.2	225.2	225.7	247.1	259.4	269.1
30-Dec	165.3	225.0	225.5	247.4	259.8	269.1
31-Dec	165.5	225.7	226.1	247.6	259.6	269.4
Average	165.5	227.7	228.1	248.6	260.0	270.0

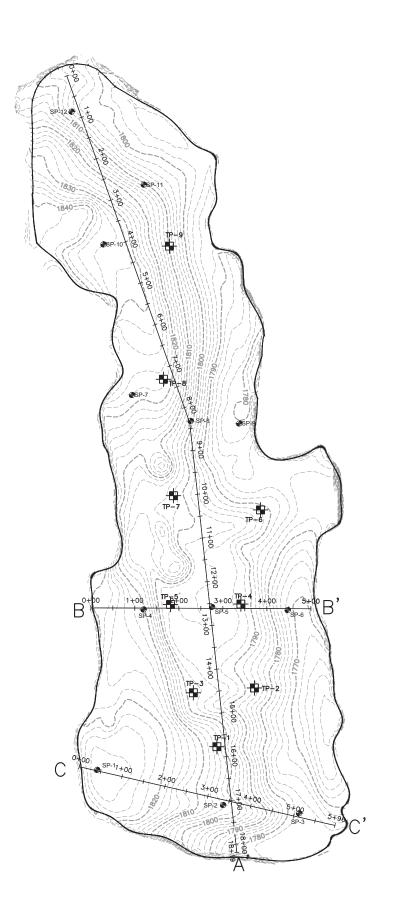
		Depth from Surface					
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	
1-Dec	161.5	236.4	236.8	264.1	251.7	263.2	
2-Dec	162.1	236.5	236.9	264.2	252.1	263.3	
3-Dec	162.3	236.3	236.8	264.1	251.9	263.5	
4-Dec	163.4	236.1	236.6	264.0	252.1	263.1	
5-Dec	161.8	236.0	236.4	263.7	251.5	262.9	
6-Dec	162.4	236.2	236.6	263.8	251.8	263.0	
7-Dec	161.7	236.1	236.7	263.7	251.5	263.0	
8-Dec	161.7	236.2	236.7	263.8	251.6	263.2	
9-Dec	161.7	236.2	236.6	263.8	251.6	263.1	
10-Dec	162.1	235.9	236.3	263.5	251.2	262.9	
11-Dec	162.1	235.9	236.4	263.4	251.6	262.9	
12-Dec	163.5	236.3	236.8	263.8	252.4	262.9	
13-Dec	161.9	236.5	237.0	263.5	251.2	262.9	
14-Dec	161.4	236.5	236.9	263.4	251.0	262.9	
15-Dec	161.1	236.3	236.8	263.5	251.1	263.0	
16-Dec	161.1	236.2	236.6	263.6	251.2	262.9	
17-Dec	161.5	235.7	236.1	263.4	250.8	262.8	
18-Dec	163.4	235.3	235.7	263.2	250.7	262.6	
19-Dec	162.1	235.7	236.2	263.2	250.6	262.6	
20-Dec	161.6	235.9	236.4	263.3	250.8	262.6	
21-Dec	161.3	235.9	236.3	263.3	250.8	262.6	
22-Dec	161.9	235.8	236.3	263.3	250.6	262.7	
23-Dec	162.7	235.9	236.3	263.2	250.6	262.6	
24-Dec	163.9	235.9	236.4	263.4	250.8	262.8	
25-Dec	166.6	235.7	236.2	263.3	250.6	262.7	
26-Dec	172.0	235.7	236.1	263.4	250.6	262.7	
27-Dec	181.0	235.3	235.8	263.2	250.7	262.5	
28-Dec	187.7	234.9	235.3	263.1	250.4	262.4	
29-Dec	193.8	234.6	235.0	262.8	250.0	262.1	
30-Dec	192.9	234.7	235.1	262.8	250.0	262.1	
31-Dec	192.6	234.9	235.3	263.1	250.3	262.3	
Average	167.0	235.9	236.3	263.5	251.1	262.8	

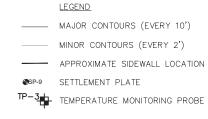
[Depth from Surface							
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Dec	197.1	237.4	237.4	252.3	258.7	267.2	269.1	255.0
2-Dec	198.2	237.5	237.7	252.5	258.9	267.5	269.3	255.2
3-Dec	197.6	237.7	237.7	252.7	259.0	267.5	269.4	255.4
4-Dec	198.3	237.3	237.4	252.3	258.5	267.1	269.1	255.1
5-Dec	199.2	236.9	237.0	252.1	258.2	266.8	268.8	254.8
6-Dec	200.0	236.9	237.0	252.1	258.3	266.9	269.0	255.0
7-Dec	200.9	237.1	237.2	252.3	258.5	267.1	269.3	255.3
8-Dec	201.3	237.3	237.5	252.5	258.6	267.3	269.5	255.5
9-Dec	201.4	237.3	237.3	252.2	258.4	266.9	269.2	255.2
10-Dec	201.1	237.0	237.1	252.0	258.1	266.7	268.9	255.0
11-Dec	200.6	236.8	236.9	251.8	257.8	266.4	268.8	254.8
12-Dec	201.1	237.2	237.3	252.1	258.2	266.8	269.2	255.3
13-Dec	201.2	237.3	237.4	252.1	258.2	266.8	269.3	255.4
14-Dec	201.5	237.2	237.2	251.6	258.1	266.7	269.2	255.3
15-Dec	201.5	237.0	237.0	251.6	258.1	266.7	269.2	255.4
16-Dec	201.6	236.9	237.0	251.5	257.9	266.6	269.1	255.2
17-Dec	201.8	236.8	236.8	251.5	257.8	266.4	268.9	255.0
18-Dec	201.8	236.5	236.6	251.1	257.4	266.1	268.7	254.8
19-Dec	201.9	236.5	236.6	250.9	257.5	266.2	268.9	255.1
20-Dec	202.6	236.4	236.5	250.8	257.6	266.3	269.0	255.1
21-Dec	202.6	236.3	236.4	250.6	257.4	266.0	268.8	254.9
22-Dec	203.1	236.6	236.7	250.9	257.7	266.3	269.1	255.3
23-Dec	202.8	236.6	236.7	251.0	257.5	266.1	269.0	255.2
24-Dec	202.5	236.9	237.0	251.3	257.7	266.3	269.2	255.5
25-Dec	201.8	236.8	236.9	251.2	257.5	266.1	269.0	255.1
26-Dec	199.4	237.0	237.0	251.2	257.5	266.0	268.9	255.1
27-Dec	199.5	236.6	236.6	250.6	257.1	265.6	268.8	255.0
28-Dec	199.8	236.2	236.2	250.3	256.9	265.4	268.6	254.9
29-Dec	199.4	235.9	236.0	250.1	256.6	265.0	268.4	254.6
30-Dec	199.2	235.9	236.0	250.1	256.5	264.9	268.3	254.6
31-Dec	200.1	236.4	236.4	250.1	256.8	265.2	268.6	255.0
Average	200.7	236.8	236.9	251.5	257.8	266.4	269.0	255.1

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft		
1-Dec	206.4	206.2	206.4	206.3	232.6	254.0	244.7	178.5		
2-Dec	206.6	206.4	206.6	206.5	235.5	254.4	244.9	178.8		
3-Dec	206.7	206.5	206.6	206.5	234.0	254.8	245.4	179.5		
4-Dec	206.5	206.4	206.5	206.4	230.5	253.9	245.2	179.4		
5-Dec	206.5	206.2	206.4	206.3	228.1	252.4	244.8	179.0		
6-Dec	206.8	206.6	206.7	206.5	227.7	252.3	245.0	179.3		
7-Dec	206.8	206.5	206.8	206.7	226.2	251.9	245.1	179.3		
8-Dec	206.5	206.3	206.5	206.5	228.8	251.2	244.9	179.3		
9-Dec	205.8	206.8	207.3	212.9	222.7	611.9	241.4	162.8		
10-Dec	205.8	206.1	205.0	204.4	226.1	227.5	236.2	175.9		
11-Dec	193.5	213.8	213.4	231.1	230.9	204.2	243.6	174.4		
12-Dec	156.8	228.2	228.8	250.2	292.4	222.3	244.6	175.1		
13-Dec	162.6	228.7	228.8	250.3	285.3	233.7	244.9	175.9		
14-Dec	173.4	228.2	228.5	250.1	280.1	240.6	245.0	176.1		
15-Dec	181.6	229.3	229.6	249.9	275.4	247.4	245.3	176.0		
16-Dec	187.0	229.7	230.3	249.6	272.3	251.1	245.0	176.8		
17-Dec	187.5	229.4	229.8	248.9	271.3	253.0	244.8	176.5		
18-Dec	186.0	228.1	228.4	249.6	270.6	252.5	244.8	177.0		
19-Dec	185.9	228.5	229.0	249.1	269.7	254.1	245.1	177.6		
20-Dec	188.1	229.4	229.8	249.2	267.7	256.1	245.0	178.2		
21-Dec	189.6	229.2	229.6	249.4	263.9	258.8	244.9	177.5		
22-Dec	191.8	229.2	229.7	249.5	263.6	259.4	245.2	177.4		
23-Dec	193.4	229.7	230.3	249.6	262.4	260.7	245.1	177.1		
24-Dec	195.1	229.1	229.6	249.6	262.6	260.6	245.4	176.4		
25-Dec	194.7	228.8	229.3	249.4	262.3	260.7	245.2	175.6		
26-Dec	194.1	229.3	221.2	249.3	263.9	262.5	245.2	175.9		
27-Dec	195.2	227.8	228.3	249.3	261.8	260.6	245.0	175.0		
28-Dec	193.7	228.8	229.3	249.2	261.8	260.4	245.1	175.2		
29-Dec	193.0	227.9	228.3	248.4	261.8	250.2	244.7	173.9		
30-Dec	191.1	227.5	227.9	248.6	261.3	237.0	244.6	174.7		
31-Dec	190.9	228.7	229.2	249.1	261.4	237.9	245.1	175.2		
Average	193.2	221.1	221.1	235.1	254.7	260.9	244.6	176.4		

]	Depth from Surface										
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft			
1-Dec	201.5	212.5	213.4	207.1	216.3	239.6	246.5	196.5			
2-Dec	203.2	212.7	213.2	207.2	216.2	239.9	246.7	196.6			
3-Dec	203.2	212.2	212.7	207.0	216.2	240.1	246.8	196.7			
4-Dec	203.0	211.9	211.8	206.9	216.1	239.7	246.5	196.4			
5-Dec	203.9	211.6	211.8	206.9	215.8	239.4	246.4	196.2			
6-Dec	203.6	212.3	212.1	207.2	215.5	239.1	246.5	196.3			
7-Dec	205.5	212.0	209.3	207.3	215.3	239.2	246.5	196.4			
8-Dec	202.6	207.0	207.2	207.3	215.3	239.5	246.7	196.5			
9-Dec	202.9	207.0	207.1	207.3	214.5	239.3	246.8	196.6			
10-Dec	205.7	206.5	206.6	206.8	213.0	238.9	246.6	196.5			
11-Dec	204.7	206.7	206.8	207.1	212.7	238.6	246.5	196.3			
12-Dec	205.0	207.4	207.5	207.7	212.5	238.3	246.6	196.3			
13-Dec	207.1	207.7	207.7	208.0	211.6	238.1	246.7	196.4			
14-Dec	207.5	207.8	207.8	208.1	210.6	238.0	246.6	196.4			
15-Dec	207.8	207.7	207.6	207.9	209.8	237.8	246.7	196.5			
16-Dec	207.3	207.3	207.2	207.6	208.8	237.0	246.7	196.5			
17-Dec	206.7	206.5	206.5	206.9	207.4	236.2	246.7	196.5			
18-Dec	206.3	206.2	206.1	206.5	206.8	235.6	246.5	196.3			
19-Dec	207.2	207.1	207.0	207.4	207.7	235.6	246.6	196.5			
20-Dec	207.5	207.3	207.3	207.7	207.8	235.4	246.5	196.4			
21-Dec	207.5	207.3	207.3	207.7	207.8	235.0	246.6	196.4			
22-Dec	207.6	207.3	207.3	207.7	208.5	234.7	246.8	196.6			
23-Dec	207.3	207.3	207.3	207.6	208.8	234.2	246.7	196.5			
24-Dec	207.3	207.4	207.4	207.7	209.1	233.9	246.9	196.7			
25-Dec	207.3	207.1	207.1	207.5	209.6	233.7	246.9	196.8			
26-Dec	207.1	206.9	206.9	207.3	209.2	233.5	246.9	196.8			
27-Dec	206.5	206.5	206.5	206.9	208.8	233.0	246.7	196.7			
28-Dec	206.4	206.2	206.3	206.7	209.2	232.4	246.6	196.6			
29-Dec	206.4	206.0	206.1	206.6	208.7	231.8	246.3	196.4			
30-Dec	206.5	206.2	206.3	206.7	209.5	231.7	246.2	196.5			
31-Dec	206.9	206.5	206.6	207.0	210.1	231.7	246.3	196.6			
Average	205.8	208.1	208.1	207.3	211.3	236.5	246.6	196.5			

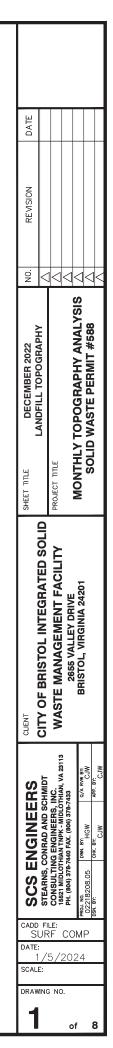
		Dep	th from Su	rface	
Date	25 ft	50 ft	75 ft	100 ft	125 ft
1-Dec	171.8	229.1	229.1	229.0	230.9
2-Dec	171.6	229.2	229.3	229.3	231.1
3-Dec	170.3	229.3	229.3	229.4	231.1
4-Dec	169.4	228.9	229.0	229.1	230.7
5-Dec	168.5	228.7	228.7	228.8	230.6
6-Dec	168.1	228.7	228.7	228.9	230.6
7-Dec	167.9	228.8	228.9	228.9	230.8
8-Dec	167.9	229.0	229.0	229.2	230.7
9-Dec	167.5	228.9	229.0	229.1	230.6
10-Dec	166.4	226.6	228.8	230.6	235.4
11-Dec	164.8	224.1	228.6	228.9	240.5
12-Dec	164.2	228.6	228.8	227.2	232.9
13-Dec	164.6	228.7	228.8	227.5	232.4
14-Dec	164.8	228.8	228.8	228.2	231.8
15-Dec	165.4	228.8	228.9	228.4	231.4
16-Dec	165.7	228.8	228.9	228.6	230.8
17-Dec	165.7	228.7	228.8	228.7	230.2
18-Dec	165.6	228.5	228.5	228.4	230.0
19-Dec	165.5	228.5	228.6	228.5	230.3
20-Dec	165.3	228.5	228.6	228.6	230.3
21-Dec	165.2	228.5	228.6	228.6	230.0
22-Dec	165.3	228.6	228.7	229.0	229.8
23-Dec	165.2	228.6	228.7	229.1	229.6
24-Dec	165.3	228.9	228.9	229.4	230.0
25-Dec	165.0	228.7	228.7	228.9	230.4
26-Dec	165.1	228.8	228.8	228.9	231.0
27-Dec	164.5	228.5	228.5	228.3	231.2
28-Dec	164.2	228.4	228.4	227.5	232.0
29-Dec	163.9	228.0	228.0	226.9	232.3
30-Dec	163.9	228.0	227.9	227.2	232.0
31-Dec	164.1	228.2	228.2	227.5	232.3
Average	166.2	228.5	228.7	228.6	231.4

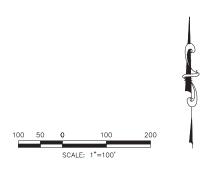

]	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft		
1-Dec	152.2	210.5	210.4	205.1	235.0	234.8	227.0	208.2		
2-Dec	152.2	211.9	210.7	205.3	234.2	234.6	226.1	206.4		
3-Dec	151.8	219.5	206.6	203.9	231.3	233.4	223.8	202.7		
4-Dec	152.0	217.9	206.1	204.1	229.0	233.1	224.2	202.2		
5-Dec	151.9	217.6	206.3	204.2	226.2	232.0	224.2	202.1		
6-Dec	151.3	213.8	206.6	204.5	225.6	232.9	224.7	202.1		
7-Dec	151.6	210.1	206.7	204.2	214.0	232.6	224.6	201.3		
8-Dec	152.4	211.0	206.7	204.4	209.6	232.2	225.2	201.8		
9-Dec	152.0	212.2	206.9	204.9	207.6	224.6	225.6	201.7		
10-Dec	151.4	209.8	206.5	204.4	209.9	206.3	225.2	201.0		
11-Dec	158.9	208.9	206.7	204.7	211.0	203.3	223.7	201.5		
12-Dec	182.7	208.8	207.2	205.4	212.4	203.9	213.8	201.8		
13-Dec	187.4	209.4	207.5	205.2	213.9	203.5	215.4	201.5		
14-Dec	203.2	208.9	207.6	206.5	212.1	204.2	207.8	201.7		
15-Dec	206.5	207.7	207.4	208.4	211.0	204.3	205.6	201.4		
16-Dec	207.0	206.8	207.1	207.8	211.7	203.6	206.9	201.8		
17-Dec	206.6	206.0	206.4	206.9	211.5	202.5	203.1	201.3		
18-Dec	206.2	205.6	206.0	206.4	211.1	202.0	202.3	201.1		
19-Dec	206.8	206.4	206.7	207.8	211.5	203.0	208.9	202.1		
20-Dec	207.1	206.7	207.0	207.8	212.4	203.1	211.2	201.6		
21-Dec	207.3	206.7	207.0	207.0	212.6	203.6	211.7	202.0		
22-Dec	207.3	206.7	207.0	206.0	213.6	203.4	211.4	202.0		
23-Dec	207.3	206.6	206.8	205.7	214.2	202.5	210.3	201.4		
24-Dec	207.4	206.7	206.8	204.8	218.9	199.6	208.8	199.5		
25-Dec	207.2	206.3	206.4	205.2	220.4	197.0	208.6	198.1		
26-Dec	207.0	206.2	206.2	209.5	212.6	198.9	209.5	199.1		
27-Dec	206.3	205.4	205.7	226.3	194.8	196.8	208.4	198.1		
28-Dec	206.0	204.6	205.9	230.3	193.8	196.1	207.7	196.8		
29-Dec	205.6	202.7	205.2	236.3	193.3	195.7	207.0	195.3		
30-Dec	205.6	204.6	205.4	236.1	193.5	196.3	207.6	194.5		
31-Dec	206.0	205.9	205.5	238.3	192.7	195.7	207.5	193.3		
Average	185.9	208.8	206.8	210.2	213.0	210.2	214.4	200.8		

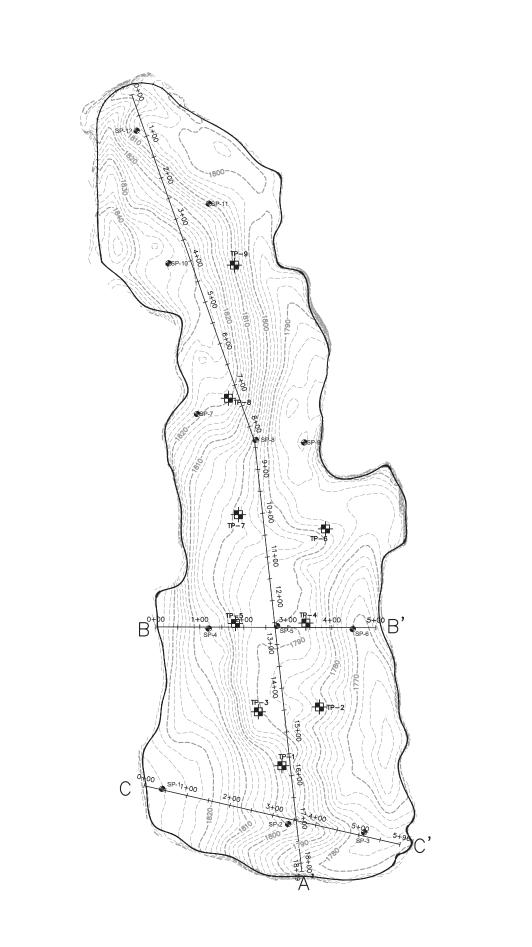

[Depth from Surface										
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft			
1-Dec	189.7	192.5	192.7	195.0	196.4	191.5	187.5	178.9			
2-Dec	189.3	192.7	192.9	195.1	196.5	191.7	187.7	179.1			
3-Dec	189.9	192.7	193.0	195.1	196.5	191.9	187.8	179.2			
4-Dec	189.8	192.4	192.7	194.9	196.3	191.6	187.5	178.9			
5-Dec	189.7	192.4	192.6	194.8	196.2	191.3	187.3	178.6			
6-Dec	189.8	192.5	192.9	195.1	196.6	191.6	187.6	178.8			
7-Dec	190.0	192.7	193.0	195.3	196.8	191.7	187.7	178.9			
8-Dec	190.1	192.8	193.2	195.4	196.9	192.0	187.9	179.1			
9-Dec	190.1	192.8	193.1	195.3	196.8	192.0	187.7	178.9			
10-Dec	189.1	192.6	192.8	195.0	196.4	191.9	187.5	178.7			
11-Dec	187.7	192.7	193.0	195.3	196.7	191.9	187.7	178.8			
12-Dec	189.7	193.0	193.3	195.7	197.2	191.9	187.7	178.9			
13-Dec	190.2	193.1	193.4	195.9	197.4	191.8	187.7	178.7			
14-Dec	190.3	193.2	193.5	196.0	197.5	191.8	187.7	178.8			
15-Dec	190.3	193.3	193.5	196.0	197.5	192.0	187.7	178.8			
16-Dec	190.1	193.1	193.3	195.7	197.2	191.9	187.6	178.7			
17-Dec	189.6	192.8	193.1	195.2	196.6	191.9	187.5	178.5			
18-Dec	189.2	192.5	192.8	194.9	196.3	191.8	187.5	178.6			
19-Dec	190.0	192.9	193.2	195.5	197.0	191.9	187.7	178.8			
20-Dec	190.3	193.1	193.4	195.8	197.4	191.9	187.8	178.7			
21-Dec	190.2	193.1	193.3	195.7	197.2	191.8	187.6	178.5			
22-Dec	190.3	193.1	193.4	195.8	197.3	192.1	187.7	178.7			
23-Dec	190.3	193.1	193.4	195.7	197.2	192.0	187.6	178.6			
24-Dec	190.5	193.3	193.6	195.9	197.4	192.3	187.9	178.8			
25-Dec	190.3	193.1	193.3	195.6	197.0	192.1	187.6	178.5			
26-Dec	190.2	193.1	193.4	195.6	196.9	192.3	187.8	178.7			
27-Dec	190.0	192.8	193.1	195.2	196.6	192.1	187.6	178.5			
28-Dec	190.0	192.7	193.0	195.2	196.6	192.2	187.7	178.6			
29-Dec	189.9	192.5	192.8	195.0	196.3	191.9	187.4	178.2			
30-Dec	189.9	192.6	192.8	195.1	196.4	191.8	187.4	178.2			
31-Dec	189.5	192.9	193.2	195.5	196.9	192.1	187.7	178.4			
Average	189.9	192.8	193.1	195.4	196.8	191.9	187.6	178.7			

[Depth from Surface										
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft			
1-Dec	121.6	153.2	153.2	152.1	146.6	131.4	117.4	107.2			
2-Dec	121.8	153.5	153.4	152.4	147.0	131.6	117.6	107.5			
3-Dec	121.6	153.5	153.4	152.5	147.1	131.7	117.7	107.5			
4-Dec	121.4	153.1	153.1	152.0	146.5	131.2	117.1	106.9			
5-Dec	121.2	152.9	152.9	151.8	146.4	131.1	117.1	106.8			
6-Dec	121.4	153.0	153.0	151.8	146.3	131.0	117.1	106.7			
7-Dec	121.4	153.0	153.0	151.8	146.3	131.0	117.0	106.6			
8-Dec	121.7	153.3	153.3	152.0	146.5	131.2	117.2	106.8			
9-Dec	121.7	153.4	153.4	152.2	146.7	131.5	117.5	107.1			
10-Dec	114.6	152.2	152.1	152.2	147.0	131.4	117.3	107.0			
11-Dec	112.0	150.6	150.6	151.8	147.1	131.0	116.9	106.6			
12-Dec	115.9	151.7	151.7	151.7	146.7	131.0	116.8	106.3			
13-Dec	118.1	152.5	152.4	151.8	146.5	131.1	116.9	106.3			
14-Dec	119.2	152.7	152.7	151.7	146.4	131.2	117.0	106.2			
15-Dec	119.9	152.9	152.8	151.8	146.5	131.2	117.1	106.3			
16-Dec	120.2	152.9	152.9	152.0	146.7	131.4	117.2	106.4			
17-Dec	120.1	152.9	152.9	152.1	146.8	131.5	117.4	106.6			
18-Dec	119.7	152.6	152.5	151.8	146.6	131.2	117.1	106.2			
19-Dec	120.0	152.6	152.6	151.5	146.2	131.0	116.8	105.8			
20-Dec	120.2	152.8	152.8	151.6	146.2	131.0	116.8	105.8			
21-Dec	120.2	152.9	152.8	151.7	146.3	131.1	116.9	106.0			
22-Dec	120.3	153.1	153.1	151.9	146.5	131.3	117.1	106.2			
23-Dec	120.2	153.1	153.0	151.9	146.7	131.3	117.2	106.3			
24-Dec	120.6	153.3	153.2	152.1	147.1	131.6	117.4	106.5			
25-Dec	120.5	153.4	153.3	152.3	147.3	131.8	117.5	106.8			
26-Dec	120.3	153.3	153.2	152.3	147.3	131.8	117.6	106.9			
27-Dec	120.1	153.0	153.0	152.1	147.0	131.5	117.4	106.6			
28-Dec	119.7	152.7	152.7	151.8	146.6	131.3	117.1	106.3			
29-Dec	119.5	152.5	152.4	151.6	146.4	131.1	116.9	106.2			
30-Dec	119.5	152.5	152.5	151.5	146.3	131.1	116.9	106.2			
31-Dec	120.0	152.9	152.8	151.7	146.4	131.2	117.0	106.3			
Average	119.8	152.8	152.8	151.9	146.6	131.3	117.2	106.5			

Appendix E


Monthly Topography Analysis





NOTES:

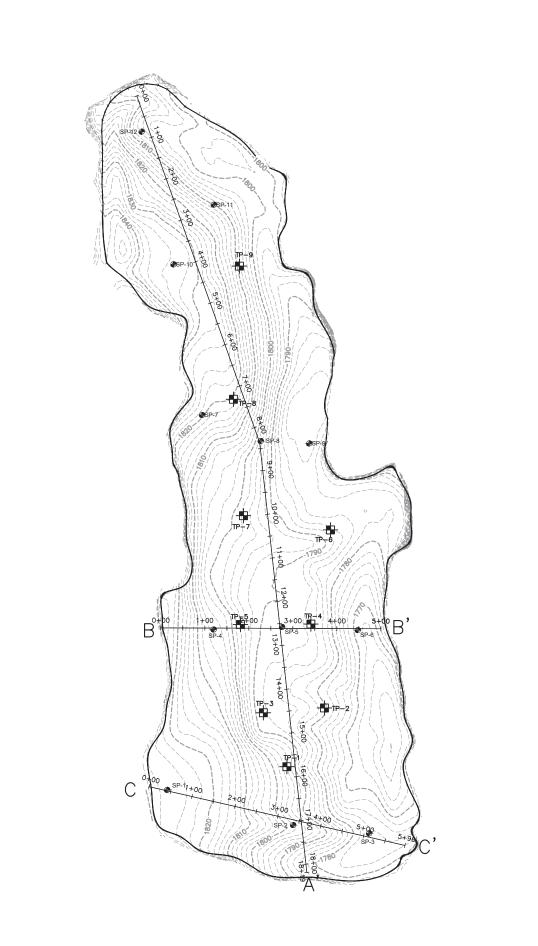
- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON DECEMBER 2, 2022 BY SCS ENGINEERS.
- ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

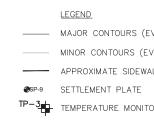
 LEGEND

 MAJOR CONTOURS (EV

 MINOR CONTOURS (EV

 APPROXIMATE SIDEWAL

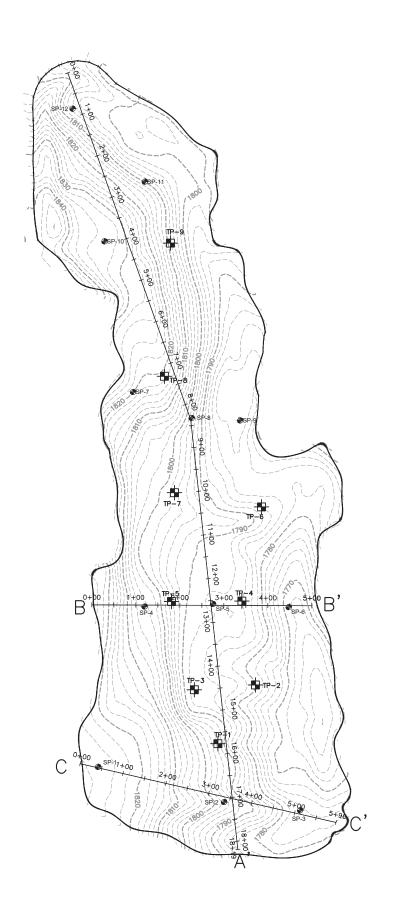

 Image: Settlement plate


 Image: Settlemen

NOTES:

- GRADES SHOWN AS CONTOUR LINES ONLY WIT REPRESENT THE TOPOGRAPHY CAPTURED ON ENGINEERS.
- ANY DETERMINATION OF TOPOGRAPHY OR CON PHYSICAL IMPROVEMENTS, PROPERTY LINES, OF INFORMATION ONLY AND SHALL NOT BE USED CONSTRUCTION OF IMPROVEMENTS TO REAL PR DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIR
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-

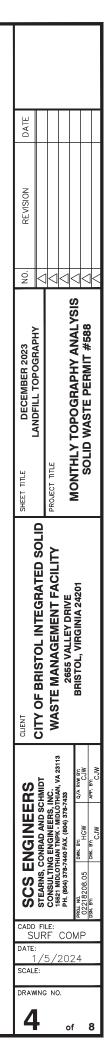
every 10') every 2')	DATE			
ALL LOCATION				
TORING PROBE	REVISION			
	NO.		~	1/1/
WITHIN THE PERMIT 588 BOUNDARY N SEPTEMBER 15, 2023 BY SCS ONTOURS, OR ANY DEPICTION OF OR BOUNDARIES IS FOR GENERAL	SEPTEMBER 2023			SOLID WASTE PERMIT #588
ED FOR DESIGN, MODIFICATION, OR PROPERTY OR FLOOD PLAIN	SHEET TITLE	PROJECT TITLE	OM	
IRGINIA SOUTH ZONE NAD—83 (2011).)—88.	CLIENT		2655 VALLEY DRIVE	BHISTOL, VIRGINIA 24201
100 50 0 100 200 SCALE: 1"=100'	CADD SU DATE: 1 SCALE	/5/	CON 202	4
			of	8

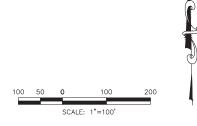


NOTES:

- GRADES SHOWN AS CONTOUR LINES ONLY WIT REPRESENT THE TOPOGRAPHY CAPTURED ON ENGINEERS.
- ANY DETERMINATION OF TOPOGRAPHY OR CON PHYSICAL IMPROVEMENTS, PROPERTY LINES, OF INFORMATION ONLY AND SHALL NOT BE USED CONSTRUCTION OF IMPROVEMENTS TO REAL PR DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIR
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-

EVERY 10')	DATE				
EVERY 2') VALL LOCATION	DA				
TORING PROBE	REVISION				
	NO.		4	1/2	-
	z		<u> </u> u	<u> </u> 0	`
MITHIN THE PERMIT 588 BOUNDARY N NOVEMBER 16 2023 BY SCS ONTOURS, OR ANY DEPICTION OF OR BOUNDARIES IS FOR GENERAL ED FOR DESIGN, MODIFICATION, OR	ITTLE NOVEMBER 2023	PROJECT TITLE	ACNITHI X TOBOG BABHY ANALYSIS	SOLID WASTE PERMIT #1888	
PROPERTY OR FLOOD PLAIN	SHEET TITLE	PROJEC			
1rginia south zone nad-83 (2011). D-88.	CLIENT CLIENT	CITY OF BRISTOL IN LEGRATED SOLID WASTE MANAGEMENT FACILITY		BRISTOL, VIRGINIA 24201	
100 50 0 100 200 SCALE: 1"=100'	CADD SU DATE: 1 SCALE	/5/	COI 202	24	
	J	<u> </u>	of	8	

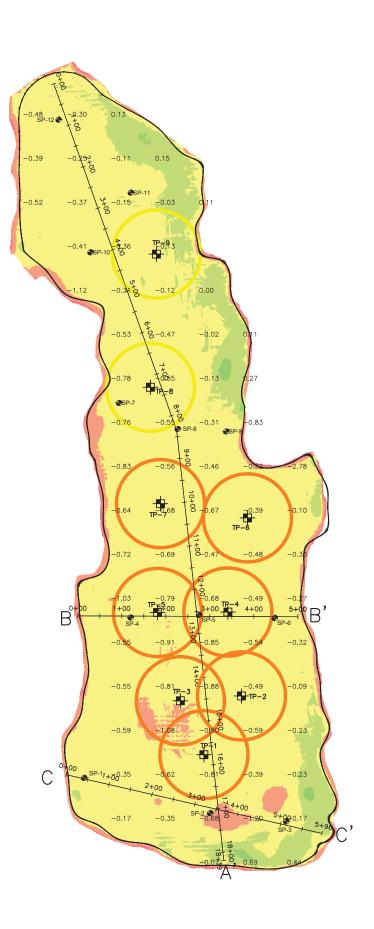


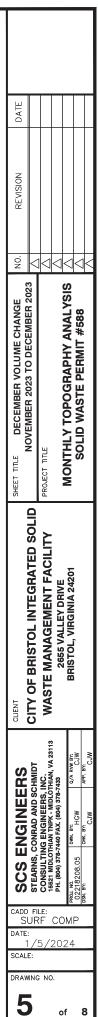

- ----- MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2') APPROXIMATE SIDEWALL LOCATION
- ●SP-9 SETTLEMENT PLATE TP-3 TEMPERATURE MONITORING PROBE

NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON DECEMBER 20, 2023 BY SCS ENGINEERS.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.



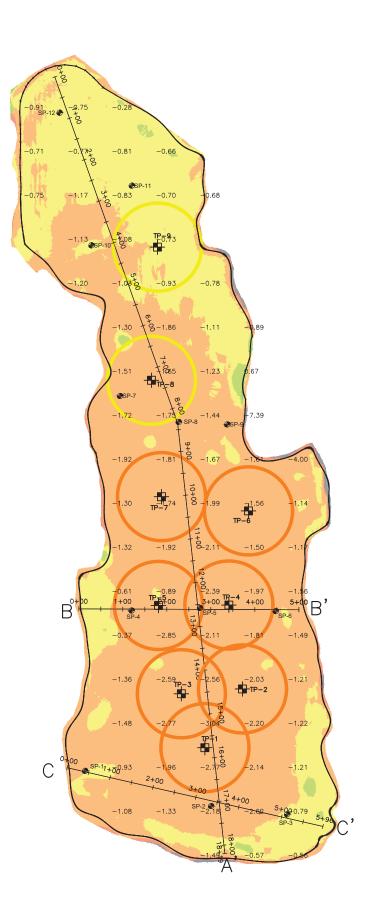

	Ĺ	EGEND	
	N	AJOR CONTOURS (E	VERY 10')
	N	MINOR CONTOURS (E'	/ERY 2')
	/	APPROXIMATE WASTE	BOUNDARY
	SP-9 S	SETTLEMENT PLATE	
	-0.39 5	SPOT ELEVATION ON	100' GRID
TP-		EMPERATURE MONITO VERAGE TEMPERATU	
TP-		TEMPERATURE MONITO	
TP-		TEMPERATURE MONITO	
	Volu	ime Base Surface Comparison Surfac	TOPO - NOV ≎ TOPO - DEC
		Cut Volume Fill Volume Net Cut	14,070 693 13,376
	Number	Eleva Minimum Elevation	tions Table Maximum Elev
	1	-8.000	-5.000
	2	-5.000	-1.000
	3	-1.000	0.000
	4	0.000	1.000
	5	1.000	5.000
	6	5.000	10.000

NOTES:

- THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON NOVEMBER 16, 2023 AND DECEMBER 20, 2023 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE
- INDICATE AREAS OF COT (SETTEMENT). VALUES ARE NONDED TO THE NEAREST FOOT
 ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.

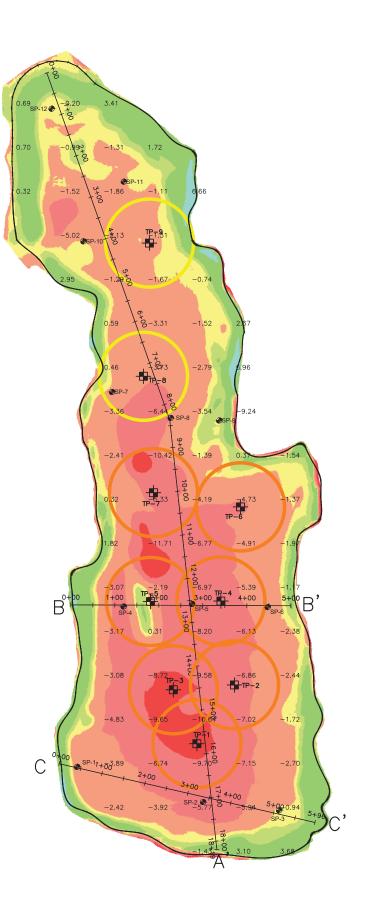
: WITH TH LESS THAN 200 °F WITH TH BETWEEN 200 F AND 250 F WITH TH BETWEEN 250 °F AND 300 °F OVEMBER 16, 2023 ECEMBER 20, 2023 Cu. Yd. Cu. Yd. Cu. Yd. Color evation TITLE \geq SHEET 1 THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
 THE VERTICAL DATUM IS BASED UPON NAVD-88. 100 50 100 SCALE: 1"=100'

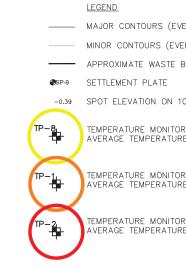
	LEGEND
	MAJOR CONTOURS (EVERY 10')
	MINOR CONTOURS (EVERY 2')
	APPROXIMATE WASTE BOUNDAR
ØSP-9	SETTLEMENT PLATE
-0.39	SPOT ELEVATION ON 100' GRIE
P-8	TEMPERATURE MONITORING PRAVERAGE TEMPERATURES AT D
P-1.	TEMPERATURE MONITORING PRI AVERAGE TEMPERATURES AT D
P-2	TEMPERATURE MONITORING PRO AVERAGE TEMPERATURES AT D


Volur	ne Base Surfac Comparison	TOPO TOPO		
	Cut Volume Fill Volume Net Cut	42,16 59 42,10	9	

_

	Eleva	tions lable
Number	Minimum Elevation	Maximum E
1	-10.000	-5.00
2	-5.000	-1.00
3	-1.000	0.000
4	0.000	1.000
5	1.000	5.000
6	5.000	10.00

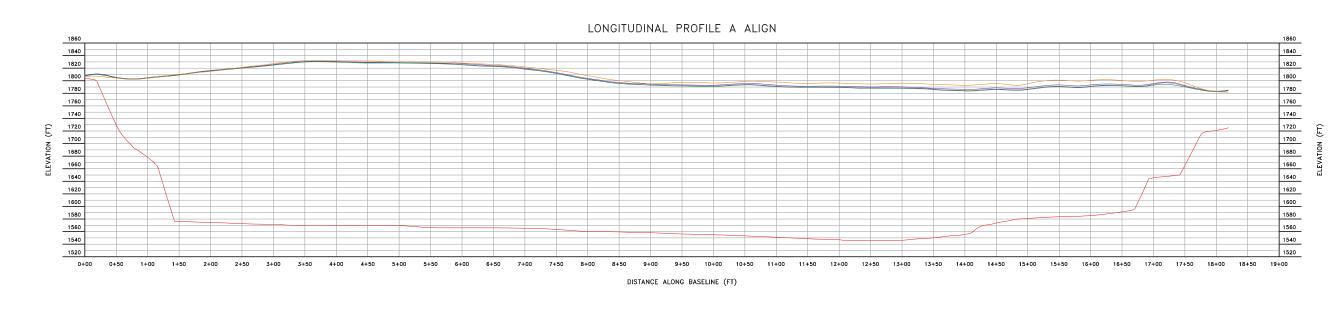

NOTES:

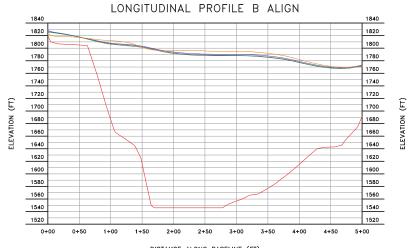

- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

)) ARY RID ROBE WITH DEPTH LESS THAN 200 °F ROBE WITH DEPTH BETWEEN 200 °F AND 250 °F ROBE WITH DEPTH BETWEEN 250 °F AND 300 °F SEPTEMBER 15, 2023 DECEMBER 20, 2023 Cu. Yd. Cu. Yd. Cu. Yd. Tab Color Elevation 000 000 00 00 00 00 THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON NOVEMBER 16, 2023 AND DECEMBER 20, 2023 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION. 100 50 0 100 200 SCALE: 1"=100'

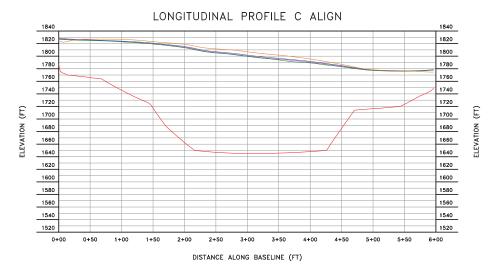
DATE DATE						
0. REVISION			1	7	1	
SHEET TITLE DECEMBER VOLUME CHANGE NO	ID SEPTEMBER 2023 TO DECEMBER 2023			MONTHLY TOPOGRAPHY ANALYSIS	SOLID WASTE PERMIT #588	
CLIENT	CITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY	2655 VALLEY DRIVE	BRISTOL VIRGINIA 24201		
SCS ENGINEERS		CONSULTING ENGINEERS, INC. 15521 MIDLOTHAN TNPK - MIDLOTHIAN, VA 23113	PH. (804) 378-7440 FAX. (804) 378-7433	PROJ. NO. DWN. BY: Q/A RVW BY:	02218208.05 HGW CJW	CJW
CADI S DATE SCAI) FI	LE:				

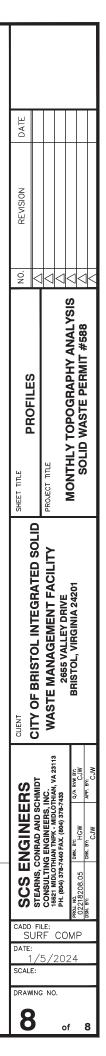
Volume Base Surface Comparison Surface


Cut Volume Fill Volume Net Cut


Elevation Number Minimum Elevation M -16.000 1 2 -10.000 3 -5.000 4 -1.000 5 0.000 6 1.000 7 5.000

NOTES:


- THE ELEVATION CHANGES ARE CALCULATED BE CAPTURED ON DECEMBER 2, 2023 AND DECEMI POSITIVE VALUES (+) INDICATE AREAS OF FILL AREAS OF CUT (SETTLEMENT). VALUES ARE RC
- ANY DETERMINATION OF TOPOGRAPHY OR CONT IMPROVEMENTS, PROPERTY LINES, OR BOUNDAR AND SHALL NOT BE USED FOR DESIGN, MODIFIC IMPROVEMENTS TO REAL PROPERTY OR FOR FL
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRG
- 4. THE VERTICAL DATUM(S) IS BASED UPON NAVE


/					
(EVERY 10')					
EVERY 2')					
E BOUNDARY					
N 100' GRID		DATE			
TORING PROBE WITH					
URES AT DEPTH LESS THAN 200 F		N			
TORING PROBE WITH TURES AT DEPTH BETWEEN 200 'F AND 250 'F		REVISION			
TORING PROBE WITH TURES AT DEPTH BETWEEN 250 °F AND 300 °F		vo			
		z	199		
TOPO – DECEMBER 2, 2022 e TOPO – DECEMBER 20, 2023 92,753 Cu. Yd. 11,922 Cu. Yd. 80,832 Cu. Yd.		DECEMBER VOLUME CHANGE DECEMBER 2022 TO DECEMBER 2023		MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588	
tions Table		MBE	1	₽₹	
Maximum Elevation Color		Ξü	1	בק	
-10.000			ШГЕ	E OS	;
-5.000		SHEET TITLE	PROJECT TITLE	ð	
-1.000		SHEE.	PROJ	2	
0.000					-
1.000					
5.000		ŭ	ז∖		
10.000 BETWEEN THE AERIAL TOPOGRAPHY DATA CEMBER 20, 2023 BY SCS ENGINEERS. FILL AND NEGATIVE VALUES (-) INDICATE : ROUNDED TO THE NEAREST FOOT CONTOURS, OR ANY DEPICTION OF PHYSICAL DARIES IS FOR GENERAL INFORMATION ONLY DIFICATION, OR CONSTRUCTION OF R FLOOD PLAIN DETERMINATION. /IRGINIA SOUTH ZONE NAD-83 (2011)		CLENT CITY OF RRISTOL INTEGRATED SOLID		BRISTOL, VIRGINIA 24201	
AVD-88.			3113		2
		SCS ENGINEERS	TILE:	PROJ. NO. 02218208.05 DM. BY: HGW Q/A RW BY: CUW	
1		DATE:			
(1 / SCALE:	/5/20	24	_
100 50 0 100 200		DRAWIN	IG NO.		_
SCALE: 1"=100'	Ť	7		f.	8
			(of i	U

DISTANCE ALONG BASELINE (FT)

LEGEND BOTTOM LINER ELEVATION NOVEMBER 2022 TOPO AUGUST 2023 TOPO OCTOBER 2023 TOPO

------ NOVEMBER 2023 TOPO

Appendix F

Field Logs

Lab Report

Historical LFG-EW Leachate Monitoring Results Summary

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date						12	2/11/23-12/	15/2023				
Personnel						L.	Nelson, W	Fabrie				
Location ID	Date	Measured Well Casing Depth (ft)	Pump Installed	Pump Depth (ft)	Prior Cycle Count	Cycle Count	Prior Depth to Liquid (ft)	Depth to Liquid (ft)	Casing Sickup (ft)	Liquid Column Thickness (ff)	Sample Collected (Y/N)	Comments
EW-33B	12/12/2023	185.00	Y		17	17	71.01	75.17	3.88	109.83	Ν	No discharge
EW-36A	12/12/2023	180.00	Y		731829	110426	124.5	Dry	4.68	0.00	Ν	No discharge
EW-49	12/12/2023	96.15	Y	90	777893	777893	61.46	65.78	6.50	30.37	Ν	No discharge
EW-50	12/11/2023	77.70	Y	83	1293455	1340298	54.8	43.1	4.52	34.60	Ν	
EW-51	12/11/2023	92.80	Y	95			43.19	43.5	3.15	49.30		No pump
EW-52	12/11/2023	98.70	Y	93	347462	379953	73.05	45.82	3.33	52.88	Y	
EW-53	12/11/2023	100.70	Y		2330728	230796	51.81	52.04	4.98	48.66	Ν	Air off-disconnected
EW-54	12/11/2023	82.70	Y	75	597295	597295	37.3	38.45	5.50	44.25	Ν	Air off
EW-55	12/11/2023	90.40	Y	90	691799	713759	53.66	44.85	6.39	45.55	N	Air off
EW-56	12/11/2023	58.50	N	58			10.8	44.04	5.10	14.46		
EW-57	12/11/2023	107.40	Y	71	43	44625	40.65	39.78	4.85	67.62	N	Air off
EW-58	12/11/2023	84.50	Y	82	2490483	2490486	31.19	32.48	5.55	52.02	N	No discharge/Air disconnected
EW-59	12/11/2023	73.40	Y	64	2485500	2496659	38.52	38.95	4.82	34.45	N	
EW-60	12/11/2023	81.80	Y	70	549649	616580	36.3	35.12	4.14	46.68	N	
EW-61	12/11/2023	87.80	Y	66			55.26	56.82	2.89	30.98	N	Not pumping
EW-62	12/12/2023	110.60	Y	80	201145	202203	66.02	96.11	4.72	14.49	N	not pumping
EW-63	12/12/2023	62.10	N	64			62.75	64.82	5.28	-2.72		
EW-64	12/12/2023	109.00	Y	113	177591	177601	81.34	83.54	4.40	25.46	N	
EW-65	12/12/2023	88.40	N	50	4814	4814	56.72	61.25	5.58	27.15		
EW-67	12/11/2023	107.75	Y	62.5	865001	865688	48.97	41.16	5.17	66.59	N	No discharge/Air disconnected
EW-68	12/11/2023	73.57	Y	68	2222470	2258582	38.32	4.24	1.10	69.33	Y	
EW-69	12/12/2023	98.00	N		9	9	97.39	94.41	4.29	3.59		
EW-70	12/12/2023	71.00	Y		12		21.31				N	Surrounded by water see photo
EW-71	12/12/2023	185.80	N				171.79	165.58	5.08	20.22		
EW-72	12/12/2023	141.21	Y				151.49	149.63	4.24	-8.42	N	No pump
EW-73	12/12/2023	116.00	Y		24		48.74	102.84	4.07	13.16	N	No pump
EW-74	12/12/2023	184.15	Y		17	19	92.03	169.38	5.97	14.77	N	No discharge
EW-75	12/12/2023	124.58	Y		11	11	106.39	110.8	5.00	13.78	N	No discharge
EW-76	12/12/2023	127.00	Y		23	23	38.31	35.52	4.19	91.48	N	
EW-77	12/12/2023	185.22	N				126.37	142.41	5.55	42.81		
EW-78	12/12/2023	57.00	Y		71480	75601	48.39	48.43	3.57	8.57	Y	
EW-79	12/12/2023	185.64	N				Dry	156.25	5.48	29.39		
EW-80	12/12/2023	149.00	N				Dry	137.78	4.34	11.22		

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date						12	2/11/23-12/	15/2023					
Personnel						L.	Nelson, W.	Fabrie					
Location ID	Date	Measured Well Casing Depth (ft)	Pump Installed	Pump Depth (ft)	Prior Cycle Count	Cycle Count	Prior Depth to Liquid (ft)	Depth to Liquid (ft)	Casing Sickup (ft)	Liquid Column Thickness (ft)	Sample Collected (Y/N)	Comments	
EW-81	12/12/2023	151.56	Y		60170	304902	120.68	Dry	5.31	0.00	N	No discharge	
EW-82	12/12/2023	163.26	Y		816750	897860	121.02	Dry	5.82	0.00	N	No discharge	
EW-83	12/12/2023	167.04	Y		44601	428888	131.3	110.19	4.04	56.85	N	No discharge	
EW-84	12/12/2023	130.56	N				72.98	74.84	4.72	55.72			
EW-85	12/11/2023	91.00	Y		115595	124119	50.69	55.58	4.07	35.42	N	No sample port, Air disconnected	
EW-86	12/11/2023	153.00	N				80.19	79.64	4.18	73.36			
EW-87	12/11/2023	149.57	Y		906359	940769	62.61	54.96	4.20	94.61	N	Blackhawk not pumping	
EW-88	12/11/2023	100.00	Y		216240	367039	42.36	49.51	3.33	50.49	N	No sample port, Running	
EW-89	12/11/2023	84.57	Y				39.79	41.55	3.08	43.02	N	No discharge	
EW-90	12/11/2023	114.00	Y		170676	170678	91.43	93.08	2.58	20.92	N	No discharge	
EW-91	12/11/2023	137.70	Y		207535	237486	59.85	51.72	4.91	85.98	N	No discharge	
EW-92	12/11/2023	112.99	Y		32765	387714	56.7	46.93	6.15	66.06	N	Not pumping	
EW-93	12/11/2023	111.00	N				32.85	30.25	3.67	80.75			
EW-94	12/11/2023	50.00	Y		519868	520385	25.7	26.34	3.92	23.66	N	Air disconnected	
EW-95	12/12/2023	68.00	N				61.5	25.23	2.61	42.77			
EW-96	12/11/2023	164.35	Y				72.15		7.50		N	Too tall see photo	
EW-97	12/11/2023	67.95	N				87.17	92.17	6.34	-24.22		No discharge, no air	
EW-98	12/11/2023	51.00	Y		1348199	1631022	26.57	26.57	3.76	24.43	N		
EW-99	12/11/2023	65.00	N				61.35	60.4	3.51	4.60			
EW-100	12/11/2023	108.50	Y		299753	470127	71.01	76.51	3.82	31.99	N	No discharge	

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (°C)	рН (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-52	12/11/2023	14:00	66.5	5.46	43.63	0.14	-62.0	68.5	Black
EW-68	12/11/2023	14:15	60.7	7.47	27.78	0.16	-194.8	24.45	Black
EW-78	12/12/2023	13:00	41.6	8.08	20.7	0.41	-69.8	21.63	Brown
Samplar			Eabria		· · · · · ·	Sample	s Shippod Bur	Courier	·

Sampler:

L. Nelson, W. Fabrie

Samples Shipped By: Courier

Log Checked By:

J. Robb

Laboratory: Enthalpy Analytical

1941 Reymet Road

Richmond, Virginia 23237

Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 23L0563

Client Name: SCS Engineers-Winchester 296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Date Received:December 12, 20238:00Date Issued:January 9, 202414:11Project Number:02218208.15 Task 2Purchase Order:

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Enclosed are the results of analyses for samples received by the laboratory on 12/12/2023 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTATS

Ted Soyars Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

			Analysis Detec	ts Report					
Client Name:	SCS Engineers-Wi	inchester			Date Issued:	1/9/2024 2:11:39PM			
Client Site ID:	2023 City of Bristol	I Landfill Leachate	9						
Submitted To:	Jennifer Robb								
Laboratory Sample ID:	23L0563-01	Client Sa	mple ID: EW-52						
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Arsenic		01	SW6020B	400		2.5	5.0	5	ug/L
Barium		01	SW6020B	680		5.00	25.0	5	ug/L
Chromium		01	SW6020B	1340		2.00	5.00	5	ug/L
Copper		01	SW6020B	1.84		1.50	1.50	5	ug/L
Lead		01	SW6020B	160		1.5	1.5	5	ug/L
Mercury		01	SW6020B	4.84		1.00	1.00	5	ug/L
Nickel		01	SW6020B	609.1		5.000	5.000	5	ug/L
Selenium		01	SW6020B	7.85		1.50	1.50	5	ug/L
Zinc		01RE1	SW6020B	52700		250	500	100	ug/L
2-Butanone (MEK)		01	SW8260D	13700		150	500	50	ug/L
Acetone		01RE2	SW8260D	44300		1750	2500	250	ug/L
Benzene		01	SW8260D	1330		20.0	50.0	50	ug/L
Ethylbenzene		01RE1	SW8260D	69.5		20.0	50.0	50	ug/L
Tetrahydrofuran		01	SW8260D	2620		500	500	50	ug/L
Toluene		01RE1	SW8260D	83.5		25.0	50.0	50	ug/L
Xylenes, Total		01	SW8260D	224		50.0	150	50	ug/L
Ammonia as N		01	EPA350.1 R2.0	2900		146	200	2000	mg/L
BOD		01	SM5210B-2016	>44105		0.2	2.0	1	mg/L
COD		01	SM5220D-2011	94200		10000	10000	1000	mg/L
Cyanide		01	SW9012B	0.13	CI	0.05	0.05	5	mg/L
Nitrate+Nitrite as N		01RE1	SM4500-NO3F-2016	0.58		0.10	0.10	1	mg/L
TKN as N		01	EPA351.2 R2.0	3130		100	250	500	mg/L
Total Recoverable Phenoli	cs	01	SW9065	34.2		1.50	2.50	50	mg/L

			Amelia Defe						
			Analysis Detec	ts keport		4/0	10004 0 4		
Client Name:	SCS Engineers-Wir	nchester			Date Issued:	1/9/	/2024 2:1	1:39PM	
Client Site ID:	2023 City of Bristol	Landfill Leachate	•						
Submitted To:	Jennifer Robb								
Laboratory Sample ID	: 23L0563-02	Client Sa	mple ID: EW-68						
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Arsenic		02	SW6020B	260		2.5	5.0	5	ug/L
Barium		02	SW6020B	1360		5.00	25.0	5	ug/L
Cadmium		02	SW6020B	0.604	J	0.500	1.50	5	ug/L
Chromium		02	SW6020B	259		2.00	5.00	5	ug/L
Lead		02	SW6020B	2.0		1.5	1.5	5	ug/L
Nickel		02	SW6020B	144.7		5.000	5.000	5	ug/L
Selenium		02	SW6020B	2.53		1.50	1.50	5	ug/L
Zinc		02RE1	SW6020B	46.2		25.0	25.0	10	ug/L
2-Butanone (MEK)		02RE2	SW8260D	7060		150	500	50	ug/L
Benzene		02	SW8260D	932		8.00	20.0	20	ug/L
Ethylbenzene		02RE1	SW8260D	46.0		8.00	20.0	20	ug/L
Tetrahydrofuran		02	SW8260D	4240		200	200	20	ug/L
Toluene		02RE1	SW8260D	73.2		10.0	20.0	20	ug/L
Xylenes, Total		02	SW8260D	167		20.0	60.0	20	ug/L
Ammonia as N		02	EPA350.1 R2.0	2200		146	200	2000	mg/L
BOD		02	SM5210B-2016	13700		0.2	2.0	1	mg/L
COD		02	SM5220D-2011	19900		5000	5000	500	mg/L
Cyanide		02	SW9012B	0.73	Cl	0.05	0.05	5	mg/L
Nitrate+Nitrite as N		02RE1	SM4500-NO3F-2016	1.88		0.50	0.50	5	mg/L
TKN as N		02RE1	EPA351.2 R2.0	1880		80.0	200	400	mg/L
Total Recoverable Phenol	lics	02	SW9065	23.0		0.750	1.25	25	mg/L
Laboratory Sample ID	: 23L0563-03	Client Sa	mple ID: Trip Blank						
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Xylenes, Total		03	SW8260D	2.64	J	1.00	3.00	1	ug/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-52	23L0563-01	Waste Water	12/11/2023 14:00	12/12/2023 08:00
EW-68	23L0563-02	Waste Water	12/11/2023 14:15	12/12/2023 08:00
Trip Blank	23L0563-03	Waste Water	08/09/2023 16:15	12/12/2023 08:00

Analysis for Volatile Fatty Acids was subcontracted to Pace. The subcontracted results are attached at the end of this Certificate of Analysis.

