June 2023 Monthly Compliance Report

Solid Waste Permit No. 588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-18 | July 10, 2023

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sect	tion			Page
	Intro	duction		4
1.0	Gas	Collectio	on	4
	1.1	Surfac	e and Leachate Collection Emissions	4
		1.1.1	Surface Emissions	4
		1.1.1.1	1 Quarterly SEM	4
		1.1.1.2	2 Weekly SEM	4
		1.1.2	Leachate Collection Emissions	5
	1.2	Existin	g Gas Extraction System Performance	7
	1.3	Remot	te Monitoring System	7
	1.4	Large-	Diameter Dual-Phase Extraction Wells	7
	1.5	VDEQ	Concurrence on Wells	8
2.0	Side	wall Odo	or Mitigation	8
	2.1	Perime	eter Gas Collection System	8
	2.2	Sidewa	all Odor Mitigation System	8
	2.3	Pilot S	ystem Construction	8
	2.4	Full Sy	stem Construction	10
3.0	Was	te Temp	perature Monitoring	13
	3.1	Tempe	erature Monitoring System Design	13
	3.2	Tempe	erature Monitoring System Installation	13
4.0	Lead	hate Ex	traction and Monitoring	24
	4.1	Existin	g System Optimization	24
	4.2	Sampl	ing and Analysis Plan	27
		4.2.1	Sample Collection	27
		4.2.2	Quality Assurance and Quality Control	27
		4.2.3	Data Validation	28
		4.2.4	Laboratory Analytical Results	29
5.0	Settl	ement N	Monitoring and Management	30
	5.1	Settler	ment Monitoring and Management Plan	30
	5.2	Month	Iy Surveys	31
		5.2.1	Topographic Data Collection	31
		5.2.2	Settlement Plate Surveys	35
6.0	Inter	mediate	e Cover and EVOH Cover System	37
	6.1	Interm	ediate Cover Installation	

Table of Contents

Sec	tion		Page
	6.2	EVOH Cover System Design	37
	6.3	EVOH Cover System Procurement	37
	6.4	EVOH Cover System Installation	37
7.0	Storr	nWater Management	38
	7.1	Stormwater Management Plan Development	38
	7.2	Stormwater Management Basin Design and Construction	38
	7.3	Stormwater Management Plan Implementation	38
	7.4	Long-Term Stormwater Control and Removal	39
	7.5	Stormwater Monitoring	39
8.0	Misc	ellaneous	39
	8.1	Cease Waste Acceptance	39
	8.2	Long-Term Plan	39
	8.3	Monthly Compliance Reports	40
	8.4	Community Outreach Program	40

Figures

Figure 1.	Stainless Steel Well Installation at the SWP No. 588 Landfill	7
Figure 2.	SOMS Phase I As-Built	9
Figure 3.	Phase 2 SOMS Wellhead Connections	10
Figure 4.	Phase 2 Sidewall Odor Mitigation System Progress As-Built	12
Figure 5.	Phase 2 SOMS Lower and Upper Collector Construction	13
Figure 6.	Temperature Monitoring Probe Locations	14
Figure 7.	Average Temperatures within TP-1 During the Months of March through June	15
Figure 8.	Average Temperatures within TP-2 During the Months of March through June	16
Figure 9.	Average Temperatures within TP-3 During the Months of March through June	17
Figure 10.	Average Temperatures within TP-4 During the Months of March through June	18
Figure 11.	Average Temperatures within TP-5 During the Months of March through June	19
Figure 12.	Average Temperatures within TP-6 During the Months of March through June	20
Figure 13.	Average Temperatures within TP-7 During the Months of March through June	21
Figure 14.	Average Temperatures within TP-8 During the Months of March through June	22
Figure 15.	Average Temperatures within TP-9 During the Months of March through June	23
Figure 16.	Estimated Volume of Liquids Removed from Landfill Gas Wells	
Figure 17.	1-Month Elevation Change Color Map	
Figure 18.	3-Month Elevation Change Color Map	
Figure 19.	Settlement Plate Locations	35

Table of Contents

Tables

Table 1.	Summary of June Surface Emissions Monitoring	5
Table 2.	Leachate Cleanout Pipe Monitoring Results	
Table 3.	Sidewall HC Wellhead Gas Quality Measurements	
Table 4.	Sidewall HC Wellhead Gas Quality Measurements – System Averages	11
Table 5.	Summary of Dual Extraction Well Pump Stroke Counter Data	24
Table 6.	Summary of Dual Extraction Well Pump Liquids Removal	25
Table 7.	Monthly LFG-EW Leachate Monitoring Event Summary	29
Table 8.	Settlement Plate Locations	

Appendices

- Appendix A Surface Emissions Monitoring Summary Letters
- Appendix B In-Waste Temperatures on Select Days in June
- Appendix C Semi-Monthly Temperature Update Memo
- Appendix D Solid Waste Permit 588 Daily Borehole Temperature Averages
- Appendix E Monthly Topography Analysis
- Appendix F Sample Collection Log, Lab Reports, and Historical LFG-EW Leachate Monitoring Results Summary
- Appendix G Sidewall Odor Mitigation System Design Engineer Certification

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report provides updates regarding the progress towards completion of the items outlined in Appendix A of the Consent Decree between the City and VDEQ. The following sections outline progress during the month of June 2023 related to Solid Waste Permit (SWP) No. 588.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

1.1.1.1 Quarterly SEM

The Second Quarter 2023 surface emissions monitoring event was conducted on May 30, 2023. Results from that monitoring event are documented in the May 2023 Monthly Compliance Report for the SWP No. 588 Landfill. No quarterly monitoring event was conducted in June. SCS will conduct the Third Quarterly Monitoring event for the SWP 588 landfill prior to September 30, 2023.

