August 2023 Monthly Compliance Report

Solid Waste Permit No. 588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-30 | September 8, 2023 Revised September 12, 2023

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sect	Section Page						
	Intro	duction		4			
1.0	Gas	Collectio	on	4			
	1.1	Surfac	e and Leachate Collection Emissions	4			
		1.1.1	Surface Emissions	4			
		1.1.2	Leachate Collection Emissions	5			
	1.2	Existin	g Gas Extraction System Performance	7			
	1.3	Remot	e Monitoring System	7			
		1.3.1	Automated Wellhead Temperature Measurements	7			
		1.3.2	Comparison with Manual Temperature Measurements	8			
		1.3.3	Monthly Regulatory Wellhead Temperature Measurements	9			
		1.3.4	LFG Sampling				
	1.4	Large-	Diameter Dual-Phase Extraction Wells				
	1.5	VDEQ	Concurrence on Wells				
2.0	Side	wall Odd	or Mitigation				
	2.1	Perimeter Gas Collection System					
	2.2	Sidewa	all Odor Mitigation System				
	2.3	Pilot S	ystem Construction				
	2.4	Full Sy	stem Construction				
3.0	Wast	te Temp	erature Monitoring				
	3.1	Tempe	erature Monitoring System Design				
	3.2	Tempe	erature Monitoring System Installation				
4.0	Lead	hate Ex	traction and Monitoring				
	4.1	Existin	g System Optimization				
	4.2	Sampl	ing and Analysis Plan				
		4.2.1	Sample Collection				
		4.2.2	Quality Assurance and Quality Control				
		4.2.3	Data Validation				
		4.2.4	Laboratory Analytical Results				
5.0	Settl	ement M	Nonitoring and Management				
5.1 Settlement Monitoring and Management Plan							
	5.2	Month	ly Surveys				
		5.2.1	Topographic Data Collection				
		5.2.2	Settlement Plate Surveys				

Table of Contents

Sect	ion		Page
6.0	Inter	mediate Cover and EVOH Cover System	
	6.1	Intermediate Cover Installation	
	6.2	EVOH Cover System Design	
	6.3	EVOH Cover System Procurement	
	6.4	EVOH Cover System Installation	
7.0	Storn	nWater Management	
	7.1	Stormwater Management Plan Development	
	7.2	Stormwater Management Basin Design and Construction	
	7.3	Stormwater Management Plan Implementation	
	7.4	Long-Term Stormwater Control and Removal	
	7.5	Stormwater Monitoring	
8.0	Misc	ellaneous	
	8.1	Cease Waste Acceptance	
	8.2	Long-Term Plan	
	8.3	Monthly Compliance Reports	
	8.4	Community Outreach Program	

Figures

Figure 1.	Average Automated Wellhead Temperatures	8
Figure 2.	Extraction Well 95 Pump Installation at the SWP No. 588 Landfill	12
Figure 3.	Stormwater Accumulation at the SWP No. 588 Landfill	13
Figure 4.	SOMS Phase I As-Built	14
Figure 5.	Phase 2 SOMS Wellhead Connections	15
Figure 6.	Phase 2 Sidewall Odor Mitigation System Progress As-Built	16
Figure 7.	Phase 2 SOMS Lower and Upper Collector Construction	17
Figure 8.	Temperature Monitoring Probe Locations	18
Figure 9.	Average Temperatures within TP-1 During the Months of March through August	19
Figure 10.	Average Temperatures within TP-2 During the Months of March through August	20
Figure 11.	Average Temperatures within TP-3 During the Months of March through August	21
Figure 12.	Average Temperatures within TP-4 During the Months of March through August	22
Figure 13.	Average Temperatures within TP-5 During the Months of March through August	23
Figure 14.	Average Temperatures within TP-6 During the Months of March through August	24
Figure 15.	Average Temperatures within TP-7 During the Months of March through August	25
Figure 16.	Average Temperatures within TP-8 During the Months of March through August	26
Figure 17.	Average Temperatures within TP-9 During the Months of March through August	27
Figure 18.	Estimated Volume of Liquids Removed from Landfill Gas Wells	30
Figure 19.	1-Month Elevation Change Color Map	37

Table of Contents

Section		Page
Figure 20.	3-Month Elevation Change Color Map	38
Figure 21.	Settlement Plate Locations	40

Tables

Table 1.	Summary of August Surface Emissions Monitoring	5
Table 2.	Leachate Cleanout Pipe Monitoring Results	6
Table 3.	Automated vs. Manual Temperature Measurements	9
Table 4.	August Temperature Exceedance Summary	
Table 5.	LFG Wellhead Sampling Summary	
Table 6.	Sidewall HC Wellhead Gas Quality Measurements - System Averages	
Table 7.	Summary of Dual Extraction Well Pump Stroke Counter Data	
Table 8.	Summary of Dual Extraction Well Pump Liquids Removal	
Table 9.	Monthly LFG-EW Leachate Monitoring Event Summary	
Table 10.	Settlement Plate Locations	

Appendices

- Appendix A Surface Emissions Monitoring Summary Letters
- Appendix B In-Waste Temperatures on Select Days in August
- Appendix C Daily Wellhead Temperature Averages
- Appendix D Solid Waste Permit 588 Daily Borehole Temperature Averages
- Appendix E Monthly Topography Analysis
- Appendix F Sample Collection Log, Lab Reports, and Historical LFG-EW Leachate Monitoring Results Summary

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report provides updates regarding the progress towards completion of the items outlined in Appendix A of the Consent Decree between the City and VDEQ. The following sections outline progress during the month of August 2023 related to Solid Waste Permit (SWP) No. 588.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

1.1.1.1 Quarterly SEM

SCS performed the Third Quarter surface emissions monitoring event on August 23, 2023. The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint outside of the active filling area.

No exceedances were detected during this quarterly monitoring event on the serpentine route, but eight exceedances were detected at the surface cover pipe penetrations. This monitoring event also represented the weekly monitoring event for that week. A quarterly SEM report documenting corrective actions and remonitoring results will be submitted to the VDEQ as part of the Semi-Annual Report. In addition, monitoring results were presented to the VDEQ in a letter dated August 30, 2023.

1.1.1.2 Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, SCS performed additional surface emissions monitoring on August 4, 2023; August 11, 2023; August 17, 2023; August 23, 2023; and August 31, 2023. These Weekly Surface Emissions Monitoring (SEM) Events were performed in accordance item 1.i in Appendix A of the Consent Decree between the City and VDEQ.

The monitoring in August generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint.

SCS submitted letters to VDEQ outlining the results of the August monitoring events on August 9, 2023; August 16, 2023; August 23, 2023, August 30, 2023; and September 6, 2023. Copies of those submittals are included in Appendix A. Table 1 summarizes the results of the five monitoring events in August.

Description	August 4, 2023	August 11, 2023	August 17, 2023	August 23, 2023	August 31, 2023
Number of Points Sampled	169	170	171	171	171
Number of Points in Serpentine Route	100	100	100	100	100
Number of Points at Surface Cover Penetrations	69	70	71	71	71
Number of Exceedances	8	10	10	8	4
Number of Serpentine Exceedances	1	1	1	0	0
Number of Pipe Penetration Exceedances	7	9	9	8	4

 Table 1.
 Summary of August Surface Emissions Monitoring

There were no new serpentine exceedances detected in August 2023. One ongoing exceedance (Tag #69) that was first identified on July 21, 2023, was corrected. Corrective actions included addition and compaction of low-permeability soil and wellhead vacuum adjustments at nearby collectors.

Initial exceedances were detected at pipe penetrations of 17 vertical extraction wells. Exceedances were also detected at the pipe penetration of four additional vertical extraction wells that had been documented in the previous months. Exceedances at these locations can be attributed to a variety of factors. Ongoing construction activities and connection of a new temporary flare caused periods of vacuum loss as section of the GCCS were temporarily isolated. In addition, liquid blockages in sumps following heavy rainfall events reduced vacuum to these collectors. However, by the final weekly monitoring event of the month, the majority of these issues had been resolved with only four ongoing exceedances remaining (EW-52, EW-55, EW-74, and EW-90). Additional corrective actions at these locations may include additional soil, addition of a well-bore skirt addition, installation of a foam or bentonite seal, continued and improved dewatering activities, and well tuning to increase gas extraction. Corrective actions to address these exceedances are planned for the month of September 2023.

1.1.2 Leachate Collection Emissions

SCS Field Services (SCS-FS) visited the Bristol Landfill on August 16, 2023, and performed monitoring of the leachate, witness zone, and gradient control clean-outs at the northern and southern ends of the landfill. The results of that monitoring are included in Table 2. Table 2 also lists the cleanout pipe description based on site records and a review of correspondence.

Table 2.

Leachate Cleanout Pipe Monitoring Results

Description	ID#	CH₄ (% by Vol)	CO₂ (% by Vol)	O₂ (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H ₂ O)	Adj Static Pressure (in H ₂ O)	System Pressure (in H2O)
Southern Cleanouts Gradient West	LC01	51.6	44.89	0.14	3.37	87.8	87.9	-12.76	-12.34	-12.34
Southern Cleanouts Gradient East	LC02	52.06	44.97	0.12	2.85	88.6	88.6	-13	-12.55	-12.55
Southern Cleanouts Leachate Center	LC03	30.65	25.05	8.6	35.7	88.6	88.6	-13.52	-13.52	-13.52
Southern Cleanouts Witness East	LC04	23	15.17	10.35	51.48	88.4	88.4	-13.32	-13.52	-13.32
Southern Cleanouts Leachate West	LC05	53.4	42.58	0.03	3.99	88.5	88.5	-12.38	-12.17	-12.17
Southern Cleanouts Gradient Center West	LC06	47.02	40.94	1.19	10.85	88.4	88.5	-13.71	-13.86	-13.71
Southern Cleanouts Leachate East	LC08	51.84	43.01	0	5.15	88.2	88.2	-12.84	-12.67	-12.67
Southern Cleanouts Gradient Center East	LC09	32.37	20.05	8.81	38.77	86.2	86.4	-12.89	-12.89	-12.89
Southern Cleanouts Leachate West	LC10	27.75	19.24	9.67	43.34	86.8	87.2	-13.52	-13.52	-13.52
Northern Cleanouts Leachate East	NC01	7.78	6.54	19.88	65.8	88.9	89.1	-0.28	-0.29	-0.28
Northern Cleanouts Leachate Center	NC02	1.4	0.89	19.92	77.79	90.7	90.8	-11.51	-11.49	-11.49
Northern Cleanouts Leachate West	NC03	1.31	0.87	20.1	77.72	89.7	90	-11.51	-11.22	-11.22
Northern Cleanouts Witness East	NC04	1.34	0.77	19.99	77.9	91.6	91.5	-11.3	-11.49	-11.3
Northern Cleanouts Witness Center	NC05	0.5	0.54	20.55	78.41	91	90.7	-11.36	-11.34	-11.34
Northern Cleanouts Witness West	NC06	0.01	0.05	20.67	79.27	88.8	88.8	-11.15	-11.15	-11.15
Northern Cleanouts Gradient East	NC07	0	0.03	20.69	79.28	87.4	87.3	-11.15	-11.17	-11.15
Northern Cleanouts Gradient Center East	NC08	41.39	21.3	1.11	36.2	86.1	86	-11.49	-11.49	-11.49
Northern Cleanouts Gradient Center West	NC09	39.86	21.63	3.79	34.72	87.1	87.2	-11.15	-11.2	-11.15
Northern Cleanouts Gradient West	NC10	41.66	21.73	0.86	35.75	88.5	88.7	-11.17	-11.15	-11.15

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in the following sections of this report. Additional actions taken by SCS-FS include the following:

- Cleaning header lines
- Operating stormwater de-watering pumps
- Replacing sample ports on extraction wells
- Replacing a Kanaflex on EW-53 and EW-57
- Modifications to lateral piping

1.3 REMOTE MONITORING SYSTEM

In the Fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas wellheads. The purpose of the sensors is to record and transmit well-head gas temperatures via a cellular connection to a database managed by SCS-RMC.

The City is providing average temperatures recorded by the sensors to VDEQ on a daily basis via email. Average daily temperatures recorded by the remote monitoring system during the month of August are included in Appendix C. In addition, SCS previously prepared semi-monthly status updates to satisfy the conditions of compliance provision #2 of the Environmental Protection Agency (EPA) Region III letter, *Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility*, dated August 23, 2021. On August 2, 2023, VDEQ requested that such updates be included in the monthly compliance reports going forward. Accordingly, this section is a summary of temperature monitoring activities during the monthly monitoring period of August 2023.

1.3.1 Automated Wellhead Temperature Measurements

During this monitoring period, EW-79 received an automated temperature sensor and recorded readings throughout the month.

SCS reviewed the automated hourly temperature measurements from August 2023, and identified the following trends:

• Temperatures over 145°F: Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded consistently at EW-52, EW-53, EW-57, and EW-67 in August. Although temperatures fluctuate throughout the wellfield, SCS is continuing to see high temperatures at certain wells during these monitoring periods. The highest average temperatures were measured at EW-53 and EW-67(see Exhibit 1). SCS believes that the increase in temperatures at select well heads suggests that, with the increase of pneumatic pump operations and increased liquids removal, the collection system is being more effectively dewatered. Removal of liquids from the well allows gas from deeper within the waste mass to be extracted. In some cases gas collected from lower elevations is hotter than gas from higher elevations and this temperature difference is reflected in the temperatures measured

by the sensors. Liquids removal in combination with the addition of new LFG collection infrastructure from the recent GCCS expansion is likely providing more pathways for extraction of the warmer landfill gas from deeper in the waste mass; thus the increased average temperatures.

- Low temperatures at certain wells: Average temperatures were significantly lower at EW-32R, 34, and 35 relative to other wellheads. These wellheads also exhibited low LFG flow rates (less than 7 scfm), as measured during monthly and weekly wellfield monitoring events. These low temperatures are likely close to ambient because little to no LFG is passing through the wellhead where the sensors are placed. At other wells, such as EW-47 and EW-60, average temperatures appeared more likely to be erroneous than a reflection of low LFG flow/ambient temperature (see Figure 1).
- **Erroneous Readings:** Temperature readings of zero were measured sporadically throughout the monitoring period at EW-47, EW-53, EW-57, EW-59, EW-60, and EW-67. Field staff have identified the cause as battery die-out in the sensors and are working to the batteries.

Figure 1. Average Automated Wellhead Temperatures

1.3.2 Comparison with Manual Temperature Measurements

Per the approval issued by VDEQ on August 2, 2023, the Facility ceased dedicated daily manual temperature measurements in the Permit No. 588 Landfill. In lieu of this comparison, the City has agreed to compare instantaneous hourly automated temperature measurements with temperatures measured at each wellhead with a handheld sensor during monthly compliance monitoring. The August comparisons are listed in Table 3.

Point Name	Record Date	Field Measurement (°F)	Automated Measurement (°F)	Comparison
32R	8/1/2023 10:48	113.30	111.95	1%
34	8/14/2023 10:02	75.20	74.35	1%
35	8/15/2023 11:20	78.80	81.21	-3%
40	8/16/2023 13:57	79.00	81.66	-3%
47	8/16/2023 14:06	83.20	89.00	-7%
49	8/5/2023 10:14	147.00	145.14	1%
50	8/14/2023 09:41	116.90	114.38	2%
51	8/5/2023 09:42	86.20	83.22	3%
52	8/5/2023 09:16	145.90	142.89	2%
53	8/5/2023 09:25	144.70	140.90	3%
54	8/5/2023 09:39	80.30	85.22	-6%
55	8/5/2023 09:47	102.60	101.46	1%
56	8/16/2023 13:15	123.30	124.05	-1%
57	8/16/2023 13:27	149.50	NM	
58	8/16/2023 13:32	153.20	107.90	30%
59	8/16/2023 13:23	118.10	117.20	1%
60	8/15/2023 10:58	125.50	NM	
62	8/14/2023 11:04	124.20	119.70	4%
63	8/1/2023 10:18	131.80	130.94	1%
64	8/1/2023 10:12	145.60	132.84	9%
65	8/1/2023 10:03	110.10	105.46	4%
66	8/16/2023 14:32	129.20	124.56	4%
67	8/16/2023 14:02	158.70	155.53	2%
68	8/15/2023 11:34	133.00	132.46	0%
79	8/1/2023 11:06	91.00	131.31	-44%

 Table 3.
 Automated vs. Manual Temperature Measurements

At 21 of the 25 wells where an automated temperature sensor is installed, the temperature value was within eight percent of the temperature value recorded manually by field personnel. In the case of two wells (EW-57 and EW-60) erroneous values of zero were recorded throughout the month, likely as a result of battery die-out as documented above. At the two other locations (EW-58 and EW-79) the temperature sensor is not within the eight percent range demonstrated by the other sensors. These sensors have been identified for further investigation.

1.3.3 Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted August 1, 2023, with follow-up monitoring several days after. Additionally, SCS typically measures wellhead temperatures at the SWP No. 588 Landfill on a weekly basis. During this monitoring period, temperature exceedances were resolved at EW-31R, EW-49, EW-52, EW-61, and EW-86. A HOV request was submitted for EW-53, EW-61, EW-84, EW-86, EW-89, EW-90, and EW-100

to VDEQ on August 8, 2023. See Table 4 for the statuses of all exceedances recorded during this monitoring period.

Well ID	Initial Exceedance	Last date/temperature	Duration of	Status as of 7/31/23
EW 24 D		measured 8/17/23		Resolved, within 60-day
EW-31R	8/1/23	132.9°	16 days	timeline
EW-31R	8/29/23	8/31/23 132.5°	3 days	Resolved, within 15-day timeline
EW-49	8/5/23	8/14/23 144.0°	9 days	Resolved, within 15-day timeline
EW-51	8/7/23	8/9/23 99.1°	2 days	Resolved, within 15-day timeline
EW-51	8/28/23	8/31/23 193.2°	3 days	Ongoing, within 15-day timeline
EW-52	6/19/23	8/9/23 144.3°F	51 days	Resolved, within 60-day timeline
EW-52	8/15/23	8/31/23 145.1°F	16 days	Ongoing, within 60-day timeline
EW-53	6/5/23	8/5/23 144.7°F	61 days	Resolved, within 120-day timeline
EW-53	8/7/23	8/16/23 117.1°F	9 days	Resolved, within 120-day timeline
EW-53	8/28/23	8/31/23 179.9°F	3 days	Ongoing, within 15-day timeline
EW-61	6/27/23	8/29/23 140.0°F	63 days	Resolved, within 120-day timeline
EW-64	7/28/23	8/24/23 129.8°	27 days	Ongoing, within 60-day timeline
EW-64	8/24/23	8/31/23 150.1°	7 days	Ongoing, within 15-day timeline
EW-84	4/27/23	8/31/23 158.2°F	126 days	Ongoing, HOV request submitted 8/8/23
EW-86	8/5/23	8/15/23 140.6°F	10 days	Resolved, within 15-day timeline
EW-88	8/28/23	8/31/23 164.4°F	3 days	Ongoing, within 15-day timeline
EW-89	5/30/23	8/31/23 162.2°F	93 days	Ongoing, within 120-day timeline
EW-90	7/24/23	8/9/23 114.8°F	16 days	Resolved, within 60-day timeline
EW-90	8/28/23	8/31/23 159.5°F	3 days	Ongoing, within 15-day timeline
EW-97	8/28/23	8/31/23 145.7°	3 days	Ongoing, within 15-day timeline
EW-99	7/31/23	8/9/23 140.7°	10 days	Resolved, within 15-day timeline
EW-99	8/16/23	8/31/23 145.6°	15 days	Ongoing, within 60-day timeline
EW-100	4/27/23	8/31/23 160.2°	126 days	Ongoing, HOV request submitted 8/8/23

 Table 4.
 August Temperature Exceedance Summary

1.3.4 LFG Sampling

SCS collected LFG samples from wells with temperature exceedances lasting more than 7 days using 1.5-L Summa canisters on August 5, 2023; August 11, 2023; and August 17, 2023 to fulfill the requirement in 40 CFR 63.1961(a)(5). The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H₂) content. Lab results are summarized in Table 5.

Sample Da	ite	8/5/23	8/11/23	8/17/23
045	CO (ppmv)	414	420	
31R	H2 (Vol. %)	8.27	9.99	
49	CO (ppmv)	ND	96.8	
	H2 (Vol. %)	1.69	2.77	
50	CO (ppmv)	ND		ND
52	H2 (Vol. %)	3.89		2.50
50	CO (ppmv)		1160	
55	H2 (Vol. %)		15.8	
БQ	CO (ppmv)			335
58	H2 (Vol. %)			5.96
61	CO (ppmv)	202	187	308
0T	H2 (Vol. %)	6.77	8.29	13.8
<u> </u>	CO (ppmv)	ND	ND	ND
04	H2 (Vol. %)	0.76	2.10	5.72
01	CO (ppmv)	387	382	385
04	H2 (Vol. %)	8.51	9.98	10.4
96	CO (ppmv)	148	198	
00	H2 (Vol. %)	2.79	4.94	
20	CO (ppmv)	1080	1050	1160
09	H2 (Vol. %)	29.4	38.2	42.2
90	CO (ppmv)	334		
30	H2 (Vol. %)	5.79		
00	CO (ppmv)	ND		ND
39	H2 (Vol. %)	0.83		0.97
100	CO (ppmv)	ND	95.2	ND
100	H2 (Vol. %)	5.99	7.22	8.70

 Table 5.
 LFG Wellhead Sampling Summary

The presence of hydrogen in all the samples collected during this monitoring period indicates that combustion reactions are unlikely. A result of non-detect for three weeks in a row at EW-64 indicate that sampling may continue on a monthly basis for the remaining duration of the temperature exceedance.

1.4 LARGE-DIAMETER DUAL-PHASE EXTRACTION WELLS

SCS completed design work on an expansion of the existing GCCS during the month of December 2022. The proposed expansion includes at least 5 large diameter dual-phase extraction wells. SCS submitted the design to VDEQ prior to December 31, 2022. The City commenced solicitation of contractor's bids for this project by advertising for bids and received one bid for the project from SCS Field Services Construction (SCS-CONS). On January 26, 2023, the City awarded the project to SCS-CONS.

During the month of August, work on the expansion of the GCCS focused on the installation of 12" and 8" LFG lateral piping, wellhead risers and header connections to the existing system. the first half of August, pumps were installed at 4 of the newly installed wells (EW-69, EW-90, EW-99, and EW-100). The first five pumps were installed in June 2023, satisfying item 1.iv of Appendix A of the Consent Decree between the Department and the City. The City and SCS-CONS have received the delivery of additional pumps and continue to install them accordingly, which has increased the number of operating dual extraction wells beyond the required minimum. SCS-CONS has received the delivery of additional stainless steel supplemental tubing materials necessary for installation. The expanded GCCS and its newly connected wells and pumps continue to increase gas and liquids extraction for the landfill. A photo of well 95 after the new pump was installed is shown in Figure 2.

Figure 2. Extraction Well 95 Pump Installation at the SWP No. 588 Landfill

SCS-CONS installed a new stormwater sump and silt fence in the southeastern section of the quarry. This sump is intended to assist the existing sump and aid the liquids management of heavy rainfall events that have occurred, and continue to occur, on this site.

Figure 3. Stormwater Accumulation at the SWP No. 588 Landfill

1.5 VDEQ CONCURRENCE ON WELLS

As described in previous monthly compliance reports, the City engaged with VDEQ in discussions about the proposed approach for landfill GCCS improvements and expansions. Upon completion of the landfill gas collection system, SCS will submit updated as-built drawings depicting the completed system to VDEQ. The City intends to delay installation of interim or final cover systems until the City and VDEQ agree that the GCCS is sufficient.

2.0 SIDEWALL ODOR MITIGATION

The City has designed and is constructing a system to control fugitive emissions emanating from the quarry sidewalls. Specific aspects of the proposed design features are described in the following sections.

2.1 PERIMETER GAS COLLECTION SYSTEM

SCS's design of the GCCS expansion described in Section 1.4 included perimeter LFG wells. These wells are closer to the sidewall to intercept landfill gas that potentially could migrate to the quarry wall. These wells will supplement the sidewall odor mitigation system described in Section 2.2. The City completed bidding and contracting of construction for the perimeter LFG wells as part of the large diameter dual extraction well installation described in Section 1.4.

As described in the April 2023 Monthly Compliance Report for the SWP No. 588 Landfill, construction of the perimeter gas collection system was completed. SCS submitted a letter to VDEQ documenting completion of the Perimeter Gas Collection System on May 1, 2023.

2.2 SIDEWALL ODOR MITIGATION SYSTEM

On behalf of the City and in an effort to capture emissions from the quarry sidewall, SCS designed a sidewall odor mitigation system (SOMS) during the month of October 2022. On October 20, 2022 SCS provided an overview of the proposed system to VDEQ staff. The design of this system was prepared and submitted to VDEQ on November 1, 2022. A project manual detailing the specifications of the system was developed concurrently with the design of the system.

2.3 PILOT SYSTEM CONSTRUCTION

SCS-CONS completed substantial construction of Phase 1 of the SOMS during the month of February 2023, SCS-FS began monitoring Phase 1 connected Horizontal Collector (HC) wellheads during the month of March, and SCS-FS continued weekly wellhead monitoring into the month of May 2023. Phase 1 is considered the pilot system portion of the SOMS. SCS submitted a design engineer certification to VDEQ on February 10, 2023 that documented the substantial completion of Phase 1 of the SOMS. Details of Phase 1 construction progress and monitoring can be found in the monthly compliance reports for the SWP No. 588 landfill.

Figure 4 shows the Phase 1 as-built, which includes the locations of the HC wellheads and HC sumps installed in Phase I, as well as the 4" header connection to the existing LFGCCS. The lower collector installed as part of Phase II was tied-in to the north end of the Phase I lower collector, and the upper collector installed as part of Phase II was tied-in to the south end of the Phase I upper collector.

Both the upper and lower collectors of Phase 1 of the system have been connected to the substantially completed Phase 2 of the system. Collection of landfill gas by both the upper and lower collectors indicates that the system is working as intended. Based on this data, Phase 2 was constructed utilizing the same general configuration.

¹ Location data was collected using mapping grape global positioning system equipment.

2.4 FULL SYSTEM CONSTRUCTION

SCS-CONS substantially completed construction of Phase 2 of the SOMS during the month of June 2023 as Phase 2 was connected to vacuum as of June 14, 2023. Cover soil placement continued throughout the month of August and will continue into September. Figure 5 shows SOMS Phase 2 wellhead installation and connections at HC wells SW-17U and SW-17L.

Figure 5. Phase 2 SOMS Wellhead Connections

During the month of August 2023, SCS-FS collected monitoring data at each wellhead under vacuum. A summary of those measurements is shown in Table 6.

Record Date	Average CH4 [%]	Average CO2 [%]	Average O2 [%]	Average Bal Gas [%]
8/(1-2)/2023	10.5	15.1	13.1	61.3
8/15/2023	7.8	11.0	14.9	66.4
8/30/2023	9.3	14.7	14.0	62.0

 Table 6.
 Sidewall HC Wellhead Gas Quality Measurements – System Averages

The sidewall system averages indicate lower methane content than typical landfill gas collection systems. The gas quality measurement do indicate that the SOMS is functioning as designed because landfill gas is being withdrawn and oxygen intrusion is acceptable. The wide-ranged gas composition may indicate that some areas of the landfill may be experiencing higher landfill gas concentrations than areas where methane content is seemingly insignificant. SCS-FS will adjust SOMS wellheads based on gas quality to increase flow from sections of the system with high methane content and reduce flow from sections of the system with low methane content. Phase 2

lower and upper collectors locations, including HC wellhead riser and sump locations, are shown in the as-built depicted as Figure 6².

During the month of August, heavy rain events caused water to pool on the landfill surface and limited the effectiveness of some portions of the gas collection system. The decrease in methane concentrations can be to some extent attributed to the decrease in landfill gas extraction within areas experiencing high volumes of liquids. SCS-CONS deployed additional dewatering pumps to address stormwater within the landfill. Dewatering efforts will continue into September in order to mitigate this issue and optimize the system's fugitive gas collection.

Figure 6. Phase 2 Sidewall Odor Mitigation System Progress As-Built³

² During construction, redundant risers were put in place to accommodate supplemental wellhead installation in the future. Figure 5 shows all riser locations. The final submittal to VDEQ, Revised June 26, 2023, shows the locations of actual wellhead installation.

³ Location data was collected using mapping grape global positioning system equipment.

At this time, not every SOMS horizontal collector riser has a wellhead installed, but HC risers may receive a wellhead at a future date as warranted by field conditions. Clay and soil placement atop of the installed liner in the southeastern area of the landfill shown in Figure 7.

Figure 7. Phase 2 SOMS Lower and Upper Collector Construction

3.0 WASTE TEMPERATURE MONITORING

On behalf of the City, SCS designed a temperature monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

3.1 TEMPERATURE MONITORING SYSTEM DESIGN

The temperature monitoring system consists of 9 boreholes drilled into the waste mass. A steel casing was placed in each borehole and the hole was backfilled around the casing with aggregate. A series of temperature sensors was placed inside the steel casing. At the top of each borehole, an IIoT transmitter collects the data from the sensors and transmits it to a cloud-based RMC system. The City submitted design of the temperature monitoring system to VDEQ on November 30, 2022.

3.2 TEMPERATURE MONITORING SYSTEM INSTALLATION

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP No. 588 Landfill. The locations of the temperature probes are shown in Figure 8.

Figure 8. Temperature Monitoring Probe Locations

SCS began collecting temperature data daily on February 15, 2023. The temperature sensors continued to transmit temperature data from all 9 casings during the month of July. Average daily temperatures recorded by the sensors for the Month of August are included in Appendix D. Each week the average temperatures from a select day of that week are downloaded and compared to temperatures recorded during the previous week. Average daily temperatures recorded on select days during the month of August are shown in Appendix B. The average temperatures recorded during the months of March through August are shown in Figures 9 through 17 on the following pages.

Figure 9 shows daily average temperatures in Temperature Probe 1 (TP-1) during the months of March through August. Based on the data, temperatures were consistent from March through May and saw increases during the months of June, July and August at depths or 100 feet and below.

TP-1 was originally drilled to a depth of 180 feet, but the contractor was unable to install the casing beyond a depth of 160 feet. TP-1 did not record temperatures between July 23, 2023 and July 30, 2023 due to a dead battery. The battery was replaced and TP-1 began recording temperatures again on July 31, 2023.

Figure 10 shows daily average temperatures in Temperature Probe 2 (TP-2) during the months of March through August. Based on the data, temperatures have been consistent during the last six months.

TP-2 was originally drilled to a depth of 160 feet. TP-2 did not record temperatures after August 15, 2023 due to a dead battery. A replacement battery has been ordered and is scheduled to be installed in September of 2023.

Figure 11 shows daily average temperatures in Temperature Probe 3 (TP-3) during the months of March through August. Based on the data, temperatures have been consistent during the last six months.

Figure 12 shows daily average temperatures in Temperature Probe 4 (TP-4) during the months of March through August. Based on the data, temperatures appeared to drop during the months of April and May, but returned to levels closer to baseline during the months of June, July and August.

Figure 13 shows daily average temperatures in Temperature Probe 5 (TP-5) during the months of March through August. Based on the data, temperatures have been consistent during the last six months.

Figure 14 shows daily average temperatures in Temperature Probe 6 (TP-6) during the months of March through August. Based on the data, temperatures have been generally consistent during the last six months. A decrease at the 25-foot level was observed during the month of June. Temperatures returned to baseline during the months of July and August. TP-6 was originally drilled to a depth of 208 feet and casing was installed to the full depth. During the installation of the installation of replacement sensors, a blockage within the casing prevented placement of sensors below the 125-foot depth.

Figure 15 shows daily average temperatures in Temperature Probe 7 (TP-7) during the months of March through August. Based on the data, temperatures have been consistent during the last six months with a general downward trend. TP-7 did not record temperatures after August 12, 2023 due to a dead battery. A replacement battery has been ordered and is scheduled to be installed in September of 2023.

Figure 16 shows daily average temperatures in Temperature Probe 8 (TP-8) during the months of March through August. Based on the data, temperatures have increased during the last six months.

Figure 17 shows daily average temperatures in Temperature Probe 9 (TP-9) during the months of March through August. Based on the data, temperatures have been consistent during the last six months.

TP-9 did not record temperatures after August 18, 2023 due to a dead battery. A replacement battery has been ordered and is scheduled to be installed in September of 2023.

The data indicates that temperatures within the landfill are generally stable and are typical of those observe at elevated temperature landfills (ETLFs). During the months of May through August, there has been substantial construction at the landfill including deep dual extraction wells they may have impacted temperatures within the waste mass. While quantifying the effect of the construction of addition wells is difficult, changes in wellhead temperature have been observed in existing wells

adjacent to newly installed wells. The temperatures recorded are substantially lower than those associated with landfill fires or other combustion processes, which can exceed 1000°F. This further indicates that the elevated temperatures are due to sources other than combustion.

4.0 LEACHATE EXTRACTION AND MONITORING

The City has begun taking steps to improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals.

4.1 EXISTING SYSTEM OPTIMIZATION

During weekly gas extraction well monitoring, SCS also collected stroke counter data from the pumps installed in the GCCS extraction wells. Stroke counts were collected from 29 wells on August 1, 2023; August 8, 2023; August 14, 2023; August 21, 2023; and August 31, 2023. The data collected is summarized in Table 7. Cells marked with "*" represent dates when the pump was removed from the well for maintenance or had not yet been installed.

Well	August 1, 2023	August 8, 2023	August 14, 2023	August 21, 2023	August 31, 2023
EW33B					
EW49	737993	761775	770812	777824	777837
EW50	1117888	1135751	1147061	1153480	1193962
EW51	95851	102418	102427	106003	121020
EW52	179107	188325	190952	194313	194700
EW53	2267602	2276068	2295294	2296783	2324772
EW54	537366	549351	553429	577316	584330
EW55	225829	233428	235337	444094	444240
EW57	636359	664162	664450	664508	669677
EW58	2157427	2157427	2316487	2350255	2437320
EW59	2398645	2398726	2398790	2398820	2400181
EW60	343872	359789	409370	462096	484790
EW61	241775	242265	242918	243691	244061
EW62	168288	168288	177544	181389	186410
EW64	152343	153085	155787	162209	174249
EW65	*	*	*	*	*
EW67	731490	758504	772584	845870	957147
EW68	2188254	2203868	2214150	2215523	2215809
EW70	13	13	13	13	13
EW72	27	27	27	27	27
EW73	15	15	15	15	15
EW74	16	16	16	16	16

T = - - 7	C				- D - + -
Table 7.	summary of	Dual Extraction	weii Pump	o stroke Counte	er Data

Well	August 1, 2023	August 8, 2023	August 14, 2023	August 21, 2023	August 31, 2023
EW75	9	9	9	9	9
EW76	13	13	13	13	13
EW78	10843	15997	16506	18506	27509
EW88	132073	132077	132085	132093	158781
EW94	656308	658526	751199	817504	827545
EW98	622400	690507	775325	817504	965879

Based on this data and stroke counts taken on August 31, 2023, SCS can estimate the number of gallons of liquid pumped from each well. SCS assumed that each stroke correlates to approximately 0.3 gallons of liquid removed from the well. This data will then be used to repair or replace pumps or replace nonfunctional stroke counters. Estimates of the quantities of liquids removed between the reading dates are shown in Table 8.

Table 8.Summary of Dual Extraction Well Pump Liquids Removal

Well	Liquids Removed (gal) July 26, 2023 to August 1, 2023	Liquids Removed (gal) August 1, 2023 to August 8, 2023	Liquids Removed (gal) August 8, 2023 to August 14, 2023	Liquids Removed (gal) August 14, 2023 to August 21, 2023	Liquids Removed (gal) August 21, 2023 to August 31, 2023
EW33B	0	0	0	0	
EW49	3649.8	7134.6	2711.1	2107.5	3.9
EW50	5316.6	5358.9	3393	14070.3	12144.6
EW51	315.3	1970.1	2.7	5577.9	4505.1
EW52	1069.5	2765.4	788.1	1124.4	116.1
EW53	598.5	2539.8	5767.8	8843.4	8396.7
EW54	307.2	3595.5	1223.4	9270.3	2104.2
EW55	608.1	2279.7	572.7	62670.9	43.8
EW57	9.6	8340.9	86.4	1568.1	1550.7
EW58	0	0	47718	36249.9	26119.5
EW59	8.4	24.3	19.2	417.3	408.3
EW60	352.5	4775.1	14874.3	22626	6808.2
EW61	68.1	147	195.9	342.9	111
EW62	0	0	2776.8	2659.8	1506.3
EW64	2059.2	222.6	810.6	5538.6	3612
EW65	0	0	0	0	0
EW67	7.5	8104.2	4224	55368.9	33383.1
EW68	2713.5	4684.2	3084.6	497.7	85.8
EW70	0	0	0	0	0
EW72	0	0	0	0	0
EW73	0	0	0	0	0

Well	Liquids Removed (gal) July 26, 2023 to August 1, 2023	Liquids Removed (gal) August 1, 2023 to August 8, 2023	Liquids Removed (gal) August 8, 2023 to August 14, 2023	Liquids Removed (gal) August 14, 2023 to August 21, 2023	Liquids Removed (gal) August 21, 2023 to August 31, 2023
EW74	0	0	0	0	0
EW75	0	0	0	0	0
EW76	0	0	0	0	0
EW78	982.2	1546.2	152.7	3300.9	2700.9
EW88	1.2	1.2	2.4	8008.8	8006.4
EW94	1443	665.4	27801.9	22903.8	3012.3
EW98	33018.9	20432.1	25445.4	57166.2	44512.5
EW100	*	*	*	4007.7	4003.8

SCS estimates that approximately 593,000 gallons of liquids were removed from the landfill gas collection and control system during the month of August. Although there is a decrease from July, the liquids removed represents a continued trend of high volumes of liquid removed for 2023. SCS-FS continues to implement an aggressive maintenance schedule for landfill gas liquids removal pumps. EW-98 removed the largest amount of liquids at 136,000 gallons for August. EW-58 and EW-67 together removed 151,000 gallons. The change in landfill gas liquids removal over the last three months is depicted in Figure 18.

Figure 18. Estimated Volume of Liquids Removed from Landfill Gas Wells

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations. Pumps require servicing after relatively short intervals. During the month of August 2023, pump maintenance occurred on August 3, 2023; August

10, 2023; August 15, 2023; August 22, 2023; and August 29, 2023. Additionally, minor pump modifications and repairs were made throughout the month to extend pump runtimes before failure.

Pumps that were determined to be inoperative were removed from their respective extraction wells and replaced with a clean, functioning pump. In August, CPS-2, EW-51, EW-52, EW-53, EW-55, EW-67, EW-94, had their pumps removed and replaced. The pump tri-tubing for EW-51, EW-53, EW-55 and EW-67 was found to be compromised and was repaired while those pumps were being maintained. The forcemain HDPE transition fittings were also repaired at EW-54 and EW-55.

Two additional dewatering pumps were installed during the month of August. These installs occurred at EW-85 and EW-100. The two installs were PumpOne pneumatic pumps or equivalent, internal float-style pneumatic pumps. These new pump's performance and liquid removal will be tracked accordingly going forward.

EW-65 was disconnected from the airline used to power the pump for the month of August 2023 due to continued infrastructure relocation associated with the sidewall odor mitigation system and landfill GCCS expansion construction projects.

During the construction of the LFGCCS expansion outlined in Sections 1.4 and 2.1, multiple types of leachate extraction pumps will be installed. After installation, the City and SCS will evaluate the performance of those pumps. Based on that evaluation, the City will select the pump type that is most effective given the landfill conditions. SCS has developed a priority list for installations based on liquid levels that were collected during May 2023 and are continuing to install additional pumps based off this list where applicable.

4.2 SAMPLING AND ANALYSIS PLAN

On November 1, 2022, SCS submitted to VDEQ the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan for the Bristol Integrated Solid Waste Management Facility Solid Waste Permit No. 588 Landfill and the plan was subsequently revised on December 1, 2022. Refer to the November 2022 and December 2022 Compliance Reports for the SWP No. 588 Landfill for additional information.

4.2.1 Sample Collection

On August 15, 2023, SCS collected leachate samples from four Dual Phase LFG-EWs (EW-54, EW-57, EW-94, and EW-98). At the time of sample collection dissolved oxygen, oxidation-reduction potential, pH, specific conductance, temperature, and turbidity were measured and recorded. The sample collection log is included in **Appendix F**.

SCS' field staff was not able to collect samples from the following wells for the following reasons:

- Pumps were not running at the time of sample collection for the following wells: EW-33B, EW-49, EW-50, EW-52, EW-53, EW-55, EW-57, EW-59, EW-60, EW-62, EW-64, EW-65, EW-67, EW-68, EW-70, EW-72, EW-73, EW-74, EW-75, EW-76, and EW-78.
- The air hose was disconnected from EW-51.
- Pump was disconnected for EW-56.
- No sample port for EW-58

- There is no sample port and pumps were not running at the time of sample collection for the following wells: EW-61, EW-71, EW-84, EW-88, and EW-95
- No pump was installed in well EW-36A, EW-63, EW-69, EW-77, EW-79 EW-83, EW-86, EW-87, EW-89 EW-93, EW-96, EW-97, EW-99, and EW-100.

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia and Weck Laboratories, Inc (Weck) in City of Industry, California for analysis. The Enthalpy's Virginia Division of Consolidated Laboratory Services (VELAP) certifications are provided on the certificate of analysis (COA) included in **Appendix F**. The samples were analyzed for the parameters utilizing the analytical methods described in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan.

4.2.2 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for volatile organic compound (VOC) analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analyses. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A summary of each of these is presented below:

- Method Blank The method blank is deionized water subjected to the same reagents and manipulations to which site samples are subjected. Positive results in the method blanks may indicate either contamination of the chemical reagents or the glassware and implements used to store or prepare the sample and resulting solutions.
- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis. MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.
- LCS These samples consist of distilled/deionized water injected with the parameters of interest for single parameter methods and selected parameters for multi-parameter methods according to the appropriate analytical method. LCS samples are prepared and analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are like the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters

only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

No method or trip blank detects were identified for the August 2023 monitoring event. The laboratory analysis report for the August 2023 monitoring event trip blank is included in **Appendix F**. The August 2023 monitoring event laboratory QA/QC reports, including the method blank results, are included in the COAs in **Appendix F**.

4.2.3 Data Validation

To identify analytical data that may not represent valid results, data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection Agency (EPA) guidance⁴. Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with parameter detections less than five times that of the trip blank, field blank, and/or method blank detection but greater than the laboratory contaminant parameter detections less that 0 times that 0 times that of the trip blank, field blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Samples with common laboratory contaminant parameter detections but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not validated as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis.

No leachate results were flagged with a "B" qualifier for the August 2023 monitoring event as no constituents were detected in the August 2023 method or trip blanks. The constituent detections flagged with a "J" qualifier are shown on **Table 9**.

4.2.4 Laboratory Analytical Results

Chemical characteristics of the August 2023 leachate samples collected from extraction wells EW-54, EW-57, EW-94, and EW-98 are summarized in **Table 9**. The associated COA is included in **Appendix F**. Parameter results from August 2023 and previous monitoring events (November 2022 – July 2023) are presented on a table in **Appendix F**.

Well ID	EW-54	EW-57	EW-94	EW-98		100
Parameter	August 2023 Concentration				LOD	100
Ammonia as N (mg/L)	1600	1890	2140	222	146	200
Biological Oxygen Demand (mg/L)	>33045	>33225	>32805	506	0.2	2
Chemical Oxygen Demand				1750	500	500
(mg/L)	59000	58600	60600		5000	5000
Nitrate as N (mg/L)				ND	0.15	0.35

Table 9.	Monthly LFG-EW Leacha	ate Monitoring Event	Summary
	5	0	

⁴ United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. January 2017.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. January 2017.

Well ID	EW-54	EW-57	EW-94	EW-98	100	100
Parameter	Aug	LOD	LOQ			
	ND	ND	ND		1.5	3.5
				ND	0.05	0.25
Nitrite as N (mg/L)	ND	ND	ND		0.5	2.5
Total Kieldebl Nitregen (mg/l)				279	10	25
Total Kjeldani Nillogen (mg/L)	2240	2820	2850		100	250
Total Recoverable Phenolics				1.46	0.15	0.25
(mg/L)	28.6	31.4	40.4		1.5	2.5
SEMI-VOLATILE ORGANIC COMPOUR	ND (ug/L)					
Anthracono				ND	19.6	39.2
	ND	ND	ND		1000	2000
TOTAL METALS (mg/L)						
Arsonic				0.15	0.0025	0.005
Alsenic	0.32	0.43	0.29		0.005	0.01
Barium				0.218	0.005	0.025
	1.61	1.58	1.48		0.01	0.05
Cadmium				ND	0.0005	0.005
	ND	ND	ND		0.001	0.01
Chromium				0.0276	0.002	0.005
	0.606	0.449	0.259		0.004	0.01
Conner				ND	0.0015	0.005
	0.00343 J	0.0176	ND		0.003	0.01
lead				ND	0.005	0.005
	0.014	ND	0.013		0.01	0.01
Mercury				ND	0.001	0.001
	0.00312	0.00397	ND		0.002	0.002
Nickel				0.02029	0.005	0.005
	0.1457	0.09673	0.0513		0.01	0.01
Selenium				ND	0.00425	0.005
	ND	ND	ND		0.0085	0.01
Silver				ND	0.0003	0.005
	ND	ND	ND		0.0006	0.01
				0.112	0.0125	0.025
Zinc		1.71	0.914		0.025	0.05
	5.92				0.05	0.1
VOLATILE ORGANIC COMPOUNDS (L	ıg/L)					
2-Butanone (MEK)				5950	60	200

Table 9. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-54	EW-57	EW-94	EW-98		100
Parameter	August 2023 Concentration				LOD	100
			7350		150	500
		3000			750	2500
	25600				1500	5000

Table 9. Monthly LFG-EW Leachate Monitoring Event Summary

1000 ___ _ _ _ 20900 700 Acetone 18700 ---1750 2500 ------5000 72500 ---87700 3500 ---379 ---------8 20 Benzene 2320 168 ND ---20 50 ---------16.8 J 8 20 Ethylbenzene ---20 50 80 ND ND 2880 200 200 ---------Tetrahydrofuran 7370 3210 1200 ---500 500 ---20 ------10 36.6 Toluene 105 ND ND ---25 50 ------48.4 J 20 60 ---Xylenes, Total 180 ND ND 50 150 ---

--- = not available

J = Constituent was detected at a concentration above the laboratory's LOD but below the laboratory's LOQ. Concentration is estimated and not validated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

On behalf of the City, SCS submitted a settlement monitoring and management plan to VDEQ on November 15, 2022. Refer to the November Monthly Compliance Report for the SWP No. 588 Landfill for additional information.
5.2 MONTHLY SURVEYS

5.2.1 Topographic Data Collection

The City, through SCS, collected topographic data of the Solid Waste Permit No. 588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone). On August 2, 2023, the flight was completed and the topographic data collected. The topographic data collected is shown on Sheet 2 in Appendix E.