As requested by Jennifer Robb on January 9, 2024, the list of reported VOCs has been updated. This change is reflected in the following revised report.

1/9/2024 2:11:39PM

				<u>c</u>	<u>Certificate o</u>	<u>f Analysis</u>							
Client Name:	SCS Engineers-	Winchester				-	ſ	Date Issue	d:	1/9/202	4 2:1	1:39PM	
Client Site I.D.:	2023 City of Bris	stol Landfill	Leach	hate									
Submitted To:	Jennifer Robb												
Client Sample ID:	EW-52					Laborator	y Sample II): 23L0	563-01				
Parameter	Sa	amp ID CA	S	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
				Wethod	Date/ Hitte	Date/ Hitte	TCSUIG					01110	
Metals (Total) by EPA	6000/7000 Series Metho	ods											
Silver	01	7440-	22-4	SW6020B	12/13/2023 13:15	12/14/2023 13:23	BLOD		0.250	1.00	5	ug/L	AB
Arsenic	01	7440-	38-2	SW6020B	12/13/2023 13:15	12/14/2023 13:23	400		2.5	5.0	5	ug/L	AB
Barium	01	7440-	39-3	SW6020B	12/13/2023 13:15	12/14/2023 13:23	680		5.00	25.0	5	ug/L	AB
Cadmium	01	7440-	43-9	SW6020B	12/13/2023 13:15	12/14/2023 13:23	BLOD		0.500	1.50	5	ug/L	AB
Chromium	01	7440-	47-3	SW6020B	12/13/2023 13:15	12/14/2023 13:23	1340		2.00	5.00	5	ug/L	AB
Copper	01	7440-	50-8	SW6020B	12/13/2023 13:15	12/14/2023 13:23	1.84		1.50	1.50	5	ug/L	AB
Mercury	01	7439-	97-6	SW6020B	12/13/2023 13:15	12/14/2023 13:23	4.84		1.00	1.00	5	ug/L	AB
Nickel	01	7440-	02-0	SW6020B	12/13/2023 13:15	12/14/2023 13:23	609.1		5.000	5.000	5	ug/L	AB
Lead	01	7439-	92-1	SW6020B	12/13/2023 13:15	12/14/2023 13:23	160		1.5	1.5	5	ug/L	AB
Selenium	01	7782-	49-2	SW6020B	12/13/2023 13:15	12/14/2023 13:23	7.85		1.50	1.50	5	ug/L	AB
Zinc	01F	RE1 7440-	66-6	SW6020B	12/13/2023 13:15	12/21/2023 16:29	52700		250	500	100	ug/L	MDW
Volatile Organic Com	pounds by GCMS						Sample	Qualifier:	рН				
2-Butanone (MEK)	01	78-9	3-3	SW8260D	12/12/2023 14:46	12/12/2023 14:46	13700		150	500	50	ug/L	RJB
Acetone	01F	RE2 67-6	4-1	SW8260D	12/13/2023 19:21	12/13/2023 19:21	44300		1750	2500	250	ug/L	RJB
Benzene	01	71-4	3-2	SW8260D	12/12/2023 14:46	12/12/2023 14:46	1330		20.0	50.0	50	ug/L	RJB
Ethylbenzene	01F	RE1 100-4	11-4	SW8260D	12/13/2023 18:57	12/13/2023 18:57	69.5		20.0	50.0	50	ug/L	RJB
Toluene	01F	RE1 108-8	38-3	SW8260D	12/13/2023 18:57	12/13/2023 18:57	83.5		25.0	50.0	50	ug/L	RJB
Xylenes, Total	01	1330-	20-7	SW8260D	12/12/2023 14:46	12/12/2023 14:46	224		50.0	150	50	ug/L	RJB
Tetrahydrofuran	01	109-9	99-9	SW8260D	12/12/2023 14:46	12/12/2023 14:46	2620		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroetha	ne-d4 (Surr) 01		93.7	% 70-120	12/12/2023 14	:46 12/12/2023 14	:46						
Surr: 4-Bromofluorobe	enzene (Surr) 01		106	% 75-120	12/12/2023 14	:46 12/12/2023 14	:46						
Surr: Dibromofluorome	. ,		94.4	% 70-130	12/12/2023 14	:46 12/12/2023 14	:46						
Surr: Toluene-d8 (Surr			101	% 70-130	12/12/2023 14	:46 12/12/2023 14	:46						
Surr: 1,2-Dichloroetha	. ,		93.0		12/13/2023 18								
Surr: 4-Bromofluorobe	enzene (Surr) 01F	RE1	97.6	% 75-120	12/13/2023 18	:57 12/13/2023 18	:57						

				<u>C</u>	ertificate of	<u>Analysis</u>							
Client Name:	SCS Engi	neers-Winch	ester	_			Da	te Issue	d:	1/9/202	4 2:1	1:39PM	
Client Site I.D.:	2023 City	of Bristol La	ndfill Leach	nate									
Submitted To:	Jennifer R												
Client Sample ID:	EW-52					Laboratory	Sample ID:	23L0	563-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Com	pounds by GCM	IS											
Surr: Dibromofluorom	ethane (Surr)	01RE1	96.1 %	% 70-130	12/13/2023 18:57	12/13/2023 18:57	7						
Surr: Toluene-d8 (Sur)	01RE1	97.2 %	% 70-130	12/13/2023 18:57	12/13/2023 18:57	7						
Surr: 1,2-Dichloroetha	ne-d4 (Surr)	01RE2	90.4 %	% 70-120	12/13/2023 19:21	12/13/2023 19:21	1						
Surr: 4-Bromofluorobe	enzene (Surr)	01RE2	95.6 %	% 75-120	12/13/2023 19:21	12/13/2023 19:21	1						
Surr: Dibromofluorome	ethane (Surr)	01RE2	93.6 %	% 70-130	12/13/2023 19:21	12/13/2023 19:21	1						
Surr: Toluene-d8 (Sur	7	01RE2	98.5 %	% 70-130	12/13/2023 19:21	12/13/2023 19:21	1						
Semivolatile Organic	Compounds by	GCMS											
Anthracene		01	120-12-7	SW8270E	12/15/2023 09:40 1	2/18/2023 16:00	BLOD		200	400	10	ug/L	BMS
Surr: 2,4,6-Tribromopl	nenol (Surr)	01	71.0 %	% 5-136	12/15/2023 09:40	12/18/2023 16:00)						
Surr: 2-Fluorobipheny	l (Surr)	01	52.8 %	% 9-117	12/15/2023 09:40	12/18/2023 16:00)						
Surr: 2-Fluorophenol (Surr)	01	9	% 5-60	12/15/2023 09:40	12/18/2023 16:00)						S
Surr: Nitrobenzene-d5	(Surr)	01	16.8 %	% 5-151	12/15/2023 09:40	12/18/2023 16:00)						
Surr: Phenol-d5 (Surr)	1	01	6.00 %	% 5-60	12/15/2023 09:40	12/18/2023 16:00)						
Surr: p-Terphenyl-d14	(Surr)	01	9	% 5-141	12/15/2023 09:40	12/18/2023 16:00)						S

					Certificate o	of Analysis							
Client Name:	SCS Engine	eers-Winch	nester			-	Da	te Issue	d:	1/9/202	4 2:1	1:39PM	
Client Site I.D.:	2023 City o	of Bristol La	andfill Lead	chate									
Submitted To:	Jennifer Ro	bb											
Client Sample ID:	EW-52					Laborator	y Sample ID:	23L0	563-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analys	is												
Ammonia as N		01	7664-41-7	EPA350.1 R2.0	12/22/2023 14:59	12/22/2023 14:59	2900		146	200	2000	mg/L	SPH
BOD		01	E1640606	SM5210B-20 16	12/13/2023 10:13	12/13/2023 10:13	>44105		0.2	2.0	1	mg/L	TEG
BOD		01	E1640606	SM5210B-20 16	12/13/2023 10:13	12/13/2023 10:13	>44105		0.2	2.0	1	mg/L	TEG
Cyanide		01	57-12-5	SW9012B	12/13/2023 11:56	12/13/2023 11:56	0.13	CI	0.05	0.05	5	mg/L	MGC
COD		01	NA	SM5220D-20 11	12/18/2023 13:42	12/18/2023 13:42	94200		10000	10000	1000	mg/L	MGC
Nitrate as N		01	14797-55-8	Calc.	12/26/2023 11:00	12/26/2023 14:35	BLOD		1.10	5.10	100	mg/L	TEG
Nitrate+Nitrite as N		01RE1	E701177	SM4500-NO 3F-2016	12/26/2023 11:00	12/26/2023 14:35	0.58		0.10	0.10	1	mg/L	TEG
Nitrite as N		01	14797-65-0	SM4500-NO 2B-2011	12/13/2023 10:25	12/13/2023 10:25	BLOD		1.00	5.00	100	mg/L	KJM
Total Recoverable Phe	enolics	01	NA	SW9065	12/26/2023 15:19	12/26/2023 15:19	34.2		1.50	2.50	50	mg/L	AAL
TKN as N		01	E17148461	EPA351.2 R2.0	12/20/2023 17:54	12/20/2023 17:54	3130		100	250	500	mg/L	MJRL

				<u>c</u>	<u>Certificate c</u>	of Analysis							
Client Name:	SCS Engineers-	Winchester				-	Da	ate Issue	d:	1/9/202	4 2:1	11:39PM	
Client Site I.D.:	2023 City of Bris	stol Landfill	Leac	hate									
Submitted To:	Jennifer Robb												
Client Sample ID:	EW-68					Laborato	ry Sample ID:	23L0	563-02				
			.	Reference	Sample Prep	Analyzed	Sample	Qual	LOD	100	DF	Linita	Analyz
Parameter	Sa	IMP ID CA	15	Method	Date/Time	Date/Time	Results	Qual	LOD	LOQ	DF	Units	Analys
Metals (Total) by EPA	6000/7000 Series Metho	ds											
Silver	02	7440-	22-4	SW6020B	12/13/2023 13:15	12/14/2023 13:28	BLOD		0.250	1.00	5	ug/L	AB
Arsenic	02	7440-	38-2	SW6020B	12/13/2023 13:15	12/14/2023 13:28	260		2.5	5.0	5	ug/L	AB
Barium	02	7440-	39-3	SW6020B	12/13/2023 13:15	12/14/2023 13:28	1360		5.00	25.0	5	ug/L	AB
Cadmium	02	7440-	43-9	SW6020B	12/13/2023 13:15	12/14/2023 13:28	0.604	J	0.500	1.50	5	ug/L	AB
Chromium	02	7440-	47-3	SW6020B	12/13/2023 13:15	12/14/2023 13:28	259		2.00	5.00	5	ug/L	AB
Copper	02	7440-	50-8	SW6020B	12/13/2023 13:15	12/14/2023 13:28	BLOD		1.50	1.50	5	ug/L	AB
Mercury	02	7439-	97-6	SW6020B	12/13/2023 13:15	12/14/2023 13:28	BLOD		1.00	1.00	5	ug/L	AB
Nickel	02	7440-	02-0	SW6020B	12/13/2023 13:15	12/14/2023 13:28	144.7		5.000	5.000	5	ug/L	AB
Lead	02	7439-	92-1	SW6020B	12/13/2023 13:15	12/14/2023 13:28	2.0		1.5	1.5	5	ug/L	AB
Selenium	02	7782-	49-2	SW6020B	12/13/2023 13:15	12/14/2023 13:28	2.53		1.50	1.50	5	ug/L	AB
Zinc	02F	RE1 7440-	66-6	SW6020B	12/13/2023 13:15	12/21/2023 16:32	46.2		25.0	25.0	10	ug/L	MDW
Volatile Organic Com	pounds by GCMS												
2-Butanone (MEK)	02F	RE2 78-9	3-3	SW8260D	12/14/2023 21:13	12/14/2023 21:13	7060		150	500	50	ug/L	RJB
Acetone	02	67-6	4-1	SW8260D	12/12/2023 14:23	12/12/2023 14:23	BLOD		140	200	20	ug/L	RJB
Benzene	02	71-4	3-2	SW8260D	12/12/2023 14:23	12/12/2023 14:23	932		8.00	20.0	20	ug/L	RJB
Ethylbenzene	02F	RE1 100-4	41-4	SW8260D	12/14/2023 20:51	12/14/2023 20:51	46.0		8.00	20.0	20	ug/L	RJB
Toluene	02F	RE1 108-8	38-3	SW8260D	12/14/2023 20:51	12/14/2023 20:51	73.2		10.0	20.0	20	ug/L	RJB
Xylenes, Total	02	1330-	20-7	SW8260D	12/12/2023 14:23	12/12/2023 14:23	167		20.0	60.0	20	ug/L	RJB
Tetrahydrofuran	02	109-9	99-9	SW8260D	12/12/2023 14:23	12/12/2023 14:23	4240		200	200	20	ug/L	RJB
Surr: 1,2-Dichloroetha	ne-d4 (Surr) 02		92.6	% 70-120	12/12/2023 14	4:23 12/12/2023 14	4:23						
Surr: 4-Bromofluorobe	()		105	% 75-120	12/12/2023 14	4:23 12/12/2023 14	4:23						
Surr: Dibromofluorome	ethane (Surr) 02		93.2	% 70-130	12/12/2023 14	4:23 12/12/2023 14	4:23						
Surr: Toluene-d8 (Surr	,		101		12/12/2023 14								
Surr: 1,2-Dichloroetha			90.2		12/14/2023 20								
Surr: 4-Bromofluorobe	enzene (Surr) 02F	RE1	96.6	% 75-120	12/14/2023 20	0:51 12/14/2023 20	0:51						

				<u>C</u>	ertificate of	<u>Analysis</u>							
Client Name:	SCS Engir	neers-Winch	ester	_			Da	te Issue	d:	1/9/202	4 2:1	1:39PM	
Client Site I.D.:	2023 City	of Bristol La	ndfill Leac	hate									
Submitted To:	Jennifer R												
Client Sample ID:	EW-68					Laboratory	Sample ID:	23L0	563-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Com	pounds by GCM	S											
Surr: Dibromofluorome	ethane (Surr)	02RE1	89.5	% 70-130	12/14/2023 20:5	1 12/14/2023 20:51	1						
Surr: Toluene-d8 (Surr	r)	02RE1	98.6	% 70-130	12/14/2023 20:5	1 12/14/2023 20:51	1						
Surr: 1,2-Dichloroetha	ne-d4 (Surr)	02RE2	93.4	% 70-120	12/14/2023 21:13	3 12/14/2023 21:13	3						
Surr: 4-Bromofluorobe	enzene (Surr)	02RE2	98.3	% 75-120	12/14/2023 21:13	3 12/14/2023 21:13	3						
Surr: Dibromofluorome	ethane (Surr)	02RE2	87.7	% 70-130	12/14/2023 21:13	3 12/14/2023 21:13	3						
Surr: Toluene-d8 (Surr	r)	02RE2	98.7	% 70-130	12/14/2023 21:1:	3 12/14/2023 21:13	3						
Semivolatile Organic	Compounds by	GCMS											
Anthracene		02	120-12-7	SW8270E	12/15/2023 09:40	12/20/2023 04:42	BLOD		100	200	20	ug/L	BMS
Surr: 2,4,6-Tribromoph	henol (Surr)	02	34.0	% 5-136	12/15/2023 09:40	0 12/20/2023 04:42	2						
Surr: 2-Fluorobipheny	l (Surr)	02	28.2	% 9-117	12/15/2023 09:40	0 12/20/2023 04:42	2						
Surr: 2-Fluorophenol ('Surr)	02	20.7	% 5-60	12/15/2023 09:40	0 12/20/2023 04:42	2						
Surr: Nitrobenzene-d5	i (Surr)	02	78.2	% 5-151	12/15/2023 09:40	0 12/20/2023 04:42	2						
Surr: Phenol-d5 (Surr))	02	0.800	% 5-60	12/15/2023 09:40	0 12/20/2023 04:42	2						S
Surr: p-Terphenyl-d14	(Surr)	02		% 5-141	12/15/2023 09:40	0 12/20/2023 04:42	2						S

					Certificate o	of Analysis							
Client Name:	SCS Engir	neers-Winch	nester	_			Da	te Issue	d:	1/9/202	4 2:1	1:39PM	
Client Site I.D.:	2023 City	of Bristol La	andfill Lead	chate									
Submitted To:	Jennifer R	lobb											
Client Sample ID:	EW-68					Laborator	ry Sample ID:	23L0	563-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analys	sis												
Ammonia as N		02	7664-41-7	EPA350.1 R2.0	12/22/2023 14:59	12/22/2023 14:59	2200		146	200	2000	mg/L	SPH
BOD		02	E1640606	SM5210B-20 16	12/13/2023 10:07	12/13/2023 10:07	13700		0.2	2.0	1	mg/L	TEG
Cyanide		02	57-12-5	SW9012B	12/13/2023 11:56	12/13/2023 11:56	0.73	CI	0.05	0.05	5	mg/L	MGC
COD		02	NA	SM5220D-20 11	12/18/2023 13:35	12/18/2023 13:35	19900		5000	5000	500	mg/L	MGC
Nitrate as N		02	14797-55-8	Calc.	12/26/2023 11:00	12/26/2023 17:09	BLOD		1.50	5.50	100	mg/L	TEG
Nitrate+Nitrite as N		02RE1	E701177	SM4500-NO 3F-2016	12/26/2023 11:00	12/26/2023 17:09	1.88		0.50	0.50	5	mg/L	TEG
Nitrite as N		02	14797-65-0	SM4500-NO 2B-2011	12/13/2023 10:25	12/13/2023 10:25	BLOD		1.00	5.00	100	mg/L	KJM
Total Recoverable Photon	enolics	02	NA	SW9065	12/26/2023 15:19	12/26/2023 15:19	23.0		0.750	1.25	25	mg/L	AAL
TKN as N		02RE1	E17148461	EPA351.2 R2.0	12/20/2023 17:54	12/20/2023 17:54	1880		80.0	200	400	mg/L	MJRL

			<u>C</u>	<u>Certificate of</u>	<u>Analysis</u>								
SCS Engine	eers-Winch	ester			-	Da	te Issue	d:	1/9/202	4 2:1	1:39PM		
2023 City c	of Bristol La	Indfill Lead	hate										
Jennifer Ro	bb												
Trip Blank					Laboratory	/ Sample ID:	23L0	563-03					
	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst	
unds by GCMS													
	03	78-93-3	SW8260D	12/12/2023 12:26	12/12/2023 12:26	BLOD		3.00	10.0	1	ug/L	RJB	
	03	67-64-1	SW8260D	12/12/2023 12:26	12/12/2023 12:26	BLOD		7.00	10.0	1	ug/L	RJB	
	03RE1	71-43-2	SW8260D	12/13/2023 15:57	12/13/2023 15:57	BLOD		0.40	1.00	1	ug/L	RJB	
	03	100-41-4	SW8260D	12/12/2023 12:26	12/12/2023 12:26	BLOD		0.40	1.00	1	ug/L	RJB	
	03RE1	108-88-3	SW8260D	12/13/2023 15:57	12/13/2023 15:57	BLOD		0.50	1.00	1	ug/L	RJB	
	03	1330-20-7	SW8260D	12/12/2023 12:26	12/12/2023 12:26	2.64	J	1.00	3.00	1	ug/L	RJB	
	03	109-99-9	SW8260D	12/12/2023 12:26	12/12/2023 12:26	BLOD		10.0	10.0	1	ug/L	RJB	
-d4 (Surr)	03	94.8	% 70-120	12/12/2023 12:2	26 12/12/2023 12:	26							
ene (Surr)	03	107	% 75-120	12/12/2023 12:2	26 12/12/2023 12:	26							
ane (Surr)	03	94.8	% 70-130	12/12/2023 12:2	26 12/12/2023 12::	26							
	03												
. ,													
· · ·													
ane (Surr)													
	2023 City o Jennifer Ro Trip Blank unds by GCMS	2023 City of Bristol La Jennifer Robb Trip Blank Samp ID unds by GCMS 03 03 03 03 8 03 03 03 03 03 03 03 03 03 03 03 03 03	Jennifer Robb Trip Blank Samp ID CAS unds by GCMS 03 78-93-3 03 67-64-1 03RE1 71-43-2 03 100-41-4 03RE1 108-88-3 03 1330-20-7 03 109-99-9 -d4 (Surr) 03 94.8 03 101 -d4 (Surr) 03RE1 91.5 ene (Surr) 03RE1 91.5 ene (Surr) 03RE1 97.9 ane (Surr) 03RE1 97.9 ane (Surr) 03RE1 97.9 ane (Surr) 03RE1 97.9 ane (Surr) 03RE1 97.9	SCS Engineers-Winchester 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Reference Samp ID CAS Reference Method unds by GCMS 03 78-93-3 SW8260D 03 67-64-1 SW8260D 03RE1 71-43-2 SW8260D 03RE1 100-41-4 SW8260D 03RE1 108-88-3 SW8260D 03 100-41-4 SW8260D 03 109-99-9 SW8260D 03 109-99-9 SW8260D 03 101 % 70-120 ene (Surr) 03 101 % 70-120 ane (Surr) 03RE1 91.5 % 70-120 ene (Surr) 03RE1 91.5 % 70-120 ene (Surr) 03RE1 91.5 % 70-120 ene (Surr) 03RE1 97.9 % 75-120 ane (Surr) 03RE1 97.9 % 75-120 ane (Surr) 03RE1 97.9 % 75-120 ane (Surr) 03RE	SCS Engineers-Winchester 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Reference Sample Prep Date/Time Samp ID CAS Reference Method Date/Time unds by GCMS 03 78-93-3 SW8260D 12/12/2023 12:26 03 67-64-1 SW8260D 12/12/2023 12:26 03 67-64-1 SW8260D 12/12/2023 12:26 03 100-41-4 SW8260D 12/12/2023 12:26 03 100-47-7 SW8260D 12/12/2023 12:26 03 109-99-9 SW8260D 12/12/2023 12:26 03 109-99-9 SW8260D 12/12/2023 12:26 cd4 (Surr) 03 94.8 % 70-120 12/12/2023 12:26 cd4 (Surr) 03 91.5 % 70-130 12/12/2023 12:26 cd4	SCS Engineers-Winchester 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Samp ID CAS Reference Method Sample Prep Date/Time Analyzed Date/Time unds by GCMS 03 78-93-3 SW8260D 12/12/2023 12:26 12/12/2023 12:26 03 67-64-1 SW8260D 12/12/2023 12:26 12/12/2023 12:26 03 67-64-1 SW8260D 12/12/2023 15:57 12/13/2023 15:57 03 100-41-4 SW8260D 12/12/2023 12:26 12/12/2023 12:26 03RE1 71-43-2 SW8260D 12/12/2023 12:26 12/12/2023 12:26 03RE1 108-88-3 SW8260D 12/12/2023 12:26 12/12/2023 12:26 03RE1 108-88-3 SW8260D 12/12/2023 12:26 12/12/2023 12:26 04 (Surr) 03 94.8 % 70-120 12/12/2023 12:26 12/12/2023 12:26 c44 (Surr) 03 107 % 75-120 12/12/2023 12:26 12/12/2023 12:26 c44 (Surr) 03 101 % 70-130	SCS Engineers-Winchester Da 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: samp ID CAS Reference Method Sample Prep Date/Time Analyzed Date/Time Sample Results unds by GCMS 03 76-93-3 SW8260D 12/12/2023 12:26 12/12/2023 12:26 BLOD 03 67-64-1 SW8260D 12/12/2023 12:26 12/12/2023 12:26 BLOD 03RE1 71-43-2 SW8260D 12/12/2023 15:57 BLOD BLOD 03RE1 10-41-4 SW8260D 12/12/2023 15:57 BLOD BLOD 03RE1 108-88-3 SW8260D 12/12/2023 15:57 BLOD BLOD 03RE1 108-88-3 SW8260D 12/12/2023 12:26 12/12/2023 12:26 BLOD 03 109-99-9 SW8260D 12/12/2023 12:26 12/12/2023 12:26 BLOD 03 109-99-9 SW8260D 12/12/2023 12:26 12/12/2023 12:26 BLOD 03 109-99-9 SW8260D 12/12/2023 12:26 <	SCS Engineers-Winchester Date Issue 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: 23L0 mds by GCMS Reference Sample Prep Analyzed Sample Qual unds by GCMS 03 78-93-3 SW8260D 12/12/2023 12:26 12/12/2023 12:26 BLOD 03 67-64-1 SW8260D 12/12/2023 12:26 12/12/2023 12:26 BLOD 03 67-64-1 SW8260D 12/12/2023 15:7 12/13/2023 15:7 BLOD 03 100-41-4 SW8260D 12/12/2023 12:26 12/12/2023 12:26 BLOD 03 100-41-4 SW8260D 12/12/2023 12:26 BLOD BLOD 03 100-41-4 SW8260D 12/12/2023 12:26 BLOD BLOD 03 100-49-9 SW8260D 12/12/2023 12:26 BLOD BLOD 03 109-99-9 SW8260D 12/12/2023 12:26 BLOD BLOD c44 (Sum) 03 107 % 75-120 12/12/2023 12:26 <td< td=""><td>SCS Engineers-Winchester Date Issued:: 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: 23L0563-03 main colspan="4">Samp ID CAS Reference Method Date/Time Analyzed Sample Date/Time Qual LOD unds by GCMS 03 78-93-3 SW8260D 12/12/2023 12:26 12/12/2023 12:26 BLOD 3.00 03 78-93-3 SW8260D 12/12/2023 12:26 12/12/2023 12:26 BLOD 7.00 03 77-64-1 SW8260D 12/12/2023 12:26 12/12/2023 12:26 BLOD 0.40 03 100-41.4 SW8260D 12/12/2023 12:26 BLOD 0.40 03 100-41.4 SW8260D 12/12/2023 12:26 BLOD 0.50 03 103-41.4 SW8260D 12/12/2023 12:26 BLOD 0.40 03 100-41.4 SW8260D 12/12/2023 12:26 BLOD 0.50 <t< td=""><td>SCS Engineers-Winchester Date Issued: 1/9/202 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: 23L0563-03 CAS Reference Method Date/Time Analyzed Date/Time Sample Date/Time Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5"Culspan="5">Culspan="5"Culspan="5"Culspan="5">Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="</td><td>SCS Engineers-Winchester Date Issued: 1/9/2024 2:1 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: 23L0563-03 Trip Blank Laboratory Sample ID: 23L0563-03 unds by GCMS 03<78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 1.00 1 1 03<78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 1.00 1 1 03<78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 1.00 1 1 03<78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <th colspa<="" td=""><td>Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: 23L0563-03 Trip Blank Laboratory Sample ID: 23L0563-03 Minchester Units Mathematical Sample Prep Analyzed Sample ID: 23L0563-03 Trip Blank Laboratory Sample ID: 23L0563-03 unds by GCMS 03 Reference Method Date/Time Sample Results Qual LOD LOD LOD Lot 03 78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 10.0 1 ug/L 03 67-64-1 SW8260D 12/13/2023 15:57 BLOD 0.40 1 0 03 67-64-1 SW8260D 12/13/2023 15:57 BLOD 0.40</td></th></td></t<></td></td<>	SCS Engineers-Winchester Date Issued:: 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: 23L0563-03 main colspan="4">Samp ID CAS Reference Method Date/Time Analyzed Sample Date/Time Qual LOD unds by GCMS 03 78-93-3 SW8260D 12/12/2023 12:26 12/12/2023 12:26 BLOD 3.00 03 78-93-3 SW8260D 12/12/2023 12:26 12/12/2023 12:26 BLOD 7.00 03 77-64-1 SW8260D 12/12/2023 12:26 12/12/2023 12:26 BLOD 0.40 03 100-41.4 SW8260D 12/12/2023 12:26 BLOD 0.40 03 100-41.4 SW8260D 12/12/2023 12:26 BLOD 0.50 03 103-41.4 SW8260D 12/12/2023 12:26 BLOD 0.40 03 100-41.4 SW8260D 12/12/2023 12:26 BLOD 0.50 <t< td=""><td>SCS Engineers-Winchester Date Issued: 1/9/202 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: 23L0563-03 CAS Reference Method Date/Time Analyzed Date/Time Sample Date/Time Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5"Culspan="5">Culspan="5"Culspan="5"Culspan="5">Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="</td><td>SCS Engineers-Winchester Date Issued: 1/9/2024 2:1 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: 23L0563-03 Trip Blank Laboratory Sample ID: 23L0563-03 unds by GCMS 03<78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 1.00 1 1 03<78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 1.00 1 1 03<78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 1.00 1 1 03<78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <th colspa<="" td=""><td>Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: 23L0563-03 Trip Blank Laboratory Sample ID: 23L0563-03 Minchester Units Mathematical Sample Prep Analyzed Sample ID: 23L0563-03 Trip Blank Laboratory Sample ID: 23L0563-03 unds by GCMS 03 Reference Method Date/Time Sample Results Qual LOD LOD LOD Lot 03 78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 10.0 1 ug/L 03 67-64-1 SW8260D 12/13/2023 15:57 BLOD 0.40 1 0 03 67-64-1 SW8260D 12/13/2023 15:57 BLOD 0.40</td></th></td></t<>	SCS Engineers-Winchester Date Issued: 1/9/202 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: 23L0563-03 CAS Reference Method Date/Time Analyzed Date/Time Sample Date/Time Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5">Culspan="5"Culspan="5">Culspan="5"Culspan="5"Culspan="5">Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="5"Culspan="	SCS Engineers-Winchester Date Issued: 1/9/2024 2:1 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: 23L0563-03 Trip Blank Laboratory Sample ID: 23L0563-03 unds by GCMS 03<78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 1.00 1 1 03<78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 1.00 1 1 03<78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 1.00 1 1 03<78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <th colspa<="" td=""><td>Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: 23L0563-03 Trip Blank Laboratory Sample ID: 23L0563-03 Minchester Units Mathematical Sample Prep Analyzed Sample ID: 23L0563-03 Trip Blank Laboratory Sample ID: 23L0563-03 unds by GCMS 03 Reference Method Date/Time Sample Results Qual LOD LOD LOD Lot 03 78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 10.0 1 ug/L 03 67-64-1 SW8260D 12/13/2023 15:57 BLOD 0.40 1 0 03 67-64-1 SW8260D 12/13/2023 15:57 BLOD 0.40</td></th>	<td>Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: 23L0563-03 Trip Blank Laboratory Sample ID: 23L0563-03 Minchester Units Mathematical Sample Prep Analyzed Sample ID: 23L0563-03 Trip Blank Laboratory Sample ID: 23L0563-03 unds by GCMS 03 Reference Method Date/Time Sample Results Qual LOD LOD LOD Lot 03 78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 10.0 1 ug/L 03 67-64-1 SW8260D 12/13/2023 15:57 BLOD 0.40 1 0 03 67-64-1 SW8260D 12/13/2023 15:57 BLOD 0.40</td>	Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Jennifer Robb Trip Blank Laboratory Sample ID: 23L0563-03 Trip Blank Laboratory Sample ID: 23L0563-03 Minchester Units Mathematical Sample Prep Analyzed Sample ID: 23L0563-03 Trip Blank Laboratory Sample ID: 23L0563-03 unds by GCMS 03 Reference Method Date/Time Sample Results Qual LOD LOD LOD Lot 03 78-93-3 SW8260D 12/12/2023 12:26 BLOD 3.00 10.0 1 ug/L 03 67-64-1 SW8260D 12/13/2023 15:57 BLOD 0.40 1 0 03 67-64-1 SW8260D 12/13/2023 15:57 BLOD 0.40

			<u>C</u>	ertificate c	of Analysi	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of Bristol Landfill L	eachate								
Submitted To:	Jennifer Robb									
Cubinitiou 10.		Madal								
		Metals	s (Total) by	EPA 6000/7000 S		Quality Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL0511 - EPA200	.8 R5.4								
Blank (BGL0511-BLK1)				Prepared: 12/13/	2023 Analyzed: 1	12/14/2023				
Mercury	ND	0.200	ug/L							
Arsenic	ND	1.0	ug/L							
Barium	ND	5.00	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	1.00	ug/L							
Copper	ND	1.00	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	1.000	ug/L							
Selenium	ND	1.00	ug/L							
Silver	ND	1.00	ug/L							
Zinc	ND	5.00	ug/L							
LCS (BGL0511-BS1)				Prepared: 12/13/	2023 Analyzed: ´	12/14/2023				
Mercury	0.970	0.200	ug/L	1.00		97.0	80-120			
Arsenic	51	1.0	ug/L	50.0		101	80-120			
Barium	50.3	5.00	ug/L	50.0		101	80-120			
Cadmium	50.4	1.00	ug/L	50.0		101	80-120			
Chromium	50.8	1.00	ug/L	50.0		102	80-120			
Copper	50.3	1.00	ug/L	50.0		101	80-120			
Lead	50	1.0	ug/L	50.0		101	80-120			
Nickel	50.47	1.000	ug/L	50.0		101	80-120			
Selenium	51.1	1.00	ug/L	50.0		102	80-120			
Silver	10.0	1.00	ug/L	10.0		100	80-120			
Zinc	50.8	5.00	ug/L	50.0		102	80-120			
Matrix Spike (BGL0511-	MS1) Source	: 23L0568-0	1	Prepared: 12/13/	2023 Analyzed: 1	12/14/2023				

1/9/2024 2:11:39PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGL0511 - EPA20	0.8 R5.4								
Matrix Spike (BGL0511-MS1)	Sour	ce: 23L0568-0 [,]	1	Prepared: 12/13/	2023 Analyzed: ²	2/14/2023				
Mercury	0.938	0.200	ug/L	1.00	BLOD	93.8	70-130			
Arsenic	50	1.0	ug/L	50.0	BLOD	100	75-125			
Barium	50.8	5.00	ug/L	50.0	1.12	99.3	75-125			
Cadmium	49.7	1.00	ug/L	50.0	BLOD	99.4	75-125			
Chromium	51.2	1.00	ug/L	50.0	BLOD	102	75-125			
Copper	53.9	1.00	ug/L	50.0	3.81	100	75-125			
Lead	51	1.0	ug/L	50.0	BLOD	103	75-125			
Nickel	50.84	1.000	ug/L	50.0	BLOD	102	75-125			
Selenium	49.8	1.00	ug/L	50.0	BLOD	99.6	75-125			
Silver	10.0	1.00	ug/L	10.0	BLOD	100	75-125			
Zinc	55.5	5.00	ug/L	50.0	5.21	101	75-125			
/atrix Spike (BGL0511-MS2)	Sour	ce: 23L0577-0 [,]	1	Prepared: 12/13/	2023 Analyzed: ²	2/14/2023				
Mercury	0.991	0.200	ug/L	1.00	BLOD	99.1	70-130			
Arsenic	51	1.0	ug/L	50.0	1.6	99.3	75-125			
Barium	67.0	5.00	ug/L	50.0	15.2	104	75-125			
Cadmium	50.9	1.00	ug/L	50.0	0.178	101	75-125			
Chromium	53.9	1.00	ug/L	50.0	1.77	104	75-125			
Copper	77.8	1.00	ug/L	50.0	25.7	104	75-125			
Lead	82	1.0	ug/L	50.0	29	106	75-125			
Nickel	53.22	1.000	ug/L	50.0	1.726	103	75-125			
Selenium	49.1	1.00	ug/L	50.0	BLOD	98.2	75-125			
Silver	10.2	1.00	ug/L	10.0	BLOD	102	75-125			
Zinc	119	5.00	ug/L	50.0	65.1	107	75-125			
Matrix Spike Dup (BGL0511-MSD1)	Sour	ce: 23L0568-0 ⁻	1	Prepared: 12/13	2023 Analyzed: 2	2/14/2023				

1/9/2024 2:11:39PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGL0511 - EPA20	0.8 R5.4								
/atrix Spike Dup (BGL0511-MSD1)	Sour	ce: 23L0568-01	l	Prepared: 12/13/	2023 Analyzed: ²	12/14/2023				
Mercury	0.969	0.200	ug/L	1.00	BLOD	96.9	70-130	3.23	20	
Arsenic	51	1.0	ug/L	50.0	BLOD	101	75-125	1.29	20	
Barium	50.9	5.00	ug/L	50.0	1.12	99.5	75-125	0.151	20	
Cadmium	50.6	1.00	ug/L	50.0	BLOD	101	75-125	1.74	20	
Chromium	52.1	1.00	ug/L	50.0	BLOD	104	75-125	1.63	20	
Copper	54.9	1.00	ug/L	50.0	3.81	102	75-125	1.80	20	
Lead	52	1.0	ug/L	50.0	BLOD	104	75-125	1.19	20	
Nickel	51.22	1.000	ug/L	50.0	BLOD	102	75-125	0.755	20	
Selenium	50.5	1.00	ug/L	50.0	BLOD	101	75-125	1.33	20	
Silver	10.1	1.00	ug/L	10.0	BLOD	101	75-125	0.272	20	
Zinc	56.4	5.00	ug/L	50.0	5.21	102	75-125	1.61	20	
latrix Spike Dup (BGL0511-MSD2)	Sour	ce: 23L0577-01	l	Prepared: 12/13/	2023 Analyzed: ²	12/14/2023				
Mercury	1.00	0.200	ug/L	1.00	BLOD	100	70-130	1.41	20	
Arsenic	51	1.0	ug/L	50.0	1.6	98.4	75-125	0.914	20	
Barium	66.1	5.00	ug/L	50.0	15.2	102	75-125	1.31	20	
Cadmium	51.1	1.00	ug/L	50.0	0.178	102	75-125	0.413	20	
Chromium	53.8	1.00	ug/L	50.0	1.77	104	75-125	0.156	20	
Copper	77.4	1.00	ug/L	50.0	25.7	103	75-125	0.534	20	
Lead	82	1.0	ug/L	50.0	29	106	75-125	0.0288	20	
Nickel	52.91	1.000	ug/L	50.0	1.726	102	75-125	0.588	20	
Selenium	48.7	1.00	ug/L	50.0	BLOD	97.3	75-125	0.918	20	
Silver	10.2	1.00	ug/L	10.0	BLOD	102	75-125	0.812	20	
Zinc	118	5.00	ug/L	50.0	65.1	107	75-125	0.0813	20	

			Ce	rtificate o	of Analysi	is				
Client Name: SCS	S Engineers-Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.: 202	23 City of Bristol Landfill L	eachate								
	nifer Robb									
		,	lalatila Orga	nia Campaunda I	oy GCMS - Qualit	hy Control				
		\	volatile Orga		-	ty Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL0454 - SW5030	B-MS								
Blank (BGL0454-BLK1)				Prepared & Anal	yzed: 12/12/2023	•				
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Tetrahydrofuran	ND	10.0	ug/L							
Surr: 1,2-Dichloroethane-d4	4 (Surr) 49.3		ug/L	50.0		98.6	70-120			
Surr: 4-Bromofluorobenzen			ug/L	50.0		107	75-120			
Surr: Dibromofluoromethan	. ,		ug/L	50.0		101	70-130			
Surr: Toluene-d8 (Surr)	50.6		ug/L	50.0		101	70-130			
LCS (BGL0454-BS1)				Prepared & Anal	yzed: 12/12/2023					
1,1,1,2-Tetrachloroethane	51.3	0.4	ug/L	50.0		103	80-130			
1,1,1-Trichloroethane	50.6	1	ug/L	50.0		101	65-130			
1,1,2,2-Tetrachloroethane	52.1	0.4	ug/L	50.0		104	65-130			
1,1,2-Trichloroethane	53.3	1	ug/L	50.0		107	75-125			
1,1-Dichloroethane	52.4	1	ug/L	50.0		105	70-135			
1,1-Dichloroethylene	52.5	1	ug/L	50.0		105	70-130			
1,1-Dichloropropene	52.8	1	ug/L	50.0		106	75-135			
1,2,3-Trichlorobenzene	52.7	1	ug/L	50.0		105	55-140			
1,2,3-Trichloropropane	48.6	1	ug/L	50.0		97.2	75-125			
1,2,4-Trichlorobenzene	48.9	1	ug/L	50.0		97.7	65-135			
1,2,4-Trimethylbenzene	54.1	1	ug/L	50.0		108	75-130			
1,2-Dibromo-3-chloropropa	ne (DBCP) 41.3	1	ug/L	50.0		82.5	50-130			

				Cer	tificate o	of Analysi	is				
Client Name:	SCS Engineers-W	Vinchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of Brist	tol I andfill I	eachate								
-	•		Louonato								
Submitted To:	Jennifer Robb										
			V	/olatile Orgar	nic Compounds I	by GCMS - Qualit	ty Control				
					Enthalpy A	nalytical					
					Spike	Source		%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGL0)454 - SW503	0B-MS								
LCS (BGL0454-BS1)				F	Prepared & Anal	yzed: 12/12/2023					
1,2-Dibromoethane	(EDB)	50.6	1	ug/L	50.0		101	80-120			
1,2-Dichlorobenzene	,	49.1	0.5	ug/L	50.0		98.1	70-120			
1,2-Dichloroethane		50.0	1	ug/L	50.0		100	70-130			
1,2-Dichloropropane	е	52.1	0.5	ug/L	50.0		104	75-125			
1,3,5-Trimethylbenz	zene	51.7	1	ug/L	50.0		103	75-125			
1,3-Dichlorobenzene	e	50.7	1	ug/L	50.0		101	75-125			
1,3-Dichloropropane	е	51.8	1	ug/L	50.0		104	75-125			
1,4-Dichlorobenzene	e	49.3	1	ug/L	50.0		98.6	75-125			
2,2-Dichloropropane	e	50.9	1	ug/L	50.0		102	70-135			
2-Butanone (MEK)		47.5	10	ug/L	50.0		94.9	30-150			
2-Chlorotoluene		51.1	1	ug/L	50.0		102	75-125			
2-Hexanone (MBK)		46.4	5	ug/L	50.0		92.8	55-130			
4-Chlorotoluene		52.0	1	ug/L	50.0		104	75-130			
4-Isopropyltoluene		52.3	1	ug/L	50.0		105	75-130			
4-Methyl-2-pentanoi	ne (MIBK)	51.6	5	ug/L	50.0		103	60-135			
Acetone		38.6	10	ug/L	50.0		77.3	40-140			
Benzene		52.7	1	ug/L	50.0		105	80-120			
Bromobenzene		52.9	1	ug/L	50.0		106	75-125			
Bromochloromethar	ne	50.4	1	ug/L	50.0		101	65-130			
Bromodichlorometha	ane	51.8	0.5	ug/L	50.0		104	75-120			
Bromoform		55.2	1	ug/L	50.0		110	70-130			
Bromomethane		41.5	1	ug/L	50.0		83.0	30-145			
Carbon disulfide		48.2	10	ug/L	50.0		96.4	35-160			
Carbon tetrachloride	e	49.1	1	ug/L	50.0		98.2	65-140			
Chlorobenzene		50.9	1	ug/L	50.0		102	80-120			

			Cer	tificate o	of Analysi	is				
Client Name:	SCS Engineers-Winchester				-		Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of Bristol Landfill L	eachate								
Submitted To:	Jennifer Robb									
Submitted 10.										
		\	/olatile Organ	lic Compounds I	by GCMS - Qualit	ty Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
, indivice			Onito	Lover	Result	JULCO	Linito		Linin	Quui
	Batch BGL0454 - SW503	0B-MS								
LCS (BGL0454-BS1)			F	•	yzed: 12/12/2023					
Chloroethane	50.1	1	ug/L	50.0		100	60-135			
Chloroform	50.4	0.5	ug/L	50.0		101	65-135			
Chloromethane	54.4	1	ug/L	50.0		109	40-125			
cis-1,2-Dichloroethyl		1	ug/L	50.0		107	70-125			
cis-1,3-Dichloroprope	ene 52.3	1	ug/L	50.0		105	70-130			
Dibromochlorometha		0.5	ug/L	50.0		108	60-135			
Dibromomethane	50.0	1	ug/L	50.0		100	75-125			
Dichlorodifluorometh		1	ug/L	50.0		137	30-155			
Ethylbenzene	53.0	1	ug/L	50.0		106	75-125			
Hexachlorobutadiene	e 43.5	0.8	ug/L	50.0		87.1	50-140			
Isopropylbenzene	50.0	1	ug/L	50.0		100	75-125			
m+p-Xylenes	105	2	ug/L	100		105	75-130			
Methylene chloride	55.9	4	ug/L	50.0		112	55-140			
Methyl-t-butyl ether ((MTBE) 51.7	1	ug/L	50.0		103	65-125			
Naphthalene	50.9	1	ug/L	50.0		102	55-140			
n-Butylbenzene	51.5	1	ug/L	50.0		103	70-135			
n-Propylbenzene	52.1	1	ug/L	50.0		104	70-130			
o-Xylene	52.6	1	ug/L	50.0		105	80-120			
sec-Butylbenzene	54.2	1	ug/L	50.0		108	70-125			
Styrene	53.6	1	ug/L	50.0		107	65-135			
tert-Butylbenzene	51.3	1	ug/L	50.0		103	70-130			
Tetrachloroethylene	(PCE) 43.8	1	ug/L	50.0		87.6	45-150			
Toluene	54.3	1	ug/L	50.0		109	75-120			
trans-1,2-Dichloroeth	nylene 52.2	1	ug/L	50.0		104	60-140			
trans-1,3-Dichloropro	opene 56.3	1	ug/L	50.0		113	55-140			

			<u>C</u>	ertificate	of Analysis	<u>s</u>				
Client Name: SO	CS Engineers-Winc	hester					Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.: 20	023 City of Bristol L	andfill Leachate								
	ennifer Robb									
			Valatila Ora			Control				
			volatile Org		by GCMS - Quality	Control				
				Enthalpy /	Analytical					
Analyte	Re	sult LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL0454	- SW5030B-MS								
LCS (BGL0454-BS1)				Prepared & Ana	alyzed: 12/12/2023					
Trichloroethylene	5	51.2 1	ug/L	50.0		102	70-125			
Trichlorofluoromethane	5	55.9 1	ug/L	50.0		112	60-145			
Vinyl chloride	ξ	51.6 0.5	ug/L	50.0		103	50-145			
Surr: 1,2-Dichloroethane-	-d4 (Surr) 5	50.2	ug/L	50.0		100	70-120			
Surr: 4-Bromofluorobenzo	ene (Surr)	51.8	ug/L	50.0		104	75-120			
Surr: Dibromofluoromethe	ane (Surr) 5	50.8	ug/L	50.0		102	70-130			
Surr: Toluene-d8 (Surr)	5	50.9	ug/L	50.0		102	70-130			
Matrix Spike (BGL0454-MS	1)	Source: 23L0507	-06	Prepared & Ana	alyzed: 12/12/2023					
1,1,1,2-Tetrachloroethane	e 5	53.6 0.4	ug/L	50.0	BLOD	107	80-130			
1,1,1-Trichloroethane	Z	19.8 1	ug/L	50.0	BLOD	99.6	65-130			
1,1,2,2-Tetrachloroethane	e 5	58.6 0.4	ug/L	50.0	BLOD	117	65-130			
1,1,2-Trichloroethane	5	58.5 1	ug/L	50.0	BLOD	117	75-125			
1,1-Dichloroethane		51.7 1	ug/L	50.0	BLOD	103	70-135			
1,1-Dichloroethylene		51.0 1	ug/L	50.0	BLOD	102	50-145			
1,1-Dichloropropene		51.2 1	ug/L	50.0	BLOD	102	75-135			
1,2,3-Trichlorobenzene		55.6 1	ug/L	50.0	BLOD	111	55-140			
1,2,3-Trichloropropane		55.4 1	ug/L	50.0	BLOD	111	75-125			
1,2,4-Trichlorobenzene		19.4 1	ug/L	50.0	BLOD	98.8	65-135			
1,2,4-Trimethylbenzene		53.0 1	ug/L	50.0	0.76	105	75-130			
1,2-Dibromo-3-chloroprop		50.4 1	ug/L	50.0	BLOD	101	50-130			
1,2-Dibromoethane (EDB	,	6.3 1	ug/L	50.0	BLOD	113	80-120			
1,2-Dichlorobenzene		50.6 0.5	ug/L	50.0	BLOD	101	70-120			
1,2-Dichloroethane	5	52.6 1	ug/L	50.0	BLOD	105	70-130			
1,2-Dichloropropane	5	54.0 0.5	ug/L	50.0	BLOD	108	75-125			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0454 - SW5030B-MS Matrix Spike (BGL0454-MS1) Prepared & Analyzed: 12/12/2023 Source: 23L0507-06 51.0 75-124 1,3,5-Trimethylbenzene 1 ug/L 50.0 BLOD 102 1,3-Dichlorobenzene 51.8 1 ug/L 50.0 BLOD 104 75-125 56.2 50.0 BLOD 75-125 1,3-Dichloropropane 1 ug/L 112 1.4-Dichlorobenzene 49.5 1 50.0 BLOD 99.0 75-125 ug/L 2,2-Dichloropropane 48.8 1 ug/L 50.0 BI OD 97.5 70-135 58.7 BI OD 30-150 2-Butanone (MEK) 10 ug/L 50.0 117 2-Chlorotoluene 51.7 1 ug/L 50.0 BI OD 103 75-125 5 BLOD 116 55-130 2-Hexanone (MBK) 57.9 ug/L 50.0 BLOD 4-Chlorotoluene 51.7 1 ug/L 50.0 103 75-130 51.6 1 50.0 BLOD 103 75-130 4-Isopropyltoluene ua/L 4-Methyl-2-pentanone (MIBK) 65.0 5 50.0 BLOD 130 60-135 ug/L Acetone 53.2 10 ug/L 50.0 BLOD 106 40-140 Benzene 54.0 1 50.0 0.82 106 80-120 ug/L 55.4 BLOD 75-125 Bromobenzene 1 ug/L 50.0 111 Bromochloromethane 53.3 1 50.0 BI OD 107 65-130 ug/L Bromodichloromethane 54.8 0.5 BLOD 75-136 ug/L 50.0 110 Bromoform 62.0 1 ug/L 50.0 BLOD 124 70-130 39.8 1 50.0 BLOD 79.6 30-145 Bromomethane ug/L Carbon disulfide 51.5 10 50.0 BLOD 102 35-160 ug/L 65-140 Carbon tetrachloride 50.4 1 ug/L 50.0 BLOD 101 Chlorobenzene 52.3 1 50.0 0.44 104 80-120 ug/L Chloroethane 48.4 1 ug/L 50.0 BI OD 96.9 60-135 Chloroform 50.3 0.5 BI OD 65-135 ug/L 50.0 101 Chloromethane 51.7 1 ug/L 50.0 BI OD 103 40-125 53.6 1 ug/L cis-1,2-Dichloroethylene 50.0 0.51 106 70-125