1.1.1.2 Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, SCS performed additional surface emissions monitoring on June 6, 2023; June 13, 2023; June 23, 2023; and June 29, 2023. These Weekly Surface Emissions Monitoring (SEM) Events were performed in accordance item 1.i in Appendix A of the Consent Decree between the City and VDEQ.

The monitoring in June generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint.

SCS submitted letters to VDEQ outlining the results of the April monitoring events on June 14, 2023; June 21, 2023; June 28, 2023; and July 5, 2023. Copies of those submittals are included in Appendix A. Table 1 summarizes the results of the four monitoring events in May.

Description	June 6, 2023	June 13, 2023	June 23, 2023	June 29, 2023
Number of Points Sampled	164	168	169	169
Number of Points in Serpentine Route	100	100	100	100
Number of Points at Surface Cover Penetrations	64	68	69	69
Number of Exceedances	3	4	2	4
Number of Serpentine Exceedances	0	0	0	0
Number of Pipe Penetration Exceedances	3	4	2	4

Table 1. Summary of June Surface Emissions Monitoring

No serpentine exceedances were detected in June 2023. Furthermore, no serpentine exceedances have been detected since April 2023. Measurements indicate the additional soil placed in the vicinity of the April exceedances remain effective at reducing emissions at these locations.

Exceedances were detected at the pipe penetrations of seven vertical extraction wells. Four of these points were located at recently installed vertical wells 86, 95, 98, and 99. These four wells along with the majority of the newly installed vertical wells, were equipped with wellbore seals during June and subsequently recorded compliant readings. One of the three remaining exceedances, at vertical well 66, is likely a result of ongoing construction activity in the vicinity of that well. Modification or reinstallation of the existing wellbore seal at the well will likely return that well to compliance. For the remaining two exceedances, at the pipe penetration of vertical wells EW-38 and EW-52, additional soil and/or a well-bore skirt will be installed to remediate the exceedance. Corrective actions to address these exceedances are planned for the month of July 2023.

1.1.2 Leachate Collection Emissions

SCS Field Services (SCS-FS) visited the Bristol Landfill on June 2, 2023, and performed monitoring of the leachate, witness zone, and gradient control clean-outs at the northern and southern ends of the landfill. The results of that monitoring are included in Table 2. The monitoring data for the clean-outs at the southern end of the landfill are listed as LC01 – LC10. The monitoring data for the clean-outs at the northern end of the landfill are listed as NC01 – NC10. Table 2 also lists the cleanout pipe description based on site records and a review of correspondence.

Description	ID#	CH₄ (% by Vol)	CO₂ (% by Vol)	O₂ (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H ₂ O)	Adj Static Pressure (in H ₂ O)	System Pressure (in H ₂ O)
Southern Cleanouts Gradient West	LC01	53.0	47.0	0.0	0.0	61.7	61.7	-15.6	-15.7	-16.4
Southern Cleanouts Gradient East	LC02	48.7	47.3	0.0	4.0	62.1	62.0	-15.8	-15.9	-16.5
Southern Cleanouts Leachate Center	LC03	9.8	7.3	16.9	66.0	74.8	75.2	-16.2	-16.2	-16.2
Southern Cleanouts Witness East	LC04	23.6	12.7	10.4	53.3	73.4	73.4	-16.3	-16.2	-15.9
Southern Cleanouts Leachate West	LC05	50.8	39.5	0.1	9.6	63.4	63.2	-15.5	-15.5	-16.2
Southern Cleanouts Gradient Center West	LC06	32.6	28.6	8.1	30.7	75.4	75.5	-16.5	-16.3	-16.5
Southern Cleanouts Leachate East	LC08	51.2	43.5	0.0	5.3	61.2	61.2	-15.5	-15.5	-16.3
Southern Cleanouts Gradient Center East	LC09	29.0	18.0	9.5	43.6	76.7	77.7	-16.2	-16.2	-14.4
Southern Cleanouts Leachate West	LC10	23.0	14.5	11.4	51.2	84.1	84.6	-15.8	-15.8	-15.0
Northern Cleanouts Leachate East	NC01	0.1	0.1	19.6	80.2	81.3	81.1	-5.1	-5.1	0.2
Northern Cleanouts Leachate Center	NC02	1.3	0.7	19.1	78.8	79.8	79.1	-4.7	-4.7	0.2
Northern Cleanouts Leachate West	NC03	1.0	0.5	19.2	79.3	78.7	78.4	-1.5	-1.5	0.1
Northern Cleanouts Witness East	NC04	0.0	0.0	19.6	80.4	78.3	78.4	-13.5	-13.5	0.4
Northern Cleanouts Witness Center	NC05	0.0	0.0	19.6	80.4	78.6	78.6	-13.6	-13.6	0.2
Northern Cleanouts Witness West	NC06	0.0	0.0	19.6	80.4	78.8	78.8	-13.5	-13.5	0.3
Northern Cleanouts Gradient East	NC07	22.5	8.1	5.1	64.3	78.9	79.0	-14.8	-14.8	0.4
Northern Cleanouts Gradient Center East	NC08	30.5	16.9	4.1	48.5	79.2	79.2	-14.8	-14.8	0.3
Northern Cleanouts Gradient Center West	NC09	31.7	17.9	3.2	47.2	79.4	79.4	-14.8	-14.8	0.2
Northern Cleanouts Gradient West	NC10	4.1	6.6	19.0	70.3	79.5	79.5	-13.6	-13.8	0.3

 Table 2.
 Leachate Cleanout Pipe Monitoring Results

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in SCS-FS's summary report for the month of April.