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on July 12, 2023. A drawing depicting the July 12, 2023 topography is included as Sheet 1 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 9,900 cubic yards. During that same time period, approximately 4,100 cubic yards of construction related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 5,800 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 19. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 3 in Appendix E.

Figure 19. 1-Month Elevation Change Color Map

The locations of in-waste temperature monitoring probes are also shown on Figure 19 and Figure 20. The circles around the probes indicate how high the average temperatures measured by the probe are. The circles shown are offset from the probes for clarity only and do not necessarily indicate temperatures measured at locations away from the probe. Probes with a yellow circle around them, typically measure an average temperature across the full depth of the probe of less than 200 degrees Fahrenheit. Probes with an orange circle around them, typically measure an average temperature across the full depth of the probe greater than 200 degrees Fahrenheit and less than 250 degrees Fahrenheit. Probes with a red circle around them, typically measure an average temperature across the full depth of the probe greater than 250 degrees Fahrenheit. Probes with a red circle around them, typically measure an average temperature across the full depth of the probe greater than 250 degrees Fahrenheit. Probes with a red circle around them, typically measure an average temperature across the full depth of the probe greater than 250 degrees Fahrenheit and less than 300 degrees Fahrenheit.

The largest settlement occurred primarily in the middle-southern end of the landfill where the waste settled by approximately 0.5 feet or more in some areas. Settlement in the southern end of the landfill appears to have slightly decreased relative to last month. The southern end of the landfill is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions. Settlement in the northern portion of the landfill was generally lower. The changes in elevation observed in the northern end of the landfill are more representative of typical settlement at municipal landfills. The perimeter of the landfill exhibited an increase in elevation, likely due to soil placement associated with construction of

the Sidewall Odor Mitigation System. Some soil stockpile locations associated with the Sidewall Odor Mitigation System showed large elevation changes due to material removal from the stockpiles.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation increase was approximately 0.21 feet.

SCS also compared the topographic data collected in August to the topographic data collected on May 11, 2023. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 25,200 cubic yards. During that same time period approximately 13,500 cubic yards of construction-related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 11,700 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 20. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 4 in Appendix E.

Figure 20. 3-Month Elevation Change Color Map

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 2 feet or more in some areas. The southern end of the landfill is the location of the

gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions. Settlement in the northern portion of the landfill was generally less substantial or was offset by soil placement associated with construction activities. Changes in elevation in these areas are more representative of typical settlement at municipal landfills. The perimeter of the landfill exhibited an increase in elevation, likely due to sediment deposition during storm events and soil placement associated with construction of the Sidewall Odor Mitigation System. There were some large variations in elevation associated with soil stockpiling operations.

SCS will collect topographic data covering the landfill surface again in September using photogrammetric methods via UAV. This data will be compared to the data collected in August and June.

5.2.2 Settlement Plate Surveys

On November 7, 2022 SCS field services installed 12 settlement plates on the Solid Waste Permit No. 588 landfill. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan. The tops of the PVC pipes were spray painted orange to improve visibility. The settlement plate locations are depicted in Figure 21 and on Sheet 1 in Appendix E.

Figure 21. Settlement Plate Locations

The locations of the settlement plates were surveyed by the City's surveyor on November 14, 2022. The settlement plates were surveyed again on December 13, 2022; January 3, 2023; February 6, 2023; March 8, 2023; April 3, 2023; May 11, 2023; June 5, 2023; July 10, 2023; and August 17, 2023. The surveyed coordinates⁵ and elevation changes of the settlement plates are shown in Table 10.

⁵ Settlement plate locations and coordinates are based on a local coordinate system.

Settlement Plate	Northing	Easting	Elevation on August 17, 2023	Elevation Change Since July 10, 2023	Strain ⁶ Since July 10, 2023	Elevation Change Since Installation	Strain Since Installation
SP-1	3,397,886.9	10,412,078.9	1,831.4	-0.4	-0.5%	-3.0	-4.5%
SP-2	3,397,808.9	10,412,365.3	1,804.7	-0.5	-0.3%	-5.8	-3.6%
SP-37	3,397,787.5	10,412,537.9	1,783.0	0.2	0.3%	-0.7	-1.0%
SP-48	3,398,248.4	10,412,187.5	1,810.6	-0.6	-0.4%	-6.9	-4.4%
SP-5	3,398,255.9	10,412,339.1	1,795.8	-0.6	-0.2%	-5.0	-2.0%
SP-6	3,398,249.1	10,412,510.5	1,776.1	-0.2	-0.1%	-1.6	-1.2%
SP-79	3,398,735.5	10,412,157.6	1,826.7	-0.3	-0.3%	-2.0	-1.7%
SP-8	3,398,678.5	10,412,290.8	1,803.6	-0.4	-0.2%	-3.8	-1.5%
SP-9	3,398,673.7	10,412,400.9	1,783.5	-0.4	-0.4%	-2.4	-2.4%
SP-10	3,399,080.5	10,412,092.1	1,838.8	-0.1	-0.1%	-1.4	-0.5%
SP-11	3,399,216.2	10,412,183.6	1,815.6	-0.2	-0.1%	-0.7	-0.3%
SP-12	3,399,381.8	10,412,019.5	1,810.2	-0.1	-0.1%	-0.4	-0.4%

Table 10.Settlement Plate Locations

Settlement Plates 1, 4, and 9 demonstrated larger settlements than at other locations. SCS believes that Settlement Plate 4 was disturbed by grading work on an adjacent roadway. Settlement Plate 1 is located in the southern end of the landfill. This area is where waste was most recently placed and is expected to show the most rapid settlement. This area is also the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions.

The change in elevation at Settlement Plates 6, 10, 11, and 12 was lower and more representative of typical settlement at municipal landfills. The change in elevation at Settlement Plates 2, 5, and 8 falls somewhere in between these two categories. Field observations indicate that Settlement Plates 3 and 7 may also have been damaged during construction operations.

The settlement plates will be surveyed again during the month of September. The elevations surveyed will be compared to the elevations surveyed the previous months.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City is taking steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below outline the steps taken by the City.

⁶ Strain is defined as the change in elevation divided by the estimated waste depth.

⁷ SCS suspects that SP-3 was damaged as a result of construction activities.

⁸ Based on field observations SP-4 appears to have been disturbed during grading on an adjacent roadway.

⁹ Based on field observations SP-7 appears to have been disturbed during grading on an adjacent stockpile.

6.1 INTERMEDIATE COVER INSTALLATION

The City completed hauling and placement of a 12-inch thick intermediate cover across the entire landfill prior to October 10, 2022. The cover was placed in accordance with 9VAC20-81-140(B)(1)(d). SCS coordinated with the City to dig a series of test holes to verify cover thickness in select locations. Details of these verifications were discussed in the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill.

6.2 EVOH COVER SYSTEM DESIGN

SCS submitted responses, including revised documents, on March 20, 2023 to comments received from VDEQ concerning the Interim EVOH Cover System Preliminary Design Plans. The submitted documents included a revised operations manual and settlement calculations for the proposed stormwater basin. On April 28, 2023, SCS submitted the EVOH Cover System Stormwater Management Plan to VDEQ for the No. 588 landfill. SCS received a comment letter dated May 16, 2023 concerning the stormwater management plan. SCS prepared a response letter with revised drawings, documents, and calculations. The response package was submitted to VDEQ on June 23, 2023.

SCS is preparing construction drawings for the EVOH Cover System, including revisions discussed in the response to comments letters. The construction drawings build upon the preliminary design plans and the stormwater management plan. Potential modifications to the stormwater management plan submitted to VDEQ on April 28, 2023 will be included in the construction drawing set along with applicable calculations. Other additions to the construction drawings include additional design cross sections, landfill gas management plans and details, access road design, and other items.

SCS held a call with VDEQ personnel on August 31, 2023 to discuss potential changes to the EVOH Cover System design. The modifications include installing three separate stormwater basins within the quarry rather than one single basin. The proposed stormwater pumping infrastructure will be expanded to meet the requirements of the three basins. SCS is preparing a revised stormwater management plan to submit to VDEQ.

SCS continues to prepare specifications and contract documents for the construction of the EVOH Cover System.

6.3 EVOH COVER SYSTEM PROCUREMENT

Drawings used for the purposes of bidding, procurement and construction of the EVOH cover system will generally conform to the layout and details in the drawings described in section 6.2. SCS also prepared and submitted to VDEQ a specification for the EVOH geomembrane on January 30, 2023 based upon industry standards and discussions with material manufacturers. This specification and drawing set represent the first steps in the procurement process. SCS and the City have coordinated with potential suppliers to specify a product that is not currently anticipated to have long lead times. SCS has received a pro-forma data sheet from one manufacturer which is preparing a customized EVOH product for the No. 588 landfill.

6.4 EVOH COVER SYSTEM INSTALLATION

Installation of the EVOH cover system will begin after the installation of other infrastructure is complete.

7.0 STORMWATER MANAGEMENT

The City is taking steps to implement a stormwater management plan at the landfill. The sections below outline the steps taken by the City.

7.1 STORMWATER MANAGEMENT PLAN DEVELOPMENT

The stormwater management plan was submitted to VDEQ on April 28, 2023. The plan addresses the stormwater volume calculations, assumptions, design, and control measures. SCS received a comment letter dated May 16, 2023 concerning the stormwater management plan. SCS prepared a response letter with revised drawings, documents, and calculations. The response package was submitted to VDEQ on June 23, 2023. A follow-up discussion was held with VDEQ on August 31, 2023 to discuss modifications to the stormwater management plan. The new modifications include increasing the number of stormwater basins within the quarry and reducing required earthwork.

The revised plan will propose a stormwater pumping system to convey stormwater collected atop the EVOH cover system to an existing discharge point permitted under VPDES permit VAR050053. The proposed system includes the construction of collection basins in the quarry and the installation of pairs of mobile stormwater pumps. The stormwater will be conveyed by a force main pipe or pipes adjacent to the basin access road.

The plan proposes modifications to the existing stormwater basins west of the quarry to achieve discharge quantity targets. Modifications include increasing the basin depths and installing new outlet riser structures.

7.2 STORMWATER MANAGEMENT BASIN DESIGN AND CONSTRUCTION

The landfill surface will be regraded to form the SWM basins proposed in the stormwater management plan. The earthwork will be completed as the first stage of the interim EVOH cover system installation project. A revised landfill gas management plan is being prepared to facilitate the regrading of the landfill, which may affect some existing landfill gas infrastructure. The

Attention is being given to settlement concerns in the vicinity of the stormwater basin or basins. Calculations provided to VDEQ on June 23, 2023 demonstrate the weight of the ponded water should not cause excessive settlement relative to ongoing settlement observed within the quarry.

7.3 STORMWATER MANAGEMENT PLAN IMPLEMENTATION

The stormwater management plan design drawings are being incorporated into the overall construction drawings for the interim EVOH cover system. The interim EVOH cover system installation and stormwater management features will be bid and constructed as one project to facilitate simultaneous progress and completion.

7.4 LONG-TERM STORMWATER CONTROL AND REMOVAL

The stormwater management plan is designed with resiliency and redundancy to promote long-term operation. Two stormwater pumps will be installed for each basin, with each pump capable of operating independently. The pumps may be operated in parallel in contingency scenarios. The City plans to install a backup generator for the stormwater pumps to allow for continued operation in the

event of a temporary power loss. The pumps have been selected to include additional pumping capacity to allow for future settlement.

A variable frequency drive control system is planned for the stormwater pumping system. The water level will be gauged using a transducer cable or comparable monitoring system to allow for automation of the pumping system. Appropriate telemetry will be used to allow for remote monitoring of the pumping system.

The operations manual will be updated to discuss the long-term operation and maintenance of the pumping system and other stormwater management features. Periodic inspections of the stormwater management system will be completed. The regular inspections will include monitoring the rate of settlement. If excessive settlement occurs, repairs will be planned and conducted as necessary to maintain the stormwater management system and cover system integrity.

7.5 STORMWATER MONITORING

Stormwater monitoring will commence upon initial discharge of stormwater from the quarry stormwater pumping system. As stated in the stormwater management plan drawings, the stormwater shall be monitored in accordance with the facility's VPDES general permit for discharge of stormwater associated with industrial activity. Additional requirements include collecting an additional stormwater sample at the discharge of the quarry stormwater pumping system. The stormwater from the quarry basin or basins will be sampled on a monthly basis prior to discharge to the upper stormwater ponds. The Operations Manual has been revised to include these additional requirements.

If the stormwater becomes contaminated or sampling indicates contamination above discharge limits, the stormwater will be diverted to the sanitary sewer system. The diversion to the sanitary sewer system will continue until the source of contamination is identified and resolved. The stormwater discharge pipe alignment was adjusted to pass adjacent to the existing sanitary sewer manhole. A tee with isolation valves will be used to direct the stormwater to the upper basins or the sanitary sewer manhole.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit No. 588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

SCS submitted the Monitoring, Maintenance, and Repair Plan to VDEQ for the SWP No. 588 landfill on December 30, 2022. Refer to the December 2022 Monthly Compliance Report for the SWP No. 588 Landfill for additional information. The City has taken steps to implement the plan that were detailed in the March 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

8.3 MONTHLY COMPLIANCE REPORTS

As described in the introduction this report is intended to provide comprehensive updates regarding progress towards completion of each item described in Appendix A of the Consent Decree between the City and VDEQ,

8.4 COMMUNITY OUTREACH PROGRAM

The City's consultant leading community outreach, McGuireWoods Consulting, described the actions taken as part of their community outreach efforts. For the month of August, those actions include:

- August ongoing basis: Nine posts on the BristalVALandfill.org site and the existing City of Bristol Landfill Notifications and Information page covering several important updates including:
 - Progress updates related to remediation efforts at the quarry landfill
 - Shared news article about Bristol, TN and Bristol, VA asking the court to approve the final landfill order
 - Released joint statement from Bristol, TN and Bristol, VA about the EPA and U.S.
 Department of Justice's non-intervention on the federal consent order
 - Notice that the Landfill Consent Order has been entered in federal court
 - Provided links to news articles chronicling construction updates and information on legal updates about the quarry landfill.
- Created new landing page on Bristolvalandfill.org titled "Air Sampling and Air Monitoring" that includes a summary of the air sampling and monitoring being conducted by Bristol, VA around the quarry landfill. The page explaining the process the city is taking and includes reports from the sampling and monitoring that has occurred already. This page and the weekly perimeter monitoring reports will be updated as new information is collected.
- E-mail communication sent to the list of members of the public signed up through the Bristol, VA website, the BristolVALandfill.org website, or at subsequent Open Houses to receive information via e-mail
 - E-mails sent included weekly remediation progress update and links to website updates and latest news articles on the following days:
 - Friday, August 4th
 - Friday, August 11th
 - Monday, August 21st
 - Friday, August 25th
 - Tuesday, August 29th
 - Thursday, August 31st

Appendix A

Surface Emissions Monitoring Summary Letters

SCS ENGINEERS

August 9, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject:Weekly Surface Emissions Monitoring Event – August 4, 2023Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on August 4, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1.	Summary	of Surface Emissions	Monitoring
----------	---------	----------------------	------------

Description	Quantity
Number of Points Sampled	169
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	69
Number of Exceedances	8
Number of Serpentine Exceedances	1
Number of Pipe Penetration Exceedances	7

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

An alternate remedy request was submitted to VDEQ on 7/11/23 outlining proposed corrective actions at EW-38 and EW-66 which are both subject to the requirements of 40 CFR 63.1960(c)(4)(v). The Facility intends to install and/or repair well bore skirts at these two locations.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	8/4/23 Event	8/4/23 Event Result	Comments
EW-66	5/25/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v); Alt. remedy submitted 7/11/23
EW-38	6/6/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v); Alt. remedy submitted 7/11/23
EW-98	6/29/23	30-Day Retest Follow-Up	Passed	Exceedance Resolved
Tag 66	7/7/23	30-Day Retest	Passed	Exceedance Resolved
EW-35	7/12/23	N/A	Passed	Requires 30-Day Retest
EW-55	7/12/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
Tag 69	7/21/23	2 nd 10-Day Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
Tag 76	7/21/23	N/A	Passed	Requires 30-Day Retest
Tag 100	7/21/23	N/A	Passed	Requires 30-Day Retest
EW-58	7/21/23	2 nd 10-Day Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	7/21/23	2 nd 10-Day Retest	Passed	Requires 30-Day Retest
EW-86	7/21/23	N/A	Passed	Requires 30-Day Retest
EW-88	7/21/23	N/A	Passed	Requires 30-Day Retest
EW-99	7/28/23	10-Day Retest	Passed	Requires 30-Day Retest

Table 2.Ongoing Weekly SEM Exceedances

Mr. Jonathan Chapman August 9, 2023 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylie Hicklin

Wylie R Hicklin Associate Staff Professional SCS Engineers

LSN/WRH/cjw

Randall Eads, City of Bristol cc: Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

5
Route

	BRISTOL INTEGRA	TED SOLID WAST	E FACILITY - B	RISTOL, VIRGINIA	
	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
43	89.6 PPM	OK			
44	3.2 PPM	OK			
45	2.0 PPM	OK			
46	0.5 PPM	OK			
47	0.4 PPM	OK			
48	0.3 PPM	OK			
49	1.4 PPM	OK			
50	0.3 PPM	OK			
51	0.5 PPM	OK			
52	0.2 PPM	OK			
53	0.2 PPM	OK			
54	0.3 PPM	OK			
55	0.1 PPM	OK			
56	0.0 PPM	OK			
57	0.1 PPM	OK			
58	0.1 PPM	OK			
59	0.1 PPM	OK			
60	1.3 PPM	OK			
61	28.6 PPM	OK			
62	92.2 PPM	OK			
63	13.1 PPM	OK			
64	19.9 PPM	OK			
65	62.2 PPM	OK			
66	43.8 PPM	OK			
67	40.0 PPM	OK			
68	203 0 PPM	OK			
60	6280 0 PPM		36 50700	-821/730	
70	16 6 PPM		30.37777	-02.14/ 50	
70	21.0 0044	OK			
71	76 5 DDM	OK			
72	70.3 FFM	OK			
/3	308 0 DDVY				
74		OK			
75	91.1 FFM	OK			
/0 77	304.0 PPM	OK			
//	2.0 PPM	OK			
/8	U./ PPM	OK			
/ 9	I.U PPM	OK			
80	0.3 PPM	OK			
81	U.U PPM	OK			
82	U.U PPM	OK			
83	U.U PPM	OK			
84		OK			

	Mothano		GPS Co	ordinatos	
ID #	Concentration	Compliance	Lat.	Long.	Comments
85	0.0 PPM	OK			
86	0.0 PPM	OK			
87	2.0 PPM	OK			
88	0.9 PPM	OK			
89	0.0 PPM	OK			
90	0.0 PPM	OK			
91	10.5 PPM	OK			
92	349.0 PPM	OK			
93	23.6 PPM	OK			
94	49.7 PPM	OK			
95	313.0 PPM	OK			
96	24.4 PPM	OK			
97	52.8 PPM	OK			
98	31.1 PPM	OK			
99	11.5 PPM	OK			
100	2 0 PPM	OK			End Serpentine Poute
100	2.0 11/1	OK			
101	244.0 PPM		24 5000 4	0014754	EVV-35
102	009.0 PPM		30.39894	-82.14/54	EVV-52
103	34.1 PPM	OK			1P-4
104	167.0 PPM	OK			EVV-60
105	234.0 PPM	OK			EVV-48
106	25.0 PPM	OK			IP-6
10/	20.1 PPM	OK			EW-61
108	4.1 PPM	OK			EW-34
109	18.3 PPM	OK			EW-50
110	156.0 PPM	OK			EW-67
111	885.0 PPM	HIGH_ALRM	36.59854	-82.14772	EW-47
112	369.0 PPM	OK			EW-54
113	3348.0 PPM	HIGH_ALRM	36.69865	-82.14741	EW-55
114	12.9 PPM	OK			TP-2
115	591.0 PPM	HIGH_ALRM	36.59857	-82.14760	EW-66
116	3438.0 PPM	HIGH_ALRM	36.59831	-82.14724	EW-58
117	451.0 PPM	OK			EW-57
118	72.4 PPM	OK			TP-1
119	238.0 PPM	OK			EW-59
120	95.2 PPM	OK			EW-56
121	1415.0 PPM	HIGH_ALRM	36.59835	-82.14782	EW-41
122	123.0 PPM	OK			EW-53
123	11.5 PPM	OK			EW-40
124	9.4 PPM	OK			TP-3
125	130 0 PPM	OK			

Page 3 of 5

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 4, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
126	4.2 PPM	OK			EW-39
127	16.8 PPM	OK			TP-5
128	2.1 PPM	OK			EW-68
129	824.0 PPM	HIGH ALRM	36.59926	-82.14802	EW-38
130	169.0 PPM	OK			TP-7
131	3.0 PPM	OK			EW-49
132	2.5 PPM	OK			EW-31R
133	4.6 PPM	OK			EW-65
134	1.2 PPM	OK			EW-37
135	0.2 PPM	OK			TP-8
136	11.1 PPM	OK			EW-64
137	0.0 PPM	OK			EW-30R
138	0.0 PPM	OK			EW-63
139	0.0 PPM	OK			EW-42
140	3.5 PPM	OK			TP-9
141	0.0 PPM	OK			EW-33R
142	0.0 PPM	OK			EW-62
143	0.0 PPM	OK			EW-29R
144	0.0 PPM	OK			EW-74
145	0.0 PPM	OK			EW-32R
146	0.0 PPM	OK			EW-69
147	0.0 PPM	OK			EW-71
148	0.0 PPM	OK			EW-72
149	10.2 PPM	OK			EW-70
150	0.0 PPM	OK			EW-73
151	98.6 PPM	OK			EW-76
152	0.0 PPM	OK			EW-78
153	16.5 PPM	OK			EW-82
154	0.0 PPM	OK			EW-85
155	78.0 PPM	OK			EW-88
156	13.6 PPM	OK			EW-89
157	14.7 PPM	OK			EW-93
158	21.8 PPM	OK			EW-94
159	284.0 PPM	OK			EW-98
160	12.4 PPM	OK			EW-100
161	216.0 PPM	OK			EW-99
162	34.2 PPM	OK			EW-95
163	11.0 PPM	OK			EW-90
164	41.1 PPM	OK			EW-86
165	0.9 PPM	OK			EW-84
166	2.9 PPM	OK			EW-80
167	0.3 PPM	OK			EW-79
168	0.0 PPM	OK			EW-33B
169	0.0 PPM	OK			EW-75

ID #	Methane Concentration				
ID #	Methane Concentration				
ID #	Concentration		GPS Co	ordinates	
		Compliance	Lat.	Long.	Comments
	Number of la		160		
	Number of e	xceedance locatio	8		
NOTES: Points 1 through 100 Points 101 through 1 Weather Conditions Sampling Calibratio 8/4/2023 9) represent serpentir 168 represent SEM c : Partly Sunny, 74°F n: <u>Methane - 500 pp</u> 1:22 ZERO	ne SEM route. It Pipe Penetration Wind: SW - 5 MP om, Zero Air - 0.0 0.1	s H PPM		
0/4/2023 9	123 JFAN	502.0	rr <i>m</i>		
Background Reading	<u>]:</u>				
8/4/2023 9	2:25 Upwind	3.6	PPM		

SCS ENGINEERS

August 16, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject:Weekly Surface Emissions Monitoring Event - August 11, 2023Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on August 11, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1.	Summary	of Surface	Emissions	Monitoring
----------	---------	------------	-----------	------------

Description	Quantity
Number of Points Sampled	170
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	70
Number of Exceedances	10
Number of Serpentine Exceedances	1
Number of Pipe Penetration Exceedances	9

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

An alternate remedy request was submitted to VDEQ on 7/11/23 outlining proposed corrective actions at EW-38 and EW-66 which are both subject to the requirements of 40 CFR 63.1960(c)(4)(v). The Facility intends to install and/or repair well bore skirts at these two locations.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	8/11/23 Event	8/11/23 Event Result	Comments
EW-66	5/25/23	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v); Alt. remedy submitted 7/11/23
EW-38	6/6/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v); Alt. remedy submitted 7/11/23
EW-35	7/12/23	30-Day Retest	Passed	Exceedance Resolved
EW-55	7/12/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
Tag 69	7/21/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
Tag 76	7/21/23	N/A	Passed	Requires 30-Day Retest
Tag 100	7/21/23	N/A	Passed	Requires 30-Day Retest
EW-58	7/21/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	7/21/23	N/A	Passed	Requires 30-Day Retest
EW-86	7/21/23	N/A	Passed	Requires 30-Day Retest
EW-88	7/21/23	N/A	Passed	Requires 30-Day Retest
EW-99	7/28/23	N/A	Passed	Requires 30-Day Retest
EW-52	8/4/23	10-Day Retest	Failed	Requires 2 nd 10-Day Retest
EW-47	8/4/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-41	8/4/23	10-Day Retest	Passed	Requires 30-Day Retest

Table 2.Ongoing Weekly SEM Exceedances

Mr. Jonathan Chapman August 16, 2023 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylie Hicklin

Wylie R Hicklin Associate Staff Professional SCS Engineers

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

LSN/WRH/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 11, 2023 **BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA** GPS Coordinates Methane ID # Concentration Compliance Comments Lat. Long. 2.7 PPM ОК Start Serpentine Route 1 2 1.3 PPM OK 3 1.0 PPM OK 4 ОК 0.8 PPM 5 0.8 PPM ОК ОК 6 0.7 PPM 7 ОК 0.7 PPM 8 ОК 1.6 PPM 9 OK 0.7 PPM ОК 10 1.0 PPM 11 0.7 PPM OK 12 0.6 PPM OK 13 0.8 PPM ОК 14 15.0 PPM ОК οк 15 1.3 PPM 1.5 PPM OK 16 5.6 PPM OK 17 18 14.0 PPM ОК 19 28.0 PPM OK 20 167.0 PPM ОК 21 70.3 PPM OK 22 41.9 PPM OK 2.5 PPM 23 OK 24 11.4 PPM OK 25 57.3 PPM OK 61.1 PPM OK 26 27 7.2 PPM OK 28 3.3 PPM ОК 29 2.6 PPM OK 30 50.4 PPM OK 31 11.0 PPM OK 32 204.0 PPM OK 33 3.5 PPM OK 34 13.0 PPM OK 35 35.7 PPM ОК 36 2.3 PPM ΟК 37 ΟК 188.0 PPM 38 7.7 PPM ОК 39 OK 2.7 PPM 40 ОК 1.5 PPM 41 1.8 PPM ОК 5.2 PPM ΟК 42

	EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 11, 2023 RRISTOL INTEGRATED SOLID WASTE FACULTY - RRISTOL VIRGINIA					
			E FACILIT - B			
	Methane GPS Coordinates					
ID #	Concentration	Compliance	Lat.	Long.	Comments	
43	1.7 PPM	OK				
44	0.5 PPM	OK				
45	0.7 PPM	OK				
46	2.2 PPM	OK				
47	0.4 PPM	OK				
48	0.3 PPM	OK				
49	0.4 PPM	OK				
50	0.5 PPM	OK				
51	0.3 PPM	OK				
52	0.2 PPM	OK				
53	0.2 PPM	OK				
54	1.6 PPM	OK				
55	0.2 PPM	OK				
56	0.4 PPM	OK				
57	0.2 PPM	OK				
58	8.2 PPM	OK				
50	2.5 PPM	OK				
57 60	2.3 PPM	OK				
61	12.5 FTM	OK				
62	10.7 DDM	OK				
62	10.7 FFM	OK				
64	21.2 FF/W	OK				
64	7.3 FFM	OK				
05	02.1 FFM	OK				
00	32.3 PPM	OK				
0/	300.0 PPM	OK				
08 (0	316.0 PPM		0/ 50700	001/701		
69 7 0	9985.0 PPM		30.37/88	-82.14/21		
/0	19.4 PPM	OK				
/1	08.5 PPM	OK				
72	53.0 PPM	OK				
/3	9.4 PPM	OK				
74	31.5 PPM	OK				
75	4.2 PPM	OK				
76	2.1 PPM	OK				
77	0.6 PPM	OK				
78	U.5 PPM	OK				
79	6.1 PPM	OK				
80	2.3 PPM	OK				
81	2.0 PPM	OK				
82	1.4 PPM	OK				
83	0.3 PPM	OK				
84	0.9 PPM	OK				

	EXHIBIT 1. S WEEKLY / BRISTOL INTEGRA	URFACE EMISSIO MONITORING EV ATED SOLID WAST	NS MONITORI ENT - AUGUST E FACILITY - B	ING RESULTS 111, 2023 BRISTOL, VIRGINI	A
Methane GPS Coordinates					
ID #	Concentration	Compliance	Lat.	Long.	Comments
 85	0.1 PPM	OK			
86	0.1 PPM	OK			
87	0.1 PPM	OK			
88	0.0 PPM	OK			
89	0.0 PPM	OK			
90	2.0 PPM	OK			
91	7.7 PPM	OK			
92	85.1 PPM	OK			
93	0.2 PPM	OK			
94	90.8 PPM	OK			
95	6.9 PPM	OK			
96	15.7 PPM	OK			
97	61.9 PPM	OK			
98	3.4 PPM	OK			
99	67.8 PPM	OK			
100	5.5 PPM	OK			End Serpentine Route
101	64 1 PPM	OK			EW/ 35
102	604.1 PPM		36 50885	8214728	E W 53
102	3 2 PPM		30.37003	-02.14/20	τΡ_ <i>Λ</i>
104	165 0 PPM	OK			FW/-60
105	100.0 PPM	OK			EW-48
105	13.8 PPM	OK			TP_6
107	10.1 PPM	OK			FW-61
108	11 2 PPM	OK			EW-34
109	22.1 PPM	OK			EW-50
110	65 0 PPM	OK			EW-67
111	103 0 PPM	OK			EW-47
112	834 0 PPM		36 50838	-8214763	EW-54
113	1492.0 PPM	HIGH ALRM	36,59861	-82.14718	EW-55
114	11.8 PPM		00.07001	0211-17 10	TP-2
115	63.1 PPM	OK			FW-96
116	145 0 PPM	OK			EW-66
117	1057.0 PPM	HIGH ALRM	36.59814	-82,14701	EW-58
118	435.0 PPM	OK	00.07014	52.1 7/ 01	EW-57
119	162.0 PPM	OK			TP-1
120	453.0 PPM	OK			FW-59
121	113.0 PPM	OK			EW-56
122	179.0 PPM	OK			FW-41
123	108.0 PPM	OK			FW-53
124	146.0 PPM	OK			EW-40
125	3.7 PPM	OK			TP-3

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 11, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
		•		C C	
126	170.0 PPM	OK			EW-51
127	637.0 PPM	HIGH_ALRM	36.59895	-82.14801	EW-39
128	14.8 PPM	OK			TP-5
129	17.0 PPM	OK			EW-68
130	1233.0 PPM	HIGH_ALRM	36.59934	-82.14798	EW-38
131	155.0 PPM	OK			TP-7
132	72.6 PPM	OK			EW-49
133	14.3 PPM	OK			EW-31R
134	11.4 PPM	OK			EW-65
135	10.0 PPM	OK			EW-37
136	3.9 PPM	OK			TP-8
137	1.9 PPM	OK			EW-64
138	2.5 PPM	OK			EW-30R
139	2.4 PPM	OK			EW-63
140	3.3 PPM	OK			EW-42
141	6.5 PPM	OK			TP-9
142	0.5 PPM	OK			EW-33R
143	0.7 PPM	OK			EW-62
144	0.7 PPM	OK			EW-29R
145	0.5 PPM	OK			EW-74
146	0.4 PPM	OK			EW-32R
147	0.2 PPM	OK			EW-69
148	1.2 PPM	OK			EW-71
149	0.4 PPM	OK			EW-72
150	0.3 PPM	OK			EW-70
151	0.3 PPM	OK			EW-73
152	203.0 PPM	OK			EW-76
153	9.0 PPM	OK			EW-78
154	406.0 PPM	OK			EW-82
155	16.2 PPM	OK			EW-85
156	244.0 PPM	OK			EW-88
157	2.8 PPM	OK			EW-89
158	2.7 PPM	OK			EW-93
159	3.6 PPM	OK			EW-94
160	632.0 PPM	HIGH_ALRM	36.59842	-82.14692	EW-98
161	36.5 PPM	OK			EW-100
162	308.0 PPM	OK			EW-99
163	954.0 PPM	HIGH_ALRM	36.59828	-82.14833	EW-95
164	3233.0 PPM	HIGH_ALRM	36.5988	-82.14826	EW-90
165	13.8 PPM	OK			EW-86
166	3.1 PPM	OK			EW-84
167	3.6 PPM	OK			EW-80
168	1.1 PPM	OK			EW-79
169	1.8 PPM	OK			EW-33B
170	2.0 PPM	OK			EW-75
1					

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 11, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA						
	Methane		GPS Co	oordinates		
ID #	Concentration	Compliance	Lat.	Long.	Comments	
	Number	f la contra a consulta d	170]		
	Number of Number of	f exceedance locatio	10			
NOTES:						
NOTES: Points 1 through	100 represent serper	ntine SEM route.				
NOTES: Points 1 through Points 101 throu	1 100 represent serper ugh 170 represent SEA	ntine SEM route. A at Pipe Penetration	15			
<u>NOTES:</u> Points 1 through Points 101 throu Weather Condi	100 represent serper ugh 170 represent SEA tions: Mostly cloudy, 7	ntine SEM route. A at Pipe Penetratior 5°F Wind: SE - 5 MP	ns H			
NOTES: Points 1 through Points 101 throu Weather Condi Sampling Calibb	a 100 represent serper ugh 170 represent SEA tions: Mostly cloudy, 7 ration: Methane - 500	ntine SEM route. Λ at Pipe Penetratior 5°F Wind: SE - 5 MP ppm, Zero Air - 0.0	ns H			
NOTES: Points 1 through Points 101 throu Weather Condi Sampling Calib 8/11/2023	100 represent serper ugh 170 represent SEA tions: Mostly cloudy, 7 ration: Methane - 500 10:51 ZERO	ntine SEM route. Λ at Pipe Penetratior 5°F Wind: SE - 5 MP ppm, Zero Air - 0.0 0.0	ns H ppm PPM			
NOTES: Points 1 through Points 101 throu Weather Condi Sampling Calibb 8/11/2023 8/11/2023	100 represent serper ugh 170 represent SEA tions: Mostly cloudy, 7 ration: Methane - 500 10:51 ZERO 10:53 SPAN	ntine SEM route. A at Pipe Penetratior 5°F Wind: SE - 5 MP <u>ppm, Zero Air - 0.0</u> 0.0 1 501.0	ns H PPM PPM PPM			
NOTES: Points 1 through Points 101 throu Weather Condi Sampling Calibr 8/11/2023 8/11/2023	a 100 represent serper ugh 170 represent SEA tions: Mostly cloudy, 7 ration: Methane - 500 10:51 ZERO 10:53 SPAN	ntine SEM route. A at Pipe Penetration 5°F Wind: SE - 5 MP ppm, Zero Air - 0.0 0.0 501.0	is H PPM PPM PPM			
NOTES: Points 1 through Points 101 throu Weather Condi Sampling Calib 8/11/2023 8/11/2023 Background Rec 8/11/2023	100 represent serper ugh 170 represent SEA tions: Mostly cloudy, 7 ration: Methane - 500 10:51 ZERO 10:53 SPAN ading: 10:59 Upwin	ntine SEM route. A at Pipe Penetration 5°F Wind: SE - 5 MP ppm, Zero Air - 0.0 0.0 1 501.0 d 1.7	is H PPM PPM PPM			

SCS ENGINEERS

August 23, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject:Weekly Surface Emissions Monitoring Event - August 17, 2023Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on August 17, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1.	Summary	of Surface	Emissions	Monitoring
----------	---------	------------	-----------	------------

Description	Quantity
Number of Points Sampled	171
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	71
Number of Exceedances	10
Number of Serpentine Exceedances	1
Number of Pipe Penetration Exceedances	9

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

An alternate remedy request was submitted to VDEQ on 7/11/23 outlining proposed corrective actions at EW-38 and EW-66 which are both subject to the requirements of 40 CFR 63.1960(c)(4)(v). A bentonite seal was installed around EW-66 and subsequent remonitoring events indicated methane concentrations had been reduced below the compliance threshold. Therefore, the exceedance at EW-66 is considered to be resolved. The Facility intends to install and/or repair well bore skirts at EW-38.

An increase in exceedances, particularly at cover penetrations has been observed over the past several events. A variety of factors may be causing these exceedances; however, it is believed that vacuum losses to sections of the Facility due to ongoing construction activities, including header piping upgrades, and start-up procedures surrounding the new temporary flare is likely the cause of the majority of these exceedances. As construction activities are completed, and the new temporary flare is activated, more vacuum will be available to these locations and therefore more gas collection will occur at these points.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	8/17/23 Event	8/17/23 Event Result	Comments
EW-66	5/25/23	N/A	Passed	Exceedance Resolved
EW-38	6/6/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v); Alt. remedy submitted 7/11/23
EW-55	7/12/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
Tag 69	7/12/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
Tag 76	7/21/23	30-Day Retest	Passed	Exceedance Resolved
Tag 100	7/21/23	30-Day Retest	Passed	Exceedance Resolved
EW-58	7/21/23	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-67	7/21/23	30-Day Retest	Passed	Exceedance Resolved
EW-86	7/21/23	30-Day Retest	Passed	Exceedance Resolved
EW-88	7/21/23	30-Day Retest	Passed	Exceedance Resolved
EW-99	7/28/23	N/A	Passed	Requires 30-Day Retest
EW-52	8/4/23	2 nd 10-Day Retest	Passed	Requires 30-Day Retest
EW-47	8/4/23	N/A	Passed	Requires 30-Day Retest
EW-41	8/4/23	N/A	Passed	Requires 30-Day Retest
EW-54	8/11/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-39	8/11/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-95	8/11/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-98	8/11/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-90	8/11/23	10-Day Retest	Failed	Requires 2 nd 10-Day Retest

Table 2.Ongoing Weekly SEM Exceedances

Mr. Jonathan Chapman August 23, 2023 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylie Hicklin

Wylie R Hicklin Associate Staff Professional SCS Engineers

LSN/WRH/cjw

Randall Eads, City of Bristol cc: Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 17, 2023 **BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA** GPS Coordinates Methane ID # Concentration Compliance Comments Lat. Long. 7.7 PPM ОК Start Serpentine Route 1 2 30.6 PPM OK 3 4.3 PPM OK 4 4.1 PPM ОК 5 2.3 PPM ОК ΟК 6 2.5 PPM 7 ΟК 2.3 PPM 8 ОК 3.1 PPM 9 OK 2.8 PPM ОК 10 2.8 PPM 11 1.4 PPM OK 12 1.5 PPM OK 13 1.3 PPM ОК 10.2 PPM ΟК 14 οк 15 3.2 PPM 22.7 PPM OK 16 27.1 PPM OK 17 18 53.2 PPM ОК 19 14.1 PPM OK 20 56.8 PPM ОК 21 4.3 PPM OK 22 3.4 PPM OK 23 2.3 PPM OK 24 60.8 PPM OK 25 16.4 PPM OK 6.2 PPM OK 26 27 2.3 PPM OK 28 2.0 PPM ОК 29 2.4 PPM OK 30 9.5 PPM OK 12.0 PPM 31 OK 32 11.4 PPM OK 33 12.3 PPM OK

OK

ОК

ΟК

ΟК

ОК

OK

ОК

ОК

ΟК

34

35

36

37

38

39

40

41

42

8.2 PPM

10.7 PPM

86.6 PPM

19.4 PPM

123.0 PPM

163.0 PPM

4.2 PPM

5.2 PPM

216.0 PPM
EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 17, 2023 **BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA** GPS Coordinates Methane ID # Concentration Comments Compliance Lat. Long. 43 1.9 PPM OK 44 8.2 PPM OK 45 6.6 PPM OK 99.6 PPM ОК 46 47 4.7 PPM ОК 12.1 PPM ОК 48 49 1.8 PPM ОК ОК 50 1.1 PPM 51 ОК 1.0 PPM 52 1.2 PPM ОК 53 0.7 PPM ОК ОК 54 0.6 PPM 55 0.8 PPM OK 56 0.6 PPM ОК 57 1.5 PPM ОК 58 14.6 PPM ОК 59 95.4 PPM ОК 60 0.6 PPM ОК 61 0.7 PPM ОК 62 5.0 PPM OK 8.7 PPM OK 63 64 27.3 PPM OK 65 17.5 PPM OK 66 10.7 PPM OK 67 2.1 PPM OK 68 57.5 PPM OK 69 3672.0 PPM HIGH_ALRM 36.59788 -82.14721 70 87.6 PPM OK 71 42.3 PPM ОК 78.1 PPM 72 OK OK 73 63.0 PPM 74 120.0 PPM OK 75 OK 12.8 PPM 76 1.9 PPM OK 77 15.7 PPM OK 78 46.5 PPM OK 79 29.3 PPM ОК 80 8.7 PPM ΟК οк 81 1.9 PPM 82 1.9 PPM OK 83 4.3 PPM OK

ОК

84

2.1 PPM

WEEKLY MONITORING EVENT - AUGUST 17, 2023 **BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA GPS** Coordinates Methane ID # Concentration Comments Compliance Lat. Long. 85 3.2 PPM OK 86 2.3 PPM OK 87 5.3 PPM OK 88 3.0 PPM ОК ОК 89 41.4 PPM 90 ОК 1.3 PPM 91 3.9 PPM ОК 92 ОК 4.2 PPM 93 ОК 10.7 PPM 94 53.1 PPM OK 95 10.4 PPM OK ОК 96 6.3 PPM 97 57.5 PPM OK 98 39.4 PPM ОК 99 66.2 PPM ОК 100 2.5 PPM ОК End Serpentine Route 101 421.0 PPM OK EW-35 102 347.0 PPM OK EW-52 103 26.4 PPM OK TP-4 164.0 PPM EW-60 104 OK 105 316.0 PPM OK EW-48 106 69.2 PPM OK TP-6 107 4.5 PPM ОК EW-61 108 34.2 PPM ОК EW-34 109 2.6 PPM ОК EW-50 110 363.0 PPM ОК EW-67 72.1 PPM ОК EW-47 111 EW-54 84.5 PPM ОК 112 EW-55 745.0 PPM HIGH_ALRM 36.59838 -82.14763 113 4.0 PPM OK TP-2 114 ОК EW-96 115 2.2 PPM 116 409.0 PPM OK EW-66 117 159.0 PPM ОК EW-58 118 142.0 PPM ОК EW-57 119 89.6 PPM OK TP-1 120 80.1 PPM OK EW-59 121 95.2 PPM OK EW-56 ОК 122 13.4 PPM EW-97 123 370.0 PPM OK EW-41

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS

HIGH_ALRM

OK

36.59823

-82.14792

EW-53

EW-40

124

125

1115.0 PPM

34.7 PPM

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 17, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
				5	
126	14.1 PPM	OK			TP-3
127	13.8 PPM	OK			EW-51
128	220.0 PPM	OK			EW-39
129	79.9 PPM	OK			TP-5
130	17.0 PPM	OK			EW-68
131	1556.0 PPM	HIGH_ALRM	36.59934	-82.14798	EW-38
132	200.0 PPM	OK			TP-7
133	3.3 PPM	OK			EW-49
134	12.2 PPM	OK			EW-31R
135	9.3 PPM	OK			EW-65
136	38.8 PPM	OK			EW-37
137	7.6 PPM	OK			TP-8
138	6.2 PPM	OK			EW-64
139	3932.0 PPM	HIGH_ALRM	36.60057	-82.14782	EW-30R
140	897.0 PPM	HIGH ALRM	36.60086	-82.14808	EW-63
141	1505.0 PPM	HIGH_ALRM	36.60121	-82.14804	EW-42
142	3.6 PPM	OK			TP-9
143	1431.0 PPM	HIGH ALRM	36.60125	-82.14798	E₩-33R
144	993.0 PPM	HIGH ALRM	36.60144	-82.14829	EW-62
145	56.8 PPM	OK			E₩-29R
146	22.6 PPM	OK			EW-74
147	2.3 PPM	OK			E₩-32R
148	0.8 PPM	ОК			EW-69
149	34.4 PPM	OK			EW-71
150	33.3 PPM	OK			EW-72
151	2.7 PPM	OK			EW-70
152	6.2 PPM	OK			EW-73
153	60.8 PPM	OK			EW-76
154	1.2 PPM	OK			EW-78
155	1.2 PPM	OK			EW-82
156	0.6 PPM	OK			EW-85
157	33.5 PPM	OK			EW-88
158	14.9 PPM	OK			EW-89
159	15.3 PPM	OK			EW-93
160	3.8 PPM	OK			EW-94
161	2.3 PPM	OK			EW-98
162	7.5 PPM	OK			EW-100
163	62.9 PPM	OK			EW-99
164	61.0 PPM	OK			EW-95
165	4012.0 PPM	HIGH_ALRM	36.59879	-82.14811	EW-90
166	30.5 PPM	ŌK			EW-86
167	4.6 PPM	OK			EW-84
168	3.0 PPM	OK			EW-80
169	73.3 PPM	OK			EW-79
170	30.9 PPM	OK			EW-33B
171	4.6 PPM	OK			EW-75

	EXHIBIT 1. WEEKLY BRISTOL INTEGR	SURFACE EMISSION MONITORING EVEI ATED SOLID WASTE	IS MONITOR NT - AUGUST FACILITY - B	NG RESULTS 17, 2023 RISTOL, VIRGINIA	
	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
	Number of	f locations sampled:	171		
	Number of	exceedance locatio	10		
NOTES:	100 represent server	ntine SEM route			
Points 1 through Points 101 throu Weather Condi	ugh 171 represent SEA tions: Clear, 84°F Win	Λ at Pipe Penetration d: NW - 4 MPH	S		
Points 1 through Points 101 throu Weather Condi Sampling Calib	ugh 171 represent SEA tions: Clear, 84°F Win ration: Methane - 500	A at Pipe Penetration d: NW - 4 MPH	s ppm		
Points 1 through Points 101 through Weather Condit Sampling Calib 8/17/2023	vgh 171 represent SEA itions: Clear, 84°F Win <u>ration: Methane - 500</u> 10:11 ZERO	A at Pipe Penetration d: NW - 4 MPH ppm, Zero Air - 0.0 j 0.0	s <u>ppm</u> PPM		
Points 1 through Points 101 throu Weather Condi Sampling Calib 8/17/2023 8/17/2023	ration: Methane - 500 10:11 ZERO 10:13 SPAN	A at Pipe Penetration d: NW - 4 MPH <u>ppm, Zero Air - 0.0 p</u> 0.0 501.0	s <u>ppm</u> PPM PPM		
Points 1 through Points 101 throu Weather Condi <u>Sampling Calib</u> 8/17/2023 8/17/2023 <u>Background Ret</u>	itions: Clear, 84°F Win <u>ration: Methane - 500</u> 10:11 ZERO 10:13 SPAN <u>ading:</u>	A at Pipe Penetration d: NW - 4 MPH <u>ppm, Zero Air - 0.0 p</u> 0.0 501.0	s <u>ppm</u> PPM PPM		
Points 1 through Points 101 throu Weather Condi <u>Sampling Calib</u> 8/17/2023 8/17/2023 <u>Background Res</u> 8/17/2023	itions: Clear, 84°F Win <u>ration: Methane - 500</u> 10:11 ZERO 10:13 SPAN <u>ading:</u> 10:14 Upwind	A at Pipe Penetration d: NW - 4 MPH <u>ppm, Zero Air - 0.0 p</u> 0.0 501.0	s <u>ppm</u> PPM PPM PPM		

SCS ENGINEERS

August 30, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – August 23, 2023 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on August 17, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Table 1.	Summary	of Surface	Emissions	Monitoring
----------	---------	------------	-----------	------------

Description	Quantity
Number of Points Sampled	171
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	71
Number of Exceedances	8
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	8

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

An alternate remedy request was submitted to VDEQ on 7/11/23 outlining proposed corrective actions at EW-38 and EW-66 which are both subject to the requirements of 40 CFR 63.1960(c)(4)(v). A bentonite seal was installed around EW-66 and subsequent remonitoring events indicated methane concentrations had been reduced below the compliance threshold. Therefore, the exceedance at EW-66 is considered to be resolved. The Facility intends to install and/or repair a well bore skirt at EW-38.