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0454 - SW5030B-MS Matrix Spike (BGL0454-MS1) Source: 23L0507-06 Prepared & Analyzed: 12/12/2023 54.9 cis-1,3-Dichloropropene 1 ug/L 50.0 BLOD 110 47-136 Dibromochloromethane 58.4 0.5 ug/L 50.0 BLOD 117 60-135 50.0 BLOD 75-125 Dibromomethane 55.2 1 ug/L 110 Dichlorodifluoromethane 66.3 1 50.0 BLOD 133 30-155 ug/L Ethylbenzene 52.9 1 ug/L 50.0 1.04 104 75-125 0.8 BI OD 89.7 50-140 Hexachlorobutadiene 44.8 ug/L 50.0 Isopropylbenzene 50.1 1 ug/L 50.0 BI OD 100 75-125 2 3.92 101 75-130 m+p-Xylenes 105 ug/L 100 4 BLOD Methylene chloride 55.0 ug/L 50.0 110 55-140 56.1 1 50.0 BLOD 111 65-125 Methyl-t-butyl ether (MTBE) ua/L Naphthalene 55.5 1 50.0 BLOD 111 55-140 ug/L n-Butylbenzene 49.2 1 ug/L 50.0 BLOD 98.3 70-135 n-Propylbenzene 51.6 1 50.0 BLOD 103 70-130 ug/L 52.9 80-120 o-Xylene 1 ug/L 50.0 1.14 103 53.5 1 50.0 BI OD 107 70-125 sec-Butylbenzene ug/L 54.2 1 50.0 BLOD 65-135 Stvrene ug/L 108 tert-Butylbenzene 51.7 1 ug/L 50.0 BLOD 103 70-130 47.4 1 50.0 5.36 51-231 Tetrachloroethylene (PCE) ug/L 84.1 55.5 1 50.0 5.16 101 75-120 Toluene ug/L trans-1,2-Dichloroethylene BLOD 51.1 1 ug/L 50.0 102 60-140 trans-1,3-Dichloropropene 60.4 1 50.0 BLOD 121 55-140 ug/L Trichloroethylene 52.4 1 ug/L 50.0 0.48 104 70-125 Trichlorofluoromethane 55.3 1 BLOD 60-145 ug/L 50.0 111 Vinyl chloride 42.9 0.5 ug/L 50.0 BI OD 85.9 50-145 Surr: 1,2-Dichloroethane-d4 (Surr) 48.5 50.0 97.1 70-120 ug/L

Page 21 of 88

				<u>C</u>	ertificate o	of Analys	is				
Client Name:	SCS Engineers	-Winchester						Date Issu	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of B	ristol Landfill L	eachate								
Submitted To:	Jennifer Robb										
Cubinitied 10.				alatila Ora	anic Compounds b		ty Control				
			VC		janic Compounds i	by GCINS - Quali	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BC	GL0454 - SW5030	DB-MS								
Matrix Spike (BGL0454			e: 23L0507-06	;	Prepared & Analy	/zed: 12/12/2023	}				
Surr: 4-Bromofluorol	benzene (Surr)	51.5		ug/L	50.0		103	75-120			
Surr: Dibromofluoror	, ,	48.9		ug/L	50.0		97.8	70-130			
Surr: Toluene-d8 (Sı	. ,	50.4		ug/L	50.0		101	70-130			
Matrix Spike Dup (BGL	_0454-MSD1)	Source	e: 23L0507-06	;	Prepared & Analy	/zed: 12/12/2023	}				
1,1,1,2-Tetrachloroe	thane	53.1	0.4	ug/L	50.0	BLOD	106	80-130	0.937	30	
1,1,1-Trichloroethan	e	50.2	1	ug/L	50.0	BLOD	100	65-130	0.760	30	
1,1,2,2-Tetrachloroe	thane	57.3	0.4	ug/L	50.0	BLOD	115	65-130	2.21	30	
1,1,2-Trichloroethan	e	56.6	1	ug/L	50.0	BLOD	113	75-125	3.32	30	
1,1-Dichloroethane		50.8	1	ug/L	50.0	BLOD	102	70-135	1.82	30	
1,1-Dichloroethylene)	50.9	1	ug/L	50.0	BLOD	102	50-145	0.157	30	
1,1-Dichloropropene	•	51.0	1	ug/L	50.0	BLOD	102	75-135	0.391	30	
1,2,3-Trichlorobenze		55.7	1	ug/L	50.0	BLOD	111	55-140	0.198	30	
1,2,3-Trichloropropa	ne	54.3	1	ug/L	50.0	BLOD	109	75-125	2.02	30	
1,2,4-Trichlorobenze	ene	50.4	1	ug/L	50.0	BLOD	101	65-135	1.88	30	
1,2,4-Trimethylbenze		53.9	1	ug/L	50.0	0.76	106	75-130	1.57	30	
1,2-Dibromo-3-chlor	,	50.4	1	ug/L	50.0	BLOD	101	50-130	0.0992	30	
1,2-Dibromoethane	(EDB)	54.7	1	ug/L	50.0	BLOD	109	80-120	2.90	30	
1,2-Dichlorobenzene	9	51.3	0.5	ug/L	50.0	BLOD	103	70-120	1.26	30	
1,2-Dichloroethane		50.6	1	ug/L	50.0	BLOD	101	70-130	3.87	30	
1,2-Dichloropropane	9	53.2	0.5	ug/L	50.0	BLOD	106	75-125	1.44	30	
1,3,5-Trimethylbenze		52.0	1	ug/L	50.0	BLOD	104	75-124	2.06	30	
1,3-Dichlorobenzene	9	53.0	1	ug/L	50.0	BLOD	106	75-125	2.39	30	
1,3-Dichloropropane	•	54.9	1	ug/L	50.0	BLOD	110	75-125	2.38	30	
1,4-Dichlorobenzene	e	50.5	1	ug/L	50.0	BLOD	101	75-125	1.96	30	

1/9/2024 2:11:39PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGL0454 - SW503	0B-MS								
Matrix Spike Dup (BGL0454-MSD1)	Sourc	e: 23L0507-0	6	Prepared & Anal	lyzed: 12/12/2023					
2,2-Dichloropropane	48.6	1	ug/L	50.0	BLOD	97.2	70-135	0.308	30	
2-Butanone (MEK)	58.6	10	ug/L	50.0	BLOD	117	30-150	0.188	30	
2-Chlorotoluene	52.5	1	ug/L	50.0	BLOD	105	75-125	1.40	30	
2-Hexanone (MBK)	58.9	5	ug/L	50.0	BLOD	118	55-130	1.68	30	
4-Chlorotoluene	53.2	1	ug/L	50.0	BLOD	106	75-130	2.99	30	
4-Isopropyltoluene	53.5	1	ug/L	50.0	BLOD	107	75-130	3.60	30	
4-Methyl-2-pentanone (MIBK)	64.6	5	ug/L	50.0	BLOD	129	60-135	0.633	30	
Acetone	53.4	10	ug/L	50.0	BLOD	107	40-140	0.263	30	
Benzene	53.7	1	ug/L	50.0	0.82	106	80-120	0.576	30	
Bromobenzene	55.1	1	ug/L	50.0	BLOD	110	75-125	0.633	30	
Bromochloromethane	51.7	1	ug/L	50.0	BLOD	103	65-130	3.01	30	
Bromodichloromethane	54.4	0.5	ug/L	50.0	BLOD	109	75-136	0.843	30	
Bromoform	61.2	1	ug/L	50.0	BLOD	122	70-130	1.30	30	
Bromomethane	39.8	1	ug/L	50.0	BLOD	79.5	30-145	0.0754	30	
Carbon disulfide	51.5	10	ug/L	50.0	BLOD	102	35-160	0.0389	30	
Carbon tetrachloride	50.9	1	ug/L	50.0	BLOD	102	65-140	0.987	30	
Chlorobenzene	52.3	1	ug/L	50.0	0.44	104	80-120	0.0382	30	
Chloroethane	48.0	1	ug/L	50.0	BLOD	95.9	60-135	1.04	30	
Chloroform	49.5	0.5	ug/L	50.0	BLOD	99.1	65-135	1.50	30	
Chloromethane	50.8	1	ug/L	50.0	BLOD	102	40-125	1.74	30	
cis-1,2-Dichloroethylene	52.7	1	ug/L	50.0	0.51	104	70-125	1.62	30	
cis-1,3-Dichloropropene	53.5	1	ug/L	50.0	BLOD	107	47-136	2.49	30	
Dibromochloromethane	57.1	0.5	ug/L	50.0	BLOD	114	60-135	2.16	30	
Dibromomethane	53.7	1	ug/L	50.0	BLOD	107	75-125	2.86	30	
Dichlorodifluoromethane	65.2	1	ug/L	50.0	BLOD	130	30-155	1.81	30	

1/9/2024 2:11:39PM

Date Issued:

<u>Certificate of Analysis</u>

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	GL0454 - SW503	0B-MS								
/atrix Spike Dup (BGL0454-MSD1)	Sourc	e: 23L0507-0	6	Prepared & Anal	yzed: 12/12/2023	3				
Ethylbenzene	53.7	1	ug/L	50.0	1.04	105	75-125	1.59	30	
Hexachlorobutadiene	46.8	0.8	ug/L	50.0	BLOD	93.7	50-140	4.38	30	
Isopropylbenzene	50.7	1	ug/L	50.0	BLOD	101	75-125	1.19	30	
m+p-Xylenes	107	2	ug/L	100	3.92	103	75-130	1.68	30	
Methylene chloride	53.7	4	ug/L	50.0	BLOD	107	55-140	2.39	30	
Methyl-t-butyl ether (MTBE)	53.1	1	ug/L	50.0	BLOD	105	65-125	5.42	30	
Naphthalene	55.4	1	ug/L	50.0	BLOD	111	55-140	0.307	30	
n-Butylbenzene	50.3	1	ug/L	50.0	BLOD	101	70-135	2.35	30	
n-Propylbenzene	52.6	1	ug/L	50.0	BLOD	105	70-130	1.75	30	
o-Xylene	53.5	1	ug/L	50.0	1.14	105	80-120	1.17	30	
sec-Butylbenzene	54.9	1	ug/L	50.0	BLOD	110	70-125	2.45	30	
Styrene	53.7	1	ug/L	50.0	BLOD	107	65-135	0.946	30	
tert-Butylbenzene	52.9	1	ug/L	50.0	BLOD	106	70-130	2.33	30	
Tetrachloroethylene (PCE)	48.1	1	ug/L	50.0	5.36	85.4	51-231	1.34	30	
Toluene	55.6	1	ug/L	50.0	5.16	101	75-120	0.234	30	
trans-1,2-Dichloroethylene	50.8	1	ug/L	50.0	BLOD	102	60-140	0.471	30	
trans-1,3-Dichloropropene	58.5	1	ug/L	50.0	BLOD	117	55-140	3.13	30	
Trichloroethylene	53.0	1	ug/L	50.0	0.48	105	70-125	1.21	30	
Trichlorofluoromethane	54.7	1	ug/L	50.0	BLOD	109	60-145	1.11	30	
Vinyl chloride	41.5	0.5	ug/L	50.0	BLOD	83.0	50-145	3.36	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	47.2		ug/L	50.0		94.5	70-120			
Surr: 4-Bromofluorobenzene (Surr)	51.2		ug/L	50.0		102	75-120			
Surr: Dibromofluoromethane (Surr)	47.9		ug/L	50.0		95.8	70-130			
Surr: Toluene-d8 (Surr)	50.3		ug/L	50.0		101	70-130			

			Ce	rtificate o	of Analysi	S				
Client Name: So	CS Engineers-Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.: 2	023 City of Bristol Landfill Lo	eachate								
	ennifer Robb									
		,	Internation Orace	nio Compoundo I		. Control				
		,	volatile Orga	anic Compounds I	-	y Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL0524 - SW5030	B-MS								
Blank (BGL0524-BLK1)				Prepared & Anal	yzed: 12/13/2023					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Tetrahydrofuran	ND	10.0	ug/L							
Surr: 1,2-Dichloroethane	-d4 (Surr) 45.0		ug/L	50.0		90.0	70-120			
Surr: 4-Bromofluorobenz	ene (Surr) 50.0		ug/L	50.0		100	75-120			
Surr: Dibromofluorometh	ane (Surr) 49.8		ug/L	50.0		99.5	70-130			
Surr: Toluene-d8 (Surr)	48.7		ug/L	50.0		97.5	70-130			
Blank (BGL0524-BLK2)				Prepared & Anal	yzed: 12/13/2023					
Tetrahydrofuran	ND	10.0	ug/L							
LCS (BGL0524-BS1)				Prepared & Anal	yzed: 12/13/2023					
1,1,1,2-Tetrachloroethan	e 46.4	0.4	ug/L	50.0		92.8	80-130			
1,1,1-Trichloroethane	48.1	1	ug/L	50.0		96.2	65-130			
1,1,2,2-Tetrachloroethan	e 45.9	0.4	ug/L	50.0		91.8	65-130			
1,1,2-Trichloroethane	46.3	1	ug/L	50.0		92.5	75-125			
1,1-Dichloroethane	43.6	1	ug/L	50.0		87.1	70-135			
1,1-Dichloroethylene	46.7	1	ug/L	50.0		93.4	70-130			
1,1-Dichloropropene	48.4	1	ug/L	50.0		96.8	75-135			
1,2,3-Trichlorobenzene	41.0	1	ug/L	50.0		81.9	55-140			
1,2,3-Trichloropropane	44.8	1	ug/L	50.0		89.5	75-125			
1,2,4-Trichlorobenzene	42.7	1	ug/L	50.0		85.5	65-135			

				Cei	rtificate o	of Analysi	is				
Client Name:	SCS Engineers	s-Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of B	ristol I andfill I	eachate								
	-		.00011010								
Submitted To:	Jennifer Robb										
			١	/olatile Orgar	nic Compounds I	by GCMS - Quali	ty Control				
					Enthalpy A	nalytical					
					0.1			0/ DE0			
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B(GL0524 - SW5030	0B-MS								
LCS (BGL0524-BS1)	2401 8			ſ	Prepared & Anal	yzed: 12/13/2023	8				
1,2,4-Trimethylbenz	ene	44.9	1	ug/L	50.0	<u>, , , , , , , , , , , , , , , , , , , </u>	89.8	75-130			
1,2-Dibromo-3-chlor		42.6	1	ug/L	50.0		85.2	50-130			
1,2-Dibromoethane	,	44.0	1	ug/L	50.0		88.1	80-120			
1,2-Dichlorobenzene		44.7	0.5	ug/L	50.0		89.3	70-120			
1,2-Dichloroethane		45.2	1	ug/L	50.0		90.4	70-130			
1,2-Dichloropropane	e	43.7	0.5	ug/L	50.0		87.4	75-125			
1,3,5-Trimethylbenz	ene	43.3	1	ug/L	50.0		86.6	75-125			
1,3-Dichlorobenzene	e	46.3	1	ug/L	50.0		92.6	75-125			
1,3-Dichloropropane	e	43.6	1	ug/L	50.0		87.2	75-125			
1,4-Dichlorobenzene	e	43.8	1	ug/L	50.0		87.6	75-125			
2,2-Dichloropropane	e	48.6	1	ug/L	50.0		97.1	70-135			
2-Butanone (MEK)		45.1	10	ug/L	50.0		90.1	30-150			
2-Chlorotoluene		46.2	1	ug/L	50.0		92.4	75-125			
2-Hexanone (MBK)		45.2	5	ug/L	50.0		90.4	55-130			
4-Chlorotoluene		44.1	1	ug/L	50.0		88.3	75-130			
4-Isopropyltoluene		46.0	1	ug/L	50.0		92.1	75-130			
4-Methyl-2-pentanor	ne (MIBK)	45.2	5	ug/L	50.0		90.4	60-135			
Acetone		40.4	10	ug/L	50.0		80.9	40-140			
Benzene		42.2	1	ug/L	50.0		84.3	80-120			
Bromobenzene		46.8	1	ug/L	50.0		93.5	75-125			
Bromochloromethan	ne	40.8	1	ug/L	50.0		81.7	65-130			
Bromodichlorometha	ane	46.7	0.5	ug/L	50.0		93.4	75-120			
Bromoform		44.9	1	ug/L	50.0		89.9	70-130			
Bromomethane		25.8	1	ug/L	50.0		51.7	30-145			
Carbon disulfide		48.1	10	ug/L	50.0		96.3	35-160			

			Cer	tificate o	of Analysi	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of Bristol Landfill L	eachate								
	Jennifer Robb									
Submitted To:										
		١	/olatile Orgar	ic Compounds I	oy GCMS - Qualit	ty Control				
				Enthalpy A	nalytical					
				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGL0524 - SW503	DB-MS								
LCS (BGL0524-BS1)			F	Prepared & Anal	yzed: 12/13/2023					
Carbon tetrachloride	55.2	1	ug/L	50.0	-	110	65-140			
Chlorobenzene	47.3	1	ug/L	50.0		94.6	80-120			
Chloroethane	46.4	1	ug/L	50.0		92.8	60-135			
Chloroform	43.3	0.5	ug/L	50.0		86.6	65-135			
Chloromethane	41.4	1	ug/L	50.0		82.8	40-125			
cis-1,2-Dichloroethyle	ene 41.9	1	ug/L	50.0		83.8	70-125			
cis-1,3-Dichloroprope	ne 44.3	1	ug/L	50.0		88.6	70-130			
Dibromochlorometha	ne 47.1	0.5	ug/L	50.0		94.2	60-135			
Dibromomethane	45.3	1	ug/L	50.0		90.7	75-125			
Dichlorodifluorometha	ane 52.7	1	ug/L	50.0		105	30-155			
Ethylbenzene	48.6	1	ug/L	50.0		97.1	75-125			
Hexachlorobutadiene	45.6	0.8	ug/L	50.0		91.3	50-140			
lsopropylbenzene	46.4	1	ug/L	50.0		92.7	75-125			
m+p-Xylenes	98.4	2	ug/L	100		98.4	75-130			
Methylene chloride	45.0	4	ug/L	50.0		90.1	55-140			
Methyl-t-butyl ether (N	MTBE) 39.8	1	ug/L	50.0		79.6	65-125			
Naphthalene	40.8	1	ug/L	50.0		81.7	55-140			
n-Butylbenzene	46.7	1	ug/L	50.0		93.4	70-135			
n-Propylbenzene	45.9	1	ug/L	50.0		91.7	70-130			
o-Xylene	48.7	1	ug/L	50.0		97.4	80-120			
sec-Butylbenzene	50.4	1	ug/L	50.0		101	70-125			
Styrene	45.0	1	ug/L	50.0		89.9	65-135			
tert-Butylbenzene	46.0	1	ug/L	50.0		92.1	70-130			
Tetrachloroethylene (PCE) 53.6	1	ug/L	50.0		107	45-150			
Toluene	46.0	1	ug/L	50.0		92.1	75-120			

			<u>Ce</u>	ertificate o	of Analysi	<u>s</u>				
Client Name: SCS Engi	ineers-Winchester				-		Date Issue	d:	1/9/2024	2:11:39PM
Client Site I.D.: 2023 City	y of Bristol Landfill Lea	achate								
Submitted To: Jennifer F	·									
		,	lalatila Ora	ania Compounda		v Control				
		1	/olatile Orga		by GCMS - Qualit	y Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Ва	ntch BGL0524 - SW5030B	-MS								
LCS (BGL0524-BS1)				Prepared & Anal	yzed: 12/13/2023					
trans-1,2-Dichloroethylene	41.9	1	ug/L	50.0		83.9	60-140			
trans-1,3-Dichloropropene	47.1	1	ug/L	50.0		94.2	55-140			
Trichloroethylene	48.1	1	ug/L	50.0		96.1	70-125			
Trichlorofluoromethane	60.7	1	ug/L	50.0		121	60-145			
Vinyl chloride	54.4	0.5	ug/L	50.0		109	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	47.3		ug/L	50.0		94.5	70-120			
Surr: 4-Bromofluorobenzene (Surr)	50.4		ug/L	50.0		101	75-120			
Surr: Dibromofluoromethane (Surr)	49.4		ug/L	50.0		98.7	70-130			
Surr: Toluene-d8 (Surr)	49.6		ug/L	50.0		99.1	70-130			
Duplicate (BGL0524-DUP1)	Source:	23L0444-0	1	Prepared & Anal	yzed: 12/13/2023					
1,1,1,2-Tetrachloroethane	ND	8.00	ug/L		BLOD			NA	30	
1,1,1-Trichloroethane	ND	20.0	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroethane	ND	8.00	ug/L		BLOD			NA	30	
1,1,2-Trichloroethane	ND	20.0	ug/L		BLOD			NA	30	
1,1-Dichloroethane	ND	20.0	ug/L		BLOD			NA	30	
1,1-Dichloroethylene	ND	20.0	ug/L		BLOD			NA	30	
1,1-Dichloropropene	ND	20.0	ug/L		BLOD			NA	30	
1,2,3-Trichlorobenzene	ND	20.0	ug/L		BLOD			NA	30	
1,2,3-Trichloropropane	ND	20.0	ug/L		BLOD			NA	30	
1,2,4-Trichlorobenzene	ND	20.0	ug/L		BLOD			NA	30	
1,2,4-Trimethylbenzene	ND	20.0	ug/L		BLOD			NA	30	
1,2-Dibromo-3-chloropropane (DBC	-	20.0	ug/L		BLOD			NA	30	
1,2-Dibromoethane (EDB)	ND	20.0	ug/L		BLOD			NA	30	
1,2-Dichlorobenzene	ND	10.0	ug/L		BLOD			NA	30	

			Ce	ertificate of	Analysi	<u>s</u>				
Client Name: S	SCS Engineers-Winchester				-		Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of Bristol Landfill	Leachate								
	•	Louonato								
Submitted To:	Jennifer Robb									
		V	olatile Org	anic Compounds by	GCMS - Qualit	y Control				
				Enthalpy Anal	vtical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL0524 - SW50)30B-MS								
Duplicate (BGL0524-DUP	1) Sou	rce: 23L0444-0'	1	Prepared & Analyze	ed: 12/13/2023					
1,2-Dichloroethane	ND	20.0	ug/L	•	BLOD			NA	30	
1,2-Dichloropropane	ND	10.0	ug/L		BLOD			NA	30	
1,3,5-Trimethylbenzene	ND	20.0	ug/L		BLOD			NA	30	
1,3-Dichlorobenzene	ND	20.0	ug/L		BLOD			NA	30	
1,3-Dichloropropane	ND	20.0	ug/L		BLOD			NA	30	
1,4-Dichlorobenzene	ND	20.0	ug/L		BLOD			NA	30	
2,2-Dichloropropane	ND	20.0	ug/L		BLOD			NA	30	
2-Butanone (MEK)	ND	200	ug/L		BLOD			NA	30	
2-Chlorotoluene	ND	20.0	ug/L		BLOD			NA	30	
2-Hexanone (MBK)	ND	100	ug/L		BLOD			NA	30	
4-Chlorotoluene	ND	20.0	ug/L		BLOD			NA	30	
4-Isopropyltoluene	ND	20.0	ug/L		BLOD			NA	30	
4-Methyl-2-pentanone ((MIBK) ND	100	ug/L		BLOD			NA	30	
Acetone	ND	200	ug/L		BLOD			NA	30	
Benzene	ND	20.0	ug/L		BLOD			NA	30	
Bromobenzene	ND	20.0	ug/L		BLOD			NA	30	
Bromochloromethane	ND	20.0	ug/L		BLOD			NA	30	
Bromodichloromethane	ND	10.0	ug/L		BLOD			NA	30	
Bromoform	ND	20.0	ug/L		BLOD			NA	30	
Bromomethane	ND	20.0	ug/L		BLOD			NA	30	
Carbon disulfide	ND	200	ug/L		BLOD			NA	30	
Carbon tetrachloride	ND	20.0	ug/L		BLOD			NA	30	
Chlorobenzene	ND	20.0	ug/L		BLOD			NA	30	
Chloroethane	ND	20.0	ug/L		BLOD			NA	30	
Chloroform	ND	10.0	ug/L		BLOD			NA	30	

				Ce	ertificate of	Analysi	<u>s</u>				
Client Name:	SCS Engineers	s-Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of B	ristol Landfill L	eachate								
Submitted To:	Jennifer Robb										
Submitted 10.											
			Vo	olatile Org	anic Compounds by	GCMS - Qualit	y Control				
					Enthalpy Anal	ytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
_	Batch B	GL0524 - SW503	0B-MS								
Duplicate (BGL0524-D	UP1)	Source	e: 23L0444-01		Prepared & Analyze	ed: 12/13/2023					
Chloromethane		ND	20.0	ug/L		BLOD			NA	30	
cis-1,2-Dichloroethyl	lene	ND	20.0	ug/L		BLOD			NA	30	
cis-1,3-Dichloroprop	ene	ND	20.0	ug/L		BLOD			NA	30	
Dibromochlorometha	ane	ND	10.0	ug/L		BLOD			NA	30	
Dibromomethane		ND	20.0	ug/L		BLOD			NA	30	
Dichlorodifluorometh	nane	ND	20.0	ug/L		BLOD			NA	30	
Di-isopropyl ether (D	DIPE)	ND	100	ug/L		BLOD			NA	30	
Ethylbenzene		ND	20.0	ug/L		BLOD			NA	30	
Hexachlorobutadien	e	ND	16.0	ug/L		BLOD			NA	30	
lodomethane		ND	200	ug/L		BLOD			NA	30	
Isopropylbenzene		ND	20.0	ug/L		BLOD			NA	30	
m+p-Xylenes		ND	40.0	ug/L		BLOD			NA	30	
Methylene chloride		ND	80.0	ug/L		BLOD			NA	30	
Methyl-t-butyl ether ((MTBE)	ND	20.0	ug/L		BLOD			NA	30	
Naphthalene		ND	20.0	ug/L		BLOD			NA	30	
n-Butylbenzene		ND	20.0	ug/L		BLOD			NA	30	
n-Propylbenzene		ND	20.0	ug/L		BLOD			NA	30	
o-Xylene		ND	20.0	ug/L		BLOD			NA	30	
sec-Butylbenzene		ND	20.0	ug/L		BLOD			NA	30	
Styrene		ND	20.0	ug/L		BLOD			NA	30	
tert-Butylbenzene		ND	20.0	ug/L		BLOD			NA	30	
Tetrachloroethylene	(PCE)	ND	20.0	ug/L		BLOD			NA	30	
Toluene		ND	20.0	ug/L		BLOD			NA	30	
trans-1,2-Dichloroeth	hylene	ND	20.0	ug/L		BLOD			NA	30	
trans-1,3-Dichloropro	opene	ND	20.0	ug/L		BLOD			NA	30	

			<u>Ce</u>	ertificate o	of Analysis	<u>s</u>				
Client Name: SCS	S Engineers-Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.: 202	23 City of Bristol Landfill L	eachate								
	nifer Robb									
		,	lalatila Ora	uonio Compoundo I	by GCMS - Quality	Control				
		N N	/olatile Org			Control				
				Enthalpy A	nalytical					
				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGL0524 - SW503	0B-MS								
Duplicate (BGL0524-DUP1)	Sourc	e: 23L0444-0	1	Prepared & Anal	yzed: 12/13/2023					
Trichloroethylene	ND	20.0	ug/L		BLOD			NA	30	
Trichlorofluoromethane	ND	20.0	ug/L		BLOD			NA	30	
Vinyl acetate	ND	200	ug/L		BLOD			NA	30	
Vinyl chloride	ND	10.0	ug/L		BLOD			NA	30	
Xylenes, Total	ND	60.0	ug/L		BLOD			NA	30	
Tetrahydrofuran	ND	200	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroethane-d-	4 (Surr) 47.1		ug/L	50.0		94.1	70-120			
Surr: 4-Bromofluorobenzen	e (Surr) 47.6		ug/L	50.0		95.2	75-120			
Surr: Dibromofluoromethan	e (Surr) 47.9		ug/L	50.0		95.8	70-130			
Surr: Toluene-d8 (Surr)	49.0		ug/L	50.0		98.0	70-130			
Matrix Spike (BGL0524-MS1)	Sourc	e: 23L0444-0	1	Prepared & Anal	yzed: 12/13/2023					
1,1,1,2-Tetrachloroethane	48.1	0.4	ug/L	50.0	BLOD	96.2	80-130			
1,1,1-Trichloroethane	49.5	1	ug/L	50.0	BLOD	99.1	65-130			
1,1,2,2-Tetrachloroethane	47.3	0.4	ug/L	50.0	BLOD	94.6	65-130			
1,1,2-Trichloroethane	48.9	1	ug/L	50.0	BLOD	97.8	75-125			
1,1-Dichloroethane	46.9	1	ug/L	50.0	BLOD	93.7	70-135			
1,1-Dichloroethylene	50.8	1	ug/L	50.0	BLOD	102	50-145			
1,1-Dichloropropene	51.8	1	ug/L	50.0	BLOD	104	75-135			
1,2,3-Trichlorobenzene	48.2	1	ug/L	50.0	BLOD	96.5	55-140			
1,2,3-Trichloropropane	46.2	1	ug/L	50.0	BLOD	92.3	75-125			
1,2,4-Trichlorobenzene	49.7	1	ug/L	50.0	BLOD	99.3	65-135			
1,2,4-Trimethylbenzene	50.4	1	ug/L	50.0	BLOD	101	75-130			
1,2-Dibromo-3-chloropropa	ne (DBCP) 46.2	1	ug/L	50.0	BLOD	92.5	50-130			
1,2-Dibromoethane (EDB)	47.5	1	ug/L	50.0	BLOD	94.9	80-120			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0524 - SW5030B-MS Matrix Spike (BGL0524-MS1) Prepared & Analyzed: 12/13/2023 Source: 23L0444-01 49.9 99.9 1.2-Dichlorobenzene 0.5 ug/L 50.0 BLOD 70-120 1.2-Dichloroethane 46.5 1 ug/L 50.0 BLOD 93.1 70-130 0.5 50.0 BLOD 75-125 1,2-Dichloropropane 46.7 ug/L 93.4 49.0 1 50.0 BLOD 98.0 75-124 1,3,5-Trimethylbenzene ug/L 1.3-Dichlorobenzene 50.6 1 ug/L 50.0 BI OD 101 75-125 1 BI OD 92.3 75-125 1,3-Dichloropropane 46.1 ug/L 50.0 1,4-Dichlorobenzene 49.2 1 ug/L 50.0 BI OD 98.5 75-125 50.7 1 BLOD 101 70-135 2,2-Dichloropropane ug/L 50.0 BLOD 77.3 30-150 2-Butanone (MEK) 40.2 10 ug/L 50.0 51.0 1 50.0 BLOD 102 75-125 2-Chlorotoluene ua/L 2-Hexanone (MBK) 45.3 5 50.0 BLOD 90.6 55-130 ug/L 4-Chlorotoluene 49.9 1 ug/L 50.0 BLOD 99.8 75-130 53.1 1 50.0 BLOD 106 75-130 4-Isopropyltoluene ug/L 5 45.2 BLOD 60-135 4-Methyl-2-pentanone (MIBK) ug/L 50.0 90.4 40.9 10 50.0 BI OD 40-140 Acetone ug/L 81.8 46.2 1 BLOD 92.5 80-120 Benzene ug/L 50.0 Bromobenzene 50.2 1 ug/L 50.0 BLOD 100 75-125 42.8 1 50.0 BLOD 85.6 65-130 Bromochloromethane ug/L Bromodichloromethane 50.6 0.5 50.0 BLOD 101 75-136 ug/L Bromoform 47.3 1 ug/L 50.0 BLOD 94.6 70-130 Bromomethane 35.2 1 50.0 BLOD 70.4 30-145 ug/L Carbon disulfide 48.1 10 ug/L 50.0 BI OD 96.2 35-160 59.0 1 BLOD 118 65-140 Carbon tetrachloride ug/L 50.0 Chlorobenzene 50.8 1 ug/L 50.0 BI OD 102 80-120 1 ug/L 99.7 Chloroethane 49.9 50.0 BLOD 60-135

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0524 - SW5030B-MS Matrix Spike (BGL0524-MS1) Prepared & Analyzed: 12/13/2023 Source: 23L0444-01 45.8 BLOD Chloroform 0.5 ug/L 50.0 91.5 65-135 Chloromethane 43.3 1 ug/L 50.0 BLOD 86.6 40-125 50.0 BLOD 89.5 70-125 cis-1,2-Dichloroethylene 44.8 1 ug/L cis-1.3-Dichloropropene 47.5 1 50.0 BLOD 95.0 47-136 ug/L 0.5 Dibromochloromethane 49.3 ug/L 50.0 BI OD 98.5 60-135 Dibromomethane 47.9 1 BI OD 75-125 ug/L 50.0 95.7 Dichlorodifluoromethane 534 1 ug/L 50.0 BI OD 107 30-155 52.2 1 BLOD 104 75-125 Ethvlbenzene ug/L 50.0 BLOD Hexachlorobutadiene 53.2 0.8 ug/L 50.0 106 50-140 Isopropylbenzene 50.0 1 50.0 BLOD 100 75-125 ua/L m+p-Xylenes 106 2 ug/L 100 BLOD 106 75-130 Methylene chloride 48.5 4 ug/L 50.0 BLOD 95.5 55-140 Methyl-t-butyl ether (MTBE) 42.5 1 50.0 BLOD 85.0 65-125 ug/L 47.4 BLOD 55-140 Naphthalene 1 ug/L 50.0 94.7 n-Butylbenzene 52.6 1 50.0 BI OD 105 70-135 ug/L 52.0 1 50.0 BLOD 104 70-130 n-Propylbenzene ug/L o-Xylene 51.2 1 ug/L 50.0 BLOD 102 80-120 56.6 1 50.0 BLOD 70-125 sec-Butylbenzene ug/L 113 47.2 1 50.0 BLOD 94.3 65-135 Styrene ug/L BLOD tert-Butylbenzene 51.9 1 ug/L 50.0 104 70-130 Tetrachloroethylene (PCE) 58.0 1 50.0 BLOD 116 51-231 ug/L Toluene 50.3 1 ug/L 50.0 BI OD 101 75-120 trans-1,2-Dichloroethylene 45.4 1 BI OD 90.9 60-140 ug/L 50.0 trans-1,3-Dichloropropene 50.2 1 ug/L 50.0 BI OD 100 55-140 52.1 1 Trichloroethylene ug/L 50.0 BLOD 104 70-125

				<u>Ce</u>	ertificate o	of Analysi	is				
Client Name: SC	CS Engineers-	Winchester						Date Issue	d:	1/9/2024	2:11:39PM
Client Site I.D.: 20	023 City of Bri	stol Landfill L	eachate								
	nnifer Robb										
			Ň	/olatile Ora	anic Compounds	by GCMS - Qualit	ty Control				
			•			-	ly control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BG	L0524 - SW503	0B-MS								
Matrix Spike (BGL0524-MS1	1)	Sourc	e: 23L0444-0	1	Prepared & Anal	yzed: 12/13/2023	i				
Trichlorofluoromethane		62.4	1	ug/L	50.0	BLOD	125	60-145			
Vinyl chloride		54.7	0.5	ug/L	50.0	BLOD	109	50-145			
Surr: 1,2-Dichloroethane-	d4 (Surr)	44.9		ug/L	50.0		89.7	70-120			
Surr: 4-Bromofluorobenze	ene (Surr)	49.0		ug/L	50.0		98.1	75-120			
Surr: Dibromofluorometha	ane (Surr)	47.9		ug/L	50.0		95.9	70-130			
Surr: Toluene-d8 (Surr)		49.0		ug/L	50.0		98.1	70-130			
	Batch BG	L0544 - SW503	0B-MS								
Blank (BGL0544-BLK1)					Prepared & Anal	yzed: 12/13/2023					
2-Butanone (MEK)		ND	10.0	ug/L							
Acetone		ND	10.0	ug/L							
Benzene		ND	1.00	ug/L							
Ethylbenzene		ND	1.00	ug/L							
Toluene		ND	1.00	ug/L							
Xylenes, Total		ND	3.00	ug/L							
Tetrahydrofuran		ND	10.0	ug/L							
Surr: 1,2-Dichloroethane-	. ,	44.8		ug/L	50.0		89.6	70-120			
Surr: 4-Bromofluorobenze	. ,	49.4		ug/L	50.0		98.8	75-120			
Surr: Dibromofluorometha	ane (Surr)	44.2		ug/L	50.0		88.4	70-130			
Surr: Toluene-d8 (Surr)		48.8		ug/L	50.0		97.6	70-130			
LCS (BGL0544-BS1)						yzed: 12/13/2023					
1,1,1,2-Tetrachloroethane)	48.7	0.4	ug/L	50.0		97.4	80-130			
1,1,1-Trichloroethane		48.3	1	ug/L	50.0		96.7	65-130			
1,1,2,2-Tetrachloroethane)	41.1	0.4	ug/L	50.0		82.2	65-130			

				Cer	tificate o	of Analysi	is				
Client Name:	SCS Engineers	s-Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of B	ristol I andfill I	eachate								
	2		ouonato								
Submitted To:	Jennifer Robb										
			١	/olatile Orgar	nic Compounds I	by GCMS - Qualit	ty Control				
					Enthalpy A	nalytical					
					Spike	Source		%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch B	GL0544 - SW503	0B-MS								
LCS (BGL0544-BS1)				F	Prepared & Anal	yzed: 12/13/2023					
1,1,2-Trichloroethar	าย	45.3	1	ug/L	50.0		90.6	75-125			
1,1-Dichloroethane		46.6	1	ug/L	50.0		93.3	70-135			
1,1-Dichloroethylen	e	44.3	1	ug/L	50.0		88.6	70-130			
1,1-Dichloropropene	e	53.0	1	ug/L	50.0		106	75-135			
1,2,3-Trichlorobenze	ene	38.5	1	ug/L	50.0		77.0	55-140			
1,2,3-Trichloropropa	ane	41.3	1	ug/L	50.0		82.7	75-125			
1,2,4-Trichlorobenze	ene	44.0	1	ug/L	50.0		87.9	65-135			
1,2,4-Trimethylbenz	zene	50.1	1	ug/L	50.0		100	75-130			
1,2-Dibromo-3-chlor	ropropane (DBCP)	35.0	1	ug/L	50.0		70.0	50-130			
1,2-Dibromoethane	(EDB)	47.3	1	ug/L	50.0		94.6	80-120			
1,2-Dichlorobenzen	e	48.0	0.5	ug/L	50.0		95.9	70-120			
1,2-Dichloroethane		40.8	1	ug/L	50.0		81.5	70-130			
1,2-Dichloropropane	е	49.2	0.5	ug/L	50.0		98.3	75-125			
1,3,5-Trimethylbenz	zene	48.2	1	ug/L	50.0		96.4	75-125			
1,3-Dichlorobenzen	e	48.8	1	ug/L	50.0		97.5	75-125			
1,3-Dichloropropane	e	44.7	1	ug/L	50.0		89.4	75-125			
1,4-Dichlorobenzen	e	48.1	1	ug/L	50.0		96.3	75-125			
2,2-Dichloropropane	e	51.6	1	ug/L	50.0		103	70-135			
2-Butanone (MEK)		35.4	10	ug/L	50.0		70.7	30-150			
2-Chlorotoluene		49.0	1	ug/L	50.0		98.0	75-125			
2-Hexanone (MBK)		38.4	5	ug/L	50.0		76.9	55-130			
4-Chlorotoluene		49.8	1	ug/L	50.0		99.6	75-130			
4-Isopropyltoluene		53.9	1	ug/L	50.0		108	75-130			
4-Methyl-2-pentano	ne (MIBK)	37.2	5	ug/L	50.0		74.4	60-135			
Acetone		32.6	10	ug/L	50.0		65.2	40-140			

			Cer	tificate c	of Analysi	is				
Client Name: S	CS Engineers-Winchester				-		Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of Bristol Landfill Le	achate								
	ennifer Robb									
Submitted 10. J										
		,	Volatile Organ	ic Compounds I	oy GCMS - Quali	ty Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL0544 - SW5030	B-MS								
LCS (BGL0544-BS1)			F	Prepared & Anal	/zed: 12/13/2023	3				
Benzene	49.6	1	ug/L	50.0		99.2	80-120			
Bromobenzene	49.8	1	ug/L	50.0		99.5	75-125			
Bromochloromethane	43.9	1	ug/L	50.0		87.8	65-130			
Bromodichloromethane	46.5	0.5	ug/L	50.0		92.9	75-120			
Bromoform	43.7	1	ug/L	50.0		87.4	70-130			
Bromomethane	31.1	1	ug/L	50.0		62.2	30-145			
Carbon disulfide	43.1	10	ug/L	50.0		86.2	35-160			
Carbon tetrachloride	55.9	1	ug/L	50.0		112	65-140			
Chlorobenzene	50.7	1	ug/L	50.0		101	80-120			
Chloroethane	45.8	1	ug/L	50.0		91.6	60-135			
Chloroform	42.8	0.5	ug/L	50.0		85.5	65-135			
Chloromethane	36.3	1	ug/L	50.0		72.6	40-125			
cis-1,2-Dichloroethylene		1	ug/L	50.0		90.6	70-125			
cis-1,3-Dichloropropene		1	ug/L	50.0		101	70-130			
Dibromochloromethane	46.6	0.5	ug/L	50.0		93.3	60-135			
Dibromomethane	44.6	1	ug/L	50.0		89.1	75-125			
Dichlorodifluoromethan	e 42.3	1	ug/L	50.0		84.6	30-155			
Ethylbenzene	50.5	1	ug/L	50.0		101	75-125			
Hexachlorobutadiene	54.9	0.8	ug/L	50.0		110	50-140			
Isopropylbenzene	49.1	1	ug/L	50.0		98.2	75-125			
m+p-Xylenes	101	2	ug/L	100		101	75-130			
Methylene chloride	39.6	4	ug/L	50.0		79.2	55-140			
Methyl-t-butyl ether (MT	BE) 41.8	1	ug/L	50.0		83.6	65-125			
Naphthalene	37.0	1	ug/L	50.0		73.9	55-140			
n-Butylbenzene	55.2	1	ug/L	50.0		110	70-135			

			Ce	ertificate o	of Analysi	is				
Client Name: SCS E	ngineers-Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.: 2023	City of Bristol Landfill Le	eachate								
Submitted To: Jennife	er Robb									
		,	/alatila Orm	anic Compounds I		hy Control				
			volatile Org		-	ty Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL0544 - SW5030	B-MS								
LCS (BGL0544-BS1)				Prepared & Anal	vzed: 12/13/2023					
n-Propylbenzene	51.6	1	ug/L	50.0	,,,,	103	70-130			
o-Xylene	50.0	1	ug/L	50.0		100	80-120			
sec-Butylbenzene	58.7	1	ug/L	50.0		117	70-125			
Styrene	49.0	1	ug/L	50.0		98.1	65-135			
tert-Butylbenzene	53.0	1	ug/L	50.0		106	70-130			
Tetrachloroethylene (PCE)	57.2	1	ug/L	50.0		114	45-150			
Toluene	50.6	1	ug/L	50.0		101	75-120			
trans-1,2-Dichloroethylene	42.6	1	ug/L	50.0		85.2	60-140			
trans-1,3-Dichloropropene	53.8	1	ug/L	50.0		108	55-140			
Trichloroethylene	51.8	1	ug/L	50.0		104	70-125			
Trichlorofluoromethane	57.7	1	ug/L	50.0		115	60-145			
Vinyl chloride	45.6	0.5	ug/L	50.0		91.3	50-145			
Surr: 1,2-Dichloroethane-d4 (S	urr) 44.7		ug/L	50.0		89.5	70-120			
Surr: 4-Bromofluorobenzene (S	Surr) 49.4		ug/L	50.0		98.9	75-120			
Surr: Dibromofluoromethane (S	Surr) 44.0		ug/L	50.0		87.9	70-130			
Surr: Toluene-d8 (Surr)	49.0		ug/L	50.0		98.1	70-130			
Duplicate (BGL0544-DUP1)	Source	23L0583-0)2	Prepared & Anal	yzed: 12/13/2023	i				
1,1,1,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,1-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,2-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0544 - SW5030B-MS Duplicate (BGL0544-DUP1) Source: 23L0583-02 Prepared & Analyzed: 12/13/2023 ug/L 1.2.3-Trichlorobenzene ND 1.00 BLOD NA 30 1,2,3-Trichloropropane ND 1.00 ug/L BLOD NA 30 BLOD 1,2,4-Trichlorobenzene ND 1.00 ug/L NA 30 1,2,4-Trimethylbenzene BLOD 30 ND 1.00 ug/L NA 1,2-Dibromo-3-chloropropane (DBCP) ND 1.00 ug/L BI OD NA 30 1,2-Dibromoethane (EDB) BLOD ND 1.00 ug/L NA 30 1.2-Dichlorobenzene ND 0.50 ug/L BI OD NA 30 BLOD 1.2-Dichloroethane ND 1.00 ua/L NA 30 BLOD 1,2-Dichloropropane ND 0.50 ug/L NA 30 BLOD 30 1,3,5-Trimethylbenzene ND 1.00 ua/L NA 1,3-Dichlorobenzene ND 1.00 BLOD NA 30 ug/L 1,3-Dichloropropane ND 1.00 ug/L BLOD NA 30 1.4-Dichlorobenzene ND 1.00 BLOD 30 ug/L NA BLOD 2,2-Dichloropropane ND 1.00 ug/L NA 30 BLOD 30 2-Butanone (MEK) ND 10.0 ug/L NA BLOD 2-Chlorotoluene ND 1.00 ug/L NA 30 2-Hexanone (MBK) ND 5.00 ug/L BLOD NA 30 BLOD 30 4-Chlorotoluene ND 1.00 ug/L NA ND 1.00 BLOD 30 4-Isopropyltoluene ug/L NA BLOD 30 4-Methyl-2-pentanone (MIBK) ND 5.00 ug/L NA 10.0 BLOD 30 Acetone ND ug/L NA Benzene ND 1.00 ug/L BLOD NA 30 BLOD Bromobenzene ND 1.00 ug/L NA 30 Bromochloromethane ND 1.00 ug/L BI OD NA 30 Bromodichloromethane ND 0.50 ug/L BLOD NA 30

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** RPD Spike Source %REC Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0544 - SW5030B-MS Duplicate (BGL0544-DUP1) Source: 23L0583-02 Prepared & Analyzed: 12/13/2023 ug/L BLOD Bromoform ND 1.00 NA 30 Bromomethane ND 1.00 ug/L BLOD NA 30 BLOD Carbon disulfide ND 10.0 ug/L NA 30 Carbon tetrachloride ND BLOD 30 1.00 ug/L NA BI OD Chlorobenzene ND 1.00 ug/L NA 30 Chloroethane BLOD ND 1.00 ug/L NA 30 Chloroform ND 0.50 ug/L BI OD NA 30 Chloromethane BLOD ND 1.00 ua/L NA 30 BLOD cis-1,2-Dichloroethylene ND 1.00 ug/L NA 30 ND 1.00 BLOD 30 cis-1,3-Dichloropropene ua/L NA Dibromochloromethane ND 0.50 ug/L BLOD NA 30 Dibromomethane ND 1.00 ug/L BLOD NA 30 Dichlorodifluoromethane ND 1.00 BLOD 30 ug/L NA BLOD Di-isopropyl ether (DIPE) ND 5.00 ug/L NA 30 Ethylbenzene ND BI OD 30 1.00 ug/L NA Hexachlorobutadiene BLOD 30 ND 0.80 ug/L NA lodomethane ND 10.0 ug/L BLOD NA 30 BLOD 30 Isopropylbenzene ND 1.00 ug/L NA ND 2.00 BLOD 30 m+p-Xylenes ug/L NA BLOD 30 Methylene chloride ND 4.00 ug/L NA Methyl-t-butyl ether (MTBE) 1.00 BLOD 30 ND ug/L NA Naphthalene ND 1.00 ug/L BI OD NA 30 BLOD n-Butylbenzene ND 1.00 ug/L NA 30 n-Propylbenzene ND 1.00 ug/L BI OD NA 30 ND o-Xylene 1.00 ug/L BLOD NA 30

			<u>Ce</u>	ertificate o	of Analysis	<u>s</u>				
Client Name: S	CS Engineers-Winchest	er			-		Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.: 2	2023 City of Bristol Landf	ill Leachate								
	ennifer Robb									
		,	lalatila Ora	ania Compounda	by GCMS - Quality	Control				
		Ň	/olatile Org	•		Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL0544 - SW	5030B-MS								
Duplicate (BGL0544-DUP1	l) So	ource: 23L0583-0	2	Prepared & Anal	yzed: 12/13/2023					
sec-Butylbenzene	ND	1.00	ug/L		BLOD			NA	30	
Styrene	ND	1.00	ug/L		BLOD			NA	30	
tert-Butylbenzene	ND	1.00	ug/L		BLOD			NA	30	
Tetrachloroethylene (PC	E) ND	1.00	ug/L		BLOD			NA	30	
Toluene	3.54	1.00	ug/L		3.01			16.2	30	
trans-1,2-Dichloroethyle	ne ND	1.00	ug/L		BLOD			NA	30	
trans-1,3-Dichloroprope	ne ND	1.00	ug/L		BLOD			NA	30	
Trichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
Trichlorofluoromethane	ND	1.00	ug/L		BLOD			NA	30	
Vinyl acetate	ND	10.0	ug/L		BLOD			NA	30	
Vinyl chloride	ND	0.50	ug/L		BLOD			NA	30	
Xylenes, Total	ND	3.00	ug/L		BLOD			NA	30	
Tetrahydrofuran	ND	10.0	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroethan	e-d4 (Surr) 46.4		ug/L	50.0		92.9	70-120			
Surr: 4-Bromofluoroben	zene (Surr) 49.2		ug/L	50.0		98.3	75-120			
Surr: Dibromofluoromet	hane (Surr) 43.5		ug/L	50.0		87.0	70-130			
Surr: Toluene-d8 (Surr)	49.5		ug/L	50.0		99.0	70-130			
Matrix Spike (BGL0544-M	S1) So	ource: 23L0497-0	1	Prepared & Anal	yzed: 12/13/2023					
1,1,1,2-Tetrachloroethar	ne 48.5	0.4	ug/L	50.0	BLOD	97.0	80-130			
1,1,1-Trichloroethane	48.9	1	ug/L	50.0	BLOD	97.8	65-130			
1,1,2,2-Tetrachloroethar	ne 42.6	0.4	ug/L	50.0	BLOD	85.1	65-130			
1,1,2-Trichloroethane	45.3	1	ug/L	50.0	BLOD	90.6	75-125			
1,1-Dichloroethane	46.9	1	ug/L	50.0	BLOD	93.8	70-135			
1,1-Dichloroethylene	44.9	1	ug/L	50.0	BLOD	89.9	50-145			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0544 - SW5030B-MS Matrix Spike (BGL0544-MS1) Prepared & Analyzed: 12/13/2023 Source: 23L0497-01 54.2 1,1-Dichloropropene 1 ug/L 50.0 BLOD 108 75-135 1,2,3-Trichlorobenzene 42.3 1 ug/L 50.0 BLOD 84.5 55-140 42.6 50.0 BLOD 75-125 1,2,3-Trichloropropane 1 ug/L 85.2 48.0 1 50.0 BLOD 96.0 65-135 1.2.4-Trichlorobenzene ug/L 1,2,4-Trimethylbenzene 52.3 1 ug/L 50.0 BI OD 105 75-130 37.4 1 BI OD 74 9 50-130 1,2-Dibromo-3-chloropropane (DBCP) ug/L 50.0 1.2-Dibromoethane (EDB) 47.0 1 ug/L 50.0 BI OD 94.0 80-120 48.8 0.5 BLOD 97.5 70-120 1.2-Dichlorobenzene ua/L 50.0 BLOD 82.7 70-130 1.2-Dichloroethane 41.3 1 ug/L 50.0 49.2 0.5 50.0 BLOD 98.3 75-125 1,2-Dichloropropane ua/L 1,3,5-Trimethylbenzene 50.5 1 50.0 BLOD 101 75-124 ug/L 1.3-Dichlorobenzene 50.2 1 ug/L 50.0 BLOD 100 75-125 1,3-Dichloropropane 45.9 1 50.0 BLOD 91.8 75-125 ug/L 50.3 BLOD 75-125 1.4-Dichlorobenzene 1 ug/L 50.0 101 2,2-Dichloropropane 53.3 1 50.0 BI OD 107 70-135 ug/L 33.8 10 BLOD 30-150 2-Butanone (MEK) ug/L 50.0 67.6 2-Chlorotoluene 50.0 1 ug/L 50.0 BLOD 100 75-125 41.5 5 50.0 BLOD 83.0 55-130 2-Hexanone (MBK) ug/L 4-Chlorotoluene 52.5 1 50.0 BLOD 105 75-130 ug/L BLOD 75-130 4-Isopropyltoluene 57.4 1 ug/L 50.0 115 4-Methyl-2-pentanone (MIBK) 39.6 5 50.0 BLOD 79.3 60-135 ug/L Acetone 33.3 10 ug/L 50.0 BI OD 66.5 40-140 1 BLOD 99.4 80-120 Benzene 49.7 ug/L 50.0 Bromobenzene 49.7 1 ug/L 50.0 BI OD 99.5 75-125 43.9 1 87.8 Bromochloromethane ug/L 50.0 BLOD 65-130