1.3 REMOTE MONITORING SYSTEM

In the fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas well-heads. The purpose of the sensors is to record and transmit well-head gas temperatures via a cellular connection to a database managed by SCS-RMC.

The City is providing average temperatures recorded by the sensors to VDEQ on a daily basis via email. In addition, SCS prepares a semi-monthly report with analysis of this data. The 1st semi-monthly report for June is included in Appendix C.

1.4 LARGE-DIAMETER DUAL-PHASE EXTRACTION WELLS

SCS completed design work on an expansion of the existing GCCS during the month of December 2022. The proposed expansion includes at least 5 large diameter dual-phase extraction wells. SCS submitted the design to VDEQ prior to December 31, 2022. The City commenced solicitation of contractor's bids for this project by advertising for bids and received one bid for the project from SCS Field Services Construction (SCS-CONS). On January 26, 2023, the City awarded the project to SCS-CONS.

During the month of June, work on the expansion of the GCCS focused on the construction of the deep well gas collection system and the 8" header connections to the existing system. Two wells were drilled during the first week of June, completing the project well schedule. The first five pumps were installed in June, satisfying item 1.iv of Appendix A of the Consent Decree between the Department and the City. The City and SCS-CONS are awaiting the delivery of additional pumps which will increase the number of operating dual extraction wells beyond the required minimum. The expanded GCCS was connected to these wells vacuum and began liquids extraction. An example of a stainless steel well is shown in Figure 1.

Figure 1. Stainless Steel Well Installation at the SWP No. 588 Landfill

1.5 VDEQ CONCURRENCE ON WELLS

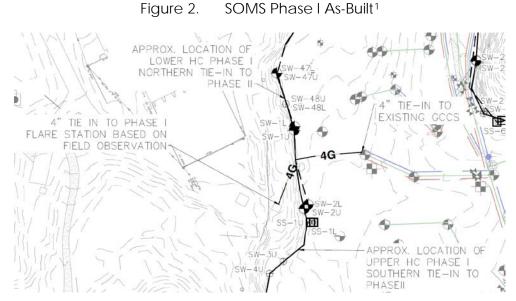
As described in previous monthly compliance reports, the City engaged with VDEQ in discussions about the proposed approach for landfill GCCS improvements and expansions. Upon completion of the landfill gas collection system, SCS will submit updated as-built drawings depicting the completed system to VDEQ. The City intends to delay installation of interim or final cover systems until the City and VDEQ agree that the GCCS is sufficient.

2.0 SIDEWALL ODOR MITIGATION

The City has designed and is constructing a system to control fugitive emissions emanating from the quarry sidewalls. Specific aspects of the proposed design features are described in the following sections.

2.1 PERIMETER GAS COLLECTION SYSTEM

SCS's design of the GCCS expansion described in Section 1.4 included perimeter LFG wells. These wells are closer to the sidewall to intercept landfill gas that potentially could migrate to the quarry wall. These wells will supplement the sidewall odor mitigation system described in Section 2.2. The City completed bidding and contracting of construction for the perimeter LFG wells as part of the large diameter dual extraction well installation described in Section 1.4.


As described in the April 2023 Monthly Compliance Report for the SWP No. 588 Landfill, construction of the perimeter gas collection system was completed. SCS submitted a letter to VDEQ documenting completion of the Perimeter Gas Collection System on May 1, 2023. One of the perimeter gas collection system wells connected to lateral piping is shown in Figure 2.

2.2 SIDEWALL ODOR MITIGATION SYSTEM

On behalf of the City and in an effort to capture emissions from the quarry sidewall, SCS designed a sidewall odor mitigation system (SOMS) during the month of October 2022. On October 20, 2022 SCS provided an overview of the proposed system to VDEQ staff. The design of this system was prepared and submitted to VDEQ on November 1, 2022. A project manual detailing the specifications of the system was developed concurrently with the design of the system.

2.3 PILOT SYSTEM CONSTRUCTION

SCS-CONS completed substantial construction of Phase 1 of the SOMS during the month of February 2023, SCS-FS began monitoring Phase 1 connected Horizontal Collector (HC) wellheads during the month of March, and SCS-FS continued weekly wellhead monitoring into the month of May 2023. Phase 1 is considered the pilot system portion of the SOMS. SCS submitted a design engineer certification to VDEQ on February 10, 2023 that documented the substantial completion of Phase 1 of the SOMS. Figure 3 shows the Phase 1 as-built, which includes the locations of the HC wellheads and HC sumps installed in Phase I, as well as the 4" header connection to the existing LFGCCS. The lower collector installed as part of Phase II was tied-in to the north end of the Phase I lower collector, and the upper collector installed as part of Phase II was tied-in to the south end of the Phase I upper collector.