An increase in exceedances, particularly at cover penetrations has been observed over the past several events. A variety of factors may be causing these exceedances; however, it is believed that vacuum losses to sections of the Facility due to ongoing construction activities, including header piping upgrades, and start-up procedures surrounding the new temporary flare is likely the cause of the majority of these exceedances. As construction activities are completed, and the new temporary flare is activated, more vacuum will be available to these locations and therefore more gas collection will occur at these points.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	8/23/23 Event	8/23/23 Event Result	Comments
EW-38	6/6/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v); Alt. remedy submitted 7/11/23
EW-55	7/12/23	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
Tag 69	7/12/23	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-58	7/21/23	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-99	7/28/23	30-Day retest	Passed	Exceedance Resolved
EW-52	8/4/23	N/A	Passed	Requires 30-Day Retest
EW-41	8/4/23	N/A	Passed	Requires 30-Day Retest
EW-47	8/4/23	N/A	Passed	Requires 30-Day Retest
EW-39	8/11/23	N/A	Passed	Requires 30-Day Retest
EW-54	8/11/23	N/A	Passed	Requires 30-Day Retest
EW-95	8/11/23	N/A	Passed	Requires 30-Day Retest
EW-98	8/11/23	10-Day Retest	Failed	Requires 2 nd 10-Day Retest
EW-90	8/11/23	2 nd 10-Day Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-53	8/17/2023	10-Day Retest	Passed	Requires 30-Day Retest
EW-30R	8/17/2023	10-Day Retest	Failed	Requires 2 nd 10-Day Retest
EW-33R	8/17/2023	10-Day Retest	Failed	Requires 2 nd 10-Day Retest
EW-42	8/17/2023	10-Day Retest	Passed	Requires 30-Day Retest
EW-62	8/17/2023	10-Day Retest	Failed	Requires 2 nd 10-Day Retest
EW-63	8/17/2023	10-Day Retest	Failed	Requires 2 nd 10-Day Retest

Table 2. Ongoing Weekly SEM Exceedances

Mr. Jonathan Chapman August 30, 2023 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylie Hicklin

Wylie R Hicklin Associate Staff Professional SCS Engineers

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

LSN/WRH/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 23, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
			-	- 5	
1	7.8 PPM	OK			Start Serpentine Route
2	4.5 PPM	OK			
3	2.4 PPM	OK			
4	2.8 PPM	OK			
5	4.7 PPM	OK			
6	6.5 PPM	OK			
7	4.7 PPM	OK			
8	4.9 PPM	OK			
9	5.9 PPM	OK			
10	3.1 PPM	OK			
11	3.0 PPM	OK			
12	2.4 PPM	OK			
13	1.5 PPM	OK			
14	4.5 PPM	OK			
15	11.0 PPM	OK			
16	1.3 PPM	OK			
17	1.3 PPM	OK			
18	10.7 PPM	OK			
19	38.5 PPM	OK			
20	25.4 PPM	OK			
21	13.5 PPM	OK			
22	15.6 PPM	OK			
23	12.9 PPM	OK			
24	10.4 PPM	OK			
25	2.1 PPM	OK			
26	1.2 PPM	OK			
27	1.3 PPM	OK			
28	1.1 PPM	OK			
29	8.6 PPM	OK			
30	4.4 PPM	OK			
31	21.6 PPM	OK			
32	11.3 PPM	OK			
33	6.2 PPM	OK			
34	4.3 PPM	OK			
35	5.9 PPM	OK			
36	24.4 PPM	OK			
37	3.6 PPM	OK			
38	5.7 PPM	OK			
39	124.0 PPM	OK			
40	22.3 PPM	OK			
41	12.7 PPM	OK			
42	10.2 PPM	OK			

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 23, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	oordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
		•		0	
43	6.0 PPM	OK			
44	2.5 PPM	OK			
45	348.0 PPM	OK			
46	4.8 PPM	OK			
47	20.4 PPM	OK			
48	7.9 PPM	OK			
49	3.5 PPM	OK			
50	3.5 PPM	OK			
51	2.9 PPM	OK			
52	4.8 PPM	OK			
53	7.7 PPM	OK			
54	2.6 PPM	OK			
55	13.6 PPM	OK			
56	96.1 PPM	OK			
57	91.2 PPM	OK			
58	63.4 PPM	OK			
59	52.6 PPM	OK			
60	11.1 PPM	OK			
61	162.0 PPM	OK			
62	20.4 PPM	OK			
63	31.7 PPM	OK			
64	1.1 PPM	OK			
65	7.1 PPM	OK			
66	16.3 PPM	OK			
67	299.0 PPM	OK			
68	18.0 PPM	OK			
69	341.0 PPM	OK			
70	78.3 PPM	OK			
71	4.8 PPM	OK			
72	5.5 PPM	OK			
73	13.9 PPM	OK			
74	1.5 PPM	OK			
75	11.2 PPM	OK			
76	6.1 PPM	OK			
77	96.3 PPM	OK			
78	1.5 PPM	OK			
79	2.8 PPM	OK			
80	1.7 PPM	OK			
81	1.0 PPM	OK			
82	28.9 PPM	OK			
83	2.2 PPM	OK			
84	10.4 PPM	OK			

	WEEKLY I BRISTOL INTEGRA	TED SOLID WASTE	FACILITY - E	RISTOL, VIRGIN	IIA
	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
85	7.6 PPM	ОК			
86	25.0 PPM	OK			
87	456.0 PPM	OK			
88	34.0 PPM	OK			
89	9.7 PPM	OK			
90	41.3 PPM	OK			
91	41.8 PPM	OK			
92	36.5 PPM	OK			
93	14.9 PPM	OK			
94	345.0 PPM	OK			
95	4.3 PPM	OK			
96	162.0 PPM	OK			
97	112.0 PPM	OK			
98	19.1 PPM	OK			
99	7.1 PPM	OK			
100	75.0 PPM	OK			End Serpentine Route
101	52.0 PPM	ОК			FW-35
102	176.0 PPM	OK			EW-52
103	60.5 PPM	OK			TP-4
104	78.5 PPM	OK			EW-60
105	304.0 PPM	OK			EW-48
106	7.3 PPM	OK			TP-6
107	82.2 PPM	OK			EW-61
108	11.3 PPM	OK			EW-34
109	5.2 PPM	OK			EW-50
110	32.3 PPM	OK			EW-67
111	186.0 PPM	OK			EW-47
112	168.0 PPM	OK			EW-54
113	441.0 PPM	OK			EW-55
114	68.1 PPM	OK			TP-2
115	38.6 PPM	OK			EW-96
116	158.0 PPM	OK			EW-66
117	76.1 PPM	OK			EW-58
118	22.2 PPM	OK			EW-57
119	16.8 PPM	OK			TP-1
120	25.5 PPM	OK			EW-59
121	27.4 PPM	OK			EW-56
122	59.9 PPM	OK			EW-97
123	61.8 PPM	OK			EW-41
124	384.0 PPM	OK			EW-53
125	17 6 PPM	OK			F\W_40

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 23, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
				C C	
126	14.0 PPM	OK			TP-3
127	58.8 PPM	OK			EW-51
128	6.7 PPM	OK			EW-39
129	8.8 PPM	OK			TP-5
130	53.1 PPM	OK			EW-68
131	1944.0 PPM	HIGH_ALRM	36.59944	-82.14794	EW-38
132	450.0 PPM	OK			TP-7
133	7.2 PPM	OK			EW-49
134	3.6 PPM	OK			EW-31R
135	7.8 PPM	OK			EW-65
136	82.3 PPM	OK			EW-37
137	8.0 PPM	OK			TP-8
138	1081.0 PPM	HIGH_ALRM	36.60051	-82.14800	EW-64
139	1659.0 PPM	HIGH_ALRM	36.60056	-82.14787	E₩-30R
140	1097.0 PPM	HIGH_ALRM	36.60087	-82.14808	EW-63
141	61.6 PPM	OK			EW-42
142	3.7 PPM	OK			TP-9
143	1594.0 PPM	HIGH_ALRM	36.60127	-82.14825	E₩-33R
144	1142.0 PPM	HIGH_ALRM	36.60146	-82.14828	EW-62
145	221.0 PPM	OK			E₩-29R
146	56.6 PPM	OK			EW-74
147	9.1 PPM	OK			E₩-32R
148	1.1 PPM	OK			EW-69
149	1.4 PPM	OK			EW-71
150	1.8 PPM	OK			EW-72
151	0.4 PPM	OK			EW-70
152	3.0 PPM	OK			EW-73
153	69.5 PPM	OK			EW-76
154	1.3 PPM	OK			EW-78
155	9.8 PPM	OK			EW-82
156	0.7 PPM	OK			EW-85
157	100.0 PPM	OK			EW-88
158	21.9 PPM	OK			EW-89
159	65.2 PPM	OK			EW-93
160	112.0 PPM	OK			EW-94
161	3375.0 PPM	HIGH_ALRM	36.59824	-82.14684	EW-98
162	276.0 PPM	OK			EW-100
163	136.0 PPM	OK			EW-99
164	66.2 PPM	OK			EW-95
165	1801.0 PPM	HIGH_ALRM	36.59886	-82.14824	EW-90
166	2.7 PPM	OK			EW-86
167	1.9 PPM	OK			EW-84
168	1.9 PPM	OK			EW-80
169	9.6 PPM	OK			EW-79
170	41.4 PPM	OK			EW-33B
171	12.4 PPM	OK			EW-75
1					

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 23, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA						
ID #	Methane		Compliance	GPS Co	ordinates	Commonte
U #	Concentration	on	Compliance	Lai.	Long.	Comments
				171		
	Numb	per of local	ions sampled: edance locatio	8		
					1	
NOTES: Points 1 through Points 101 thro Weather Condi Sampling Calib	n 100 represent se ugh 171 represent itions: Clear and S <u>ration: Methane -</u>	erpentine S t SEM at P Junny, 77°1 500 ppm,	SEM route. ipe Penetration Wind: None Zero Air - 0.0 p	s opm		
8/23/2023	10:35 Z	(ERO	0.3	PPM		
8 / 23 / 20 23	10:37 S	PAN	503.0	PPM		
0/23/2023						
Background Re	ading:					
<u>Background Rev</u> 8/23/2023	ading: 10:40 Uj	pwind	2.9	PPM		

SCS ENGINEERS

September 6, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – August 31, 2023 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on August 31, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitoring is provided in Table 1.

Mr. Jonathan Chapman September 6, 2023 Page 2

[able 1.	Summary	of Surface En	nissions Monitoring
----------	---------	---------------	---------------------

Description	Quantity
Number of Points Sampled	171
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	71
Number of Exceedances	4
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	4

REMONITORING OF ONGOING EXCEEDANCES

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

An alternate remedy request was submitted to VDEQ on 7/11/23 outlining proposed corrective actions at EW-38 and EW-66 which are both subject to the requirements of 40 CFR 63.1960(c)(4)(v). A bentonite seal was installed around EW-66 and subsequent remonitoring events indicated methane concentrations had been reduced below the compliance threshold. Therefore, the exceedance at EW-66 is considered to be resolved. In addition, a new vacuum lateral was installed at EW-38, restoring sufficient vacuum and gas collection to this area of the landfill. Remonitoring at EW-38 indicated methane concentration below the compliance threshold.

An increase in exceedances, particularly at cover penetrations has been observed over the past several events. A variety of factors may be causing these exceedances; however, it is believed that vacuum losses to sections of the Facility due to ongoing construction activities, including header piping upgrades, and start-up procedures surrounding the new temporary flare is likely the cause of the majority of these exceedances. As construction activities are completed, and the new temporary flare is activated, more vacuum will be available to these locations and therefore more gas collection will occur at these points. This was observed during this weekly event when the number of exceedances decreased by over 50 percent compared with the previous event.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	8/31/23 Event	8/31/23 Event Result	Comments
EW-55	7/12/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
Tag 69	7/12/23	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-58	7/21/23	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-52	8/4/23	30-Day Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-90	8/11/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-47	8/4/23	30-Day Retest	Passed	Exceedance Resolved
EW-41	8/4/23	30-Day Retest	Passed	Exceedance Resolved
EW-54	8/11/23	N/A	Passed	Requires 30-Day Retest
EW-39	8/11/23	N/A	Passed	Requires 30-Day Retest
EW-95	8/11/23	N/A	Passed	Requires 30-Day Retest
EW-98	8/11/23	2 nd 10-Day Retest	Passed	Requires 30-Day Retest
EW-53	8/17/2023	N/A	Passed	Requires 30-Day Retest
EW-30R	8/17/2023	2 nd 10-Day Retest	Passed	Requires 30-Day Retest
EW-63	8/17/2023	2 nd 10-Day Retest	Passed	Requires 30-Day Retest
EW-42	8/17/2023	N/A	Passed	Requires 30-Day Retest
EW-33R	8/17/2023	2 nd 10-Day Retest	Passed	Requires 30-Day Retest
EW-62	8/17/2023	2 nd 10-Day Retest	Passed	Requires 30-Day Retest
EW-64	8/23/2023	10-Day Retest	Passed	Requires 30-Day Retest

Table 2.Ongoing Weekly SEM Exceedances

Mr. Jonathan Chapman September 6, 2023 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Wylie Hicklin

Wylie R Hicklin Associate Staff Professional SCS Engineers

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

LSN/WRH/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 31, 2023 **BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA** GPS Coordinates Methane ID # Concentration Compliance Comments Lat. Long. 7.8 PPM ОК Start Serpentine Route 1 2 1.4 PPM OK 3 0.6 PPM OK 4 0.6 PPM ОК 5 0.6 PPM ОК ОК 6 1.9 PPM 7 ОК 0.8 PPM 8 ОК 0.6 PPM 9 0.6 PPM OK 10 1.7 PPM ОК 11 0.8 PPM OK 12 36.5 PPM OK 13 2.2 PPM ОК 11.5 PPM ОК 14 οк 15 46.3 PPM 3.1 PPM OK 16 1.8 PPM OK 17 18 1.9 PPM ОК 19 12.8 PPM OK 20 104.0 PPM ОК 21 58.9 PPM OK 22 13.8 PPM OK 3.0 PPM 23 OK 24 4.0 PPM OK 25 3.2 PPM OK 1.5 PPM OK 26 27 5.0 PPM OK 28 6.0 PPM ОК 29 28.5 PPM OK 30 53.9 PPM OK 252.0 PPM 31 OK 32 85.7 PPM OK 33 167.0 PPM OK 34 12.8 PPM OK 35 4.7 PPM ОК 36 6.6 PPM ОК 37 4.1 PPM ОК 38 3.5 PPM ОК 39 OK 1.1 PPM 0.7 PPM ОК 40 41 1.6 PPM ОК 0.4 PPM ОК 42

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 31, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	oordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
		-			
43	0.4 PPM	OK			
44	4.3 PPM	OK			
45	0.4 PPM	OK			
46	0.4 PPM	OK			
47	0.2 PPM	OK			
48	0.2 PPM	OK			
49	0.1 PPM	OK			
50	0.2 PPM	OK			
51	0.3 PPM	OK			
52	0.4 PPM	OK			
53	11.7 PPM	OK			
54	0.4 PPM	OK			
55	0.2 PPM	OK			
56	0.1 PPM	OK			
57	1.8 PPM	OK			
58	0.5 PPM	OK			
59	0.3 PPM	OK			
60	8.0 PPM	OK			
61	87.5 PPM	OK			
62	11.7 PPM	OK			
63	2.4 PPM	OK			
64	3.9 PPM	OK			
65	88.1 PPM	OK			
66	18.0 PPM	OK			
67	24.8 PPM	OK			
68	10.7 PPM	OK			
69	117.0 PPM	OK			
70	216.0 PPM	OK			
71	18.2 PPM	OK			
72	10.8 PPM	OK			
73	12.7 PPM	OK			
74	124.0 PPM	OK			
75	12.0 PPM	OK			
76	12.1 PPM	OK			
77	2.5 PPM	OK			
78	9.4 PPM	OK			
79	0.8 PPM	OK			
80	7.2 PPM	OK			
81	0.2 PPM	OK			
82	0.2 PPM	OK			
83	0.2 PPM	OK			
84	0.1 PPM	OK			

	EXHIBI WEE BRISTOL INT	T 1. SURFACE EMISSIC KLY MONITORING EN EGRATED SOLID WAS	ONS MONITOR /ENT - AUGUS TE FACILITY -	RING RESULTS ST 31, 2023 BRISTOL, VIRGIN	الم
	Methane		GPS C	oordinates	
ID #	Concentratio	on Compliance	Lat.	Long.	Comments
85	0.1 PPM	ОК			
86	0.6 PPM	OK			
87	0.0 PPM	OK			
88	0.0 PPM	OK			
89	0.2 PPM	OK			
90	0.0 PPM	OK			
91	3.6 PPM	OK			
92	61.7 PPM	OK			
93	37.7 PPM	OK			
94	473.0 PPM	OK			
95	62.7 PPM	OK			
96	57.9 PPM	OK			
97	74.0 PPM	OK			
98	173.0 PPM	OK			
99	6.7 PPM	OK			
100	9.1 PPM	OK			End Serpentine Route
101	106 O DDAA	OK			
101	1363 O PPM		26 50001	9214754	EVV-55
102	2.5 PDM		30.37701	-02.14/54	
103	2.5 FTM	OK			F)4/ 60
104	412.0 FFM	OK			EVV-00
105	5 2 DDAA	OK			
100	0.3 FFM	OK			
10/	0.2 PPM	OK			
108	40.0 PPM	OK			EVV-34
109	0.2 PPM	OK			EVV-SU
110	14.4 PPM	OK			EVV-0/
111	187.0 PPM	OK			EVV-4/
112	323.0 PPM		24 50045	001/700	EVV-54
113	904.0 PPM	HIGH_ALKM	30.59865	-82.14/30	EVV-55
114	53.3 PPM	OK			IP-2
115	16.3 PPM	OK			EW-96
116	76.4 PPM	OK			EW-66
117	2.3 PPM	OK			EW-58
118	38.5 PPM	OK			EW-57
119	67.0 PPM	OK			TP-1
120	23.1 PPM	OK			EW-59
121	9.4 PPM	OK			EW-56
122	13.8 PPM	OK			EW-97
123	11.7 PPM	OK			EW-41
124	59.4 PPM	OK			EW-53
125	14.9 PPM	OK			EW-40

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 31, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
126	30.6 PPM	OK			TP-3
127	65.3 PPM	OK			EW-51
128	19.9 PPM	OK			EW-39
129	32.0 PPM	OK			TP-5
130	8.2 PPM	OK			EW-68
131	1.9 PPM	OK			EW-38
132	120.0 PPM	OK			TP-7
133	2.9 PPM	OK			EW-49
134	3.2 PPM	OK			EW-31R
135	0.9 PPM	OK			EW-65
136	2.6 PPM	OK			EW-37
137	1.5 PPM	OK			TP-8
138	2.1 PPM	ОК			EW-64
139	3.5 PPM	OK			EW-30R
140	0.2 PPM	OK			EW-63
141	0.1 PPM	OK			EW-42
142	0.2 PPM	OK			TP-9
143	0.0 PPM	OK			FW-33R
140	0.0 PPM	OK			EW-62
145	1.7 PPM	OK			EW_29R
145	829.0 PPM		36,60136	-82,14855	EW-74
147	0.6 PPM	OK	00.00100	02114000	EW-32R
148	0.1 PPM	OK			EW-69
149	0.4 PPM	OK			EW-71
150	0.3 PPM	OK			EW-72
151	0.3 PPM	OK			EW-70
152	0.2 PPM	OK			EW-73
153	128.0 PPM	OK			EW-76
154	0.2 PPM	OK			EW-78
155	4.7 PPM	OK			EW-82
156	0.4 PPM	OK			EW-85
150	5.7 PPM	OK			EW-88
158	24.8 PPM	OK			FW/_89
150	12.1 PPM	OK			EW/_93
160	1.5 PPM	OK			EW/_9/
161	07 PPM	OK			EW/_98
162	0.8 PPM	OK			EW/_100
162		OK			EW-100
163	40 6 DDAA				EW/ 05
104	926 0 DDM		36 50004	8214924	EW/ 00
105	720.0 FF/V		30.37000	-02.14024	E VV - 90 F\// QA
100	24.0 FF/V				E VV - OO
140	2.0 PPM				EVV-04
140					
109	0.4 PPM	OK			
1/0	J.Z PPM	OK			
171	U./ PPM	OK			EVV-/5

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - AUGUST 31, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA						
	Methane		GPS Co	ordinates		
ID #	Concentration	Compliance	Lat.	Long.	Comments	
	Number of	locations sampled:	171]		
	Number of	exceedance locatio	4			
NOTES: Points 1 through Points 101 throu Weather Condi	n 100 represent serpen ugh 171 represent SEM tions: Overcast, 64°F V	tine SEM route. at Pipe Penetration Vind: E - 2 MPH	s			
NOTES: Points 1 through Points 101 throu Weather Condi Sampling Calib	n 100 represent serpen ugh 171 represent SEM tions: Overcast, 64°F V ration: Methane - 500	tine SEM route. at Pipe Penetration Vind: E - 2 MPH ppm, Zero Air - 0.0	s ppm			
NOTES: Points 1 through Points 101 throu Weather Condit Sampling Calib 8/31/2023	n 100 represent serpen ugh 171 represent SEM tions: Overcast, 64°F V <u>ration: Methane - 500</u> 10:15 ZERO	tine SEM route. a at Pipe Penetration Vind: E - 2 MPH ppm, Zero Air - 0.0 0.0	s ppm PPM			
NOTES: Points 1 through Points 101 through Weather Condit Sampling Calib 8/31/2023 8/31/2023	n 100 represent serpen ugh 171 represent SEM tions: Overcast, 64°F W <u>ration: Methane - 500</u> 10:15 ZERO 10:17 SPAN	tine SEM route. a at Pipe Penetration Vind: E - 2 MPH ppm, Zero Air - 0.0 0.0 500.0	s PPM PPM PPM			
NOTES: Points 1 through Points 101 through Weather Condit Sampling Calib 8/31/2023 8/31/2023 Background Res	n 100 represent serpen ugh 171 represent SEM tions: Overcast, 64°F W <u>ration: Methane - 500</u> 10:15 ZERO 10:17 SPAN <u>ading:</u>	tine SEM route. a at Pipe Penetration Vind: E - 2 MPH <u>ppm, Zero Air - 0.0</u> 0.0 500.0	s <u>ppm</u> PPM PPM			
NOTES: Points 1 through Points 101 throu Weather Condi Sampling Calib 8/31/2023 8/31/2023 Background Ref 8/31/2023	n 100 represent serpen ugh 171 represent SEM tions: Overcast, 64°F W <u>ration: Methane - 500</u> 10:15 ZERO 10:17 SPAN ading: 10:26 Upwinc	tine SEM route. a at Pipe Penetration Vind: E - 2 MPH <u>ppm, Zero Air - 0.0</u> 0.0 500.0	s PPM PPM PPM			

Appendix B

In-Waste Temperatures on Select Days in August

Appendix B Figures

Figure B-1. Average Temperatures Recorded by TP-1 on August 2, 2023......B-3 Figure B-2. Average Temperatures Recorded by TP-1 on August 9, 2023..... B-3 Figure B-3. Average Temperatures Recorded by TP-1 on August 16, 2023...... B-4 Figure B-4. Average Temperatures Recorded by TP-1 on August 23, 2023..... B-4 Figure B-5. Average Temperatures Recorded by TP-1 on August 30, 2023..... B-5 Figure B-6. Average Temperatures Recorded by TP-2 on August 2, 2023...... B-6 Figure B-7. Average Temperatures Recorded by TP-2 on August 9, 2023...... B-6 Figure B-8. Average Temperatures Recorded by TP-3 on August 2, 2023......B-7 Figure B-9. Average Temperatures Recorded by TP-3 on August 9, 2023......B-7 Figure B-10. Average Temperatures Recorded by TP-3 on August 16, 2023..... B-8 Figure B-11. Average Temperatures Recorded by TP-3 on August 23, 2023..... B-8 Figure B- 12. Average Temperatures Recorded by TP-3 on August 30, 2023..... B-9 Figure B-13. Average Temperatures Recorded by TP-4 on August 2, 2023..... B-10 Figure B-14. Average Temperatures Recorded by TP-4 on August 9, 2023......B-10 Figure B-15. Average Temperatures Recorded by TP-4 on August 16, 2023..... B-11 Figure B- 16. Average Temperatures Recorded by TP-4 on August 23, 2023......B-11 Average Temperatures Recorded by TP-4 on August 30, 2023......B-12 Figure B-17. Average Temperatures Recorded by TP-5 on August 2, 2023......B-13 Figure B-18. Average Temperatures Recorded by TP-5 on August 9, 2023......B-13 Figure B- 19. Figure B- 20. Average Temperatures Recorded by TP-5 on August 16, 2023......B-14 Average Temperatures Recorded by TP-5 on August 23, 2023.....B-14 Figure B-21. Figure B- 22. Average Temperatures Recorded by TP-5 on August 30, 2023......B-15 Figure B-23. Average Temperatures Recorded by TP-6 on August 2, 2023......B-16 Average Temperatures Recorded by TP-6 on August 9, 2023.....B-16 Figure B- 24. Figure B- 25. Average Temperatures Recorded by TP-6 on August 16, 2023......B-17 Figure B- 26. Average Temperatures Recorded by TP-6 on August 23, 2023......B-17 Figure B-27. Average Temperatures Recorded by TP-6 on August 30, 2023......B-18 Average Temperatures Recorded by TP-7 on August 2, 2023......B-19 Figure B- 28. Figure B-29. Average Temperatures Recorded by TP-7 on August 9, 2023......B-19 Figure B- 30. Average Temperatures Recorded by TP-8 on August 2, 2023......B-20 Figure B- 31. Average Temperatures Recorded by TP-8 on August 9, 2023......B-20 Average Temperatures Recorded by TP-8 on August 16, 2023......B-21 Figure B- 32. Figure B- 33. Average Temperatures Recorded by TP-8 on August 23, 2023......B-21 Figure B- 34. Average Temperatures Recorded by TP-8 on August 30, 2023......B-22 Figure B- 35. Average Temperatures Recorded by TP-9 on August 2, 2023..... B-23 Average Temperatures Recorded by TP-9 on August 9, 2023..... B-23 Figure B- 36. Figure B- 37. Average Temperatures Recorded by TP-9 on August 16, 2023......B-24

Figure B-1. Average Temperatures Recorded by TP-1 on August 2, 2023

Figure B-3. Average Temperatures Recorded by TP-1 on August 16, 2023

Figure B-5. Average Temperatures Recorded by TP-1 on August 30, 2023

Figure B-7. Average Temperatures Recorded by TP-2 on August 9, 2023

Figure B-8. Average Temperatures Recorded by TP-3 on August 2, 2023

Figure B-9. Average Temperatures Recorded by TP-3 on August 9, 2023

Figure B-10. Average Temperatures Recorded by TP-3 on August 16, 2023

Figure B-12. Average Temperatures Recorded by TP-3 on August 30, 2023

Figure B-13. Average Temperatures Recorded by TP-4 on August 2, 2023

Figure B-15. Average Temperatures Recorded by TP-4 on August 16, 2023

Figure B-17. Average Temperatures Recorded by TP-4 on August 30, 2023

Figure B-18. Average Temperatures Recorded by TP-5 on August 2, 2023

Figure B- 20. Average Temperatures Recorded by TP-5 on August 16, 2023

Figure B- 22. Average Temperatures Recorded by TP-5 on August 30, 2023

Figure B-23. Average Temperatures Recorded by TP-6 on August 2, 2023

Figure B- 25. Average Temperatures Recorded by TP-6 on August 16, 2023

Figure B- 27. Average Temperatures Recorded by TP-6 on August 30, 2023

Figure B-28. Average Temperatures Recorded by TP-7 on August 2, 2023

Figure B- 30. Average Temperatures Recorded by TP-8 on August 2, 2023

Figure B- 32. Average Temperatures Recorded by TP-8 on August 16, 2023

Figure B-33. Average Temperatures Recorded by TP-8 on August 23, 2023

Figure B- 34. Average Temperatures Recorded by TP-8 on August 30, 2023

Figure B- 35. Average Temperatures Recorded by TP-9 on August 2, 2023

Figure B- 37. Average Temperatures Recorded by TP-9 on August 16, 2023

Appendix C

Daily Wellhead Temperature Averages

The data provided in this report represent initial readings provided by field instrumentation without Validation, analysis, quality assurance review, or context based on operating conditions. This report is subject to revision following quality assurance review and an analysis of operating conditions. SCS will continue to provide a supplemental report with additional information and further analysis on a monthly basis at a minimum.

SCS ENGINEERS

07222143.00 | September 6, 2023

3160 Oregon Pike Leola, PA 17540 717-550-6330

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	109.4	105.8	114.4
Aug 2	111.0	107.1	115.5
Aug 3	111.2	109.4	112.9
Aug 4	111.2	94.0	116.1
Aug 5	113.0	109.5	116.2
Aug 6	112.3	109.6	115.2
Aug 7	112.3	108.0	115.6
Aug 8	106.5	72.4	114.1
Aug 9	112.6	110.4	116.0
Aug 10	111.2	107.7	114.7
Aug 11	112.5	109.7	116.5
Aug 12	112.2	109.5	115.4
Aug 13	112.4	109.9	116.4
Aug 14	112.9	107.3	116.6
Aug 15	112.2	107.4	115.5
Aug 16	104.1	69.6	115.4
Aug 17	78.2	59.6	93.4
Aug 18	74.8	62.5	91.8
Aug 19	73.5	54.8	93.7
Aug 20	76.9	57.9	96.6
Aug 21	79.7	62.5	97.5
Aug 22	81.3	66.7	96.8
Aug 23	80.4	63.9	97.7
Aug 24	89.7	66.3	111.7
Aug 25	92.4	68.9	113.7
Aug 26	85.4	68.8	101.4
Aug 27	77.1	68.4	97.1
Aug 28	87.3	68.0	110.0
Aug 29	85.6	68.3	102.6
Aug 30	84.6	67.9	105.8
Summary	97.5	73.5	113.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	75.0	61.3	92.9
Aug 2	76.4	61.2	93.8
Aug 3	70.1	67.3	74.0
Aug 4	77.9	68.5	95.1
Aug 5	78.7	61.8	98.4
Aug 6	76.0	68.0	88.8
Aug 7	74.9	67.8	88.0
Aug 8	71.5	64.0	80.5
Aug 9	74.1	61.6	90.6
Aug 10	70.4	64.8	82.9
Aug 11	77.5	65.3	94.5
Aug 12	74.3	65.9	92.5
Aug 13	75.4	65.0	94.1
Aug 14	74.0	67.5	85.7
Aug 15	75.4	66.3	89.5
Aug 16	71.8	60.1	90.2
Aug 17	75.2	62.0	95.1
Aug 18	74.3	61.8	91.1
Aug 19	72.2	55.3	96.3
Aug 20	76.5	58.8	101.4
Aug 21	78.6	62.6	98.4
Aug 22	80.5	68.1	95.9
Aug 23	79.9	66.0	100.6
Aug 24	80.2	68.2	98.4
Aug 25	79.8	69.9	97.6
Aug 26	81.3	70.2	97.4
Aug 27	76.8	70.0	93.6
Aug 28	77.7	69.9	96.6
Aug 29	75.1	69.1	86.6
Aug 30	73.7	67.2	82.3
Summary	75.8	70.1	81.3

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	0.0	131.9	131.9
Aug 2	0.0	131.9	131.9
Aug 3	0.0	131.9	131.9
Aug 4	0.0	131.9	131.9
Aug 5	0.0	131.9	131.9
Aug 6	0.0	131.9	131.9
Aug 7	0.0	131.9	131.9
Aug 8	0.0	131.9	131.9
Aug 9	0.0	131.9	131.9
Aug 10	0.0	131.9	131.9
Aug 11	0.0	131.9	131.9
Aug 12	0.0	131.9	131.9
Aug 13	0.0	131.9	131.9
Aug 14	0.0	131.9	131.9
Aug 15	0.0	131.9	131.9
Aug 16	0.0	131.9	131.9
Aug 17	0.0	131.9	131.9
Aug 18	0.0	131.9	131.9
Aug 19	0.0	131.9	131.9
Aug 20	0.0	131.9	131.9
Aug 21	0.0	131.9	131.9
Aug 22	0.0	131.9	131.9
Aug 23	0.0	131.9	131.9
Aug 24	0.0	131.9	131.9
Aug 25	0.0	131.9	131.9
Aug 26	0.0	131.9	131.9
Aug 27	0.0	131.9	131.9
Aug 28	0.0	131.9	131.9
Aug 29	0.0	131.9	131.9
Aug 30	0.0	131.9	131.9
Summary	0.0	0.0	0.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	74.8	26.9	94.0
Aug 2	76.4	61.0	96.2
Aug 3	69.8	67.2	73.8
Aug 4	77.3	67.3	95.0
Aug 5	78.3	61.0	100.4
Aug 6	75.3	67.7	87.3
Aug 7	74.2	67.8	88.8
Aug 8	71.0	63.4	80.5
Aug 9	73.4	61.3	90.0
Aug 10	70.1	64.7	79.9
Aug 11	75.9	65.3	94.7
Aug 12	74.6	65.8	93.8
Aug 13	74.7	64.8	92.8
Aug 14	73.8	67.4	86.9
Aug 15	74.6	64.1	92.3
Aug 16	70.7	58.4	91.3
Aug 17	74.5	60.9	94.4
Aug 18	73.9	62.8	93.0
Aug 19	69.7	26.9	97.7
Aug 20	76.2	59.0	101.2
Aug 21	75.8	26.9	96.8
Aug 22	74.4	26.9	97.0
Aug 23	80.1	64.5	102.8
Aug 24	76.5	26.9	99.3
Aug 25	79.6	68.6	98.9
Aug 26	78.5	26.9	99.8
Aug 27	77.4	68.9	98.3
Aug 28	77.1	68.6	93.8
Aug 29	74.8	68.1	91.0
Aug 30	73.5	67.1	83.0
Summary	74.9	69.7	80.1

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	0.0	81.5	81.5
Aug 2	0.0	81.5	81.5
Aug 3	0.0	81.5	81.5
Aug 4	0.0	81.5	81.5
Aug 5	0.0	81.5	81.5
Aug 6	0.0	81.5	81.5
Aug 7	0.0	81.5	81.5
Aug 8	0.0	81.5	81.5
Aug 9	0.0	81.5	81.5
Aug 10	0.0	81.5	81.5
Aug 11	0.0	81.5	81.5
Aug 12	0.0	81.5	81.5
Aug 13	0.0	81.5	81.5
Aug 14	0.0	81.5	81.5
Aug 15	0.0	81.5	81.5
Aug 16	0.0	81.5	81.5
Aug 17	0.0	81.5	81.5
Aug 18	0.0	81.5	81.5
Aug 19	0.0	81.5	81.5
Aug 20	0.0	81.5	81.5
Aug 21	0.0	81.5	81.5
Aug 22	0.0	81.5	81.5
Aug 23	0.0	81.5	81.5
Aug 24	0.0	81.5	81.5
Aug 25	0.0	81.5	81.5
Aug 26	0.0	81.5	81.5
Aug 27	0.0	81.5	81.5
Aug 28	0.0	81.5	81.5
Aug 29	0.0	81.5	81.5
Aug 30	0.0	81.5	81.5
Summary	0.0	0.0	0.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	77.4	62.0	96.1
Aug 2	77.6	62.1	95.4
Aug 3	72.7	68.0	78.2
Aug 4	81.4	72.3	94.6
Aug 5	81.6	63.1	100.1
Aug 6	77.0	68.5	86.1
Aug 7	76.2	70.4	87.6
Aug 8	72.3	65.0	85.4
Aug 9	76.9	69.6	87.3
Aug 10	69.9	66.0	77.0
Aug 11	76.7	66.1	95.6
Aug 12	74.4	66.0	90.4
Aug 13	76.0	65.3	90.9
Aug 14	73.9	67.7	86.4
Aug 15	75.7	68.8	87.6
Aug 16	78.1	64.0	89.0
Aug 17	78.6	64.2	92.6
Aug 18	76.5	63.1	89.6
Aug 19	71.9	55.6	94.4
Aug 20	75.8	58.6	95.9
Aug 21	79.8	62.7	98.1
Aug 22	81.4	67.7	97.3
Aug 23	83.5	66.1	102.0
Aug 24	82.0	70.7	98.9
Aug 25	80.8	73.0	90.0
Aug 26	88.0	77.0	98.8
Aug 27	78.7	71.3	97.8
Aug 28	79.2	70.9	99.7
Aug 29	78.6	71.5	95.5
Aug 30	77.0	70.8	87.1
Summary	77.6	69.9	88.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	0.0	122.7	122.7
Aug 2	0.0	131.2	131.2
Aug 3	0.0	139.6	139.6
Aug 4	148.4	144.7	149.3
Aug 5	145.1	145.0	145.6
Aug 6	0.0	144.4	144.4
Aug 7	0.0	143.8	143.8
Aug 8	0.0	143.3	143.3
Aug 9	145.9	143.0	147.8
Aug 10	142.5	139.3	144.7
Aug 11	145.5	142.5	148.3
Aug 12	144.8	141.1	147.7
Aug 13	143.3	141.7	144.8
Aug 14	143.6	142.2	146.7
Aug 15	146.1	142.0	147.6
Aug 16	142.8	133.9	147.8
Aug 17	124.3	101.4	144.7
Aug 18	107.4	98.3	133.3
Aug 19	137.2	128.6	143.7
Aug 20	138.5	132.5	145.4
Aug 21	142.2	133.4	149.9
Aug 22	143.9	143.0	145.0
Aug 23	143.0	136.3	147.4
Aug 24	142.6	137.2	145.2
Aug 25	142.8	141.9	144.1
Aug 26	142.5	141.2	143.1
Aug 27	141.3	136.2	142.8
Aug 28	141.8	140.6	143.2
Aug 29	141.6	140.7	142.8
Aug 30	141.0	139.9	141.8
Summary	112.6	0.0	148.4

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	117.6	114.1	120.6
Aug 2	118.0	116.8	119.6
Aug 3	117.0	115.8	117.9
Aug 4	116.3	113.3	118.9
Aug 5	116.7	114.6	119.0
Aug 6	115.9	114.8	117.1
Aug 7	116.5	112.1	118.1
Aug 8	117.1	115.9	118.7
Aug 9	116.9	116.0	118.3
Aug 10	115.8	114.2	117.6
Aug 11	116.6	115.3	118.6
Aug 12	116.1	115.0	117.9
Aug 13	116.1	114.8	118.1
Aug 14	114.8	112.6	116.5
Aug 15	114.0	111.9	116.0
Aug 16	111.5	97.3	116.6
Aug 17	115.9	112.4	119.7
Aug 18	114.5	95.7	119.3
Aug 19	101.9	90.6	114.6
Aug 20	105.6	97.6	115.8
Aug 21	111.6	99.3	122.6
Aug 22	118.9	117.5	120.5
Aug 23	118.7	117.2	121.6
Aug 24	118.2	117.0	120.2
Aug 25	118.7	117.5	120.4
Aug 26	118.1	117.0	119.6
Aug 27	118.3	116.3	119.9
Aug 28	118.6	117.2	120.4
Aug 29	118.8	117.7	120.7
Aug 30	117.3	116.2	118.1
Summary	115.7	101.9	118.9

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	75.4	63.6	96.1
Aug 2	79.7	62.9	99.1
Aug 3	120.3	69.1	190.5
Aug 4	93.9	76.6	189.2
Aug 5	121.6	71.1	191.5
Aug 6	93.4	85.4	102.4
Aug 7	137.6	84.0	175.9
Aug 8	160.6	158.5	162.6
Aug 9	121.6	72.3	159.5
Aug 10	72.7	66.2	85.7
Aug 11	77.8	66.9	97.2
Aug 12	75.6	67.2	92.0
Aug 13	76.6	66.6	95.2
Aug 14	77.2	68.4	116.6
Aug 15	74.5	66.9	86.2
Aug 16	71.1	59.4	87.7
Aug 17	90.3	61.2	189.8
Aug 18	92.1	61.0	189.3
Aug 19	72.3	55.1	100.4
Aug 20	88.0	58.8	192.5
Aug 21	92.6	63.3	188.2
Aug 22	147.1	75.0	194.2
Aug 23	89.4	74.9	110.0
Aug 24	124.5	70.8	193.4
Aug 25	116.8	77.1	192.7
Aug 26	83.6	75.7	95.4
Aug 27	99.2	72.4	191.0
Aug 28	132.3	78.6	192.0
Aug 29	104.9	77.2	192.0
Aug 30	100.4	72.4	193.4
Summary	98.8	71.1	160.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	158.7	129.1	172.1
Aug 2	150.1	145.7	154.0
Aug 3	143.4	140.9	146.0
Aug 4	144.1	142.4	146.1
Aug 5	144.1	140.6	147.6
Aug 6	145.4	139.6	147.9
Aug 7	164.8	143.1	183.1
Aug 8	145.0	141.2	147.8
Aug 9	142.0	140.1	145.5
Aug 10	145.7	138.5	150.4
Aug 11	143.6	139.3	145.4
Aug 12	141.3	138.0	145.4
Aug 13	146.1	142.8	149.4
Aug 14	148.8	144.1	152.1
Aug 15	147.9	143.4	151.3
Aug 16	144.1	139.0	147.5
Aug 17	145.6	144.1	147.5
Aug 18	145.7	136.9	148.1
Aug 19	142.1	136.8	148.1
Aug 20	143.1	138.5	149.4
Aug 21	147.3	143.0	151.7
Aug 22	146.5	145.4	148.7
Aug 23	145.4	141.5	148.1
Aug 24	145.8	144.4	147.1
Aug 25	145.5	144.1	146.5
Aug 26	145.2	144.1	146.7
Aug 27	144.2	141.8	145.8
Aug 28	144.3	142.3	146.2
Aug 29	144.2	143.5	145.2
Aug 30	144.0	143.3	146.1
Summary	146.1	141.3	164.8

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	156.1	147.9	167.4
Aug 2	166.4	145.0	193.4
Aug 3	157.0	150.7	165.0
Aug 4	152.4	75.4	181.2
Aug 5	145.7	136.7	153.5
Aug 6	139.3	133.3	142.1
Aug 7	145.2	136.7	159.9
Aug 8	0.0	81.4	81.4
Aug 9	164.6	67.2	193.5
Aug 10	157.6	151.9	164.9
Aug 11	151.2	83.5	170.5
Aug 12	0.0	166.0	166.0
Aug 13	0.0	165.2	165.2
Aug 14	0.0	164.4	164.4
Aug 15	153.0	147.5	164.0
Aug 16	142.3	65.7	167.8
Aug 17	150.8	145.4	159.6
Aug 18	148.2	139.2	158.9
Aug 19	143.8	134.2	154.3
Aug 20	146.9	139.8	156.0
Aug 21	152.7	135.4	188.1
Aug 22	112.7	26.5	179.7
Aug 23	105.0	64.7	158.4
Aug 24	152.1	148.7	156.9
Aug 25	164.4	147.5	186.9
Aug 26	159.2	154.9	162.4
Aug 27	154.7	145.2	161.7
Aug 28	170.8	152.5	191.1
Aug 29	174.7	159.1	186.3
Aug 30	181.0	171.5	192.4
Summary	131.6	0.0	181.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	95.7	73.6	158.2
Aug 2	91.0	76.6	139.0
Aug 3	77.1	74.8	80.4
Aug 4	88.5	73.1	160.4
Aug 5	79.7	66.9	96.5
Aug 6	77.8	72.1	88.2
Aug 7	77.2	70.3	86.6
Aug 8	73.8	66.7	82.6
Aug 9	92.5	63.4	166.7
Aug 10	73.8	67.3	83.0
Aug 11	78.9	67.7	95.1
Aug 12	82.8	67.2	151.9
Aug 13	81.2	66.2	155.7
Aug 14	84.9	69.4	157.9
Aug 15	148.8	68.7	171.7
Aug 16	112.9	93.1	161.0
Aug 17	125.7	85.2	168.5
Aug 18	103.9	83.3	113.2
Aug 19	89.2	74.4	110.6
Aug 20	86.8	73.4	109.2
Aug 21	83.8	67.2	109.3
Aug 22	104.2	69.5	167.3
Aug 23	89.2	75.2	104.9
Aug 24	86.7	75.0	102.5
Aug 25	85.2	75.0	101.6
Aug 26	86.0	75.5	102.8
Aug 27	80.8	71.7	101.4
Aug 28	82.2	72.6	99.0
Aug 29	79.6	72.7	96.7
Aug 30	78.7	71.5	89.0
Summary	89.3	73.8	148.8

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	123.1	94.6	176.3
Aug 2	115.7	95.8	158.1
Aug 3	103.4	85.4	139.9
Aug 4	109.4	91.9	159.5
Aug 5	102.9	87.3	120.0
Aug 6	98.7	93.2	105.4
Aug 7	102.7	81.5	134.8
Aug 8	97.6	82.1	148.8
Aug 9	99.5	85.8	129.0
Aug 10	87.2	75.6	99.7
Aug 11	100.4	83.9	153.0
Aug 12	89.8	81.3	102.1
Aug 13	91.6	82.1	108.3
Aug 14	92.3	80.7	109.3
Aug 15	86.9	76.8	100.9
Aug 16	106.3	80.4	147.2
Aug 17	102.8	92.6	115.5
Aug 18	104.7	86.3	121.4
Aug 19	93.5	77.8	114.6
Aug 20	97.1	82.2	117.6
Aug 21	100.6	85.4	117.7
Aug 22	100.1	89.2	112.6
Aug 23	99.8	86.9	120.7
Aug 24	101.1	91.9	113.3
Aug 25	103.5	96.3	114.1
Aug 26	101.6	37.5	115.7
Aug 27	101.1	89.2	116.7
Aug 28	100.3	90.5	112.5
Aug 29	97.9	90.8	111.1
Aug 30	99.2	93.3	107.7
Summary	100.4	86.9	123.1