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0544 - SW5030B-MS Matrix Spike (BGL0544-MS1) Prepared & Analyzed: 12/13/2023 Source: 23L0497-01 75-136 46.3 BLOD 92.6 Bromodichloromethane 0.5 ug/L 50.0 Bromoform 44.7 1 ug/L 50.0 BLOD 89.5 70-130 32.8 1 50.0 BLOD 30-145 Bromomethane ug/L 65.6 Carbon disulfide 41.1 10 50.0 BLOD 82.2 35-160 ug/L BI OD Carbon tetrachloride 57.2 1 ug/L 50.0 114 65-140 Chlorobenzene 50.1 1 BI OD 100 80-120 ug/L 50.0 Chloroethane 46.1 1 ug/L 50.0 BI OD 92.2 60-135 Chloroform 42.9 0.5 BLOD 85.8 65-135 ua/L 50.0 BLOD 40-125 Chloromethane 37.0 1 ug/L 50.0 74.0 45.7 1 50.0 BLOD 91.4 70-125 cis-1,2-Dichloroethylene ua/L cis-1,3-Dichloropropene 49.9 1 ug/L 50.0 BLOD 99.9 47-136 Dibromochloromethane 46.7 0.5 ug/L 50.0 BLOD 93.5 60-135 Dibromomethane 44.7 1 50.0 BI OD 89.4 75-125 ug/L Dichlorodifluoromethane 45.3 50.0 BLOD 30-155 1 ug/L 90.5 Ethvlbenzene 51.6 1 50.0 BI OD 103 75-125 ug/L Hexachlorobutadiene 57.6 0.8 50.0 BLOD 50-140 ug/L 115 Isopropylbenzene 50.4 1 ug/L 50.0 BLOD 101 75-125 104 2 BLOD 104 75-130 m+p-Xylenes ug/L 100 Methylene chloride 39.3 4 50.0 BLOD 78.7 55-140 ug/L 1 BLOD 65-125 Methyl-t-butyl ether (MTBE) 42.5 ug/L 50.0 84.9 Naphthalene 41.5 1 50.0 BLOD 83.0 55-140 ug/L n-Butylbenzene 58.1 1 ug/L 50.0 BI OD 116 70-135 n-Propylbenzene 54.0 1 BI OD 70-130 ug/L 50.0 108 o-Xylene 51.3 1 ug/L 50.0 BI OD 103 80-120 1 123 sec-Butylbenzene 61.3 ug/L 50.0 BLOD 70-125

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0544 - SW5030B-MS Matrix Spike (BGL0544-MS1) Prepared & Analyzed: 12/13/2023 Source: 23L0497-01 48.9 BLOD 97.8 Styrene 1 ug/L 50.0 65-135 tert-Butylbenzene 55.1 1 ug/L 50.0 BLOD 110 70-130 58.4 50.0 BLOD 51-231 Tetrachloroethylene (PCE) 1 ug/L 117 Toluene 51.5 1 50.0 BLOD 103 75-120 ug/L trans-1,2-Dichloroethylene 43.1 1 ug/L 50.0 BI OD 86.2 60-140 53 4 1 BLOD 55-140 trans-1,3-Dichloropropene ug/L 50.0 107 Trichloroethylene 52.6 1 ug/L 50.0 BI OD 105 70-125 Trichlorofluoromethane 59.5 1 BLOD 119 60-145 ug/L 50.0 Vinyl chloride 46.4 0.5 ug/L 50.0 BLOD 92.8 50-145 Surr: 1,2-Dichloroethane-d4 (Surr) 45 2 50.0 90.4 70-120 ug/L 49.0 50.0 97.9 75-120 Surr: 4-Bromofluorobenzene (Surr) ug/L Surr: Dibromofluoromethane (Surr) 50.0 90.2 70-130 45.1 ug/L Surr: Toluene-d8 (Surr) 48.4 ug/L 50.0 96.7 70-130 Batch BGL0599 - SW5030B-MS Blank (BGL0599-BLK1) Prepared & Analyzed: 12/14/2023 2-Butanone (MEK) ND 10.0 ug/L ND Acetone 10.0 ug/L Benzene ND 1.00 ug/L ND 1.00 Ethylbenzene ug/L Toluene ND 1.00 ug/L ND 3.00 Xylenes, Total ug/L Tetrahydrofuran ND 10.0 ug/L Surr: 1,2-Dichloroethane-d4 (Surr) 45.7 50.0 91.3 70-120 ug/L