Phase 1 was initially connected to an auxiliary flare located near the system. HC wellhead measurements of gas quality continued to be taken on a weekly basis during the month of June 2023. A summary of those measurements is shown in Table 3.

Device ID	Date	CH4 (%)	CO2 (%)	O ₂ (%)
SW1L	6/5/2023	7.8	23.2	10.2
SW1U	6/5/2023	7.9	17.7	11.3
SW2L	6/5/2023	19.1	35.0	7.1
SW2U	6/5/2023	3.3	8.5	16.9
SW-1L	6/14/2023	5.9	19.4	11.5
SW-1U	6/14/2023	4.9	17.0	15.5
SW-2L	6/14/2023	19.2	38.1	6.1
SW-2U	6/14/2023	2.6	7.4	17.5
SW-1L	6/21/2023	7.4	20.6	10.7
SW-1L	6/21/2023	19.0	37.9	6.7
SW-1U	6/21/2023	7.9	23.0	11.6
SW-2U	6/21/2023	6.0	16.0	14.8
SW-1L	6/28/2023	13.28	27.63	6.96
SW-1U	6/28/2023	12.08	33.95	8.81
SW-2U	6/28/2023	10.54	29.96	9.97
SW-2L	6/28/2023	27.33	48.10	3.71

Table 3.Sidewall HC Wellhead Gas Quality Measurements

¹ Location data was collected using mapping grape global positioning system equipment.

Sidewall wellhead lower collector 1 (SW1L) is connected to the horizontal collector placed in waste inside the landfill liner close to the northern limit of Phase 1. Measurements of gas composition taken at SW1L indicate that methane levels are lower than typical for landfill gas, but that landfill gas continues to be captured by the system. Sidewall wellhead upper collector 1 (SW1U) is connected to the horizontal collector placed outside of the liner and waste.

Sidewall wellhead lower collector 2 (SW2L) is connected to the horizontal collector placed in waste inside the landfill liner close to the center of Phase 1. Measurements of gas composition taken at SW1L indicate that methane levels are lower than typical of landfill gas collection systems, but the presence of methane in addition to high carbon dioxide levels indicate that landfill gas is being captured by the system. Sidewall wellhead upper collector 2 (SW2U) is connected to the horizontal collector placed outside of the liner and waste and is close to the center of Phase 1. Measurements of gas composition taken at SW2U indicate that methane levels are low, but that landfill gas is being captured by the system.

Both the upper and lower collectors of Phase 1 of the system have been connected to the substantially completed Phase 2 of the system. Because construction of Phase 2 was ongoing during the month of June 2023, higher levels of ambient air were captured by the Phase 1 system through these connections.

Collection of landfill gas by both the upper and lower collectors indicates that the system is capturing fugitive emissions. Based on this data, Phase 2 was constructed utilizing the same general configuration. SCS-FS will continue to monitor Phase 1 of the system during the month of July 2023.

2.4 FULL SYSTEM CONSTRUCTION

SCS-CONS substantially completed construction of Phase 2 of the SOMS during the month of June 2023 as Phase 2 was connected to vacuum as of June 14, 2023. Liner and clay placement continued throughout the month of June and cover soil placement will continue into July. Figure 3 shows Phase 2 wellhead connections at HC wells SW-30U and SW-30L.

Figure 3. Phase 2 SOMS Wellhead Connections

On June 14, 2023, SCS-CONS completed installation of Phase 2 lower and upper horizontal collector wellheads and SCS-FS collected monitoring data at each connected wellhead. A summary of those

measurements is shown in Table 4. SCS submitted a certification letter to VDEQ documenting completion of the SOMS. A copy of that letter is included in Appendix G.

Record Date	Average CH4 [%]	Average CO2 [%]	Average O2 [%]	Average Bal Gas [%]
6/14/2023	22.4	30.3	8.0	39.4
6/21/2023	14.1	23.6	10.9	51.4
6/28-29/2023	15.9	26.5	10.0	47.7

 Table 4.
 Sidewall HC Wellhead Gas Quality Measurements – System Averages

The sidewall system averages indicate lower methane content than typical landfill gas collection systems, but that fugitive emissions are being successfully collected based on the data. Measurements of gas composition taken during June indicated methane content ranging from trace amounts of methane to as high as 54 percent at select individual wellheads. The wide-ranged gas composition may indicate that some areas of the landfill may be experiencing higher landfill gas concentrations than areas where methane content is seemingly insignificant. Phase 2 lower and upper collectors construction progress, including HC wellhead riser and sump locations, is shown in the as-built depicted as Figure 4².

² During construction, redundant risers were put in place to accommodate supplemental wellhead installation in the future. Figure 5 shows all riser locations. The final submittal to VDEQ, Revised June 26, 2023, shows the locations of actual wellhead installation.