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	119.4	113.8	127.1
Aug 2	116.8	110.5	126.6
Aug 3	112.7	107.1	116.9
Aug 4	117.8	112.6	126.2
Aug 5	118.0	109.1	128.7
Aug 6	117.8	112.1	123.2
Aug 7	117.5	108.0	123.9
Aug 8	115.1	108.7	119.5
Aug 9	114.7	109.8	122.6
Aug 10	107.5	96.9	117.6
Aug 11	111.5	105.5	123.0
Aug 12	111.0	106.3	120.3
Aug 13	111.5	105.5	122.7
Aug 14	112.9	104.5	123.6
Aug 15	110.6	99.1	124.0
Aug 16	115.9	106.0	128.2
Aug 17	119.1	113.4	128.1
Aug 18	117.5	101.1	125.9
Aug 19	94.4	77.1	113.7
Aug 20	85.4	69.7	109.0
Aug 21	98.5	67.7	126.4
Aug 22	119.1	114.3	126.6
Aug 23	120.0	112.5	130.4
Aug 24	124.4	120.5	131.1
Aug 25	126.4	123.5	132.2
Aug 26	127.0	124.1	133.0
Aug 27	125.3	118.9	130.5
Aug 28	123.8	118.9	129.1
Aug 29	122.0	119.2	126.0
Aug 30	120.9	118.4	124.0
Summary	115.2	85.4	127.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	164.0	155.3	176.0
Aug 2	165.6	158.8	174.9
Aug 3	155.3	150.0	161.5
Aug 4	157.9	150.1	166.3
Aug 5	161.0	145.4	183.9
Aug 6	147.6	139.4	150.3
Aug 7	131.3	96.3	148.0
Aug 8	141.0	97.1	185.0
Aug 9	156.5	147.3	165.1
Aug 10	145.9	134.4	151.7
Aug 11	148.4	144.5	153.7
Aug 12	145.4	139.4	149.9
Aug 13	146.2	140.3	152.8
Aug 14	148.0	145.0	152.1
Aug 15	147.0	140.4	152.3
Aug 16	0.0	147.4	147.4
Aug 17	0.0	143.9	143.9
Aug 18	142.1	133.7	146.8
Aug 19	138.4	131.3	149.7
Aug 20	141.2	133.7	150.7
Aug 21	143.3	135.7	152.2
Aug 22	144.7	140.0	149.7
Aug 23	145.2	138.3	154.5
Aug 24	147.4	145.1	152.2
Aug 25	0.0	148.7	148.7
Aug 26	147.7	146.5	150.1
Aug 27	144.0	143.5	149.1
Aug 28	0.0	143.6	143.6
Aug 29	0.0	143.7	143.7
Aug 30	152.4	139.9	168.1
Summary	123.6	0.0	165.6

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	95.7	89.0	105.7
Aug 2	94.7	86.5	104.5
Aug 3	90.7	88.6	92.9
Aug 4	93.9	88.9	105.1
Aug 5	90.5	74.9	103.1
Aug 6	93.7	89.0	98.4
Aug 7	91.4	85.3	99.6
Aug 8	97.4	68.8	132.6
Aug 9	113.0	64.5	154.6
Aug 10	82.6	65.9	147.1
Aug 11	131.5	121.8	137.7
Aug 12	122.9	112.4	130.0
Aug 13	116.0	109.1	124.3
Aug 14	106.6	83.8	127.7
Aug 15	87.2	69.7	115.3
Aug 16	106.6	90.7	117.0
Aug 17	113.2	101.5	135.9
Aug 18	103.0	68.5	112.2
Aug 19	79.6	62.0	101.1
Aug 20	84.8	70.2	103.3
Aug 21	87.1	72.6	115.0
Aug 22	102.1	78.7	130.5
Aug 23	124.5	88.0	139.2
Aug 24	99.3	80.5	117.6
Aug 25	115.2	96.2	127.7
Aug 26	113.6	96.0	126.3
Aug 27	99.7	90.4	112.2
Aug 28	102.1	92.9	112.7
Aug 29	101.9	95.9	111.4
Aug 30	102.8	97.0	108.2
Summary	101.4	79.6	131.5

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	116.0	115.8	116.2
Aug 2	116.5	115.9	117.1
Aug 3	0.0	116.4	116.4
Aug 4	116.5	113.8	118.0
Aug 5	116.5	115.3	117.7
Aug 6	115.8	115.7	116.0
Aug 7	117.7	116.8	118.7
Aug 8	0.0	117.3	117.3
Aug 9	115.4	114.4	117.3
Aug 10	115.7	113.3	119.0
Aug 11	116.2	114.0	118.6
Aug 12	116.9	114.8	120.2
Aug 13	116.8	115.3	118.9
Aug 14	117.2	114.9	120.9
Aug 15	115.0	109.2	120.5
Aug 16	113.9	100.4	117.8
Aug 17	114.3	113.6	115.2
Aug 18	112.1	85.3	114.9
Aug 19	88.7	55.8	118.4
Aug 20	113.3	106.5	120.8
Aug 21	114.0	98.9	129.3
Aug 22	115.6	114.2	117.7
Aug 23	111.6	43.5	116.4
Aug 24	114.4	113.6	115.0
Aug 25	114.5	113.7	121.2
Aug 26	110.7	43.1	114.5
Aug 27	113.6	113.2	114.7
Aug 28	113.8	113.2	115.6
Aug 29	113.6	113.2	114.3
Aug 30	113.9	113.2	116.6
Summary	106.3	0.0	117.7

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	110.9	103.5	131.8
Aug 2	108.2	102.1	122.0
Aug 3	105.0	102.1	107.7
Aug 4	119.8	103.1	150.5
Aug 5	112.2	107.3	117.2
Aug 6	109.6	105.4	113.2
Aug 7	115.7	102.0	145.3
Aug 8	123.3	92.2	156.2
Aug 9	128.7	114.0	160.8
Aug 10	115.5	110.8	120.2
Aug 11	141.9	110.5	167.0
Aug 12	135.5	136.1	137.2
Aug 13	124.1	128.3	128.8
Aug 14	0.0	83.7	83.7
Aug 15	118.6	58.5	129.6
Aug 16	114.4	121.2	121.6
Aug 17	114.2	54.0	120.2
Aug 18	141.9	126.3	152.4
Aug 19	119.9	113.5	126.9
Aug 20	127.7	110.1	157.6
Aug 21	133.1	125.0	146.7
Aug 22	126.3	121.4	149.4
Aug 23	120.1	117.5	122.8
Aug 24	118.3	115.3	127.2
Aug 25	131.2	126.5	148.4
Aug 26	118.8	118.8	119.3
Aug 27	117.4	117.6	117.6
Aug 28	116.9	116.9	116.9
Aug 29	0.0	116.4	116.4
Aug 30	0.0	116.0	116.0
Summary	109.0	0.0	141.9

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	125.6	123.3	128.2
Aug 2	126.1	124.2	128.5
Aug 3	125.0	123.0	126.4
Aug 4	125.6	106.6	128.6
Aug 5	126.8	124.2	129.0
Aug 6	126.1	122.3	127.3
Aug 7	125.1	119.4	127.0
Aug 8	123.4	112.0	126.2
Aug 9	125.4	124.0	127.5
Aug 10	123.5	119.4	126.1
Aug 11	125.2	123.5	127.6
Aug 12	123.6	119.8	125.5
Aug 13	123.1	121.1	126.2
Aug 14	121.7	116.7	125.1
Aug 15	120.6	114.3	124.0
Aug 16	114.4	84.5	124.6
Aug 17	96.2	79.7	107.5
Aug 18	83.7	70.2	96.8
Aug 19	80.8	67.2	99.3
Aug 20	81.7	65.7	101.2
Aug 21	83.5	69.1	100.6
Aug 22	84.3	73.1	99.6
Aug 23	83.8	69.1	101.1
Aug 24	98.7	71.7	124.9
Aug 25	115.0	98.4	126.6
Aug 26	106.3	84.5	115.4
Aug 27	84.0	73.8	99.7
Aug 28	100.9	77.4	126.1
Aug 29	119.4	101.8	130.9
Aug 30	126.2	118.2	130.3
Summary	110.9	80.8	126.8

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	126.0	122.7	130.9
Aug 2	126.9	123.7	130.6
Aug 3	124.0	119.7	126.9
Aug 4	124.1	91.6	129.8
Aug 5	127.8	123.6	131.6
Aug 6	126.6	124.4	128.6
Aug 7	125.7	117.2	128.8
Aug 8	122.7	100.4	128.0
Aug 9	126.8	124.7	129.6
Aug 10	124.1	118.7	127.2
Aug 11	127.2	124.1	131.2
Aug 12	126.4	122.3	130.0
Aug 13	126.7	122.7	131.2
Aug 14	126.1	119.4	129.4
Aug 15	124.3	118.1	127.9
Aug 16	115.7	76.0	127.6
Aug 17	92.9	70.6	110.2
Aug 18	77.5	65.1	94.6
Aug 19	75.6	56.7	96.5
Aug 20	78.6	60.8	100.3
Aug 21	81.3	65.4	100.0
Aug 22	83.0	69.4	98.6
Aug 23	82.8	66.6	101.9
Aug 24	99.5	69.3	129.5
Aug 25	115.1	92.2	130.8
Aug 26	101.8	78.1	116.4
Aug 27	79.9	71.6	99.5
Aug 28	98.7	71.5	129.4
Aug 29	110.6	89.3	126.7
Aug 30	110.0	85.1	127.2
Summary	109.6	75.6	127.8

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	130.4	127.9	133.3
Aug 2	131.1	129.2	134.3
Aug 3	128.0	125.0	130.6
Aug 4	130.1	116.5	134.1
Aug 5	132.2	128.8	138.3
Aug 6	130.1	127.8	132.1
Aug 7	129.6	122.7	131.7
Aug 8	127.0	99.7	131.2
Aug 9	131.3	129.0	133.1
Aug 10	129.2	124.9	131.9
Aug 11	131.9	129.7	134.4
Aug 12	130.5	126.7	132.8
Aug 13	130.6	127.5	133.4
Aug 14	129.6	123.7	134.7
Aug 15	127.7	121.8	130.9
Aug 16	121.5	84.5	130.4
Aug 17	96.5	64.5	132.4
Aug 18	73.9	63.1	86.2
Aug 19	72.0	55.8	91.2
Aug 20	75.4	59.5	93.3
Aug 21	78.7	63.8	96.3
Aug 22	80.7	68.0	95.2
Aug 23	80.7	64.8	97.1
Aug 24	107.6	67.4	145.4
Aug 25	127.6	73.9	144.3
Aug 26	105.4	72.4	138.9
Aug 27	76.1	69.1	93.7
Aug 28	108.6	68.6	143.7
Aug 29	125.5	71.9	142.2
Aug 30	119.6	68.9	142.7
Summary	113.3	72.0	132.2
Date	Average (°F)	Minimum (°F)	Maximum (°F)
---------	--------------	--------------	--------------
Aug 1	118.8	91.6	140.5
Aug 2	135.0	133.9	136.4
Aug 3	133.2	131.4	134.4
Aug 4	132.6	92.5	136.8
Aug 5	134.7	132.0	136.9
Aug 6	134.0	132.3	135.3
Aug 7	133.3	127.9	135.1
Aug 8	129.6	86.1	133.4
Aug 9	132.3	131.0	134.8
Aug 10	130.0	126.0	132.5
Aug 11	131.9	129.9	134.6
Aug 12	130.3	126.6	132.9
Aug 13	130.0	127.5	133.7
Aug 14	128.5	121.7	131.9
Aug 15	125.9	119.7	129.5
Aug 16	120.2	77.5	133.6
Aug 17	128.9	123.3	132.9
Aug 18	128.5	126.0	131.5
Aug 19	129.8	126.9	132.8
Aug 20	129.8	126.7	132.9
Aug 21	129.7	127.7	132.9
Aug 22	129.3	126.7	132.2
Aug 23	128.6	117.7	134.3
Aug 24	128.3	121.2	131.3
Aug 25	127.4	124.8	131.3
Aug 26	126.9	124.1	131.3
Aug 27	125.0	118.3	130.1
Aug 28	124.8	119.8	130.3
Aug 29	129.3	121.0	135.6
Aug 30	132.3	131.1	133.3
Summary	129.3	118.8	135.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	86.8	76.8	109.2
Aug 2	89.6	82.5	112.3
Aug 3	83.6	80.0	88.2
Aug 4	89.2	82.4	99.0
Aug 5	109.9	69.7	139.3
Aug 6	133.9	129.2	136.8
Aug 7	110.6	90.3	135.4
Aug 8	96.5	89.7	102.9
Aug 9	95.3	88.6	103.5
Aug 10	87.4	77.4	97.7
Aug 11	93.0	85.0	106.2
Aug 12	91.2	85.8	100.4
Aug 13	92.4	85.4	103.7
Aug 14	93.4	86.9	106.5
Aug 15	93.1	86.9	103.0
Aug 16	107.9	88.3	135.1
Aug 17	134.5	132.0	138.8
Aug 18	132.1	108.1	135.7
Aug 19	108.6	103.9	116.4
Aug 20	111.2	107.3	120.4
Aug 21	126.0	109.7	141.7
Aug 22	136.8	133.7	140.9
Aug 23	137.1	127.9	145.2
Aug 24	140.0	134.3	143.4
Aug 25	141.0	138.8	143.0
Aug 26	141.0	139.7	143.3
Aug 27	138.5	118.9	143.6
Aug 28	137.6	127.8	140.5
Aug 29	137.4	134.7	139.2
Aug 30	137.2	135.9	138.6
Summary	113.8	83.6	141.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	120.1	96.1	134.2
Aug 2	146.0	109.2	180.4
Aug 3	138.0	122.1	153.8
Aug 4	167.3	133.5	182.7
Aug 5	159.1	151.7	165.2
Aug 6	157.0	141.0	176.3
Aug 7	152.6	149.7	168.5
Aug 8	0.0	158.0	158.0
Aug 9	174.7	160.5	181.5
Aug 10	169.1	162.0	175.8
Aug 11	163.3	156.8	168.9
Aug 12	156.6	149.3	162.7
Aug 13	153.8	142.9	160.7
Aug 14	168.5	138.3	183.5
Aug 15	172.3	164.6	183.6
Aug 16	159.8	146.0	171.6
Aug 17	159.5	102.6	180.2
Aug 18	183.0	180.2	185.0
Aug 19	172.2	167.9	185.1
Aug 20	167.7	164.7	171.3
Aug 21	170.4	161.3	183.3
Aug 22	170.1	166.5	181.5
Aug 23	164.7	158.7	172.3
Aug 24	173.1	157.2	184.0
Aug 25	175.3	165.7	185.1
Aug 26	175.3	167.4	184.0
Aug 27	166.9	156.6	170.5
Aug 28	173.4	163.2	184.6
Aug 29	182.4	171.7	187.0
Aug 30	174.1	166.4	185.3
Summary	158.9	0.0	183.0

Date	Average (°F)	Minimum (°F)	Maximum (°F)
Aug 1	135.7	131.4	140.3
Aug 2	135.7	133.2	138.3
Aug 3	134.7	130.3	136.5
Aug 4	135.0	133.5	137.2
Aug 5	133.9	130.5	136.3
Aug 6	134.0	132.1	135.4
Aug 7	129.6	94.5	136.5
Aug 8	132.0	112.8	134.6
Aug 9	133.5	131.5	135.7
Aug 10	132.6	129.6	135.1
Aug 11	130.5	128.0	132.7
Aug 12	132.2	128.7	135.2
Aug 13	133.1	131.8	134.6
Aug 14	131.7	129.5	134.7
Aug 15	131.5	130.1	133.2
Aug 16	130.3	124.5	133.0
Aug 17	130.5	129.5	131.8
Aug 18	129.0	119.5	130.9
Aug 19	123.0	117.2	128.5
Aug 20	123.0	113.2	130.6
Aug 21	129.1	122.7	135.3
Aug 22	130.9	130.1	131.8
Aug 23	129.6	126.1	132.4
Aug 24	129.7	127.8	131.6
Aug 25	129.6	129.0	130.6
Aug 26	129.6	129.0	130.4
Aug 27	129.1	127.3	130.6
Aug 28	128.9	127.6	130.5
Aug 29	128.5	127.6	129.4
Aug 30	128.2	125.9	131.6
Summary	130.8	123.0	135.7

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

Appendix D Table of Contents

Section Page
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 1 D-3
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 2 D-Error! Bookmark not defined.
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 3 D-Error! Bookmark not defined.
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 4 D-Error! Bookmark not defined.
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 5 D-Error! Bookmark not defined.
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 6 D-Error! Bookmark not defined.
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 7 D-Error! Bookmark not defined.
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 8 D-Error! Bookmark not defined.
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 9 D-Error! Bookmark not defined.

	Depth from Surface										
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft					
1-Aug	168.0	227.2	227.6	250.2	266.7	271.1					
2-Aug	167.9	227.3	227.8	250.3	266.7	271.2					
3-Aug	167.6	227.0	227.5	249.8	266.5	271.0					
4-Aug	167.9	227.4	227.8	250.0	266.9	271.4					
5-Aug	167.8	227.7	228.1	250.4	267.1	271.6					
6-Aug	167.7	227.3	227.9	250.1	266.8	271.3					
7-Aug	167.6	227.0	227.5	249.9	266.9	271.4					
8-Aug	167.5	227.0	227.6	249.9	266.8	271.3					
9-Aug	167.6	227.2	227.7	250.2	266.8	271.4					
10-Aug	167.5	226.6	227.1	249.7	266.7	271.3					
11-Aug	167.7	226.5	227.0	249.8	266.9	271.6					
12-Aug	167.6	226.2	226.7	249.5	266.8	271.6					
13-Aug	167.7	226.0	226.5	249.5	266.8	271.7					
14-Aug	167.5	225.6	226.1	249.2	266.7	271.5					
15-Aug	167.5	225.7	226.1	249.3	266.7	271.6					
16-Aug	167.4	225.2	225.7	249.1	266.7	271.7					
17-Aug	167.5	225.3	225.8	249.2	266.9	272.0					
18-Aug	167.4	225.2	225.7	249.2	266.9	272.0					
19-Aug	167.3	225.0	225.6	249.1	266.8	271.9					
20-Aug	167.4	225.1	225.7	249.3	267.0	272.1					
21-Aug	167.5	224.9	225.5	249.4	267.1	272.2					
22-Aug	167.6	224.9	225.4	249.5	267.2	272.3					
23-Aug	167.6	224.7	225.2	249.5	267.2	272.4					
24-Aug	167.4	224.1	224.7	249.3	267.0	272.3					
25-Aug	167.3	223.6	224.1	249.2	266.9	272.2					
26-Aug	167.4	223.6	224.1	249.4	267.0	272.5					
27-Aug	167.2	223.3	223.8	249.3	266.9	272.5					
28-Aug	167.2	223.2	223.7	249.2	266.8	272.5					
29-Aug	167.1	223.0	223.5	249.1	266.6	272.4					
30-Aug	167.1	222.9	223.4	249.2	266.6	272.5					
31-Aug	166.9	224.3	224.9	250.1	266.6	272.3					
Average	167.5	225.5	226.0	249.6	266.8	271.8					

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft				
1-Aug	161.6	241.6	241.9	268.0	256.1	267.6				
2-Aug	161.1	241.6	242.0	268.0	255.9	267.6				
3-Aug	160.8	241.3	241.7	267.7	255.6	267.3				
4-Aug	160.9	241.7	242.1	268.1	256.0	267.7				
5-Aug	160.6	241.7	242.1	268.2	256.0	267.8				
6-Aug	160.1	241.5	241.9	267.9	255.6	267.5				
7-Aug	159.8	241.5	241.9	267.9	255.6	267.5				
8-Aug	159.5	241.5	241.8	267.9	255.5	267.4				
9-Aug	159.2	241.6	242.0	268.1	255.7	267.6				
10-Aug	159.0	241.4	241.8	267.8	255.5	267.4				
11-Aug	159.2	241.7	242.2	268.1	255.7	267.7				
12-Aug	158.9	241.6	242.0	268.0	255.5	267.4				
13-Aug	158.7	241.9	242.3	268.1	255.6	267.6				
14-Aug	158.6	241.7	242.2	268.0	255.6	267.5				
15-Aug	158.9	241.8	242.2	268.2	255.7	267.6				
16-Aug	*	*	*	*	*	*				
17-Aug	*	*	*	*	*	*				
18-Aug	*	*	*	*	*	*				
19-Aug	*	*	*	*	*	*				
20-Aug	*	*	*	*	*	*				
21-Aug	*	*	*	*	*	*				
22-Aug	*	*	*	*	*	*				
23-Aug	*	*	*	*	*	*				
24-Aug	*	*	*	*	*	*				
25-Aug	*	*	*	*	*	*				
26-Aug	*	*	*	*	*	*				
27-Aug	*	*	*	*	*	*				
28-Aug	*	*	*	*	*	*				
29-Aug	*	*	*	*	*	*				
30-Aug	*	*	*	*	*	*				
31-Aug	*	*	*	*	*	*				
Average	159.8	241.6	242.0	268.0	255.7	267.5				

* Indicates days that the sensors were not operational

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft		
1-Aug	208.0	208.2	231.1	253.0	263.8	269.5	271.0	255.6		
2-Aug	207.8	210.0	232.8	252.7	263.8	269.4	270.8	255.8		
3-Aug	207.5	214.9	219.5	252.5	263.5	269.0	270.5	255.4		
4-Aug	208.0	208.2	215.1	253.1	264.0	269.7	271.1	255.8		
5-Aug	207.3	207.7	213.3	252.1	263.6	269.1	270.4	256.1		
6-Aug	207.0	216.5	219.0	251.8	263.4	268.8	270.1	255.8		
7-Aug	207.2	207.8	214.1	252.4	263.6	269.4	270.5	255.8		
8-Aug	207.8	208.3	208.3	252.9	263.7	269.8	270.9	255.6		
9-Aug	207.6	208.8	214.6	252.6	263.7	269.7	270.7	255.9		
10-Aug	206.8	211.5	208.1	252.0	263.3	269.1	270.1	255.7		
11-Aug	206.8	209.1	214.9	251.5	263.4	269.0	270.0	256.1		
12-Aug	207.1	209.5	221.2	251.5	263.4	269.0	270.1	256.0		
13-Aug	207.2	212.3	224.8	251.2	263.3	268.9	269.8	255.9		
14-Aug	207.0	208.8	217.7	251.3	263.1	268.9	269.8	255.9		
15-Aug	207.0	207.6	208.9	251.3	263.3	269.0	269.9	256.0		
16-Aug	207.2	210.6	216.7	251.1	263.1	269.0	269.8	255.9		
17-Aug	207.3	211.4	221.1	251.4	263.3	269.1	269.9	256.1		
18-Aug	207.4	208.9	216.3	251.4	263.3	269.2	270.0	256.0		
19-Aug	207.3	208.1	211.1	251.4	263.4	269.3	270.1	256.1		
20-Aug	207.6	208.6	216.5	251.6	263.6	269.4	270.3	256.3		
21-Aug	207.7	208.9	215.1	251.7	263.5	269.5	270.3	256.3		
22-Aug	207.6	208.3	214.4	251.8	263.6	269.7	270.4	256.4		
23-Aug	207.6	209.3	212.9	251.9	263.7	269.6	270.5	256.5		
24-Aug	207.4	210.1	218.6	251.9	263.6	269.4	270.3	256.4		
25-Aug	207.2	220.1	222.1	251.7	263.4	269.3	270.1	256.3		
26-Aug	207.3	226.3	228.7	252.0	263.6	269.5	270.4	256.6		
27-Aug	207.3	219.0	220.2	252.0	263.5	269.6	270.4	256.5		
28-Aug	206.9	214.4	215.0	251.6	263.3	269.2	270.1	256.4		
29-Aug	207.0	207.4	209.3	251.3	263.1	269.2	270.0	256.4		
30-Aug	206.9	207.6	209.3	251.4	263.2	269.4	270.2	256.3		
31-Aug	207.0	209.0	212.3	251.1	263.0	269.2	269.8	256.2		
Average	207.3	210.9	216.9	251.8	263.5	269.3	270.3	256.1		

	Depth from Surface								
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft	
1-Aug	168.6	206.2	206.3	249.8	261.5	261.3	246.3	177.0	
2-Aug	167.8	205.1	205.1	250.2	261.4	261.3	246.2	176.8	
3-Aug	166.9	204.3	204.1	250.3	261.3	261.1	245.9	176.5	
4-Aug	166.0	204.8	205.2	251.1	261.8	261.6	246.4	177.2	
5-Aug	166.0	206.3	206.7	251.5	262.8	260.8	246.5	177.3	
6-Aug	165.6	207.6	207.6	251.5	261.9	261.3	246.3	177.2	
7-Aug	165.4	207.6	207.6	252.1	262.0	261.1	246.3	177.2	
8-Aug	164.8	207.6	207.6	252.0	264.8	258.6	246.2	177.1	
9-Aug	165.1	207.7	207.8	252.3	264.2	259.5	246.4	177.4	
10-Aug	164.7	207.4	207.3	252.2	263.8	259.4	246.2	177.1	
11-Aug	164.6	207.9	208.0	247.6	265.5	258.7	246.6	177.6	
12-Aug	164.8	207.7	207.7	250.5	263.2	260.4	246.2	177.3	
13-Aug	165.1	207.9	207.9	252.5	263.3	260.6	246.5	177.5	
14-Aug	165.6	207.7	207.7	252.3	263.0	260.9	246.3	177.3	
15-Aug	172.0	207.7	207.7	252.0	264.7	259.8	246.4	177.4	
16-Aug	182.4	207.6	207.7	224.1	263.6	260.2	246.2	177.5	
17-Aug	196.7	207.6	207.7	213.6	263.4	260.8	246.5	177.7	
18-Aug	205.3	207.7	207.7	214.7	263.9	260.3	246.4	177.6	
19-Aug	206.8	207.8	207.9	208.5	263.7	260.5	246.4	177.5	
20-Aug	207.9	208.1	208.2	208.3	264.6	260.4	246.6	177.2	
21-Aug	208.2	208.1	208.2	208.2	264.8	260.6	246.5	176.4	
22-Aug	208.2	208.2	208.2	208.3	264.5	260.9	246.7	176.9	
23-Aug	206.6	208.1	208.2	208.4	264.2	261.2	246.7	177.0	
24-Aug	200.0	208.0	208.0	208.6	264.1	261.2	246.5	176.9	
25-Aug	203.1	207.8	207.9	208.4	264.0	261.0	246.5	177.1	
26-Aug	206.7	207.9	207.9	208.3	264.2	261.2	246.8	177.5	
27-Aug	207.1	207.6	207.6	207.9	264.1	260.8	246.5	177.3	
28-Aug	207.6	207.6	207.5	207.8	264.1	261.0	246.5	177.4	
29-Aug	207.5	207.5	207.5	207.9	263.4	261.0	246.4	177.3	
30-Aug	207.4	207.3	207.4	207.5	262.2	260.9	246.4	177.4	
31-Aug	207.6	207.5	207.5	207.6	261.9	261.2	246.4	177.5	
Average	185.9	207.4	207.4	229.9	263.4	260.6	246.4	177.2	

	Depth from Surface								
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft	
1-Aug	182.0	209.1	207.8	208.1	228.0	242.2	246.5	193.9	
2-Aug	181.9	209.9	207.9	208.2	228.0	242.2	246.5	194.0	
3-Aug	181.9	209.7	207.6	207.8	227.8	242.0	246.2	193.9	
4-Aug	182.0	209.8	207.7	208.0	227.9	242.2	246.3	194.2	
5-Aug	182.3	210.2	207.8	208.0	227.8	242.1	246.2	194.2	
6-Aug	182.6	210.1	207.7	207.9	227.7	241.9	246.0	194.1	
7-Aug	182.3	209.8	208.4	207.7	227.6	241.8	246.0	194.2	
8-Aug	182.3	209.8	209.1	207.7	227.5	241.7	245.7	194.1	
9-Aug	182.1	209.4	207.5	207.7	227.6	241.7	245.7	194.1	
10-Aug	182.1	208.8	207.6	207.5	227.5	241.7	245.6	194.1	
11-Aug	182.5	209.2	210.0	207.7	227.6	241.8	245.6	194.3	
12-Aug	182.4	210.1	210.9	207.8	228.1	242.0	245.6	194.4	
13-Aug	182.5	210.1	211.0	207.9	227.9	242.0	245.5	194.3	
14-Aug	182.7	209.9	209.5	207.8	227.6	241.7	245.5	194.4	
15-Aug	182.0	208.8	207.5	207.8	227.8	241.7	245.3	194.3	
16-Aug	181.3	208.8	207.5	207.7	227.7	241.7	245.2	194.4	
17-Aug	181.2	208.9	207.5	207.7	227.6	241.8	245.2	194.4	
18-Aug	180.7	209.1	208.8	207.7	228.1	241.9	245.2	194.5	
19-Aug	180.3	209.1	209.4	207.9	228.6	242.3	245.1	194.5	
20-Aug	179.1	209.5	209.0	208.1	229.0	242.7	245.1	194.6	
21-Aug	177.4	209.4	208.7	208.3	229.1	242.9	245.2	194.8	
22-Aug	177.1	209.6	208.0	208.2	229.0	242.9	245.2	194.8	
23-Aug	176.6	209.5	209.3	208.0	228.0	242.6	245.1	194.9	
24-Aug	176.8	209.3	209.3	208.0	227.5	242.3	245.0	194.9	
25-Aug	176.5	209.5	209.3	208.0	227.5	242.3	244.9	195.0	
26-Aug	176.1	209.5	209.4	207.8	227.5	242.3	244.9	195.0	
27-Aug	175.7	209.8	209.5	207.8	227.5	242.3	244.9	195.1	
28-Aug	175.9	210.1	209.8	207.7	227.2	241.9	244.8	195.1	
29-Aug	175.0	209.9	209.9	207.7	227.1	241.7	244.6	195.0	
30-Aug	175.3	209.8	209.9	207.6	227.1	241.7	244.6	195.1	
31-Aug	174.9	209.6	209.9	207.6	227.0	241.4	244.3	194.9	
Average	179.8	209.5	208.8	207.8	227.8	242.0	245.4	194.5	

	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft					
1-Aug	207.7	233.2	233.1	234.4	235.4					
2-Aug	207.7	233.2	233.1	234.4	235.4					
3-Aug	207.3	232.9	232.9	234.1	235.1					
4-Aug	207.5	233.3	233.2	234.5	235.5					
5-Aug	207.6	233.3	233.2	234.4	235.5					
6-Aug	207.4	233.1	233.1	234.2	235.3					
7-Aug	207.2	233.0	233.0	234.1	235.1					
8-Aug	207.3	232.9	232.9	233.9	235.0					
9-Aug	207.3	233.0	232.9	234.0	235.1					
10-Aug	207.0	232.9	232.8	233.8	234.8					
11-Aug	207.4	233.1	233.0	234.0	235.1					
12-Aug	207.3	232.9	232.8	233.9	234.9					
13-Aug	207.6	232.9	232.9	234.0	234.9					
14-Aug	207.4	232.8	232.8	233.8	234.7					
15-Aug	207.3	232.9	232.8	233.9	234.8					
16-Aug	207.4	232.7	232.6	233.7	234.6					
17-Aug	207.4	232.9	232.8	233.9	234.8					
18-Aug	207.4	232.8	232.8	233.8	234.8					
19-Aug	207.6	232.8	232.7	233.8	234.8					
20-Aug	207.9	232.9	232.8	234.0	234.9					
21-Aug	207.9	232.9	232.9	234.0	234.9					
22-Aug	207.8	233.0	232.9	234.1	234.9					
23-Aug	207.9	233.0	232.9	234.1	235.0					
24-Aug	207.7	233.0	232.9	234.1	234.9					
25-Aug	207.7	233.0	233.0	234.1	235.0					
26-Aug	207.6	233.0	233.0	234.1	235.0					
27-Aug	207.4	232.7	232.7	233.8	234.7					
28-Aug	199.4	232.4	232.5	233.5	234.4					
29-Aug	183.7	228.6	232.4	237.5	230.9					
30-Aug	180.1	229.5	232.3	236.8	230.2					
31-Aug	178.5	230.6	232.1	234.3	233.1					
Average	204.7	232.6	232.8	234.2	234.6					

	Depth from Surface							
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Aug	158.4	208.1	208.3	214.6	242.6	240.1	231.5	208.3
2-Aug	157.8	208.0	208.2	222.9	242.5	240.1	231.5	208.2
3-Aug	157.6	207.7	207.8	222.9	242.5	239.7	231.3	207.9
4-Aug	158.0	207.6	208.0	222.7	243.0	239.9	231.4	208.1
5-Aug	158.1	207.7	208.2	222.4	243.0	239.8	231.4	207.9
6-Aug	157.9	207.5	208.1	221.7	242.9	239.5	231.1	207.2
7-Aug	157.8	207.4	207.9	222.3	243.0	239.6	231.0	207.1
8-Aug	157.7	207.4	207.7	222.6	242.9	240.0	230.5	206.9
9-Aug	157.7	207.3	207.7	221.7	242.3	244.7	229.8	205.6
10-Aug	157.5	206.9	207.3	216.2	241.4	247.7	229.6	204.7
11-Aug	157.7	207.4	207.6	207.7	241.7	246.7	230.2	205.2
12-Aug	157.6	207.3	207.5	207.4	240.4	248.9	229.8	204.8
13-Aug	*	*	*	*	*	*	*	*
14-Aug	*	*	*	*	*	*	*	*
15-Aug	*	*	*	*	*	*	*	*
16-Aug	*	*	*	*	*	*	*	*
17-Aug	*	*	*	*	*	*	*	*
18-Aug	*	*	*	*	*	*	*	*
19-Aug	*	*	*	*	*	*	*	*
20-Aug	*	*	*	*	*	*	*	*
21-Aug	*	*	*	*	*	*	*	*
22-Aug	*	*	*	*	*	*	*	*
23-Aug	*	*	*	*	*	*	*	*
24-Aug	*	*	*	*	*	*	*	*
25-Aug	*	*	*	*	*	*	*	*
26-Aug	*	*	*	*	*	*	*	*
27-Aug	*	*	*	*	*	*	*	*
28-Aug	*	*	*	*	*	*	*	*
29-Aug	*	*	*	*	*	*	*	*
30-Aug	*	*	*	*	*	*	*	*
31-Aug	*	*	*	*	*	*	*	*
Average	157.8	207.5	207.9	218.8	242.3	242.2	230.8	206.8

* Indicates days that the sensors were not operational

	Depth from Surface											
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft				
1-Aug	185.4	188.8	188.8	191.5	193.8	191.4	187.9	181.8				
2-Aug	185.5	188.9	188.9	191.6	194.0	191.5	187.9	182.0				
3-Aug	185.4	188.7	188.7	191.5	193.7	191.3	187.8	181.7				
4-Aug	185.6	188.9	189.0	191.6	194.0	191.7	188.2	182.2				
5-Aug	185.7	189.0	189.1	191.6	194.0	191.6	188.1	182.3				
6-Aug	185.8	189.1	189.1	191.7	194.0	191.4	188.0	182.3				
7-Aug	185.8	188.9	189.0	191.5	193.8	191.3	187.9	182.1				
8-Aug	185.8	189.0	189.0	191.7	193.9	191.3	187.9	182.1				
9-Aug	186.0	189.1	189.2	191.8	194.0	191.4	188.0	182.2				
10-Aug	185.9	189.0	189.1	191.7	193.7	191.3	187.9	182.1				
11-Aug	186.3	189.4	189.5	191.9	194.1	191.5	188.1	182.4				
12-Aug	186.2	189.2	189.3	191.8	194.0	191.2	187.9	182.1				
13-Aug	186.4	189.4	189.6	192.1	194.3	191.5	188.1	182.3				
14-Aug	186.4	189.4	189.5	191.9	194.1	191.3	187.9	182.1				
15-Aug	186.2	189.4	189.5	192.0	194.1	191.4	188.1	182.3				
16-Aug	186.1	189.4	189.5	192.0	194.2	191.3	188.0	182.2				
17-Aug	185.7	189.6	189.7	192.0	194.2	191.4	188.1	182.3				
18-Aug	184.6	189.6	189.8	192.1	194.3	191.4	188.1	182.3				
19-Aug	186.0	189.8	189.9	192.3	194.4	191.4	188.1	182.3				
20-Aug	185.8	190.0	190.0	192.4	194.6	191.5	188.2	182.3				
21-Aug	186.7	190.1	190.1	192.6	194.6	191.5	188.2	182.4				
22-Aug	186.8	190.0	190.2	192.6	194.6	191.6	188.3	182.4				
23-Aug	187.0	190.2	190.3	192.7	194.6	191.6	188.3	182.6				
24-Aug	186.9	190.2	190.3	192.6	194.5	191.4	188.2	182.4				
25-Aug	187.0	190.2	190.3	192.6	194.5	191.4	188.2	182.3				
26-Aug	187.1	190.2	190.3	192.6	194.5	191.5	188.3	182.5				
27-Aug	187.1	190.1	190.2	192.4	194.1	191.2	188.1	182.3				
28-Aug	187.1	190.1	190.2	192.4	194.3	191.3	188.2	182.4				
29-Aug	186.5	190.1	190.2	192.4	194.2	191.2	188.0	182.2				
30-Aug	186.2	190.1	190.2	192.3	194.2	191.1	188.1	182.3				
31-Aug	186.6	190.1	190.2	192.5	194.4	191.2	188.2	182.3				
Average	186.2	189.5	189.6	192.1	194.2	191.4	188.1	182.2				

	Depth from Surface											
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft				
1-Aug	123.3	153.6	153.1	153.9	148.8	132.8	116.3	110.2				
2-Aug	123.2	153.5	153.1	153.8	148.8	132.8	116.3	110.1				
3-Aug	123.0	153.2	152.7	153.6	148.6	132.5	116.3	109.8				
4-Aug	123.3	153.6	153.1	154.1	149.1	132.9	116.9	110.3				
5-Aug	123.4	153.6	153.2	154.0	149.1	132.9	117.0	110.3				
6-Aug	123.3	153.6	153.2	153.9	148.9	132.8	117.0	110.2				
7-Aug	123.1	153.5	153.0	153.8	148.8	132.7	117.1	110.1				
8-Aug	123.0	153.4	152.9	153.6	148.7	132.5	117.0	110.0				
9-Aug	123.0	153.5	153.0	153.8	148.8	132.7	117.3	110.2				
10-Aug	123.0	153.3	152.9	153.7	148.7	132.6	117.2	110.0				
11-Aug	123.0	153.5	153.1	154.0	148.9	132.8	117.6	110.4				
12-Aug	123.0	153.5	153.0	153.7	148.6	132.6	117.4	110.2				
13-Aug	123.1	153.6	153.3	153.9	148.8	132.8	117.6	110.5				
14-Aug	123.0	153.6	153.1	153.8	148.7	132.7	117.5	110.4				
15-Aug	122.8	153.6	153.1	153.8	148.7	132.8	115.2	110.7				
16-Aug	122.8	153.6	153.1	153.8	148.7	132.7	113.9	111.0				
17-Aug	122.8	153.5	153.1	153.8	148.8	132.7	114.2	111.0				
18-Aug	122.4	153.1	152.6	153.3	148.2	132.1	113.7	110.4				
19-Aug	*	*	*	*	*	*	*	*				
20-Aug	*	*	*	*	*	*	*	*				
21-Aug	*	*	*	*	*	*	*	*				
22-Aug	*	*	*	*	*	*	*	*				
23-Aug	*	*	*	*	*	*	*	*				
24-Aug	*	*	*	*	*	*	*	*				
25-Aug	*	*	*	*	*	*	*	*				
26-Aug	*	*	*	*	*	*	*	*				
27-Aug	*	*	*	*	*	*	*	*				
28-Aug	*	*	*	*	*	*	*	*				
29-Aug	*	*	*	*	*	*	*	*				
30-Aug	*	*	*	*	*	*	*	*				
31-Aug	*	*	*	*	*	*	*	*				
Average	123.0	153.5	153.0	153.8	148.8	132.7	116.4	110.3				

* Indicates days that the sensors were not operational

Appendix E

Monthly Topography Analysis

- GRADES SHOWN AS CONTOUR LINES ONLY WIT REPRESENT THE TOPOGRAPHY CAPTURED ON
 ANY DETERMINATION OF TOPOGRAPHY OR COT PHYSICAL IMPROVEMENTS, PROFERTY LINES, C INFORMATION ONLY AND SHALL NOT BE USED CONSTRUCTION OF IMPROVEMENTS TO REAL P DETERMINATION.
 THE HORIZONTAL DATUM IS STATE PLANE VIR
 THE VERTICAL DATUM IS BASED UPON NAVD-

RY 10')	ш			
RY 2')	DAT			
LOCATION				
ING PROBE	REVISION			
	Ö		110	1/
	z			1
WITHIN THE PERMIT 588 BOUNDARY N JULY 12, 2023 BY SCS ENGINEERS. ONTOJRS, OR ANY DEPICTION OF OR BOUNDARIES IS FOR GENERAL ED FOR DESIGN, MODIFICATION, OR PROPERTY OR FLOOD PLAIN IRGINIA SOUTH ZONE NAD-83 (2011).)-88.	SHEET TTLE JULY 2023 I ANDFILI TOPOGRAPHY	PROJECT TITLE	MONTHLY TOPOGRAPHY ANALYSI	
	CLIENT	CITY OF BRISTOL INTEGRATED SOLID WASTE MANAGEMENT FACILITY	2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201	
100 50 0 100 200	CADD SCS ENGINEERS DATE: 8 SCALEE 1 DRAW	Mail STEARNS, CONRAD AND SCHMIDT Mail STEARNS, CONRAD AND SCHMIDT Mail STEARNS, SCONRAD AND SCHMIDT Mail STEARNS, STEARNS, STEARN, INC. Mail STEARNS, STEARNS, STEARN, STEARN, STEARN, STEARNS, STEA	001 70 70 70 70 70 70 70 70 70 70 70 70 70	DSN. BY: CHK. BY: APP. BY:
SCALE: 1"=100'		1	of 🛔	5

GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON AUGUST 2, 2023 BY SCS ENGINEERS.
 ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FLOOD PLAIN DETERMINATION.
 THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011).
 THE VERTICAL DATUM IS BASED UPON NAVD-88.

	LEGEND									
	MAJOR CONTOURS (E	VERY 10')								
	MINOR CONTOURS (E	VERY 2')								
	APPROXIMATE SIDEWALL LOCATION									
@ SP-9	SP-9 SETTLEMENT PLATE									
-0.39	-0.39 SPOT ELEVATION ON 100' GRID									
	TP-8 AVERAGE TEMPERATURES AT DEPTH LESS THAN 20									
TP-1	TEMPERATURE MONIT AVERAGE TEMPERATU	DRING PROBE WITH IRES AT DEPTH BETW	'EEN 200 °F AN							
	TEMPERATURE MONIT AVERAGE TEMPERATU	DRING PROBE WITH RES AT DEPTH BETW	EEN 250 °F AN							
Vc	lume Bace Surface	TOPO - 111 Y 12	2023							
	Comparison Surfac	e TOPO - AUGUST 2	, 2023							
	Cut Volume Fill Volume Net Fill	9,909 Cu. Yd. 4,055 Cu. Yd. 5,854 Cu. Yd.								
	Eleva	tions Table								
Numbe	r Minimum Elevation	Maximum Elevation	Color							
1	1 -11.000 -5.000									
2	2 -5.000 -1.000									
3	-1.000	0.000								
4	0.000	1.000								
5	1.000	5.000								
6	5.000	10.000								

ND 250 F ND 300 F

THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON JULY 12, 2023 AND AUGUST 2, 2023 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT
 ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
 THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOJTH ZONE NAD-83 (2011)
 THE VERTICAL DATUM IS BASED UPON NAVD-88.

REVISION DATE	
SHEET TITLE AUGUST VOLUME CHANGE NO. JULY 2023 TO AUGUST 2023	PROJECT TITLE
CLENT CLENT CLEV DE PDISTOI INTEGDATED SOLID	WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201
SCS ENGINEERS	CONSULTING ENGINEERS, INC. 33 SOUTH MAIN ST: SUITE A. MEDFORD, NJ 08055 PH, (609) 654-4000 SCSEIGINEERS.COM PR0. M0 02218/208.D5 DW. ERC. 0.4 MP. BR. DS4. BR. BR. BR. C.M. AP. BR.
CADD F SU DATE: 8/ SCALE: 1" DRAWIN	FILE: RF COMP (16/2023 = 100' IG NO.

	LEGEND	
	MAJOR CONTOURS (EVERY 10')
	MINOR CONTOURS (E	VERY 2')
	APPROXIMATE SIDEW	ALL LOCATION
@SP-9	SETTLEMENT PLATE	
-0.39	SPOT ELEVATION ON	100' GRID
	TEMPERATURE MONIT AVERAGE TEMPERATU	ORING PROBE WI JRES AT DEPTH I
₽-1	TEMPERATURE MONITAVERAGE TEMPERATU	ORING PROBE WI JRES AT DEPTH I
₩-2 ₩	TEMPERATURE MONITAVERAGE TEMPERATU	ORING PROBE WI JRES AT DEPTH I
\smile		
Vol	ume Base Surface Comparison Surface	TOPO - MAY 1 TOPO - AUGUS
	Cut Volume Fill Volume Net Cut	25,162 Cu. Yd. 13,515 Cu. Yd. 11,647 Cu. Yd.

Elevations Table										
Number	Minimum Elevation	Color								
1	-11.000	-5.000								
2	-5.000	-1.000								
3	-1.000	0.000								
4	0.000	1.000								
5	1.000	5.000								
6	5.000	10.000								

ROBE WITH DEPTH LESS THAN 200 °F

ROBE WITH Depth between 200 °F and 250 °F

ROBE WITH Depth between 250 °F and 300 °F

MAY 11, 2023 AUGUST 2, 2023

Cu. Yd.

THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAFHY DATA CAPTURED ON MAY 11, 2023 AND AUGUST 2, 2023 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT
 ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
 THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
 THE VERTICAL DATUM IS BASED UPON NAVD-88.

DATE	
REVISION	
NO. <	<u>s</u>
AUGUST VOLUME CHANGE MAY 2023 TO AUGUST 2023	LY TOPOGRAPHY ANALY LID WASTE PERMIT #588
SHEET TITLE	PROJECT TITLE MONTHI SOL
CLENT CITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201
SCS ENGINEERS STEARNS. CONRAD AND SCHMIDT	CONSULTING ENGINEERS, INC. 55 SOURTH MAIN FST SUITE A. MEDFORD, NJ 08055 PH, (093) 654-4000 SCSENGINEERS.COM PR04, MC. 02218208,05 PMK, BFL 02218208,05 PMK, BFL DSK, BFK DSK, BFK DSK, BFK CUM
CADD F SUF DATE: 8/	RF COMP
1"	= 100' з NO.