Page 43 of 88

				<u>Cer</u>	tificate o	of Analysi	is				
Client Name:	SCS Engineers	s-Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 Citv of B	ristol Landfill Le	achate								
Submitted To:	Jennifer Robb										
Submitted 10.											
			```	/olatile Organ	ic Compounds	by GCMS - Qualit	ty Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B(	GL0599 - SW5030		0					2		
Blank (BGL0599-BLK1)		320333 - 3773030	D-1413	F	Prenared & Anal	yzed: 12/14/2023					
Surr: 4-Bromofluorob		49.2		ug/L	50.0	yzcu. 12/14/2020	98.3	75-120			
Surr: Dibromofluorom	. ,	49.2 44.2		ug/L ug/L	50.0		98.5 88.5	70-130			
Surr: Toluene-d8 (Su		44.2 48.7		ug/L ug/L	50.0		97.4	70-130 70-130			
	<i>(1)</i>	40.7		-		vad. 10/11/2002		70-130			
LCS (BGL0599-BS1)	hana	44.2	0.4		-	yzed: 12/14/2023		80-130			
1,1,1,2-Tetrachloroeth			0.4	ug/L	50.0 50.0		88.3				
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroeth		45.3 38.7	0.4	ug/L ug/L	50.0 50.0		90.6 77.3	65-130 65-130			
1,1,2-Trichloroethane		42.5	0.4	ug/L ug/L	50.0		85.0	75-125			
1.1-Dichloroethane	;	45.1	1	ug/L ug/L	50.0 50.0		90.3	70-135			
1,1-Dichloroethylene		40.0	1	ug/L	50.0		80.1	70-130			
1,1-Dichloropropene		40.0	1	ug/L	50.0		95.8	75-135			
1,2,3-Trichlorobenzer	20	34.6	1	ug/L	50.0		69.3	55-140			
1,2,3-Trichloropropan		38.5	1	ug/L	50.0		77.0	75-125			
1,2,4-Trichlorobenzer		39.4	1	ug/L	50.0		78.7	65-135			
1,2,4-Trimethylbenze		44.6	1	ug/L	50.0		89.3	75-130			
1,2-Dibromo-3-chloro		33.0	1	ug/L	50.0		66.0	50-130			
1,2-Dibromoethane (	,	43.6	1	ug/L	50.0		87.2	80-120			
1,2-Dichlorobenzene		43.2	0.5	ug/L	50.0		86.4	70-120			
1,2-Dichloroethane		40.9	0.0	ug/L	50.0		81.7	70-120			
1,2-Dichloropropane		45.1	0.5	ug/L	50.0		90.2	75-125			
1,3,5-Trimethylbenze	ne	42.8	0.0	ug/L	50.0		85.5	75-125			
1,3-Dichlorobenzene		44.0	1	ug/L	50.0		88.0	75-125			
1,3-Dichloropropane		42.7	1	ug/L	50.0		85.4	75-125			
1,4-Dichlorobenzene		43.8	1	ug/L	50.0		87.6	75-125			



			Ce	rtificate o	of Analysi	is				
Client Name:	SCS Engineers-Winches	ter					Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of Bristol Land	fill Leachate								
	•									
Submitted To:	Jennifer Robb									
		·	Volatile Orga	nic Compounds	by GCMS - Quali	ty Control				
				Enthalpy A	nalytical					
				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGL0599 - SV	/5030B-MS								
LCS (BGL0599-BS1)				Prepared & Anal	yzed: 12/14/2023	3				
2,2-Dichloropropane	e 48.8	1	ug/L	50.0	•	97.7	70-135			
2-Butanone (MEK)	30.1	10	ug/L	50.0		60.2	30-150			
2-Chlorotoluene	43.2	1	ug/L	50.0		86.4	75-125			
2-Hexanone (MBK)	33.9	5	ug/L	50.0		67.8	55-130			
4-Chlorotoluene	45.0	1	ug/L	50.0		90.1	75-130			
4-Isopropyltoluene	47.2	1	ug/L	50.0		94.4	75-130			
4-Methyl-2-pentanor	ne (MIBK) 34.1	5	ug/L	50.0		68.2	60-135			
Acetone	29.5	10	ug/L	50.0		59.0	40-140			
Benzene	44.9	1	ug/L	50.0		89.7	80-120			
Bromobenzene	43.7	1	ug/L	50.0		87.4	75-125			
Bromochloromethan	ne 43.6	1	ug/L	50.0		87.3	65-130			
Bromodichlorometha	ane 43.2	0.5	ug/L	50.0		86.3	75-120			
Bromoform	41.0	1	ug/L	50.0		82.1	70-130			
Bromomethane	31.3	1	ug/L	50.0		62.6	30-145			
Carbon disulfide	36.1	10	ug/L	50.0		72.2	35-160			
Carbon tetrachloride	e 48.2	1	ug/L	50.0		96.4	65-140			
Chlorobenzene	44.4	1	ug/L	50.0		88.8	80-120			
Chloroethane	45.2	1	ug/L	50.0		90.5	60-135			
Chloroform	41.3	0.5	ug/L	50.0		82.7	65-135			
Chloromethane	33.8	1	ug/L	50.0		67.6	40-125			
cis-1,2-Dichloroethy		1	ug/L	50.0		86.5	70-125			
cis-1,3-Dichloroprop	bene 47.2	1	ug/L	50.0		94.3	70-130			
Dibromochlorometha		0.5	ug/L	50.0		87.2	60-135			
Dibromomethane	42.8	1	ug/L	50.0		85.5	75-125			
Dichlorodifluorometh	hane 38.0	1	ug/L	50.0		76.0	30-155			



			Cer	tificate o	of Analysi	is				
Client Name: SC	S Engineers-Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.: 20	23 City of Bristol Landfill L	eachate								
	nnifer Robb									
Submitted ID. Jei										
		\	Volatile Organ	ic Compounds I	oy GCMS - Qualit	ty Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL0599 - SW5030									
LCS (BGL0599-BS1)	Batch BGL0333 - 3W3030			Prenared & Anal	yzed: 12/14/2023					
Ethylbenzene	43.8	1	ug/L	50.0	y200. 12/14/2020	87.6	75-125			
Hexachlorobutadiene	47.6	0.8	ug/L	50.0		95.1	50-140			
Isopropylbenzene	41.9	1	ug/L	50.0		83.8	75-125			
m+p-Xylenes	88.4	2	ug/L	100		88.4	75-130			
Methylene chloride	38.7	4	ug/L	50.0		77.4	55-140			
Methyl-t-butyl ether (MTB		1	ug/L	50.0		83.9	65-125			
Naphthalene	34.1	1	ug/L	50.0		68.2	55-140			
n-Butylbenzene	47.7	1	ug/L	50.0		95.4	70-135			
n-Propylbenzene	44.8	1	ug/L	50.0		89.6	70-130			
o-Xylene	44.6	1	ug/L	50.0		89.2	80-120			
sec-Butylbenzene	51.2	1	ug/L	50.0		102	70-125			
Styrene	43.2	1	ug/L	50.0		86.4	65-135			
tert-Butylbenzene	45.4	1	ug/L	50.0		90.8	70-130			
Tetrachloroethylene (PCE)		1	ug/L	50.0		96.7	45-150			
Toluene	44.5	1	ug/L	50.0		88.9	75-120			
trans-1,2-Dichloroethylene		1	ug/L	50.0		80.3	60-140			
trans-1,3-Dichloropropene		1	ug/L	50.0		99.6	55-140			
Trichloroethylene	45.9	1	ug/L	50.0		91.9	70-125			
Trichlorofluoromethane	49.8	1	ug/L	50.0		99.6	60-145			
Vinyl chloride	40.5	0.5	ug/L	50.0		81.1	50-145			
Surr: 1,2-Dichloroethane-c	14 (Surr) 47.9		ug/L	50.0		95.8	70-120			
Surr: 4-Bromofluorobenze	. ,		ug/L	50.0		97.2	75-120			
Surr: Dibromofluorometha	ne (Surr) 48.2		ug/L	50.0		96.3	70-130			
Surr: Toluene-d8 (Surr)	49.0		ug/L	50.0		98.0	70-130			



# **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0599 - SW5030B-MS Duplicate (BGL0599-DUP1) Source: 23L0565-06RE1 Prepared & Analyzed: 12/14/2023 1.1.1.2-Tetrachloroethane ND 0.40 ug/L BLOD NA 30 1,1,1-Trichloroethane ND 1.00 ug/L BLOD NA 30 BLOD 1.1.2.2-Tetrachloroethane ND 0.40 ug/L NA 30 1,1,2-Trichloroethane BLOD 30 ND 1.00 ug/L NA 1.1-Dichloroethane ND 1.00 ug/L BLOD NA 30 BLOD 1,1-Dichloroethylene ND 1.00 ua/L NA 30 1,1-Dichloropropene ND 1.00 ug/L BI OD NA 30 BLOD 1.2.3-Trichlorobenzene ND 1.00 ua/L NA 30 BLOD 1,2,3-Trichloropropane ND 1.00 ug/L NA 30 ND BLOD 30 1.2.4-Trichlorobenzene 1.00 ua/L NA 1,2,4-Trimethylbenzene 3.70 1.00 3.82 3.19 30 ug/L 1,2-Dibromo-3-chloropropane (DBCP) ND 1.00 ug/L BLOD NA 30 1,2-Dibromoethane (EDB) ND BLOD 30 1.00 ug/L NA BLOD 1.2-Dichlorobenzene ND 0.50 ug/L NA 30 1.2-Dichloroethane ND BI OD 30 1.00 ug/L NA BLOD 1,2-Dichloropropane ND 0.50 ug/L NA 30 1,3,5-Trimethylbenzene 1.08 1.00 ug/L 1.05 2.82 30 BLOD 30 1,3-Dichlorobenzene ND 1.00 ug/L NA ND 1.00 BLOD 30 1,3-Dichloropropane ug/L NA BLOD 30 1.4-Dichlorobenzene ND 1.00 ug/L NA BLOD 30 2,2-Dichloropropane ND 1.00 ug/L NA 2-Butanone (MEK) ND 10.0 ug/L BLOD NA 30 BLOD 2-Chlorotoluene ND 1.00 ug/L NA 30 2-Hexanone (MBK) ND 5.00 ug/L BI OD NA 30 4-Chlorotoluene ND 1.00 ug/L BLOD NA 30

# Page 47 of 88



				Ce	ertificate of	f Analysi	<u>s</u>				
Client Name:	SCS Engineers-	Winchester					_	Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of Bri	stol I andfill I	eachate								
	Jennifer Robb		Louonato								
Submitted To:	Jennier Robb										
			١	/olatile Org	anic Compounds by	/ GCMS - Qualit	y Control				
					Enthalpy Ana	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGI	L0599 - SW503	0B-MS								
Duplicate (BGL0599-DU			e: 23L0565-0	6RE1	Prepared & Analyz						
4-Isopropyltoluene		ND	1.00	ug/L		BLOD			NA	30	
4-Methyl-2-pentanone	e (MIBK)	ND	5.00	ug/L		BLOD			NA	30	
Acetone		ND	10.0	ug/L		BLOD			NA	30	
Benzene		3.05	1.00	ug/L		3.10			1.63	30	
Bromobenzene		ND	1.00	ug/L		BLOD			NA	30	
Bromochloromethane	9	ND	1.00	ug/L		BLOD			NA	30	
Bromodichloromethar	ne	ND	0.50	ug/L		BLOD			NA	30	
Bromoform		ND	1.00	ug/L		BLOD			NA	30	
Bromomethane		ND	1.00	ug/L		BLOD			NA	30	
Carbon disulfide		ND	10.0	ug/L		BLOD			NA	30	
Carbon tetrachloride		ND	1.00	ug/L		BLOD			NA	30	
Chlorobenzene		ND	1.00	ug/L		BLOD			NA	30	
Chloroethane		ND	1.00	ug/L		BLOD			NA	30	
Chloroform		ND	0.50	ug/L		BLOD			NA	30	
Chloromethane		ND	1.00	ug/L		BLOD			NA	30	
cis-1,2-Dichloroethyle	ene	ND	1.00	ug/L		BLOD			NA	30	
cis-1,3-Dichloroprope	ene	ND	1.00	ug/L		BLOD			NA	30	
Dibromochlorometha	ne	ND	0.50	ug/L		BLOD			NA	30	
Dibromomethane		ND	1.00	ug/L		BLOD			NA	30	
Dichlorodifluorometha	ane	ND	1.00	ug/L		BLOD			NA	30	
Di-isopropyl ether (DI	IPE)	3.48	5.00	ug/L		3.40			NA	30	
Ethylbenzene		ND	1.00	ug/L		0.42			NA	30	
Hexachlorobutadiene	9	ND	0.80	ug/L		BLOD			NA	30	
lodomethane		ND	10.0	ug/L		BLOD			NA	30	
Isopropylbenzene		0.60	1.00	ug/L		0.59			NA	30	



			<u>Ce</u>	ertificate c	of Analysi	S				
Client Name: SC	S Engineers-Winchester				-		Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.: 20	23 City of Bristol Landfill L	.eachate								
	nnifer Robb									
Submitted to. Jei										
		,	Volatile Org	anic Compounds t	oy GCMS - Qualit	y Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL0599 - SW503	0B-MS								
Duplicate (BGL0599-DUP1)	Sourc	e: 23L0565-0	06RE1	Prepared & Analy	/zed: 12/14/2023					
m+p-Xylenes	1.75	2.00	ug/L		1.77			NA	30	
Methylene chloride	ND	4.00	ug/L		BLOD			NA	30	
Methyl-t-butyl ether (MTB	E) ND	1.00	ug/L		BLOD			NA	30	
Naphthalene	ND	1.00	ug/L		1.47			NA	30	
n-Butylbenzene	0.86	1.00	ug/L		0.91			NA	30	
n-Propylbenzene	1.03	1.00	ug/L		1.17			12.7	30	
o-Xylene	0.60	1.00	ug/L		0.64			NA	30	
sec-Butylbenzene	1.11	1.00	ug/L		1.20			7.79	30	
Styrene	ND	1.00	ug/L		BLOD			NA	30	
tert-Butylbenzene	ND	1.00	ug/L		BLOD			NA	30	
Tetrachloroethylene (PCE)	) ND	1.00	ug/L		BLOD			NA	30	
Toluene	0.64	1.00	ug/L		0.63			NA	30	
trans-1,2-Dichloroethylene	e ND	1.00	ug/L		BLOD			NA	30	
trans-1,3-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	
Trichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
Trichlorofluoromethane	ND	1.00	ug/L		BLOD			NA	30	
Vinyl acetate	ND	10.0	ug/L		BLOD			NA	30	
Vinyl chloride	ND	0.50	ug/L		BLOD			NA	30	
Xylenes, Total	2.35	3.00	ug/L		2.41			NA	30	
Tetrahydrofuran	ND	10.0	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroethane-c	14 (Surr) 44.3		ug/L	50.0		88.6	70-120			
Surr: 4-Bromofluorobenze	ne (Surr) 49.1		ug/L	50.0		98.2	75-120			
Surr: Dibromofluorometha	ne (Surr) 43.9		ug/L	50.0		87.8	70-130			
Surr: Toluene-d8 (Surr)	51.8		ug/L	50.0		104	70-130			



## **Certificate of Analysis Client Name:** SCS Engineers-Winchester Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0599 - SW5030B-MS Matrix Spike (BGL0599-MS1) Source: 23L0565-05RE1 Prepared & Analyzed: 12/14/2023 45.5 1.1.1.2-Tetrachloroethane 0.4 ug/L 50.0 BLOD 91.0 80-130 1.1.1-Trichloroethane 45.9 1 ug/L 50.0 BLOD 91.7 65-130 40.5 50.0 BLOD 1.1.2.2-Tetrachloroethane 0.4 ug/L 81.0 65-130 41.8 1 50.0 BLOD 83.5 75-125 1.1.2-Trichloroethane ug/L 1.1-Dichloroethane 43.8 1 ug/L 50.0 BI OD 87.6 70-135 1 BI OD 50-145 1,1-Dichloroethylene 41.8 ug/L 50.0 83.7 1,1-Dichloropropene 50.4 1 ug/L 50.0 BI OD 101 75-135 39.4 1 BLOD 78.7 55-140 1.2.3-Trichlorobenzene ug/L 50.0 BLOD 1,2,3-Trichloropropane 40.6 1 ug/L 50.0 81.2 75-125 43.2 1 50.0 BLOD 86.4 65-135 1.2.4-Trichlorobenzene ua/L 1,2,4-Trimethylbenzene 46.4 1 50.0 BLOD 92.8 75-130 ug/L 1,2-Dibromo-3-chloropropane (DBCP) 36.2 1 ug/L 50.0 BLOD 72.4 50-130 1,2-Dibromoethane (EDB) 45.2 1 50.0 BLOD 90.4 80-120 ug/L 45.0 0.5 BLOD 70-120 1.2-Dichlorobenzene ug/L 50.0 89.9 1.2-Dichloroethane 38.8 1 50.0 BI OD 77.6 70-130 ug/L 45.7 0.5 BLOD 75-125 1,2-Dichloropropane ug/L 50.0 91.4 1,3,5-Trimethylbenzene 45.6 1 ug/L 50.0 BLOD 89.6 75-124 45.9 1 50.0 BLOD 75-125 1,3-Dichlorobenzene ug/L 91.8 42.8 1 50.0 BLOD 85.7 75-125 1,3-Dichloropropane ug/L 75-125 1.4-Dichlorobenzene 45.5 1 ug/L 50.0 BLOD 91.0 49.5 1 50.0 BLOD 99.1 70-135 2,2-Dichloropropane ug/L 2-Butanone (MEK) 30.2 10 ug/L 50.0 BI OD 60.5 30-150 45.1 1 BLOD 90.2 75-125 2-Chlorotoluene ug/L 50.0 5 2-Hexanone (MBK) 38.3 ug/L 50.0 BI OD 76.6 55-130 47.3 1 4-Chlorotoluene ug/L 50.0 BLOD 94.6 75-130



## **Certificate of Analysis Client Name:** SCS Engineers-Winchester Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0599 - SW5030B-MS Matrix Spike (BGL0599-MS1) Source: 23L0565-05RE1 Prepared & Analyzed: 12/14/2023 75-130 4-Isopropyltoluene 50.0 1 ug/L 50.0 BLOD 100 4-Methyl-2-pentanone (MIBK) 36.9 5 ug/L 50.0 BLOD 73.8 60-135 29.0 10 50.0 BLOD Acetone ug/L 58.0 40-140 48.4 1 50.0 1.59 93.6 80-120 Benzene ug/L Bromobenzene 46.4 1 ug/L 50.0 BI OD 92.7 75-125 41.0 1 BI OD 65-130 Bromochloromethane ug/L 50.0 82.0 Bromodichloromethane 42.6 0.5 ug/L 50.0 BI OD 85.3 75-136 Bromoform 42.3 1 BLOD 84.6 70-130 ug/L 50.0 BLOD Bromomethane 30.5 1 ug/L 50.0 60.9 30-145 Carbon disulfide 34.8 10 50.0 BLOD 69.7 35-160 ua/L Carbon tetrachloride 54.0 1 50.0 BLOD 108 65-140 ug/L 47.3 Chlorobenzene 1 ug/L 50.0 BLOD 94.6 80-120 Chloroethane 43.7 1 50.0 BLOD 87.3 60-135 ug/L 39.9 0.5 BLOD 65-135 Chloroform ug/L 50.0 79.8 Chloromethane 33.4 1 50.0 BI OD 66.9 40-125 ug/L 1 BLOD 83.6 70-125 cis-1,2-Dichloroethylene 41.8 ug/L 50.0 cis-1,3-Dichloropropene 46.8 1 ug/L 50.0 BLOD 93.6 47-136 Dibromochloromethane 43.9 0.5 50.0 BLOD 87.7 60-135 ug/L Dibromomethane 42.2 1 50.0 BLOD 84.5 75-125 ug/L Dichlorodifluoromethane 40.8 1 ug/L 50.0 BLOD 81.6 30-155 48.0 1 50.0 BLOD 95.9 75-125 Ethylbenzene ug/L Hexachlorobutadiene 53.7 0.8 ug/L 50.0 BI OD 107 50-140 1 BI OD 75-125 Isopropylbenzene 46.3 ug/L 50.0 92.6 2 m+p-Xylenes 95.1 ug/L 100 BI OD 95.1 75-130 4 73.0 Methylene chloride 36.5 ug/L 50.0 BLOD 55-140



# **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0599 - SW5030B-MS Matrix Spike (BGL0599-MS1) Prepared & Analyzed: 12/14/2023 Source: 23L0565-05RE1 41.6 1.63 79.9 Methyl-t-butyl ether (MTBE) 1 ug/L 50.0 65-125 Naphthalene 41.2 1 ug/L 50.0 1.27 79.9 55-140 50.0 0.52 102 70-135 n-Butylbenzene 51.7 1 ug/L n-Propylbenzene 48.4 1 50.0 BLOD 96.8 70-130 ug/L o-Xylene 47.8 1 ug/L 50.0 BLOD 95.6 80-120 sec-Butylbenzene 55.5 1 50.0 1.06 109 70-125 ug/L Styrene 45.9 1 ug/L 50.0 BI OD 91.7 65-135 tert-Butylbenzene 48.8 1 BLOD 97.5 70-130 ug/L 50.0 BLOD 51-231 Tetrachloroethylene (PCE) 54.5 1 ug/L 50.0 109 46.9 1 50.0 BLOD 93.9 75-120 Toluene ua/L trans-1,2-Dichloroethylene 39.8 1 ug/L 50.0 BLOD 79.6 60-140 trans-1,3-Dichloropropene 49.6 1 ug/L 50.0 BLOD 99.2 55-140 Trichloroethylene 49.2 1 50.0 BLOD 98.3 70-125 ug/L Trichlorofluoromethane 53.2 1 BLOD 106 60-145 ug/L 50.0 Vinyl chloride 42.6 0.5 50.0 BLOD 85.3 50-145 ug/L Surr: 1,2-Dichloroethane-d4 (Surr) 43.8 50.0 87.6 70-120 ug/L Surr: 4-Bromofluorobenzene (Surr) 49.4 50.0 98.7 75-120 ug/L Surr: Dibromofluoromethane (Surr) 44.4 ug/L 50.0 88.9 70-130 Surr: Toluene-d8 (Surr) 48.4 50.0 96.8 70-130 ug/L



				Ce	rtificate o	of Analysi	S				
Client Name:	SCS Enginee	ers-Winchester						Date Issued	:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of	Bristol Landfill Le	eachate								
Submitted To:	Jennifer Rob										
Submitted 10.		5	0								
			Ser	mivolatile Org	ganic Compound	ls by GCMS - Qu	ality Control				
					Enthalpy A	nalytical					
Apolyto		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Analyte					Levei	Result	70REC	LITTILS	RFD	LIIIII	Quai
	Batch	BGL0636 - SW3510	C/EPA600	-MS							
Blank (BGL0636-BLK1)	1				Prepared: 12/15	2023 Analyzed: 1	2/16/2023				
Anthracene		ND	10.0	ug/L							
Surr: 2,4,6-Tribromop	ohenol (Surr)	71.1		ug/L	100		71.1	5-136			
Surr: 2-Fluorobiphen	yl (Surr)	30.2		ug/L	50.0		60.4	9-117			
Surr: 2-Fluorophenol	(Surr)	38.9		ug/L	100		38.9	5-60			
Surr: Nitrobenzene-d	15 (Surr)	34.3		ug/L	50.0		68.6	5-151			
Surr: Phenol-d5 (Sur	r)	28.5		ug/L	100		28.5	5-60			
Surr: p-Terphenyl-d1	4 (Surr)	30.3		ug/L	50.0		60.6	5-141			
LCS (BGL0636-BS1)					Prepared: 12/15	2023 Analyzed: 1	2/16/2023				
1,2,4-Trichlorobenzer	ne	28.1	10.0	ug/L	50.0		56.2	57-130			L
1,2-Dichlorobenzene		31.8	10.0	ug/L	50.0		63.6	22-115			
1,3-Dichlorobenzene		30.0	10.0	ug/L	50.0		60.0	22-112			
1,4-Dichlorobenzene		31.7	10.0	ug/L	50.0		63.4	13-112			
2,4,6-Trichlorophenol	I	36.5	10.0	ug/L	50.0		73.1	52-129			
2,4-Dichlorophenol		33.1	10.0	ug/L	50.0		66.2	53-122			
2,4-Dimethylphenol		33.0	5.00	ug/L	50.0		66.1	42-120			
2,4-Dinitrophenol		32.1	50.0	ug/L	50.0		64.3	48-127			
2,4-Dinitrotoluene		35.0	10.0	ug/L	50.0		70.1	10-173			
2,6-Dinitrotoluene		30.7	10.0	ug/L	50.0		61.5	68-137			L
2-Chloronaphthalene		32.5	10.0	ug/L	50.0		64.9	65-120			L
2-Chlorophenol		32.6	10.0	ug/L	50.0		65.2	36-120			
2-Nitrophenol		34.3	10.0	ug/L	50.0		68.7	45-167			
3,3'-Dichlorobenzidin	e	27.5	10.0	ug/L	50.0		55.0	10-213			
4,6-Dinitro-2-methylp	henol	29.4	50.0	ug/L	50.0		58.8	53-130			
4-Bromophenyl phen	yl ether	28.7	10.0	ug/L	50.0		57.5	65-120			L



# **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:11:39PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0636 - SW3510C/EPA600-MS LCS (BGL0636-BS1) Prepared: 12/15/2023 Analyzed: 12/16/2023 28.2 4-Chlorophenyl phenyl ether 10.0 ug/L 50.0 56.4 38-145 4-Nitrophenol 14.0 50.0 ug/L 50.0 28.1 13-129 33.3 50.0 60-132 Acenaphthene 10.0 ug/L 66.5 Acenaphthylene 35.8 50.0 71.6 54-126 10.0 ug/L Acetophenone 32.8 20.0 ug/L 50.0 65.7 0-200 Anthracene 33.2 43-120 10.0 ug/L 50.0 66.4 Benzo (a) anthracene 34.5 10.0 ug/L 50.0 69.0 42-133 38.3 76.6 32-148 Benzo (a) pyrene 10.0 ua/L 50.0 83.5 Benzo (b) fluoranthene 41.8 10.0 ug/L 50.0 42-140 30.8 50.0 61.7 10-195 Benzo (g,h,i) perylene 10.0 ua/L Benzo (k) fluoranthene 34.0 10.0 ug/L 50.0 68.1 25-146 bis (2-Chloroethoxy) methane 31.2 10.0 ug/L 50.0 62.4 49-165 bis (2-Chloroethyl) ether 29.9 10.0 50.0 59.9 43-126 ug/L 33.8 50.0 63-139 2,2'-Oxybis (1-chloropropane) 10.0 ug/L 67.5 bis (2-Ethylhexyl) phthalate 29.4 50.0 58.8 29-137 10.0 ug/L 33.8 50.0 67.5 10-140 Butyl benzyl phthalate 10.0 ug/L Chrysene 37.6 10.0 ug/L 50.0 75.1 44-140 32.6 50.0 65.2 10-200 Dibenz (a,h) anthracene 10.0 ug/L Diethyl phthalate 33.4 10.0 50.0 66.9 10-120 ug/L 29.8 Dimethyl phthalate 10.0 ug/L 50.0 59.7 10-120 Di-n-butyl phthalate 40.2 50.0 80.3 10-120 10.0 ug/L Di-n-octyl phthalate 46.9 10.0 ug/L 50.0 93.8 19-132 Fluoranthene 42.2 43-121 10.0 ug/L 50.0 84.4 Fluorene 33.4 10.0 ug/L 50.0 66.7 70-120 L 23.8 47.6 10-142 Hexachlorobenzene 1.00 ug/L 50.0



			<u>Cer</u>	tificate o	of Analysi	is				
Client Name: SCS	Engineers-Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.: 2023	City of Bristol Landfill Le	eachate								
	•	Jaonato								
Submitted To: Jenni	fer Robb									
		Se	mivolatile Org	anic Compound	s by GCMS - Qu	ality Control				
				Enthalpy A	nalytical					
	D #	1.0.0		Spike	Source	% <b>D</b> E0	%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGL0636 - SW3510	C/EPA600	-MS							
LCS (BGL0636-BS1)			F	Prepared: 12/15/	2023 Analyzed: 1	12/16/2023				
Hexachlorobutadiene	30.7	10.0	ug/L	50.0		61.4	38-120			
Hexachlorocyclopentadiene	15.8	10.0	ug/L	50.0		31.5	10-76			
Hexachloroethane	33.9	10.0	ug/L	50.0		67.8	55-120			
Indeno (1,2,3-cd) pyrene	30.8	10.0	ug/L	50.0		61.6	10-151			
Isophorone	21.7	10.0	ug/L	50.0		43.5	47-180			L
Naphthalene	34.3	5.00	ug/L	50.0		68.6	36-120			
Nitrobenzene	36.0	10.0	ug/L	50.0		71.9	54-158			
n-Nitrosodimethylamine	23.7	10.0	ug/L	50.0		47.4	10-85			
n-Nitrosodi-n-propylamine	32.0	10.0	ug/L	50.0		63.9	14-198			
n-Nitrosodiphenylamine	26.7	10.0	ug/L	50.0		53.5	12-97			
p-Chloro-m-cresol	33.0	10.0	ug/L	50.0		66.1	10-142			
Pentachlorophenol	30.7	20.0	ug/L	50.0		61.4	38-152			
Phenanthrene	37.3	10.0	ug/L	50.0		74.6	65-120			
Phenol	19.4	10.0	ug/L	50.5		38.4	17-120			
Pyrene	35.1	10.0	ug/L	50.0		70.2	70-120			
Pyridine	390	10.0	ug/L	50.0		781	10-103			L
Surr: 2,4,6-Tribromophenol (S	Surr) 75.1		ug/L	100		75.1	5-136			
Surr: 2-Fluorobiphenyl (Surr)	31.4		ug/L	50.0		62.9	9-117			
Surr: 2-Fluorophenol (Surr)	42.4		ug/L	100		42.4	5-60			
Surr: Nitrobenzene-d5 (Surr)	36.1		ug/L	50.0		72.2	5-151			
Surr: Phenol-d5 (Surr)	30.5		ug/L	100		30.5	5-60			
Surr: p-Terphenyl-d14 (Surr)	33.0		ug/L	50.0		65.9	5-141			



			Ce	ertificate of Analy	sis				
Client Name:	SCS Engineers-Winchester					Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of Bristol Landfill L	.eachate							
Submitted To:	Jennifer Robb								
			Wet	Chemistry Analysis - Quality Co	ontrol				
				Enthalpy Analytical					
Analyte	Result	LOQ	Units	Spike Source Level Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL0502 - No Pre	o Wet Chem	ı						
Blank (BGL0502-BLK1	1)			Prepared & Analyzed: 12/13/20	023				
Nitrite as N	ND	0.05	mg/L						
LCS (BGL0502-BS1)				Prepared & Analyzed: 12/13/20	023				
Nitrite as N	0.11	0.05	mg/L	0.100	114	80-120			
Matrix Spike (BGL050	2-MS1) Sourc	e: 23L0671-0	4	Prepared & Analyzed: 12/13/20	023				
Nitrite as N	0.10	0.05	mg/L	0.100 BLOD	104	80-120			
Matrix Spike Dup (BG	L0502-MSD1) Sourc	e: 23L0671-0	4	Prepared & Analyzed: 12/13/20	023				
Nitrite as N	0.10	0.05	mg/L	0.100 BLOD	102	80-120	1.94	20	
	Batch BGL0505 - No Pre	o Wet Chem	1						
Blank (BGL0505-BLK1	1)			Prepared & Analyzed: 12/13/20	023				
BOD	ND	2.0	mg/L						
LCS (BGL0505-BS1)				Prepared & Analyzed: 12/13/20	023				
BOD	223	2	mg/L	198	113	84.6-115.4			
Duplicate (BGL0505-D	OUP1) Sourc	e: 23L0605-0	5	Prepared & Analyzed: 12/13/20	023				
BOD	ND	2.0	mg/L	2.0			NA	20	
	Batch BGL0512 - No Pre	o Wet Chem	ı						
Blank (BGL0512-BLK1	1)			Prepared & Analyzed: 12/13/20	023				
Cyanide	ND	0.01	mg/L						



				<u>C</u> e	ertificate c	of Analysis	<u>S</u>				
Client Name:	SCS Engineers-	Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of Bri	stol Landfill L	eachate								
Submitted To:	Jennifer Robb										
				Wet	Chemistry Analys	is - Quality Contro	l				
					Enthalpy Ar	nalytical					
					Spike	Source		%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGI	L0512 - No Prep	Wet Chem								
LCS (BGL0512-BS1)					Prepared & Analy	yzed: 12/13/2023					
Cyanide		0.22	0.01	mg/L	0.250		86.0	80-120			
Matrix Spike (BGL051	2-MS1)	Source	e: 23L0334-0	5	Prepared & Analy	yzed: 12/13/2023					
Cyanide		0.25	0.01	mg/L	0.250	BLOD	98.5	80-120			
Matrix Spike (BGL051	2-MS2)	Source	e: 23L0422-08	3	Prepared & Analy	yzed: 12/13/2023					
Cyanide		0.26	0.01	mg/L	0.250	BLOD	103	80-120			
Matrix Spike Dup (BG	iL0512-MSD1)	Source	e: 23L0334-0	5	Prepared & Analy	yzed: 12/13/2023					
Cyanide		0.26	0.01	mg/L	0.250	BLOD	102	80-120	3.61	20	
Matrix Spike Dup (BG	iL0512-MSD2)	Source	e: 23L0422-08	3	Prepared & Analy	yzed: 12/13/2023					
Cyanide		0.25	0.01	mg/L	0.250	BLOD	99.8	80-120	2.99	20	
	Batch BGI	L0723 - No Prep	Wet Chem	1							
Blank (BGL0723-BLK1	1)				Prepared & Analy	yzed: 12/18/2023					
COD		ND	10.0	mg/L							
LCS (BGL0723-BS1)					Prepared & Analy	yzed: 12/18/2023					
COD		46.5	10.0	mg/L	50.0		93.0	88-119			
Matrix Spike (BGL072	23-MS1)	Source	e: 23L0699-0 [,]	1	Prepared & Analy	yzed: 12/18/2023					
COD		55.2	10.0	mg/L	50.0	BLOD	110	72.4-130			
Matrix Spike Dup (BG	L0723-MSD1)	Source	e: 23L0699-0 [,]	1	Prepared & Analy	yzed: 12/18/2023					
COD		54.9	10.0	mg/L	50.0	BLOD	110	72.4-130	0.600	20	



				<u>Ce</u>	ertificate o	of Analysis	<u> </u>				
Client Name:	SCS Engineers-Wi	nchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of Bristo	l Landfill L	.eachate								
Submitted To:	Jennifer Robb										
				Wet	Chemistry Analys	is - Quality Contro	I				
					Enthalpy A	nalytical					
<b></b>					1,5	,					
Analuta		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Analyte				-	Levei	Result	%REC	Limits	RPD	LIMIL	Quai
	Batch BGL08	89 - No Pre	p Wet Chem	1							
Blank (BGL0889-BLK	1)				Prepared & Anal	yzed: 12/20/2023					
TKN as N		ND	0.50	mg/L							
LCS (BGL0889-BS1)						yzed: 12/20/2023					
TKN as N		4.91	0.50	mg/L	5.00		98.1	90-110			
Matrix Spike (BGL088	39-MS1)	Sourc	e: 23L0508-03	3	Prepared & Anal	yzed: 12/20/2023					
TKN as N		5.41	0.50	mg/L	5.00	0.60	96.2	90-110			
Matrix Spike (BGL088	39-MS2)	Sourc	e: 23L1082-04	4	Prepared & Anal	yzed: 12/20/2023					
TKN as N		3.37	0.50	mg/L	5.00	BLOD	67.4	90-110			Μ
Matrix Spike Dup (BG	6L0889-MSD1)	Sourc	e: 23L0508-03	3	Prepared & Anal	yzed: 12/20/2023					
TKN as N		5.51	0.50	mg/L	5.00	0.60	98.3	90-110	1.85	20	
Matrix Spike Dup (BG	L0889-MSD2)	Sourc	e: 23L1082-04	4	Prepared & Anal	yzed: 12/20/2023					
TKN as N		3.70	0.50	mg/L	5.00	BLOD	74.0	90-110	9.33	20	М
	Batch BGL09	83 - No Prej	p Wet Chem								
Blank (BGL0983-BLK	1)				Prepared & Anal	yzed: 12/22/2023					
Ammonia as N		ND	0.10	mg/L							
LCS (BGL0983-BS1)					Prepared & Anal	yzed: 12/22/2023					
Ammonia as N		1.03	0.1	mg/L	1.00		103	90-110			
Matrix Spike (BGL098	33-MS1)	Sourc	e: 23L1026-0 [,]	1	Prepared & Anal	yzed: 12/22/2023					
Ammonia as N		1.07	0.10	mg/L	1.00	BLOD	107	89.3-131			



				Ce	ertificate o	of Analysis	<u>6</u>				
Client Name:	SCS Engineers-	-Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.:	2023 City of Bri	istol Landfill L	.eachate								
Submitted To:	Jennifer Robb										
				Wet	Chemistry Analys	is - Quality Control					
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BG	L0983 - No Prej	o Wet Chem	1							
Matrix Spike (BGL0983	8-MS2)	Source	e: 23L1074-0	1	Prepared & Anal	yzed: 12/22/2023					
Ammonia as N		1.04	0.10	mg/L	1.00	BLOD	104	89.3-131			
Matrix Spike Dup (BGL	.0983-MSD1)	Source	e: 23L1026-0	1	Prepared & Anal	yzed: 12/22/2023					
Ammonia as N		1.08	0.10	mg/L	1.00	BLOD	108	89.3-131	1.02	20	
Matrix Spike Dup (BGL	.0983-MSD2)	Source	e: 23L1074-0	1	Prepared & Anal	yzed: 12/22/2023					
Ammonia as N		1.08	0.10	mg/L	1.00	BLOD	108	89.3-131	4.35	20	
	Batch BG	L1033 - No Prej	o Wet Chem	1							
Blank (BGL1033-BLK1)	)				Prepared & Anal	yzed: 12/26/2023					
Total Recoverable Pl	henolics	ND	0.050	mg/L							
LCS (BGL1033-BS1)					Prepared & Anal	yzed: 12/26/2023					
Total Recoverable Pl	henolics	0.41	0.050	mg/L	0.505		82.0	80-120			
Matrix Spike (BGL1033	8-MS1)	Source	e: 23L1149-03	3	Prepared & Anal	yzed: 12/26/2023					
Total Recoverable Pl	henolics	0.48	0.050	mg/L	0.500	0.05	85.6	70-130			
Matrix Spike Dup (BGL	.1033-MSD1)	Source	e: 23L1149-03	3	Prepared & Anal	yzed: 12/26/2023					
Total Recoverable Pl	henolics	0.48	0.050	mg/L	0.500	0.05	86.4	70-130	0.830	20	
	Batch BG	L1035 - No Prej	o Wet Chem	1							
Blank (BGL1035-BLK1)	)				Prepared & Anal	yzed: 12/26/2023					
Nitrate+Nitrite as N		ND	0.10	mg/L							



				<u>Ce</u>	ertificate o	of Analys	<u>is</u>				
Client Name:	SCS Engineers	-Winchester						Date Issue	ed:	1/9/2024	2:11:39PM
Client Site I.D.: Submitted To:	2023 City of Br Jennifer Robb	istol Landfill L	eachate								
				Wet	Chemistry Analys	sis - Quality Conti	rol				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BG	L1035 - No Pre	p Wet Chen	า							
LCS (BGL1035-BS1)					Prepared & Anal	lyzed: 12/26/2023	3				
Nitrate+Nitrite as N		0.99	0.1	mg/L	1.00		98.6	90-110			
Matrix Spike (BGL103	5-MS1)	Sourc	e: 23L0612-0	1	Prepared & Anal	lyzed: 12/26/2023	3				
Nitrate+Nitrite as N		1.20	0.1	mg/L	1.00	0.24	95.2	90-120			
Matrix Spike Dup (BG	L1035-MSD1)	Sourc	e: 23L0612-0	1	Prepared & Anal	lyzed: 12/26/2023	3				
Nitrate+Nitrite as N		1.22	0.1	mg/L	1.00	0.24	97.5	90-120	1.91	20	



			Certificate	of Analysis		
Client Name:	SCS Engineers-Winch	nester			Date Issued:	1/9/2024 2:11:39
Client Site I.D.:	2023 City of Bristol La	andfill Leachate				
Submitted To:	Jennifer Robb					
	Applytical Summary					
	Analytical Summary					
23L0563-01 23L0563-02		Subcontract Subcontract				
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Metals (Total) by EPA 6	6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4		
23L0563-01	50.0 mL / 50.0 mL	SW6020B	BGL0511	SGL0544	AL30234	
23L0563-01RE1	50.0 mL / 50.0 mL	SW6020B	BGL0511	SGL0840	AL30284	
23L0563-02	50.0 mL / 50.0 mL	SW6020B	BGL0511	SGL0544	AL30234	
23L0563-02RE1	50.0 mL / 50.0 mL	SW6020B	BGL0511	SGL0840	AL30284	
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Wet Chemistry Analysi	is		Preparation Method:	No Prep Wet Chem		
23L0563-01	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGL0502	SGL0470	AJ30297	
23L0563-02	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGL0502	SGL0470	AJ30297	
23L0563-01	300 mL / 300 mL	SM5210B-2016	BGL0505	SGL0663		
23L0563-02	300 mL / 300 mL	SM5210B-2016	BGL0505	SGL0663		
23L0563-01	6.00 mL / 6.00 mL	SW9012B	BGL0512	SGL0489	AL30224	
23L0563-02	6.00 mL / 6.00 mL	SW9012B	BGL0512	SGL0489	AL30224	
23L0563-01	2.00 mL / 2.00 mL	SM5220D-2011	BGL0723	SGL0658	AJ30254	
23L0563-02	2.00 mL / 2.00 mL	SM5220D-2011	BGL0723	SGL0658	AJ30254	
23L0563-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0889	SGL0848	AL30283	
23L0563-02	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0889	SGL0848	AL30283	
23L0563-02RE1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0889	SGL0848	AL30283	
23L0563-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGL0983	SGL0890	AL30291	
23L0563-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGL0983	SGL0890	AL30291	
23L0563-01	5.00 mL / 10.0 mL	SW9065	BGL1033	SGL0936	AL30294	



# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Preparation Factors

5.00 mL / 5.00 mL

5.00 mL / 5.00 mL

5.00 mL / 5.00 mL

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

23L0563-03RE1

23L0563-02RE1

23L0563-02RE2

Sample ID	Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Anal	ysis		Preparation Method:	No Prep Wet Chem	I
23L0563-01	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BGL1035	SGL0968	AL30302
23L0563-01RE1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BGL1035	SGL0968	AL30302
23L0563-02	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BGL1035	SGL0968	AL30302
23L0563-02RE1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BGL1035	SGL0968	AL30302
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organio	c Compounds by GCMS		Preparation Method:	SW3510C/EPA600-	MS
23L0563-01	500 mL / 2.00 mL	SW8270E	BGL0636	SGL0715	AK30271
23L0563-02	500 mL / 0.500 mL	SW8270E	BGL0636	SGL0825	AL30202
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Cor	npounds by GCMS		Preparation Method:	SW5030B-MS	
23L0563-01	5.00 mL / 5.00 mL	SW8260D	BGL0454	SGL0452	AL30176
23L0563-02	5.00 mL / 5.00 mL	SW8260D	BGL0454	SGL0452	AL30176
23L0563-03	5.00 mL / 5.00 mL	SW8260D	BGL0454	SGL0452	AL30176
23L0563-01RE1	5.00 mL / 5.00 mL	SW8260D	BGL0524	SGL0484	AJ30373
23L0563-01RE2	5.00 mL / 5.00 mL	SW8260D	BGL0524	SGL0484	AJ30373

BGL0544

BGL0599

BGL0599

SGL0521

SGL0576

SGL0576

AJ30322 AJ30322

AJ30322

SW8260D

SW8260D

SW8260D

Date Issued:

1/9/2024 2:11:39PM



# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

QC Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
BGL0511-BLK1	50.0 mL / 50.0 mL	SW6020B	BGL0511	SGL0544	AL30234
BGL0511-BS1	50.0 mL / 50.0 mL	SW6020B	BGL0511	SGL0544	AL30234
BGL0511-MS1	50.0 mL / 50.0 mL	SW6020B	BGL0511	SGL0544	AL30234
BGL0511-MS2	50.0 mL / 50.0 mL	SW6020B	BGL0511	SGL0544	AL30234
BGL0511-MSD1	50.0 mL / 50.0 mL	SW6020B	BGL0511	SGL0544	AL30234
BGL0511-MSD2	50.0 mL / 50.0 mL	SW6020B	BGL0511	SGL0544	AL30234
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	vsis		Preparation Method:	No Prep Wet Chem	I
BGL0502-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGL0502	SGL0470	AJ30297
BGL0502-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGL0502	SGL0470	AJ30297
BGL0502-MRL1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGL0502	SGL0470	AJ30297
BGL0502-MS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGL0502	SGL0470	AJ30297
BGL0502-MSD1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGL0502	SGL0470	AJ30297
BGL0505-BLK1	300 mL / 300 mL	SM5210B-2016	BGL0505	SGL0663	
BGL0505-BS1	300 mL / 300 mL	SM5210B-2016	BGL0505	SGL0663	
BGL0505-DUP1	300 mL / 300 mL	SM5210B-2016	BGL0505	SGL0663	
BGL0512-BLK1	6.00 mL / 6.00 mL	SW9012B	BGL0512	SGL0489	AL30224
BGL0512-BS1	6.00 mL / 6.00 mL	SW9012B	BGL0512	SGL0489	AL30224
BGL0512-MRL1	6.00 mL / 6.00 mL	SW9012B	BGL0512	SGL0489	AL30224
BGL0512-MS1	6.00 mL / 6.00 mL	SW9012B	BGL0512	SGL0489	AL30224
BGL0512-MS2	6.00 mL / 6.00 mL	SW9012B	BGL0512	SGL0489	AL30224
BGL0512-MSD1	6.00 mL / 6.00 mL	SW9012B	BGL0512	SGL0489	AL30224

Date Issued:

1/9/2024 2:11:39PM



# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analys	is		Preparation Method:	No Prep Wet Chem	
BGL0512-MSD2	6.00 mL / 6.00 mL	SW9012B	BGL0512	SGL0489	AL30224
BGL0723-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BGL0723	SGL0658	AJ30254
BGL0723-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BGL0723	SGL0658	AJ30254
BGL0723-MRL1	2.00 mL / 2.00 mL	SM5220D-2011	BGL0723	SGL0658	AJ30254
BGL0723-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BGL0723	SGL0658	AJ30254
BGL0723-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BGL0723	SGL0658	AJ30254
BGL0889-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0889	SGL0848	AL30283
BGL0889-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0889	SGL0848	AL30283
BGL0889-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0889	SGL0848	AL30283
BGL0889-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0889	SGL0848	AL30283
BGL0889-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0889	SGL0848	AL30283
BGL0889-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0889	SGL0848	AL30283
BGL0983-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGL0983	SGL0890	AL30291
BGL0983-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGL0983	SGL0890	AL30291
BGL0983-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGL0983	SGL0890	AL30291
BGL0983-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGL0983	SGL0890	AL30291
BGL0983-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGL0983	SGL0890	AL30291
BGL0983-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGL0983	SGL0890	AL30291
BGL1033-BLK1	5.00 mL / 10.0 mL	SW9065	BGL1033	SGL0936	AL30294
BGL1033-BS1	5.00 mL / 10.0 mL	SW9065	BGL1033	SGL0936	AL30294
BGL1033-MRL1	5.00 mL / 10.0 mL	SW9065	BGL1033	SGL0936	AL30294
BGL1033-MS1	5.00 mL / 10.0 mL	SW9065	BGL1033	SGL0936	AL30294
BGL1033-MSD1	5.00 mL / 10.0 mL	SW9065	BGL1033	SGL0936	AL30294
BGL1035-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BGL1035	SGL0968	AL30302
BGL1035-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BGL1035	SGL0968	AL30302
BGL1035-MRL1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BGL1035	SGL0968	AL30302
BGL1035-MS1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BGL1035	SGL0968	AL30302
BGL1035-MSD1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BGL1035	SGL0968	AL30302

Date Issued:

1/9/2024 2:11:39PM



# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600	-MS
BGL0636-BLK1	1000 mL / 1.00 mL	SW8270E	BGL0636	SGL0652	AK30271
BGL0636-BS1	1000 mL / 1.00 mL	SW8270E	BGL0636	SGL0652	AK30271
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
BGL0454-BLK1	5.00 mL / 5.00 mL	SW8260D	BGL0454	SGL0452	AL30176
BGL0454-BS1	5.00 mL / 5.00 mL	SW8260D	BGL0454	SGL0452	AL30176
BGL0454-MS1	5.00 mL / 5.00 mL	SW8260D	BGL0454	SGL0452	AL30176
BGL0454-MSD1	5.00 mL / 5.00 mL	SW8260D	BGL0454	SGL0452	AL30176
BGL0524-BLK1	5.00 mL / 5.00 mL	SW8260D	BGL0524	SGL0484	AJ30373
BGL0524-BLK2	5.00 mL / 5.00 mL	SW8260D	BGL0524	SGL0484	AJ30373
BGL0524-BS1	5.00 mL / 5.00 mL	SW8260D	BGL0524	SGL0484	AJ30373
BGL0524-BS2	5.00 mL / 5.00 mL	SW8260D	BGL0524	SGL0484	AJ30373
BGL0524-DUP1	0.250 mL / 5.00 mL	SW8260D	BGL0524	SGL0484	AJ30373
BGL0524-MS1	0.250 mL / 5.00 mL	SW8260D	BGL0524	SGL0484	AJ30373
BGL0544-BLK1	5.00 mL / 5.00 mL	SW8260D	BGL0544	SGL0521	AJ30322
BGL0544-BS1	5.00 mL / 5.00 mL	SW8260D	BGL0544	SGL0521	AJ30322
BGL0544-DUP1	5.00 mL / 5.00 mL	SW8260D	BGL0544	SGL0521	AJ30322
BGL0544-MS1	5.00 mL / 5.00 mL	SW8260D	BGL0544	SGL0521	AJ30322
BGL0599-BLK1	5.00 mL / 5.00 mL	SW8260D	BGL0599	SGL0576	AJ30322
BGL0599-BS1	5.00 mL / 5.00 mL	SW8260D	BGL0599	SGL0576	AJ30322
BGL0599-DUP1	5.00 mL / 5.00 mL	SW8260D	BGL0599	SGL0576	AJ30322
BGL0599-MS1	5.00 mL / 5.00 mL	SW8260D	BGL0599	SGL0576	AJ30322

Date Issued:

1/9/2024 2:11:39PM



# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Date Issued:

1/9/2024 2:11:39PM



		<u>Certificate of Analysis</u>		
Client Name:	SCS Engineers-Winchester		Date Issued:	1/9/2024 2:11:39PM
Client Site I.D.:	2023 City of Bristol Landfill Leachate			
Submitted To:	Jennifer Robb			
Certified Analys	ses included in this Report			
Analyte		Certifications		
EPA350.1 R2.0 in N	Ion-Potable Water			
Ammonia as N		VELAP,NCDEQ,PADEP,WVDEP		
EPA351.2 R2.0 in N	Ion-Potable Water			
TKN as N		VELAP,NCDEQ,WVDEP		
SM4500-NO2B-201	1 in Non-Potable Water			
Nitrite as N		VELAP,WVDEP,NCDEQ		
SM4500-NO3F-201	6 in Non-Potable Water			
Nitrate+Nitrite as N		VELAP,WVDEP		
SM5210B-2016 in N	Non-Potable Water			
BOD		VELAP,NCDEQ,WVDEP		
SM5220D-2011 in N	Non-Potable Water			
COD		VELAP,NCDEQ,PADEP,WVDEP		
sw6020B in Non-P	Potable Water	,,,		
Mercury		VELAP		
Arsenic		VELAP,WVDEP		
Barium		VELAP,WVDEP		
Cadmium		VELAP,WVDEP		
Chromium		VELAP,WVDEP		
Copper		VELAP,WVDEP		
Lead		VELAP,WVDEP		
Nickel		VELAP,WVDEP		
Selenium		VELAP,WVDEP		
Silver		VELAP,WVDEP		
Zinc		VELAP,WVDEP		



		<u>Certificate of Analysis</u>		
Client Name:	SCS Engineers-Winchester		Date Issued:	1/9/2024 2:11:39PM
Client Site I.D.:	2023 City of Bristol Landfill Leachate			
Submitted To:	Jennifer Robb			
Certified Analys	ses included in this Report			
Analyte		Certifications		
2-Butanone (MEK)		VELAP,NCDEQ,PADEP,WVDEP		
Acetone		VELAP,NCDEQ,PADEP,WVDEP		
Benzene		VELAP,NCDEQ,PADEP,WVDEP		
Ethylbenzene		VELAP,NCDEQ,PADEP,WVDEP		
Toluene		VELAP,NCDEQ,PADEP,WVDEP		
Xylenes, Total		VELAP,NCDEQ,PADEP,WVDEP		
Tetrahydrofuran		VELAP,PADEP		
SW8270E in Non-F	Potable Water			
Anthracene		NCDEQ,WVDEP,VELAP,PADEP		
SW9012B in Non-F	Potable Water			
Cyanide		VELAP,WVDEP		
SW9065 in Non-Po	otable Water			
Total Recoverable	Phenolics	VELAP,WVDEP		



# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2024
NCDEQ	North Carolina DEQ	495	12/31/2024
NCDOH	North Carolina Department of Health	51714	07/31/2024
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #009	68-03503	10/31/2024
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/14/2024
TXCEQ	Texas Comm on Environmental Quality #T104704576-23-1	T104704576	05/31/2024
VELAP	NELAP-Virginia Certificate #12617	460021	06/14/2024
WVDEP	West Virginia DEP	350	11/30/2024

Date Issued:

1/9/2024 2:11:39PM



		Certificate of Analysis			
Client Na	ame:	SCS Engineers-Winchester	Date Issued:	1/9/2024	2:11:39PM
Client Si	te I.D.:	2023 City of Bristol Landfill Leachate			
Submitte	ed To:	Jennifer Robb			
		Qualifiers and Definitions			
CI	Residual C	Chlorine or other oxidizing agent was detected in the container used to analyze this sample.			
J	The report	ed result is an estimated value.			
L	LCS recov	ery is outside of established acceptance limits			
М	Matrix spik	e recovery is outside established acceptance limits			
рН	The contai	ner used to analyze this sample had a pH measurement of greater than 2 s.u.			
S	Surrogate	recovery was outside acceptance criteria			
RPD	Relative Pe	rcent Difference			
Qual	Qualifers				
-RE	Denotes sa	mple was re-analyzed			
LOD	Limit of Det	ection			
BLOD	Below Limit	of Detection			
LOQ	Limit of Qua	Intitation			
DF	Dilution Fac	tor			
TIC	library. A TI	dentified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral C spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are nd are calculated using an internal standard response factor of 1.	3		
PCBs, Tota	I Total PC	Bs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.			



1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

# CHAIN OF CUSTODY

PAGE 1 OF 1

COMPANY NAME: SCS Eng	gine	ers		Latin.	IN	VOICE TO	:		S	AM	E			P	ROJ	EC		E/Q	uot	e #:	LF	G-E	W Monthly Monitoring
CONTACT: Jennifer Robb					IN	VOICE CO	NTAC	T:						S	ITE	NAN	ΛE:	20	23 (	City of	f Bri	isto	I Landfill Leachate
ADDRESS: 296 Victory Road					IN	VOICE AD	DRES	S:			africa.		ie -	P	ROJ	EC		IBEI	R:	0221	8208	8.15	Task 2
Winchester, VA 226	02		Τ.		IN	VOICE PH	ONE #	:							.0. ‡								
PHONE #: 703-471-6150			I	EMAIL:	jrobb@	@scsengin	eers.co	om	1				N. X	P	retre	atm	ent Pr	ogra	am:	100		10	
Is sample for compliance reportir	ng?	(	YE	NO Re	gulato	ry State:	VA	ls san	nple fro	m a	chlo	orina	ated	supply	? ^	YE	s (	0	,	PWS	I.D.	#:	
SAMPLER NAME (PRINT): L.N	els	m	*	Minnie	kW.F	abrie SA	MPLE	R SIGN	ATUR	E: 3	est	'n	en	Win	1	n.			Tu	rn Aro	und	Tim	ne: 10 Day(s)
Matrix Codes: WW=Waste Water/Storm Wat	ter G	W=G									1			r	- p							1	COMMENTS
CLIENT SAMPLE I.D.	Grab	Composite	Field Filtered (Dissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Time Preserved	Matrix (See Codes)	Number of Containers	0	1	COU - SM22 5220D-2011 Cvanide - FPA 335 2		2011	Ì	<b>Total Metals</b> (As, Ba, Cd, Cr, B Cu, Pb, Ni, Se, Ag, Zn) 6020	TKN - EPA 351.2 R2.0		Total Recoverable	0	VOCs (See List) 8260	Preservative Codes: N=Nitric Acid C=Hydrochloric Acid S=Sulfuric Acid H=Sodium Hydroxide A=Ascorbic Acid Z=Zinc Acetate T=Sodium Thiosulfate M=Methanol Note VOC 8260 no HCI PLEASE NOTE PRESERVATIVE(S), INTERFERENCE CHECKS or PUMP RATE (L/min)
1) EW-52	X		-	115			1400		WWW AN	13	X	X	()		X	X	X	X	X	x	X	X	
2) EW-68	X			1.67		12/11/23	1415		Man	12	X	X	XX		X	X	X	x	X	×	X	X	1999 - 1997 - 19
3)				6	63-11				GAN														
4)	1								GW														
5)				-					GXV			_	_		-	_					_		
6)			_		1		_		GW			4	-	-	-						-		
7)	-		_		1				GW			-	-		-	-		-			-	-	
8)	-		-						GAN		_	-	-		-	-	8			1.50.5	-	-	
$\frac{9}{1}$	-					8/0400	1615		Chuy DI			-	-	1	+	-	_	-		-	-	x	
10) Trip Blank Relinquished: Legen New 12	DAT		TIME	RECEIV	ED:	89123	1505	DATE /		QC	Data	a Pad	ckage	LAB Custor	JSE C ly Sea	DNLY s use	<b>The</b> d and int	erm I act? (		1)	C	COOL	ER TEMP°C Received on ice? ((Y)N)
RELINQUISHED:	100000000	Е/	TIME	RECEIV	2/1	n Ir	firt	DATE / DATE /	J600	Leve	el III el IV			I		tol	LF L					/27	0563 /2023 Page 71 of 88

Sample Preservation Log Form #: F1301 Rev # 15.0 Effective: July 13, 2023 Page 1 of 1



# Sample Preservation Log

Date Performed: 2/12/23 Analyst Performing Check: WHEG Order ID_23L0563 Pest/PCB Pesticide SVOC CrVI * ** NO3+NO2 DRO (508) / TKN Phos, Tot Metals Cyanide Sulfide Ammonia (8081/608/508) phenolic (525/8270/625) SVOC(525) PCB DW only Sample ID Container ID pH as pH as Received Received pH as Received pH Hd H H 펍 Final pH Hd Hd H H Final pH H Hd Received Received Received Received Received Received Received Res. Cl Res. Cl Received Received Received Received final fina Final or or -<2 < 2 Other Other Other > 12 Other >9 Other < 2 Other . < 2 Other A <2 01 7 7 7 7 :2 B 12 =2 01 D 7 712 01 7 22 F 01 G -01 02 A 6 <2 7 B 02 12 42 7 42 02 10 ,12 D 7 42 F 02 -02 6 NaOH ID: 2400468 HNO3 ID: 3K02234 Analyst Initials: CrVI preserved date/time: * pH must be adjusted between 9.3 - 9.7 H2SO4 ID: 3 402567 Na2S2O3 ID: Ammonia Buffer Sol'n ID: Na2SO3 ID: 5N NaOH ID: HCL ID:

> Metals were received with pH = 6,7. HNO3 was added at 1040 on 12th December 2023 by RCJ in the Log-In room to bring pH= <2.



# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Date Issued:

1/9/2024 2:11:39PM



	Certificate of Analysis		
Client Name:		ate Issued:	1/9/2024 2:11:39PM
Client Site I.D.:	2023 City of Bristol Landfill Leachate		
Submitted To:	Jennifer Robb		
	Laboratory Order ID: 23L0563		
	Sample Conditions Checklist		
	Samples Received at:		0.40°C
	How were samples received?	Logistic	s Courier
	Were Custody Seals used? If so, were they received intact?		Yes
	Are the custody papers filled out completely and correctly?		No
	Do all bottle labels agree with custody papers?		Yes
	Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?		Yes
	Are all samples within holding time for requested laboratory tests?		Yes
	Is a sufficient amount of sample provided to perform the tests included?		Yes
	Are all samples in appropriate containers for the analyses requested?		Yes
	Were volatile organic containers received?		Yes
	Are all volatile organic and TOX containers free of headspace?		Yes
	ls a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.		Yes
	Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis. In addition, field parameters are always received outside holding time and will be marke accordingly.	ed	No
	*H2SO4-preserved bottles for all samples were received with a pH greater th and H2SO4 was added to bring the pH to less than 2. *CN was logged by 9012 per project history, which differs from the chain of c (EPA 335.2).		



1/9/2024 2:11:39PM

Date Issued:

# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Jennifer Robb notified via email. MRS 12/13/23 0911



December 26, 2023

Virginia Thrasher Enthalpy 1941 Reymet Road Richmond, VA 23237

RE: Project: 23L0563 Pace Project No.: 20300390

Dear Virginia Thrasher:

Enclosed are the analytical results for sample(s) received by the laboratory on December 13, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Baton Rouge

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ruth Webs

Ruth Welsh ruth.welsh@pacelabs.com (225) 769-4900 Project Manager

Enclosures

cc: Andrew Bruner, Enthalpy Daniel Elliott, Enthalpy Meghan Meyer, Enthalpy



# **REPORT OF LABORATORY ANALYSIS**



Pace Analytical Services, LLC 7979 Innovation Park Drive Baton Rouge, LA 70820 (225) 769-4900

#### CERTIFICATIONS

 Project:
 23L0563

 Pace Project No.:
 20300390

#### Pace Analytical Services Baton Rouge

7979 Innovation Park Drive Ste A, Baton Rouge, LA 70820-7402 Louisiana Dept of Enviromental Quality (NELAC/LELAP): 01979 Florida Dept of Health (NELAC/FELAP): E87854 DoD ELAP (A2LA) #: 6429.01 Alabama DEM #: 41900 Alaska DEC-DW #: LA00024 Alaska DEC CS-LAP #: 21-001 Arkansas DEQ #: 88-0655 California ELAP #: 3063 Georgia DPD #: C050 Hawaii DOH State Laboratories Division Illinois EPA #: 200048 Kansas DoHE #: E-10354 Kentucky DEP UST Branch #: 123054 Louisiana DOH #: LA036 Minnesota DOH #: 2233799 Mississippi State Dept of Health

Montana Department of Environmental Quality Nebraska DHHS #: NE-OS-35.21 Nevada DCNR DEP #: LA00024 New York DOH #: 12149 North Carolina DEQ - WW & GW #: 618 North Dakota DEQ #: R195 Ohio EPA #: 87782 Oklahoma Dept of Environmental Quality #: 9403 Oregon ELAP #: 4168 Pennsylvania Dept of Environmental Protection #: 68-05973 South Carolina DHEC #: 73006001 Texas CEQ #: T104704178-23-15 Utah DOH #: LA00024 Virginia DCLS #: 6460215 Washington Dept of Ecology #: C929 Wisconsin DNR #: 399139510

**REPORT OF LABORATORY ANALYSIS** 



## SAMPLE SUMMARY

 Project:
 23L0563

 Pace Project No.:
 20300390

Lab ID	Sample ID	Matrix	Date Collected	Date Received
20300390001	23L0563-01: EW-52	Water	12/11/23 14:00	12/13/23 09:58
20300390002	23L0563-02: EW-68	Water	12/11/23 14:15	12/13/23 09:58

**REPORT OF LABORATORY ANALYSIS** 



## SAMPLE ANALYTE COUNT

 Project:
 23L0563

 Pace Project No.:
 20300390

Lab ID	Sample ID	Method	Analysts	Analytes Reported
20300390001	23L0563-01: EW-52	Pace ENV-SOP-BTRO-0042	LHM	10
20300390002	23L0563-02: EW-68	Pace ENV-SOP-BTRO-0042	LHM	10

PASI-BR = Pace Analytical Services - Baton Rouge

**REPORT OF LABORATORY ANALYSIS** 



Pace Analytical Services, LLC 7979 Innovation Park Drive Baton Rouge, LA 70820 (225) 769-4900

#### **PROJECT NARRATIVE**

 Project:
 23L0563

 Pace Project No.:
 20300390

#### Method: Pace ENV-SOP-BTRO-0042

Description:BR AM23G Low Level VFAClient:BR-EnthalpyDate:December 26, 2023

#### **General Information:**

2 samples were analyzed for Pace ENV-SOP-BTRO-0042 by Pace Analytical Services Baton Rouge. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

#### Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### Additional Comments:

Analyte Comments:

#### QC Batch: 312682

- D4: Sample was diluted due to the presence of high levels of target analytes.
  - 23L0563-01: EW-52 (Lab ID: 20300390001)
  - Lactic Acid
  - 23L0563-02: EW-68 (Lab ID: 20300390002)
    - Lactic Acid

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

- 23L0563-01: EW-52 (Lab ID: 20300390001)
  - Hexanoic Acid
  - i-Hexanoic Acid
  - i-Pentanoic Acid



#### **PROJECT NARRATIVE**

 Project:
 23L0563

 Pace Project No.:
 20300390

Method: Pace ENV-SOP-BTRO-0042

Description:BR AM23G Low Level VFAClient:BR-EnthalpyDate:December 26, 2023

Analyte Comments:

QC Batch: 312682

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

- 23L0563-01: EW-52 (Lab ID: 20300390001)
  - Pentanoic Acid
- 23L0563-02: EW-68 (Lab ID: 20300390002)
  - Hexanoic Acid
  - i-Hexanoic Acid
  - i-Pentanoic Acid
  - Pentanoic Acid
- BLANK (Lab ID: 1497487)
  - Hexanoic Acid
  - i-Hexanoic Acid
  - i-Pentanoic Acid
  - Pentanoic Acid
- LCS (Lab ID: 1497488)
  - Hexanoic Acid
  - i-Hexanoic Acid
  - i-Pentanoic Acid
  - Pentanoic Acid
- MS (Lab ID: 1497326)
  - Hexanoic Acid
  - i-Hexanoic Acid
  - i-Pentanoic Acid
  - Pentanoic Acid
- MSD (Lab ID: 1497327)
  - Hexanoic Acid
  - i-Hexanoic Acid
  - i-Pentanoic Acid
  - Pentanoic Acid

This data package has been reviewed for quality and completeness and is approved for release.



## ANALYTICAL RESULTS

# Project: 23L0563

Pace Project No.: 20300390

Sample: 23L0563-01: EW-52	Lab ID: 2030	00390001	Collected: 12/11/2	23 14:00	Received: 1	2/13/23 09:58	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
BR AM23G Low Level VFA	Analytical Meth	od: Pace E	NV-SOP-BTRO-004	2				
	Pace Analytica	Services -	Baton Rouge					
Pentanoic Acid	ND	mg/L	1000	2000		12/22/23 15:29	9 109-52-4	N2
Acetic Acid	11200	mg/L	1000	2000		12/22/23 15:29	9 64-19-7	
Butyric Acid	3390	mg/L	1000	2000		12/22/23 15:29	9 107-92-6	
Formic acid	3290	mg/L	1000	2000		12/22/23 15:29	9 64-18-6	
Hexanoic Acid	ND	mg/L	1000	2000		12/22/23 15:29	9 142-62-1	N2
i-Hexanoic Acid	ND	mg/L	1000	2000		12/22/23 15:29	9 646-07-1	N2
Lactic Acid	9050	mg/L	1000	2000		12/22/23 15:29	9 50-21-5	D4
i-Pentanoic Acid	ND	mg/L	1000	2000		12/22/23 15:29	9 503-74-2	N2
Propionic Acid	2280	mg/L	1000	2000		12/22/23 15:29	9 79-09-4	
Pyruvic Acid	ND	mg/L	1000	2000		12/22/23 15:29	9 127-17-3	
Sample: 23L0563-02: EW-68	Lab ID: 2030	00390002	Collected: 12/11/2	23 14:15	Received: 1	2/13/23 09:58	Matrix: Water	
Sample: 23L0563-02: EW-68 Parameters	Lab ID: 2030	00390002 Units	Collected: 12/11/2 Report Limit	23 14:15 DF	Received: 1 Prepared	2/13/23 09:58 Analyzed	Matrix: Water CAS No.	Qual
•	Results	Units		DF				Qual
Parameters	Results	Units lod: Pace E	Report Limit	DF				Qual
Parameters	Results Analytical Meth	Units lod: Pace E	Report Limit	DF			CAS No.	Qual
Parameters BR AM23G Low Level VFA Pentanoic Acid	Results Analytical Meth Pace Analytica	Units lod: Pace E I Services -	Report Limit NV-SOP-BTRO-004 Baton Rouge	DF 2		Analyzed	CAS No.	
Parameters BR AM23G Low Level VFA	Results Analytical Meth Pace Analytica ND	Units od: Pace E I Services - mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 100	DF 2 200		Analyzed	CAS No. 3 109-52-4 3 64-19-7	
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid	Results Analytical Meth Pace Analytica ND 660	Units nod: Pace E I Services - mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 100 100	DF 2 200 200		Analyzed 12/22/23 15:53 12/22/23 15:55	CAS No. 3 109-52-4 3 64-19-7 3 107-92-6	
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid	Results Analytical Meth Pace Analytica ND 660 336	Units nod: Pace E I Services - mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 100 100 100	DF 2 200 200 200 200		Analyzed 12/22/23 15:5: 12/22/23 15:5: 12/22/23 15:5:	CAS No. 3 109-52-4 3 64-19-7 3 107-92-6 3 64-18-6	
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid	Results Analytical Meth Pace Analytica ND 660 336 ND	Units Ind: Pace E Services - mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 100 100 100 100	DF 2 200 200 200 200 200		Analyzed 12/22/23 15:5: 12/22/23 15:5: 12/22/23 15:5: 12/22/23 15:5:	CAS No. 3 109-52-4 3 64-19-7 3 107-92-6 3 64-18-6 3 142-62-1	N2
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid	Results Analytical Meth Pace Analytica ND 660 336 ND ND ND	Units I Services - mg/L mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 100 100 100 100	DF 2 200 200 200 200 200 200 200		Analyzed 12/22/23 15:5: 12/22/23 15:5: 12/22/23 15:5: 12/22/23 15:5: 12/22/23 15:5:	CAS No. 3 109-52-4 3 64-19-7 3 107-92-6 3 64-18-6 3 142-62-1 3 646-07-1	N2 N2
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid i-Hexanoic Acid	Results Analytical Meth Pace Analytica ND 660 336 ND ND ND ND	Units I Services - mg/L mg/L mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 100 100 100 100 100 100	DF 2 200 200 200 200 200 200 200 200		Analyzed 12/22/23 15:53 12/22/23 15:53 12/22/23 15:53 12/22/23 15:53 12/22/23 15:53 12/22/23 15:53	CAS No. 3 109-52-4 3 64-19-7 3 107-92-6 3 64-18-6 3 142-62-1 3 646-07-1 3 50-21-5	N2 N2 N2 N2
Parameters BR AM23G Low Level VFA Pentanoic Acid Acetic Acid Butyric Acid Formic acid Hexanoic Acid i-Hexanoic Acid Lactic Acid	Results Analytical Meth Pace Analytica ND 660 336 ND ND ND ND ND	Units I Services - mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Report Limit NV-SOP-BTRO-004 Baton Rouge 100 100 100 100 100 100 100	DF 2 200 200 200 200 200 200 200 200 200		Analyzed 12/22/23 15:53 12/22/23 15:53 12/22/23 15:53 12/22/23 15:53 12/22/23 15:53 12/22/23 15:53 12/22/23 15:53	CAS No. 3 109-52-4 3 64-19-7 3 107-92-6 3 64-18-6 3 142-62-1 3 646-07-1 3 50-21-5 3 503-74-2	N2 N2 N2 N2 D4





## **QUALITY CONTROL DATA**

	2682 ace ENV-SOP-I	BTRO-0042	Analysis M Analysis D			ENV-SOP- M23G Low	BTRO-0042 Level VFA			
Associated Lab Samples	: 20300390	001, 20300390002	Laboratory	:	Pace	Analytical S	Services - Ba	ton Rouge		
METHOD BLANK: 149	7487		Matri	x: Water						
Associated Lab Samples	20300390	001, 20300390002								
			Blank	Reporting						
Parameter		Units	Result	Limit		Analyzed	Qual	ifiers		
Acetic Acid		mg/L	N	0.	50 12	2/22/23 13:	:00			
Butyric Acid		mg/L	N	0.	50 12	2/22/23 13:	:00			
Formic acid		mg/L	N	0.	50 12	2/22/23 13:	:00			
Hexanoic Acid		mg/L	N	O.:	50 12	2/22/23 13:	:00 N2			
i-Hexanoic Acid		mg/L	N	D 0.		2/22/23 13:				
i-Pentanoic Acid		mg/L	N	D 0.	50 12	2/22/23 13:	:00 N2			
Lactic Acid		mg/L	N	D 0.	50 12	2/22/23 13:	:00			
Pentanoic Acid		mg/L	N			2/22/23 13:				
Propionic Acid		mg/L	N			2/22/23 13:				
Pyruvic Acid		mg/L	NI	J ().:	50 12	2/22/23 13:	.00			
LABORATORY CONTRO	DL SAMPLE:	1497488								
_			Spike	LCS	LC		% Rec			
Parameter		Units	Conc.	Result	% R	Rec	Limits	Qualifiers		
Acetic Acid		mg/L	2	2.1		106	70-130			
Butyric Acid		mg/L	2	2.0		102	70-130			
Formic acid		mg/L	2	2.0		101	70-130			
Hexanoic Acid		mg/L	2	2.0		98	39-114			
i-Hexanoic Acid		mg/L	2	2.3		114	39-114			
i-Pentanoic Acid		mg/L	2	1.9		94	59-121	N2		
Lactic Acid		mg/L	2	2.2		110	70-130	NO		
Pentanoic Acid		mg/L	2	2.0		102	59-121	INZ		
Propionic Acid Pyruvic Acid		mg/L mg/L	2 2	2.1 2.1		103 105	70-130 70-130			
Fyluvic Acid		ling/∟	2	2.1		105	70-130			
MATRIX SPIKE & MATR	IX SPIKE DUP	LICATE: 149732		149732	27					
		00000507045	MS MS				IS MSI	D % Rec	Mari	
		20300537015	Spike Spił	ke MS	MS				Max	

Parameter	Units	20300537015 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Acetic Acid	mg/L	67.8	100	100	161	161	93	93	70-130	0	30	
Butyric Acid	mg/L	2.9U	100	100	92.1	93.9	91	93	70-130	2	30	
Formic acid	mg/L	4.2J	100	100	99.8	101	96	96	70-130	1	30	
Hexanoic Acid	mg/L	2.9U	100	100	49.5	49.5	49	48	39-114	0	30	N2
i-Hexanoic Acid	mg/L	2.8U	100	100	75.7	75.1	76	75	39-114	1	30	N2
i-Pentanoic Acid	mg/L	4.6J	100	100	88.4	86.3	84	82	59-121	2	30	N2
Lactic Acid	mg/L	2.7J	100	100	101	103	98	100	70-130	2	30	
Pentanoic Acid	mg/L	2.8U	100	100	71.2	71.2	71	71	59-121	0	30	N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



# **QUALITY CONTROL DATA**

 Project:
 23L0563

 Pace Project No.:
 20300390

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	ATE: 1497	326		1497327							
	20	0300537015	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Propionic Acid	mg/L	292	100	100	373	375	81	83	70-130	1	30	
Pyruvic Acid	mg/L	5.2J	100	100	97.4	101	92	96	70-130	3	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**





#### QUALIFIERS

Project:	23L0563
Pace Project No.:	20300390

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

#### ANALYTE QUALIFIERS

- D4 Sample was diluted due to the presence of high levels of target analytes.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 23L0563

 Pace Project No.:
 20300390

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
20300390001	23L0563-01: EW-52	Pace ENV-SOP-BTRO- 0042	312682		
20300390002	23L0563-02: EW-68	Pace ENV-SOP-BTRO- 0042	312682		



Pace - Gulf Coast 7979 Innovation Park Dr Baton Rouge, LA 70820

1941 RE RICHMOND, VIR (804) 358-(804)3



# CHAIN OF CUSTODY

EN I ANA			A.	CAL	79 [°] Ba	79 Innovatio ton Rouge,	LA 708	320	CUS	то	DY		RICI	HMOND, VII (804) 358 (804)	R 3 <b>2030</b> 0				Page 87 of 88
COMPANY NAME: Enthalpy					IN	VOICE TO:		thalpy						PROJECT	NAME/C	Quot	e #:	23L05	<u>هم</u> 63
CONTACT: Dan Elliott					_									SITE NAM				20200	
ADDRESS: 1941 Reymet Rd Richm	ond	VA 2	23237		IN	VOICE ADD	RESS	: 194	1 Reymet	Rd R	ichmond	VA 23237		PROJECT			231.05	63	
PHONE #: (804) 358-8295					IN	VOICE PHO	ONE #:	(804)	358-82	95				P.O. #:					
FAX #:			1	EMAIL:				. ,						Pretreatm					
Is sample for compliance reporting	ng?	Y	ΈS	NO		Is sample f	from a	chlorin	ated si	uppl	y?	YES	NC		0		PWS	I.D. #:	
SAMPLER NAME (PRINT):					SA	MPLER SIG	GNATU	JRE:									Turn /	Around	d Time: 10
Matrix Codes: WW=Waste Water/Storm Wa	ter G	€₩=G	Ground	Water DW=D	rinking	Water S=Soil/S	Solids Ol	R=Organ	ic A=Air	WP=	Wipe O	T=Other_							COMMENTS
			als)									AN	AL	YSIS / (PRI	ESERVA	TIVE	E)		Preservative Codes: N=Nitric Acid C=Hydrochloric Acid
CLIENT SAMPLE I.D.	Grab	Composite	Field Filtered (Dissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Time Preserved	Matrix (See Codes)	Number of Containers	Volatile Fatty Acid Low Level								S=Sulfuric Acid H=Sodium Hydroxide A=Ascorbic Acid Z=Zinc Acetate T=Sodium Thiosulfate M=Methanol PLEASE NOTE PRESERVATIVE(S), INTERFERENCE CHECKS or
1) 23L0563-01: EW-52	-	-		0	Ö				≥ WW	Z 3				_					PUMP RATE (L/min)
2) 23L0563-02: EW-68	X	-	$\left  \cdot \right $			12/11/23 12/11/23	1400 1415		WW	3	X X								2
3)						12/11/20	1410			Ū									
4)		$\square$																	
5)																			
6)																1			
7)																			
8)																			
9)	-			×													2	!	
10) RELINQUISHED:			TIME	RECEIVED	).			DATE /			Data D	ackago	1.01	B USE ON			0001		
Amilles 12/12	/2 ·	<u> </u>	161	6 Fede	KEX/	ACCUA	1/12			Leve	11		LAI	B USE ON	Lĭ			ER TEI	MP°C
RELINQUISHED:		ΓE / ΄		RECEIVED		puul	- 18	DATE /		Leve									Page 12 of 13



# Sample Condition Upon Reciep PM: RW

WO#:20300390 Due Date: 12/28/23

Workorde CLIENT: BR-Enthalpy

			Baton Rouge, LA 70806		
			Pace Client UPS FedEx Other:		
Yes			Were custody seals present on the cooler?		
			If custody seals were present, were they intact and	unbroken?	
Method	: 🗆 Terr	peratur			ction Factor: <u>+10</u> °C
Coole				amples on i	ce pH Strip Lot #
Coole	er #2	Cooler 1	Temp °C: (Actual/True)	Yes	□No
Coole	er #3	Cooler 1	Temp °C: (Actual/True) N	Nethod of co	
Coole		Cooler 7	Temp °C: (Actual/True)	🗹 Wet	Ice Packs Dry Ice None
Tracking	g #:	77	44 5364 7743		
🔽 Yes	🗌 No	🗆 NA	Is a temperature blank present?		
📉 Yes	□ No	🗆 NA	Was a chain of custody (COC) recieved?		
🗆 Yes	💟 No	🗆 NA	Was the line and profile number listed on the COC?		
Yes	🗆 No		Were all coolers received at or below 6.0°C? If no, r	notify	
			Project Manager notified via email. Were proper custody procedures (relinquished/rec	eived)	
Yes Yes	□ No		followed?		
🗌 Yes	No No	🗆 NA	Is the sampler name and signature on the COC?		
Yes Yes	🗆 No		Were sample IDs listed on the COC and all sample containers?		
🗖 Yes	□ No		Was collection date & time listed on the COC and a containers?	ll sample	
Yes	□ No		Did all container label information (ID, date, time) a the COC?	agree with	
🖵 Yes	🗌 No		Were tests to be performed listed on the COC?		
			Did all samples arrive in the proper containers for e	each test	
Yes	L No		and/or in good condition (unbroken, lids on, etc.)?		
Yes	ΠNο		Was adequate sample volume available?		
			Were all samples received within ½ the holding tim	e or 48	
N Yes	□ No		hours, whichever comes first?		
📉 Yes	🗆 No		Were all samples containers accounted for? (No mi excess)	issing /	
			Were VOA, 8015C (GRO/VPH), and RSK-175 sample		
🗆 Yes	🗌 No		bubbles > "pea size" (1/4" or 6mm in diameter) in a	any of the	
☐ Yes			VOA vials? Trip blank present?		
			Filtered volume received for dissolved tests?		
☐ Yes	🗌 No		If no, list affected sample(s) in comments below.		
🗆 Yes	🗌 No		Were all metals/nutrient samples received at a pH	of < 2?	If No, was preservative added?  Yes  No If added, record lots. Dispenser/pipette lot #:
☐ Yes	🗌 No		Were all cyanide samples received at a pH > 12 and samples received at a pH > 9?	l sulfide	HNO ₃ H ₂ SO ₄ NaOH Date: Time:
Comme	nts:				





1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

# **Certificate of Analysis**

Final Report

Laboratory Order ID 23L0673

Client Name: SCS Engineers-Winchester 296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Date Received:December 13, 20238:00Date Issued:January 9, 202414:14Project Number:02218208.15 Task 2Purchase Order:

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Enclosed are the results of analyses for samples received by the laboratory on 12/13/2023 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTATS

Ted Soyars Technical Director

#### End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.



			Analysis Detec	<u>ts Report</u>					
Client Name:	SCS Engineers-Wi	nchester			Date Issued:	1/9/	/2024 2:1	4:16PM	
Client Site ID:	2023 City of Bristol	Landfill Leachate							
	•								
Submitted To:	Jennifer Robb								
Laboratory Sample ID:	23L0673-01	Client Sa	mple ID: EW-78						
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Arsenic		01	SW6020B	240		1.0	2.0	2	ug/L
Barium		01	SW6020B	672		2.00	10.0	2	ug/L
Chromium		01	SW6020B	219		0.800	2.00	2	ug/L
Copper		01	SW6020B	3.40		0.600	2.00	2	ug/L
Lead		01	SW6020B	4.3		2.0	2.0	2	ug/L
Nickel		01	SW6020B	212.7		2.000	2.000	2	ug/L
Selenium		01	SW6020B	2.15		1.70	2.00	2	ug/L
Zinc		01	SW6020B	61.0		5.00	10.0	2	ug/L
Benzene		01	SW8260D	463		20.0	50.0	50	ug/L
Ethylbenzene		01	SW8260D	44.0	J	20.0	50.0	50	ug/L
Tetrahydrofuran		01	SW8260D	502		500	500	50	ug/L
Toluene		01	SW8260D	74.5		25.0	50.0	50	ug/L
Ammonia as N		01	EPA350.1 R2.0	1540		73.1	100	1000	mg/L
BOD		01	SM5210B-2016	681		0.2	2.0	1	mg/L
COD		01	SM5220D-2011	4870		1000	1000	100	mg/L
Cyanide		01	SW9012B	0.55		0.05	0.05	5	mg/L
Nitrate+Nitrite as N		01	SM4500-NO3F-2016	0.38		0.10	0.10	1	mg/L
TKN as N		01	EPA351.2 R2.0	1890		100	250	500	mg/L
Total Recoverable Phenoli	CS	01	SW9065	3.72		0.060	0.100	1	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".



# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

## ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-78	23L0673-01	Ground Water	12/12/2023 13:00	12/13/2023 08:00
Trip Blank	23L0673-02	Ground Water	12/12/2023 13:00	12/13/2023 08:00

As requested by Jennifer Robb on January 9, 2024, the list of reported VOCs has been updated. This change is reflected in the following revised report.

Date Issued:

1/9/2024 2:14:16PM

Page 3 of 68



			<u>(</u>	<u>Certificate c</u>	of Analysis							
Client Name: S	CS Engineers-Winc	hester				Da	te Issue	d:	1/9/202	4 2:1	4:16PM	
Client Site I.D.:	2023 City of Bristol L	andfill Lead	chate									
	ennifer Robb											
Client Sample ID: E	W-78				Laboratory S	Sample ID:	23L0	673-01				
			Reference	Sample Prep	Analyzed	Sample						
Parameter	Samp ID	CAS	Method	Date/Time	Date/Time	Results	Qual	LOD	LOQ	DF	Units	Analys
Metals (Total) by EPA 600	0/7000 Series Methods											
Silver	01	7440-22-4	SW6020B	12/14/2023 16:00	12/20/2023 15:52	BLOD		0.120	2.00	2	ug/L	MDW
Arsenic	01	7440-38-2	SW6020B	12/14/2023 16:00	12/20/2023 15:52	240		1.0	2.0	2	ug/L	MDW
Barium	01	7440-39-3	SW6020B	12/14/2023 16:00	12/20/2023 15:52	672		2.00	10.0	2	ug/L	MDW
Cadmium	01	7440-43-9	SW6020B	12/14/2023 16:00	12/20/2023 15:52	BLOD		0.200	2.00	2	ug/L	MDW
Chromium	01	7440-47-3	SW6020B	12/14/2023 16:00	12/20/2023 15:52	219		0.800	2.00	2	ug/L	MDW
Copper	01	7440-50-8	SW6020B	12/14/2023 16:00	12/20/2023 15:52	3.40		0.600	2.00	2	ug/L	MDW
Mercury	01	7439-97-6	SW6020B	12/14/2023 16:00	12/20/2023 15:52	BLOD		0.400	0.400	2	ug/L	MDW
Nickel	01	7440-02-0	SW6020B	12/14/2023 16:00	12/20/2023 15:52	212.7		2.000	2.000	2	ug/L	MDW
Lead	01	7439-92-1	SW6020B	12/14/2023 16:00	12/20/2023 15:52	4.3		2.0	2.0	2	ug/L	MDW
Selenium	01	7782-49-2	SW6020B	12/14/2023 16:00	12/20/2023 15:52	2.15		1.70	2.00	2	ug/L	MDW
Zinc	01	7440-66-6	SW6020B	12/14/2023 16:00	12/20/2023 15:52	61.0		5.00	10.0	2	ug/L	MDW
Volatile Organic Compour	nds by GCMS											
2-Butanone (MEK)	01	78-93-3	SW8260D	12/14/2023 18:17	12/14/2023 18:17	BLOD		150	500	50	ug/L	CGN
Acetone	01	67-64-1	SW8260D	12/14/2023 18:17	12/14/2023 18:17	BLOD		350	500	50	ug/L	CGN
Benzene	01	71-43-2	SW8260D	12/14/2023 18:17	12/14/2023 18:17	463		20.0	50.0	50	ug/L	CGN
Ethylbenzene	01	100-41-4	SW8260D	12/14/2023 18:17	12/14/2023 18:17	44.0	J	20.0	50.0	50	ug/L	CGN
Toluene	01	108-88-3	SW8260D	12/14/2023 18:17	12/14/2023 18:17	74.5		25.0	50.0	50	ug/L	CGN
Xylenes, Total	01	1330-20-7	SW8260D	12/14/2023 18:17	12/14/2023 18:17	BLOD		50.0	150	50	ug/L	CGN
Tetrahydrofuran	01	109-99-9	SW8260D	12/14/2023 18:17	12/14/2023 18:17	502		500	500	50	ug/L	CGN
Surr: 1,2-Dichloroethane-c	. ,	94.4	4 % 70-120	12/14/2023 1	8:17 12/14/2023 18:17	,						
Surr: 4-Bromofluorobenze	ne (Surr) 01	98.8	3 % 75-120	12/14/2023 18		•						
Surr: Dibromofluorometha		99.2		12/14/2023 18								
Surr: Toluene-d8 (Surr)	01	99.5	5% 70-130	12/14/2023 18	8:17 12/14/2023 18:17	•						



				(	Certificate of	Analysis							
Client Name:	SCS Engi	ineers-Winche	ester				Da	ite Issue	d:	1/9/202	24 2:1	14:16PM	
Client Site I.D.:	2023 City	/ of Bristol La	ndfill Lead	chate									
Submitted To:	Jennifer F	Robb											
Client Sample ID:	EW-78					Laboratory	Sample ID:	23L0	673-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Semivolatile Organic C	ompounds by	/ GCMS											
Anthracene		01	120-12-7	SW8270E	12/14/2023 09:00	12/15/2023 01:51	BLOD		50.0	100	10	ug/L	BMS
Surr: 2,4,6-Tribromophe	enol (Surr)	01	63.2	5-136	12/14/2023 09:0	00 12/15/2023 01:5	51						
Surr: 2-Fluorobiphenyl (	'Surr)	01	40.2	9-117	12/14/2023 09:0	00 12/15/2023 01:5	51						
Surr: 2-Fluorophenol (S	urr)	01	40.4	% 5-60	12/14/2023 09:0	00 12/15/2023 01:5	51						
Surr: Nitrobenzene-d5 (	'Surr)	01	49.6	5~5-151 [°]	12/14/2023 09:0	00 12/15/2023 01:5	51						
Surr: Phenol-d5 (Surr)		01	21.4	% 5-60	12/14/2023 09:0	00 12/15/2023 01:5	51						
Surr: p-Terphenyl-d14 (S	Surr)	01		% 5-141	12/14/2023 09:0	00 12/15/2023 01:5	51						DS



					Certificate o	of Analysis							
Client Name:	SCS Engi	neers-Winch	nester			-	Da	te Issue	d:	1/9/202	4 2:1	4:16PM	
Client Site I.D.:	2023 City	of Bristol La	andfill Lead	chate									
Submitted To:	Jennifer R	lobb											
Client Sample ID:	EW-78					Laborator	y Sample ID:	23L0	673-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
Wet Chemistry Analys	sis												
Ammonia as N		01	7664-41-7	EPA350.1 R2.0	12/22/2023 15:02	12/22/2023 15:02	1540		73.1	100	1000	mg/L	SPH
BOD		01	E1640606	SM5210B-20 16	12/14/2023 09:21	12/14/2023 09:21	681		0.2	2.0	1	mg/L	NBT
Cyanide		01	57-12-5	SW9012B	12/14/2023 10:56	12/14/2023 10:56	0.55		0.05	0.05	5	mg/L	MGC
COD		01	NA	SM5220D-20 11	12/18/2023 13:35	12/18/2023 13:35	4870		1000	1000	100	mg/L	MGC
Nitrate as N		01	14797-55-8	Calc.	12/26/2023 11:00	12/26/2023 15:32	BLOD		1.10	5.10	100	mg/L	KJM
Nitrate+Nitrite as N		01	E701177	SM4500-NO 3F-2016	12/26/2023 11:00	12/26/2023 15:32	0.38		0.10	0.10	1	mg/L	TEG
Nitrite as N		01	14797-65-0	SM4500-NO 2B-2011	12/13/2023 10:25	12/13/2023 10:25	BLOD		1.00	5.00	100	mg/L	KJM
Total Recoverable Pho	enolics	01	NA	SW9065	12/26/2023 15:19	12/26/2023 15:19	3.72		0.060	0.100	1	mg/L	AAL
TKN as N		01	E17148461	EPA351.2 R2.0	12/22/2023 14:52	12/22/2023 14:52	1890		100	250	500	mg/L	MJRL



				<u>(</u>	<u>Certificate o</u>	<u>f Analysis</u>							
Client Name:	SCS Engine	eers-Winch	ester				Da	te Issue	d:	1/9/202	4 2:1	14:16PM	
Client Site I.D.:	2023 City o	of Bristol La	Indfill Leac	hate									
Submitted To:	Jennifer Ro	bb											
Client Sample ID:	Trip Blank					Laborator	y Sample ID:	23L0	673-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
Volatile Organic Compo	ounds by GCMS												
2-Butanone (MEK)		02	78-93-3	SW8260D	12/14/2023 12:28	12/14/2023 12:28	BLOD		3.00	10.0	1	ug/L	RJB
Acetone		02	67-64-1	SW8260D	12/14/2023 12:28	12/14/2023 12:28	BLOD		7.00	10.0	1	ug/L	RJB
Benzene		02	71-43-2	SW8260D	12/14/2023 12:28	12/14/2023 12:28	BLOD		0.40	1.00	1	ug/L	RJB
Ethylbenzene		02	100-41-4	SW8260D	12/14/2023 12:28	12/14/2023 12:28	BLOD		0.40	1.00	1	ug/L	RJB
Toluene		02	108-88-3	SW8260D	12/14/2023 12:28	12/14/2023 12:28	BLOD		0.50	1.00	1	ug/L	RJB
Xylenes, Total		02	1330-20-7	SW8260D	12/14/2023 12:28	12/14/2023 12:28	BLOD		1.00	3.00	1	ug/L	RJB
Tetrahydrofuran		02	109-99-9	SW8260D	12/14/2023 12:28	12/14/2023 12:28	BLOD		10.0	10.0	1	ug/L	RJB
Surr: 1,2-Dichloroethane	e-d4 (Surr)	02	98.5	% 70-120	12/14/2023 12	::28 12/14/2023 12	2:28						
Surr: 4-Bromofluoroben:	zene (Surr)	02	108	% 75-120	12/14/2023 12	2:28 12/14/2023 12	2:28						
Surr: Dibromofluoromet	hane (Surr)	02	98.4										
Surr: Toluene-d8 (Surr)		02	101	% 70-130	12/14/2023 12	2:28 12/14/2023 12	2:28						



			<u>C</u>	ertificate c	of Analysi	i <u>s</u>				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	1/9/2024	2:14:16PM
Client Site I.D.:	2023 City of Bristol Landfill Le	eachate								
Submitted To:	Jennifer Robb									
oubmitted to.			( <b>-</b> , ), ,							
		Metals	s (Total) by	EPA 6000/7000 S	eries Methods - (	Quality Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL0589 - EPA200	8 R5.4								
Blank (BGL0589-BLK1)	)			Prepared: 12/14/	2023 Analyzed: 1	2/19/2023				
Mercury	ND	0.200	ug/L							
Arsenic	ND	1.0	ug/L							
Barium	ND	5.00	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	1.00	ug/L							
Copper	ND	1.00	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	1.000	ug/L							
Selenium	ND	1.00	ug/L							
Silver	ND	1.00	ug/L							
Zinc	ND	5.00	ug/L							
LCS (BGL0589-BS1)				Prepared: 12/14/	2023 Analyzed: 1	2/19/2023				
Mercury	0.936	0.200	ug/L				80-120			
Arsenic	48	1.0	ug/L	50.0		96.0	80-120			
Barium	47.5	5.00	ug/L	50.0		95.1	80-120			
Cadmium	49.6	1.00	ug/L	50.0		99.2	80-120			
Chromium	49.7	1.00	ug/L	50.0		99.4	80-120			
Copper	48.8	1.00	ug/L	50.0		97.5	80-120			
Lead	52	1.0	ug/L	50.0		103	80-120			
Nickel	49.66	1.000	ug/L	50.0		99.3	80-120			
Selenium	49.7	1.00	ug/L	50.0		99.5	80-120			
Silver	9.79	1.00	ug/L	10.0		97.9	80-120			
Zinc	49.0	5.00	ug/L	50.0		98.0	80-120			
Matrix Spike (BGL0589	-MS1) Source	: 23L0787-0	5	Prepared: 12/14/	2023 Analyzed: 1	2/19/2023				



1/9/2024 2:14:16PM

Date Issued:

# Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGL0589 - EPA20	0.8 R5.4								
Matrix Spike (BGL0589-MS1)	Sour	ce: 23L0787-0	5	Prepared: 12/14/	2023 Analyzed: 1	12/19/2023				
Mercury	0.951	0.200	ug/L		BLOD		70-130			
Arsenic	47	1.0	ug/L	50.0	BLOD	94.8	75-125			
Barium	47.5	5.00	ug/L	50.0	BLOD	94.9	75-125			
Cadmium	49.6	1.00	ug/L	50.0	BLOD	99.2	75-125			
Chromium	49.8	1.00	ug/L	50.0	BLOD	99.6	75-125			
Copper	49.1	1.00	ug/L	50.0	0.438	97.3	75-125			
Lead	53	1.0	ug/L	50.0	BLOD	106	75-125			
Nickel	49.19	1.000	ug/L	50.0	BLOD	98.4	75-125			
Selenium	48.5	1.00	ug/L	50.0	BLOD	96.9	75-125			
Silver	9.85	1.00	ug/L	10.0	BLOD	98.5	75-125			
Zinc	49.1	5.00	ug/L	50.0	BLOD	98.1	75-125			
/atrix Spike (BGL0589-MS2)	Sour	ce: 23L0836-02	2	Prepared: 12/14/	2023 Analyzed: 1	12/19/2023				
Mercury	0.993	0.200	ug/L		BLOD		70-130			
Arsenic	48	1.0	ug/L	50.0	BLOD	96.3	75-125			
Barium	54.8	5.00	ug/L	50.0	8.14	93.4	75-125			
Cadmium	49.9	1.00	ug/L	50.0	BLOD	99.8	75-125			
Chromium	49.0	1.00	ug/L	50.0	BLOD	98.0	75-125			
Copper	52.1	1.00	ug/L	50.0	4.54	95.1	75-125			
Lead	51	1.0	ug/L	50.0	BLOD	101	75-125			
Nickel	48.60	1.000	ug/L	50.0	BLOD	97.2	75-125			
Selenium	47.4	1.00	ug/L	50.0	BLOD	94.8	75-125			
Silver	9.88	1.00	ug/L	10.0	BLOD	98.8	75-125			
Zinc	78.5	5.00	ug/L	50.0	32.4	92.1	75-125			
Matrix Spike Dup (BGL0589-MSD1)	Sour	ce: 23L0787-0		Prepared: 12/14/	2023 Analyzed: 1	12/10/2023				



1/9/2024 2:14:16PM

Date Issued:

# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BGL0589 - EPA20	0.8 R5.4								
Matrix Spike Dup (BGL0589-MSD1)	Sour	ce: 23L0787-0	5	Prepared: 12/14/	2023 Analyzed:	12/19/2023				
Mercury	0.958	0.200	ug/L		BLOD		70-130	0.656	20	
Arsenic	48	1.0	ug/L	50.0	BLOD	95.5	75-125	0.758	20	
Barium	48.5	5.00	ug/L	50.0	BLOD	96.9	75-125	2.10	20	
Cadmium	50.2	1.00	ug/L	50.0	BLOD	100	75-125	1.15	20	
Chromium	49.8	1.00	ug/L	50.0	BLOD	99.7	75-125	0.0540	20	
Copper	50.1	1.00	ug/L	50.0	0.438	99.3	75-125	2.05	20	
Lead	52	1.0	ug/L	50.0	BLOD	105	75-125	1.14	20	
Nickel	50.63	1.000	ug/L	50.0	BLOD	101	75-125	2.89	20	
Selenium	48.6	1.00	ug/L	50.0	BLOD	97.2	75-125	0.269	20	
Silver	10.0	1.00	ug/L	10.0	BLOD	100	75-125	1.64	20	
Zinc	50.0	5.00	ug/L	50.0	BLOD	100	75-125	1.99	20	
Matrix Spike Dup (BGL0589-MSD2)	Sour	ce: 23L0836-0	2	Prepared: 12/14/	2023 Analyzed:	12/19/2023				
Mercury	0.992	0.200	ug/L		BLOD		70-130	0.188	20	
Arsenic	48	1.0	ug/L	50.0	BLOD	96.2	75-125	0.107	20	
Barium	55.5	5.00	ug/L	50.0	8.14	94.7	75-125	1.25	20	
Cadmium	50.2	1.00	ug/L	50.0	BLOD	100	75-125	0.510	20	
Chromium	50.0	1.00	ug/L	50.0	BLOD	99.9	75-125	1.94	20	
Copper	51.8	1.00	ug/L	50.0	4.54	94.5	75-125	0.597	20	
Lead	51	1.0	ug/L	50.0	BLOD	102	75-125	0.973	20	
Nickel	49.31	1.000	ug/L	50.0	BLOD	98.6	75-125	1.45	20	
Selenium	46.9	1.00	ug/L	50.0	BLOD	93.7	75-125	1.17	20	
Silver	9.96	1.00	ug/L	10.0	BLOD	99.6	75-125	0.842	20	
Zinc	79.8	5.00	ug/L	50.0	32.4	94.8	75-125	1.73	20	



			<u>Cer</u>	tificate o	of Analysi	s				
Client Name: SCS Eng	gineers-Winchester				_		Date Issue	ed:	1/9/2024	2:14:16PM
Client Site I.D.: 2023 Ci	ty of Bristol Landfill L	eachate								
Submitted To: Jennifer	•									
		,	/olotilo Organ	via Compounda I	oy GCMS - Qualit	w Control				
		· ·	Volatile Organ			y control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
-	Batch BGL0600 - SW5030	B-MS								
Blank (BGL0600-BLK1)			F	Prepared & Anal	yzed: 12/14/2023					
2-Butanone (MEK)	ND	10.0	ug/L		<u> </u>					
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr	r) 48.6		ug/L	50.0		97.2	70-120			
Surr: 4-Bromofluorobenzene (Sur	r) 53.2		ug/L	50.0		106	75-120			
Surr: Dibromofluoromethane (Sur	r) 48.3		ug/L	50.0		96.6	70-130			
Surr: Toluene-d8 (Surr)	50.9		ug/L	50.0		102	70-130			
LCS (BGL0600-BS1)			F	Prepared & Anal	yzed: 12/14/2023					
1,1,1,2-Tetrachloroethane	52.1	0.4	ug/L	50.0		104	80-130			
1,1,1-Trichloroethane	50.6	1	ug/L	50.0		101	65-130			
1,1,2,2-Tetrachloroethane	52.2	0.4	ug/L	50.0		104	65-130			
1,1,2-Trichloroethane	54.7	1	ug/L	50.0		109	75-125			
1,1-Dichloroethane	52.0	1	ug/L	50.0		104	70-135			
1,1-Dichloroethylene	51.8	1	ug/L	50.0		104	70-130			
1,1-Dichloropropene	51.9	1	ug/L	50.0		104	75-135			
1,2,3-Trichlorobenzene	55.7	1	ug/L	50.0		111	55-140			
1,2,3-Trichloropropane	48.2	1	ug/L	50.0		96.4	75-125			
1,2,4-Trichlorobenzene	51.0	1	ug/L	50.0		102	65-135			
1,2,4-Trimethylbenzene	54.3	1	ug/L	50.0		109	75-130			
1,2-Dibromo-3-chloropropane (DB	BCP) 42.7	1	ug/L	50.0		85.5	50-130			
1,2-Dibromoethane (EDB)	51.1	1	ug/L	50.0		102	80-120			



			Ce	rtificate o	of Analysi	is				
Client Name:	SCS Engineers-Winches	ter					Date Issue	ed:	1/9/2024	2:14:16PM
Client Site I.D.:	2023 City of Bristol Land	Ifill Leachate								
	•	Louonato								
Submitted To:	Jennifer Robb									
		N N	Volatile Orga	nic Compounds	by GCMS - Quali	ty Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
, unaryto			Onito	20101	rtooun	, inceo	Linito		Linit	Quui
	Batch BGL0600 - SV	V5030B-MS								
LCS (BGL0600-BS1)				Prepared & Anal	yzed: 12/14/2023	ł				
1,2-Dichlorobenzene	50.0	0.5	ug/L	50.0		100	70-120			
1,2-Dichloroethane	49.3	1	ug/L	50.0		98.7	70-130			
1,2-Dichloropropane	53.2	0.5	ug/L	50.0		106	75-125			
1,3,5-Trimethylbenze	ene 53.1	1	ug/L	50.0		106	75-125			
1,3-Dichlorobenzene	52.2	1	ug/L	50.0		104	75-125			
1,3-Dichloropropane	52.9	1	ug/L	50.0		106	75-125			
1,4-Dichlorobenzene	50.4	1	ug/L	50.0		101	75-125			
2,2-Dichloropropane	50.7	1	ug/L	50.0		101	70-135			
2-Butanone (MEK)	46.7	10	ug/L	50.0		93.4	30-150			
2-Chlorotoluene	52.7	1	ug/L	50.0		105	75-125			
2-Hexanone (MBK)	45.1	5	ug/L	50.0		90.2	55-130			
4-Chlorotoluene	53.8	1	ug/L	50.0		108	75-130			
4-Isopropyltoluene	53.4	1	ug/L	50.0		107	75-130			
4-Methyl-2-pentanon	e (MIBK) 50.6	5	ug/L	50.0		101	60-135			
Acetone	37.1	10	ug/L	50.0		74.2	40-140			
Benzene	53.8	1	ug/L	50.0		108	80-120			
Bromobenzene	53.2	1	ug/L	50.0		106	75-125			
Bromochloromethane	e 50.7	1	ug/L	50.0		101	65-130			
Bromodichlorometha	ne 53.1	0.5	ug/L	50.0		106	75-120			
Bromoform	56.9	1	ug/L	50.0		114	70-130			
Bromomethane	38.1	1	ug/L	50.0		76.1	30-145			
Carbon disulfide	41.3	10	ug/L	50.0		82.5	35-160			
Carbon tetrachloride	50.8	1	ug/L	50.0		102	65-140			
Chlorobenzene	51.6	1	ug/L	50.0		103	80-120			
Chloroethane	47.2	1	ug/L	50.0		94.4	60-135			



				Cer	tificate o	of Analysi	is				
Client Name:	SCS Engineers	s-Winchester				-		Date Issue	ed:	1/9/2024	2:14:16PM
Client Site I.D.:	2023 City of B	ristol Landfill L	eachate								
Submitted To:	Jennifer Robb										
Submitted to.											
			١	/olatile Orgar	nic Compounds I	oy GCMS - Qualit	ty Control				
					Enthalpy A	nalytical					
		_			Spike	Source		%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch B	GL0600 - SW503	0B-MS								
LCS (BGL0600-BS1)				F	Prepared & Anal	yzed: 12/14/2023					
Chloroform		49.8	0.5	ug/L	50.0		99.6	65-135			
Chloromethane		47.8	1	ug/L	50.0		95.6	40-125			
cis-1,2-Dichloroethy	/lene	53.1	1	ug/L	50.0		106	70-125			
cis-1,3-Dichloroprop	pene	53.4	1	ug/L	50.0		107	70-130			
Dibromochlorometh	ane	55.6	0.5	ug/L	50.0		111	60-135			
Dibromomethane		51.1	1	ug/L	50.0		102	75-125			
Dichlorodifluoromet	hane	64.7	1	ug/L	50.0		129	30-155			
Ethylbenzene		53.4	1	ug/L	50.0		107	75-125			
Hexachlorobutadien	ne	44.9	0.8	ug/L	50.0		89.8	50-140			
Isopropylbenzene		50.2	1	ug/L	50.0		100	75-125			
m+p-Xylenes		105	2	ug/L	100		105	75-130			
Methylene chloride		52.9	4	ug/L	50.0		106	55-140			
Methyl-t-butyl ether	(MTBE)	51.8	1	ug/L	50.0		104	65-125			
Naphthalene		53.0	1	ug/L	50.0		106	55-140			
n-Butylbenzene		51.3	1	ug/L	50.0		103	70-135			
n-Propylbenzene		53.5	1	ug/L	50.0		107	70-130			
o-Xylene		53.1	1	ug/L	50.0		106	80-120			
sec-Butylbenzene		54.8	1	ug/L	50.0		110	70-125			
Styrene		54.0	1	ug/L	50.0		108	65-135			
tert-Butylbenzene		52.9	1	ug/L	50.0		106	70-130			
Tetrachloroethylene	e (PCE)	42.8	1	ug/L	50.0		85.5	45-150			
Toluene		53.7	1	ug/L	50.0		107	75-120			
trans-1,2-Dichloroet	thylene	51.4	1	ug/L	50.0		103	60-140			
trans-1,3-Dichloropr	ropene	57.0	1	ug/L	50.0		114	55-140			
Trichloroethylene		52.3	1	ug/L	50.0		105	70-125			



			<u>Ce</u>	ertificate o	of Analysi	is				
Client Name: So	CS Engineers-Winchester	-					Date Issue	ed:	1/9/2024	2:14:16PM
Client Site I.D.: 2	023 City of Bristol Landfil	Leachate								
	ennifer Robb									
		,								
		v	olatile Org	anic Compounds	by GCMS - Qualit	ty Control				
				Enthalpy A	nalytical					
Analuta	Deput	1.00	Linita	Spike	Source	%REC	%REC	RPD	RPD Limit	Quel
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGL0600 - SW5	030B-MS								
LCS (BGL0600-BS1)	<b>-</b> •••			•	yzed: 12/14/2023		00 / / -			
Trichlorofluoromethane	50.4	1	ug/L	50.0		101	60-145			
Vinyl chloride	47.8	0.5	ug/L	50.0		95.6	50-145			
Surr: 1,2-Dichloroethane	. ,		ug/L	50.0		95.1	70-120			
Surr: 4-Bromofluorobenz	. ,		ug/L	50.0		103	75-120			
Surr: Dibromofluorometh	. ,		ug/L	50.0		96.9	70-130			
Surr: Toluene-d8 (Surr)	50.4		ug/L	50.0		101	70-130			
Matrix Spike (BGL0600-MS	•	rce: 23L0740-0	1	Prepared & Anal	yzed: 12/14/2023					
1,1,1,2-Tetrachloroethan		0.4	ug/L	50.0	BLOD	102	80-130			
1,1,1-Trichloroethane	50.1	1	ug/L	50.0	BLOD	100	65-130			
1,1,2,2-Tetrachloroethan		0.4	ug/L	50.0	BLOD	106	65-130			
1,1,2-Trichloroethane	54.8	1	ug/L	50.0	BLOD	110	75-125			
1,1-Dichloroethane	50.6	1	ug/L	50.0	BLOD	101	70-135			
1,1-Dichloroethylene	50.6	1	ug/L	50.0	BLOD	101	50-145			
1,1-Dichloropropene	51.2	1	ug/L	50.0	BLOD	102	75-135			
1,2,3-Trichlorobenzene	53.8	1	ug/L	50.0	BLOD	108	55-140			
1,2,3-Trichloropropane	49.7	1	ug/L	50.0	BLOD	99.5	75-125			
1,2,4-Trichlorobenzene	50.3	1	ug/L	50.0	BLOD	101	65-135			
1,2,4-Trimethylbenzene	53.8	1	ug/L	50.0	BLOD	108	75-130			
1,2-Dibromo-3-chloropro	pane (DBCP) 44.2	1	ug/L	50.0	BLOD	88.4	50-130			
1,2-Dibromoethane (EDE	3) 51.4	1	ug/L	50.0	BLOD	103	80-120			
1,2-Dichlorobenzene	50.1	0.5	ug/L	50.0	BLOD	100	70-120			
1,2-Dichloroethane	49.1	1	ug/L	50.0	BLOD	98.2	70-130			
1,2-Dichloropropane	52.2	0.5	ug/L	50.0	BLOD	104	75-125			
1,3,5-Trimethylbenzene	52.0	1	ug/L	50.0	BLOD	104	75-124			



### **Certificate of Analysis Client Name:** SCS Engineers-Winchester Date Issued: 1/9/2024 2:14:16PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0600 - SW5030B-MS Matrix Spike (BGL0600-MS1) Prepared & Analyzed: 12/14/2023 Source: 23L0740-01 51.0 1.3-Dichlorobenzene 1 ug/L 50.0 BLOD 102 75-125 1,3-Dichloropropane 52.5 1 ug/L 50.0 BLOD 105 75-125 50.0 BLOD 98.9 75-125 1,4-Dichlorobenzene 49.4 1 ug/L 49.8 1 50.0 BLOD 99.6 70-135 2.2-Dichloropropane ug/L 2-Butanone (MEK) 50.3 10 ug/L 50.0 BI OD 101 30-150 1 BI OD 75-125 2-Chlorotoluene 51.7 ug/L 50.0 103 2-Hexanone (MBK) 48.6 5 ug/L 50.0 BI OD 97.2 55-130 1 BLOD 105 75-130 4-Chlorotoluene 52.7 ug/L 50.0 BLOD 4-Isopropyltoluene 53.3 1 ug/L 50.0 107 75-130 54.9 5 50.0 BLOD 110 60-135 4-Methyl-2-pentanone (MIBK) ua/L 40.5 10 50.0 37.1 6.84 40-140 М Acetone ug/L Benzene 52.5 1 ug/L 50.0 BLOD 105 80-120 52.9 1 50.0 BLOD 106 75-125 Bromobenzene ug/L 50.0 1 BLOD 65-130 Bromochloromethane ug/L 50.0 99.9 Bromodichloromethane 52.2 0.5 50.0 BI OD 104 75-136 ug/L Bromoform 56.6 BLOD 70-130 1 ug/L 50.0 113 Bromomethane 38.2 1 ug/L 50.0 BLOD 76.4 30-145 Carbon disulfide 43.9 50.0 BLOD 86.8 35-160 10 ug/L Carbon tetrachloride 50.2 1 50.0 BLOD 100 65-140 ug/L Chlorobenzene 50.6 1 ug/L 50.0 BLOD 101 80-120 Chloroethane 46.0 1 50.0 BLOD 92.0 60-135 ug/L Chloroform 49.0 0.5 ug/L 50.0 BI OD 98.1 65-135 Chloromethane 47.9 1 BI OD 40-125 ug/L 50.0 95.8 cis-1,2-Dichloroethylene 51.8 1 ug/L 50.0 BI OD 104 70-125 52.3 1 ug/L 105 cis-1,3-Dichloropropene 50.0 BLOD 47-136



### **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:14:16PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0600 - SW5030B-MS Matrix Spike (BGL0600-MS1) Prepared & Analyzed: 12/14/2023 Source: 23L0740-01 Dibromochloromethane 54.8 BLOD 0.5 ug/L 50.0 110 60-135 Dibromomethane 50.6 1 ug/L 50.0 BLOD 101 75-125 Dichlorodifluoromethane 62.2 50.0 BLOD 1 ug/L 124 30-155 Ethvlbenzene 52.3 1 50.0 BLOD 105 75-125 ug/L Hexachlorobutadiene 44.8 0.8 ug/L 50.0 BI OD 89.7 50-140 Isopropylbenzene 1 BI OD 99.2 75-125 49.6 ug/L 50.0 m+p-Xylenes 103 2 ug/L 100 BI OD 103 75-130 52.1 4 50.0 BLOD 104 55-140 Methylene chloride ug/L BLOD Methyl-t-butyl ether (MTBE) 51.2 1 ug/L 50.0 102 65-125 Naphthalene 52.9 1 50.0 BLOD 106 55-140 ua/L n-Butylbenzene 50.6 1 50.0 BLOD 101 70-135 ug/L n-Propylbenzene 52.5 1 ug/L 50.0 BLOD 105 70-130 o-Xylene 51.9 1 50.0 BLOD 104 80-120 ug/L 54.3 BLOD 70-125 sec-Butylbenzene 1 ug/L 50.0 109 Styrene 53.0 1 50.0 BI OD 106 65-135 ug/L 1 50.0 BLOD 70-130 tert-Butylbenzene 51.7 ug/L 103 Tetrachloroethylene (PCE) 42.0 1 ug/L 50.0 BLOD 84.1 51-231 53.1 1 50.0 BLOD 106 75-120 Toluene ug/L trans-1,2-Dichloroethylene 50.6 1 50.0 BLOD 101 60-140 ug/L BLOD 55-140 trans-1,3-Dichloropropene 56.9 1 ug/L 50.0 114 Trichloroethylene 51.3 1 50.0 BLOD 103 70-125 ug/L Trichlorofluoromethane 54.1 1 ug/L 50.0 BI OD 108 60-145 Vinvl chloride 0.5 BLOD 50-145 44.7 ug/L 50.0 89.3 70-120 Surr: 1,2-Dichloroethane-d4 (Surr) 48.4 ug/L 50.0 96.8 Surr: 4-Bromofluorobenzene (Surr) 51.6 50.0 103 75-120 ug/L



				<u>Ce</u>	ertificate c	of Analysis	<u>S</u>				
Client Name:	SCS Engineers	-Winchester						Date Issu	ed:	1/9/2024	2:14:16PM
Client Site I.D.:	2023 City of Br	istol Landfill Le	eachate								
	Jennifer Robb										
oublinited to.			N.	alatila Ora	ania Compoundo I	by GCMS - Quality	Control				
			v	olatile Org			Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BG	SL0600 - SW5030	B-MS								
Matrix Spike (BGL0600-			: 23L0740-0	1	Prepared & Anal	yzed: 12/14/2023	_				
Surr: Dibromofluorom	ethane (Surr)	49.0		ug/L	50.0		98.0	70-130			
Surr: Toluene-d8 (Sur	r)	50.6		ug/L	50.0		101	70-130			
Matrix Spike Dup (BGL0	600-MSD1)	Source	: 23L0740-0	1	Prepared & Anal	yzed: 12/14/2023					
1,1,1,2-Tetrachloroeth	ane	50.6	0.4	ug/L	50.0	BLOD	101	80-130	0.886	30	
1,1,1-Trichloroethane		49.4	1	ug/L	50.0	BLOD	98.8	65-130	1.47	30	
1,1,2,2-Tetrachloroeth	ane	52.9	0.4	ug/L	50.0	BLOD	106	65-130	0.0756	30	
1,1,2-Trichloroethane		54.5	1	ug/L	50.0	BLOD	109	75-125	0.494	30	
1,1-Dichloroethane		49.7	1	ug/L	50.0	BLOD	99.4	70-135	1.73	30	
1,1-Dichloroethylene		49.6	1	ug/L	50.0	BLOD	99.3	50-145	2.01	30	
1,1-Dichloropropene		50.6	1	ug/L	50.0	BLOD	101	75-135	1.14	30	
1,2,3-Trichlorobenzen	e	53.9	1	ug/L	50.0	BLOD	108	55-140	0.242	30	
1,2,3-Trichloropropan	e	49.6	1	ug/L	50.0	BLOD	99.2	75-125	0.262	30	
1,2,4-Trichlorobenzen	e	49.8	1	ug/L	50.0	BLOD	99.5	65-135	1.08	30	
1,2,4-Trimethylbenzer	ne	52.7	1	ug/L	50.0	BLOD	105	75-130	2.18	30	
1,2-Dibromo-3-chloro	propane (DBCP)	43.9	1	ug/L	50.0	BLOD	87.8	50-130	0.590	30	
1,2-Dibromoethane (E	EDB)	50.7	1	ug/L	50.0	BLOD	101	80-120	1.43	30	
1,2-Dichlorobenzene		48.9	0.5	ug/L	50.0	BLOD	97.7	70-120	2.53	30	
1,2-Dichloroethane		48.4	1	ug/L	50.0	BLOD	96.7	70-130	1.54	30	
1,2-Dichloropropane		52.0	0.5	ug/L	50.0	BLOD	104	75-125	0.480	30	
1,3,5-Trimethylbenzer	ne	50.9	1	ug/L	50.0	BLOD	102	75-124	2.06	30	
1,3-Dichlorobenzene		50.9	1	ug/L	50.0	BLOD	102	75-125	0.275	30	
1,3-Dichloropropane		52.7	1	ug/L	50.0	BLOD	105	75-125	0.266	30	
1,4-Dichlorobenzene		49.2	1	ug/L	50.0	BLOD	98.4	75-125	0.507	30	
2,2-Dichloropropane		48.6	1	ug/L	50.0	BLOD	97.3	70-135	2.40	30	



**Client Name:** 

Client Site I.D.:

Submitted To:

2-Butanone (MEK)

2-Hexanone (MBK)

4-Isopropyltoluene

2-Chlorotoluene

4-Chlorotoluene

Bromobenzene

Bromomethane

Carbon disulfide

Chlorobenzene

Chloromethane

Dibromomethane

Ethylbenzene

cis-1,2-Dichloroethylene

cis-1,3-Dichloropropene

Dibromochloromethane

Dichlorodifluoromethane

Chloroethane

Chloroform

Carbon tetrachloride

48.2

44.3

51.6

52.6

54.8

51.1

59.0

51.9

0.5

1

1

1

1

1

1

0.5

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

Bromochloromethane

Bromodichloromethane

Acetone

Benzene

Bromoform

Analyte

**Enthalpy Analytical** 1941 Reymet Road Richmond, Virginia 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

30

30

30

30

30

30

30

30

1.73

7.90

0.290

0.439

0.0912

0.944

5 28

0.825

### **Certificate of Analysis** SCS Engineers-Winchester Date Issued: 1/9/2024 2:14:16PM 2023 City of Bristol Landfill Leachate Jennifer Robb Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Batch BGL0600 - SW5030B-MS Matrix Spike Dup (BGL0600-MSD1) Source: 23L0740-01 Prepared & Analyzed: 12/14/2023 49.1 10 ug/L 50.0 BLOD 98.2 30-150 2.45 30 50.7 1 ug/L 50.0 BLOD 101 75-125 1.95 30 5 BLOD 49.3 ug/L 50.0 98.6 55-130 1.43 30 1 50.0 BLOD 103 75-130 2.13 30 51.6 ug/L 52.1 1 ug/L 50.0 BI OD 104 75-130 2.26 30 5 BI OD 4-Methyl-2-pentanone (MIBK) 55.7 ug/L 50.0 111 60-135 1.41 30 39.7 10 ug/L 50.0 37.1 5.12 40-140 2.15 30 52.5 1 BLOD 105 0.0572 ua/L 50.0 80-120 30 53.0 1 ug/L 50.0 BLOD 106 75-125 0.113 30 49.4 1 50.0 BLOD 98.7 65-130 30 ua/L 1.21 52.9 0.5 50.0 BLOD 106 75-136 1.37 30 ug/L 56.5 1 ug/L 50.0 BLOD 113 70-130 0.159 30 36.7 1 50.0 BI OD 73.4 30-145 3.90 30 ug/L BLOD 43.6 10 ug/L 50.0 86.1 35-160 0.869 30 49.7 1 50.0 BI OD 65-140 1.14 30 ug/L 99.4 50.0 1 ug/L 50.0 BLOD 100 80-120 0.994 30 44.4 1 ug/L 50.0 BLOD 88.8 60-135 3.58 30

BLOD

BLOD

BLOD

BLOD

BI OD

BI OD

BI OD

BLOD

96.4

88.5

103

105

110

102

118

104

65-135

40-125

70-125

47-136

60-135

75-125

30-155

75-125

Μ

Qual



1/9/2024 2:14:16PM

Date Issued:

# <u>Certificate of Analysis</u>

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	GL0600 - SW503	0B-MS								
Matrix Spike Dup (BGL0600-MSD1)	Sourc	e: 23L0740-0	1	Prepared & Anal	yzed: 12/14/2023					
Hexachlorobutadiene	44.9	0.8	ug/L	50.0	BLOD	89.9	50-140	0.200	30	
Isopropylbenzene	49.3	1	ug/L	50.0	BLOD	98.5	75-125	0.648	30	
m+p-Xylenes	102	2	ug/L	100	BLOD	102	75-130	0.895	30	
Methylene chloride	50.8	4	ug/L	50.0	BLOD	102	55-140	2.49	30	
Methyl-t-butyl ether (MTBE)	50.3	1	ug/L	50.0	BLOD	101	65-125	1.70	30	
Naphthalene	52.6	1	ug/L	50.0	BLOD	105	55-140	0.588	30	
n-Butylbenzene	50.1	1	ug/L	50.0	BLOD	100	70-135	1.01	30	
n-Propylbenzene	51.4	1	ug/L	50.0	BLOD	103	70-130	2.12	30	
o-Xylene	51.2	1	ug/L	50.0	BLOD	102	80-120	1.40	30	
sec-Butylbenzene	53.5	1	ug/L	50.0	BLOD	107	70-125	1.50	30	
Styrene	52.7	1	ug/L	50.0	BLOD	105	65-135	0.605	30	
tert-Butylbenzene	51.4	1	ug/L	50.0	BLOD	103	70-130	0.602	30	
Tetrachloroethylene (PCE)	41.1	1	ug/L	50.0	BLOD	82.2	51-231	2.33	30	
Toluene	53.1	1	ug/L	50.0	BLOD	106	75-120	0.0377	30	
trans-1,2-Dichloroethylene	49.6	1	ug/L	50.0	BLOD	99.2	60-140	1.94	30	
trans-1,3-Dichloropropene	56.8	1	ug/L	50.0	BLOD	114	55-140	0.141	30	
Trichloroethylene	51.2	1	ug/L	50.0	BLOD	102	70-125	0.195	30	
Trichlorofluoromethane	52.8	1	ug/L	50.0	BLOD	106	60-145	2.45	30	
Vinyl chloride	42.2	0.5	ug/L	50.0	BLOD	84.5	50-145	5.62	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	47.8		ug/L	50.0		95.7	70-120			
Surr: 4-Bromofluorobenzene (Surr)	51.7		ug/L	50.0		103	75-120			
Surr: Dibromofluoromethane (Surr)	48.3		ug/L	50.0		96.7	70-130			
Surr: Toluene-d8 (Surr)	50.8		ug/L	50.0		102	70-130			
Batch B	GL0601 - SW503	0B-MS								



			<u>Cer</u>	tificate o	of Analysi	is				
Client Name: SCS Eng	ineers-Winchester				_		Date Issue	ed:	1/9/2024	2:14:16PM
Client Site I.D.: 2023 Cit	y of Bristol Landfill Le	eachate								
Submitted To: Jennifer I										
		,	/alatila Organ	via Compounda I	oy GCMS - Qualit	hy Control				
		· ·	/olalile Olyal			ly Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Ba	atch BGL0601 - SW5030	B-MS								
Blank (BGL0601-BLK1)			F	Prepared & Anal	yzed: 12/14/2023					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	47.4		ug/L	50.0		94.9	70-120			
Surr: 4-Bromofluorobenzene (Surr,	) 49.3		ug/L	50.0		98.6	75-120			
Surr: Dibromofluoromethane (Surr,	) 48.7		ug/L	50.0		97.3	70-130			
Surr: Toluene-d8 (Surr)	48.4		ug/L	50.0		96.7	70-130			
LCS (BGL0601-BS1)			F	Prepared & Anal	yzed: 12/14/2023					
1,1,1,2-Tetrachloroethane	45.0	0.4	ug/L	50.0		90.0	80-130			
1,1,1-Trichloroethane	43.8	1	ug/L	50.0		87.7	65-130			
1,1,2,2-Tetrachloroethane	47.1	0.4	ug/L	50.0		94.2	65-130			
1,1,2-Trichloroethane	44.8	1	ug/L	50.0		89.6	75-125			
1,1-Dichloroethane	42.1	1	ug/L	50.0		84.2	70-135			
1,1-Dichloroethylene	43.5	1	ug/L	50.0		86.9	70-130			
1,1-Dichloropropene	45.1	1	ug/L	50.0		90.2	75-135			
1,2,3-Trichlorobenzene	41.3	1	ug/L	50.0		82.6	55-140			
1,2,3-Trichloropropane	46.0	1	ug/L	50.0		91.9	75-125			
1,2,4-Trichlorobenzene	43.2	1	ug/L	50.0		86.5	65-135			
1,2,4-Trimethylbenzene	44.8	1	ug/L	50.0		89.7	75-130			
1,2-Dibromo-3-chloropropane (DB	CP) 43.6	1	ug/L	50.0		87.2	50-130			
1,2-Dibromoethane (EDB)	44.9	1	ug/L	50.0		89.8	80-120			



			<u>Cer</u>	tificate o	of Analysi	is				
Client Name: S	SCS Engineers-Winchester				-		Date Issue	ed:	1/9/2024	2:14:16PM
Client Site I.D.:	2023 City of Bristol Landfill Le	achate								
	lennifer Robb									
Submitted 10. 5										
		```	Volatile Organ	ic Compounds I	oy GCMS - Quali	ty Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL0601 - SW5030	B-MS								
LCS (BGL0601-BS1)			P	Prepared & Anal	yzed: 12/14/2023					
1,2-Dichlorobenzene	45.4	0.5	ug/L	50.0		90.9	70-120			
1,2-Dichloroethane	41.4	1	ug/L	50.0		82.8	70-130			
1,2-Dichloropropane	42.7	0.5	ug/L	50.0		85.4	75-125			
1,3,5-Trimethylbenzene	43.6	1	ug/L	50.0		87.2	75-125			
1,3-Dichlorobenzene	45.4	1	ug/L	50.0		90.7	75-125			
1,3-Dichloropropane	41.9	1	ug/L	50.0		83.9	75-125			
1,4-Dichlorobenzene	44.0	1	ug/L	50.0		88.0	75-125			
2,2-Dichloropropane	45.4	1	ug/L	50.0		90.7	70-135			
2-Butanone (MEK)	47.7	10	ug/L	50.0		95.4	30-150			
2-Chlorotoluene	45.9	1	ug/L	50.0		91.8	75-125			
2-Hexanone (MBK)	47.6	5	ug/L	50.0		95.2	55-130			
4-Chlorotoluene	44.8	1	ug/L	50.0		89.5	75-130			
4-Isopropyltoluene	45.5	1	ug/L	50.0		91.0	75-130			
4-Methyl-2-pentanone (MIBK) 45.6	5	ug/L	50.0		91.1	60-135			
Acetone	41.8	10	ug/L	50.0		83.6	40-140			
Benzene	41.2	1	ug/L	50.0		82.5	80-120			
Bromobenzene	47.2	1	ug/L	50.0		94.3	75-125			
Bromochloromethane	39.1	1	ug/L	50.0		78.2	65-130			
Bromodichloromethane	45.0	0.5	ug/L	50.0		90.1	75-120			
Bromoform	45.0	1	ug/L	50.0		89.9	70-130			
Bromomethane	31.8	1	ug/L	50.0		63.6	30-145			
Carbon disulfide	42.1	10	ug/L	50.0		84.3	35-160			
Carbon tetrachloride	51.0	1	ug/L	50.0		102	65-140			
Chlorobenzene	46.4	1	ug/L	50.0		92.8	80-120			
Chloroethane	41.8	1	ug/L	50.0		83.7	60-135			