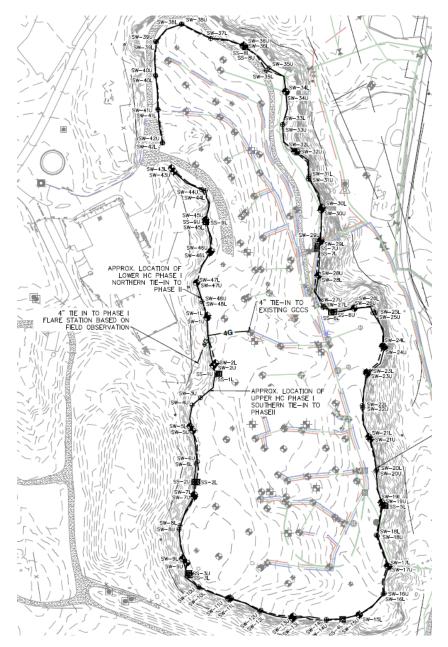


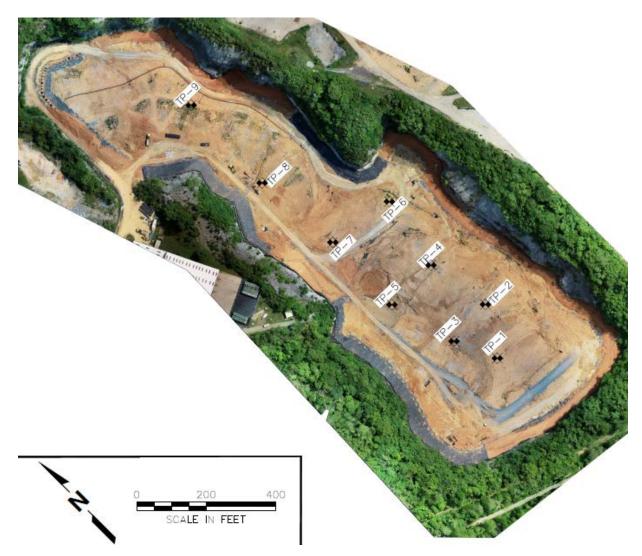
Figure 4. Phase 2 Sidewall Odor Mitigation System Progress As-Built³

At this time, not every SOMS horizontal collector riser has a wellhead installed, but HC risers may receive a wellhead at a future date as warranted by field conditions. An additional drawing showing the distinction between wellheads and risers is included in the certification letter included in Appendix G. Clay placement atop of the installed liner in the northern area of the landfill is shown in Figure 5.

³ Location data was collected using mapping grape global positioning system equipment.

Figure 5. Phase 2 SOMS Lower and Upper Collector Construction

3.0 WASTE TEMPERATURE MONITORING


On behalf of the City, SCS designed a temperature monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

3.1 TEMPERATURE MONITORING SYSTEM DESIGN

The temperature monitoring system consists of 9 boreholes drilled into the waste mass. A steel casing was placed in each borehole and the hole was backfilled around the casing with aggregate. A series of temperature sensors was placed inside the steel casing. At the top of each borehole, an IIoT transmitter collects the data from the sensors and transmits it to a cloud-based RMC system. The City submitted design of the temperature monitoring system to VDEQ on November 30, 2022.

3.2 TEMPERATURE MONITORING SYSTEM INSTALLATION

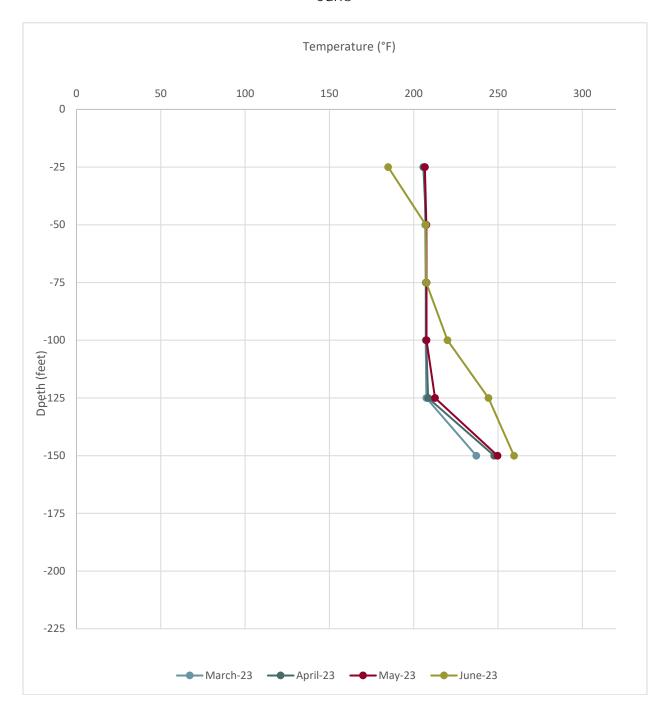

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP No. 588 Landfill. The locations of the temperature probes are shown in Figure 6.

Figure 6. Temperature Monitoring Probe Locations

SCS began collecting temperature data daily on February 15, 2023. The temperature sensors continued to transmit temperature data from all 9 casings during the month of June. Average daily temperatures recorded by the sensors for the Month of June are included in Appendix D. Each week the average temperatures from a select day of that week are downloaded and compared to temperatures recorded during the previous week. Average daily temperatures recorded on select days during the month of June are shown in Appendix B. The average temperatures for the month recorded during the months of March through June are shown in Figures 7 through 15 on the following pages.

Figure 7 shows daily average temperatures in Temperature Probe 1 (TP-1) during the months of March through June. Based on the data, temperatures were consistent from March through May and saw some modest increases during the month of June at depths or 100 feet and below. TP-1 was originally drilled to a depth of 180 feet, but the contractor was unable to install the casing beyond a depth of 160 feet.