LEGEND
 BOTTOM LINER ELEVATION
 MAY 2023 TOPO
 JULY 2023 TOPO
 AUGUST 2023 TOPO

Appendix F

Field Logs

Lab Report

Historical LFG-EW Leachate Monitoring Results Summary

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date	08/14 - 08/18, 2023										
Personnel					A. Mir	nnick, L. Nel	son				
Location ID	Date	Scheduled Borehole	Measured We	ll Casing Depth	Should Have	Pump Depth (ft)	Cycle	Depth to	Casing Stickup	Liquid Column	Comments
		Depth (ft)	(ft)	(Date)	Pump	Depin (ii)	coom		(ft)	Thickness (ff)	
EW-33B	8/17/2023	180			х		13.00	145.92	5.60		possible very sludgy bottom, not running
EW-36A	8/17/2023	184					N/A	unable	5.45		Hazardously Hot
EW-49	8/17/2023		96.15	12/20-21/2022	Х	90	1777822	64.15	6.75	32.00	not running
EW-50	8/17/2023		77.70	12/20-21/2022	Х	83	1147550	37.98	5.25	39.72	not running
EW-51	8/16/2023		92.80	12/20-21/2022	Х	95	102431	41.38	5.55	51.42	air hose off
EW-52	8/16/2023		98.70	12/20-21/2022	х	93	192105	41.12	3.10	57.58	not running, air hose too loose, repaired
EW-53	8/16/2023		100.70	12/20-21/2022	x		2296361	unsure	4.53		not running, possibly dry from pumping recently
EW-54	8/16/2023		82.70	12/20-21/2022	Х	75	566986	36.52	5.15	46.18	
EW-55	8/16/2023		90.40	12/20-21/2022	X	90	235885	36.77	6.23	53.63	not running
EW-56	8/16/2023		58.50	12/20-21/2022	x, not attached	58	N/A	44.91	5.30	13.59	at 60 degree angle no attachments no cycle
EW-57	8/16/2023		107.40	12/20-21/2022	Х	425173	664456	41.29	4.53	66.11	not running
EW-58	8/16/2023		84.50	12/20-21/2022	х	82	2318729	31.37	5.55	53.13	running, no sample port
EW-59	8/16/2023		73.40	12/20-21/2022	Х	64	2398795	31.27	4.20	42.13	not running
EW-60	8/16/2023		81.80	12/20-21/2022	X	70	426468	34.31	3.70	47.49	not running
EW-61	8/16/2023		87.80	12/20-21/2022	x	66	243266	52.15	4.23	35.65	not running no sample port
EW-62	8/17/2023		110.60	12/20-21/2022	Х	80	179223	91.43	3.30	19.17	not running
EW-63	8/17/2023		62.10	12/20-21/2022		64	N/A	59.02	4.79	3.08	no pump connected
EW-64	8/17/2023		109.00	12/20-21/2022	Х	113	157019	64.12	4.30	44.88	
EW-65	8/17/2023		88.40	12/20-21/2022	Х	50	3973	50.62	5.58	37.78	
EW-67	8/16/2023		107.75	12/20-21/2022	Х	62.5	798804	41.51	5.23	66.24	Not running
EW-68	8/17/2023		73.57	12/20-21/2022	X	68	2215363	37.41	3.71	36.16	
EW-69	8/17/2023	93	98.00	5/3/2023						98.00	no pump, unlabeled
EW-70	8/17/2023	66	71.00	5/3/2023	X		13	4.89	2.01	66.11	
EW-71	8/17/2023	180	185.80	7/18/2023	x		N/A	113.97	5.00	71.83	No sample port not running
EW-72	8/17/2023	180	141.21	8/17/2023	х		N/A	93.48	4.28	47.73	not running, obstruction at 120'

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date	08/14 - 08/18, 2023										
Personnel					A. Mi	nnick, L. Nels	son				
Location ID	Date	Scheduled Borehole	Measured We	Il Casing Depth	Should Have	Pump Depth (ft)	Cycle Count	Depth to Liquid (ft)	Casing Stickup	Liquid Column	Comments
FW-73	8/17/2023		(n)	(Date)	rump		19	65.11	(II)	50.89	not running
LW-75	0/17/2023		110.00	37372023	^		17	00.11	0.01	50.07	norronning
EW-74	8/17/2023	180	184.15	7/18/2023	Х		16	165.44	5.31	18.71	not running, sludge
EW-75	8/17/2023	179	124.58	8/17/2023	Х		9	121.22	4.82	3.36	not running
EW-76	8/17/2023	122	127.00	5/3/2023	Х		13	66.22	3.47	60.78	
EW-77	8/17/2023	180	185.22	8/17/2023		N/A	N/A	135.44	4.1	49.78	no pump
EW-78	8/17/2023	52	57.00	5/3/2023	x		16504	7.9	3.51	49.10	DTL is possible sludge
EW-79	8/17/2023	180	185.64	8/17/2023		N/A	N/A	153.25	4.24	32.39	no pump
EW-80	8/17/2023	144	149.00	5/3/2023		N/A	N/A	136.11	5.60	12.89	no pump
EW-81	8/17/2023	180	151.56	8/17/2023		N/A	N/A	104.93	4.70	46.63	no pump
EW-82	8/17/2023	180	163.26	8/17/2023		N/A	N/A	89.72	4.39	73.54	no pump, suction high
EW-83	8/17/2023	180	167.04	8/17/2023		N/A	N/A	122.79	6.25	44.25	Very soft likely foam
EW-84	8/17/2023	137	130.56	8/17/2023		N/A	N/A	97.53	4.53	33.03	not running no sample port
EW-85	8/16/2023	86	91.00	5/3/2023			10	7.62	2.70	83.38	
EW-86	8/17/2023	148	153.00	5/3/2023		N/A	N/A	68.98	4.92	84.02	no pump
EW-87	8/16/2023	180	149.57	8/16/2023		N/A	N/A	52.23	5.02	97.34	no pump, soft bottom
EW-88	8/16/2023	95	100.00	5/3/2023	x		132091	34.63	3.29	65.37	no sample port, audible boiling sound
EW-89	8/16/2023	121	84.57	8/16/2023			N/A	30.97	3.84	53.60	no pump, soft bottom
EW-90	8/16/2023	109	114.00	5/3/2023			N/A	66.58	5.15	47.42	no pump
EW-91	8/16/2023	180	137.70	8/16/2023			N/A	39.92	5.35	97.78	no pump
EW-92	8/16/2023	140	112.99	8/16/2023			N/A	38.32	5.49	74.67	no pump, soft bottom
EW-93	8/16/2023	106	111.00	5/3/2023			N/A	24.43	3.85	86.57	no pump
EW-94	8/16/2023	45	50.00	5/3/2023	x		767761	22.62	4.66	27.38	not running, running on 8/15/2023
EW-95	8/16/2023	63	68.00	5/3/2023			N/A	61.21	3.50	6.79	not running, no sample port
EW-96	8/16/2023	180	164.35	7/18/2023			N/A	42.32	5.00	122.03	muddy surface
EW-97	8/16/2023	180	67.95	8/16/2023			N/A	58.61	4.15	9.34	not connected
EW-98	8/16/2023	51	51.00	5/3/2023	х		778587	20.96	3.67	30.04	soft bottom, running

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date		08/14 - 08/18, 2023										
Personnel					A. Mi	nnick, L. Nel	son					
Location ID	Date	Scheduled Borehole	Measured Well	Casing Depth	Should Have	Pump	Cycle	Depth to	Casing Stickup	Liquid Column	Comments	
		Depth (ft)	(ft)	(Date)	Pump	Depin (ii)	Coom	Liquia (II)	(ft)	Thickness (ft)		
EW-99	8/16/2023	60	65.00	5/3/2023			N/A	unable	Unable		unable to check, pressurized	
EW-100	8/16/2023	130	108.50	5/3/2023			N/A	56.74	3.50	51.76		
Log Checked B	ked By: L. Howard/J. Robb											

--- = not applicable/available

Note: Depth to liquid is subtracted 1.5 ft due to missing line on indicator - compared to written field log.

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (°C)	рН (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-54	8/15/2023	15:05	70.7	5.33	31.4	0.24	-62.4	>1100	Lighter Foam Head
EW-57	8/15/2023	15:05	61.9	5.22	33.8	1.03	57.7	>1100	Very Thick milky grey foam
EW-94	8/15/2023	14:20	66.8	5.23	30	1.41	33.7	>1100	
EW-98	8/15/2023	13:45	35.5	8.04	4.07	4.18	-61.7	223.7	light brown

Sampler:

L. Nelson, A. Minick

Samples Shipped By: Courier

Log Checked By:

J. Robb

Laboratory: Enthalpy Analytical

1941 Reymet Road

Richmond, Virginia 23237

Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

DRAFT REPORT

Laboratory Order ID 23H0914

Client Name: SCS Engineers-Winchester 296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Date Received:August 17, 20239:00Date Issued:August 31, 202314:20Project Number:02218208.15 T1Purchase Order:

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Enclosed are the results of analyses for samples received by the laboratory on 08/17/2023 09:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

	Analysis Detects Report												
Client Name:	SCS Engineers-Wir	nchester			Date Issued:	8/3	1/2023 2	:20:22PM					
Client Site ID:	2022 City of Printol	Landfill Laashata											
Client Site ID.	2023 City of Bristor												
Submitted To:	Jennifer Robb												
Laboratory Sample ID): 23H0914-01	Client San	nple ID: EW-57										
								Dil.					
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Factor	Units				
Arsenic		01	SW6020B	430		5.0	10	10	ug/L				
Barium		01	SW6020B	1580		10.0	50.0	10	ug/L				
Chromium		01	SW6020B	449		4.00	10.0	10	ug/L				
Copper		01	SW6020B	17.6		3.00	10.0	10	ug/L				
Mercury		01	SW6020B	3.97		2.00	2.00	10	ug/L				
Nickel		01	SW6020B	96.73		10.00	10.00	10	ug/L				
Zinc		01	SW6020B	1710		25.0	50.0	10	ug/L				
2-Butanone (MEK)		01RE1	SW8260D	3000		750	2500	250	ug/L				
Acetone		01RE1	SW8260D	18700		1750	2500	250	ug/L				
Benzene		01	SW8260D	168		20.0	50.0	50	ug/L				
Tetrahydrofuran		01	SW8260D	3210		500	500	50	ug/L				
Ammonia as N		01	EPA350.1 R2.0	1890		146	200	2000	mg/L				
BOD		01	SM5210B-2016	>33225		0.2	2.0	1	mg/L				
COD		01	SM5220D-2011	58600		5000	5000	500	mg/L				
TKN as N		01	EPA351.2 R2.0	2820		100	250	500	mg/L				
Total Recoverable Pheno	blics	01	EPA420.1	31.4		1.50	2.50	50	mg/L				

			Analysis Detec	ts Report						
Client Name:	SCS Engineers-Wi	nchester			Date Issued:	1: 8/31/2023 2:20:22PM				
Client Site ID:	2023 City of Bristol	l Landfill Leachate)							
Submitted To:	Jennifer Robb									
Laboratory Sample ID): 23H0914-02	Client Sa	ample ID: EW-98							
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units	
Arsenic		02	SW6020B	150		2.5	5.0	5	ug/L	
Barium		02	SW6020B	218		5.00	25.0	5	ug/L	
Chromium		02	SW6020B	27.6		2.00	5.00	5	ug/L	
Nickel		02	SW6020B	20.29		5.000	5.000	5	ug/L	
Zinc		02	SW6020B	112		12.5	25.0	5	ug/L	
2-Butanone (MEK)		02	SW8260D	5950		60.0	200	20	ug/L	
Acetone		02RE1	SW8260D	20900		700	1000	100	ug/L	
Benzene		02	SW8260D	379		8.00	20.0	20	ug/L	
Ethylbenzene		02	SW8260D	16.8	J	8.00	20.0	20	ug/L	
m+p-Xylenes		02	SW8260D	31.0	J	12.0	40.0	20	ug/L	
o-Xylene		02	SW8260D	17.4	J	8.00	20.0	20	ug/L	
Tetrahydrofuran		02	SW8260D	2880		200	200	20	ug/L	
Toluene		02	SW8260D	36.6		10.0	20.0	20	ug/L	
Xylenes, Total		02	SW8260D	48.4	J	20.0	60.0	20	ug/L	
Ammonia as N		02	EPA350.1 R2.0	222		146	200	2000	mg/L	
BOD		02	SM5210B-2016	506		0.2	2.0	1	mg/L	
COD		02	SM5220D-2011	1750		500	500	1	mg/L	
TKN as N		02	EPA351.2 R2.0	279		10.0	25.0	50	mg/L	
Total Recoverable Pheno	blics	02	EPA420.1	1.46		0.150	0.250	5	mg/L	

03

03

TKN as N

Total Recoverable Phenolics

Enthalpy Analytical 1941 Reymet Road Richmond, VA 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

100

1.50

250

2.50

500

50

mg/L

mg/L

			Analysis Detec	ts Report					
Client Name:	SCS Engineers-Wi	nchester			Date Issued:	8/3	1/2023	2:20:22PM	
Client Site ID:	2023 City of Bristol	I andfill I eachate							
Onemi ene ib.	Loweifen Dahk		,						
	Jennifer Robb								
Laboratory Sample ID	: 23H0914-03	Client Sa	Imple ID: EW-94						
								Dil.	
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Factor	Units
Arsenic		03	SW6020B	290		5.0	10	10	ug/L
Barium		03	SW6020B	1480		10.0	50.0	10	ug/L
Chromium		03	SW6020B	259		4.00	10.0	10	ug/L
Lead		03	SW6020B	13		10	10	10	ug/L
Nickel		03	SW6020B	51.30		10.00	10.00	10	ug/L
Zinc		03	SW6020B	914		25.0	50.0	10	ug/L
2-Butanone (MEK)		03	SW8260D	7350		150	500	50	ug/L
Acetone		03RE1	SW8260D	87700		3500	5000	500	ug/L
Tetrahydrofuran		03	SW8260D	1200		500	500	50	ug/L
Ammonia as N		03	EPA350.1 R2.0	2140		146	200	2000	mg/L
BOD		03	SM5210B-2016	>32805		0.2	2.0	1	mg/L
COD		03	SM5220D-2011	60600		5000	5000	500	mg/L

2850

40.4

EPA351.2 R2.0

EPA420.1

			Analysis Detec	cts Report					
Client Name:	SCS Engineers-Wi	nchester			Date Issued:	8/3	1/2023 2	2:20:22PM	
Client Site ID:	2022 City of Bristol	Landfill Laachata							
Submitted To:	Jennifer Robb								
Laboratory Sample ID:	: 23H0914-04	Client Sam	ple ID: EW-54						
								Dil.	
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Factor	Units
Arsenic		04	SW6020B	320		5.0	10	10	ug/L
Barium		04	SW6020B	1610		10.0	50.0	10	ug/L
Chromium		04	SW6020B	606		4.00	10.0	10	ug/L
Copper		04	SW6020B	3.43	J	3.00	10.0	10	ug/L
Lead		04	SW6020B	14		10	10	10	ug/L
Mercury		04	SW6020B	3.12		2.00	2.00	10	ug/L
Nickel		04	SW6020B	145.7		10.00	10.00	10	ug/L
Zinc		04RE1	SW6020B	5920		50.0	100	20	ug/L
2-Butanone (MEK)		04RE1	SW8260D	25600		1500	5000	500	ug/L
Acetone		04RE1	SW8260D	72500		3500	5000	500	ug/L
Benzene		04	SW8260D	2320		20.0	50.0	50	ug/L
Ethylbenzene		04	SW8260D	80.0		20.0	50.0	50	ug/L
m+p-Xylenes		04	SW8260D	119		30.0	100	50	ug/L
o-Xylene		04	SW8260D	60.5		20.0	50.0	50	ug/L
Tetrahydrofuran		04	SW8260D	7370		500	500	50	ug/L
Toluene		04	SW8260D	105		25.0	50.0	50	ug/L
Xylenes, Total		04	SW8260D	180		50.0	150	50	ug/L
Ammonia as N		04	EPA350.1 R2.0	1600		146	200	2000	mg/L
BOD		04	SM5210B-2016	>33045		0.2	2.0	1	mg/L
COD		04	SM5220D-2011	59000		5000	5000	500	mg/L
TKN as N		04	EPA351.2 R2.0	2240		100	250	500	mg/L
Total Recoverable Phenol	lics	04	EPA420.1	28.6		1.50	2.50	50	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-57	23H0914-01	Ground Water	08/15/2023 13:30	08/17/2023 09:00
EW-98	23H0914-02	Ground Water	08/15/2023 13:45	08/17/2023 09:00
EW-94	23H0914-03	Ground Water	08/15/2023 14:20	08/17/2023 09:00
EW-54	23H0914-04	Ground Water	08/15/2023 15:05	08/17/2023 09:00
Trip Blank	23H0914-05	Non-Potable Water	08/09/2023 16:15	08/17/2023 09:00

Date Issued:

8/31/2023 2:20:22PM

				Certificate o	of Analysis							
Client Name:	SCS Engineers-W	/inchester				Da	te Issue	d:	8/31/20	23 2	:20:22PN	1
Client Site I.D.:	2023 City of Brist	ol Landfill Lea	chate									
Submitted To:	Jennifer Robb											
Client Sample ID:	EW-57				Laborator	ry Sample ID:	23H0	914-01				
Parameter	Sam	p ID CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA	6000/7000 Series Method	6										
Silver	01	7440-22-4	SW6020B	08/18/2023 17:00	08/21/2023 10:17	BLOD		0.600	10.0	10	ug/L	AB
Arsenic	01	7440-38-2	SW6020B	08/18/2023 17:00	08/21/2023 10:17	430		5.0	10	10	ug/L	AB
Barium	01	7440-39-3	SW6020B	08/18/2023 17:00	08/21/2023 10:17	1580		10.0	50.0	10	ug/L	AB
Cadmium	01	7440-43-9	SW6020B	08/18/2023 17:00	08/21/2023 10:17	BLOD		1.00	10.0	10	ug/L	AB
Chromium	01	7440-47-3	SW6020B	08/18/2023 17:00	08/21/2023 10:17	449		4.00	10.0	10	ug/L	AB
Copper	01	7440-50-8	SW6020B	08/18/2023 17:00	08/21/2023 10:17	17.6		3.00	10.0	10	ug/L	AB
Mercury	01	7439-97-6	SW6020B	08/18/2023 17:00	08/21/2023 10:17	3.97		2.00	2.00	10	ug/L	AB
Nickel	01	7440-02-0	SW6020B	08/18/2023 17:00	08/21/2023 10:17	96.73		10.00	10.00	10	ug/L	AB
Lead	01	7439-92-1	SW6020B	08/18/2023 17:00	08/21/2023 10:17	BLOD		10	10	10	ug/L	AB
Selenium	01	7782-49-2	SW6020B	08/18/2023 17:00	08/21/2023 10:17	BLOD		8.50	10.0	10	ug/L	AB
Zinc	01	7440-66-6	SW6020B	08/18/2023 17:00	08/21/2023 10:17	1710		25.0	50.0	10	ug/L	AB
Volatile Organic Comp	oounds by GCMS											
2-Butanone (MEK)	01RE	1 78-93-3	SW8260D	08/21/2023 17:37	08/21/2023 17:37	3000		750	2500	250	ug/L	RJB
Acetone	01RE	1 67-64-1	SW8260D	08/21/2023 17:37	08/21/2023 17:37	18700		1750	2500	250	ug/L	RJB
Benzene	01	71-43-2	SW8260D	08/18/2023 17:12	08/18/2023 17:12	168		20.0	50.0	50	ug/L	RJB
Ethylbenzene	01	100-41-4	SW8260D	08/18/2023 17:12	08/18/2023 17:12	BLOD		20.0	50.0	50	ug/L	RJB
m+p-Xylenes	01	179601-23- 1	SW8260D	08/18/2023 17:12	08/18/2023 17:12	BLOD		30.0	100	50	ug/L	RJB
o-Xylene	01	95-47-6	SW8260D	08/18/2023 17:12	08/18/2023 17:12	BLOD		20.0	50.0	50	ug/L	RJB
Toluene	01	108-88-3	SW8260D	08/18/2023 17:12	08/18/2023 17:12	BLOD		25.0	50.0	50	ug/L	RJB
Xylenes, Total	01	1330-20-7	SW8260D	08/18/2023 17:12	08/18/2023 17:12	BLOD		50.0	150	50	ug/L	RJB
Tetrahydrofuran	01	109-99-9	SW8260D	08/18/2023 17:12	08/18/2023 17:12	3210		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroethai Surr: 4-Bromofluorobe	ne-d4 (Surr) 01 nzene (Surr) 01	96.1 100	7 % 70-120 0 % 75-120	0 08/18/2023 1 0 08/18/2023 1	7:12 08/18/2023 17 7:12 08/18/2023 17	7:12 7:12						

				<u>(</u>	Certificate of	Analysis							
Client Name:	SCS Engir	neers-Winch	ester	_			Date Issued: 8/31/2023 2:20:22PM						
Client Site I.D.:	2023 Citv	of Bristol La	andfill Leac	hate									
Submitted To:	Jennifer R	obb											
Client Sample ID:	EW-57					Laboratory	Sample ID:	23H0	914-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
Volatile Organic Com	pounds by GCM	IS											
Surr: Dibromofluorom	ethane (Surr)	01	90.5	% 70-130	08/18/2023 17:1	12 08/18/2023 17:1	2						
Surr: Toluene-d8 (Sur	r)	01	99.1	% 70-130	08/18/2023 17:1	12 08/18/2023 17:1	2						
Surr: 1,2-Dichloroetha	ane-d4 (Surr)	01RE1	113	% 70-120	08/21/2023 17:3	37 08/21/2023 17:3	7						
Surr: 4-Bromofluorobe	enzene (Surr)	01RE1	99.7	% 75-120	08/21/2023 17:3	37 08/21/2023 17:3	7						
Surr: Dibromofluorom	ethane (Surr)	01RE1	111	% 70-130	08/21/2023 17:3	37 08/21/2023 17:3	7						
Surr: Toluene-d8 (Sur	r)	01RE1	102	% 70-130	08/21/2023 17:3	37 08/21/2023 17:3	7						
Semivolatile Organic	Compounds by	GCMS											
Anthracene		01	120-12-7	SW8270E	08/22/2023 09:10	08/22/2023 19:05	BLOD		1000	2000	50	ug/L	BMS
Surr: 2,4,6-Tribromop	henol (Surr)	01		% 5-136	08/22/2023 09:1	10 08/22/2023 19:0	5						DS
Surr: 2-Fluorobipheny	rl (Surr)	01		% 9-117	08/22/2023 09:1	10 08/22/2023 19:0	5						DS
Surr: 2-Fluorophenol	(Surr)	01	15.0	% 5-60	08/22/2023 09:1	10 08/22/2023 19:0	5						
Surr: Nitrobenzene-d	5 (Surr)	01	2.00	% 5-151	08/22/2023 09:1	10 08/22/2023 19:0	5						DS
Surr: Phenol-d5 (Surr)	01	23.0	% 5-60	08/22/2023 09:1	10 08/22/2023 19:0	5						
Surr: p-Terphenyl-d14	(Surr)	01	2.00	% 5-141	08/22/2023 09:1	10 08/22/2023 19:0	5						DS

					Certificate o	of Analysis							
Client Name:	SCS Engine	ers-Winch	nester				Da	te Issue	d:	8/31/20)23	2:20:22PM	
Client Site I.D.:	2023 City o	of Bristol La	andfill Lea	chate									
Submitted To:	Jennifer Rol	bb											
Client Sample ID:	EW-57					Laborato	ry Sample ID:	y Sample ID: 23H0914-01					
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analys	sis												
Ammonia as N		01	7664-41-7	EPA350.1 R2.0	08/29/2023 12:22	08/29/2023 12:22	1890		146	200	2000) mg/L	SPH
BOD		01	E1640606	SM5210B-20 16	08/17/2023 11:53	08/17/2023 11:53	>33225		0.2	2.0	1	mg/L	NBT
BOD		01	E1640606	SM5210B-20 16	08/17/2023 11:53	08/17/2023 11:53	>33225		0.2	2.0	1	mg/L	NBT
COD		01	NA	SM5220D-20 11	08/22/2023 11:00	08/22/2023 11:00	58600		5000	5000	500	mg/L	MGC
Nitrate as N		01	14797-55-8	Calc.	08/30/2023 00:00	08/30/2023 00:00	BLOD		1.50	3.50	50	mg/L	MGC
Nitrate+Nitrite as N		01	E701177	SM4500-NO 3F-2016	08/30/2023 00:00	08/30/2023 00:00	BLOD		1.00	1.00	1	mg/L	TMB
Nitrite as N		01	14797-65-0	SM4500-NO 2B-2011	08/17/2023 11:00	08/17/2023 11:00	BLOD		0.50	2.50	50	mg/L	MGC
Total Recoverable Phe	enolics	01	NA	EPA420.1	08/31/2023 08:54	08/31/2023 08:54	31.4		1.50	2.50	50	mg/L	AAL
TKN as N		01	E17148461	EPA351.2 R2.0	08/27/2023 13:10	08/27/2023 13:10	2820		100	250	500	mg/L	TMB

					Certificate o	of Analysis							
Client Name:	SCS Enginee	rs-Winch	nester				Da	te Issue	d:	8/31/20	23 2	2:20:22PM	
Client Site I.D.:	2023 City of	Bristol La	andfill Lea	chate									
Submitted To:	Jennifer Robb	D											
Client Sample ID:	EW-98					Laborato	aboratory Sample ID:		914-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA	6000/7000 Series Me	ethods											
Silver		02	7440-22-4	SW6020B	08/18/2023 17:00	08/21/2023 10:31	BLOD		0.300	5.00	5	ug/L	AB
Arsenic		02	7440-38-2	SW6020B	08/18/2023 17:00	08/21/2023 10:31	150		2.5	5.0	5	ug/L	AB
Barium		02	7440-39-3	SW6020B	08/18/2023 17:00	08/21/2023 10:31	218		5.00	25.0	5	ug/L	AB
Cadmium		02	7440-43-9	SW6020B	08/18/2023 17:00	08/21/2023 10:31	BLOD		0.500	5.00	5	ug/L	AB
Chromium		02	7440-47-3	SW6020B	08/18/2023 17:00	08/21/2023 10:31	27.6		2.00	5.00	5	ug/L	AB
Copper		02	7440-50-8	SW6020B	08/18/2023 17:00	08/21/2023 10:31	BLOD		1.50	5.00	5	ug/L	AB
Mercury		02	7439-97-6	SW6020B	08/18/2023 17:00	08/21/2023 10:31	BLOD		1.00	1.00	5	ug/L	AB
Nickel		02	7440-02-0	SW6020B	08/18/2023 17:00	08/21/2023 10:31	20.29		5.000	5.000	5	ug/L	AB
Lead		02	7439-92-1	SW6020B	08/18/2023 17:00	08/21/2023 10:31	BLOD		5.0	5.0	5	ug/L	AB
Selenium		02	7782-49-2	SW6020B	08/18/2023 17:00	08/21/2023 10:31	BLOD		4.25	5.00	5	ug/L	AB
Zinc		02	7440-66-6	SW6020B	08/18/2023 17:00	08/21/2023 10:31	112		12.5	25.0	5	ug/L	AB

				(Certificate of	⁻ Analysis							
Client Name:	SCS Engine	ers-Winch	nester				Da	te Issue	d:	8/31/20	23 2	20:22PM	
Client Site I D ·	2023 City o	f Bristol I a	andfill Lead	hate									
Submitted To:	lennifer Rol	h h		indite									
		55											
Client Sample ID:	EW-98					Laboratory	y Sample ID:	23H0	914-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Comp	oounds by GCMS												
2-Butanone (MEK)		02	78-93-3	SW8260D	08/18/2023 16:49	08/18/2023 16:49	5950		60.0	200	20	ua/L	RJB
Acetone		02RE1	67-64-1	SW8260D	08/21/2023 17:14	08/21/2023 17:14	20900		700	1000	100	ug/L	RJB
Benzene		02	71-43-2	SW8260D	08/18/2023 16:49	08/18/2023 16:49	379		8.00	20.0	20	ug/L	RJB
Ethylbenzene		02	100-41-4	SW8260D	08/18/2023 16:49	08/18/2023 16:49	16.8	J	8.00	20.0	20	ug/L	RJB
m+p-Xylenes		02	179601-23- 1	SW8260D	08/18/2023 16:49	08/18/2023 16:49	31.0	J	12.0	40.0	20	ug/L	RJB
o-Xylene		02	95-47-6	SW8260D	08/18/2023 16:49	08/18/2023 16:49	17.4	J	8.00	20.0	20	ug/L	RJB
Toluene		02	108-88-3	SW8260D	08/18/2023 16:49	08/18/2023 16:49	36.6		10.0	20.0	20	ug/L	RJB
Xylenes, Total		02	1330-20-7	SW8260D	08/18/2023 16:49	08/18/2023 16:49	48.4	J	20.0	60.0	20	ug/L	RJB
Tetrahydrofuran		02	109-99-9	SW8260D	08/18/2023 16:49	08/18/2023 16:49	2880		200	200	20	ug/L	RJB
Surr: 1,2-Dichloroethar	ne-d4 (Surr)	02	107	% 70-120	08/18/2023 16:	49 08/18/2023 16:	49						
Surr: 4-Bromofluorober	nzene (Surr)	02	102	% 75-120	08/18/2023 16:	49 08/18/2023 16:	49						
Surr: Dibromofluorome	thane (Surr)	02	97.4	% 70-130	08/18/2023 16:	49 08/18/2023 16:	49						
Surr: Toluene-d8 (Surr))	02	98.1	% 70-130	08/18/2023 16:	49 08/18/2023 16:	49						
Surr: 1,2-Dichloroethar	ne-d4 (Surr)	02RE1	111	% 70-120	08/21/2023 17:	14 08/21/2023 17:	14						
Surr: 4-Bromofluorobei	nzene (Surr)	02RE1	100	% 75-120	08/21/2023 17:	14 08/21/2023 17:	14						
Surr: Dibromotiuorome	(Surr)	02RE1 02RE1	109	% 70-130 % 70-130	08/21/2023 17:	14 08/21/2023 17: 14 08/21/2023 17:	14 1 <i>1</i>						
Semivolatile Organic (, Compounds by G	CMS	102	///////////////////////////////////////	00/21/2023 11.	14 00/21/2023 11.	14						
Anthracene	. ,	02	120-12-7	SW8270E	08/22/2023 09:10	08/22/2023 15:52	BLOD		19.6	39.2	4	ua/l	BMS
Surr: 2 4 6-Tribromonh	enol (Surr)	02	40.7	% 5-136	08/22/2023 09	10 08/22/2023 15:	52		10.0	00.2		49/2	
Surr: 2-Fluorohinhenvl	(Surr)	02	-0.7 28 7	% 9-117	08/22/2023 09	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52						
Surr: 2-Fluorophenol (S	Surr)	02	23.8	% 5-60	08/22/2023 09	10 08/22/2023 15:	52						
Surr: Nitrobenzene-d5	(Surr)	02	42.3	% 5-151	08/22/2023 09:	10 08/22/2023 15:	52						
Surr: Phenol-d5 (Surr)		02	17.5	% 5-60	08/22/2023 09:	10 08/22/2023 15:	52						
Surr: p-Terphenyl-d14	(Surr)	02	10.0	% 5-141	08/22/2023 09:	10 08/22/2023 15:	52						

					Certificate o	of Analysis							
Client Name:	SCS Engin	eers-Winch	nester	-			Da	ite Issue	d:	8/31/20	23 2	:20:22PM	
Client Site I.D.:	2023 City	of Bristol La	andfill Lead	chate									
Submitted To:	Jennifer Ro	obb											
Client Sample ID:	EW-98					Laborato	ry Sample ID:	23H0	914-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analys	sis												
Ammonia as N		02	7664-41-7	EPA350.1 R2.0	08/29/2023 12:22	08/29/2023 12:22	222		146	200	2000	mg/L	SPH
BOD		02	E1640606	SM5210B-20 16	08/17/2023 11:53	08/17/2023 11:53	506		0.2	2.0	1	mg/L	NBT
COD		02	NA	SM5220D-20 11	08/22/2023 11:00	08/22/2023 11:00	1750		500	500	1	mg/L	MGC
Nitrate as N		02	14797-55-8	Calc.	08/26/2023 14:29	08/26/2023 14:29	BLOD		0.150	0.350	1	mg/L	MGC
Nitrate+Nitrite as N		02	E701177	SM4500-NO 3F-2016	08/26/2023 14:29	08/26/2023 14:29	BLOD		0.10	0.10	1	mg/L	TMB
Nitrite as N		02	14797-65-0	SM4500-NO 2B-2011	08/17/2023 11:00	08/17/2023 11:00	BLOD		0.05	0.25	1	mg/L	MGC
Total Recoverable Ph	enolics	02	NA	EPA420.1	08/31/2023 08:54	08/31/2023 08:54	1.46		0.150	0.250	5	mg/L	AAL
TKN as N		02	E17148461	EPA351.2 R2.0	08/27/2023 13:10	08/27/2023 13:10	279		10.0	25.0	50	mg/L	TMB

					Certificate o	of Analysis							
Client Name:	SCS Engine	ers-Winch	lester			-	Dat	te Issue	d:	8/31/20	23	2:20:22PM	
Client Site I.D.:	2023 City of	f Bristol La	andfill Lea	chate									
Submitted To:	Jennifer Rob	b											
Client Sample ID:	EW-94					Laborato	ry Sample ID:	23H0	914-03				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA	6000/7000 Series I	Methods											
Silver		03	7440-22-4	SW6020B	08/18/2023 17:00	08/21/2023 10:23	BLOD		0.600	10.0	10	ug/L	AB
Arsenic		03	7440-38-2	SW6020B	08/18/2023 17:00	08/21/2023 10:23	290		5.0	10	10	ug/L	AB
Barium		03	7440-39-3	SW6020B	08/18/2023 17:00	08/21/2023 10:23	1480		10.0	50.0	10	ug/L	AB
Cadmium		03	7440-43-9	SW6020B	08/18/2023 17:00	08/21/2023 10:23	BLOD		1.00	10.0	10	ug/L	AB
Chromium		03	7440-47-3	SW6020B	08/18/2023 17:00	08/21/2023 10:23	259		4.00	10.0	10	ug/L	AB
Copper		03	7440-50-8	SW6020B	08/18/2023 17:00	08/21/2023 10:23	BLOD		3.00	10.0	10	ug/L	AB
Mercury		03	7439-97-6	SW6020B	08/18/2023 17:00	08/21/2023 10:23	BLOD		2.00	2.00	10	ug/L	AB
Nickel		03	7440-02-0	SW6020B	08/18/2023 17:00	08/21/2023 10:23	51.30		10.00	10.00	10	ug/L	AB
Lead		03	7439-92-1	SW6020B	08/18/2023 17:00	08/21/2023 10:23	13		10	10	10	ug/L	AB
Selenium		03	7782-49-2	SW6020B	08/18/2023 17:00	08/21/2023 10:23	BLOD		8.50	10.0	10	ug/L	AB
Zinc		03	7440-66-6	SW6020B	08/18/2023 17:00	08/21/2023 10:23	914		25.0	50.0	10	ug/L	AB

				<u>(</u>	Certificate o	<u>f Analysis</u>							
Client Name:	SCS Engine	ers-Winch	nester				Da	ite Issue	d:	8/31/20	23 2:	20:22PN	1
Client Site I.D.:	2023 City o	f Bristol La	andfill Leac	hate									
Submitted To:	Jennifer Rob	bh											
Client Sample ID:	EW-94					Laborator	y Sample ID:	23H0	914-03				
Parameter		Samp ID	CAS	Reference Method	Sample Prep	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analvst
				mounou	Date, fille	Bato, milo	rtoouto						,
Volatile Organic Compo	ounds by GCMS												
2-Butanone (MEK)		03	78-93-3	SW8260D	08/18/2023 17:36	08/18/2023 17:36	7350		150	500	50	ug/L	RJB
Acetone		03RE1	67-64-1	SW8260D	08/21/2023 17:59	08/21/2023 17:59	87700		3500	5000	500	ug/L	RJB
Benzene		03	71-43-2	SW8260D	08/18/2023 17:36	08/18/2023 17:36	BLOD		20.0	50.0	50	ug/L	RJB
Ethylbenzene		03	100-41-4	SW8260D	08/18/2023 17:36	08/18/2023 17:36	BLOD		20.0	50.0	50	ug/L	RJB
m+p-Xylenes		03	179601-23- 1	SW8260D	08/18/2023 17:36	08/18/2023 17:36	BLOD		30.0	100	50	ug/L	RJB
o-Xylene		03	95-47-6	SW8260D	08/18/2023 17:36	08/18/2023 17:36	BLOD		20.0	50.0	50	ug/L	RJB
Toluene		03	108-88-3	SW8260D	08/18/2023 17:36	08/18/2023 17:36	BLOD		25.0	50.0	50	ug/L	RJB
Xylenes, Total		03	1330-20-7	SW8260D	08/18/2023 17:36	08/18/2023 17:36	BLOD		50.0	150	50	ug/L	RJB
Tetrahydrofuran		03	109-99-9	SW8260D	08/18/2023 17:36	08/18/2023 17:36	1200		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroethan	e-d4 (Surr)	03	98.9	% 70-120	08/18/2023 17	:36 08/18/2023 17.	:36						
Surr: 4-Bromofluoroben	zene (Surr)	03	97.8	% 75-120	08/18/2023 17	:36 08/18/2023 17.	:36						
Surr: Dibromofluoromet	hane (Surr)	03	92.3	% 70-130	08/18/2023 17	:36 08/18/2023 17	:36						
Surr: Toluene-d8 (Surr)		03	99.9	% 70-130	08/18/2023 17	:36 08/18/2023 17.	:36						
Surr: 1,2-Dichloroethan	e-d4 (Surr)	03RE1	108	% 70-120	08/21/2023 17	:59 08/21/2023 17:	:59						
Surr: 4-Bromofluoroben	zene (Surr)	03RE1	101	% 75-120	08/21/2023 17	:59 08/21/2023 17.	:59						
Surr: Dibromotiuoromet	nane (Surr)	03RE1	109	% 70-130 % 70.130	08/21/2023 17	:59 08/21/2023 17: :50 08/21/2023 17:	:59						
Somivolatile Organic C	omnounds by G(102	76 70-130	00/21/2023 11	.59 06/21/2023 17.	.59						
		03	120 12 7	SW/8270E	08/22/2023 09:10	08/22/2023 19:37	BL OD		1000	2000	50		BWS
Surri 2.4.6 Tribromonho		00	120-12-7	61102/0E	00/22/2020 00:10	10 08/22/2023 10:07			1000	2000	00	ug/L	
Surr: 2 Eluorobiohenvl /	(Surr)	03		% <u>5-130</u> % 0.117	08/22/2023 09	.10 00/22/2023 19.	.37						D3 DS
Surr: 2-Fluorophenol (S	Surr)	03	14 0	% <u>5-60</u>	08/22/2023 09	·10 08/22/2023 19.	.37						23
Surr: Nitrohenzene-d5 ((Surr)	03	14.0	% 5-151	08/22/2023 09	·10 08/22/2023 19.	:37						
Surr: Phenol-d5 (Surr)		03	20.0	% 5-60	08/22/2023 09	:10 08/22/2023 19	:37						
Surr: p-Terphenyl-d14 (Surr)	03	8.00	% 5-141	08/22/2023 09	:10 08/22/2023 19	:37						

					Certificate o	of Analysis							
Client Name:	SCS Engine	ers-Winch	nester	-			Da	te Issue	d:	8/31/20	23	2:20:22PM	
Client Site I.D.:	2023 City of	f Bristol La	andfill Lead	chate									
Submitted To:	Jennifer Rob	b											
Client Sample ID:	EW-94					Laborato	ry Sample ID:	23H0	914-03				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analys	sis												
Ammonia as N		03	7664-41-7	EPA350.1 R2.0	08/29/2023 12:22	08/29/2023 12:22	2140		146	200	2000	mg/L	SPH
BOD		03	E1640606	SM5210B-20 16	08/17/2023 11:58	08/17/2023 11:58	>32805		0.2	2.0	1	mg/L	NBT
BOD		03	E1640606	SM5210B-20 16	08/17/2023 11:58	08/17/2023 11:58	>32805		0.2	2.0	1	mg/L	NBT
COD		03	NA	SM5220D-20 11	08/22/2023 11:00	08/22/2023 11:00	60600		5000	5000	500	mg/L	MGC
Nitrate as N		03	14797-55-8	Calc.	08/30/2023 00:00	08/30/2023 00:00	BLOD		1.50	3.50	50	mg/L	MGC
Nitrate+Nitrite as N		03	E701177	SM4500-NO 3F-2016	08/30/2023 00:00	08/30/2023 00:00	BLOD		1.00	1.00	1	mg/L	TMB
Nitrite as N		03	14797-65-0	SM4500-NO 2B-2011	08/17/2023 11:00	08/17/2023 11:00	BLOD		0.50	2.50	50	mg/L	MGC
Total Recoverable Phe	enolics	03	NA	EPA420.1	08/31/2023 08:54	08/31/2023 08:54	40.4		1.50	2.50	50	mg/L	AAL
TKN as N		03	E17148461	EPA351.2 R2.0	08/27/2023 13:10	08/27/2023 13:10	2850		100	250	500	mg/L	TMB

				Certificate o	of Analysis							
Client Name:	SCS Engineers-Winc	hester				Dat	te Issue	d:	8/31/20	23	2:20:22PM	
Client Site I.D.:	2023 City of Bristol L	andfill Lea.	chate									
Submitted To:	Jennifer Robb											
Client Sample ID:	EW-54				Laborato	ry Sample ID:	23H0	914-04				
Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA	6000/7000 Series Methods											
Silver	04	7440-22-4	SW6020B	08/18/2023 17:00	08/21/2023 10:26	BLOD		0.600	10.0	10	ug/L	AB
Arsenic	04	7440-38-2	SW6020B	08/18/2023 17:00	08/21/2023 10:26	320		5.0	10	10	ug/L	AB
Barium	04	7440-39-3	SW6020B	08/18/2023 17:00	08/21/2023 10:26	1610		10.0	50.0	10	ug/L	AB
Cadmium	04	7440-43-9	SW6020B	08/18/2023 17:00	08/21/2023 10:26	BLOD		1.00	10.0	10	ug/L	AB
Chromium	04	7440-47-3	SW6020B	08/18/2023 17:00	08/21/2023 10:26	606		4.00	10.0	10	ug/L	AB
Copper	04	7440-50-8	SW6020B	08/18/2023 17:00	08/21/2023 10:26	3.43	J	3.00	10.0	10	ug/L	AB
Mercury	04	7439-97-6	SW6020B	08/18/2023 17:00	08/21/2023 10:26	3.12		2.00	2.00	10	ug/L	AB
Nickel	04	7440-02-0	SW6020B	08/18/2023 17:00	08/21/2023 10:26	145.7		10.00	10.00	10	ug/L	AB
Lead	04	7439-92-1	SW6020B	08/18/2023 17:00	08/21/2023 10:26	14		10	10	10	ug/L	AB
Selenium	04	7782-49-2	SW6020B	08/18/2023 17:00	08/21/2023 10:26	BLOD		8.50	10.0	10	ug/L	AB
Zinc	04RE1	7440-66-6	SW6020B	08/18/2023 17:00	08/21/2023 10:34	5920		50.0	100	20	ug/L	AB

				(Certificate of	- Analysis							
Client Name:	SCS Engine	ers-Winch	nester				Da	te Issued	:	8/31/20	23 2	:20:22PM	
Client Site I D ·	2023 City of	f Bristol La	andfill Leac	hate									
Submitted To:	Jennifer Roh	h											
Client Sample ID:	EW-54					Laboratory	Sample ID:	23H09	14-04				
				Reference	Sample Prep	Analyzed	Sample						
Parameter		Samp ID	CAS	Method	Date/Time	Date/Time	Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Comp	oounds by GCMS												
2-Butanone (MEK)		04RE1	78-93-3	SW8260D	08/21/2023 18:21	08/21/2023 18:21	25600		1500	5000	500	ug/L	RJB
Acetone		04RE1	67-64-1	SW8260D	08/21/2023 18:21	08/21/2023 18:21	72500		3500	5000	500	ug/L	RJB
Benzene		04	71-43-2	SW8260D	08/18/2023 17:59	08/18/2023 17:59	2320		20.0	50.0	50	ug/L	RJB
Ethylbenzene		04	100-41-4	SW8260D	08/18/2023 17:59	08/18/2023 17:59	80.0		20.0	50.0	50	ug/L	RJB
m+p-Xylenes		04	179601-23-	SW8260D	08/18/2023 17:59	08/18/2023 17:59	119		30.0	100	50	ug/L	RJB
o-Xylene		04	95-47-6	SW8260D	08/18/2023 17:59	08/18/2023 17:59	60.5		20.0	50.0	50	ug/L	RJB
Toluene		04	108-88-3	SW8260D	08/18/2023 17:59	08/18/2023 17:59	105		25.0	50.0	50	ug/L	RJB
Xylenes, Total		04	1330-20-7	SW8260D	08/18/2023 17:59	08/18/2023 17:59	180		50.0	150	50	ug/L	RJB
Tetrahydrofuran		04	109-99-9	SW8260D	08/18/2023 17:59	08/18/2023 17:59	7370		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroethai	ne-d4 (Surr)	04	92.7	% 70-120	08/18/2023 17:	59 08/18/2023 17:5	9						
Surr: 4-Bromofluorobe	nzene (Surr)	04	97.9	% 75-120	08/18/2023 17:	59 08/18/2023 17:5	9						
Surr: Dibromofluorome	ethane (Surr)	04	90.1	% 70-130	08/18/2023 17:	59 08/18/2023 17:5	9						
Surr: Toluene-d8 (Surr,)	04	97.5	% 70-130	08/18/2023 17:	59 08/18/2023 17:5	9						
Surr: 1,2-Dichloroethai	ne-d4 (Surr)	04RE1	109	% 70-120	08/21/2023 18:	21 08/21/2023 18:2	1						
Surr: 4-Bromofluorobe	nzene (Surr)	04RE1	99.6	% 75-120	08/21/2023 18:	21 08/21/2023 18:2	1						
Surr: Dibromotiuorome	stnane (Surr)	04RE1	110	% 70-130 % 70-130	08/21/2023 18:	21 08/21/2023 18:2	1						
Surr: Toluene-a8 (Surr,)	04RE1	102	% 70-130	08/21/2023 18:	21 08/21/2023 18:2	1						
Semivolatile Organic	Compounds by GC	SMS											
Anthracene		04	120-12-7	SW8270E	08/22/2023 09:10	08/22/2023 20:08	BLOD		1000	2000	50	ug/L	BMS
Surr: 2,4,6-Tribromoph	enol (Surr)	04		% 5-136	08/22/2023 09:	10 08/22/2023 20:0	8						DS
Surr: 2-Fluorobiphenyl	(Surr)	04		% 9-117	08/22/2023 09:	10 08/22/2023 20:0	8						DS
Surr: 2-Fluorophenol (Surr)	04	25.0	% 5-60	08/22/2023 09:	10 08/22/2023 20:0	8						
Surr: Nitrobenzene-d5	(Surr)	04	4.00	% 5-151	08/22/2023 09:	10 08/22/2023 20:0	8						DS
Surr: Phenol-d5 (Surr)	(0,	04	28.0	% 5-60	08/22/2023 09:	10 08/22/2023 20:0	8						
Surr: p-ierphenyi-d14	(Surr)	04	8.00	% 5-141	08/22/2023 09:	10 08/22/2023 20:0	Ø						