				<u>Cer</u>	tificate o	of Analysi	is				
Client Name:	SCS Engineers-Wi	inchester				-		Date Issue	ed:	1/9/2024	2:14:16PM
Client Site I.D.:	2023 City of Bristo	ol Landfill L	eachate								
Submitted To:	Jennifer Robb										
Submitted 10.											
			١	/olatile Organ	ic Compounds b	y GCMS - Quali	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL06	601 - SW503	0B-MS								
LCS (BGL0601-BS1)				P	repared & Analy	/zed: 12/14/2023					
Chloroform		41.1	0.5	ug/L	50.0		82.2	65-135			
Chloromethane		36.3	1	ug/L	50.0		72.5	40-125			
cis-1,2-Dichloroethy	ylene	40.0	1	ug/L	50.0		80.0	70-125			
cis-1,3-Dichloroprop	pene	43.2	1	ug/L	50.0		86.3	70-130			
Dibromochlorometh	nane	44.8	0.5	ug/L	50.0		89.6	60-135			
Dibromomethane		43.8	1	ug/L	50.0		87.5	75-125			
Dichlorodifluoromet	thane	44.0	1	ug/L	50.0		88.1	30-155			
Ethylbenzene		47.1	1	ug/L	50.0		94.3	75-125			
Hexachlorobutadier	ne	45.4	0.8	ug/L	50.0		90.8	50-140			
Isopropylbenzene		44.8	1	ug/L	50.0		89.5	75-125			
m+p-Xylenes		94.5	2	ug/L	100		94.5	75-130			
Methylene chloride		42.9	4	ug/L	50.0		85.8	55-140			
Methyl-t-butyl ether	· (MTBE)	38.5	1	ug/L	50.0		76.9	65-125			
Naphthalene		41.3	1	ug/L	50.0		82.6	55-140			
n-Butylbenzene		45.8	1	ug/L	50.0		91.6	70-135			
n-Propylbenzene		45.7	1	ug/L	50.0		91.5	70-130			
o-Xylene		46.7	1	ug/L	50.0		93.4	80-120			
sec-Butylbenzene		49.5	1	ug/L	50.0		98.9	70-125			
Styrene		43.8	1	ug/L	50.0		87.6	65-135			
tert-Butylbenzene		44.9	1	ug/L	50.0		89.8	70-130			
Tetrachloroethylene	e (PCE)	51.4	1	ug/L	50.0		103	45-150			
Toluene		44.5	1	ug/L	50.0		88.9	75-120			
trans-1,2-Dichloroet	thylene	39.9	1	ug/L	50.0		79.8	60-140			
trans-1,3-Dichlorop	ropene	45.7	1	ug/L	50.0		91.4	55-140			
Trichloroethylene		46.2	1	ug/L	50.0		92.3	70-125			

			<u>Ce</u>	ertificate o	of Analysi	<u>s</u>				
Client Name: SC	S Engineers-Winchester						Date Issue	ed:	1/9/2024	2:14:16PM
Client Site I.D.: 20	23 City of Bristol Landfill L	eachate								
	nnifer Robb									
						.				
		V	/olatile Org	anic Compounds	by GCMS - Qualit	y Control				
				Enthalpy A	nalytical					
	5 "			Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGL0601 - SW503	0B-MS								
LCS (BGL0601-BS1)				Prepared & Anal	yzed: 12/14/2023					
Trichlorofluoromethane	52.2	1	ug/L	50.0		104	60-145			
Vinyl chloride	44.9	0.5	ug/L	50.0		89.7	50-145			
Surr: 1,2-Dichloroethane-o	l4 (Surr) 42.9		ug/L	50.0		85.8	70-120			
Surr: 4-Bromofluorobenzer	ne (Surr) 50.6		ug/L	50.0		101	75-120			
Surr: Dibromofluorometha	ne (Surr) 47.0		ug/L	50.0		94.1	70-130			
Surr: Toluene-d8 (Surr)	48.8		ug/L	50.0		97.6	70-130			
Matrix Spike (BGL0601-MS1)	Sourc	e: 23L0718-0	3	Prepared & Anal	yzed: 12/14/2023					
1,1,1,2-Tetrachloroethane	49.4	0.4	ug/L	50.0	BLOD	98.8	80-130			
1,1,1-Trichloroethane	48.3	1	ug/L	50.0	BLOD	96.7	65-130			
1,1,2,2-Tetrachloroethane	49.5	0.4	ug/L	50.0	BLOD	99.1	65-130			
1,1,2-Trichloroethane	49.8	1	ug/L	50.0	BLOD	99.7	75-125			
1,1-Dichloroethane	51.0	1	ug/L	50.0	4.69	92.6	70-135			
1,1-Dichloroethylene	48.4	1	ug/L	50.0	BLOD	96.8	50-145			
1,1-Dichloropropene	49.5	1	ug/L	50.0	BLOD	98.9	75-135			
1,2,3-Trichlorobenzene	45.9	1	ug/L	50.0	BLOD	91.9	55-140			
1,2,3-Trichloropropane	47.7	1	ug/L	50.0	BLOD	95.4	75-125			
1,2,4-Trichlorobenzene	45.8	1	ug/L	50.0	BLOD	91.7	65-135			
1,2,4-Trimethylbenzene	48.3	1	ug/L	50.0	BLOD	96.6	75-130			
1,2-Dibromo-3-chloropropa	. ,	1	ug/L	50.0	BLOD	97.6	50-130			
1,2-Dibromoethane (EDB)	49.0	1	ug/L	50.0	BLOD	98.0	80-120			
1,2-Dichlorobenzene	49.8	0.5	ug/L	50.0	BLOD	99.5	70-120			
1,2-Dichloroethane	45.0	1	ug/L	50.0	BLOD	89.9	70-130			
1,2-Dichloropropane	48.2	0.5	ug/L	50.0	BLOD	96.5	75-125			
1,3,5-Trimethylbenzene	46.6	1	ug/L	50.0	BLOD	93.3	75-124			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:14:16PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0601 - SW5030B-MS Matrix Spike (BGL0601-MS1) Prepared & Analyzed: 12/14/2023 Source: 23L0718-03 49.4 1.3-Dichlorobenzene 1 ug/L 50.0 BLOD 98.9 75-125 1,3-Dichloropropane 47.3 1 ug/L 50.0 BLOD 94.6 75-125 50.0 50.0 75-125 1,4-Dichlorobenzene 1 ug/L 1.65 96.8 50.3 1 50.0 BLOD 101 70-135 2.2-Dichloropropane ug/L 2-Butanone (MEK) 38.5 10 ug/L 50.0 BI OD 77.1 30-150 50.0 1 BI OD 100 75-125 2-Chlorotoluene ug/L 50.0 2-Hexanone (MBK) 48.1 5 ug/L 50.0 BI OD 96.2 55-130 1 ug/L BLOD 96.2 75-130 4-Chlorotoluene 48.1 50.0 BLOD 96.2 75-130 4-Isopropyltoluene 48.1 1 ug/L 50.0 47.9 5 50.0 BLOD 95.7 60-135 4-Methyl-2-pentanone (MIBK) ua/L 42.5 10 50.0 BLOD 85.1 40-140 Acetone ug/L Benzene 49.1 1 ug/L 50.0 3.18 91.9 80-120 51.2 1 50.0 BI OD 102 75-125 Bromobenzene ug/L 1 BLOD 65-130 Bromochloromethane 42.8 ug/L 50.0 85.6 Bromodichloromethane 49.8 0.5 50.0 BI OD 99.6 75-136 ug/L Bromoform 47.7 BLOD 95.4 70-130 1 ug/L 50.0 Bromomethane 34.5 1 ug/L 50.0 BLOD 69.0 30-145 Carbon disulfide 45.6 50.0 BLOD 35-160 10 ug/L 91.3 Carbon tetrachloride 56.7 1 50.0 BLOD 113 65-140 ug/L Chlorobenzene 52.1 1 ug/L 50.0 1.24 102 80-120 Chloroethane 47.3 1 50.0 0.90 92.7 60-135 ug/L Chloroform 45.1 0.5 ug/L 50.0 BI OD 90.1 65-135 Chloromethane 1 BLOD 40-125 40.0 ug/L 50.0 80.0 cis-1,2-Dichloroethylene 85.6 1 ug/L 50.0 41.4 88.5 70-125 1 ug/L 96.5 cis-1,3-Dichloropropene 48.3 50.0 BLOD 47-136

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:14:16PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0601 - SW5030B-MS Matrix Spike (BGL0601-MS1) Prepared & Analyzed: 12/14/2023 Source: 23L0718-03 Dibromochloromethane 50.1 BLOD 0.5 ug/L 50.0 100 60-135 Dibromomethane 48.5 1 ug/L 50.0 BLOD 97.1 75-125 Dichlorodifluoromethane 50.0 BLOD 90.8 45.4 1 ug/L 30-155 Ethvlbenzene 51.2 1 50.0 BLOD 102 75-125 ug/L Hexachlorobutadiene 50.8 0.8 ug/L 50.0 BI OD 102 50-140 Isopropylbenzene 1 BI OD 95.8 75-125 47.9 ug/L 50.0 m+p-Xylenes 102 2 ug/L 100 BI OD 102 75-130 47.1 4 50.0 BLOD 94.1 55-140 Methylene chloride ug/L 0.75 Methyl-t-butyl ether (MTBE) 42.8 1 ug/L 50.0 84.2 65-125 Naphthalene 46.3 1 50.0 BLOD 92.6 55-140 ua/L n-Butylbenzene 48.1 1 50.0 BLOD 96.2 70-135 ug/L n-Propylbenzene 49.6 1 ug/L 50.0 BLOD 99.2 70-130 o-Xylene 51.7 1 50.0 BLOD 103 80-120 ug/L BLOD 70-125 sec-Butylbenzene 51.4 1 ug/L 50.0 103 Styrene 47.9 1 50.0 BI OD 95.7 65-135 ug/L 48.0 1 50.0 BLOD 95.9 70-130 tert-Butylbenzene ug/L Tetrachloroethylene (PCE) 55.8 1 ug/L 50.0 BLOD 112 51-231 50.6 1 50.0 BLOD 101 75-120 Toluene ug/L trans-1,2-Dichloroethylene 44.8 1 50.0 BLOD 89.6 60-140 ug/L BLOD 55-140 trans-1,3-Dichloropropene 51.1 1 ug/L 50.0 102 Trichloroethylene 52.1 1 50.0 BLOD 104 70-125 ug/L Trichlorofluoromethane 56.5 1 ug/L 50.0 BLOD 113 60-145 Vinvl chloride 56.9 0.5 50-145 ug/L 50.0 8.59 96.6 70-120 Surr: 1,2-Dichloroethane-d4 (Surr) 44.7 ug/L 50.0 89.5 Surr: 4-Bromofluorobenzene (Surr) 49.7 50.0 99.4 75-120 ug/L

Page 25 of 68

				<u>Ce</u>	ertificate o	of Analysis	<u>S</u>				
Client Name:	SCS Engineers	-Winchester						Date Issu	ed:	1/9/2024	2:14:16PM
Client Site I.D.:	2023 City of Br	ristol Landfill Le	achate								
Submitted To:	Jennifer Robb										
Cubinitied 10.			,	/olotilo Ora	ania Compoundo I	oy GCMS - Quality	Control				
			Ň	Volatile Org	•		Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
y	Batch B0	GL0601 - SW5030	B-MS	-							
Matrix Spike (BGL0601			23L0718-0)3	Prepared & Anal	yzed: 12/14/2023					
Surr: Dibromofluoron	•	47.1		ug/L	50.0	<u> </u>	94.2	70-130			
Surr: Toluene-d8 (Su	()	49.2		ug/L	50.0		98.4	70-130			
Matrix Spike Dup (BGL	,		23L0718-0	-		yzed: 12/14/2023					
1,1,1,2-Tetrachloroet	hane	48.9	0.4	ug/L	50.0	BLOD	97.9	80-130	0.976	30	
1,1,1-Trichloroethane)	47.2	1	ug/L	50.0	BLOD	94.3	65-130	2.49	30	
1,1,2,2-Tetrachloroet	hane	51.1	0.4	ug/L	50.0	BLOD	102	65-130	3.10	30	
1,1,2-Trichloroethane	9	49.6	1	ug/L	50.0	BLOD	99.1	75-125	0.563	30	
1,1-Dichloroethane		49.2	1	ug/L	50.0	4.69	89.0	70-135	3.55	30	
1,1-Dichloroethylene		47.4	1	ug/L	50.0	BLOD	94.8	50-145	2.07	30	
1,1-Dichloropropene		48.9	1	ug/L	50.0	BLOD	97.9	75-135	1.08	30	
1,2,3-Trichlorobenzer	ne	47.6	1	ug/L	50.0	BLOD	95.1	55-140	3.47	30	
1,2,3-Trichloropropar	ne	49.0	1	ug/L	50.0	BLOD	98.0	75-125	2.69	30	
1,2,4-Trichlorobenzer	ne	49.4	1	ug/L	50.0	BLOD	98.9	65-135	7.60	30	
1,2,4-Trimethylbenze	ne	48.4	1	ug/L	50.0	BLOD	96.9	75-130	0.289	30	
1,2-Dibromo-3-chloro	propane (DBCP)	47.0	1	ug/L	50.0	BLOD	94.0	50-130	3.82	30	
1,2-Dibromoethane (EDB)	49.3	1	ug/L	50.0	BLOD	98.6	80-120	0.631	30	
1,2-Dichlorobenzene		49.8	0.5	ug/L	50.0	BLOD	99.5	70-120	0.0201	30	
1,2-Dichloroethane		44.8	1	ug/L	50.0	BLOD	89.6	70-130	0.290	30	
1,2-Dichloropropane		46.6	0.5	ug/L	50.0	BLOD	93.2	75-125	3.44	30	
1,3,5-Trimethylbenze	ne	46.8	1	ug/L	50.0	BLOD	93.7	75-124	0.449	30	
1,3-Dichlorobenzene		49.5	1	ug/L	50.0	BLOD	99.0	75-125	0.121	30	
1,3-Dichloropropane		46.5	1	ug/L	50.0	BLOD	92.9	75-125	1.75	30	
1,4-Dichlorobenzene		49.6	1	ug/L	50.0	1.65	95.9	75-125	0.883	30	
2,2-Dichloropropane		48.0	1	ug/L	50.0	BLOD	96.0	70-135	4.60	30	

1/9/2024 2:14:16PM

Date Issued:

<u>Certificate of Analysis</u>

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGL0601 - SW503	0B-MS								
Matrix Spike Dup (BGL0601-MSD1)	Sourc	e: 23L0718-0	3	Prepared & Anal	yzed: 12/14/2023					
2-Butanone (MEK)	39.1	10	ug/L	50.0	BLOD	78.2	30-150	1.49	30	
2-Chlorotoluene	49.0	1	ug/L	50.0	BLOD	97.9	75-125	2.14	30	
2-Hexanone (MBK)	50.7	5	ug/L	50.0	BLOD	101	55-130	5.26	30	
4-Chlorotoluene	48.2	1	ug/L	50.0	BLOD	96.4	75-130	0.145	30	
4-Isopropyltoluene	50.3	1	ug/L	50.0	BLOD	101	75-130	4.43	30	
4-Methyl-2-pentanone (MIBK)	50.6	5	ug/L	50.0	BLOD	101	60-135	5.66	30	
Acetone	43.0	10	ug/L	50.0	BLOD	86.1	40-140	1.15	30	
Benzene	48.8	1	ug/L	50.0	3.18	91.2	80-120	0.735	30	
Bromobenzene	52.1	1	ug/L	50.0	BLOD	104	75-125	1.74	30	
Bromochloromethane	41.2	1	ug/L	50.0	BLOD	82.4	65-130	3.76	30	
Bromodichloromethane	50.2	0.5	ug/L	50.0	BLOD	100	75-136	0.800	30	
Bromoform	48.6	1	ug/L	50.0	BLOD	97.2	70-130	1.83	30	
Bromomethane	34.8	1	ug/L	50.0	BLOD	69.5	30-145	0.809	30	
Carbon disulfide	49.9	10	ug/L	50.0	BLOD	99.9	35-160	9.02	30	
Carbon tetrachloride	55.8	1	ug/L	50.0	BLOD	112	65-140	1.60	30	
Chlorobenzene	51.9	1	ug/L	50.0	1.24	101	80-120	0.346	30	
Chloroethane	45.9	1	ug/L	50.0	0.90	89.9	60-135	3.01	30	
Chloroform	44.2	0.5	ug/L	50.0	BLOD	88.4	65-135	1.88	30	
Chloromethane	39.1	1	ug/L	50.0	BLOD	78.1	40-125	2.35	30	
cis-1,2-Dichloroethylene	85.5	1	ug/L	50.0	41.4	88.2	70-125	0.199	30	
cis-1,3-Dichloropropene	47.7	1	ug/L	50.0	BLOD	95.5	47-136	1.08	30	
Dibromochloromethane	49.5	0.5	ug/L	50.0	BLOD	99.0	60-135	1.27	30	
Dibromomethane	47.8	1	ug/L	50.0	BLOD	95.6	75-125	1.49	30	
Dichlorodifluoromethane	45.7	1	ug/L	50.0	BLOD	91.3	30-155	0.549	30	
Ethylbenzene	52.3	1	ug/L	50.0	BLOD	105	75-125	1.97	30	

1/9/2024 2:14:16PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	GL0601 - SW503	0B-MS								
/atrix Spike Dup (BGL0601-MSD1)	Source	e: 23L0718-03		Prepared & Anal	yzed: 12/14/2023					
Hexachlorobutadiene	52.0	0.8	ug/L	50.0	BLOD	104	50-140	2.24	30	
Isopropylbenzene	50.3	1	ug/L	50.0	BLOD	101	75-125	4.97	30	
m+p-Xylenes	105	2	ug/L	100	BLOD	105	75-130	2.98	30	
Methylene chloride	46.0	4	ug/L	50.0	BLOD	92.0	55-140	2.34	30	
Methyl-t-butyl ether (MTBE)	42.6	1	ug/L	50.0	0.75	83.6	65-125	0.609	30	
Naphthalene	47.9	1	ug/L	50.0	BLOD	95.7	55-140	3.31	30	
n-Butylbenzene	49.9	1	ug/L	50.0	BLOD	99.8	70-135	3.69	30	
n-Propylbenzene	48.6	1	ug/L	50.0	BLOD	97.2	70-130	2.06	30	
o-Xylene	52.4	1	ug/L	50.0	BLOD	105	80-120	1.29	30	
sec-Butylbenzene	54.5	1	ug/L	50.0	BLOD	109	70-125	5.91	30	
Styrene	48.6	1	ug/L	50.0	BLOD	97.1	65-135	1.45	30	
tert-Butylbenzene	49.4	1	ug/L	50.0	BLOD	98.9	70-130	3.02	30	
Tetrachloroethylene (PCE)	57.5	1	ug/L	50.0	BLOD	115	51-231	3.00	30	
Toluene	49.5	1	ug/L	50.0	BLOD	98.9	75-120	2.32	30	
trans-1,2-Dichloroethylene	43.1	1	ug/L	50.0	BLOD	86.2	60-140	3.80	30	
trans-1,3-Dichloropropene	50.7	1	ug/L	50.0	BLOD	101	55-140	0.806	30	
Trichloroethylene	50.5	1	ug/L	50.0	BLOD	101	70-125	3.06	30	
Trichlorofluoromethane	55.7	1	ug/L	50.0	BLOD	111	60-145	1.48	30	
Vinyl chloride	56.1	0.5	ug/L	50.0	8.59	94.9	50-145	1.49	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	45.1		ug/L	50.0		90.3	70-120			
Surr: 4-Bromofluorobenzene (Surr)	51.2		ug/L	50.0		102	75-120			
Surr: Dibromofluoromethane (Surr)	47.0		ug/L	50.0		93.9	70-130			
Surr: Toluene-d8 (Surr)	48.9		ug/L	50.0		97.8	70-130			

				Ce	rtificate o	of Analysi	is				
Client Name:	SCS Enginee	ers-Winchester				_		Date Issue	ed:	1/9/2024	2:14:16PM
Client Site I.D.:	2023 City of	Bristol Landfill L	eachate								
Submitted To:	Jennifer Rob										
oublinition to:			Sa	mivalatila Or	achie Compound		ality Control				
			Sei	nivolatile Of	•	ls by GCMS - Qu	anty Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch	BGL0580 - SW3510	0C/EPA600	-MS							
Blank (BGL0580-BLK	1)				Prepared & Anal	yzed: 12/14/2023	l .				
Anthracene		ND	10.0	ug/L							
Surr: 2,4,6-Tribromo	ophenol (Surr)	50.8		ug/L	100		50.8	5-136			
Surr: 2-Fluorobiphe	nyl (Surr)	27.5		ug/L	50.0		55.0	9-117			
Surr: 2-Fluorophend	ol (Surr)	34.0		ug/L	100		34.0	5-60			
Surr: Nitrobenzene-	-d5 (Surr)	30.1		ug/L	50.0		60.2	5-151			
Surr: Phenol-d5 (Su	urr)	25.8		ug/L	100		25.8	5-60			
Surr: p-Terphenyl-d	14 (Surr)	30.6		ug/L	50.0		61.3	5-141			
LCS (BGL0580-BS1)					Prepared & Anal	yzed: 12/14/2023	1				
1,2,4-Trichlorobenz	ene	28.6	10.0	ug/L	50.0		57.3	57-130			
1,2-Dichlorobenzen	e	30.5	10.0	ug/L	50.0		61.0	22-115			
1,3-Dichlorobenzen	e	28.8	10.0	ug/L	50.0		57.6	22-112			
1,4-Dichlorobenzen	e	30.0	10.0	ug/L	50.0		60.1	13-112			
2,4,6-Trichlorophen	ol	34.3	10.0	ug/L	50.0		68.7	52-129			
2,4-Dichlorophenol		34.5	10.0	ug/L	50.0		69.0	53-122			
2,4-Dimethylphenol		34.3	5.00	ug/L	50.0		68.6	42-120			
2,4-Dinitrophenol		33.0	50.0	ug/L	50.0		66.0	48-127			
2,4-Dinitrotoluene		37.2	10.0	ug/L	50.0		74.5	10-173			
2,6-Dinitrotoluene		31.9	10.0	ug/L	50.0		63.8	68-137			L
2-Chloronaphthalen	ne	32.3	10.0	ug/L	50.0		64.5	65-120			L
2-Chlorophenol		31.9	10.0	ug/L	50.0		63.9	36-120			
2-Nitrophenol		33.8	10.0	ug/L	50.0		67.6	45-167			
3,3'-Dichlorobenzidi	ine	34.3	10.0	ug/L	50.0		68.7	10-213			
4,6-Dinitro-2-methyl	Iphenol	32.1	50.0	ug/L	50.0		64.2	53-130			
4-Bromophenyl phe	enyl ether	29.4	10.0	ug/L	50.0		58.8	65-120			L

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:14:16PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0580 - SW3510C/EPA600-MS LCS (BGL0580-BS1) Prepared & Analyzed: 12/14/2023 57.2 4-Chlorophenyl phenyl ether 28.6 10.0 ug/L 50.0 38-145 4-Nitrophenol 12.1 50.0 ug/L 50.0 24.3 13-129 33.2 50.0 60-132 Acenaphthene 10.0 ug/L 66.4 Acenaphthylene 35.5 50.0 71.0 54-126 10.0 ug/L Acetophenone 31.9 20.0 ug/L 50.0 63.8 0-200 Anthracene 33.3 43-120 10.0 ug/L 50.0 66.6 Benzo (a) anthracene 37.4 10.0 ug/L 50.0 74.7 42-133 40.6 81.2 32-148 Benzo (a) pyrene 10.0 ua/L 50.0 71.7 Benzo (b) fluoranthene 35.8 10.0 ug/L 50.0 42-140 43.6 50.0 87.2 10-195 Benzo (g,h,i) perylene 10.0 ua/L Benzo (k) fluoranthene 38.1 10.0 ug/L 50.0 76.2 25-146 bis (2-Chloroethoxy) methane 32.4 10.0 ug/L 50.0 64.9 49-165 bis (2-Chloroethyl) ether 30.2 10.0 50.0 60.3 43-126 ug/L 33.1 50.0 63-139 2,2'-Oxybis (1-chloropropane) 10.0 ug/L 66.2 bis (2-Ethylhexyl) phthalate 31.5 50.0 63.0 29-137 10.0 ug/L 37.3 50.0 74.7 10-140 Butyl benzyl phthalate 10.0 ug/L Chrysene 40.4 10.0 ug/L 50.0 80.7 44-140 43.2 50.0 86.5 10-200 Dibenz (a,h) anthracene 10.0 ug/L Diethyl phthalate 33.1 10.0 50.0 66.2 10-120 ug/L 30.6 Dimethyl phthalate 10.0 ug/L 50.0 61.1 10-120 Di-n-butyl phthalate 33.8 50.0 67.5 10-120 10.0 ug/L Di-n-octyl phthalate 34.1 10.0 ug/L 50.0 68.1 19-132 Fluoranthene 36.4 72.7 43-121 10.0 ug/L 50.0 Fluorene 33.9 10.0 ug/L 50.0 67.9 70-120 L 48.7 10-142 Hexachlorobenzene 24.4 1.00 ug/L 50.0