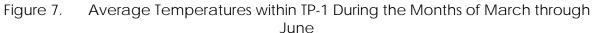
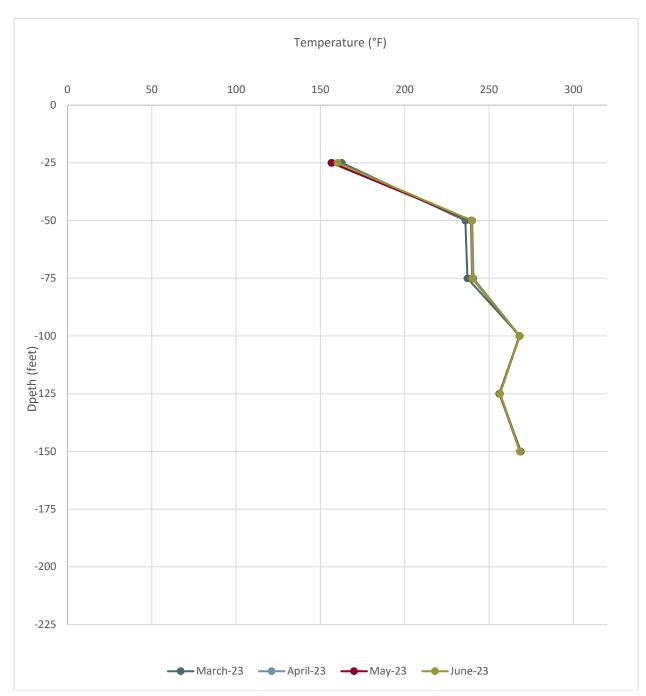



Figure 8 shows daily average temperatures in Temperature Probe 2 (TP-2) during the months of March through June. Based on the data, temperatures have been consistent during the last four months. TP-2 was originally drilled to a depth of 160 feet.

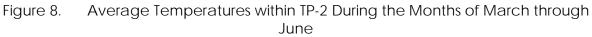
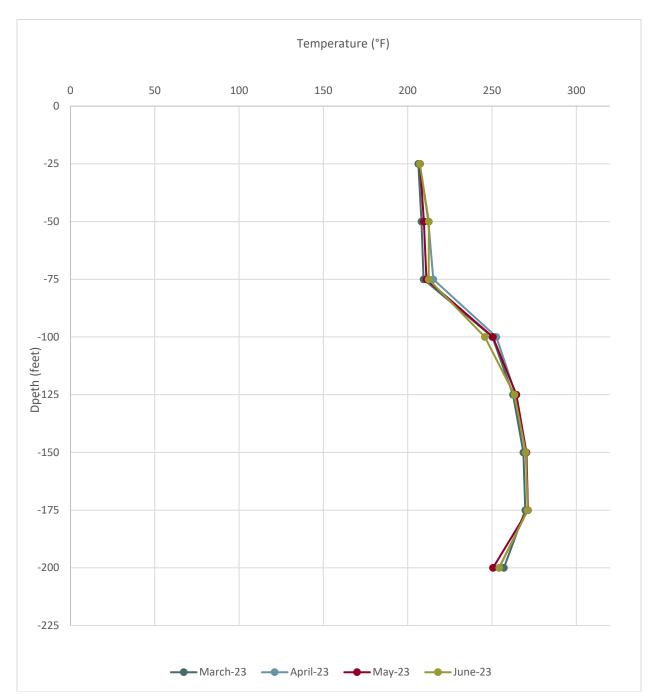



Figure 9 shows daily average temperatures in Temperature Probe 3 (TP-3) during the months of March through June. Based on the data, temperatures have been consistent during the last four months.

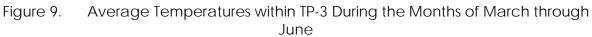
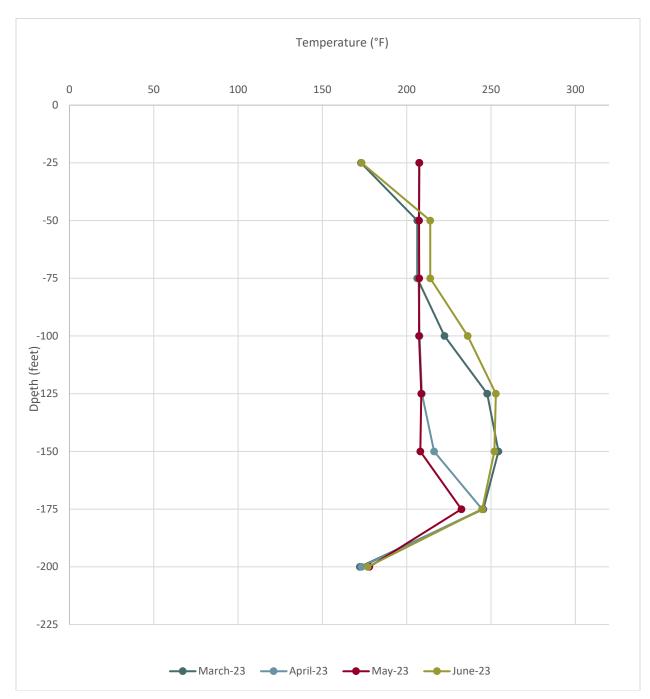



Figure 10 shows daily average temperatures in Temperature Probe 4 (TP-4) during the months of March through June. Based on the data, temperatures appeared to drop during the months of April and May, but returned to levels closer to baseline during the month of June.