					Certificate o	of Analysis							
Client Name:	SCS Engine	ers-Winch	nester	-		<u> </u>	Da	te Issue	d:	8/31/20)23 2	2:20:22PM	
Client Site I.D.:	2023 City o	f Bristol La	andfill Lea	chate									
Submitted To:	Jennifer Rob	ob											
Client Sample ID:	EW-54					Laborato	ry Sample ID:	23H0	914-04				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analys	sis												
Ammonia as N		04	7664-41-7	EPA350.1 R2.0	08/29/2023 12:22	08/29/2023 12:22	1600		146	200	2000	mg/L	SPH
BOD		04	E1640606	SM5210B-20 16	08/17/2023 12:01	08/17/2023 12:01	>33045		0.2	2.0	1	mg/L	NBT
BOD		04	E1640606	SM5210B-20 16	08/17/2023 12:01	08/17/2023 12:01	>33045		0.2	2.0	1	mg/L	NBT
COD		04	NA	SM5220D-20 11	08/22/2023 11:00	08/22/2023 11:00	59000		5000	5000	500	mg/L	MGC
Nitrate as N		04	14797-55-8	Calc.	08/30/2023 00:00	08/30/2023 00:00	BLOD		1.50	3.50	50	mg/L	MGC
Nitrate+Nitrite as N		04	E701177	SM4500-NO 3F-2016	08/30/2023 00:00	08/30/2023 00:00	BLOD		1.00	1.00	1	mg/L	TMB
Nitrite as N		04	14797-65-0	SM4500-NO 2B-2011	08/17/2023 11:00	08/17/2023 11:00	BLOD		0.50	2.50	50	mg/L	MGC
Total Recoverable Phe	enolics	04	NA	EPA420.1	08/31/2023 08:54	08/31/2023 08:54	28.6		1.50	2.50	50	mg/L	AAL
TKN as N		04	E17148461	EPA351.2 R2.0	08/27/2023 13:10	08/27/2023 13:10	2240		100	250	500	mg/L	ТМВ

					<u>C</u>	ertificate o	f Analysis								
Client Name: S	SCS Engine	ers-Winch	nester						Da	ite Issue	d:	8/31/20	23 2	:20:22PM	I
Client Site I.D.:	2023 City o	of Bristol La	andfill Lead	chate											
Submitted To: J	lennifer Rol	bb													
Client Sample ID: T	rip Blank						Laborato	ory Sa	ample ID:	23H0	914-05				
Parameter		Samp ID	CAS	Referenc Method	e	Sample Prep Date/Time	Analyzed Date/Time	S	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compou	nds by GCMS								Sample Q	ualifier:	pН	l			
2-Butanone (MEK)		05	78-93-3	SW8260	D	08/18/2023 12:54	08/18/2023 12:54		BLOD		3.00	10.0	1	ug/L	RJB
Acetone		05	67-64-1	SW8260	D	08/18/2023 12:54	08/18/2023 12:54		BLOD		7.00	10.0	1	ug/L	RJB
Benzene		05	71-43-2	SW8260	D	08/18/2023 12:54	08/18/2023 12:54		BLOD		0.40	1.00	1	ug/L	RJB
Ethylbenzene		05	100-41-4	SW8260	D	08/18/2023 12:54	08/18/2023 12:54		BLOD		0.40	1.00	1	ug/L	RJB
m+p-Xylenes		05	179601-23- 1	SW8260	D	08/18/2023 12:54	08/18/2023 12:54		BLOD		0.60	2.00	1	ug/L	RJB
o-Xylene		05	95-47-6	SW8260	D	08/18/2023 12:54	08/18/2023 12:54		BLOD		0.40	1.00	1	ug/L	RJB
Toluene		05	108-88-3	SW8260	D	08/18/2023 12:54	08/18/2023 12:54		BLOD		0.50	1.00	1	ug/L	RJB
Xylenes, Total		05	1330-20-7	SW8260	D	08/18/2023 12:54	08/18/2023 12:54		BLOD		1.00	3.00	1	ug/L	RJB
Tetrahydrofuran		05	109-99-9	SW8260	D	08/18/2023 12:54	08/18/2023 12:54		BLOD		10.0	10.0	1	ug/L	RJB
Surr: 1,2-Dichloroethane-c	d4 (Surr)	05	100	70%	120	08/18/2023 12	2:54 08/18/2023 1	2:54							
Surr: 4-Bromofluorobenze	ne (Surr)	05	100	0% 75	120	08/18/2023 12	2:54 08/18/2023 1	2:54							
Surr: Dibromofluorometha	ne (Surr)	05	94.6	5% 70	130	08/18/2023 12	2:54 08/18/2023 1	2:54							
Surr: Toluene-d8 (Surr)		05	98.3	8% 70	130	08/18/2023 12	2:54 08/18/2023 1	2:54							

			<u>Ce</u>	ertificate o	of Analysi	S				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I D :	2022 City of Bristol Landfill L	oochata								
		eachale								
Submitted To:	Jennifer Robb									
		Metals	s (Total) by	EPA 6000/7000 S	eries Methods - C	Quality Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGH0720 - EPA200).8 R5.4								
Blank (BGH0720-BLK1)				Prepared: 08/18/	/2023 Analyzed: 0	8/21/2023				
Mercury	ND	0.200	ug/L	•						
Arsenic	ND	1.0	ug/L							
Barium	ND	5.00	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	1.00	ug/L							
Copper	ND	1.00	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	1.000	ug/L							
Selenium	ND	1.00	ug/L							
Silver	ND	1.00	ug/L							
Zinc	ND	5.00	ug/L							
LCS (BGH0720-BS1)				Prepared: 08/18/	2023 Analyzed: 0	8/21/2023				
Mercury	0.990	0.200	ug/L	1.00		99.0	85-115			
Arsenic	49	1.0	ug/L	50.0		99.0	80-120			
Barium	48.0	5.00	ug/L	50.0		95.9	80-120			
Cadmium	47.9	1.00	ug/L	50.0		95.9	80-120			
Chromium	49.3	1.00	ug/L	50.0		98.6	80-120			
Copper	49.6	1.00	ug/L	50.0		99.1	80-120			
Lead	49	1.0	ug/L	50.0		98.3	80-120			
Nickel	48.68	1.000	ug/L	50.0		97.4	80-120			
Selenium	48.8	1.00	ug/L	50.0		97.6	80-120			
Silver	9.35	1.00	ug/L	10.0		93.5	80-120			
Zinc	49.2	5.00	ug/L	50.0		98.4	80-120			
Matrix Spike (BGH0720	-MS1) Source	e: 23H0990-0	5	Prepared: 08/18/	2023 Analyzed: 0	8/21/2023				

SCS Engineers-Winchester

Enthalpy Analytical 1941 Reymet Road Richmond, Virginia 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

Certificate of Analysis Date Issued:

8/31/2023 2:20:22PM

2023 City of Bristol Landfill Leachate Client Site I.D.:

Jennifer Robb Submitted To:

Client Name:

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Enthalpy Analytical

Analvte	Result	LOO	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGH0720 - EPA20	0.8 R5.4				////20				
Matrix Spike (BGH0720-MS1)	Sour	ce: 23H0990-0)5	Prepared: 08/18	/2023 Analyzed: (08/21/2023				
Mercury	0.985	0.200	ug/L	1.00	BLOD	98.5	70-130			
Arsenic	50	1.0	ug/L	50.0	BLOD	99.4	75-125			
Barium	73.8	5.00	ug/L	50.0	24.8	98.0	75-125			
Cadmium	49.3	1.00	ug/L	50.0	0.129	98.3	75-125			
Chromium	50.8	1.00	ug/L	50.0	BLOD	102	75-125			
Copper	51.2	1.00	ug/L	50.0	0.567	101	75-125			
Lead	51	1.0	ug/L	50.0	BLOD	101	75-125			
Nickel	51.11	1.000	ug/L	50.0	1.852	98.5	75-125			
Selenium	48.4	1.00	ug/L	50.0	BLOD	96.8	75-125			
Silver	9.53	1.00	ug/L	10.0	BLOD	95.3	75-125			
Zinc	52.6	5.00	ug/L	50.0	2.58	100	75-125			
Matrix Spike Dup (BGH0720-MSD1)	Sour	ce: 23H0990-0)5	Prepared: 08/18	/2023 Analyzed: (08/21/2023				
Mercury	0.974	0.200	ug/L	1.00	BLOD	97.4	70-130	1.06	20	
Arsenic	49	1.0	ug/L	50.0	BLOD	98.5	75-125	0.910	20	
Barium	72.9	5.00	ug/L	50.0	24.8	96.2	75-125	1.25	20	
Cadmium	48.0	1.00	ug/L	50.0	0.129	95.7	75-125	2.60	20	
Chromium	49.9	1.00	ug/L	50.0	BLOD	99.8	75-125	1.80	20	
Copper	50.2	1.00	ug/L	50.0	0.567	99.3	75-125	1.86	20	
Lead	50	1.0	ug/L	50.0	BLOD	99.9	75-125	1.15	20	
Nickel	51.15	1.000	ug/L	50.0	1.852	98.6	75-125	0.0647	20	
Selenium	47.9	1.00	ug/L	50.0	BLOD	95.7	75-125	1.09	20	
Silver	9.38	1.00	ug/L	10.0	BLOD	93.8	75-125	1.58	20	
Zinc	51.9	5.00	ug/L	50.0	2.58	98.6	75-125	1.43	20	

				Ce	rtificate o	of Analysi	is				
Client Name:	SCS Engineers	-Winchester						Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I D :	2023 City of B	ristal Landfill La	achata								
			achate								
Submitted To:	Jennifer Robb										
			١	/olatile Orga	nic Compounds b	y GCMS - Qualit	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BC	GH0712 - SW5030I	B-MS								
Blank (BGH0712-BLK	1)				Prepared & Analy	/zed: 08/18/2023					
2-Butanone (MEK)		ND	10.0	ug/L							
Acetone		ND	10.0	ug/L							
Benzene		ND	1.00	ug/L							
Ethylbenzene		ND	1.00	ug/L							
m+p-Xylenes		ND	2.00	ug/L							
o-Xylene		ND	1.00	ug/L							
Toluene		ND	1.00	ug/L							
Xylenes, Total		ND	3.00	ug/L							
Tetrahydrofuran		ND	10.0	ug/L							
Surr: 1,2-Dichloroet	hane-d4 (Surr)	49.8		ug/L	50.0		99.7	70-120			
Surr: 4-Bromofluoro	benzene (Surr)	49.1		ug/L	50.0		98.2	75-120			
Surr: Dibromofluoro	methane (Surr)	46.6		ug/L	50.0		93.3	70-130			
Surr: Toluene-d8 (S	urr)	49.1		ug/L	50.0		98.3	70-130			
LCS (BGH0712-BS1)					Prepared & Analy	/zed: 08/18/2023					
1,1,1,2-Tetrachloroe	ethane	47.1	0.4	ug/L	50.0		94.2	80-130			
1,1,1-Trichloroethan	ie	46.2	1	ug/L	50.0		92.4	65-130			
1,1,2,2-Tetrachloroe	ethane	46.2	0.4	ug/L	50.0		92.5	65-130			
1,1,2-Trichloroethan	ie	46.4	1	ug/L	50.0		92.8	75-125			
1,1-Dichloroethane		45.8	1	ug/L	50.0		91.5	70-135			
1,1-Dichloroethylene	е	44.2	1	ug/L	50.0		88.5	70-130			
1,1-Dichloropropene	e	49.0	1	ug/L	50.0		98.1	75-135			
1,2,3-Trichlorobenze	ene	49.0	1	ug/L	50.0		98.0	55-140			
1,2,3-Trichloropropa	ane	45.2	1	ug/L	50.0		90.3	75-125			
1,2,4-Trichlorobenze	ene	49.2	1	ug/L	50.0		98.3	65-135			

				Cer	tificate o	of Analysi	is				
Client Name: S	SCS Engineers	s-Winchester						Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I.D.:	2023 City of B Jennifer Robb	ristol Landfill L	eachate								
			,	lalatila Organ	ia Campaunda I		ty Control				
			1	/olatile Organ	ic Compounds i	by GCINS - Quali	ly Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B	GH0712 - SW503	0B-MS								
LCS (BGH0712-BS1)				F	Prepared & Anal	yzed: 08/18/2023	3				
1,2,4-Trimethylbenzene	9	51.0	1	ug/L	50.0		102	75-130			
1,2-Dibromo-3-chloropr	opane (DBCP)	51.9	1	ug/L	50.0		104	50-130			
1,2-Dibromoethane (ED	DB)	45.7	1	ug/L	50.0		91.4	80-120			
1,2-Dichlorobenzene		47.2	0.5	ug/L	50.0		94.4	70-120			
1,2-Dichloroethane		39.1	1	ug/L	50.0		78.2	70-130			
1,2-Dichloropropane		44.5	0.5	ug/L	50.0		88.9	75-125			
1,3,5-Trimethylbenzene	9	49.2	1	ug/L	50.0		98.4	75-125			
1,3-Dichlorobenzene		48.9	1	ug/L	50.0		97.8	75-125			
1,3-Dichloropropane		44.3	1	ug/L	50.0		88.7	75-125			
1,4-Dichlorobenzene		45.3	1	ug/L	50.0		90.6	75-125			
2,2-Dichloropropane		49.0	1	ug/L	50.0		98.1	70-135			
2-Butanone (MEK)		43.3	10	ug/L	50.0		86.6	30-150			
2-Chlorotoluene		49.3	1	ug/L	50.0		98.5	75-125			
2-Hexanone (MBK)		50.3	5	ug/L	50.0		101	55-130			
4-Chlorotoluene		48.2	1	ug/L	50.0		96.3	75-130			
4-Isopropyltoluene		55.2	1	ug/L	50.0		110	75-130			
4-Methyl-2-pentanone ((MIBK)	49.8	5	ug/L	50.0		99.6	60-135			
Acetone		44.3	10	ug/L	50.0		88.6	40-140			
Benzene		46.5	1	ug/L	50.0		93.0	80-120			
Bromobenzene		45.3	1	ug/L	50.0		90.6	75-125			
Bromochloromethane		41.6	1	ug/L	50.0		83.3	65-130			
Bromodichloromethane	•	46.8	0.5	ug/L	50.0		93.5	75-120			
Bromoform		45.8	1	ug/L	50.0		91.6	70-130			
Bromomethane		35.4	1	ug/L	50.0		70.8	30-145			
Carbon disulfide		41.9	10	ua/L	50.0		83.8	35-160			

			<u>Cer</u>	tificate o	of Analysi	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I D	2023 City of Bristol Landfill	l eachate								
		Louonato								
Submitted Io:	Jennifer Robb									
		١	/olatile Organ	ic Compounds I	by GCMS - Quali	ty Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGH0712 - SW50	30B-MS								
LCS (BGH0712-BS1)			F	Prepared & Anal	yzed: 08/18/2023	•				
Carbon tetrachloride	e 51.7	1	ug/L	50.0		103	65-140			
Chlorobenzene	46.2	1	ug/L	50.0		92.5	80-120			
Chloroethane	36.4	1	ug/L	50.0		72.9	60-135			
Chloroform	40.3	0.5	ug/L	50.0		80.6	65-135			
Chloromethane	33.8	1	ug/L	50.0		67.7	40-125			
cis-1,2-Dichloroethy	lene 43.2	1	ug/L	50.0		86.4	70-125			
cis-1,3-Dichloroprop	bene 48.7	1	ug/L	50.0		97.4	70-130			
Dibromochlorometha	ane 46.6	0.5	ug/L	50.0		93.1	60-135			
Dibromomethane	44.2	1	ug/L	50.0		88.3	75-125			
Dichlorodifluorometh	hane 36.8	1	ug/L	50.0		73.6	30-155			
Ethylbenzene	48.3	1	ug/L	50.0		96.7	75-125			
Hexachlorobutadien	le 49.9	0.8	ug/L	50.0		99.8	50-140			
Isopropylbenzene	46.5	1	ug/L	50.0		93.0	75-125			
m+p-Xylenes	94.9	2	ug/L	100		94.9	75-130			
Methylene chloride	38.2	4	ug/L	50.0		76.4	55-140			
Methyl-t-butyl ether	(MTBE) 42.1	1	ug/L	50.0		84.2	65-125			
Naphthalene	49.1	1	ug/L	50.0		98.1	55-140			
n-Butylbenzene	55.4	1	ug/L	50.0		111	70-135			
n-Propylbenzene	51.5	1	ug/L	50.0		103	70-130			
o-Xylene	47.3	1	ug/L	50.0		94.6	80-120			
sec-Butylbenzene	57.8	1	ug/L	50.0		116	70-125			
Styrene	46.3	1	ug/L	50.0		92.6	65-135			
tert-Butylbenzene	51.8	1	ug/L	50.0		104	70-130			
Tetrachloroethylene	(PCE) 51.0	1	ug/L	50.0		102	45-150			
Toluene	47.2	1	ug/L	50.0		94.5	75-120			

				Ce	ertificate o	of Analysis	<u>s</u>				
Client Name:	SCS Engineers	-Winchester						Date Issued	:	8/31/2023	2:20:22PM
Client Site I D :	2023 City of B	ristol Landfill La	achata								
			achate								
Submitted To:	Jennifer Robb										
			١	/olatile Org	anic Compounds	by GCMS - Quality	/ Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BC	GH0712 - SW5030E	3-MS								
LCS (BGH0712-BS1)					Prepared & Anal	yzed: 08/18/2023					
trans-1,2-Dichloroet	thylene	39.0	1	ug/L	50.0		77.9	60-140			
trans-1,3-Dichloropr	ropene	53.2	1	ug/L	50.0		106	55-140			
Trichloroethylene		46.1	1	ug/L	50.0		92.3	70-125			
Trichlorofluorometha	ane	45.7	1	ug/L	50.0		91.4	60-145			
Vinyl chloride		40.0	0.5	ug/L	50.0		79.9	50-145			
Surr: 1,2-Dichloroet	hane-d4 (Surr)	45.3		ug/L	50.0		90.7	70-120			
Surr: 4-Bromofluoro	benzene (Surr)	49.0		ug/L	50.0		98.0	75-120			
Surr: Dibromofluoro	omethane (Surr)	45.0		ug/L	50.0		90.1	70-130			
Surr: Toluene-d8 (S	turr)	49.6		ug/L	50.0		99.3	70-130			
Duplicate (BGH0712-D	DUP1)	Source:	23H0908-0	2	Prepared & Anal	yzed: 08/18/2023					
1,1,1,2-Tetrachloroe	ethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,1-Trichloroethar	ne	ND	1.00	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroe	ethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,2-Trichloroethar	ne	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethane		ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethylen	e	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloropropene	e	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichlorobenze	ene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichloropropa	ane	ND	1.00	ug/L		BLOD			NA	30	
1,2,4-Trichlorobenze	ene	ND	1.00	ug/L		BLOD			NA	30	
1,2,4-Trimethylbenz	zene	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dibromo-3-chlor	ropropane (DBCP)	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dibromoethane	(EDB)	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dichlorobenzen	е	ND	0.50	ug/L		BLOD			NA	30	

				Ce	ertificate of	Analysi	<u>S</u>						
Client Name:	SCS Engineers	-Winchester					_	Date Issue	ed:	8/31/2023	2:20:22PM		
Client Site I D ·	2023 City of Br	ristol I andfill I	eachate										
Cubreitted Tex	Loppifor Dobb		ouonato										
Submitted to:													
			١	/olatile Org	anic Compounds by (GCMS - Quality	/ Control						
					Enthalpy Analy	/tical							
		Decult	1.00	L Lo ita	Spike	Source	0/ DE0	%REC		RPD	Qual		
Analyle		Result	LUQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual		
Batch BGH0712 - SW5030B-MS													
Duplicate (BGH0712-D	UP1)	Source	e: 23H0908-0)2	Prepared & Analyze	d: 08/18/2023							
1,2-Dichloroethane		ND	1.00	ug/L		BLOD			NA	30			
1,2-Dichloropropane)	ND	0.50	ug/L		BLOD			NA	30			
1,3,5-Trimethylbenze	ene	ND	1.00	ug/L		BLOD			NA	30			
1,3-Dichlorobenzene	Э	ND	1.00	ug/L		BLOD			NA	30			
1,3-Dichloropropane)	ND	1.00	ug/L		BLOD			NA	30			
1,4-Dichlorobenzene	e	ND	1.00	ug/L		BLOD			NA	30			
2,2-Dichloropropane	9	ND	1.00	ug/L		BLOD			NA	30			
2-Butanone (MEK)		ND	10.0	ug/L		BLOD			NA	30			
2-Chlorotoluene		ND	1.00	ug/L		BLOD			NA	30			
2-Hexanone (MBK)		ND	5.00	ug/L		BLOD			NA	30			
4-Chlorotoluene		ND	1.00	ug/L		BLOD			NA	30			
4-Isopropyltoluene		ND	1.00	ug/L		BLOD			NA	30			
4-Methyl-2-pentanor	ne (MIBK)	ND	5.00	ug/L		BLOD			NA	30			
Acetone		ND	10.0	ug/L		BLOD			NA	30			
Benzene		ND	1.00	ug/L		BLOD			NA	30			
Bromobenzene		ND	1.00	ug/L		BLOD			NA	30			
Bromochloromethan	ie	ND	1.00	ug/L		BLOD			NA	30			
Bromodichlorometha	ane	ND	0.50	ug/L		BLOD			NA	30			
Bromoform		ND	1.00	ug/L		BLOD			NA	30			
Bromomethane		ND	1.00	ug/L		BLOD			NA	30			
Carbon disulfide		ND	10.0	ug/L		BLOD			NA	30			
Carbon tetrachloride)	ND	1.00	ug/L		BLOD			NA	30			
Chlorobenzene		ND	1.00	ug/L		BLOD			NA	30			
Chloroethane		ND	1.00	ug/L		BLOD			NA	30			
Chloroform		ND	0.50	ug/L		BLOD			NA	30			

				Ce	ertificate of	Analysi	S				
Client Name:	SCS Engineers-	Winchester						Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I.D.:	2023 Citv of Bri	stol Landfill L	eachate								
Submitted Te:	lennifer Robb										
Submitted 10.											
			1	/olatile Org	anic Compounds by C	CMS - Quality	y Control				
					Enthalpy Analy	tical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BG	H0712 - SW503	0B-MS								
Duplicate (BGH0712-D)UP1)	Sourc	e: 23H0908-0)2	Prepared & Analyze	d: 08/18/2023					
Chloromethane		ND	1.00	ug/L		BLOD			NA	30	
cis-1,2-Dichloroethy	lene	ND	1.00	ug/L		BLOD			NA	30	
cis-1,3-Dichloroprop	bene	ND	1.00	ug/L		BLOD			NA	30	
Dibromochloromethane		ND	0.50	ug/L		BLOD			NA	30	
Dibromomethane		ND	1.00	ug/L		BLOD			NA	30	
Dichlorodifluoromethane		ND	1.00	ug/L		BLOD			NA	30	
Di-isopropyl ether (D	DIPE)	ND	5.00	ug/L		BLOD			NA	30	
Ethylbenzene		ND	1.00	ug/L		BLOD			NA	30	
Hexachlorobutadien	ie	ND	0.80	ug/L		BLOD			NA	30	
lodomethane		ND	10.0	ug/L		BLOD			NA	30	
Isopropylbenzene		ND	1.00	ug/L		BLOD			NA	30	
m+p-Xylenes		ND	2.00	ug/L		BLOD			NA	30	
Methylene chloride		ND	4.00	ug/L		BLOD			NA	30	
Methyl-t-butyl ether	(MTBE)	ND	1.00	ug/L		BLOD			NA	30	
Naphthalene		ND	1.00	ug/L		BLOD			NA	30	
n-Butylbenzene		ND	1.00	ug/L		BLOD			NA	30	
n-Propylbenzene		ND	1.00	ug/L		BLOD			NA	30	
o-Xylene		ND	1.00	ug/L		BLOD			NA	30	
sec-Butylbenzene		ND	1.00	ug/L		BLOD			NA	30	
Styrene		ND	1.00	ug/L		BLOD			NA	30	
tert-Butylbenzene		ND	1.00	ug/L		BLOD			NA	30	
Tetrachloroethylene	(PCE)	ND	1.00	ug/L		BLOD			NA	30	
Toluene		ND	1.00	ug/L		BLOD			NA	30	
trans-1,2-Dichloroet	hylene	ND	1.00	ug/L		BLOD			NA	30	
trans-1,3-Dichloropr	ropene	ND	1.00	ug/L		BLOD			NA	30	

				<u>Ce</u>	ertificate o	of Analysi	S				
Client Name:	SCS Engineers	-Winchester						Date Issued		8/31/2023	2:20:22PM
Client Site I D	2023 City of Br	ristol I andfill I e	achate								
	Lonnifor Dobb		aonato								
Submitted To:	Jennifer Robb										
			١	/olatile Org	anic Compounds	oy GCMS - Qualit	y Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BG	H0712 - SW5030E	B-MS								
Duplicate (BGH0712-E	DUP1)	Source:	23H0908-0	02	Prepared & Anal	yzed: 08/18/2023					
Trichloroethylene		ND	1.00	ug/L		BLOD			NA	30	
Trichlorofluorometha	ane	ND	1.00	ug/L		BLOD			NA	30	
Vinyl acetate		ND	10.0	ug/L		BLOD			NA	30	
Vinyl chloride		ND	0.50	ug/L		BLOD			NA	30	
Xylenes, Total		ND	3.00	ug/L		BLOD			NA	30	
Tetrahydrofuran		ND	10.0	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroet	thane-d4 (Surr)	51.4		ug/L	50.0		103	70-120			
Surr: 4-Bromofluoro	obenzene (Surr)	50.2		ug/L	50.0		100	75-120			
Surr: Dibromofluoro	omethane (Surr)	47.8		ug/L	50.0		95.5	70-130			
Surr: Toluene-d8 (S	Surr)	49.1		ug/L	50.0		98.1	70-130			
Matrix Spike (BGH071	2-MS1)	Source:	23H0908-0	01	Prepared & Anal	yzed: 08/18/2023					
1,1,1,2-Tetrachloroe	ethane	47.9	0.4	ug/L	50.0	BLOD	95.9	80-130			
1,1,1-Trichloroethar	ne	48.0	1	ug/L	50.0	BLOD	96.0	65-130			
1,1,2,2-Tetrachloroe	ethane	46.8	0.4	ug/L	50.0	BLOD	93.5	65-130			
1,1,2-Trichloroethar	ne	47.9	1	ug/L	50.0	BLOD	95.8	75-125			
1,1-Dichloroethane		46.9	1	ug/L	50.0	BLOD	93.9	70-135			
1,1-Dichloroethylen	e	45.0	1	ug/L	50.0	BLOD	90.0	50-145			
1,1-Dichloropropene	е	50.4	1	ug/L	50.0	BLOD	101	75-135			
1,2,3-Trichlorobenze	ene	50.3	1	ug/L	50.0	BLOD	101	55-140			
1,2,3-Trichloropropa	ane	46.2	1	ug/L	50.0	BLOD	92.3	75-125			
1,2,4-Trichlorobenze	ene	50.3	1	ug/L	50.0	BLOD	101	65-135			
1,2,4-Trimethylbenz	zene	53.2	1	ug/L	50.0	BLOD	106	75-130			
1,2-Dibromo-3-chlor	ropropane (DBCP)	51.7	1	ug/L	50.0	BLOD	103	50-130			
1,2-Dibromoethane	(EDB)	46.2	1	ug/L	50.0	BLOD	92.4	80-120			

				Ce	ertificate o	of Analysi	is				
Client Name:	SCS Enginee	ers-Winchester				-		Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I.D.:	2023 City of	Bristol Landfill L	eachate								
Submitted To:	lennifer Roh	h									
Submitted 10.		0				00100 0 1					
			Ve	olatile Org	anic Compounds t	by GCMS - Qualit	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch	BGH0712 - SW5030	0B-MS								
Matrix Spike (BGH0712	2-MS1)	Source	e: 23H0908-0 [,]	1	Prepared & Analy	yzed: 08/18/2023					
1,2-Dichlorobenzene	9	48.4	0.5	ug/L	50.0	BLOD	96.8	70-120			
1,2-Dichloroethane		40.2	1	ug/L	50.0	BLOD	80.5	70-130			
1,2-Dichloropropane	e	45.8	0.5	ug/L	50.0	BLOD	91.6	75-125			
1,3,5-Trimethylbenze	ene	50.7	1	ug/L	50.0	BLOD	101	75-124			
1,3-Dichlorobenzene	е	49.7	1	ug/L	50.0	BLOD	99.5	75-125			
1,3-Dichloropropane	9	45.6	1	ug/L	50.0	BLOD	91.2	75-125			
1,4-Dichlorobenzene	9	46.9	1	ug/L	50.0	BLOD	93.8	75-125			
2,2-Dichloropropane	9	50.0	1	ug/L	50.0	BLOD	100	70-135			
2-Butanone (MEK)		51.1	10	ug/L	50.0	BLOD	102	30-150			
2-Chlorotoluene		49.7	1	ug/L	50.0	BLOD	99.4	75-125			
2-Hexanone (MBK)		47.3	5	ug/L	50.0	BLOD	94.6	55-130			
4-Chlorotoluene		50.6	1	ug/L	50.0	BLOD	101	75-130			
4-Isopropyltoluene		56.8	1	ug/L	50.0	BLOD	114	75-130			
4-Methyl-2-pentanor	ne (MIBK)	46.0	5	ug/L	50.0	BLOD	92.1	60-135			
Acetone		38.4	10	ug/L	50.0	BLOD	76.8	40-140			
Benzene		47.3	1	ug/L	50.0	BLOD	94.7	80-120			
Bromobenzene		47.7	1	ug/L	50.0	BLOD	95.3	75-125			
Bromochloromethan	ie	42.1	1	ug/L	50.0	BLOD	84.2	65-130			
Bromodichlorometha	ane	47.6	0.5	ug/L	50.0	BLOD	95.3	75-136			
Bromoform		46.3	1	ug/L	50.0	BLOD	92.5	70-130			
Bromomethane		39.5	1	ug/L	50.0	BLOD	79.1	30-145			
Carbon disulfide		37.0	10	ug/L	50.0	BLOD	73.9	35-160			
Carbon tetrachloride	9	54.0	1	ug/L	50.0	BLOD	108	65-140			
Chlorobenzene		48.4	1	ug/L	50.0	BLOD	96.7	80-120			
Chloroethane		37.3	1	ug/L	50.0	BLOD	74.7	60-135			

				Ce	ertificate o	of Analysi	S				
Client Name:	SCS Engine	ers-Winchester				-		Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I.D.:	2023 Citv of	f Bristol Landfill Le	achate								
Submitted Te:	lennifer Pok										
Submitted 10.	Jennier Kor						a				
			V	olatile Org	anic Compounds t	by GCMS - Qualit	y Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch	BGH0712 - SW5030	B-MS								
Matrix Spike (BGH071	2-MS1)	Source:	23H0908-0	1	Prepared & Anal	yzed: 08/18/2023					
Chloroform		40.8	0.5	ug/L	50.0	BLOD	81.6	65-135			
Chloromethane		34.1	1	ug/L	50.0	BLOD	68.1	40-125			
cis-1,2-Dichloroethy	/lene	44.0	1	ug/L	50.0	BLOD	88.0	70-125			
cis-1,3-Dichloroprop	bene	50.1	1	ug/L	50.0	BLOD	100	47-136			
Dibromochlorometh	ane	47.7	0.5	ug/L	50.0	BLOD	95.4	60-135			
Dibromomethane		45.2	1	ug/L	50.0	BLOD	90.3	75-125			
Dichlorodifluoromet	hane	36.6	1	ug/L	50.0	BLOD	73.3	30-155			
Ethylbenzene		50.5	1	ug/L	50.0	BLOD	101	75-125			
Hexachlorobutadier	ne	50.1	0.8	ug/L	50.0	BLOD	100	50-140			
Isopropylbenzene		49.4	1	ug/L	50.0	BLOD	98.7	75-125			
m+p-Xylenes		99.6	2	ug/L	100	BLOD	99.6	75-130			
Methylene chloride		39.2	4	ug/L	50.0	BLOD	78.3	55-140			
Methyl-t-butyl ether	(MTBE)	42.8	1	ug/L	50.0	BLOD	85.5	65-125			
Naphthalene		50.3	1	ug/L	50.0	BLOD	101	55-140			
n-Butylbenzene		57.0	1	ug/L	50.0	BLOD	114	70-135			
n-Propylbenzene		53.3	1	ug/L	50.0	BLOD	107	70-130			
o-Xylene		49.7	1	ug/L	50.0	BLOD	99.5	80-120			
sec-Butylbenzene		59.8	1	ug/L	50.0	BLOD	120	70-125			
Styrene		48.4	1	ug/L	50.0	BLOD	96.8	65-135			
tert-Butylbenzene		53.1	1	ug/L	50.0	BLOD	106	70-130			
Tetrachloroethylene	e (PCE)	52.2	1	ug/L	50.0	BLOD	104	51-231			
Toluene		49.5	1	ug/L	50.0	BLOD	99.0	75-120			
trans-1,2-Dichloroet	thylene	42.3	1	ug/L	50.0	BLOD	84.7	60-140			
trans-1,3-Dichlorop	ropene	53.4	1	ug/L	50.0	BLOD	107	55-140			
Trichloroethylene		47.1	1	ug/L	50.0	BLOD	94.3	70-125			

				<u>C</u>	ertificate	of Analysi	s				
Client Name:	SCS Engineer	s-Winchester						Date Issued:		8/31/2023	2:20:22PM
Client Site I.D.:	2023 City of F	Rristol Landfill La	achata								
			achale								
Submitted To:	Jennifer Robb										
			١	/olatile Org	anic Compounds	by GCMS - Qualit	y Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B	GH0712 - SW5030I	B-MS								
Matrix Spike (BGH071	2-MS1)	Source:	23H0908-0)1	Prepared & Ana	lyzed: 08/18/2023					
Trichlorofluorometha	ane	46.3	1	ug/L	50.0	BLOD	92.6	60-145			
Vinyl chloride		40.4	0.5	ug/L	50.0	BLOD	80.7	50-145			
Surr: 1,2-Dichloroet	hane-d4 (Surr)	46.4		ug/L	50.0		92.8	70-120			
Surr: 4-Bromofluoro	benzene (Surr)	50.2		ug/L	50.0		100	75-120			
Surr: Dibromofluoro	Surr: Dibromofluoromethane (Surr)			ug/L	50.0		89.8	70-130			
Surr: Toluene-d8 (S	urr)	50.6		ug/L	50.0		101	70-130			
	Batch B	GH0781 - SW5030I	3-MS								
Blank (BGH0781-BLK	1)				Prepared & Ana	lyzed: 08/21/2023					
2-Butanone (MEK)		ND	10.0	ug/L							
Acetone		ND	10.0	ug/L							
Benzene		ND	1.00	ug/L							
Ethylbenzene		ND	1.00	ug/L							
m+p-Xylenes		ND	2.00	ug/L							
o-Xylene		ND	1.00	ug/L							
Toluene		ND	1.00	ug/L							
Xylenes, Total		ND	3.00	ug/L							
Surr: 1,2-Dichloroet	hane-d4 (Surr)	53.1		ug/L	50.0		106	70-120			
Surr: 4-Bromofluoro	benzene (Surr)	50.0		ug/L	50.0		99.9	75-120			
Surr: Dibromofluoro	methane (Surr)	53.5		ug/L	50.0		107	70-130			
Surr: Toluene-d8 (S	urr)	50.9		ug/L	50.0		102	70-130			
LCS (BGH0781-BS1)					Prepared & Ana	lyzed: 08/21/2023					
1,1,1,2-Tetrachloroe	ethane	53.7	0.4	ug/L	50.0		107	80-130			
1,1,1-Trichloroethan	ie	60.8	1	ug/L	50.0		122	65-130			

				<u>Cer</u>	tificate o	of Analysi	S				
Client Name:	SCS Engineers	-Winchester						Date Issue	d:	8/31/2023	2:20:22PM
Client Site I D ·	2023 City of Br	istol I andfill I e	achate								
			achate								
Submitted To:	Jennifer Robb										
			N	/olatile Organ	ic Compounds b	oy GCMS - Qualit	y Control				
					Enthalpy Ar	nalytical					
Analyta		Pocult	1.00	Unite	Spike	Source	% PEC	%REC	חסס	RPD Limit	Qual
Analyte		Result	LUQ	Units	Level	Result	/INEC	LIIIIIS	NF D	LIIIII	Quai
	Batch BG	H0781 - SW5030	B-MS								
LCS (BGH0781-BS1)				F	Prepared & Analy	yzed: 08/21/2023					
1,1,2,2-Tetrachloroet	thane	50.8	0.4	ug/L	50.0		102	65-130			
1,1,2-Trichloroethan	e	56.9	1	ug/L	50.0		114	75-125			
1,1-Dichloroethane		58.6	1	ug/L	50.0		117	70-135			
1,1-Dichloroethylene	9	56.5	1	ug/L	50.0		113	70-130			
1,1-Dichloropropene	2	62.5	1	ug/L	50.0		125	75-135			
1,2,3-Trichlorobenze	ene	53.0	1	ug/L	50.0		106	55-140			
1,2,3-Trichloropropa	ne	49.9	1	ug/L	50.0		99.8	75-125			
1,2,4-Trichlorobenze	ene	54.3	1	ug/L	50.0		109	65-135			
1,2,4-Trimethylbenze	ene	59.2	1	ug/L	50.0		118	75-130			
1,2-Dibromo-3-chlore	opropane (DBCP)	46.7	1	ug/L	50.0		93.5	50-130			
1,2-Dibromoethane ((EDB)	53.0	1	ug/L	50.0		106	80-120			
1,2-Dichlorobenzene	9	55.5	0.5	ug/L	50.0		111	70-120			
1,2-Dichloroethane		54.6	1	ug/L	50.0		109	70-130			
1,2-Dichloropropane		55.5	0.5	ug/L	50.0		111	75-125			
1,3,5-Trimethylbenze	ene	57.3	1	ug/L	50.0		115	75-125			
1,3-Dichlorobenzene	e	56.3	1	ug/L	50.0		113	75-125			
1,3-Dichloropropane		54.5	1	ug/L	50.0		109	75-125			
1,4-Dichlorobenzene	e	53.2	1	ug/L	50.0		106	75-125			
2,2-Dichloropropane	•	60.5	1	ug/L	50.0		121	70-135			
2-Butanone (MEK)		46.7	10	ug/L	50.0		93.4	30-150			
2-Chlorotoluene		56.6	1	ug/L	50.0		113	75-125			
2-Hexanone (MBK)		41.3	5	ug/L	50.0		82.6	55-130			
4-Chlorotoluene		56.4	1	ug/L	50.0		113	75-130			
4-Isopropyltoluene		60.2	1	ug/L	50.0		120	75-130			
4-Methyl-2-pentanor	ne (MIBK)	46.1	5	ug/L	50.0		92.3	60-135			

			Cei	rtificate o	of Analysi	S				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I D ·	2023 City of Bristol Landfill L	eachate								
Onorit One T.D.	Loppifor Dobb	ouonato								
Submitted To:										
		١	/olatile Orgar	nic Compounds I	by GCMS - Qualit	y Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGH0781 - SW503	0B-MS								
LCS (BGH0781-BS1)			F	Prepared & Anal	yzed: 08/21/2023					
Acetone	44.5	10	ug/L	50.0	•	89.0	40-140			
Benzene	55.0	1	ug/L	50.0		110	80-120			
Bromobenzene	53.0	1	ug/L	50.0		106	75-125			
Bromochloromethan	ie 54.6	1	ug/L	50.0		109	65-130			
Bromodichlorometha	ane 56.1	0.5	ug/L	50.0		112	75-120			
Bromoform	51.4	1	ug/L	50.0		103	70-130			
Bromomethane	39.2	1	ug/L	50.0		78.4	30-145			
Carbon disulfide	45.7	10	ug/L	50.0		91.4	35-160			
Carbon tetrachloride	62.2	1	ug/L	50.0		124	65-140			
Chlorobenzene	53.8	1	ug/L	50.0		108	80-120			
Chloroethane	45.9	1	ug/L	50.0		91.8	60-135			
Chloroform	55.2	0.5	ug/L	50.0		110	65-135			
Chloromethane	40.5	1	ug/L	50.0		81.0	40-125			
cis-1,2-Dichloroethyl	lene 56.0	1	ug/L	50.0		112	70-125			
cis-1,3-Dichloroprop	ene 53.2	1	ug/L	50.0		106	70-130			
Dibromochlorometha	ane 51.7	0.5	ug/L	50.0		103	60-135			
Dibromomethane	52.4	1	ug/L	50.0		105	75-125			
Dichlorodifluorometh	nane 45.6	1	ug/L	50.0		91.2	30-155			
Ethylbenzene	57.2	1	ug/L	50.0		114	75-125			
Hexachlorobutadien	e 57.9	0.8	ug/L	50.0		116	50-140			
lsopropylbenzene	56.4	1	ug/L	50.0		113	75-125			
m+p-Xylenes	109	2	ug/L	100		109	75-130			
Methylene chloride	51.2	4	ug/L	50.0		102	55-140			
Methyl-t-butyl ether	(MTBE) 47.6	1	ug/L	50.0		95.1	65-125			
Naphthalene	50.2	1	ug/L	50.0		100	55-140			

				<u>Ce</u>	ertificate o	of Analysis	<u>S</u>				
Client Name:	SCS Engineer	s-Winchester						Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I D :	2023 City of F	Rristol Landfill La	achata								
Client Site I.D			achale								
Submitted To:	Jennifer Robb										
			V	/olatile Org	anic Compounds	by GCMS - Quality	Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B	GH0781 - SW5030E	B-MS								
LCS (BGH0781-BS1)					Prepared & Anal	lyzed: 08/21/2023					
n-Butylbenzene		64.3	1	ug/L	50.0		129	70-135			
n-Propylbenzene		57.6	1	ug/L	50.0		115	70-130			
o-Xylene		56.5	1	ug/L	50.0		113	80-120			
sec-Butylbenzene		63.7	1	ug/L	50.0		127	70-125			L
Styrene		54.4	1	ug/L	50.0		109	65-135			
tert-Butylbenzene		58.6	1	ug/L	50.0		117	70-130			
Tetrachloroethylene	(PCE)	59.4	1	ug/L	50.0		119	45-150			
Toluene		54.6	1	ug/L	50.0		109	75-120			
trans-1,2-Dichloroetl	nylene	54.6	1	ug/L	50.0		109	60-140			
trans-1,3-Dichloropr	opene	56.5	1	ug/L	50.0		113	55-140			
Trichloroethylene		56.6	1	ug/L	50.0		113	70-125			
Trichlorofluorometha	ine	59.7	1	ug/L	50.0		119	60-145			
Vinyl chloride		43.9	0.5	ug/L	50.0		87.8	50-145			
Surr: 1,2-Dichloroeth	nane-d4 (Surr)	50.3		ug/L	50.0		101	70-120			
Surr: 4-Bromofluoro	benzene (Surr)	50.9		ug/L	50.0		102	75-120			
Surr: Dibromofluoroi	methane (Surr)	52.7		ug/L	50.0		105	70-130			
Surr: Toluene-d8 (Su	urr)	49.6		ug/L	50.0		99.2	70-130			
Duplicate (BGH0781-D	UP1)	Source:	23H1058-0	1	Prepared & Anal	lyzed: 08/21/2023					
1,1,1,2-Tetrachloroe	thane	ND	4.00	ug/L		BLOD			NA	30	
1,1,1-Trichloroethan	e	ND	10.0	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroe	thane	ND	4.00	ug/L		BLOD			NA	30	
1,1,2-Trichloroethan	e	ND	10.0	ug/L		BLOD			NA	30	
1,1-Dichloroethane		ND	10.0	ug/L		BLOD			NA	30	
1,1-Dichloroethylene	9	ND	10.0	ug/L		BLOD			NA	30	

				Ce	ertificate o	f Analvsi	 S				
Client Name:	SCS Engineers	-Winchester		<u> </u>			-	Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I D	2023 City of B	ristol Landfill I	eachate								
	Lonnifor Dabb		louonato								
Submitted To:	Jennier Robb										
			١	/olatile Org	anic Compounds b	y GCMS - Qualit	y Control				
					Enthalpy An	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BC	GH0781 - SW503	0B-MS								
Duplicate (BGH0781-E	DUP1)	Sourc	e: 23H1058-0	01	Prepared & Analy	zed: 08/21/2023					
1,1-Dichloropropene	e	ND	10.0	ug/L	. ,	BLOD			NA	30	
1,2,3-Trichlorobenzo	ene	ND	10.0	ug/L		BLOD			NA	30	
1,2,3-Trichloropropa	ane	ND	10.0	ug/L		BLOD			NA	30	
1,2,4-Trichlorobenzene		ND	10.0	ug/L		BLOD			NA	30	
1,2,4-Trimethylbenzene		ND	10.0	ug/L		16.8			NA	30	
1,2-Dibromo-3-chlor	ropropane (DBCP)	ND	10.0	ug/L		BLOD			NA	30	
1,2-Dibromoethane	(EDB)	ND	10.0	ug/L		BLOD			NA	30	
1,2-Dichlorobenzen	e	ND	5.00	ug/L		BLOD			NA	30	
1,2-Dichloroethane		ND	10.0	ug/L		BLOD			NA	30	
1,2-Dichloropropane	e	ND	5.00	ug/L		BLOD			NA	30	
1,3,5-Trimethylbenz	zene	ND	10.0	ug/L		BLOD			NA	30	
1,3-Dichlorobenzen	e	ND	10.0	ug/L		BLOD			NA	30	
1,3-Dichloropropane	e	ND	10.0	ug/L		BLOD			NA	30	
1,4-Dichlorobenzen	e	ND	10.0	ug/L		14.8			NA	30	
2,2-Dichloropropane	e	ND	10.0	ug/L		BLOD			NA	30	
2-Butanone (MEK)		574	100	ug/L		466			20.7	30	
2-Chlorotoluene		ND	10.0	ug/L		BLOD			NA	30	
2-Hexanone (MBK)		ND	50.0	ug/L		BLOD			NA	30	
4-Chlorotoluene		ND	10.0	ug/L		BLOD			NA	30	
4-Isopropyltoluene		ND	10.0	ug/L		6.50			NA	30	-
4-Methyl-2-pentano	one (MIBK)	58.8	50.0	ug/L		24.9			NA	30	P
Acetone		884	100	ug/L		1240			33.7	30	P
Benzene		46.8	10.0	ug/L		568			170	30	Р
Bromobenzene		ND	10.0	ug/L		BLOD			NA	30	
Bromochloromethar	ne	ND	10.0	ug/L		BLOD			NA	30	