Page 30 of 68

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 1/9/2024 2:14:16PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGL0580 - SW3510C/EPA600-MS LCS (BGL0580-BS1) Prepared & Analyzed: 12/14/2023 Hexachlorobutadiene 30.2 10.0 ug/L 50.0 60.3 38-120 Hexachlorocyclopentadiene 22.6 10.0 ug/L 50.0 45.1 10-76 32.5 50.0 Hexachloroethane 10.0 ug/L 64.9 55-120 41.1 50.0 82.2 10-151 Indeno (1,2,3-cd) pyrene 10.0 ug/L Isophorone 23.1 10.0 ug/L 50.0 46.3 47-180 L 34.0 67.9 36-120 Naphthalene 5.00 ua/L 50.0 Nitrobenzene 35.0 10.0 ug/L 50.0 69.9 54-158 48.5 10-85 n-Nitrosodimethylamine 24.2 10.0 ua/L 50.0 n-Nitrosodi-n-propylamine 31.0 10.0 ug/L 50.0 62.0 14-198 27.7 50.0 55.4 12-97 n-Nitrosodiphenylamine 10.0 ua/L p-Chloro-m-cresol 34.6 10.0 50.0 69.2 10-142 ug/L Pentachlorophenol 24.8 20.0 ug/L 50.0 49.6 38-152 Phenanthrene 37.7 10.0 50.0 75.4 65-120 ug/L 17-120 Phenol 14.5 10.0 ug/L 50.5 28.7 36.0 50.0 72.0 70-120 Pyrene 10.0 ug/L 50.0 64.8 10-103 Pyridine 32.4 10.0 ug/L Surr: 2,4,6-Tribromophenol (Surr) 66.0 100 66.0 5-136 ug/L Surr: 2-Fluorobiphenyl (Surr) 30.8 ug/L 50.0 61.7 9-117 Surr: 2-Fluorophenol (Surr) 41.5 100 41.5 5-60 ug/L Surr: Nitrobenzene-d5 (Surr) 34.1 ug/L 50.0 68.1 5-151 30.2 100 30.2 5-60 Surr: Phenol-d5 (Surr) ug/L 35.2 50.0 70.4 Surr: p-Terphenyl-d14 (Surr) ug/L 5-141 Matrix Spike (BGL0580-MS1) Source: 23L0718-03 Prepared & Analyzed: 12/14/2023 22.3 ug/L 46.7 BLOD 47.6 44-142 1,2,4-Trichlorobenzene 10.0

Date Issued:

1/9/2024 2:14:16PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate Client Site I.D.:

32.1

30.1

32.5

10.0

10.0

10.0

ug/L

ug/L

ug/L

Jennifer Robb Submitted To:

Benzo (a) pyrene

Benzo (b) fluoranthene

Benzo (g,h,i) perylene

Semivolatile Organic Compounds by GCMS - Quality Control

Entholmy Analytical

Enthalpy Analytical										
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batc	h BGL0580 - SW351	0C/EPA600-	MS							
Matrix Spike (BGL0580-MS1)	Sourc	e: 23L0718-03	3	Prepared & Anal	yzed: 12/14/2023	3				
1,2-Dichlorobenzene	23.2	10.0	ug/L	46.7	BLOD	49.6	22-115			
1,3-Dichlorobenzene	21.9	10.0	ug/L	46.7	BLOD	47.0	22-112			
1,4-Dichlorobenzene	23.5	10.0	ug/L	46.7	BLOD	50.4	13-112			
2,4,6-Trichlorophenol	28.5	10.0	ug/L	46.7	BLOD	61.0	37-144			
2,4-Dichlorophenol	26.6	10.0	ug/L	46.7	BLOD	56.9	39-135			
2,4-Dimethylphenol	27.2	5.00	ug/L	46.7	BLOD	58.1	32-120			
2,4-Dinitrophenol	29.4	50.0	ug/L	46.7	BLOD	63.0	39-139			
2,4-Dinitrotoluene	29.6	10.0	ug/L	46.7	BLOD	63.4	10-191			
2,6-Dinitrotoluene	26.1	10.0	ug/L	46.7	BLOD	55.8	50-158			
2-Chloronaphthalene	25.6	10.0	ug/L	46.7	BLOD	54.8	60-120			Μ
2-Chlorophenol	24.3	10.0	ug/L	46.7	BLOD	51.9	23-134			
2-Nitrophenol	26.2	10.0	ug/L	46.7	BLOD	56.1	29-182			
3,3'-Dichlorobenzidine	16.0	10.0	ug/L	46.7	BLOD	34.2	10-262			
4,6-Dinitro-2-methylphenol	26.3	50.0	ug/L	46.7	BLOD	56.3	10-181			
4-Bromophenyl phenyl ether	24.0	10.0	ug/L	46.7	BLOD	51.3	53-127			М
4-Chlorophenyl phenyl ether	23.1	10.0	ug/L	46.7	BLOD	49.4	25-158			
4-Nitrophenol	10.5	50.0	ug/L	46.7	BLOD	22.4	10-132			
Acenaphthene	26.8	10.0	ug/L	46.7	BLOD	57.3	47-145			
Acenaphthylene	28.8	10.0	ug/L	46.7	BLOD	61.6	33-145			
Acetophenone	24.8	20.0	ug/L	46.7	BLOD	53.0	0-200			
Anthracene	26.6	10.0	ug/L	46.7	BLOD	56.9	27-133			
Benzo (a) anthracene	28.7	10.0	ug/L	46.7	BLOD	61.5	33-143			

46.7

46.7

46.7

BLOD

BLOD

BLOD

68.7

64.4

69.5

17-163

24-159

10-219

1/9/2024 2:14:16PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	h BGL0580 - SW351		-					2		5301
Matrix Spike (BGL0580-MS1)		e: 23L0718-03		Prepared & Anal	yzed: 12/14/2023	5				
Benzo (k) fluoranthene	30.5	10.0	ug/L	46.7	BLOD	65.3	11-162			
bis (2-Chloroethoxy) methane	25.9	10.0	ug/L	46.7	BLOD	55.4	33-184			
bis (2-Chloroethyl) ether	23.2	10.0	ug/L	46.7	BLOD	49.7	12-158			
2,2'-Oxybis (1-chloropropane)	25.1	10.0	ug/L	46.7	BLOD	53.7	36-166			
bis (2-Ethylhexyl) phthalate	26.4	10.0	ug/L	46.7	BLOD	56.5	10-158			
Butyl benzyl phthalate	29.8	10.0	ug/L	46.7	BLOD	63.8	10-152			
Chrysene	31.6	10.0	ug/L	46.7	BLOD	67.7	17-169			
Dibenz (a,h) anthracene	32.9	10.0	ug/L	46.7	BLOD	70.3	10-227			
Diethyl phthalate	26.9	10.0	ug/L	46.7	BLOD	57.6	10-120			
Dimethyl phthalate	24.8	10.0	ug/L	46.7	BLOD	53.1	10-120			
Di-n-butyl phthalate	29.1	10.0	ug/L	46.7	BLOD	62.3	10-120			
Di-n-octyl phthalate	28.9	10.0	ug/L	46.7	BLOD	61.9	10-146			
Fluoranthene	30.9	10.0	ug/L	46.7	BLOD	66.2	26-137			
Fluorene	27.4	10.0	ug/L	46.7	BLOD	58.6	59-121			М
Hexachlorobenzene	19.6	1.00	ug/L	46.7	BLOD	41.8	10-152			
Hexachlorobutadiene	23.1	10.0	ug/L	46.7	BLOD	49.5	24-120			
Hexachlorocyclopentadiene	13.7	10.0	ug/L	46.7	BLOD	29.4	10-90			
Hexachloroethane	24.7	10.0	ug/L	46.7	BLOD	52.9	40-120			
Indeno (1,2,3-cd) pyrene	31.0	10.0	ug/L	46.7	BLOD	66.3	10-171			
Isophorone	18.4	10.0	ug/L	46.7	BLOD	39.3	21-196			
Naphthalene	26.0	5.00	ug/L	46.7	BLOD	55.6	21-133			
Nitrobenzene	26.8	10.0	ug/L	46.7	BLOD	57.3	35-180			
n-Nitrosodimethylamine	17.5	10.0	ug/L	46.7	BLOD	37.4	10-85			
n-Nitrosodi-n-propylamine	24.6	10.0	ug/L	46.7	BLOD	52.6	10-230			
n-Nitrosodiphenylamine	22.5	10.0	ug/L	46.7	BLOD	48.1	12-111			

Client Name:

Client Site I.D.:

Submitted To:

p-Chloro-m-cresol

Pentachlorophenol

1.2-Dichlorobenzene

1.3-Dichlorobenzene

1.4-Dichlorobenzene

2,4,6-Trichlorophenol

2,4-Dichlorophenol

2,4-Dimethylphenol

2.4-Dinitrophenol

2.4-Dinitrotoluene

2.6-Dinitrotoluene

2-Chloronaphthalene

37.4

37.6

31.4

29.9

50.0

10.0

10.0

10.0

ua/L

ug/L

ug/L

ug/L

Phenanthrene

Phenol

Pyrene

Pyridine

Analyte

Enthalpy Analytical 1941 Reymet Road Richmond, Virginia 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

Certificate of Analysis SCS Engineers-Winchester Date Issued: 1/9/2024 2:14:16PM 2023 City of Bristol Landfill Leachate Jennifer Robb Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Batch BGL0580 - SW3510C/EPA600-MS Matrix Spike (BGL0580-MS1) Prepared & Analyzed: 12/14/2023 Source: 23L0718-03 28.1 60.0 10.0 ug/L 46.7 BLOD 10-127 24.9 20.0 ug/L 46.7 BLOD 53.3 14-176 29.3 BLOD 62.8 54-120 10.0 ug/L 46.7 9.65 47.2 BLOD 20.5 10-120 10.0 ug/L 29.1 10.0 ug/L 46.7 BLOD 62.2 52-120 26.0 BLOD 55.6 10-110 10.0 ug/L 46.7 Surr: 2,4,6-Tribromophenol (Surr) 55.1 ug/L 93.5 59.0 5-136 Surr: 2-Fluorobiphenyl (Surr) 24.1 ug/L 46.7 51.6 9-117 28.5 Surr: 2-Fluorophenol (Surr) ug/L 93.5 30.5 5-60 Surr: Nitrobenzene-d5 (Surr) 26 1 46.7 55 8 ug/L 5-151 201 ug/L 93.5 Surr: Phenol-d5 (Surr) 215 5-60 22.8 ug/L 46.7 48.8 5-141 Surr: p-Terphenyl-d14 (Surr) Matrix Spike Dup (BGL0580-MSD1) Source: 23L0718-03 Prepared & Analyzed: 12/14/2023 26.1 1.2.4-Trichlorobenzene 10.0 ug/L 46.7 BLOD 55.8 44-142 15.8 20 27.3 46.7 BLOD 58.4 22-115 16.2 20 10.0 ug/L BI OD 25.9 10.0 ug/L 46.7 55.4 22-112 16.6 20 27.9 BLOD 10.0 ug/L 46.7 59.7 13-112 16.9 20 34.1 10.0 ug/L 46.7 BI OD 73.0 37-144 18.0 20 BLOD 67.1 16.5 31.3 10.0 ua/L 46.7 39-135 20 31.0 46.7 BLOD 66.3 32-120 13.1 20 5.00 ug/L

BLOD

BLOD

BLOD

BLOD

80.1

80.4

67.3

64.0

39-139

10-191

50-158

60-120

24.0

23.7

18.7

15.6

20

20

20

20

46.7

46.7

46.7

46.7

Ρ

Р

1/9/2024 2:14:16PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGL0580 - SW351	0C/EPA600-	MS							
/atrix Spike Dup (BGL0580-MSD1)	Sourc	e: 23L0718-0	3	Prepared & Anal	yzed: 12/14/2023					
2-Chlorophenol	28.3	10.0	ug/L	46.7	BLOD	60.6	23-134	15.4	20	
2-Nitrophenol	31.4	10.0	ug/L	46.7	BLOD	67.2	29-182	17.9	20	
3,3'-Dichlorobenzidine	24.2	10.0	ug/L	46.7	BLOD	51.8	10-262	41.0	20	Р
4,6-Dinitro-2-methylphenol	34.3	50.0	ug/L	46.7	BLOD	73.3	10-181	26.3	20	Р
4-Bromophenyl phenyl ether	29.0	10.0	ug/L	46.7	BLOD	62.1	53-127	19.1	20	
4-Chlorophenyl phenyl ether	27.1	10.0	ug/L	46.7	BLOD	58.0	25-158	16.0	20	
4-Nitrophenol	13.7	50.0	ug/L	46.7	BLOD	29.4	10-132	26.7	20	Р
Acenaphthene	31.0	10.0	ug/L	46.7	BLOD	66.4	47-145	14.8	20	
Acenaphthylene	32.9	10.0	ug/L	46.7	BLOD	70.4	33-145	13.4	20	
Acetophenone	29.1	20.0	ug/L	46.7	BLOD	62.4	0-200	16.3	20	
Anthracene	34.0	10.0	ug/L	46.7	BLOD	72.7	27-133	24.5	20	Р
Benzo (a) anthracene	37.4	10.0	ug/L	46.7	BLOD	80.0	33-143	26.2	20	Р
Benzo (a) pyrene	39.4	10.0	ug/L	46.7	BLOD	84.3	17-163	20.4	20	Р
Benzo (b) fluoranthene	34.4	10.0	ug/L	46.7	BLOD	73.6	24-159	13.4	20	
Benzo (g,h,i) perylene	39.7	10.0	ug/L	46.7	BLOD	84.9	10-219	19.9	20	
Benzo (k) fluoranthene	30.1	10.0	ug/L	46.7	BLOD	64.5	11-162	1.20	20	
bis (2-Chloroethoxy) methane	30.6	10.0	ug/L	46.7	BLOD	65.5	33-184	16.7	20	
bis (2-Chloroethyl) ether	27.4	10.0	ug/L	46.7	BLOD	58.6	12-158	16.5	20	
2,2'-Oxybis (1-chloropropane)	29.8	10.0	ug/L	46.7	BLOD	63.7	36-166	17.0	20	
bis (2-Ethylhexyl) phthalate	33.1	10.0	ug/L	46.7	BLOD	70.9	10-158	22.7	20	Р
Butyl benzyl phthalate	37.7	10.0	ug/L	46.7	BLOD	80.8	10-152	23.5	20	Р
Chrysene	40.7	10.0	ug/L	46.7	BLOD	87.2	17-169	25.1	20	Р
Dibenz (a,h) anthracene	40.2	10.0	ug/L	46.7	BLOD	86.0	10-227	20.1	20	Р
Diethyl phthalate	33.1	10.0	ug/L	46.7	BLOD	70.8	10-120	20.6	20	Р
Dimethyl phthalate	30.0	10.0	ug/L	46.7	BLOD	64.2	10-120	18.9	20	

1/9/2024 2:14:16PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	BGL0580 - SW351	0C/EPA600-	MS							
latrix Spike Dup (BGL0580-MSD1)	Sourc	e: 23L0718-0	3	Prepared & Anal	yzed: 12/14/2023					
Di-n-butyl phthalate	35.6	10.0	ug/L	46.7	BLOD	76.2	10-120	20.0	20	Р
Di-n-octyl phthalate	33.4	10.0	ug/L	46.7	BLOD	71.5	10-146	14.4	20	
Fluoranthene	36.7	10.0	ug/L	46.7	BLOD	78.6	26-137	17.2	20	
Fluorene	32.1	10.0	ug/L	46.7	BLOD	68.6	59-121	15.7	20	
Hexachlorobenzene	23.9	1.00	ug/L	46.7	BLOD	51.1	10-152	20.0	20	
Hexachlorobutadiene	27.5	10.0	ug/L	46.7	BLOD	58.9	24-120	17.2	20	
Hexachlorocyclopentadiene	17.4	10.0	ug/L	46.7	BLOD	37.2	10-90	23.6	20	Р
Hexachloroethane	29.2	10.0	ug/L	46.7	BLOD	62.4	40-120	16.5	20	
Indeno (1,2,3-cd) pyrene	38.2	10.0	ug/L	46.7	BLOD	81.7	10-171	20.8	20	Р
Isophorone	21.4	10.0	ug/L	46.7	BLOD	45.7	21-196	15.0	20	
Naphthalene	31.2	5.00	ug/L	46.7	BLOD	66.7	21-133	18.2	20	
Nitrobenzene	31.8	10.0	ug/L	46.7	BLOD	68.1	35-180	17.1	20	
n-Nitrosodimethylamine	21.1	10.0	ug/L	46.7	BLOD	45.3	10-85	18.9	20	
n-Nitrosodi-n-propylamine	28.4	10.0	ug/L	46.7	BLOD	60.8	10-230	14.4	20	
n-Nitrosodiphenylamine	27.5	10.0	ug/L	46.7	BLOD	58.8	12-111	20.0	20	
p-Chloro-m-cresol	32.6	10.0	ug/L	46.7	BLOD	69.8	10-127	15.0	20	
Pentachlorophenol	34.1	20.0	ug/L	46.7	BLOD	73.0	14-176	31.1	20	Р
Phenanthrene	37.8	10.0	ug/L	46.7	BLOD	80.8	54-120	25.1	20	Р
Phenol	11.4	10.0	ug/L	47.2	BLOD	24.3	10-120	17.0	20	
Pyrene	36.4	10.0	ug/L	46.7	BLOD	77.8	52-120	22.3	20	Р
Pyridine	36.4	10.0	ug/L	46.7	BLOD	78.0	10-110	33.5	20	Р
Surr: 2,4,6-Tribromophenol (Surr)	70.8		ug/L	93.5		75.8	5-136			
Surr: 2-Fluorobiphenyl (Surr)	28.1		ug/L	46.7		60.2	9-117			
Surr: 2-Fluorophenol (Surr)	32.9		ug/L	93.5		35.2	5-60			
Surr: Nitrobenzene-d5 (Surr)	30.6		ug/L	46.7		65.4	5-151			

				<u>Ce</u>	ertificate o	of Analysis	<u>S</u>				
Client Name:	SCS Enginee	rs-Winchester						Date Issue	ed:	1/9/2024	2:14:16PM
Client Site I.D.:	2023 City of	Bristol Landfill L	eachate								
Submitted To:	Jennifer Robb)									
			Se	mivolatile C	Organic Compound	ls by GCMS - Qua	lity Control				
					Enthalpy A	nalytical					
					Spike	Source		%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch I	BGL0580 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BG	L0580-MSD1)	Source	e: 23L0718-0	3	Prepared & Anal	yzed: 12/14/2023					
Surr: Phenol-d5 (Su	ırr)	23.8		ug/L	93.5		25.4	5-60			
Surr: p-Terphenyl-d	14 (Surr)	31.2		ug/L	46.7		66.7	5-141			

			Ce	ertificate of Analys	sis				
Client Name:	SCS Engineers-Winchester			-		Date Issue	ed:	1/9/2024	2:14:16PM
Client Site I.D.:	2023 City of Bristol Landfill I	eachate							
Submitted To:	Jennifer Robb								
			Wet	Chemistry Analysis - Quality Con	trol				
				Enthalpy Analytical					
Analyte	Result	LOQ	Units	Spike Source Level Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL0502 - No Pre	p Wet Chem	1						
Blank (BGL0502-BLK1)			Prepared & Analyzed: 12/13/202	23				
Nitrite as N	ND	0.05	mg/L						
LCS (BGL0502-BS1)				Prepared & Analyzed: 12/13/202	23				
Nitrite as N	0.11	0.05	mg/L	0.100	114	80-120			
Matrix Spike (BGL0502	2-MS1) Source	e: 23L0671-0	4	Prepared & Analyzed: 12/13/202	23				
Nitrite as N	0.10	0.05	mg/L	0.100 BLOD	104	80-120			
Matrix Spike Dup (BGI	_0502-MSD1) Source	e: 23L0671-0	4	Prepared & Analyzed: 12/13/202	23				
Nitrite as N	0.10	0.05	mg/L	0.100 BLOD	102	80-120	1.94	20	
	Batch BGL0576 - No Pre	p Wet Chem	1						
Blank (BGL0576-BLK1)			Prepared & Analyzed: 12/14/202	23				
BOD	ND	2.0	mg/L						
LCS (BGL0576-BS1)				Prepared & Analyzed: 12/14/202	23				
BOD	223	2	mg/L	198	113	84.6-115.4			
Duplicate (BGL0576-D	UP1) Source	e: 23L0597-0	1	Prepared & Analyzed: 12/14/202	23				
BOD	3.4	2.0	mg/L	2.7			23.6	20	Р
	Batch BGL0582 - No Pre	p Wet Chem	1						
Blank (BGL0582-BLK1)			Prepared & Analyzed: 12/14/202	23				
Cyanide	ND	0.01	mg/L						

				C	ertificate o	f Analysis	•				
Client Name:	SCS Engineers-Win	chester		<u></u>			<u> </u>	Date Issue	ed:	1/9/2024	2:14:16PM
Client Site I.D.:	2023 City of Bristol	Landfill Le	eachate								
Submitted To:	Jennifer Robb										
oublinition to.				We	Chemistry Analysis	- Quality Control					
				WC.		•					
					Enthalpy Ana	alytical					
Analyte	R	esult	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL058	2 - No Prep	Wet Chem	า							
LCS (BGL0582-BS1)					Prepared & Analyz	zed: 12/14/2023					
Cyanide		0.22	0.01	mg/L	0.250		86.2	80-120			
Matrix Spike (BGL0582	-MS1)	Source	: 23L0718-0	3	Prepared & Analyz	zed: 12/14/2023					
Cyanide		0.25	0.01	mg/L	0.250	BLOD	100	80-120			
Matrix Spike Dup (BGL	.0582-MSD1)	Source	: 23L0718-0	3	Prepared & Analyz	zed: 12/14/2023					
Cyanide		0.25	0.01	mg/L	0.250	BLOD	101	80-120	1.03	20	
	Batch BGL072	3 - No Prep	Wet Chem	ı							
Blank (BGL0723-BLK1))				Prepared & Analyz	zed: 12/18/2023					
COD		ND	10.0	mg/L							
LCS (BGL0723-BS1)					Prepared & Analyz	zed: 12/18/2023					
COD		46.5	10.0	mg/L	50.0		93.0	88-119			
Matrix Spike (BGL0723	-MS1)		: 23L0699-0	1	Prepared & Analyz	zed: 12/18/2023					
COD		55.2	10.0	mg/L	50.0	BLOD	110	72.4-130			
Matrix Spike Dup (BGL	0723-MSD1)		: 23L0699-0	1	Prepared & Analyz						
COD		54.9	10.0	mg/L	50.0	BLOD	110	72.4-130	0.600	20	
	Batch BGL097	9 - No Prep	Wet Chem	1							
Blank (BGL0979-BLK1)					Prepared & Analyz	zed: 12/22/2023					
TKN as N		ND	0.50	mg/L							

				Ce	ertificate o	of Analysis	6				
Client Name:	SCS Engineers-W	Vinchester				-	_	Date Issue	ed:	1/9/2024	2:14:16PM
Client Site I.D.:	2023 City of Brist	tol Landfill L	eachate								
Submitted To:	Jennifer Robb										
				Wet	Chemistry Analys	is - Quality Control					
					Enthalpy A	nalytical					
						_					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Potob PCI ()979 - No Prep					_				
	Balch BGL	1979 - NO Prep	wet chen	1							
LCS (BGL0979-BS1) TKN as N		5.10	0.50	mg/L	Prepared & Anal 5.00	yzed: 12/22/2023	102	90-110			
Matrix Spike (BGL097	(9-MS1)		e: 23L0729-0	-		yzed: 12/22/2023	102	30-110			
TKN as N		5.56	0.50	mg/L	5.00	0.78	95.8	90-110			
Matrix Spike (BGL097	′9-MS2)		: 23L0729-0	-		yzed: 12/22/2023					
TKN as N	·	5.64	0.50	mg/L	5.00	0.88	95.1	90-110			
Matrix Spike Dup (BG	L0979-MSD1)	Source	: 23L0729-0	1	Prepared & Anal	yzed: 12/22/2023					
TKN as N		5.61	0.50	mg/L	5.00	0.78	96.8	90-110	0.859	20	
Matrix Spike Dup (BG	L0979-MSD2)	Source	: 23L0729-0	2	Prepared & Anal	yzed: 12/22/2023					
TKN as N		5.74	0.50	mg/L	5.00	0.88	97.2	90-110	1.81	20	
	Batch BGL0)985 - No Prep	Wet Chen	1 <u> </u>							
Blank (BGL0985-BLK	1)				Prepared & Anal	yzed: 12/22/2023					
Ammonia as N		ND	0.10	mg/L							
LCS (BGL0985-BS1)					Prepared & Anal	yzed: 12/22/2023					
Ammonia as N		1.02	0.1	mg/L	1.00		102	90-110			
Matrix Spike (BGL098	5-MS1)	Source	: 23L1089-0	1	Prepared & Anal	yzed: 12/22/2023					
Ammonia as N		1.05	0.10	mg/L	1.00	BLOD	105	89.3-131			
Matrix Spike Dup (BG	L0985-MSD1)	Source	: 23L1089-0	1	Prepared & Anal	yzed: 12/22/2023					
Ammonia as N		1.08	0.10	mg/L	1.00	BLOD	108	89.3-131	2.44	20	

			<u>C</u>	ertificate o	f Analysis	<u>}</u>				
Client Name:	SCS Engineers-Winches	ster					Date Issu	ed:	1/9/2024	2:14:16PM
Client Site I.D.:	2023 City of Bristol Land	dfill Leachate								
Submitted To:	Jennifer Robb									
oublinition fo.			Me	t Chemistry Analysis	s - Quality Control					
			VVC		•					
				Enthalpy An	alytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGL1033 - No	o Prep Wet Chem	า							
Blank (BGL1033-BLK1)			Prepared & Analy	zed: 12/26/2023					
Total Recoverable Pl	Phenolics ND	0.050	mg/L							
LCS (BGL1033-BS1)				Prepared & Analy	zed: 12/26/2023					
Total Recoverable Pl	Phenolics 0.41	0.050	mg/L	0.505		82.0	80-120			
Matrix Spike (BGL1033	3-MS1)	Source: 23L1149-0	3	Prepared & Analy	zed: 12/26/2023					
Total Recoverable Pl	Phenolics 0.48	0.050	mg/L	0.500	0.05	85.6	70-130			
Matrix Spike Dup (BGL	L1033-MSD1)	Source: 23L1149-0	3	Prepared & Analy	zed: 12/26/2023					
Total Recoverable Pl	Phenolics 0.48	0.050	mg/L	0.500	0.05	86.4	70-130	0.830	20	
	Batch BGL1041 - No	o Prep Wet Chen	n							
Blank (BGL1041-BLK1)			Prepared & Analy	zed: 12/26/2023					
Nitrate+Nitrite as N	ND	0.10	mg/L							
LCS (BGL1041-BS1)				Prepared & Analy	zed: 12/26/2023					
Nitrate+Nitrite as N	0.97	0.1	mg/L	1.00		97.1	90-110			
Matrix Spike (BGL1041	1-MS1)	Source: 23L0615-0	1	Prepared & Analy	zed: 12/26/2023					
Nitrate+Nitrite as N	1.07	0.1	mg/L	1.00	BLOD	100	90-120			
Matrix Spike Dup (BGL	L1041-MSD1)	Source: 23L0615-0	1	Prepared & Analy	zed: 12/26/2023					
Nitrate+Nitrite as N	1.02	0.1	mg/L	1.00	BLOD	94.6	90-120	5.56	20	

Certificate of Analysis 1/9/2024 2:14:16PM Client Name: SCS Engineers-Winchester Date Issued: 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: **Analytical Summary** 23L0673-01 Subcontract **Preparation Factors** Batch ID Calibration ID Sample ID Method Sequence ID Initial / Final EPA200.8 R5.4 Metals (Total) by EPA 6000/7000 Series Methods Preparation Method: 23L0673-01 50.0 mL / 50.0 mL SW6020B BGL0589 SGL0805 AL30277 Preparation Factors Sample ID Method Batch ID Sequence ID Calibration ID Initial / Final No Prep Wet Chem Wet Chemistry Analysis **Preparation Method:** 23L0673-01 25.0 mL / 25.0 mL SM4500-NO2B-2011 BGL0502 SGL0470 AJ30297 23L0673-01 300 mL / 300 mL SM5210B-2016 BGL0576 SGL0721 23L0673-01 6.00 mL / 6.00 mL SW9012B BGL0582 SGL0541 AL30233 23L0673-01 2.00 mL / 2.00 mL SM5220D-2011 BGL0723 SGL0658 AJ30254 23L0673-01 25.0 mL / 25.0 mL EPA351.2 R2.0 BGL0979 SGL0908 AL30292 23L0673-01 6.00 mL / 6.00 mL EPA350.1 R2.0 BGL0985 SGL0890 AL30291 23L0673-01 2.50 mL / 10.0 mL SW9065 BGL1033 SGL0936 AL30294 23L0673-01 5.00 mL / 5.00 mL SM4500-NO3F-2016 BGL1041 SGL0968 AL30302 **Preparation Factors** Sample ID Method Batch ID Sequence ID Calibration ID Initial / Final Semivolatile Organic Compounds by GCMS SW3510C/EPA600-MS Preparation Method: 23L0673-01 500 mL / 0.500 mL SW8270E BGL0580 SGL0589 AK30271 **Preparation Factors** Method Batch ID Calibration ID Sample ID Sequence ID Initial / Final Volatile Organic Compounds by GCMS Preparation Method: SW5030B-MS 23L0673-02 5.00 mL / 5.00 mL BGL0600 SGL0577 SW8260D AL30176 BGL0601 SGL0580 23L0673-01 5.00 mL / 5.00 mL SW8260D AJ30373

Certificate of Analysis 1/9/2024 2:14:16PM Client Name: SCS Engineers-Winchester Date Issued: 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: **Preparation Factors** Sample ID Method Batch ID Sequence ID Calibration ID Initial / Final Volatile Organic Compounds by GCMS Preparation Method: SW5030B-MS

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

QC Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
BGL0589-BLK1	50.0 mL / 50.0 mL	SW6020B	BGL0589	SGL0766	AL30266
BGL0589-BS1	50.0 mL / 50.0 mL	SW6020B	BGL0589	SGL0766	AL30266
BGL0589-MS1	50.0 mL / 50.0 mL	SW6020B	BGL0589	SGL0766	AL30266
BGL0589-MS2	50.0 mL / 50.0 mL	SW6020B	BGL0589	SGL0766	AL30266
BGL0589-MSD1	50.0 mL / 50.0 mL	SW6020B	BGL0589	SGL0766	AL30266
BGL0589-MSD2	50.0 mL / 50.0 mL	SW6020B	BGL0589	SGL0766	AL30266
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	sis		Preparation Method:	No Prep Wet Chem	ı
BGL0502-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGL0502	SGL0470	AJ30297
BGL0502-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGL0502	SGL0470	AJ30297
BGL0502-MRL1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGL0502	SGL0470	AJ30297
BGL0502-MS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGL0502	SGL0470	AJ30297
BGL0502-MSD1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGL0502	SGL0470	AJ30297
BGL0576-BLK1	300 mL / 300 mL	SM5210B-2016	BGL0576	SGL0721	
BGL0576-BS1	300 mL / 300 mL	SM5210B-2016	BGL0576	SGL0721	
BGL0576-DUP1	300 mL / 300 mL	SM5210B-2016	BGL0576	SGL0721	
BGL0582-BLK1	6.00 mL / 6.00 mL	SW9012B	BGL0582	SGL0541	AL30233
BGL0582-BS1	6.00 mL / 6.00 mL	SW9012B	BGL0582	SGL0541	AL30233
BGL0582-MRL1	6.00 mL / 6.00 mL	SW9012B	BGL0582	SGL0541	AL30233
BGL0582-MS1	6.00 mL / 6.00 mL	SW9012B	BGL0582	SGL0541	AL30233
BGL0582-MSD1	6.00 mL / 6.00 mL	SW9012B	BGL0582	SGL0541	AL30233
BGL0723-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BGL0723	SGL0658	AJ30254

Date Issued:

1/9/2024 2:14:16PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	vsis		Preparation Method:	No Prep Wet Chem	
BGL0723-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BGL0723	SGL0658	AJ30254
BGL0723-MRL1	2.00 mL / 2.00 mL	SM5220D-2011	BGL0723	SGL0658	AJ30254
BGL0723-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BGL0723	SGL0658	AJ30254
BGL0723-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BGL0723	SGL0658	AJ30254
BGL0979-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0979	SGL0908	AL30292
BGL0979-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0979	SGL0908	AL30292
BGL0979-MRL1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0979	SGL0908	AL30292
BGL0979-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0979	SGL0908	AL30292
BGL0979-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0979	SGL0908	AL30292
BGL0979-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0979	SGL0908	AL30292
BGL0979-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGL0979	SGL0908	AL30292
BGL0985-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGL0985	SGL0890	AL30291
BGL0985-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGL0985	SGL0890	AL30291
BGL0985-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGL0985	SGL0890	AL30291
BGL0985-MS2		EPA350.1 R2.0	BGL0985		
BGL0985-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGL0985	SGL0890	AL30291
BGL0985-MSD2		EPA350.1 R2.0	BGL0985		
BGL1033-BLK1	5.00 mL / 10.0 mL	SW9065	BGL1033	SGL0936	AL30294
BGL1033-BS1	5.00 mL / 10.0 mL	SW9065	BGL1033	SGL0936	AL30294
BGL1033-MRL1	5.00 mL / 10.0 mL	SW9065	BGL1033	SGL0936	AL30294
BGL1033-MS1	5.00 mL / 10.0 mL	SW9065	BGL1033	SGL0936	AL30294
BGL1033-MSD1	5.00 mL / 10.0 mL	SW9065	BGL1033	SGL0936	AL30294
BGL1041-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BGL1041	SGL0968	AL30302
BGL1041-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BGL1041	SGL0968	AL30302
BGL1041-MS1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BGL1041	SGL0968	AL30302
BGL1041-MSD1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BGL1041	SGL0968	AL30302
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID

Date Issued:

1/9/2024 2:14:16PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	c Compounds by GCMS		Preparation Method:	SW3510C/EPA600-MS	
BGL0580-BLK1	1000 mL / 1.00 mL	SW8270E	BGL0580	SGL0589	AK30271
BGL0580-BS1	1000 mL / 1.00 mL	SW8270E	BGL0580	SGL0589	AK30271
BGL0580-MS1	1070 mL / 1.00 mL	SW8270E	BGL0580	SGL0589	AK30271
BGL0580-MSD1	1070 mL / 1.00 mL	SW8270E	BGL0580	SGL0589	AK30271
Sample ID	Preparation Factors	Method	Batch ID	Sequence ID	Calibration ID

•	initial / Final			•		
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS		
BGL0600-BLK1	5.00 mL / 5.00 mL	SW8260D	BGL0600	SGL0577	AL30176	
BGL0600-BS1	5.00 mL / 5.00 mL	SW8260D	BGL0600	SGL0577	AL30176	
BGL0600-MS1	5.00 mL / 5.00 mL	SW8260D	BGL0600	SGL0577	AL30176	
BGL0600-MSD1	5.00 mL / 5.00 mL	SW8260D	BGL0600	SGL0577	AL30176	
BGL0601-BLK1	5.00 mL / 5.00 mL	SW8260D	BGL0601	SGL0580	AJ30373	
BGL0601-BS1	5.00 mL / 5.00 mL	SW8260D	BGL0601	SGL0580	AJ30373	
BGL0601-MS1	5.00 mL / 5.00 mL	SW8260D	BGL0601	SGL0580	AJ30373	
BGL0601-MSD1	5.00 mL / 5.00 mL	SW8260D	BGL0601	SGL0580	AJ30373	

Date Issued:

1/9/2024 2:14:16PM

		<u>Certificate of Analysis</u>		
Client Name:	SCS Engineers-Winchester	-	Date Issued:	1/9/2024 2:14:16PM
Client Site I.D.:	2023 City of Bristol Landfill Leachate			
Submitted To:	Jennifer Robb			
Certified Analys	ses included in this Report			
Analyte		Certifications		
EPA350.1 R2.0 in N	Non-Potable Water			
Ammonia as N		VELAP,NCDEQ,PADEP,WVDEP		
EPA351.2 R2.0 in N	Non-Potable Water			
TKN as N		VELAP,NCDEQ,WVDEP		
SM4500-NO2B-201	1 in Non-Potable Water			
Nitrite as N		VELAP,WVDEP,NCDEQ		
SM4500-NO3F-201	6 in Non-Potable Water			
Nitrate+Nitrite as N		VELAP,WVDEP		
SM5210B-2016 in l	Non-Potable Water			
BOD		VELAP,NCDEQ,WVDEP		
	Non-Potable Water			
COD		VELAP,NCDEQ,PADEP,WVDEP		
SW6020B in Non-P	Potable Water			
Mercury		VELAP		
Arsenic		VELAP,WVDEP		
Barium		VELAP,WVDEP		
Cadmium		VELAP,WVDEP		
Chromium		VELAP,WVDEP		
Copper		VELAP,WVDEP		
Lead		VELAP,WVDEP		
Nickel		VELAP,WVDEP		
Selenium		VELAP,WVDEP		
Silver		VELAP,WVDEP		
Zinc		VELAP,WVDEP		

		<u>Certificate of Analysis</u>		
Client Name:	SCS Engineers-Winchester		Date Issued:	1/9/2024 2:14:16PM
Client Site I.D.:	2023 City of Bristol Landfill Leachate			
Submitted To:	Jennifer Robb			
Certified Analys	ses included in this Report			
Analyte		Certifications		
2-Butanone (MEK)		VELAP,NCDEQ,PADEP,WVDEP		
Acetone		VELAP,NCDEQ,PADEP,WVDEP		
Benzene		VELAP,NCDEQ,PADEP,WVDEP		
Ethylbenzene		VELAP,NCDEQ,PADEP,WVDEP		
Toluene		VELAP,NCDEQ,PADEP,WVDEP		
Xylenes, Total		VELAP,NCDEQ,PADEP,WVDEP		
Tetrahydrofuran		VELAP, PADEP		
SW8270E in Non-P	Potable Water			
Anthracene		NCDEQ,WVDEP,VELAP,PADEP		
SW9012B in Non-F	Potable Water			
Cyanide		VELAP,WVDEP		
SW9065 in Non-Po	table Water			
Total Recoverable F	Phenolics	VELAP,WVDEP		

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2024
NCDEQ	North Carolina DEQ	495	12/31/2024
NCDOH	North Carolina Department of Health	51714	07/31/2024
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #009	68-03503	10/31/2024
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/14/2024
TXCEQ	Texas Comm on Environmental Quality #T104704576-23-1	T104704576	05/31/2024
VELAP	NELAP-Virginia Certificate #12617	460021	06/14/2024
WVDEP	West Virginia DEP	350	11/30/2024

Date Issued:

1/9/2024 2:14:16PM

		Certificate of Analysis			
Client Na	ame:	SCS Engineers-Winchester	Date Issued:	1/9/2024	2:14:16PM
Client Sit	te I.D.:	2023 City of Bristol Landfill Leachate			
Submitte	ed To:	Jennifer Robb			
		Qualifiers and Definitions			
DS	Surrogate	concentration reflects a dilution factor.			
J	The report	ed result is an estimated value.			
L	LCS recov	ery is outside of established acceptance limits			
Μ	Matrix spik	e recovery is outside established acceptance limits			
Р	Duplicate a	analysis does not meet the acceptance criteria for precision			
RPD	Relative Pe	rcent Difference			
Qual	Qualifers				
-RE	Denotes sar	mple was re-analyzed			
LOD	Limit of Dete	ection			
BLOD	Below Limit	of Detection			
LOQ	Limit of Qua	intitation			
DF	Dilution Fac	tor			
TIC	library. A TI	dentified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral C spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are nd are calculated using an internal standard response factor of 1.			
PCBs, Tota	I Total PC	Bs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.			

GHANT OF GUALOUY Effective: Mar 10, 2021 Page 51 of 68

1941 REYMET ROAD **RICHMOND, VIRGINIA 23237** (804) 358-8295 PHONE (804)358-8297 FAX

							CHA	IN OF	CUS	то	DY													PAGE 1 OF 1
COMPANY NAME: SCS Eng	jine	ers			IN	VOICE TO):		5	SAM	Ε				PR	OJE	СТ	NAM	E/C	luot	e #:	LF	G-F	EW Monthly Monitoring
CONTACT: Jennifer Robb					IN	VOICE CC	NTAC	T:							SIT	ΈN	AM	E:	20	23 (City of	Br	istc	I Landfill Leachate
ADDRESS: 296 Victory Road					IN	VOICE AD	DRES	S:							PR	OJE	СТ	NUN	BE	R:	02218	320	8.15	5 Task 2
Winchester, VA 226	02				IN	VOICE PH	ONE #	:							P.C). #:								
PHONE #: 703-471-6150			E	MAIL:	<u>irobb@</u>	scsengin	eers.co	<u>om</u>							Pre	trea	tme	nt Pr	ogra	am:				
Is sample for compliance reportir	g?	G	ES	NO Re	gulato	ry State:	V A	ls san	nple fro	m a	chlo	prina	ated	sup	ply?		YES	5 (N	0		PWS	I.D.	. #:	
SAMPLER NAME (PRINT):	lsa	n	-		(W.)	Fabric SA	MPLE	R SIG	NATUR	E:J	der/	n	N/	r/		,, , , +	Ur	. –		Tu	rn Aro	und	Tin	ne: 10 Day(s)
Matrix Codes: WW=Waste Water/Storm Wa	er G	iW=Gro	ound \	Water DW=	Drinking	Water S=Soi	l/Solids	OR=Orga	nic A=Ai	r WP	=Wipe	e OT	=Othe	<u> </u>	~		-							COMMENTS
			(s)										А	NAL	YSI	S / (I	PRE	SER	VAT	FIVE	Ξ)			Preservative Codes: N=Nitric Acid C=Hydrochloric Acid S=Sulfuric Acid
CLIENT SAMPLE I.D.	Grab	Composite	Field Filtered (Uissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Time Preserved	Matrix (See Codes)	Number of Containers	Amm		COD - SM22 5220D-2011 Cvanida - FDA 335 2	Nitrate SM02 460-NO3E-2011	(report seperatly from Nitrite)	Nitrite SM22 450-NO3F-2011	SVOC (Anthracene) 8270	l otal Metals (As, Ba, Cd, Cr, Cu, Pb, Ni, Se, Ag, Zn) 6020	TKN - EPA 351.2 R2.0	Mercury - 6020	Total Recoverable Phenolics - 9065			H=Sodium Hydroxide A=Ascorbic Acid Z=Zinc Acetate T=Sodium Thiosulfate M=Methanol Note VOC 8260 no HCI PLEASE NOTE PRESERVATIVE(S), INTERFERENCE CHECKS or PUMP RATE (L/min)
1) EW-78	X					12/12/23	1300		T	13	X	د	× 2	<u>-</u>	$\boldsymbol{\chi}$	X,	×	\times	X	メ	X	X	적	
2)			_						GW			_										┢	_	
3)		+	+						GW			+		+-		-+	_					┢──	┢	
4) 5)		╞╌╋	+						GW GW			-		┼╌		-+						┢	<u> </u>	
6)	\vdash	\vdash	╋						GW		-+			+		-+						┢──	┢──	
7)									GW		\uparrow			\top			+					┢		
8)									GW															
9)									GW															
10) TYP Blank						3/11/23			DI												2-7		X	16
RELINQUISHED:		E / TI 23/	y⊧ 15à			J		DATE /	TIME	QC	Data	Pad	ckage	Cu	B US	E ON eals	LY used a	The and inte			- 4 -	C		ER TEMP
		E / TI	ME	RECEIVE	e: L		-1.7	DATE / ZZZ DATE /		Leve Leve					SC 202			of]	Bris	stol	Lan			0673 each:
										L				<u> </u>	Do	۰م	12	13/2	0.2	2	Due:	12/	12.8	/2023

Sample Preservation Log Form #: F1301 Rev # 15.0 Effective: July 13, 2023 Page 1 of 1

Sample Preservation Log

Order						1 1		<u>A</u>	L						Date								••		011				Ana	lyst F	Perfor	ming C	heck:	K	Z	\mathcal{T}	-					
			Met		6	yani	de		Sulfi	de		mmo	onia		TKN		P	hos, '			03+N			DRO	,	(808 PCE	stic 1/608 B DW	ide /508)	(52	SVO	;	CrVI			est/P (508) /OC(5	1	. /	enel	۔ `د		.oľ	2
Sample ID			pH as Received	12	Rec	l as elved Other	Final pH	Rec	H as celved Other	Final pH	Red	H as alved Other	Final pH	Rec	t as elved Other		Rec	l as elved Other	Final pH	Rec	l as elved Other	Final pH	Rec	other	Final pH	Rece Res	lived	final + or -		elved s. Cl	final + or -	Received	Final pH	pł Rec	l as elved Other	_	pH Reci 슷	as ived Other	Final pH	pH Reci	as ived Other	Final pH
01	A		7	i)	`						Γ																															
0(\mathfrak{D})																																				7	ら			
01	E																													1												
o l	L											7	2		7	4		7	4		7	4																			7	52
0(Λ					10	ズ																																			
				_																	_																					
										ļ																																
																					-																					
				ļ																																						
																															=											
												·/-																														
NaOH	ID: 2	340	2041	<u>04</u> ~^ -	<u> </u>								22	•				CrVI * pH n						3 - 9.7		. <u> </u>				Anal	yst In	itials: _										
H2SO4																		Amm	onia	Buff	er So	ol'n IC):																			
HCL II):							_	Na ₂ S	5O3	D:						-	5N N	aOH	ID:		_			-				•													
- ayo - ci oo - w.v		tifies D	NSS Cr	/I and r	not T C	rVI as a	an app	roved	d analy	rte und	ler 40	CFR1:	36 :	w	as a	dded	l at	122	0 oi .og-]	n 13	Sth I	Dece	emb	HN ber 2 ng pl	023												F13)1 Sen	aple Pr	eserva	ation Lo	og 15_0

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Date Issued:

1/9/2024 2:14:16PM

	Certificate of Analysis		
Client Name:		Date Issued:	1/9/2024 2:14:16PM
Client Site I.D.: Submitted To:	2023 City of Bristol Landfill Leachate Jennifer Robb		
	Laboratory Order ID: 23L0673		
	Sample Conditions Checklist		
	Samples Received at:		1.80°C
	How were samples received?	I	Logistics Courier
	Were Custody Seals used? If so, were they received intact?		Yes
	Are the custody papers filled out completely and correctly?		No
	Do all bottle labels agree with custody papers?		Yes
	Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?		Yes
	Are all samples within holding time for requested laboratory tests?		Yes
	Is a sufficient amount of sample provided to perform the tests included?		Yes
	Are all samples in appropriate containers for the analyses requested?		Yes
	Were volatile organic containers received?		Yes
	Are all volatile organic and TOX containers free of headspace?		Yes
	Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.		Yes
	Are all samples received appropriately preserved? Note that metals containers do not require field preservation but la preservation may delay analysis. In addition, field parameters are always received outside holding time and will be ma accordingly.		No
	Work Order Comments		
	Jennifer Robb notified via email for the chain of custody being received rec "CN 335.2". We will use method SW9012 per project history. KRC 12/13/2		

Jennifer Robb notified via email for the P500mL and the GA250mL preserved with

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

1/9/2024 2:14:16PM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

H2SO4 being recieved at a pH of 7, and the P250mL preserved with NaOH being recieved at a pH of 10. KRC 12/13/23 1249

Pace Analytical Services, LLC 7979 Innovation Park Drive Baton Rouge, LA 70820 (225) 769-4900

January 04, 2024

Virginia Thrasher Enthalpy 1941 Reymet Road Richmond, VA 23237

RE: Project: 23L0673 Pace Project No.: 20300604

Dear Virginia Thrasher:

Enclosed are the analytical results for sample(s) received by the laboratory on December 14, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Baton Rouge

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ruth Webs

Ruth Welsh ruth.welsh@pacelabs.com (225) 769-4900 Project Manager

Enclosures

cc: Andrew Bruner, Enthalpy Daniel Elliott, Enthalpy Meghan Meyer, Enthalpy

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical Services, LLC 7979 Innovation Park Drive Baton Rouge, LA 70820 (225) 769-4900

CERTIFICATIONS

 Project:
 23L0673

 Pace Project No.:
 20300604

Pace Analytical Services Baton Rouge

7979 Innovation Park Drive Ste A, Baton Rouge, LA 70820-7402 Louisiana Dept of Enviromental Quality (NELAC/LELAP): 01979 Florida Dept of Health (NELAC/FELAP): E87854 DoD ELAP (A2LA) #: 6429.01 Alabama DEM #: 41900 Alaska DEC-DW #: LA00024 Alaska DEC CS-LAP #: 21-001 Arkansas DEQ #: 88-0655 California ELAP #: 3063 Georgia DPD #: C050 Hawaii DOH State Laboratories Division Illinois EPA #: 200048 Kansas DoHE #: E-10354 Kentucky DEP UST Branch #: 123054 Louisiana DOH #: LA036 Minnesota DOH #: 2233799 Mississippi State Dept of Health

Montana Department of Environmental Quality Nebraska DHHS #: NE-OS-35.21 Nevada DCNR DEP #: LA00024 New York DOH #: 12149 North Carolina DEQ - WW & GW #: 618 North Dakota DEQ #: R195 Ohio EPA #: 87782 Oklahoma Dept of Environmental Quality #: 9403 Oregon ELAP #: 4168 Pennsylvania Dept of Environmental Protection #: 68-05973 South Carolina DHEC #: 73006001 Texas CEQ #: T104704178-23-15 Utah DOH #: LA00024 Virginia DCLS #: 6460215 Washington Dept of Ecology #: C929 Wisconsin DNR #: 399139510

SAMPLE SUMMARY

Project: Pace Project No	23L0673 b.: 20300604			
Lab ID	Sample ID	Matrix	Date Collected	Date Received
20300604001	23L0673-01: EW-78	Water	12/12/23 13:00	12/14/23 09:51

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project:	23L0673
Pace Project No.:	20300604

Lab ID	Sample ID	Method	Analysts	Analytes Reported
20300604001	23L0673-01: EW-78	Pace ENV-SOP-BTRO-0042	LHM	10

PASI-BR = Pace Analytical Services - Baton Rouge

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical Services, LLC 7979 Innovation Park Drive Baton Rouge, LA 70820 (225) 769-4900

PROJECT NARRATIVE

 Project:
 23L0673

 Pace Project No.:
 20300604

Method: Pace ENV-SOP-BTRO-0042

Description:BR AM23G Low Level VFAClient:BR-EnthalpyDate:January 04, 2024

General Information:

1 sample was analyzed for Pace ENV-SOP-BTRO-0042 by Pace Analytical Services Baton Rouge. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 312847

- D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
 - 23L0673-01: EW-78 (Lab ID: 20300604001)
 - Lactic Acid

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

- 23L0673-01: EW-78 (Lab ID: 20300604001)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid

PROJECT NARRATIVE

 Project:
 23L0673

 Pace Project No.:
 20300604

Method: Pace ENV-SOP-BTRO-0042

Description:BR AM23G Low Level VFAClient:BR-EnthalpyDate:January 04, 2024

Analyte Comments:

QC Batch: 312847

N2: The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

• BLANK (Lab ID: 1498064)

- Hexanoic Acid
- i-Hexanoic Acid
- i-Pentanoic Acid
- Pentanoic Acid
- LCS (Lab ID: 1498065)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- MS (Lab ID: 1498226)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid
- MSD (Lab ID: 1498227)
 - Hexanoic Acid
 - i-Hexanoic Acid
 - i-Pentanoic Acid
 - Pentanoic Acid

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: 23L0673

Pace Project No.: 20300604

Sample: 23L0673-01: EW-78	Lab ID: 20	300604001	Collected: 12/1	2/23 13:00	Received:	12/14/23 09:51	Matrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qual
BR AM23G Low Level VFA	Analytical Me	thod: Pace E	NV-SOP-BTRO-0)42				
	Pace Analytic	al Services -	Baton Rouge					
Pentanoic Acid	ND	mg/L	25	0 500		01/03/24 15:30	6 109-52-4	N2
Acetic Acid	ND	mg/L	25	0 500		01/03/24 15:30	6 64-19-7	
Butyric Acid	ND	mg/L	25	0 500		01/03/24 15:30	6 107-92-6	
Formic acid	ND	mg/L	25	0 500		01/03/24 15:30	6 64-18-6	
Hexanoic Acid	ND	mg/L	25	0 500		01/03/24 15:30	6 142-62-1	N2
i-Hexanoic Acid	ND	mg/L	25	0 500		01/03/24 15:30	6 646-07-1	N2
Lactic Acid	ND	mg/L	25	0 500		01/03/24 15:30	6 50-21-5	D3
i-Pentanoic Acid	ND	mg/L	25	0 500		01/03/24 15:30	6 503-74-2	N2
Propionic Acid	ND	mg/L	25	0 500		01/03/24 15:30	6 79-09-4	
Pyruvic Acid	ND	mg/L	25	0 500		01/03/24 15:30	6 127-17-3	

QUALITY CONTROL DATA

Project: 23L0673						
Pace Project No.: 20300604						
QC Batch: 312847		Analysis Me	ethod:	Pace ENV-SOF	P-BTRO-0042	2
QC Batch Method: Pace EN	/-SOP-BTRO-0042	Analysis De	escription:	BR AM23G Lov	w Level VFA	
		Laboratory:	•	Pace Analytica	l Services - B	aton Rouge
Associated Lab Samples: 203	300604001	Laboratory				aton reage
METHOD BLANK: 1498064		Matrix	: Water			
Associated Lab Samples: 203	300604001					
•		Blank	Reporting			
Parameter	Units	Result	Limit	Analyze	d Qua	alifiers
Acetic Acid	mg/L	ND	0.5	0 01/03/24 09	9:50	
Butyric Acid	mg/L	ND	0.5	0 01/03/24 09	9:50	
Formic acid	mg/L	ND	0.5	0 01/03/24 09	9:50	
Hexanoic Acid	mg/L	ND	0.5	0 01/03/24 09	9:50 N2	
-Hexanoic Acid	mg/L	ND	0.5	0 01/03/24 09	9:50 N2	
-Pentanoic Acid	mg/L	ND	0.5	0 01/03/24 09	9:50 N2	
_actic Acid	mg/L	ND	0.5	0 01/03/24 09	9:50	
Pentanoic Acid	mg/L	ND	0.5	0 01/03/24 09	9:50 N2	
Propionic Acid	mg/L	ND	0.5	0 01/03/24 09	9:50	
Pyruvic Acid	mg/L	ND	0.5	50 01/03/24 09	9:50	
ABORATORY CONTROL SAM	PLE: 1498065					
	/ / / / / / / / / / / / / / / / /	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Acetic Acid	mg/L	2	2.0	102	70-130	0
Butyric Acid	mg/L	2	1.9	94	70-130	0
ormic acid	mg/L	2	2.0	98	70-130	0
lexanoic Acid	mg/L	2	1.1	56	39-114	4 N2
Hexanoic Acid	mg/L	2	1.6	80	39-114	4 N2
-Pentanoic Acid	mg/L	2	1.7	83	59-12	
_actic Acid	mg/L	2	2.2	111	70-130	0
		•			50.40	4 10