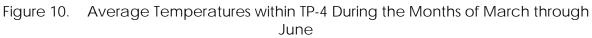



Figure 11 shows daily average temperatures in Temperature Probe 5 (TP-5) during the months of March through June. Based on the data, temperatures have been consistent during the last four months.

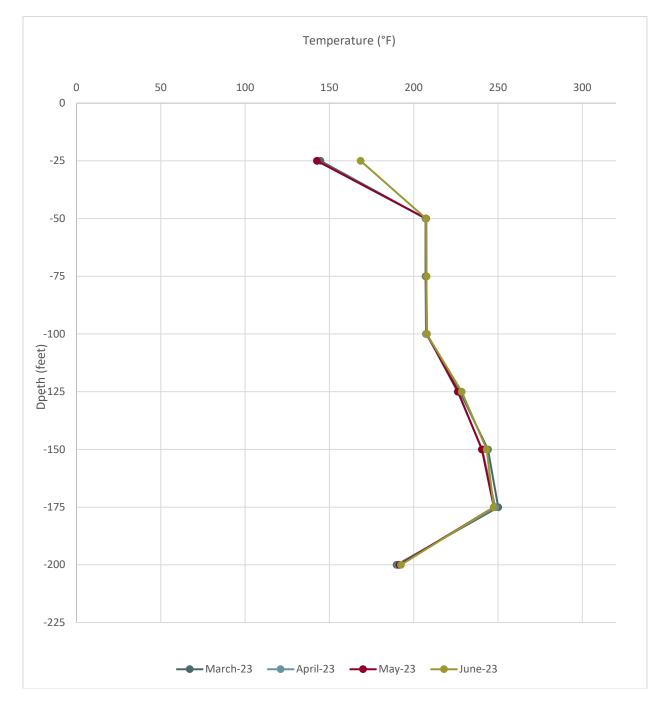
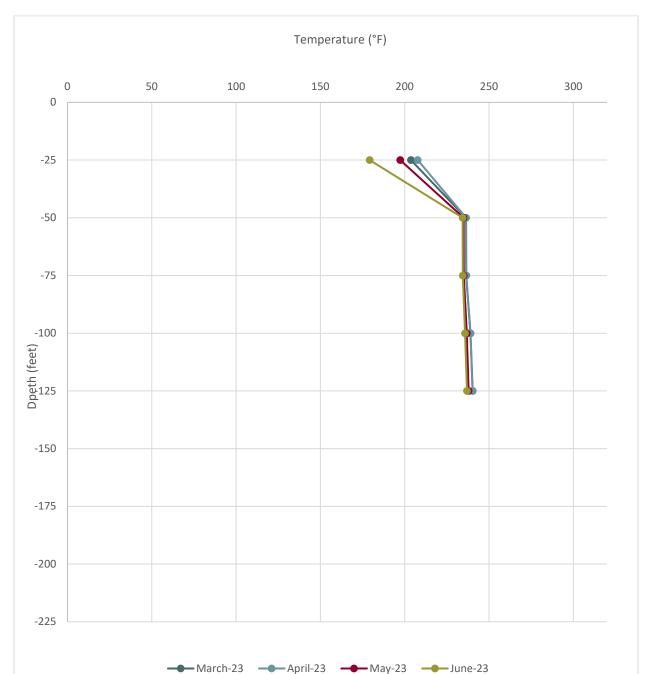



Figure 12 shows daily average temperatures in Temperature Probe 6 (TP-6) during the months of March through June. Based on the data, temperatures have been generally consistent during the last four months. A modest decrease at the 25-foot level has been observed. TP-6 was originally drilled to a depth of 208 feet and casing was installed to the full depth. During the installation of the installation of replacement sensors, a blockage within the casing prevented placement of sensors below the 125-foot depth.

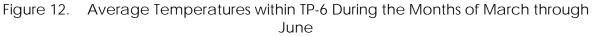
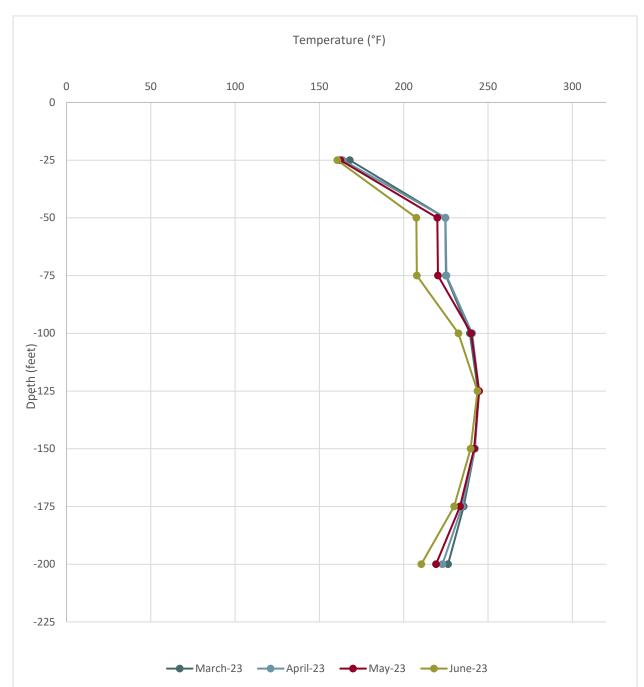



Figure 13 shows daily average temperatures in Temperature Probe 7 (TP-7) during the months of March through June. Based on the data, temperatures have been consistent during the last four months with a general downward trend.