Certificate of Analysis													
Client Name:	SCS Engineers-Winch	nester			-	_	Date Issue	ed:	8/31/2023	2:20:22PM			
Client Site I D ·	2023 City of Bristol La	andfill Leachate											
Submitted Ter	Loppifor Pobb												
Submitted to.													
			Volatile Org	anic Compounds by	GCMS - Quality	Control							
				Enthalpy Ana	lytical								
	_			Spike	Source		%REC		RPD				
Analyte	Res	sult LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual			
	Batch BGH0781	- SW5030B-MS											
Duplicate (BGH0781-D	UP1)	Source: 23H1058	-01	Prepared & Analyz	ed: 08/21/2023								
Bromodichlorometha	ane	ND 5.00	ug/L		BLOD			NA	30				
Bromoform		ND 10.0	ug/L		BLOD			NA	30				
Bromomethane		ND 10.0	ug/L		BLOD			NA	30				
Carbon disulfide		ND 100	ug/L		BLOD			NA	30				
Carbon tetrachloride		ND 10.0	ug/L		BLOD			NA	30				
Chlorobenzene		ND 10.0	ug/L		BLOD			NA	30				
Chloroethane		ND 10.0	ug/L		BLOD			NA	30				
Chloroform		ND 5.00	ug/L		BLOD			NA	30				
Chloromethane		ND 10.0	ug/L		BLOD			NA	30				
cis-1,2-Dichloroethyl	ene	ND 10.0	ug/L		BLOD			NA	30				
cis-1,3-Dichloroprop	ene	ND 10.0	ug/L		BLOD			NA	30				
Dibromochlorometha	ane	ND 5.00	ug/L		BLOD			NA	30				
Dibromomethane		ND 10.0	ug/L		BLOD			NA	30				
Dichlorodifluorometh	nane	ND 10.0	ug/L		BLOD			NA	30				
Di-isopropyl ether (D	IPE)	ND 50.0	ug/L		BLOD			NA	30				
Ethylbenzene		ND 10.0	ug/L		58.6			NA	30				
Hexachlorobutadiene	e	ND 8.00	ug/L		BLOD			NA	30				
lodomethane		ND 100	ug/L		BLOD			NA	30				
lsopropylbenzene		ND 10.0	ug/L		5.00			NA	30				
m+p-Xylenes		ND 20.0	ug/L		26.6			NA	30				
Methylene chloride		ND 40.0	ug/L		BLOD			NA	30				
Methyl-t-butyl ether ((MTBE)	ND 10.0	ug/L		BLOD			NA	30				
Naphthalene		ND 10.0	ug/L		34.5			NA	30				
n-Butylbenzene		ND 10.0	ug/L		BLOD			NA	30				
n-Propylbenzene		ND 10.0	ug/L		BLOD			NA	30				

Certificate of Analysis													
Client Name:	SCS Engineer	rs-Winchester						Date Issue	ed:	8/31/2023	2:20:22PM		
Client Site I.D.:	2023 Citv of E	Bristol Landfill L	eachate										
Submitted To:	lennifer Robb												
Submitted 10.							0 1 1						
			Ve	platile Org	anic Compounds t	by GCMS - Quality	Control						
					Enthalpy Ar	nalytical							
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual		
	Batch B	3GH0781 - SW5030	0B-MS										
Duplicate (BGH0781-D	UP1)												
o-Xylene		ND	10.0	ug/L		14.4			NA	30			
sec-Butylbenzene		ND	10.0	ug/L		BLOD			NA	30			
Styrene		ND	10.0	ug/L		BLOD			NA	30			
tert-Butylbenzene		ND	10.0	ug/L		BLOD			NA	30			
Tetrachloroethylene	(PCE)	ND	10.0	ug/L		BLOD			NA	30			
Toluene		5.70	10.0	ug/L		20.4			NA	30	Р		
trans-1,2-Dichloroeth	hylene	ND	10.0	ug/L		BLOD			NA	30			
trans-1,3-Dichloropro	opene	ND	10.0	ug/L		BLOD			NA	30			
Trichloroethylene		ND	10.0	ug/L		BLOD			NA	30			
Trichlorofluorometha	ine	ND	10.0	ug/L		BLOD			NA	30			
Vinyl acetate		ND	100	ug/L		BLOD			NA	30			
Vinyl chloride		ND	5.00	ug/L		BLOD			NA	30			
Xylenes, Total		ND	30.0	ug/L		41.0			NA	30			
Tetrahydrofuran		313	100	ug/L		348			10.7	30			
Surr: 1,2-Dichloroeth	hane-d4 (Surr)	55.0		ug/L	50.0		110	70-120					
Surr: 4-Bromofluorol	benzene (Surr)	50.7		ug/L	50.0		101	75-120					
Surr: Dibromofluoror	methane (Surr)	55.4		ug/L	50.0		111	70-130					
Surr: Toluene-d8 (Su	urr)	51.1		ug/L	50.0		102	70-130					
Matrix Spike (BGH0781-MS1) Source: 23H1058-01 Prepared & Analyzed: 08/21/2023													
1,1,1,2-Tetrachloroet	thane	50.8	0.4	ug/L	50.0	BLOD	102	80-130					
1,1,1-Trichloroethan	е	57.7	1	ug/L	50.0	BLOD	115	65-130					
1,1,2,2-Tetrachloroet	thane	58.9	0.4	ug/L	50.0	BLOD	118	65-130					
1,1,2-Trichloroethan	е	59.8	1	ug/L	50.0	BLOD	120	75-125					
1,1-Dichloroethane		56.8	1	ug/L	50.0	BLOD	114	70-135					

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 8/31/2023 2:20:22PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control Enthalpy Analytical Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGH0781 - SW5030B-MS Matrix Spike (BGH0781-MS1) Prepared & Analyzed: 08/21/2023 Source: 23H1058-01 51.9 1,1-Dichloroethylene 1 ug/L 50.0 BLOD 104 50-145 1,1-Dichloropropene 59.0 1 ug/L 50.0 BLOD 118 75-135 BLOD 1,2,3-Trichlorobenzene 56.8 1 ug/L 50.0 114 55-140 59.8 1 50.0 BLOD 120 75-125 1.2.3-Trichloropropane ug/L 1.2.4-Trichlorobenzene 55.3 1 ug/L 50.0 BLOD 111 65-135 58.6 1 1.68 75-130 1,2,4-Trimethylbenzene ug/L 50.0 114 1,2-Dibromo-3-chloropropane (DBCP) 62.7 1 ug/L 50.0 BI OD 125 50-130 1.2-Dibromoethane (EDB) 54.2 1 BLOD 108 80-120 ua/L 50.0 0.5 BLOD 70-120 1.2-Dichlorobenzene 54.3 ug/L 50.0 109 57.3 1 50.0 BLOD 115 70-130 1.2-Dichloroethane ua/L 1,2-Dichloropropane 54.0 0.5 50.0 BLOD 108 75-125 ug/L 1,3,5-Trimethylbenzene 55.0 1 ug/L 50.0 BLOD 110 75-124 1.3-Dichlorobenzene 54.6 1 50.0 BLOD 109 75-125 ug/L 56.8 BLOD 75-125 1,3-Dichloropropane 1 ug/L 50.0 114 1,4-Dichlorobenzene 54.0 1 50.0 1.48 105 75-125 ug/L 1 50.0 BLOD 70-135 2,2-Dichloropropane 54.9 ug/L 110 2-Butanone (MEK) 115 10 ug/L 50.0 46.6 136 30-150 55.7 1 50.0 BLOD 75-125 2-Chlorotoluene ug/L 111 2-Hexanone (MBK) 57.4 5 50.0 BLOD 115 55-130 ug/L 1 BLOD 4-Chlorotoluene 53.8 ug/L 50.0 108 75-130 57.7 1 50.0 0.65 75-130 4-Isopropyltoluene ug/L 114 5 4-Methyl-2-pentanone (MIBK) 67.5 ug/L 50.0 2.49 130 60-135 10 40-140 Acetone 189 ug/L 50.0 124 130 Benzene 95.9 1 ug/L 50.0 56.8 78.1 80-120 Μ 50.6 1 Bromobenzene ug/L 50.0 BLOD 101 75-125

				Ce	ertificate c	of Analysi	<u>S</u>				
Client Name:	SCS Engineers-\	Ninchester				-	_	Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I.D.:	2023 City of Bris	tol Landfill	Leachate								
Submitted Te:	lennifer Pobb										
Submitted 10.											
			Vo	latile Org	anic Compounds t	by GCMS - Qualit	y Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGH	10781 - SW503	30B-MS								
Matrix Spike (BGH078	1-MS1)	Sour	ce: 23H1058-01		Prepared & Analy	/zed: 08/21/2023					
Bromochloromethan	ne	54.0	1	ug/L	50.0	BLOD	108	65-130			
Bromodichlorometha	ane	54.0	0.5	ug/L	50.0	BLOD	108	75-136			
Bromoform		53.9	1	ug/L	50.0	BLOD	108	70-130			
Bromomethane		34.3	1	ug/L	50.0	BLOD	68.7	30-145			
Carbon disulfide		39.7	10	ug/L	50.0	BLOD	79.5	35-160			
Carbon tetrachloride	e	55.1	1	ug/L	50.0	BLOD	110	65-140			
Chlorobenzene		51.0	1	ug/L	50.0	BLOD	102	80-120			
Chloroethane		40.7	1	ug/L	50.0	BLOD	81.3	60-135			
Chloroform		54.6	0.5	ug/L	50.0	BLOD	108	65-135			
Chloromethane		36.2	1	ug/L	50.0	BLOD	72.3	40-125			
cis-1,2-Dichloroethy	lene	53.8	1	ug/L	50.0	BLOD	108	70-125			
cis-1,3-Dichloroprop	bene	51.0	1	ug/L	50.0	BLOD	102	47-136			
Dibromochlorometha	ane	52.5	0.5	ug/L	50.0	BLOD	105	60-135			
Dibromomethane		53.6	1	ug/L	50.0	BLOD	107	75-125			
Dichlorodifluorometh	hane	40.4	1	ug/L	50.0	BLOD	80.9	30-155			
Ethylbenzene		57.1	1	ug/L	50.0	5.86	102	75-125			
Hexachlorobutadien	ne	55.1	0.8	ug/L	50.0	BLOD	110	50-140			
lsopropylbenzene		51.9	1	ug/L	50.0	0.50	103	75-125			
m+p-Xylenes		103	2	ug/L	100	2.66	100	75-130			
Methylene chloride		50.8	4	ug/L	50.0	BLOD	101	55-140			
Methyl-t-butyl ether	(MTBE)	53.6	1	ug/L	50.0	BLOD	107	65-125			
Naphthalene		64.5	1	ug/L	50.0	3.45	122	55-140			
n-Butylbenzene		61.0	1	ug/L	50.0	BLOD	122	70-135			
n-Propylbenzene		54.3	1	ug/L	50.0	BLOD	109	70-130			
o-Xylene		53.2	1	ug/L	50.0	1.44	104	80-120			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 8/31/2023 2:20:22PM Client Site I.D.: 2023 City of Bristol Landfill Leachate Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control Enthalpy Analytical Spike Source %REC RPD Analyte Result LOQ Units Level Result %REC Limits RPD Limit Qual Batch BGH0781 - SW5030B-MS Matrix Spike (BGH0781-MS1) Prepared & Analyzed: 08/21/2023 Source: 23H1058-01 60.0 BLOD 120 sec-Butylbenzene 1 ug/L 50.0 70-125 Styrene 52.0 1 ug/L 50.0 BLOD 104 65-135 50.0 BLOD 70-130 tert-Butylbenzene 55.4 1 ug/L 111 Tetrachloroethylene (PCE) 52.3 1 50.0 BLOD 105 51-231 ug/L 2.04 Toluene 53.0 1 ug/L 50.0 102 75-120 trans-1,2-Dichloroethylene 51.3 1 50.0 BLOD 103 60-140 ug/L trans-1,3-Dichloropropene 55.9 1 ug/L 50.0 BI OD 112 55-140 Trichloroethvlene 52.6 1 BLOD 105 70-125 ug/L 50.0 Trichlorofluoromethane 1 BLOD 55.8 ug/L 50.0 112 60-145 Vinyl chloride 39.0 0.5 50.0 BLOD 78.0 50-145 ug/L Surr: 1,2-Dichloroethane-d4 (Surr) 54 2 ug/L 50.0 108 70-120 Surr: 4-Bromofluorobenzene (Surr) 49.3 50.0 98.7 75-120 ug/L Surr: Dibromofluoromethane (Surr) 55.4 ug/L 50.0 111 70-130 Surr: Toluene-d8 (Surr) 51.0 50.0 102 70-130 ug/L

				Ce	rtificate o	of Analysi	is				
Client Name:	SCS Enginee	rs-Winchester						Date Issued:		8/31/2023	2:20:22PM
Client Site I D ·	2023 City of I	Rristol I andfill I e	achate								
			aonato								
Submitted To:	Jennifer Robb)									
			Sei	mivolatile Org	ganic Compound	ls by GCMS - Qu	ality Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B	3GH0810 - SW35100	C/EPA600	-MS							
Blank (BGH0810-BLK	1)				Prepared & Anal	yzed: 08/22/2023	3				
Anthracene		ND	10.0	ug/L		-					
Surr: 2,4,6-Tribromo	ophenol (Surr)	35.6		ug/L	100		35.6	5-136			
Surr: 2-Fluorobiphe	nyl (Surr)	18.1		ug/L	50.0		36.2	9-117			
Surr: 2-Fluorophend	ol (Surr)	21.4		ug/L	100		21.4	5-60			
Surr: Nitrobenzene-	d5 (Surr)	18.7		ug/L	50.0		37.3	5-151			
Surr: Phenol-d5 (Su	ırr)	16.0		ug/L	100		16.0	5-60			
Surr: p-Terphenyl-d	14 (Surr)	11.8		ug/L	50.0		23.7	5-141			
LCS (BGH0810-BS1)					Prepared & Anal	yzed: 08/22/2023	3				
1,2,4-Trichlorobenze	ene	17.9	10.0	ug/L	50.0	-	35.8	57-130			L
1,2-Dichlorobenzen	e	16.2	10.0	ug/L	50.0		32.3	22-115			
1,3-Dichlorobenzen	e	15.9	10.0	ug/L	50.0		31.8	22-112			
1,4-Dichlorobenzen	e	17.1	10.0	ug/L	50.0		34.2	13-112			
2,4,6-Trichlorophen	ol	21.4	10.0	ug/L	50.0		42.7	52-129			L
2,4-Dichlorophenol		22.1	10.0	ug/L	50.0		44.2	53-122			L
2,4-Dimethylphenol		22.6	5.00	ug/L	50.0		45.1	42-120			
2,4-Dinitrophenol		31.9	50.0	ug/L	50.0		63.7	48-127			
2,4-Dinitrotoluene		36.8	10.0	ug/L	50.0		73.7	10-173			
2,6-Dinitrotoluene		29.1	10.0	ug/L	50.0		58.2	68-137			L
2-Chloronaphthalen	Ie	21.7	10.0	ug/L	50.0		43.5	65-120			L
2-Chlorophenol		18.8	10.0	ug/L	50.0		37.7	36-120			
2-Nitrophenol		24.8	10.0	ug/L	50.0		49.5	45-167			
3,3'-Dichlorobenzidi	ine	14.8	10.0	ug/L	50.0		29.5	10-213			
4,6-Dinitro-2-methyl	lphenol	35.8	50.0	ug/L	50.0		71.6	53-130			
4-Bromophenyl phe	nyl ether	25.9	10.0	ug/L	50.0		51.7	65-120			L

				Cer	tificate o	of Analysi	is				
Client Name:	SCS Engine	ers-Winchester						Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I D ·	2023 City of	Bristol Landfill Le	achate								
			aonato								
Submitted Io:	Jennifer Rob	D									
			Sei	mivolatile Org	anic Compound	ls by GCMS - Qu	ality Control				
					Enthalpy A	nalytical					
					Spike	Source		%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch	BGH0810 - SW35100	C/EPA600	-MS							
LCS (BGH0810-BS1)				F	Prepared & Anal	yzed: 08/22/2023	1				
4-Chlorophenyl phe	nyl ether	24.9	10.0	ug/L	50.0	-	49.8	38-145			
4-Nitrophenol		10.6	50.0	ug/L	50.0		21.1	13-129			
Acenaphthene		26.0	10.0	ug/L	50.0		52.1	60-132			L
Acenaphthylene		27.7	10.0	ug/L	50.0		55.4	54-126			
Acetophenone		22.7	20.0	ug/L	50.0		45.4	0-200			
Anthracene		27.9	10.0	ug/L	50.0		55.7	43-120			
Benzidine		ND	50.0	ug/L	50.0			12-309			
Benzo (a) anthracer	ne	26.6	10.0	ug/L	50.0		53.2	42-133			
Benzo (a) pyrene		25.0	10.0	ug/L	50.0		50.0	32-148			
Benzo (b) fluoranthe	ene	25.0	10.0	ug/L	50.0		50.0	42-140			
Benzo (g,h,i) peryle	ne	26.9	10.0	ug/L	50.0		53.8	10-195			
Benzo (k) fluoranthe	ene	26.2	10.0	ug/L	50.0		52.5	25-146			
bis (2-Chloroethoxy) methane	26.2	10.0	ug/L	50.0		52.3	49-165			
bis (2-Chloroethyl)	ether	22.2	10.0	ug/L	50.0		44.4	43-126			
2,2'-Oxybis (1-chlor	opropane)	21.4	10.0	ug/L	50.0		42.9	63-139			L
bis (2-Ethylhexyl) pł	hthalate	26.4	10.0	ug/L	50.0		52.9	29-137			
Butyl benzyl phthala	ate	31.6	10.0	ug/L	50.0		63.2	10-140			
Chrysene		26.9	10.0	ug/L	50.0		53.8	44-140			
Dibenz (a,h) anthra	cene	28.3	10.0	ug/L	50.0		56.5	10-200			
Diethyl phthalate		25.5	10.0	ug/L	50.0		50.9	10-120			
Dimethyl phthalate		24.6	10.0	ug/L	50.0		49.1	10-120			
Di-n-butyl phthalate		26.0	10.0	ug/L	50.0		51.9	10-120			
Di-n-octyl phthalate		29.2	10.0	ug/L	50.0		58.4	19-132			
Fluoranthene		30.2	10.0	ug/L	50.0		60.5	43-121			
Fluorene		27.7	10.0	ug/L	50.0		55.4	70-120			L

Page 42 of 64

				Cer	tificate o	of Analysi	S				
Client Name:	SCS Enginee	ers-Winchester						Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I.D.:	2023 Citv of	Bristol Landfill L	eachate								
Submitted To:	lennifer Robh	`									
Submitted 10.		5									
			Ser	mivolatile Org	anic Compound	s by GCMS - Qu	ality Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch	BGH0810 - SW351(DC/EPA600	-MS							
LCS (BGH0810-BS1)				P	Prepared & Anal	yzed: 08/22/2023					
Hexachlorobenzene	;	20.5	1.00	ug/L	50.0		41.0	10-142			
Hexachlorobutadien	e	19.8	10.0	ug/L	50.0		39.6	38-120			
Hexachlorocyclopen	ntadiene	12.5	10.0	ug/L	50.0		25.0	10-76			
Hexachloroethane		16.3	10.0	ug/L	50.0		32.5	55-120			L
Indeno (1,2,3-cd) py	rene	26.6	10.0	ug/L	50.0		53.2	10-151			
Isophorone		21.6	10.0	ug/L	50.0		43.1	47-180			L
Naphthalene		21.1	5.00	ug/L	50.0		42.2	36-120			
Nitrobenzene		24.0	10.0	ug/L	50.0		48.1	54-158			L
n-Nitrosodimethylam	nine	17.0	10.0	ug/L	50.0		34.0	10-85			
n-Nitrosodi-n-propyla	amine	21.0	10.0	ug/L	50.0		42.0	14-198			
n-Nitrosodiphenylam	nine	22.0	10.0	ug/L	50.0		44.1	12-97			
p-Chloro-m-cresol		22.3	10.0	ug/L	50.0		44.7	10-142			
Pentachlorophenol		29.1	20.0	ug/L	50.0		58.3	38-152			
Phenanthrene		34.0	10.0	ug/L	50.0		68.1	65-120			
Phenol		13.8	10.0	ug/L	50.5		27.2	17-120			
Pyrene		30.3	10.0	ug/L	50.0		60.5	70-120			L
Pyridine		11.5	10.0	ug/L	50.0		23.1	10-103			
Surr: 2,4,6-Tribromo	phenol (Surr)	53.1		ug/L	100		53.1	5-136			
Surr: 2-Fluorobipher	nyl (Surr)	24.6		ug/L	50.0		49.2	9-117			
Surr: 2-Fluoropheno	ol (Surr)	28.5		ug/L	100		28.5	5-60			
Surr: Nitrobenzene-	d5 (Surr)	24.8		ug/L	50.0		49.5	5-151			
Surr: Phenol-d5 (Su	ırr)	21.7		ug/L	100		21.7	5-60			
Surr: p-Terphenyl-d1	14 (Surr)	14.5		ug/L	50.0		29.0	5-141			

				<u>Ce</u>	ertificate of	Analysis	<u>.</u>				
Client Name:	SCS Engineers-Wir	nchester						Date Issued	d:	8/31/2023	2:20:22PM
Client Site I D ·	2023 City of Bristol	Landfill Lea	chate								
Submitted To:	lennifer Robb										
Submitted 10.				10/01	Chamistry Analysia	Quality Control					
				wei							
					Enthalpy Ana	lytical					
Analyte	F	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGH06	52 - No Pren V	Vet Chen	n							
Blank (BCH0652-BLK1	Daten Berroot				Propared & Apalyz	od: 08/17/2023					
BOD	1)	ND	2.0	ma/l	Flepaled & Allalyz	eu. 06/17/2023					
LCS (BGH0652-BS1)			2.0		Prepared & Analyz	ed: 08/17/2023					
BOD		208	2	mg/L	198	00, 11/2020	105	84.6-115.4			
Duplicate (BGH0652-D	UP1)	Source: 2	3H0808-0)1	Prepared & Analyz	ed: 08/17/2023					
BOD		7.9	2.0	mg/L	1 5	7.2			9.16	20	
	Batch BGH06	56 - No Prep V	Vet Chen	n							
Blank (BGH0656-BLK1)				Prepared & Analyz	ed: 08/17/2023					
Nitrite as N	,	ND	0.05	mg/L							
LCS (BGH0656-BS1)				-	Prepared & Analyz	ed: 08/17/2023					
Nitrite as N		0.10	0.05	mg/L	0.100		95.0	80-120			
Matrix Spike (BGH065	6-MS1)	Source: 2	3H0914-0	2	Prepared & Analyz	ed: 08/17/2023					
Nitrite as N		0.44	0.25	mg/L	0.500	BLOD	88.0	80-120			
Matrix Spike Dup (BGH	H0656-MSD1)	Source: 2	3H0914-0	2	Prepared & Analyz	ed: 08/17/2023					
Nitrite as N		0.44	0.25	mg/L	0.500	BLOD	88.0	80-120	0.00	20	
	Batch BGH06	57 - No Prep V	Vet Chen	n							
Blank (BGH0657-BLK1)				Prepared & Analyz	ed: 08/17/2023					
BOD		ND	2.0	mg/L							

				<u>Ce</u>	ertificate o	of Analysis	<u>.</u>				
Client Name:	SCS Engineers-	Winchester						Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I D ·	2023 City of Bri	stol Landfill L	eachate								
Submitted To:	lennifer Robb										
Submitted 10.				\A/ot	Chomistry Analysi	in Quality Control					
				vei							
					Enthalpy An	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGI		n Wat Chan								
	Batch Bor	10057 - NO FIE	p wet chen		Due u e u e d O Au e h						
BOD		213	2	ma/l	Prepared & Analy	/zed: 08/17/2023	108	8/ 6-115 /			
Duplicate (BGH0657-D)		Source	~ ~ 22U08E2 0	1 IIIg/L	Prenared & Analy	17003	100	04.0-110.4			
BOD	51 1)	2.9	2.0	ma/L		2.7			6.47	20	
	Batch BGI	H0838 - No Prei	n Wet Chen	ı ı							
Blank (BGH0838-BLK1)				Prenared & Analy	17ed: 08/22/2023					
COD	1	ND	10.0	mg/L	Trepared & Analy	/200.00/22/2020					
LCS (BGH0838-BS1)				0	Prepared & Analy	/zed: 08/22/2023					
COD		53.3	10.0	mg/L	50.0		107	88-119			
Matrix Spike (BGH0838	3-MS1)	Source	e: 23H0830-0	7	Prepared & Analy	/zed: 08/22/2023					
COD		60.4	10.0	mg/L	50.0	BLOD	121	72.4-130			
Matrix Spike Dup (BGH	I0838-MSD1)	Source	e: 23H0830-0	7	Prepared & Analy	/zed: 08/22/2023					
COD		57.3	10.0	mg/L	50.0	BLOD	115	72.4-130	5.18	20	
	Batch BGI	H1014 - No Prej	p Wet Chen	า							
Blank (BGH1014-BLK1)				Prepared & Analy	/zed: 08/26/2023					
Nitrate+Nitrite as N		ND	0.10	mg/L	. ,						
LCS (BGH1014-BS1)					Prepared & Analy	/zed: 08/26/2023					
Nitrate+Nitrite as N		1.01	0.1	mg/L	1.00		101	90-110			

				<u>Ce</u>	ertificate o	of Analysis	<u>5</u>						
Client Name:	SCS Engineers-V	Vinchester						Date Issue	d:	8/31/2023	2:20:22PM		
Client Site I D ·	2023 City of Bris	tol I andfill I	eachate										
Submitted To:	lennifer Robb		odonato										
Submitted 10.				10/-4	Chamistry Analys								
				vvei	Chemistry Analys	is - Quality Control							
Enthalpy Analytical													
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual		
	Batch BGH	1014 - No Prep	o Wet Chem										
Matrix Spike (BGH1014	4-MS1)	Source	e: 23H1215-02		Prepared & Anal	vzed: 08/26/2023							
Nitrate+Nitrite as N	,	1.64	0.10	mg/L	1.00	0.42	121	90-120			М		
Matrix Spike Dup (BGH	11014-MSD1)	Source	e: 23H1215-02		Prepared & Anal	yzed: 08/26/2023							
Nitrate+Nitrite as N		1.46	0.10	mg/L	1.00	0.42	104	90-120	11.1	20			
	Batch BGH	1018 - No Prep	Wet Chem										
Blank (BGH1018-BLK1)				Prepared & Anal	yzed: 08/27/2023							
TKN as N		ND	0.50	mg/L									
LCS (BGH1018-BS1)					Prepared & Anal	yzed: 08/27/2023							
TKN as N		5.19	0.50	mg/L	5.00		104	90-110					
Matrix Spike (BGH1018	3-MS1)	Source	e: 23H1042-01		Prepared & Anal	yzed: 08/27/2023							
TKN as N		5.97	0.50	mg/L	5.00	0.82	103	90-110					
Matrix Spike (BGH1018	3-MS2)	Source	e: 23H1042-02		Prepared & Anal	yzed: 08/27/2023							
TKN as N		5.98	0.50	mg/L	5.00	0.87	102	90-110					
Matrix Spike Dup (BGH	11018-MSD1)	Source	e: 23H1042-01		Prepared & Anal	yzed: 08/27/2023							
TKN as N		5.92	0.50	mg/L	5.00	0.82	102	90-110	0.925	20			
Matrix Spike Dup (BGH	11018-MSD2)	Source	e: 23H1042-02		Prepared & Anal	yzed: 08/27/2023							
TKN as N		5.86	0.50	mg/L	5.00	0.87	99.9	90-110	1.99	20			
	Batch BGH1086 - No Prep Wet Chem												
Blank (BGH1086-BLK1)				Prepared & Anal	yzed: 08/29/2023							
Ammonia as N		ND	0.10	mg/L									

				<u>Ce</u>	ertificate o	of Analysis	<u>5</u>				
Client Name:	SCS Engineers-V	Vinchester						Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I D ·	2023 City of Bris	tol Landfill L	eachate								
Submitted Te:	lennifer Pobb		odonato								
Submitted 10.				10/-4							
				vvet	Chemistry Analys	is - Quality Control					
					Enthalpy A	nalytical					
					Spike	Source		%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGH	1086 - No Prep	Wet Chem	า							
LCS (BGH1086-BS1)					Prepared & Anal	yzed: 08/29/2023					
Ammonia as N		1.01	0.1	mg/L	1.00		101	90-110			
Matrix Spike (BGH108	6-MS1)	Source	: 23H1246-0	3	Prepared & Anal	yzed: 08/29/2023					
Ammonia as N		0.98	0.10	mg/L	1.00	BLOD	98.4	89.3-131			
Matrix Spike (BGH108	6-MS2)	Source	: 23H0908-0	5	Prepared & Anal	yzed: 08/29/2023					
Ammonia as N		0.99	0.10	mg/L	1.00	BLOD	98.7	89.3-131			
Matrix Spike Dup (BGI	H1086-MSD1)	Source	: 23H1246-0	3	Prepared & Anal	yzed: 08/29/2023					
Ammonia as N		0.96	0.10	mg/L	1.00	BLOD	96.5	89.3-131	1.95	20	
Matrix Spike Dup (BGI	H1086-MSD2)	Source	: 23H0908-0	5	Prepared & Anal	yzed: 08/29/2023					
Ammonia as N		1.01	0.10	mg/L	1.00	BLOD	101	89.3-131	2.01	20	
	Batch BGH	1157 - No Prep	Wet Chem	n in the second s							
Blank (BGH1157-BLK1	1)				Prepared & Anal	yzed: 08/30/2023					
Nitrate+Nitrite as N		ND	0.05	mg/L							
LCS (BGH1157-BS1)					Prepared & Anal	yzed: 08/30/2023					
Nitrate+Nitrite as N		1.08	0.05	mg/L	1.00		108	90-110			
Matrix Spike (BGH115	7-MS1)	Source	: 23H0998-0	3	Prepared & Anal	yzed: 08/30/2023					
Nitrate+Nitrite as N		1.29	0.05	mg/L	1.00	0.12	117	90-120			
Matrix Spike Dup (BGI	H1157-MSD1)	Source	: 23H0998-0	3	Prepared & Anal	yzed: 08/30/2023					
Nitrate+Nitrite as N		1.29	0.05	mg/L	1.00	0.12	117	90-120	0.0777	20	

	Certificate of Analysis										
Client Name:	SCS Engineers-\	Ninchester						Date Issue	ed:	8/31/2023	2:20:22PM
Client Site I.D.:	2023 City of Bris	stol Landfill L	eachate								
Submitted To:	Jennifer Robb										
				Wet	Chemistry Analysi	s - Quality Control					
					Enthalpy An	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGH	11182 - No Prej	o Wet Chen	n							
Blank (BGH1182-BLK1)				Prepared & Analy	zed: 08/31/2023					
Total Recoverable P	henolics	ND	0.050	mg/L							
LCS (BGH1182-BS1)					Prepared & Analy	zed: 08/31/2023					
Total Recoverable P	henolics	0.41	0.050	mg/L	0.505		81.2	80-120			
Matrix Spike (BGH1182	2-MS1)	Source	e: 23H1054-0)7	Prepared & Analy	zed: 08/31/2023					
Total Recoverable P	henolics	0.97	0.050	mg/L	0.500	0.52	88.8	70-130			
Matrix Spike Dup (BGH1182-MSD1) Source: 23H1054-07				Prepared & Analy	zed: 08/31/2023						
Total Recoverable P	henolics	1.02	0.050	mg/L	0.500	0.52	100	70-130	5.62	20	

		Certificate	of Analysis			
SCS Engineers-Winc	hester			Date Issued:	8/31/2023	2:20:22P
2023 Citv of Bristol L	andfill Leachate					
lennifer Robb						
 Analytical Summary 						
	Subcontract					
	Subcontract					
	Subcontract					
	Subcontract					
Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID		
6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4			
50.0 mL / 50.0 mL	SW6020B	BGH0720	SGH0754	AH30277		
50.0 mL / 50.0 mL	SW6020B	BGH0720	SGH0754	AH30277		
50.0 mL / 50.0 mL	SW6020B	BGH0720	SGH0754	AH30277		
50.0 mL / 50.0 mL	SW6020B	BGH0720	SGH0754	AH30277		
50.0 mL / 50.0 mL	SW6020B	BGH0720	SGH0754	AH30277		
Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID		
vsis		Preparation Method:	No Prep Wet Chem			
300 mL / 300 mL	SM5210B-2016	BGH0652	SGH0815			
25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGH0656	SGH0673	AD30177		
5.00 mL / 25.0 mL	SM4500-NO2B-2011	BGH0656	SGH0673	AD30177		
25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGH0656	SGH0673	AD30177		
25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGH0656	SGH0673	AD30177		
300 mL / 300 mL	SM5210B-2016	BGH0657	SGH0815			
300 mL / 300 mL	SM5210B-2016	BGH0657	SGH0815			
300 mL / 300 mL	SM5210B-2016	BGH0657	SGH0815			
2.00 mL / 2.00 mL	SM5220D-2011	BGH0838	SGH0828	AH30244		
0.0400 mL / 2.00 mL	SM5220D-2011	BGH0838	SGH0828	AH30244		
2.00 mL / 2.00 mL	SM5220D-2011	BGH0838	SGH0828	AH30244		
2.00 mL / 2.00 mL	SM5220D-2011	BGH0838	SGH0828	AH30244		
		DOLLAR (0.0114.040	41100000		
	SCS Engineers-Windl 2023 City of Bristol L Jennifer Robb - Analytical Summary Preparation Factors Initial / Final \$6000/7000 Series Methods 50.0 mL / 50.0 mL 50.0 mL / 25.0 mL 25.0 mL / 25.0 mL 300 mL / 300 mL 300 mL / 2.00 mL 2.00 mL / 2.00 mL	SCS Engineers-Winchester 2023 City of Bristol Landfill Leachate Jennifer Robb - Analytical Summary Subcontract S	Certificate of SCS Engineers-Winchester 2023 City of Bristol Landfill Leachate Jennifer Robb - Analytical Summary Subcontract Subco	Certificate of Analysis SCS Engineers-Winchester 2023 City of Bristol Landfill Leachate Jennifer Robb Analytical Summary Subcontract Subcontract	Certificate of Analysis SCS Engineers-Winchester Date Issued: 2023 City of Bristol Landfill Leachate Jennifer Robb - Analytical Summary Subcontract Subcontract Subcontract Subout<	Certificate of Analysis SCS Engineers-Winchester Date Issued: 8/31/2023 2023 City of Bristol Landfill Leachate Jennifer Robb - Analytical Summary Subcontract Subcontract Subcontract

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Wet Chemistry Analysis Preparation Method: No Prep Wet Chem 23H0914-01 25.0 mL / 25.0 mL EPA351.2 R2.0 BGH1018 SGH1014 AH30328 23H0914-02 25.0 mL / 25.0 mL EPA351.2 R2.0 BGH1018 SGH1014 AH30328 23H0914-03 25.0 mL / 25.0 mL EPA351.2 R2.0 BGH1018 SGH1014 AH30328 23H0914-04 25.0 mL / 25.0 mL EPA351.2 R2.0 BGH1018 SGH1014 AH30328 23H0914-01 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-03 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-03 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-03 0.500 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30348 23H0914-04 0.500 mL / 6.00 mL SM4500-N03F-2016 BGH1157 SGH1164 AH30348 23H0914-04 0.500 mL / 5.00 mL SM4500-N03F-2016 BGH1157 SGH1164 AH30175 23H0914-04	Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
23H0914-01 25.0 mL / 25.0 mL EPA351.2 R2.0 BGH1018 SGH1014 AH30328 23H0914-02 25.0 mL / 25.0 mL EPA351.2 R2.0 BGH1018 SGH1014 AH30328 23H0914-04 25.0 mL / 25.0 mL EPA351.2 R2.0 BGH1018 SGH1014 AH30328 23H0914-04 25.0 mL / 25.0 mL EPA351.2 R2.0 BGH1018 SGH1014 AH30328 23H0914-04 26.0 mL / 6.00 mL EPA351.2 R2.0 BGH1086 SGH1018 AH30339 23H0914-02 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH108 AH30339 23H0914-04 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH108 AH30339 23H0914-01 0.500 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH108 AH30339 23H0914-01 0.500 mL / 5.00 mL SM4500-N03F-2016 BGH1157 SGH164 AH30348 23H0914-04 0.500 mL / 5.00 mL SM4500-N03F-2016 BGH1157 SGH1164 AH30348 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1108 <t< th=""><th>Wet Chemistry Ana</th><th>Ilysis</th><th></th><th>Preparation Method:</th><th>No Prep Wet Chem</th><th>I</th></t<>	Wet Chemistry Ana	Ilysis		Preparation Method:	No Prep Wet Chem	I
23H0914-02 25.0 mL / 25.0 mL EPA351.2 R2.0 BGH1018 SGH1014 AH30328 23H0914-03 25.0 mL / 25.0 mL EPA351.2 R2.0 BGH1018 SGH1014 AH30328 23H0914-04 25.0 mL / 25.0 mL EPA351.2 R2.0 BGH1018 SGH1014 AH30328 23H0914-04 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH108 AH30339 23H0914-02 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-03 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-03 0.500 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-03 0.500 mL / 5.00 mL SM4500-N03F-2016 BGH1157 SGH164 AH30348 23H0914-04 0.500 mL / 5.00 mL SM4500-N03F-2016 BGH1182 SGH1108 AH30175 23H0914-04 0.500 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-01 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180	23H0914-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGH1018	SGH1014	AH30328
23H0914-03 25.0 mL / 25.0 mL EPA351.2 R2.0 BGH1018 SGH1014 AH30328 23H0914-04 25.0 mL / 25.0 mL EPA351.2 R2.0 BGH1018 SGH1014 AH30328 23H0914-01 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-02 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-03 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-04 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-04 6.00 mL / 5.00 mL SM4500-NO37-2016 BGH1157 SGH1164 AH30348 23H0914-04 0.500 mL / 5.00 mL SM4500-NO37-2016 BGH1157 SGH1164 AH30348 23H0914-01 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-02 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-02 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175	23H0914-02	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGH1018	SGH1014	AH30328
23H0914-04 25.0 mL EPA351.2 R2.0 BGH1018 SGH1014 AH30328 23H0914-01 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-02 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-03 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-04 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-04 6.00 mL / 5.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-01 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-04 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-01 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-02 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH182 SGH1180 AH30175	23H0914-03	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGH1018	SGH1014	AH30328
23H0914-01 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-02 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-03 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-04 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-04 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-04 6.00 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-03 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-04 0.500 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-02 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH01182 SGH180 AH30175 <td>23H0914-04</td> <td>25.0 mL / 25.0 mL</td> <td>EPA351.2 R2.0</td> <td>BGH1018</td> <td>SGH1014</td> <td>AH30328</td>	23H0914-04	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGH1018	SGH1014	AH30328
23H0914-02 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-03 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-04 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-01 0.500 mL / 5.00 mL SM4500-N03F-2016 BGH1157 SGH1164 AH30348 23H0914-03 0.500 mL / 5.00 mL SM4500-N03F-2016 BGH1157 SGH1164 AH30348 23H0914-04 0.500 mL / 5.00 mL SM4500-N03F-2016 BGH1157 SGH1164 AH30348 23H0914-04 0.500 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-02 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-03 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-03 5.00 mL / 0.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 0.0 mL EPA420.1 BGH1182 SGH1180 AH30175	23H0914-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGH1086	SGH1108	AH30339
23H0914-03 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-04 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-01 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-04 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-04 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-04 0.500 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-02 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 2.00 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-01 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 <	23H0914-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGH1086	SGH1108	AH30339
23H0914-04 6.00 mL / 6.00 mL EPA350.1 R2.0 BGH1086 SGH1108 AH30339 23H0914-01 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-03 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-04 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-01 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-02 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH182 SGH1180 AH30175 23H0914-04 5.00 mL / 20.0 mL SW8270E Bdth182 SGH180 AG30283	23H0914-03	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGH1086	SGH1108	AH30339
23H0914-01 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-03 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-04 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-01 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-02 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-03 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 Sample ID Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID Semivolatile Organic Compounds by GCMS Preparation Method: SW3510C/EPA600-MS SH0914-01 S00 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 <td>23H0914-04</td> <td>6.00 mL / 6.00 mL</td> <td>EPA350.1 R2.0</td> <td>BGH1086</td> <td>SGH1108</td> <td>AH30339</td>	23H0914-04	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGH1086	SGH1108	AH30339
23H0914-03 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-04 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-01 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-02 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-03 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 Sample ID Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID Semivolatile Organic Compounds by GCMS Preparation Method: SW3510C/EPA600-MS SW3510C/EPA600-MS 23H0914-01 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-03 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283	23H0914-01	0.500 mL / 5.00 mL	SM4500-NO3F-2016	BGH1157	SGH1164	AH30348
23H0914-04 0.500 mL / 5.00 mL SM4500-NO3F-2016 BGH1157 SGH1164 AH30348 23H0914-01 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-02 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-03 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 Sample ID Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID S4H0914-01 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-02 1020 mL / 1.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283	23H0914-03	0.500 mL / 5.00 mL	SM4500-NO3F-2016	BGH1157	SGH1164	AH30348
23H0914-01 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-02 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-03 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 Sample ID Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID Sample ID Preparation Factors Initial / Final Method BGH0810 SGH0871 AG30283 23H0914-01 500 mL / 2.00 mL SW8270E BGH0810 SGH0873 AE30336 23H0914-02 1020 mL / 1.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 </td <td>23H0914-04</td> <td>0.500 mL / 5.00 mL</td> <td>SM4500-NO3F-2016</td> <td>BGH1157</td> <td>SGH1164</td> <td>AH30348</td>	23H0914-04	0.500 mL / 5.00 mL	SM4500-NO3F-2016	BGH1157	SGH1164	AH30348
23H0914-02 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-03 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 Sample ID Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID Semivolatile Organic Compounds by GCMS Preparation Method: SW3510C/EPA600-MS 23H0914-01 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-02 1020 mL / 1.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-03 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 </td <td>23H0914-01</td> <td>5.00 mL / 10.0 mL</td> <td>EPA420.1</td> <td>BGH1182</td> <td>SGH1180</td> <td>AH30175</td>	23H0914-01	5.00 mL / 10.0 mL	EPA420.1	BGH1182	SGH1180	AH30175
23H0914-03 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 23H0914-04 5.00 mL / 10.0 mL EPA420.1 BGH1182 SGH1180 AH30175 Sample ID Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID Semivolatile Organic Compounds by GCMS Preparation Method: SW3510C/EPA600-MS SW3510C/EPA600-MS 23H0914-01 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-02 1020 mL / 1.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-03 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 Sample ID Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID Volatile Organic Compounds by GCMS Preparation Method: SW5030B-MS SW3030B-MS SW30	23H0914-02	5.00 mL / 10.0 mL	EPA420.1	BGH1182	SGH1180	AH30175
23H0914-045.00 mL / 10.0 mLEPA420.1BGH1182SGH1180AH30175Sample IDPreparation Factors Initial / FinalMethodBatch IDSequence IDCalibration IDSemivolatile Organic Compounds by GCMSPreparation Method:SW3510C/EPA600-MS23H0914-01500 mL / 2.00 mLSW8270EBGH0810SGH0871AG3028323H0914-021020 mL / 1.00 mLSW8270EBGH0810SGH0871AG3028323H0914-03500 mL / 2.00 mLSW8270EBGH0810SGH0871AG3028323H0914-04500 mL / 2.00 mLSW8270EBGH0810SGH0871AG3028323H0914-04500 mL / 2.00 mLSW8270EBGH0810SGH0871AG30283Sample IDPreparation Factors Initial / FinalMethodBatch IDSequence IDCalibration IDVolatile Organic Compounds by GCMSPreparation Method:SW5030B-MSSW3030B-MS23H0914-015.00 mL / 5.00 mLSW8260DBGH0712SGH0733AH3025923H0914-025.00 mL / 5.00 mLSW8260DBGH0712SGH0733AH30259	23H0914-03	5.00 mL / 10.0 mL	EPA420.1	BGH1182	SGH1180	AH30175
Sample IDPreparation Factors Initial / FinalMethodBatch IDSequence IDCalibration IDSemivolatile Organic Compounds by GCMSPreparation Method:SW3510C/EPA600-MS23H0914-01500 mL / 2.00 mLSW8270EBGH0810SGH0871AG3028323H0914-021020 mL / 1.00 mLSW8270EBGH0810SGH0873AE3033623H0914-03500 mL / 2.00 mLSW8270EBGH0810SGH0871AG3028323H0914-04500 mL / 2.00 mLSW8270EBGH0810SGH0871AG3028323H0914-04500 mL / 2.00 mLSW8270EBGH0810SGH0871AG30283Sample IDPreparation Factors Initial / FinalMethodBatch IDSequence IDCalibration IDVolatile Organic Compounds by GCMSPreparation Method:SW5030B-MSSU30914-015.00 mL / 5.00 mLSW8260DBGH0712SGH0733AH3025923H0914-015.00 mL / 5.00 mLSW8260DBGH0712SGH0733AH3025923H0914-025.00 mL / 5.00 mLSW8260DBGH0712SGH0733AH30259	23H0914-04	5.00 mL / 10.0 mL	EPA420.1	BGH1182	SGH1180	AH30175
Semivolatile Organic Compounds by GCMS Preparation Method: SW3510C/EPA600-MS 23H0914-01 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-02 1020 mL / 1.00 mL SW8270E BGH0810 SGH0873 AE30336 23H0914-03 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 Sample ID Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID Volatile Organic Compounds by GCMS Preparation Method: SW5030B-MS SW5030B-MS 23H0914-01 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259 23H0914-02 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259	Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
23H0914-01 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-02 1020 mL / 1.00 mL SW8270E BGH0810 SGH0873 AE30336 23H0914-03 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 Sample ID Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID Volatile Organic Compounds Sy GCMS Preparation Method: SW5030B-MS 23H0914-01 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259 23H0914-02 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259	Semivolatile Organ	ic Compounds by GCMS		Preparation Method:	SW3510C/EPA600-	MS
23H0914-02 1020 mL / 1.00 mL SW8270E BGH0810 SGH0873 AE30336 23H0914-03 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 Sample ID Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID Volatile Organic Compounds by GCMS Preparation Method: SW5030B-MS 23H0914-01 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259 23H0914-02 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259	23H0914-01	500 mL / 2.00 mL	SW8270E	BGH0810	SGH0871	AG30283
23H0914-03 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 23H0914-04 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 Sample ID Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID Volatile Organic Compounds by GCMS 23H0914-01 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259 23H0914-02 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259	23H0914-02	1020 mL / 1.00 mL	SW8270E	BGH0810	SGH0873	AE30336
23H0914-04 500 mL / 2.00 mL SW8270E BGH0810 SGH0871 AG30283 sample ID Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID Volatile Organic Compounds by GCMS Preparation Method: SW5030B-MS SW5030B-MS 23H0914-01 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259 23H0914-02 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259	23H0914-03	500 mL / 2.00 mL	SW8270E	BGH0810	SGH0871	AG30283
Sample IDPreparation Factors Initial / FinalMethodBatch IDSequence IDCalibration IDVolatile Organic Compounds by GCMSPreparation Method:SW5030B-MS23H0914-015.00 mL / 5.00 mLSW8260DBGH0712SGH0733AH3025923H0914-025.00 mL / 5.00 mLSW8260DBGH0712SGH0733AH30259	23H0914-04	500 mL / 2.00 mL	SW8270E	BGH0810	SGH0871	AG30283
Volatile Organic Compute by GCMS Preparation Method: SW5030B-MS 23H0914-01 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259 23H0914-02 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259	Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
23H0914-01 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259 23H0914-02 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259	Volatile Organic Co	ompounds by GCMS		Preparation Method:	SW5030B-MS	
23H0914-02 5.00 mL / 5.00 mL SW8260D BGH0712 SGH0733 AH30259	23H0914-01	5.00 mL / 5.00 mL	SW8260D	BGH0712	SGH0733	AH30259
	23H0914-02	5.00 mL / 5.00 mL	SW8260D	BGH0712	SGH0733	AH30259