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 1498	226		1498227							
			MS	MSD								
	5	0361866001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Acetic Acid	mg/L	209	100	100	306	307	97	98	70-130	0	30	
Butyric Acid	mg/L	26.7	100	100	126	125	99	98	70-130	1	30	
Formic acid	mg/L	ND	100	100	110	110	107	107	70-130	0	30	
Hexanoic Acid	mg/L	ND	100	100	55.7	56.8	56	57	39-114	2	30	N2
i-Hexanoic Acid	mg/L	ND	100	100	81.4	81.7	81	82	39-114	0	30	N2
i-Pentanoic Acid	mg/L	ND	100	100	87.9	88.8	86	86	59-121	1	30	N2
Lactic Acid	mg/L	ND	100	100	112	112	108	108	70-130	0	30	
Pentanoic Acid	mg/L	ND	100	100	82.9	82.6	78	78	59-121	0	30	N2

1.5

2.0

2.0

77

100

100

59-121 N2

70-130

70-130

2

2

2

mg/L

mg/L

mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pentanoic Acid

Propionic Acid

Pyruvic Acid

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

 Project:
 23L0673

 Pace Project No.:
 20300604

MATRIX SPIKE & MATRIX S		ATE: 1498	226		1498227							
Descenter		0361866001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	Qual
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Propionic Acid	mg/L	43.8	100	100	150	150	106	107	70-130	0	30	
Pyruvic Acid	mg/L	ND	100	100	116	114	111	109	70-130	2	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project:	23L0673
Pace Project No.:	20300604

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

20300604001	23L0673-01: EW-78	Pace ENV-SOP-BTRO-	312847	_	
Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
Project: Pace Project No.:	23L0673 20300604				

0042

ENT ANAL	F		A]	LPY CAI	Pac 797 Bat	ce - Gulf Co 79 Innovatio ton Rouge,	oast on Park LA 708	Dr 20				RI	1941 RE CHMOND, VIF (804) 358- (804)3		:20)300	0604	Page 67 of 68
New JEANARD	hud A	f	5 A	Next d & Bas	1		CHAI	N OF	CUS	ΓΟΙ	ΟY			2030060)4			ade
COMPANY NAME: Enthalpy					IN/	OICE TO:	Ent	halpy					PROJECT	- N∽ıvı⊏/Quot	e #:	23L067	'3	
CONTACT: Dan Elliot					IN/	OICE CON	TACT:						SITE NAM	E: 23L0673			÷	
ADDRESS: 1941 Reymet Rd Richmo	ond \	/A 23	3237		IN	OICE ADD	RESS:	1941	1 Reymet	Rd Ri	chmond '	VA 23237	PROJECT	NUMBER:	23L06	573		
PHONE #: (804) 358-8295					IN	OICE PHC	DNE #:	(804) 3	358-82	95			P.O. #: F	0-057	252	_		
FAX #:				EMAIL:										ent Program:				
Is sample for compliance reportir	ng?	YE	ES	NO		Is sample f	rom a d	chlorin	ated su	ipply	/?	YES N	10		PWS	I.D. #:		
SAMPLER NAME (PRINT):					SA	MPLER SIG	GNATU	RE:							Turn	Around	Time: 10	
Matrix Codes: WW=Waste Water/Storm Wat	er G	W=Gi	round	Water DW=Dr	rinking	Water S=Soil/S	olids OR	=Organio	c A=Air \	NP=V	Vipe OT:	=Other					COMMENTS	
			ls)									ANA	LYSIS / (PRE	ESERVATIVE	E)		Preservative Codes: N=Nit Acid C=Hydrochloric Acid	
CLIENT SAMPLE I.D.		ite	ered (Dissolved Metals)	Composite Start Date	ite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	eserved	Matrix (See Codes)	Number of Containers	Volatile Fatty Acid						S=Sulfuric Acid H=Sodiur Hydroxide A=Ascorbic Ac Z=Zinc Acetate T=Sodiur Thiosulfate M=Methanol	cid m
	Grab	Composite	Field Filtered	Compos	Composite			Time Preserved									PLEASE NOTE PRESERVATIVE(S), INTERFERENCE CHECKS PUMP RATE (L/min)	; or
1) 23L0673-01: EW-78	X	-	-			12/12/23	1300		WW	3	Х							14
2) 3)	+		$\left \right $									-				$\left \right $		
4)	+																	
5)	\square																	
6)																		
7)																		
8)															ļ			
9)															ļ	+ + + + + + + + + + + + + + + + + + +		
10) RELINQUISHED		1	ТIME ⋜Ĵ(р	RECEIVED): [+++	x n ress	14/15	DATE /	TIME	QC Leve		ackage L	AB USE ON	LY	COOL	ER TEM	1P°C	
RELINQUISHED:		E / 13	TIME 9,5 TIME		m	nfo	11/ h	DATE / 12 DATE /		Leve Leve	767 111						Page 12 of 1	13
										Leve							Pace Gulf Coast	

Pace

WO#:20300604 Due Date: 12/29/23

Sample Condition Upon Reciept (

PM: RW

Page 13 of 13

CLIENT: BR-Enthalpy

	Workorder # CLIENT: BR-Enthalpy
7979 Innovation Park Dr. Baton Rouge, LA 70806	
Cooler Inspected by/date: <u>BM_/1/2/14/13</u>	
Means of receipt: Pace Client UPS FedEx Other:	
Yes No Were custody seals present on the cooler?	
Yes No NA If custody seals were present, were they intact a	
Method: Temperature Blank Against Bottles IR Gun ID:	/ IR Gun Correction Factor / °C Samples on ice pH Strip Lot #
Cooler #1 Cooler Temp °C: 5 / 5 (Actual/True) Cooler #2 Cooler Temp °C: (Actual/True)	Ves No
Cooler #2 Cooler Temp °C:	Method of coolant:
Cooler #4 Cooler Temp °C: (Actual/True)	Wet Clice Packs CDry Ice None
Tracking #: 7744 7171 3173	3/
Yes No NA Is a temperature blank present?	
Yes No NA Was a chain of custody (COC) recieved?	
Yes No NA Was the line and profile number listed on the C	
Yes No NA Were all coolers received at or below 6.0°C? If r Project Manager notified via email.	io, notify
Yes No Were proper custody procedures (relinquished, followed?	/received)
Yes No NA is the sampler name and signature on the COC?	,
Yes No Were sample IDs listed on the COC and all samp	le
Yes No Was collection date & time listed on the COC ar	nd all sample
containers?	
Yes No Did all container label information (ID, date, time the COC?	ie) agree with
Yes No Were tests to be performed listed on the COC?	
Did all samples arrive in the proper containers f	or each test
Yes No and/or in good condition (unbroken, lids on, etc.)?	
Yes No Was adequate sample volume available?	
Yes No Were all samples received within ½ the holding	time or 48
hours, whichever comes first?	
Yes No Were all samples containers accounted for? (No excess)	o missing /
Were VOA, 8015C (GRO/VPH), and RSK-175 sam	iples free of
Yes No NA bubbles > "pea size" (1/4" or 6mm in diameter)	in any of the
VOA vials?	
Filtered volume received for dissolved tests?	
Yes No A NA If no, list affected sample(s) in comments below	
Yes No No Were all metals/nutrient samples received at a	n added, record iots. Dispenser/pipette iot #.
Yes No NA Were all cyanide samples received at a pH > 12 samples received at a pH > 9?	and sulfide HNO3H2SO4NaOH Date:Time:
Comments:	

We	ll ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		100
Parameter	Monitoring Event									Con	centration										LOD	LOQ
	November-2022								1560		1400			1380							50	50
	December-2022	1700	2280				2110		1410	1310					1150	1780					100	100
		1520						936						1330							50	50
	January-2023 -								2440												100	100
	February-2023															1490					100	100
	March-2023							667	1480												73.1	100
	April-2023							1410		1220											73.1	100
	May-2023	1390						1860	2380												146	200
	June-2023								2740		2370		2170								146	200
Ammonia as N																	1180				73.1	100
(mg/L)	July-2023 -	1570					2260												2350	310	146	200
	August-2023				1600		1890												2140	222	146	200
																	1720				73.1	100
	September-2023		1250																		146	200
	October-2023					1980											1730	2890			146	200
		1260	2490	1830		2070											1800	2590			146	200
	November-2023											1170								2080	183	250
									2440												366	500
	December-2023																1540				73.1	100
			2900													2200					146	200
	November-2022								15700		5860			5140							0.2	2
	December-2022	6440	12500				11400		9240	3330					8360	6770					0.2	2
	January-2023	9920						999	28100					7060							0.2	2
	February-2023															7230					0.2	2
	March-2023							1570	9190												0.2	2
	April-2023							8430		2860											0.2	2
Biological Oxygen	May-2023	7350						11900	35300												0.2	2
Demand (mg/L)	June-2023								20000		27400		23100								0.2	2
	July-2023	6820					32900										330		31800	937	0.2	2
	August-2023				>33045		>33225												>32805	506	0.2	2
	September-2023		40185.5														659				0.2	2
	October-2023					34600											690	37000			0.2	2
	November-2023	1910	30400	27500		32015			29600			3640					480	32135		21500	0.2	2
	December-2023		>44105													13700	681				0.2	2

Wel	I ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		100
Parameter	Monitoring Event									Con	centration	<u> </u>									LOD	LOQ
											9790			10800							1000	1000
	November-2022								23500												2000	2000
		7440																			1000	1000
									13200	8000					20300	14100					2000	2000
	December-2022						22400														5000	5000
			86800																		10000	10000
								3630													500	500
	January-2023	14900												8430							2000	2000
	Sanoary 2020								47600												5000	5000
	February-2023															9210					1000	1000
	1 601001 y-2023							1690													500	500
	March-2023			-					10600												2000	2000
	April-2023									7370											1000	1000
								16800													2000	2000
	May-2023	7590						18700													2000	2000
									44700												4000	4000
Chemical Oxygen	June-2023										44800										5000	5000
Demand (mg/L)									41300				55000								10000	10000
																				2180	500	500
	July-2023	6480															2460				1000	1000
	3017 2020																		41000		5000	5000
							50100														10000	10000
	August-2023																			1750	500	500
	7.09031 2020				59000		58600												60600		5000	5000
	September-2023																6260				1000	1000
			87400																		10000	10000
	0																5320				500	500
	October-2023					51000															5000	5000
																		63600			10000	10000
												 5 (00					4710				1000	1000
	November-2023	6200							42700			5620									2000	2000
			77100	48100		57900			43700											37600	5000	5000
			77100														4070	63900			10000	10000
	December-2023															19900	4870				1000 5000	1000
			94200																		10000	10000
Nitrate+Nitrite as N (mg/L)	November-2022								2.91		0.16			0.33							0.1	0.1

We	ll ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event									Con	centration										LOD	LOQ
															ND						0.2	0.2
										ND											0.2	0.6
	December-2022	ND	ND				ND		ND												1.1	5.1
																ND					1.5	5.5
								ND													0.35	1.35
														ND							1.1	1.1
	January-2023	3.9																			2.1	2.1
	-								ND												2.1	2.1
	February-2023															ND					0.35	1.35
	March-2023							ND	ND												1.04	5.1
	April-2023									 ND												2.6
	April-2023							ND													0.6	
	May-2023 -	ND																			1.1	5.1
	· · · · · ·							ND	ND												1.2	5.2
	June-2023								ND				ND								1.1	5.1
											ND										1.2	5.2
Nitrate as N (mg/L)																	0.355				0.15	0.35
	July-2023 -																			ND	0.55	0.75
	3017 2020	ND																			1	3
							ND												ND		1.5	5.5
	August-2023																			ND	0.15	0.35
	7.09031 2020				ND		ND												ND		1.5	3.5
	September-2023																ND				0.3	1.1
			ND																		0.7	1.5
	October 2002																ND				0.35	1.35
	October-2023					ND															1 6	3 3.5
		ND															ND	ND			1.5 0.15	0.35
												ND									0.15	1.35
	November-2023					ND															0.35	1.75
			ND																		1.1	5.1
				ND					ND									ND		ND	1.5	5.5
			ND														ND				1.1	5.1
	December-2023															ND					1.5	5.5

We	II ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	FW-65	EW-67	EW-68	EW-78	EW-87	FW-94	EW-98		
Parameter	Monitoring Event	211 00	211 02	211 00	211 01		211 07	111 00	211 07		centration		211 04	211 00	211 07	111 00	211 / 0	111 07		211 70	LOD	LOQ
l'alameter	Monitoling Lyen									0.12 J											0.1	0.5
	December-2022	 ND					ND														1	
			ND						ND						ND	ND					0.05	5
								ND													0.25	1.25
	January-2023													ND							 	1
	E 1 0000	ND							ND												2	2
	February-2023															0.48 J					0.25	1.25
	March-2023							ND	ND												1	5
	April-2023							ND		ND											0.5	2.5
	May-2023	ND						ND	ND												1	5
	June-2023								2 J		ND		ND								1	5
Nitrite as N (mg/L)																	ND			ND	0.05	0.25
	July-2023	ND																			0.5	2.5
							1.2 J												ND		1	5
	August-2023																			ND	0.05	0.25
					ND		ND												ND		0.5	2.5
	September-2023		ND														ND				0.2	1
	October-2023																ND				0.25	1.25
						ND												ND			0.5	2.5
		0.06 J															ND				0.05	0.25
	November-2023					ND						ND									0.25	1.25
	December-2023		ND ND	ND					ND							 ND	ND	ND		ND 	1	5
	December-2023										1290			1470							20	50
	November-2022								2110												50	125
	December-2022	1510	3570				1790		1830	1490				-	1340	1940					200	500
	December-2022													1410								1
	January-2023	1840						881						1410							20	50
	F a la mana 20002								2970												40	100
	February-2023															1870					16.8	50
	March-2023							879	1920												33.6	100
	April-2023							1820		1510											16.8	50
	May-2023	1590						1950	2910												40	100
Total Kjeldahl	June-2023								3080				2750								100	250
Nitrogen (mg/L)											2650										200	500
	July-2023	1670					2960										1670		2720	285	40	100
	August-2023																			279	10	25
					2240		2820												2850		100	250
	September-2023		3340			1050											2680	1220			100	250
	October-2023					1050											4420	1320			40	100
						2240											4630			2120	100 80	250 200
	November-2023	1440	3290	2630		2240			2530			1120					2270	3170			100	250
																1880					80	200
	December-2023		3130														1890				100	250
L			0100	1	1		1	1	1	1	1		1	1	1		1370	1		<u> </u>	100	200

Wel	I ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event						-	-		Con	centration		2								LOD	LOQ
											5.68			3							0.3	0.5
	November-2022								28.8												0.75	1.25
	D									8.94											0.3	0.5
	December-2022	24.9	54.6				28.3		32						20.2	36					1.5	2.5
		27.2						1.3						20.2							0.75	1.25
	January-2023								56.5												1.5	2.5
	February-2023															22.4					1.5	2.5
								0.4													0.03	0.05
	March-2023								13.9												0.3	0.5
	April-2023							18.7		5.1											0.3	0.5
	May-2023	18.6						20	50												1.5	2.5
	June-2023								39.1		45.6		80.6								1.5	2.5
	30110 2020																0.7				0.15	0.25
Total Recoverable	July-2023																			2.92	0.10	0.5
Phenolics (mg/L)	301y 2020	11.6					47.9												37.3		1.5	2.5
																				1.46	0.15	0.25
	August-2023				28.6		31.4												40.4		1.5	2.5
																	4.58				0.3	0.5
	September-2023		38.2																		3	5
	October-2023																4.13				0.15	0.25
	OCIODEI-2023					37												38.7			0.6	1
																	3.65				0.15	0.25
	November-2023	7.88		36.4								4.76									0.6	1
			38.8			47.4												47.1			0.75	1.25
									46.9											29.1	1.5	2.5
	December 0000																3.72				0.06	0.1
	December-2023		34.2													23					0.75	1.25 2.5
			34.2																		1.5	2.5

Parameter Monitority Event Monetable Service Se	LOD 46.7 93.5 9.35 11.7 23.4 485 243 253	LOQ 93.5 187 9.35 11.7 23.4 971 485
Semi-volutional volutional voluti voluti volutional volutional volutional volutional volutional	93.5 9.35 11.7 23.4 485 243 253	187 9.35 11.7 23.4 971
November-202 ND ND ND	93.5 9.35 11.7 23.4 485 243 253	187 9.35 11.7 23.4 971
November 2022 N.D N.D N.D N.D <	93.5 9.35 11.7 23.4 485 243 253	187 9.35 11.7 23.4 971
Image: brance of the state of the	9.35 11.7 23.4 485 243 253	9.35 11.7 23.4 971
Image: brance of the sector of the	11.7 23.4 485 243 253	11.7 23.4 971
Image: blace of the sector of the	23.4 485 243 253	23.4 971
ND ND III IIII IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	485 243 253	971
1 <td>243 253</td> <td></td>	243 253	
1 <td>253</td> <td>105</td>	253	105
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$		505
February 202	490	980
$ \frac{1}{1} + 1$	500	1000
$ \frac{Mdrcl-203}{M} = \frac{1}{10} - \frac$	187	374
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	51	102
April-2023 ND ND ND	117	234
April-2023 I I I ND I I I ND I I I I ND I I I ND I	37.4	74.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	38.8	77.7
Mdy-2023 ND	93.5	187
Anthracene Image: Second s	467	935
Miniscond June-2023 I I I I I I ND I	485	971
Image: ND	485	
ND		980
		93.5
· · · · · · · · · · · · · · · · · · ·	100	200
	250	500
ND ND ND	1000	2000
August-2023		39.2
	1000	2000
September-2023 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND	40	80
Optober 2002	40	80
October-2023	50	100
ND	500	1000
ND ND	20 50	40
		200
November-2023 ND ND ND ND ND ND ND	400	800
Image:	1000	2000
	50	100
December-2023	100	200
December 2020 III IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		400

We	II ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
Parameter	Monitoring Event										centration						1				LOD	LOQ
TOTAL METALS (mg/	-																					
	November-2022								0.863		0.464			1.3			1				0.02	0.04
	December-2022	1.02	0.406				0.174		1.69	0.49					0.159	0.574					0.02	0.04
	January-2023	0.285						0.596	0.225					0.846							0.01	0.02
	February-2023															0.29					0.005	0.01
	March-2023							1.07	1												0.01	0.02
	April-2023									0.11											0.0005	0.001
	Aprii-2023							0.36													0.005	0.01
	May-2023	0.26						0.3	0.27												0.0025	0.005
	June-2023								0.26		0.5		0.14								0.0025	0.005
Arsenic		0.23															0.24		0.19	0.06	0.0005	0.001
	July-2023						0.7														0.0025	0.005
																				0.15	0.0025	0.005
	August-2023				0.32		0.43												0.29		0.0025	0.003
	September-2023		0.42														0.25				0.005	0.01
																	0.24	0.31			0.0005	0.001
	October-2023					0.36															0.000	0.001
	November-2023	0.23	0.33	0.53		0.43			0.35			0.78					0.34	0.27		0.2	0.003	0.002
			0.00													0.26					0.0025	0.005
	December-2023																0.24				0.001	0.002
	November-2022								0.871		0.485			0.36							0.01	0.02
	December-2022	0.566	0.803				0.978		0.438	0.214					0.856	0.793					0.01	0.02
	January-2023	0.643						0.683	1.92					0.554							0.005	0.02
	· · ·															1.04						
	February-2023															1.04					0.01	0.05
	March-2023							0.406	0.683												0.005	0.01
	April-2023							1.21		0.326											0.01	0.05
	May-2023	0.636																			0.005	0.025
	111Gy 2020							1.2	1.83												0.01	0.05
	June-2023								1.69				1.65								0.005	0.025
	JULIE-2023										3.01										0.01	0.05
Barium																				0.217	0.001	0.005
	July-2023																0.558				0.002	0.01
		0.542					2.28												1.02		0.005	0.025
																				0.218	0.005	0.025
	August-2023				1.61		1.58												1.48		0.000	0.025
	September-2023		0.72														0.649		1.40		0.01	0.05
																	0.664				0.002	0.03
	October-2023					2.56												1.93			0.002	0.025
	November-2023	0.572	0.81	2.28		2.50			1.96			0.418					0.67	2.06		2.84	0.003	0.025
			0.68			2.51										1.36					0.005	0.025
	December-2023																0.672				0.003	0.025
																	0.072				0.002	0.01

W	ell ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		100
Parameter	Monitoring Event									Con	centration										LOD	LOQ
	November-2022								ND		ND			ND							0.004	0.008
	December-2022	ND	0.0104				ND		ND	ND					ND	ND					0.004	0.008
	January-2023	ND						ND	ND					ND							0.002	0.004
	February-2023															0.000297 J					0.0001	0.001
	March-2023							ND	ND												0.002	0.004
	April-2023							0.000158 J		0.000333 J											0.0001	0.001
	May-2023	ND						ND	ND												0.0005	0.005
	June-2023								ND		ND		ND								0.0005	0.005
Cadmium	July-2023	0.000219 J					0.000156 J										0.000186 J		ND	ND	0.0001	0.001
																				ND	0.0005	0.005
	August-2023 -				ND		ND												ND		0.001	0.01
	September-2023		ND														ND				0.001	0.01
	October-2023																0.000171 J	ND			0.0001	0.001
						ND															0.0002	0.002
	November-2023	ND	ND	ND		ND			ND			ND					ND	ND		ND	0.001	0.003
	December-2023		ND													0.000604 J					0.0005	0.0015
	Nevrember 2022								0.000		0.110			0.254			ND				0.0002	0.002
	November-2022								0.208		0.112			0.354							0.016	0.02
	December-2022	0.503	1.08				1.76		0.274	0.319					0.499	0.822					0.016	0.02
	January-2023	0.31						0.488	0.178					0.155							0.008	0.01
	February-2023															0.277					0.004	0.01
	March-2023							0.213	0.188												0.008	0.01
	April-2023 -									0.142											0.0004	0.001
								0.306													0.004	0.01
	May-2023	0.422						0.281	0.237												0.002	0.005
	June-2023								0.251		0.191		0.272								0.002	0.005
Chromium	July-2023	0.308					0.535										0.231		0.215	0.0265	0.0004	0.001
	August-2023																			0.0276	0.002	0.005
					0.606		0.449												0.259		0.004	0.01
	September-2023		1.17														0.234				0.004	0.01
	October-2023					0.273											0.144	0.194			0.0004	0.001
		0.391				0.273															0.0008	0.002
	November-2023			0.51													0.251	0.403			0.003	0.003
			1.04			0.402			0.246			0.343								0.222	0.003	0.01
	Deservision		1.34													0.259					0.002	0.005
	December-2023																0.219				0.0008	0.002

We	ell ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event				·			·		Con	centration		<u>.</u>		·		·				LOD	LÜQ
	November-2022								ND		ND			ND							0.016	0.02
	December-2022	ND	ND				ND		ND	ND					ND	ND					0.016	0.02
	January-2023	ND						0.0127	0.0256					ND							0.008	0.01
	February-2023															0.00365					0.0003	0.001
	March-2023							ND	ND												0.008	0.01
	April-2023							0.00664		0.00767											0.0003	0.001
	May-2023	ND						ND	ND												0.0015	0.005
	June-2023								0.00154 J		0.00362 J		0.00269 J								0.0015	0.005
Copper		0.00124					0.00163										0.00811		ND	0.0027	0.0003	0.001
																				ND	0.0015	0.005
	August-2023				0.00343 J		0.0176												ND		0.003	0.01
	September-2023		ND														0.00407 J				0.003	0.01
	October-2023																0.00361	0.000609 J			0.0003	0.001
						0.00806															0.0006	0.002
	November-2023	0.00607	0.00352	0.0212		0.00756			ND			0.00341					0.00387	ND		ND	0.003	0.003
	December-2023		0.00184													ND					0.0015	0.0015
																	0.0034				0.0006	0.002
	November-2022								ND		ND			0.017 J							0.012	0.02
	December-2022	ND	0.0381				ND		ND	ND					ND	ND					0.012	0.02
	January-2023	ND						ND	ND					ND							0.006	0.01
	February-2023															0.006					0.001	0.001
	March-2023							ND	ND												0.006	0.01
	April-2023							0.0022		0.0067											0.001	0.001
	May-2023	ND						ND	ND												0.005	0.005
land	June-2023								ND		ND		0.0069								0.005	0.005
Lead	July-2023	0.0014					0.019										0.0092		ND	0.0017	0.001	0.001
	August-2023																			ND	0.005	0.005
					0.014		ND												0.013		0.01	0.01
	September-2023		0.12														ND				0.01	0.01
	October-2023																0.0036	0.0034			0.001	0.001
						0.0077															0.002	0.002
	November-2023	ND	0.13	0.0046		0.014			ND			ND					0.0032	0.0043		ND	0.003	0.003
	December-2023																0.0043				0.002	0.002
			0.16													0.002					0.0015	0.0015

We	ell ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
Parameter	Monitoring Event	211 00			211 04		211 07	111 00			centration		201 04		211 07	211 00	211 / 0	211 07		211 /0	LOD	LOQ
Turumerer											0.00169			0.00053			1				0.0004	0.0004
	November-2022																					
									ND												0.0008	0.0008
		0.00051																			0.0004	0.0004
	December-2022						0.00118		ND	0.00588					0.0048	ND					0.0008	0.0008
			ND																		0.004	0.004
	January-2023	ND						ND						ND							0.0004	0.0004
	,								ND												0.004	0.004
	February-2023															ND					0.0004	0.0004
	March-2023							ND													0.0002	0.0002
									ND												0.0004	0.0004
	Ameril 0000									0.00128											0.0002	0.0002
	April-2023 -							ND													0.0004	0.0004
Mercury	May-2023	ND						ND	ND												0.0002	0.0002
	June-2023								ND		ND		ND								0.004	0.004
		0.000306															ND			ND	0.0002	0.0002
	July-2023 -						0.0107												ND		0.001	0.001
																				ND	0.001	0.001
	August-2023				0.00312		0.00397												ND		0.001	0.001
	September-2023		0.00503														ND				0.002	0.002
	October-2023					0.00165											ND	0.00055			0.0002	0.0002
		ND										ND									0.0000002	
	November-2023																ND					0.0000004
	-		0.00576	0.00606		0.00578			ND									0.00954		ND	0.000004	0.000004
	December 2022		0.00484													ND					0.001	0.001
	December-2023																ND				0.0004	0.0004
	November-2022								0.0866		0.1344			0.173							0.014	0.02
	December-2022	0.1722	0.5025				0.2989		0.1299	0.287					0.1853	0.346					0.014	0.02
	January-2023	0.1074						0.1442	0.0407					0.0769							0.007	0.01
	February-2023															0.1726					0.001	0.001
	March-2023							0.1254	0.1033												0.007	0.01
	April-2023							0.1143		0.1732											0.001	0.001
	May-2023	0.113						0.09726	0.05657												0.005	0.005
	June-2023								0.05978				0.07161								0.005	0.005
Nickel		0.00970									0.05892											
	July-2023						0.08332										0.1576		0.03074		0.001	0.001
	August-2023				0 1457															0.02029	0.005	0.005
	September-2023		0.5152		0.1457		0.09673										0.2387		0.0513		0.01	0.01
																	0.2387	0.09206			0.001	0.001
	October-2023					0.104															0.001	0.001
	November-2023	0.1178	0.4227	0.1242		0.104			0.05944			0.1493					0.2492	0.1332		0.05277	0.002	0.002
			0.4227	0.1242								0.1473				0.1447	0.2472	0.1332			0.005	0.005
	December-2023		0.0071													0.1447	0.2127				0.003	0.003
																	0.2121				0.002	0.002

We	II ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event			·		·		·		Cond	centration										LOD	LOQ
	November-2022								ND		ND			ND							0.08	0.1
	December-2022	ND	ND				ND		ND	ND					ND	ND					0.08	0.1
	January-2023	ND						ND	ND					ND							0.04	0.05
	February-2023															0.00199					0.00085	0.001
	March-2023							ND	ND												0.04	0.05
	April-2023							0.00189		0.00185											0.00085	0.001
	May-2023	ND						ND	0.00569												0.00425	0.005
	June-2023								ND		ND		ND								0.00425	0.005
Selenium	July-2023	0.00101					0.00331										0.00116		0.00251	ND	0.00085	0.001
																				ND	0.00425	0.005
	August-2023 -				ND		ND												ND		0.0085	0.01
	September-2023		ND														ND				0.0085	0.01
	October-2023																0.00186	0.0044			0.00085	0.001
						0.00332															0.0017	0.002
	November-2023	ND	0.00425	0.00314		0.00315			ND			ND					ND	0.0032		ND	0.003	0.003
	December-2023		0.00785													0.00253					0.0015	0.0015
																	0.00215				0.0017	0.002
	November-2022								ND		ND			ND							0.01	0.02
	December-2022	ND	0.0187 J				ND		ND	ND					ND	ND					0.01	0.02
	January-2023	ND						ND	ND					ND							0.005	0.01
	February-2023															ND					0.00006	0.001
	March-2023							ND	ND												0.005	0.01
	April-2023							ND		0.00011 J											0.00006	0.001
	May-2023	ND						ND	ND												0.0003	0.005
Silver	June-2023								ND		ND		ND								0.0003	0.005
	July-2023	ND					ND										ND		ND	ND	0.00006	0.001
	August-2023																			ND	0.0003	0.005
					ND		ND												ND		0.0006	0.01
	September-2023		ND														ND				0.0006	0.01
	October-2023																ND	ND			0.00006	0.001
	November 0002					ND ND															0.00012	0.002
	November-2023	ND	ND ND	ND					ND			ND				ND	ND	ND		ND	0.0006	0.01
	December-2023																ND				0.00023	0.001
																	ND				0.00012	0.002

We	ll ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
Parameter	Monitoring Event										centration										LOD	LOQ
	November-2022								ND		0.032			0.694							0.02	0.02
	December-2022	0.208	29.7				0.162		0.0686	0.75					0.364	0.286					0.02	0.02
	January-2023	0.133						0.15	0.074					0.0752							0.01	0.01
	February-2023															0.0851					0.0025	0.005
	March-2023							0.0689	0.0538												0.01	0.01
								0.0539													0.0025	0.005
	April-2023 –									0.414											0.025	0.05
	May-2023	0.079						0.0635	0.0519												0.0125	0.025
	June-2023								0.0538		0.0253		0.945								0.0125	0.025
		0.0488															0.0714		0.354	0.0782	0.0025	0.005
7	July-2023 -						2.03														0.0125	0.025
Zinc																				0.112	0.0125	0.025
	August-2023						1.71												0.914		0.025	0.05
					5.92																0.05	0.1
	September-2023																0.0788				0.025	0.05
			45																		0.25	0.5
	October-2023																0.0622				0.0025	0.005
						0.203												633			0.005	0.01
	November-2023	0.0471 J		0.0534		0.74			0.053			0.0618					0.0722	0.845		0.0313 J	0.025	0.05
			30.4																		0.25	0.5
			52.7																		0.25	0.5
	December-2023																0.061				0.005	0.01
																0.0462					0.025	0.025
VOLATILE FATTY AC	IDS (ug/L)																					
	November-2022										1600										25	100
									3500					150 J							62	250
	December-2022	1800																			62	250
	January-2023	ND						ND	4400					ND								500
	February-2023															ND						500
	March-2023							ND	640													500
	April-2023							1200		520											370	500
	May-2023	990						1800	3000												370	500
	June-2023								5900		4100		5000								750	1000
																				ND	150	200
Acetic Acid	July-2023	ND															ND				370	500
							6100												750		750	1000
	August-2023				3300		5300												4200	ND		500
	September-2023		7400														ND				370	500
	· · ·					2200												4100				
	October-2023					3200											720	4100		4140	370	500
	November 2002	ND							 5250			ND					ND			4160	250	500
	November-2023			4950		6650			5350									7300			500	1000
			9900																		1000	2000
																660						100
	December-2023																ND					250
			11200																			1000

We	ell ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
Parameter	Monitoring Event		-		-						centration		1								LOD	LOQ
											430										12	100
	November-2022								830					ND							29	250
	December-2022	ND																			29	250
	January-2023	ND						ND	1800					ND								500
	February-2023															ND						500
	March-2023							ND	ND													500
	April-2023							ND		ND											330	500
	May-2023	ND						ND	1200												330	500
	June-2023								2500		1500		2900								650	1000
Butyric Acid																				ND	130	200
boryne / leid	July-2023	ND															ND				330	500
							2800												650		650	1000
	August-2023				1400		1700												1600	ND		500
	September-2023		3100														ND				330	500
	October-2023					1200											ND	2000			330	500
	November-2023	ND		1670		1760			1370			ND					ND	2730		740	250	500
			3420																		500	1000
																336						100
	December-2023																ND					250
			3390																			1000
	November-2022										ND										11	100
									ND					ND							27	250
	December-2022	90 J																			27	250
Lactic Acid	November-2023	ND		968		1800			969			ND					ND	1170		324	250	500
			6030													 ND					500	1000
	December-2023																ND					250
			9050																			1000
											620										11	100
	November-2022								1600					73 J							27	250
	December-2022	640																			27	250
	January-2023	ND						ND	2000					ND								500
	February-2023															ND						500
	March-2023							ND	ND													500
	April-2023							600		ND											340	500
	May-2023	520						800	1400												340	500
	June-2023								2900		2000		2900								680	1000
Propionic Acid																				ND	140	200
	July-2023	ND															ND				340	500
							3100												680		680	1000
	August-2023				1200		2000												1900	ND		500
	September-2023		1800														ND				340	500
	October-2023					1300											ND	2000			340	500
	November-2023	ND		2170		2310			2080			387					ND	3350		1420	250	500
			2580																		500	1000
																996						100
	December-2023																ND					250
			2280																			1000

We	II ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
Parameter	Monitoring Event							1			centration							1			LOD	LOQ
											46 J										12	100
	November-2022								98 J					ND							30	250
	December-2022	ND																			30	250
		ND		ND		ND			ND			ND					ND	ND		ND	250	500
Pyruvic Acid	November-2023		ND																		500	1000
																ND						1000
	December-2023																ND					250
			ND																			1000
VOLATILE ORGANIC	COMPOUNDS (ug/L	.)	1					1		1	1	1		1			1	1	1			
									3510					1140							30	100
	November-2022										15600										300	1000
		3140								3390											30	100
	December-2022		26800				27700		5670						21700	7150					300	1000
		3480						632													30	100
	January-2023								7840					5470							300	1000
	February-2023															14400					600	2000
	March-2023							257	2770												30	100
								3420		5530												
	April-2023																				750	2500
	May-2023	5360						5970													150	500
									13600												750	2500
	June-2023								13800												750	2500
											20100		22600								1500	5000
2 Putanana (MEK)		5860															ND				60	200
2-Butanone (MEK)	July-2023																			13500	750	2500
							38400												31600		3000	10000
																				5950	60	200
	August-2023																		7350		150	500
	/ .0 9001 2020						3000														750	2500
					25600																1500	5000
	September-2023																439				60	200
			17500																		750	2500
	October-2023																211				15	50
						17800												33400			1500	5000
																	78.8 J				30	100
						17700			10600												150	500
	November-2023																				300	1000
			25700																	21000	750	2500
	December 0002		12700	22300								17600						26700		31200	1500	5000
	December-2023		13700													7060	ND				150	500

W	/ell ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		100
Parameter	Monitoring Event									Con	centration	I									LOD	LOQ
														4420							70	100
	November-2022								16100		38300										700	1000
									15600	5170						9800					700	1000
	December-2022	8500																			1750	2500
			53100				49900								45600						3500	5000
								1530													70	100
	January-2023								22200					14000							700	1000
		8130																			1750	2500
	February-2023															23900					1400	2000
								375													70	100
	March-2023								6810												700	1000
	April-2023							8290		7560											1750	2500
		10700						11700													350	500
	May-2023 -								29600												1750	2500
									29600												1750	2500
	June-2023 -										61800		50800								3500	5000
Acetone																	1180				140	200
		9780																			700	1000
	July-2023 -																			11600	1750	2500
							77200												69700		7000	10000
																				20900	700	1000
	August-2023						18700														1750	2500
					72500														87700		3500	5000
	September-2023																188 J				140	200
			40100																		1750	2500
	October-2023																79				35	50
						66900												92900			3500	5000
																	104				70	100
	November-2023	5560																			700	1000
			64700																		1750	2500
				43100		61100			36800			32800						53900		67800	3500	5000
																ND					140	200
	December-2023																ND				350	500
			44300																		1750	2500

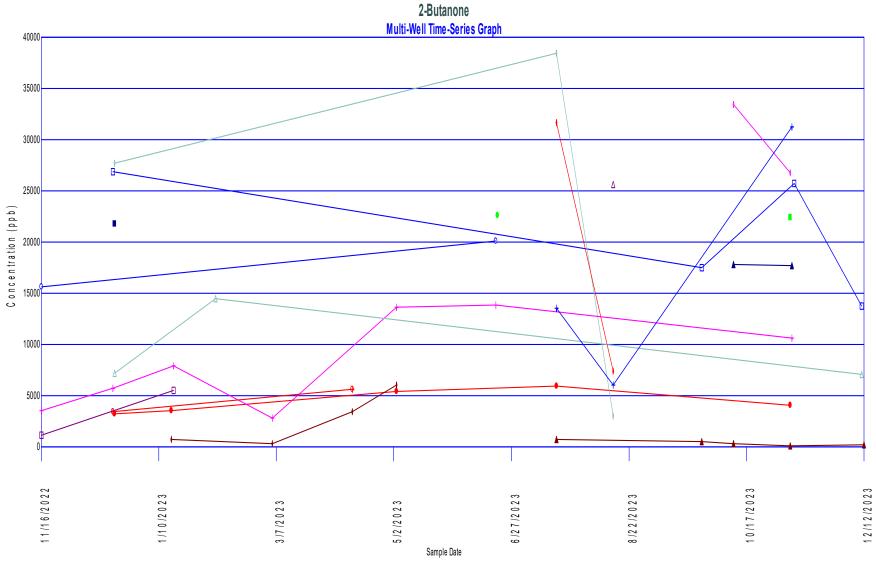
We	ell ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
Parameter	Monitoring Event									1	centration										LOD	LOQ
	November-2022								7.4 J		2860			50.4							4	10
		301	2960						6.3 J	622					1750	179					4	10
	December-2022						6550														40	100
	January-2023	240						28.7	1620					167							4	10
	February-2023															1370					4	10
	March-2023							1540	727												4	10
	April-2023							3740		320											4	10
	May-2023	814						4890	3370												20	50
	1vidy-2023								2630												8	20
	June-2023										1400		1590									
																					20	50
	huby 2022	824															80.8				8	20
Benzene	July-2023						4050												1420		20	50
																				11800	100	250
	August-2023				2320		168													379	8 20	20 50
																	193		ND		8	20
	September-2023		468																		100	250
																	399				2	5
	October-2023					576												3100			20	50
		80.8										31.3									2	5
	November-2023																323				4	10
	NOVEITIDEI-2023			1070		654			982									1960		1190	20	50
			870																		100	250
	December-2023															932					8	20
			1330														463				20	50
	December-2022	67.3	172				287		ND	48.5					108	27.4					4	10
	November-2022								ND		194			16.2							4	10
	January-2023	65.1						ND	93.9					20.8							4	10
	February-2023															151					4	10
	March-2023							131	71.5												4	10
	April-2023							186		43.4											4	10
	May-2023	124						276	144												20	50
	June-2023								104												8	20
	30110 2020										98		116								20	50
																				666	4	10
	July-2023	128															82				8	20
Ethylbenzene							224												87.5		20	50
	August-2023																			16.8 J	8	20
	A09031-2023				80		ND												ND		20	50
	September-2023																22.8				8	20
			ND																		100	250
	October-2023																34.8				2	5
						42.5 J												247			20	50
		26.3										45.4									2	5
	November-2023			62		 54			76.5								26.9	224		60.5	4 20	10 50
			ND						/0.5											6U.5 	100	250
																46					8	230
	December-2023		69.5														44 J				20	50
			67.5														44 J				20	5

We	ell ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98		
Parameter	Monitoring Event										centration										LOD	LOQ
									309					176							100	100
	November-2022										8530										1000	1000
		151							170	1120						663					100	100
	December-2022		5210				19800								6130						1000	1000
	January-2023	183						566	1810					352							1000	1000
	February-2023															3760					2000	2000
	March-2023							353	464		-			-							100	100
										4700												1
	April-2023							2410		4790											100	100
	May-2023	ND						2740	2380												500	500
	June-2023								2100												200	200
											7320		6670								500	500
																				2960	100	100
Tetrahydrofuran	July-2023	411															616				200	200
							8380												5310		500	500
	August-2023																			2880	200	200
	7 ke geor 2020				7370		3210												1200		500	500
	September-2023																343				200	200
			ND																		2500	2500
	October-2023					4070											606				50	50
		199				4870						205						9140			500	500 50
												325					358				50 100	100
	November-2023			4780		3320			785									5370		4600	500	500
			4620																		2500	2500
																4240					200	2000
	December-2023		2620														502				500	500
	November-2022								ND		214			32.8							5	10
	December-2022	122	175				195		ND	113					113	48.3					5	10
	January-2023	122						8 J	139					35.3							5	10
	February-2023															224					5	10
	March-2023							182	98.1												5	10
	April-2023							303		94.4											5	10
	May-2023	258						371	239												25	50
	1vidy-2023								165												10	20
	June-2023																					1
											67		212								25	50
	hub (0000																			965	5	10
Taluana	July-2023																107				10	20
Toluene							218												118		25	50
	August-2023																			36.6	10	20
	-				105		ND												ND		25	50
	September-2023		ND														40.6				10	20 250
																	 50 0				125	
	October-2023					 37 J											59.2 	235			2.5 25	5 50
		47.3										50.4									2.5	5
		47.3															48.7				5	10
	November-2023			62.5		51.5			114									167		114	25	50
			ND																		125	250
	December 0000															73.2					10	20
	December-2023		83.5														74.5				25	50

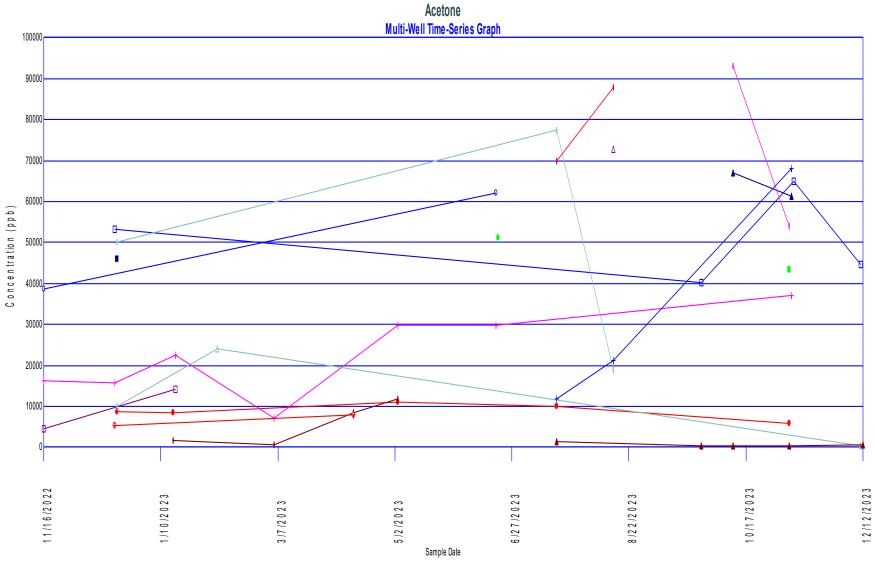
We	ell ID	EW-50	EW-52	EW-53	EW-54	EW-55	EW-57	EW-58	EW-59	EW-60	EW-61	EW-62	EW-64	EW-65	EW-67	EW-68	EW-78	EW-87	EW-94	EW-98	LOD	LOQ
Parameter	Monitoring Event									Con	centration										LOD	LOQ
	November-2022								ND		185			37.8							10	30
	December-2022	161	222				186		ND	112					197	59.9					10	30
	January-2023	138						ND	134					38.1							10	30
	February-2023															240					10	30
	March-2023							240	111												10	30
	April-2023							329		97.4											10	30
	May-2023	274						441	230												50	150
									177												20	60
	June-2023 -										92 J		136 J								50	150
																				1130	10	30
	July-2023	257															74.4				20	60
Xylenes, Total	, , , , , , , , , , , , , , , , , , , ,						230												174		50	150
																				48.4 J	20	60
	August-2023 -				180		ND												ND		50	150
	September-2023																ND				20	60
	September-2025		ND																		250	750
	October-2023																30.6				5	15
						134 J												328			50	150
		56										48									5	15
	November-2023																25.3 J				10	30
				116 J		104 J			132 J									306		138 J	50	150
			ND																		250	750
	December-2023															167					20	60
			224														ND				50	150

--- = not applicable/available

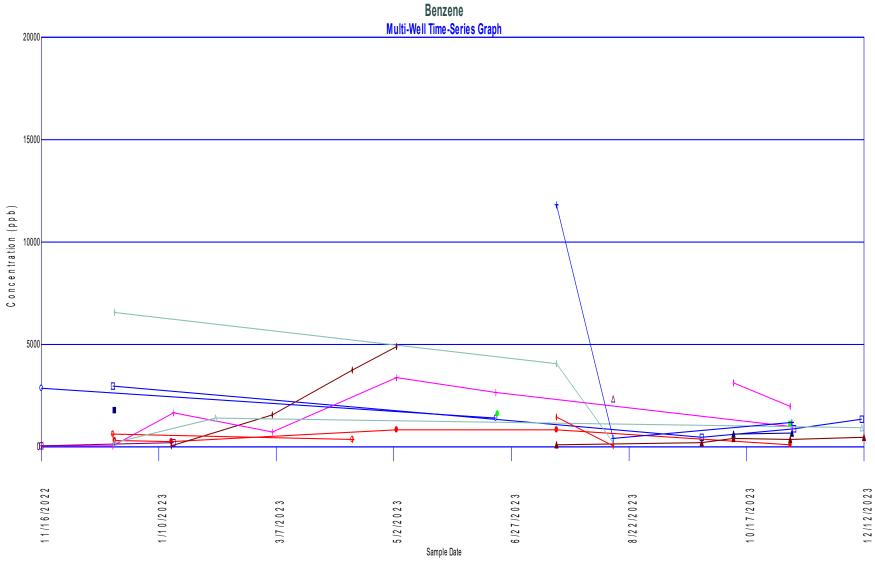
J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.

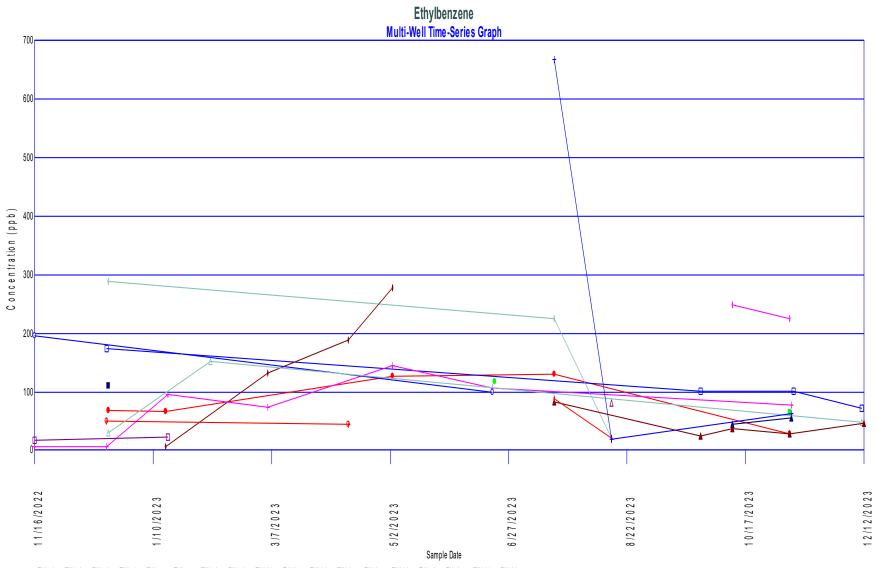

LOD = laboratory's Limit of Detection

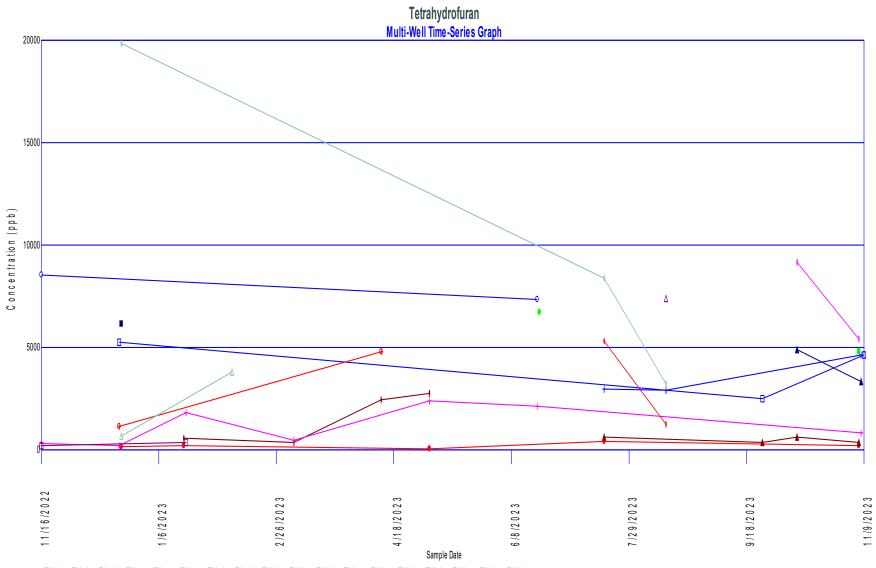
LOQ = laboratory's Limit of Quantitation


mg/L = milligrams per liter

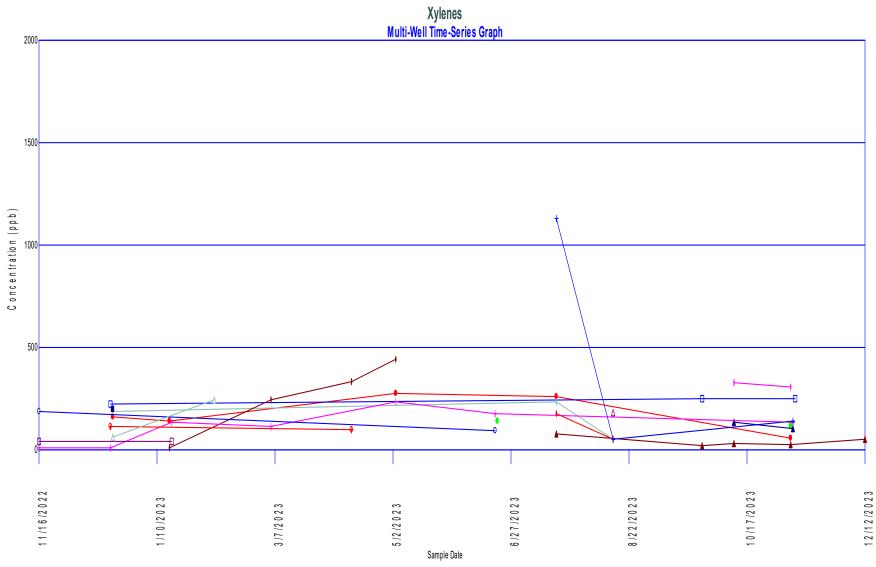
ND = Not Detected


ug/L = micrograms per liter


●EW-50 □EW-52 ■EW-53 △EW-54 ▲EW-55 ↓EW-57 ↓EW-58 +EW-59 ●EW-60 ○EW-61 ●EW-64 □EW-65 ■EW-67 △EW-68 ▲EW-78 ↓EW-87 ↓EW-94 +EW-98


●EW-50 □EW-52 ■EW-53 △EW-54 ▲EW-55 ↓EW-57 ↓EW-58 +EW-59 ●EW-60 ○EW-61 ●EW-64 □EW-65 ■EW-67 △EW-68 ▲EW-78 ↓EW-87 ↓EW-94 +EW-98

●EW-50 □EW-52 ■EW-53 △EW-54 ▲EW-55 (EW-57 |EW-58 +EW-59 ⊕EW-60 0EW-61 ●EW-64 □EW-65 ■EW-67 △EW-68 ▲EW-78 |EW-87 |EW-94 +EW-98


●EW-50 □EW-52 ■EW-53 △EW-54 ▲EW-55 ↓EW-57 ↓EW-58 +EW-59 €W-60 ○EW-61 ●EW-64 □EW-65 ■EW-67 △EW-68 ▲EW-78 ↓EW-87 ↓EW-94 +EW-98

●EW-50 □EW-52 ■EW-53 △EW-54 ▲EW-55 ↓EW-57 ↓EW-58 +EW-59 ●EW-60 ○EW-61 ●EW-64 □EW-65 ■EW-67 △EW-68 ▲EW-78 ↓EW-87 ↓EW-94 +EW-98

●EW-50 □EW-52 ■EW-53 △EW-54 ▲EW-55 ↓EW-57 ↓EW-58 +EW-59 ●EW-60 ○EW-61 ●EW-64 □EW-65 ■EW-67 △EW-68 ▲EW-78 ↓EW-87 ↓EW-94 +EW-98

●EW-50 □EW-52 ■EW-53 △EW-54 ▲EW-55 ↓EW-57 ↓EW-58 +EW-59 ●EW-60 ○EW-61 ●EW-64 □EW-65 ■EW-67 △EW-68 ▲EW-78 ↓EW-87 ↓EW-94 +EW-98