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
23H0914-03	5.00 mL / 5.00 mL	SW8260D	BGH0712	SGH0733	AH30259
23H0914-04	5.00 mL / 5.00 mL	SW8260D	BGH0712	SGH0733	AH30259
23H0914-05	5.00 mL / 5.00 mL	SW8260D	BGH0712	SGH0733	AH30259
23H0914-01RE1	5.00 mL / 5.00 mL	SW8260D	BGH0781	SGH0788	AG30312
23H0914-02RE1	5.00 mL / 5.00 mL	SW8260D	BGH0781	SGH0788	AG30312
23H0914-03RE1	5.00 mL / 5.00 mL	SW8260D	BGH0781	SGH0788	AG30312
23H0914-04RE1	5.00 mL / 5.00 mL	SW8260D	BGH0781	SGH0788	AG30312

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

QC Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
BGH0720-BLK1	50.0 mL / 50.0 mL	SW6020B	BGH0720	SGH0754	AH30277
BGH0720-BS1	50.0 mL / 50.0 mL	SW6020B	BGH0720	SGH0754	AH30277
BGH0720-MS1	50.0 mL / 50.0 mL	SW6020B	BGH0720	SGH0754	AH30277
BGH0720-MSD1	50.0 mL / 50.0 mL	SW6020B	BGH0720	SGH0754	AH30277
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	/sis		Preparation Method:	No Prep Wet Chem	
BGH0652-BLK1	300 mL / 300 mL	SM5210B-2016	BGH0652	SGH0815	
BGH0652-BS1	300 mL / 300 mL	SM5210B-2016	BGH0652	SGH0815	
BGH0652-DUP1	300 mL / 300 mL	SM5210B-2016	BGH0652	SGH0815	
BGH0656-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGH0656	SGH0673	AD30177
BGH0656-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGH0656	SGH0673	AD30177
BGH0656-MRL1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGH0656	SGH0673	AD30177
BGH0656-MS1	5.00 mL / 25.0 mL	SM4500-NO2B-2011	BGH0656	SGH0673	AD30177
BGH0656-MSD1	5.00 mL / 25.0 mL	SM4500-NO2B-2011	BGH0656	SGH0673	AD30177
BGH0657-BLK1	300 mL / 300 mL	SM5210B-2016	BGH0657	SGH0815	
BGH0657-BS1	300 mL / 300 mL	SM5210B-2016	BGH0657	SGH0815	
BGH0657-DUP1	300 mL / 300 mL	SM5210B-2016	BGH0657	SGH0815	
BGH0838-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BGH0838	SGH0828	AH30244
BGH0838-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BGH0838	SGH0828	AH30244
BGH0838-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BGH0838	SGH0828	AH30244
BGH0838-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BGH0838	SGH0828	AH30244
BGH1014-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BGH1014	SGH1012	AH30322

Date Issued:

Certificate of Analysis

Client Name:

ne: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	ysis		Preparation Method:	No Prep Wet Chem	
BGH1014-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BGH1014	SGH1012	AH30322
BGH1014-MS1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BGH1014	SGH1012	AH30322
BGH1014-MSD1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BGH1014	SGH1012	AH30322
BGH1018-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGH1018	SGH1014	AH30328
BGH1018-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGH1018	SGH1014	AH30328
BGH1018-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGH1018	SGH1014	AH30328
BGH1018-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGH1018	SGH1014	AH30328
BGH1018-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGH1018	SGH1014	AH30328
BGH1018-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGH1018	SGH1014	AH30328
BGH1086-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGH1086	SGH1108	AH30339
BGH1086-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGH1086	SGH1108	AH30339
BGH1086-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGH1086	SGH1108	AH30339
BGH1086-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGH1086	SGH1108	AH30339
BGH1086-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGH1086	SGH1108	AH30339
BGH1086-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGH1086	SGH1108	AH30339
BGH1157-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BGH1157	SGH1164	AH30348
BGH1157-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BGH1157	SGH1164	AH30348
BGH1157-MRL1	5.00 mL / 5.00 mL	SM4500-NO3F-2016	BGH1157	SGH1164	AH30348
BGH1157-MS1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BGH1157	SGH1164	AH30348
BGH1157-MSD1	25.0 mL / 25.0 mL	SM4500-NO3F-2016	BGH1157	SGH1164	AH30348
BGH1182-BLK1	5.00 mL / 10.0 mL	EPA420.1	BGH1182	SGH1180	AH30175
BGH1182-BS1	5.00 mL / 10.0 mL	EPA420.1	BGH1182	SGH1180	AH30175
BGH1182-MRL1	5.00 mL / 10.0 mL	EPA420.1	BGH1182	SGH1180	AH30175
BGH1182-MS1	5.00 mL / 10.0 mL	EPA420.1	BGH1182	SGH1180	AH30175
BGH1182-MSD1	5.00 mL / 10.0 mL	EPA420.1	BGH1182	SGH1180	AH30175
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	c Compounds by GCMS		Preparation Method:	SW3510C/EPA600-M	6

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organi	c Compounds by GCMS		Preparation Method:	SW3510C/EPA600)-MS
BGH0810-BLK1	1000 mL / 1.00 mL	SW8270E	BGH0810	SGH0871	AG30283
BGH0810-BLK2		SW8270E	BGH0810	SGH0861	AG30283
BGH0810-BLK3		SW8270E	BGH0810	SGH0910	AF30205
BGH0810-BLK4		SW8270E	BGH0810	SGH0917	AG30317
BGH0810-BS1	1000 mL / 1.00 mL	SW8270E	BGH0810	SGH0871	AG30283
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Cor	npounds by GCMS		Preparation Method:	SW5030B-MS	
BGH0712-BLK1	5.00 mL / 5.00 mL	SW8260D	BGH0712	SGH0733	AH30259
BGH0712-BS1	5.00 mL / 5.00 mL	SW8260D	BGH0712	SGH0733	AH30259
BGH0712-DUP1	5.00 mL / 5.00 mL	SW8260D	BGH0712	SGH0733	AH30259
BGH0712-MS1	5.00 mL / 5.00 mL	SW8260D	BGH0712	SGH0733	AH30259
BGH0781-BLK1	5.00 mL / 5.00 mL	SW8260D	BGH0781	SGH0788	AG30312
BGH0781-BS1	5.00 mL / 5.00 mL	SW8260D	BGH0781	SGH0788	AG30312
BGH0781-DUP1	5.00 mL / 5.00 mL	SW8260D	BGH0781	SGH0788	AG30312
BGH0781-MS1	0.500 mL / 5.00 mL	SW8260D	BGH0781	SGH0788	AG30312

Date Issued:

	Certificate of Analysis		
Client Name: SCS Engineers-Winchester		Date Issued:	8/31/2023 2:20:22PM
Client Site I.D.: 2023 City of Bristol Landfill Leachate			
Submitted To: Jennifer Robb			
Certified Analyses included in this Report			
Analyte	Certifications		
EPA350.1 R2.0 in Non-Potable Water			
Ammonia as N	VELAP,NCDEQ,PADEP,WVDEP		
EPA351.2 R2.0 in Non-Potable Water			
TKN as N	VELAP,NCDEQ,WVDEP		
EPA420.1 in Non-Potable Water			
Total Recoverable Phenolics	VELAP,NCDEQ,WVDEP		
SM4500-NO2B-2011 in Non-Potable Water			
Nitrite as N	VELAP,WVDEP,NCDEQ		
SM4500-NO3F-2016 in Non-Potable Water			
Nitrate+Nitrite as N	VELAP,WVDEP		
SM5210B-2016 in Non-Potable Water			
BOD	VELAP,NCDEQ,WVDEP		
SM5220D-2011 in Non-Potable Water			
COD	VELAP,NCDEQ,PADEP,WVDEP		
SW6020B in Non-Potable Water			
Mercury	VELAP		
Arsenic	VELAP,WVDEP		
Barium	VELAP,WVDEP		
Cadmium			
Copper	VELAP,WVDEP		
Lead	VELAP.WVDEP		
Nickel	VELAP,WVDEP		
Selenium	VELAP,WVDEP		
Silver	VELAP,WVDEP		

		Certificate of Analysis			
Client Name:	SCS Engineers-Winchester		Date Issued:	8/31/2023	2:20:22PM
Client Site I.D.:	2023 City of Bristol Landfill Leachate				
Submitted To:	Jennifer Robb				
Certified Analyse	es included in this Report				
Analyte		Certifications			
Zinc		VELAP,WVDEP			
SW8260D in Non-Po	otable Water				
2-Butanone (MEK)		VELAP,NCDEQ,PADEP,WVDEP			
Acetone		VELAP,NCDEQ,PADEP,WVDEP			
Benzene		VELAP,NCDEQ,PADEP,WVDEP			
Ethylbenzene		VELAP,NCDEQ,PADEP,WVDEP			
m+p-Xylenes		VELAP,NCDEQ,PADEP,WVDEP			
o-Xylene		VELAP,NCDEQ,PADEP,WVDEP			
Toluene		VELAP,NCDEQ,PADEP,WVDEP			
Xylenes, Total		VELAP,NCDEQ,PADEP,WVDEP			
Tetrahydrofuran		VELAP,PADEP			
SW8270E in Non-Po	otable Water				
Anthracene		VELAP, PADEP, NCDEQ, WVDEP			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2024
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/14/2024
TXCEQ	Texas Comm on Environmental Quality #T104704576-23-1	T104704576	05/31/2024
VELAP	NELAP-Virginia Certificate #12603	460021	06/14/2024
WVDEP	West Virginia DEP	350	11/30/2023

Date Issued:

		Certificate of Analysis				
Client Na	ame:	SCS Engineers-Winchester	Date Issued:	8/31/2023	2:20:22PM	
Client Si	te I.D.:	2023 City of Bristol Landfill Leachate				
Submitte	ed To:	Jennifer Robb				
		Qualifiers and Definitions				
DS	Surrogate o	concentration reflects a dilution factor.				
J	The reporte	ed result is an estimated value.				
L	LCS recove	ery is outside of established acceptance limits				
Μ	Matrix spike recovery is outside established acceptance limits					
Р	Duplicate analysis does not meet the acceptance criteria for precision					
pН	The container used to analyze this sample had a pH measurement of greater than 2 s.u.					
TextValue	a >33045					
TextValue	b >33225					
RPD	Relative Per	cent Difference				
Qual	Qualifers					
-RE	Denotes san	nple was re-analyzed				
LOD	Limit of Dete	ection				
BLOD	Below Limit	of Detection				
LOQ	Limit of Qua	ntitation				
DF	Dilution Fact	tor				
TIC	Tentatively lo library. A TIC estimated ar	dentified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral C spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are recalculated using an internal standard response factor of 1.				
PCBs, Tota	I Total PC	Bs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.				

CHAIN OF CUSTODY

8							CHAI	IN OF	- CUS	510	DY								PAGE 1 OF 1
COMPANY NAME: SCS Eng	jinee	ers			IN	VOICE TO	: SC	S Res	ton		6	_	P	roject Nan	ne: 23	-08 I	Brist	ol LF	G - EW
CONTACT: Jennifer	Robl	b			IN	VOICE CC	NTAC	T: Je	nnifer	Rob	b		S	ite Name:	20	23	C	ihi	of Bristol Landfilling
ADDRESS: 296 Victory Road, W	inche	este	er, VA	22602	IN	VOICE AD	DRESS	S:	8				P	ROJECT	NUMB	ER:	0	22	18208,15 TI
PHONE #: (703) 471-6150					IN	VOICE PH	ONE #	:	ų.,				P	.0. #:					
FAX #: (703) 471-6676				EMAIL:	Jrobb	@scsengir	neers.co	om					P	retreatmen	nt Prog	gram	:		
Is sample for compliance reporting	ng?	Y	ES	Va		Is sample	from a	chlori	inated	supp	oly? YE	S	NO				PW	IS I.E	D. #:
SAMPLER NAME (PRINT):	ann	17	u/	L. Nelsi	SA	MPLER S	IGNAT	URE:	U	1	21	See	n	Nh	-		Tur	n Ar	ound Tim 10 Day(s)
Matrix Codes: WW=Waste Water GW=Grou	nd Wa	ater	DW=	Drinking Wate	er S=Soi	I/Solids OR=0	Organic A	A=Air W	P=Wipe	ot=o	ther	-							COMMENTS
																BOD has			
															48hr hold				
s, Ba, Lene,															ite,		(y)		timo
			No	ate	me	ate	me		(lers	enz			Se Se	Nitr		e on		ume
CLIENT SAMPLE I.D.			Diss	Ŭ T	Ц Ч	Ö	0 Ti	-	des	tain	а с			9, <i>P</i> Pb,	(p)		Sene		
			D P	Star	Star	Stol	Stol	Vec	ပိ	Con	HF			Ni,	0	onis	Jrac		
		ite	ere	ite	ite	ite d	ne (ese	See	of (Acet <, T		S	502(Cu,	trate	E E	Antl		
		bos		sod	sod	Da Da	Dos	d u	ix (ber	NE) ME)	0	Jolio	Cr, C	N.	AI,	0		
	Brab	Som	ield	Com	Com	Srat	Srat	- me	Aatr	Mum	/OC EB, I (yle	/FA	her	Aeta Cd, (Hg)	LKN	10	10	20D	INTERFERENCE CHECKS or PUMP
1) EW-58	×			0	0	081523	1330		GW	12		×	X	X	X	X	X	X	KATE (Dillin)
2) $E_{1} = -98$	x					081523	1345		Gw	12	X	X	X	X	×	X	K	X	
3) Ew-94	X					081523	1420		Gw	12	×	X	X	X	X	X	X	X	
4) Ew-54	X					081523	1505		Gw	12	. 7	×	×	×	X	X	X	X	
5)						14													
6)				01 N					-										
7)	-	_			-				-							-	-		
8)		-	$\left \right $										-			-	-	-	
9)		-	$\left \right $			10/1/17	1615		or	2	V					+	-	-	
RELINQUISHED:	DAT	E /	TIME	RECEIVE	D:	0000	1015	DATE /	TIME	Q	C Data Pack	age	LAB	USE ONI	Y		CO	OLF	RTEMP 0.3 °C
MM BIE	23	A	13	8a	LCI	N				Leve	41		0	338	SCS	W			23H0914
RELINQUISHED:	DAT	E/	TIME	RECEIVE	D:	52	<i>A</i> L	DATE /	TIME	Leve	91.11	x		ce	23-0	9- 77 8 Br	isto	LLF	G-EW
LCN	DAT	TE /	TIME	Me	gun	-meyer	- 511	123	TIME	Leve	1 111		3	sealed	20-01		1310	1202	2 Due: 09/21/2022
	DAT	E /	TIME	RECEIVE	.0.	•		DATE /		Leve	1 IV	-			Reco	1: 08	/1//	202	Page 59 of 64
										1-040									

Sample Preservation Log Form #: F1301 Rev # 15.0 Effective: July 13, 2023

Je se		E.	N	T	H	AL	P	Y								Sa	m	nl	0	Pr	90	or	7/2	ati	on		0	r													Pag	⇒1 of 1
	<u></u>	.A. ⊃⊾	N A	al	Y T /	10	C A	L								90		P	û	11	7/	27	2	461			05	1							.17	-						
Order ID	<u>d</u>	<u> </u>			9									1	Date	Perfo	orme	: _		<u> </u>	4	øk	_					140	Ana	lyst F	Perfor	ming C	heck:				1		-			
		•	Vietal	ls	Су	anide		Su	lfide	,	Ал	nmo	nia		TKN		Ph	ios, 1	Tot	NC)3+N	02		DRO		(808 PCI	351/608 B DW	iae /508) only	(52:	SVO(5/8270/	C (625)	CrV	* . * *	s	(508) VOC() / 525)	Ph	enO	\iÇ	C		2
sample li	container li	pH Rec	i as elved Other	Final pH	pH a Receit	ved ther	Final pH	pH a: Receiv	s red her	Finel pH	pH Roce	as aived Other	Final pH	pH Roce	as ived	Final pH	pH Rece < 2	as bived Other	Final pH	pH Rece	as sived	Final pH	pi Rec < 2	l as elved Other	Final pH	Rect Ret	elved s. Cl	final + or -	Reci Res +	elved s. Cl	finai + or -	Received . pH	Final pH	P Re- < 2	H as ceived Other	Final pH	PH Rec L ²	l as elved Other	Final pH	pH Rece	as bived Other	Final pH
Ĩ	Å		7	2																														T								
1	B		•	-			1	•		·		7	حما		·					-	7	23	Π		·			ŀ		•		 -								4 .	7	2
1	E																																					7	3			
1	F																																									
2	A		٦	5																																						
2	B											7	لمع								7	L2																			7	<u>_2</u>
2	E								$ \downarrow$																									⊥				7	2			
2	F																													\angle				╞	ļ							
3	A	\square	7	2			$ \bot$			_																								\bot			<u> </u>	_				\square
3	ß	\square				$ \rightarrow$						7	r ²								7	v											<u> </u>	╞							7	<u>رم</u>
3	E						\square																															7	Ŀ			\square
3	F																													\mathbb{Z}				\perp	<u> </u>							
4	A		1	62																															-		L	-				
4	B							_	$ \rightarrow$			7	v								7	2											<u> </u>	╀		-	_				7	<u>_</u>
4	E													Ĺ																								7	V			
NaOH	D:							_ н	INO3	ID:	36	<u>גע</u>	43	13			-	CrVI	pres		d dat	e/tim	18:	3 - 9 7	,					Ana	lyst Ir	nitials:										
H2SO4	ID: <u>3</u>	D	34	31	6			. N	la2S2	2O3	ID: _						-	Amn	nonia	Buff	ier So	pl'n lí	D:																			
HCL ID	:	Na2SO3 ID:											-	5N N	laOH	I ID:						_			-																	

Metals were received with pH = 7 HNO3 was added on 17 August 2023 at 1150 by JNH in the Log-In room to bring pH= <2.

**W.Va only certifies DISS CrVI and not T CrVI as an approved analyte under 40CFR136 for waste water.

Sample Preservation Log Form #: F1301 Rev # 15.0 Effective: July 13, 2023 Page 1 of 1

	ENTHALPY
	ANALYTICAL
2	2110014

Sample Preservation Log

Order ID	23	31	-10	114	Í.		_				Date Perfe								Ê	<u>;/i</u>	ר	12	3			_			-		Ana	l y st F	Perfor	ming (Check	:		Jŀ	+			_				
			Metal	S	С	yanic	de .		Sulfi	de	A	mme	onia	1	тк	N		Phos,	To	ot.	NO)3+N	02		DR	0	(Pes 8081/ PCB I	ticic 608/5 DW o	de 508) only	(52	SVO 5/8270	C (625)	Crv	/[* *	,	Pe (! SVC	st/P(508) OC(5	CB / 25)							
Sample II	Container (I	pi Roc <2	l as clived Other	Finel pH	pH Reco > 12	l as elved Othor	Final pH	pi Rec > 9	H as ceived Other	Finel pH	F Re < 2	H as ceived Other	Final pH	F Re < 2	H as celved Othe	Final pH	R	pH as lecelved		Final pH	рН Roce < 2 С	as ived Other	Final pH	р Кө < 2	H as ceived Other	Final pH		Res. (red Cl f	final + .or -	Reci Res +	elved . Cl	final + or -	Received pH	Flinal pH		pH a Recei	as Ived ther	Flnal pH	pi Rec	i as elved Other	Final pH	P Rei	H as celved Oth	Final pH	
4	F				Π			Г			Γ						Τ				Τ																									
				5.		·	•	1	5 m	1415		·		ŀ										2									• 9 × •				ł		•••	• • •	14 S.A.				··· · ·	
					\square								Γ																																	
					\square	<u>1</u>					Γ			Γ																																
		Γ												Τ																																
										Τ																																				
								Γ																																						
		Γ									Γ																																			
		T						Γ		Γ	Γ			Τ		Τ	Τ																													
		Γ						Γ		Γ	Τ			Τ		Τ	Τ		Τ																											
		Γ						Γ			Γ			Τ			Т																													
		Γ						Γ			Τ			Τ			Т		Т																											
														Τ			Ţ		Τ																											
		Γ						Γ		Τ	Τ			Γ			Τ	Τ	T																											
		Γ						Γ								Τ	T																													
NaOH	D:							_	HN	O3 ID):					•			/l p	rese	rvec	d dat	e/tim	ne:								Ana	lyst li	nitials:								-				
H2SO4	ID:							_	Na	Na2S2O3 ID:						⁺ <i>ph</i> Am	i mu mo	nia l	adju Buff	<i>isted</i> er So	betw ol'n l	een 9 D: _	1.3 - 9.	.7																						
HCL ID	:								Na	SO3	ID: _							5N	Na	OH	ID:																									

.

.

and the second second

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Date Issued:

	Certificate of Analysis			
Client Name:	SCS Engineers-Winchester	Date Issued:	8/31/2023 2:20:22PM	
Client Site I.D.:	2023 City of Bristol Landfill Leachate			
Submitted To:	Jennifer Robb			
	Laboratory Order ID: 23H0914			
	Sample Conditions Checklist			
	Samples Received at:		0.30°C	
	How were samples received?	Logi	stics Courier	
	Were Custody Seals used? If so, were they received intact?		Yes	
	Are the custody papers filled out completely and correctly?		Yes	
	Do all bottle labels agree with custody papers?		Yes	
	Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?		Yes	
	Are all samples within holding time for requested laboratory tests?		Yes	
	Is a sufficient amount of sample provided to perform the tests included?		Yes	
	Are all samples in appropriate containers for the analyses requested?		Yes	
	Were volatile organic containers received?		Yes	
	Are all volatile organic and TOX containers free of headspace?		No	
	Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.		Yes	
	Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lat preservation may delay analysis. In addition, field parameters are always received outside holding time and will be ma accordingly.	b arked	Νο	
	Jennifer Robb notified via email for bottles to be analzyed for Ammonia, Nitrate-Nitrite, Phenolics, and COD being received with a pH of 7, and VOA that were unpreserved being recieved with headspace. KRC 8/17/23 1632	AC40 mL		

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

8/31/2023 2:20:22PM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Jennifer Robb confirmed to proceed with all analyses despite headspace. KRC 8/18/23 0920

We	II ID	EW-50	EW-52	EW-54	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	EW-78	EW-94	EW-98		100
Parameter	Monitoring Event							Cond	entration								LOD	LOQ
	November-2022						1560		1400		1380						50	50
	December-2022	1700	2280		2110		1410	1310				1150	1780				100	100
	lanuan/-2023	1520				1500					1330						50	50
	Junioury-2023						2440										100	100
	February-2023												1490				100	100
Ammonia as N	March-2023					667	1480										73.1	100
(mg/L)	April-2023					1410		1220									73.1	100
	May-2023	1390				1860	2380										146	200
	June-2023						2740		2370	2170							146	200
	July-2023 -													1180			73.1	100
		1570			2260										2350	310	146	200
	August-2023			1600	1890		1.5700								2140	222	146	200
	November-2022						15/00		5860		5140						0.2	2
	December-2022	6440	12500		11400		9240	3330				8360	6770				0.2	2
	January-2023	9920				999	28100				7060						0.2	2
Piological Owgon	February-2023					1.570							/230				0.2	2
	March-2023					15/0	9190										0.2	2
Demana (mg/L)	April-2023	7250				8430	25200	2860									0.2	2
	Mdy-2023	/350				11900	35300										0.2	2
	JUne-2023						20000		2/400	23100							0.2	2
	JUIY-2023	6820		>22045	32900									330	31800	937	0.2	2
	AUGUSI-ZUZ3			>33045	>33225				0700		10800				>32605	506	1000	2
	November-2022						23500		7770		10000						2000	2000
		7440					23500										1000	1000
	-	/440					13200	8000				20300	1/100				2000	2000
	December-2022				22400		13200	8000				20300	14100				5000	5000
			84900		22400												10000	10000
			00000			3430											500	500
	lanuary-2023	1/1900				5050					8/30						2000	2000
	5011001 y 2020	14700					47600				0450						5000	5000
	Eebruary-2023						47000						9210				1000	1000
						1690							7210				500	500
Chemical Oxvaen	March-2023					1070	10600										2000	2000
Demand (mg/L)								7370									1000	1000
	April-2023					16800											2000	2000
		7590				18700											2000	2000
	May-2023						44700										4000	4000
									44800								5000	5000
	June-2023						41300			55000							10000	10000
																2180	500	500
	-	6480												2460			1000	1000
	July-2023														41000		5000	5000
					50100												10000	10000
																1750	500	500
	August-2023			59000	58600										60600		5000	5000

We	ll ID	EW-50	EW-52	EW-54	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	EW-78	EW-94	EW-98		100
Parameter	Monitoring Event							Conc	entration								LOD	LOQ
Nitrate+Nitrite as N (mg/L)	November-2022						2.91		0.16		0.33						0.1	0.1
												ND					0.2	0.2
	December 2022							ND									0.2	0.6
	December-2022	ND	ND		ND		ND										1.1	5.1
													ND				1.5	5.5
						ND											0.35	1.35
	lanuan/-2023-										ND						1.1	1.1
	Jui 1001 y=2023	3.9															2.1	2.1
							ND										2.2	2.2
	February-2023												ND				0.35	1.35
	March-2023					ND	ND										1.04	5.1
Nitrate as N (mg/L)	April-2023					ND		ND									0.6	2.6
	May-2023	ND															1.1	5.1
	1vidy-2023					ND	ND										1.2	5.2
	lune-2023						ND			ND							1.1	5.1
	JULIC-2023								ND								1.2	5.2
	_													0.355			0.15	0.35
	Lulv-2023-															ND	0.55	0.75
	JULY 2020	ND															1	3
					ND										ND		1.5	5.5
	August-2023															ND	0.15	0.35
	7.09001 2020			ND	ND										ND		1.5	3.5
	December-2022							0.12 J									0.1	0.5
		ND	ND		ND		ND					ND	ND				1	5
						ND											0.25	1.25
	January-2023										ND						1	1
		ND					ND										2	2
	February-2023												0.48 J				0.25	1.25
	March-2023					ND	ND										1	5
Nimite as N (mg/L)	April-2023					ND		ND									0.5	2.5
	May-2023	ND				ND	ND										1	5
	June-2023						2 J		ND	ND							1	5
														ND		ND	0.05	0.25
	July-2023	ND															0.5	2.5
					1.2 J										ND		1	5
	August-2023															ND	0.05	0.25
	5 • • •			ND	ND										ND		0.5	2.5

Wel	I ID	EW-50	EW-52	EW-54	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	EW-78	EW-94	EW-98		100
Parameter	Monitoring Event							Conc	entration								LOD	LOQ
	November-2022								1290		1470						20	50
	14076111061-2022						2110										50	125
	December-2022	1510	3570		1790		1830	1490				1340	1940				200	500
	lanuary-2023-	1840				881					1410						20	50
	Junioury-2023						2970										40	100
	February-2023												1870				16.8	50
Total Kjeldahl	March-2023					879	1920										33.6	100
Nitrogen (mg/L)	April-2023					1820		1510									16.8	50
	May-2023	1590				1950	2910										40	100
	lune_2023						3080			2750							100	250
	30110 2020								2650								200	500
	July-2023	1670			2960									1670	2720	285	40	100
	August-2023 -															279	10	25
				2240	2820										2850		100	250
	November-2022								5.68		3						0.3	0.5
							28.8										0.75	1.25
	December-2022							8.94									0.3	0.5
		24.9	54.6		28.3		32					20.2	36				1.5	2.5
	January-2023	27.2				1.3					20.2						0.75	1.25
							56.5										1.5	2.5
	February-2023												22.4				1.5	2.5
Total Recoverable	March-2023					0.4											0.03	0.05
Phenolics (mg/L)							13.9										0.3	0.5
	April-2023					18.7		5.1									0.3	0.5
	May-2023	18.6				20	50										1.5	2.5
	June-2023						39.1		45.6	80.6							1.5	2.5
														0.7			0.15	0.25
	July-2023															2.92	0.3	0.5
		11.6			47.9										37.3		1.5	2.5
	August-2023															1.46	0.15	0.25
				28.6	31.4										40.4		1.5	2.5

We	ell ID	EW-50	EW-52	EW-54	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	EW-78	EW-94	EW-98		100
Parameter	Monitoring Event							Cond	centration								LOD	LOQ
SEMI-VOLATILE OR	GANIC COMPOUND	(ug/L)																
	Neversber 2022								ND		ND						46.7	93.5
	November-2022						ND										93.5	187
							ND	ND					ND				9.35	9.35
					ND							ND					11.7	11.7
	December-2022		ND														23.4	23.4
		ND															485	971
						ND											243	485
											ND						253	505
	January-2023	ND															490	980
							ND										500	1000
	February-2023												ND				187	374
	March 2022						ND										51	102
Anthracene	March-2023					ND											117	234
						ND											37.4	74.8
	April-2023							ND									38.8	77.7
	NA	ND					ND										93.5	187
	Mdy-2023					ND											467	935
	lun = 0000						ND			ND							485	971
	June-2023								ND								490	980
																ND	46.7	93.5
	h.h. 0000	ND															100	200
	JUIY-2023													ND			250	500
					ND										ND		1000	2000
	August 2023															ND	19.6	39.2
	AUgusi-2023			ND	ND										ND		1000	2000
TOTAL METALS (mg	/L)																	
	November-2022						0.863		0.464		1.3						0.02	0.04
	December-2022	1.02	0.406		0.174		1.69	0.49				0.159	0.574				0.02	0.04
	January-2023	0.285				0.596	0.225				0.846						0.01	0.02
	February-2023												0.29				0.005	0.01
	March-2023					1.07	1										0.01	0.02
	April-2023							0.11									0.0005	0.001
Arsenic	April-2025					0.36											0.005	0.01
	May-2023	0.26				0.3	0.27										0.0025	0.005
	June-2023						0.26		0.5	0.14							0.0025	0.005
	101/2003	0.23												0.24	0.19	0.06	0.0005	0.001
	JUIY-2023				0.7												0.0025	0.005
	August-2023															0.15	0.0025	0.005
	7.09031-2025			0.32	0.43										0.29		0.005	0.01

Wel	I ID	EW-50	EW-52	EW-54	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	EW-78	EW-94	EW-98		100
Parameter	Monitoring Event							Conc	entration								LOD	LOQ
	November-2022						0.871		0.485		0.36						0.01	0.02
	December-2022	0.566	0.803		0.978		0.438	0.214				0.856	0.793				0.01	0.02
	January-2023	0.643				0.683	1.92				0.554						0.005	0.01
	February-2023												1.04				0.01	0.05
	March-2023					0.406	0.683										0.005	0.01
	April-2023					1.21		0.326									0.01	0.05
	NA	0.636															0.005	0.025
Barium	May-2023					1.2	1.83										0.01	0.05
	1						1.69			1.65							0.005	0.025
	June-2023								3.01								0.01	0.05
																0.217	0.001	0.005
	July-2023													0.558			0.002	0.01
	,	0.542			2.28										1.02		0.005	0.025
	4															0.218	0.005	0.025
	AUGUST-2023			1.61	1.58										1.48		0.01	0.05
	November-2022						ND		ND		ND						0.004	0.008
	December-2022	ND	0.0104		ND		ND	ND				ND	ND				0.004	0.008
	January-2023	ND				ND	ND				ND						0.002	0.004
	February-2023												0.000297 J				0.0001	0.001
	March-2023					ND	ND										0.002	0.004
Cadmium	April-2023					0.000158 J		0.000333 J									0.0001	0.001
	May-2023	ND				ND	ND										0.0005	0.005
	June-2023						ND		ND	ND							0.0005	0.005
	July-2023	0.000219 J			0.000156 J									0.000186 J	ND	ND	0.0001	0.001
	August 2022															ND	0.0005	0.005
	AUGUSI-2023			ND	ND										ND		0.001	0.01
	November-2022						0.208		0.112		0.354						0.016	0.02
	December-2022	0.503	1.08		1.76		0.274	0.319				0.499	0.822				0.016	0.02
	January-2023	0.31				0.488	0.178				0.155						0.008	0.01
	February-2023												0.277				0.004	0.01
	March-2023					0.213	0.188										0.008	0.01
Chromium	April 0002							0.142									0.0004	0.001
Chiomon	April-2023					0.306											0.004	0.01
	May-2023	0.422				0.281	0.237										0.002	0.005
	June-2023						0.251		0.191	0.272							0.002	0.005
	July-2023	0.308			0.535									0.231	0.215	0.0265	0.0004	0.001
	August 2022															0.0276	0.002	0.005
	AUGUSI-2023			0.606	0.449										0.259		0.004	0.01
	November-2022						ND		ND		ND						0.016	0.02
	December-2022	ND	ND		ND		ND	ND				ND	ND				0.016	0.02
	January-2023	ND				0.0127	0.0256				ND						0.008	0.01
	February-2023												0.00365				0.0003	0.001
	March-2023					ND	ND										0.008	0.01
Copper	April-2023					0.00664		0.00767									0.0003	0.001
	May-2023	ND				ND	ND										0.0015	0.005
	June-2023						0.00154 J		0.00362 J	0.00269 J							0.0015	0.005
	July-2023	0.00124			0.00163									0.00811	ND	0.0027	0.0003	0.001
	August 2002															ND	0.0015	0.005
	AUGUSI-2023			0.00343 J	0.0176										ND		0.003	0.01

We	ll ID	EW-50	EW-52	EW-54	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	EW-78	EW-94	EW-98		100
Parameter	Monitoring Event							Conc	entration								LOD	LOQ
	November-2022						ND		ND		0.017 J						0.012	0.02
	December-2022	ND	0.0381		ND		ND	ND				ND	ND				0.012	0.02
	January-2023	ND				ND	ND				ND						0.006	0.01
	February-2023												0.006				0.001	0.001
	March-2023					ND	ND										0.006	0.01
Lead	April-2023					0.0022		0.0067									0.001	0.001
	May-2023	ND				ND	ND										0.005	0.005
	June-2023						ND		ND	0.0069							0.005	0.005
	July-2023	0.0014			0.019									0.0092	ND	0.0017	0.001	0.001
	August-2023															ND	0.005	0.005
	7.09031 2020			0.014	ND										0.013		0.01	0.01
	November-2022								0.00169		0.00053						0.0004	0.0004
							ND										0.0008	0.0008
		0.00051															0.0004	0.0004
	December-2022				0.00118		ND	0.00588				0.0048	ND				0.0008	0.0008
			ND														0.004	0.004
	lanuary-2023	ND				ND					ND						0.0004	0.0004
	Sanoary 2020						ND										0.004	0.004
	February-2023												ND				0.0004	0.0004
Mercury	March-2023					ND											0.0002	0.0002
,							ND										0.0004	0.0004
	April-2023							0.00128									0.0002	0.0002
						ND											0.0004	0.0004
	May-2023	ND				ND	ND										0.0002	0.0002
	June-2023						ND		ND	ND							0.004	0.004
	Lulv-2023	0.000306												ND		ND	0.0002	0.0002
	3017 2020				0.0107										ND		0.001	0.001
	August-2023															ND	0.001	0.001
				0.00312	0.00397										ND		0.002	0.002
	November-2022						0.0866		0.1344		0.173						0.014	0.02
	December-2022	0.1/22	0.5025		0.2989		0.1299	0.287				0.1853	0.346				0.014	0.02
	January-2023	0.1074				0.1442	0.0407				0.0769						0.007	0.01
	February-2023												0.1/26				0.001	0.001
Niekel	March-2023					0.1254	0.1033										0.007	0.01
NICKEI	April-2023					0.1143		0.1/32									0.001	0.001
	May-2023	0.113				0.09/26	0.05657										0.005	0.005
	June-2023						0.05978		0.05892	0.07161							0.005	0.005
	JUIY-2023	0.098/2			0.08332									0.1576	0.03074	0.01403	0.001	0.001
	August-2023			0 1457											0.0512	0.02029	0.005	0.005
				0.145/	0.070/3										0.0513		0.01	0.01

We	ll ID	EW-50	EW-52	EW-54	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	EW-78	EW-94	EW-98		100
Parameter	Monitoring Event							Conc	entration								LOD	LOQ
	November-2022						ND		ND		ND						0.08	0.1
	December-2022	ND	ND		ND		ND	ND				ND	ND				0.08	0.1
	January-2023	ND				ND	ND				ND						0.04	0.05
	February-2023												0.00199				0.00085	0.001
	March-2023					ND	ND										0.04	0.05
Selenium	April-2023					0.00189		0.00185									0.00085	0.001
	May-2023	ND				ND	0.00569										0.00425	0.005
	June-2023						ND		ND	ND							0.00425	0.005
	July-2023	0.00101			0.00331									0.00116	0.00251	ND	0.00085	0.001
	August 2022															ND	0.00425	0.005
	AUGUSI-2023			ND	ND										ND		0.0085	0.01
	November-2022						ND		ND		ND						0.01	0.02
	December-2022	ND	0.0187 J		ND		ND	ND				ND	ND				0.01	0.02
	January-2023	ND				ND	ND				ND						0.005	0.01
	February-2023												ND				0.00006	0.001
	March-2023					ND	ND										0.005	0.01
Silver	April-2023					ND		0.00011 J									0.00006	0.001
	May-2023	ND				ND	ND										0.0003	0.005
-	June-2023						ND		ND	ND							0.0003	0.005
	July-2023	ND			ND									ND	ND	ND	0.00006	0.001
	August 2022															ND	0.0003	0.005
	AUGUSI-2023			ND	ND										ND		0.0006	0.01
	November-2022						ND		0.032		0.694						0.02	0.02
	December-2022	0.208	29.7		0.162		0.0686	0.75				0.364	0.286				0.02	0.02
	January-2023	0.133				0.15	0.074				0.0752						0.01	0.01
	February-2023												0.0851				0.0025	0.005
	March-2023					0.0689	0.0538										0.01	0.01
	April 2022					0.0539											0.0025	0.005
Zinc	Aprii-2023							0.414									0.025	0.05
21110	May-2023	0.079				0.0635	0.0519										0.0125	0.025
	June-2023						0.0538		0.0253	0.945							0.0125	0.025
	1 1 0000	0.0488												0.0714	0.354	0.0782	0.0025	0.005
	JUIY-2023				2.03												0.0125	0.025
																0.112	0.0125	0.025
	August-2023				1.71										0.914		0.025	0.05
				5.92													0.05	0.1
VOLATILE FATTY AC	IDS mg/L																	
	November-2022								1600								25	100
							3500				150 J						62	250
	December-2022	1800															62	250
	January-2023	ND				ND	4400				ND							500
	February-2023												ND					500
Acotic Acid	March-2023					ND	640											500
ACETIC ACIO	April-2023					1200		520									370	500
	May-2023	990				1800	3000										370	500
	June-2023						5900		4100	5000							750	1000
																ND	150	200
	July-2023	ND												ND			370	500
					6100										750		750	1000

Well ID		EW-50	EW-52	EW-54	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	EW-78	EW-94	EW-98		100
Parameter	Monitoring Event			Concentration												LOD	LOQ	
	November 2022								430								12	100
	NOVember-2022						830				ND						29	250
	December-2022	ND															29	250
	January-2023	ND				ND	1800				ND							500
	February-2023												ND					500
Butyric Acid	March-2023					ND	ND											500
boryne Acia	April-2023					ND		ND									330	500
	May-2023	ND				ND	1200										330	500
	June-2023						2500		1500	2900							650	1000
	July-2023															ND	130	200
		ND												ND			330	500
					2800										650		650	1000
	November-2022								ND								11	100
Lactic Acid							ND				ND						27	250
	December-2022	90 J															27	250
	November-2022								620								11	100
							1600				73 J						27	250
	December-2022	640															27	250
	January-2023	ND				ND	2000				ND							500
	February-2023												ND					500
Propionic Acid	March-2023					ND	ND											500
	April-2023					600		ND									340	500
	May-2023	520				800	1400										340	500
	June-2023						2900		2000	2900							680	1000
																ND	140	200
	July-2023	ND												ND			340	500
					3100										680		680	1000
	November-2022								46 J								12	100
Pyruvic Acid							98 J				ND						30	250
	December-2022	ND															30	250

Well ID		EW-50	EW-52	EW-54	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	EW-78	EW-94	EW-98		100
Parameter Monitoring Event								Conc	entration								LOD	LOQ
VOLATILE ORGANIC	COMPOUNDS (ug/	L)																
							3510				1140						30	100
	November-2022								15600								300	1000
	D	3140						3390									30	100
	December-2022		26800		27700		5670					21700	7150				300	1000
	1	3480				632											30	100
	January-2023						7840				5470						300	1000
	February-2023												14400				600	2000
	March-2023					257	2770										30	100
	April-2023					3420		5530									750	2500
2 Putanono (MEK)	May-2023 -	5360				5970											150	500
Z-BUIGHONE (MEK)							13600										750	2500
							13800										750	2500
	June-2023								20100	22600							1.500	5000
		5860												ND			60	200
	July-2023															13500	7.50	2500
					38400										31600		3000	10000
	August-2023 -															5950	60	200
															7350		150	500
					3000												750	2500
				25600													1500	5000
	November-2022										4420						70	100
							16100		38300								700	1000
	December-2022						15600	5170					9800				700	1000
		8500															1750	2500
			53100		49900							45600					3500	5000
						1530											70	100
	January-2023						22200				14000						700	1000
		8130															1750	2500
	February-2023												23900				1400	2000
	,					375											70	100
	March-2023						6810										700	1000
Acetone	April-2023					8290		7560									1750	2500
		10700				11700											350	500
	May-2023 -						29600										1750	2500
							29600										1750	2500
	June-2023						27000		61800	50800							3500	5000
									01000					1180			140	200
	-	0790												1100			700	1000
	July-2023	7700														11400	1750	2500
	-				77200										40700	11800	7000	2300
					//200										67/00	20000	7000	10000
	August-2023				18700											20900	1750	2500
	Augusi-2023			72500											87700		3500	5000
				72300											07700		0000	0000

Well ID		EW-50	EW-52	EW-54	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	EW-78	EW-94	EW-98		100
Parameter	Monitoring Event							Conc	entration								LOD	LOQ
	November-2022						7.4 J		2860		50.4						4	10
	December 2022	301	2960				6.3 J	622				1750	179				4	10
	December-2022				6550												40	100
	January-2023	240				28.7	1620				167						4	10
	February-2023												1370				4	10
	March-2023					1540	727										4	10
	April-2023					3740		320									4	10
Benzene	May-2023	814				4890	3370										20	50
	luna 2022						2630										8	20
	JULIE=2023								1400	1590							20	50
		824												80.8			8	20
	July-2023				4050										1420		20	50
																11800	100	250
	August-2023															379	8	20
	7 (0 g 0 31 2 0 2 0			2320	168										ND		20	50
	December-2022	67.3	172		287		ND	48.5				108	27.4				4	10
	November-2022						ND		194		16.2						4	10
	January-2023	65.1				ND	93.9				20.8						4	10
	February-2023												151				4	10
	March-2023					131	71.5										4	10
	April-2023					186		43.4									4	10
Ethylbenzene	May-2023	124				276	144										20	50
	June-2023						104										8	20
									98	116							20	50
	July-2023															666	4	10
		128												82			8	20
					224										87.5		20	50
	August-2023															16.8 J	8	20
				80	ND										ND		20	50
	November-2022						309				1/6						100	100
		1.51					170	1100	8530								1000	1000
	December-2022	151					170	1120					663				100	100
		102	5210		19800							6130					1000	1000
	Econication 2023	100				200	1010				352		27/0				2000	2000
	February-2023												3760				2000	2000
	March-2023					353	464										100	100
Tetrahydrofuran	April-2023					2410		4/90									100	100
	May-2023	ND				2/40	2380										500	500
	June-2023						2100										200	200
									7320	6670							500	500
																2960	100	100
	JUIY-2023	411												616			200	200
					8380										5310		500	500
	August-2023			7270	2010										1200	2880	200	200
				/3/0	3210										1200		500	500

Well ID		EW-50	EW-52	EW-54	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	EW-78	EW-94	EW-98		100
Parameter	Monitoring Event							Conc	entration								LOD	LOQ
	November-2022						ND		214		32.8						5	10
	December-2022	122	175		195		ND	113				113	48.3				5	10
	January-2023	122				8 J	139				35.3						5	10
	February-2023												224				5	10
	March-2023					182	98.1										5	10
	April-2023					303		94.4									5	10
Toluono	May-2023	258				371	239										25	50
loidene	luna 0002						165										10	20
	June-2023-								67	212							25	50
	July-2023															965	5	10
		248												107			10	20
					218										118		25	50
	August-2023 -															36.6	10	20
				105	ND										ND		25	50
	November-2022						ND		185		37.8						10	30
	December-2022	161	222		186		ND	112				197	59.9				10	30
	January-2023	138				ND	134				38.1						10	30
	February-2023												240				10	30
	March-2023					240	111										10	30
	April-2023					329		97.4									10	30
Xvlenes Total	May-2023	274				441	230										50	150
, cylonios, rotai	luno 2023						177										20	60
	JUNG-2023								92 J	136 J							50	150
																1130	10	30
	July-2023	257												74.4			20	60
					230										174		50	150
	August-2023															48.4 J	20	60
	Augusi-2023			180	ND										ND		50	150

--- = not applicable/available

J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter ND = Not Detected

ug/L = micrograms per liter