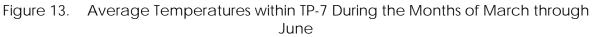
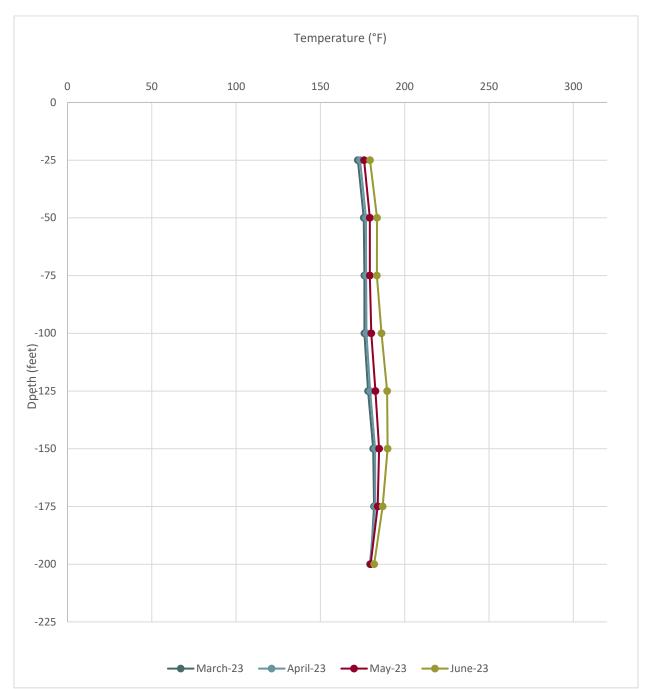



Figure 14 shows daily average temperatures in Temperature Probe 8 (TP-8) during the months of March through June. Based on the data, temperatures have slightly increased during the last four months.

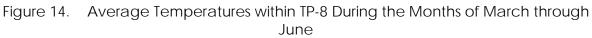
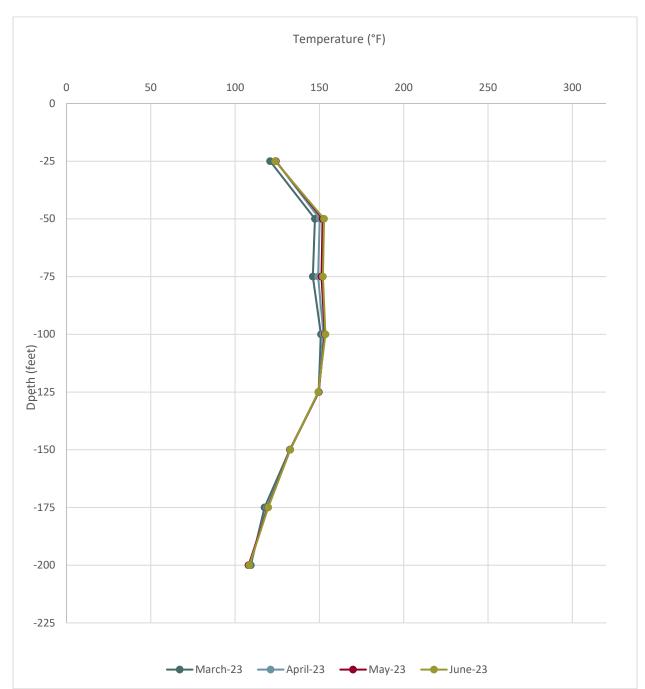
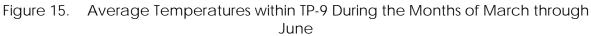




Figure 15 shows daily average temperatures in Temperature Probe 9 (TP-9) during the months of March through June. Based on the data, temperatures have been consistent during the last three months.

The data indicate that temperatures within the landfill are generally stable and are typical of those observe at elevated temperature landfills (ETLFs). During the months of May and June, there has been substantial construction at the landfill including deep dual extraction wells they may have impacted temperatures within the waste mass. While it is difficult to quantify the effect of the construction of addition wells, changes in wellhead temperature have been observed in existing wells adjacent to newly installed wells. These temperatures are substantially lower than those associated with landfill fires or other combustion processes, which can exceed 1000°F.

4.0 LEACHATE EXTRACTION AND MONITORING

The City has begun taking steps to improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals.

4.1 EXISTING SYSTEM OPTIMIZATION

During weekly gas extraction well monitoring, SCS also collected stroke counter data from the pumps installed in the GCCS extraction wells. Stroke counts were collected from 19 wells on May 30, 2023; June 5, 2023; June 12, 2023; June 19, 2023; and June 27, 2023. The data collected is summarized in Table 4. Cells marked with "*" represent dates when the pump was removed from the well for maintenance or had not yet been installed.

Well	May 30, 2023	June 5, 2023	June 12, 2023	June 19, 2023	June 27, 2023
EW49	630900	637536	661580	672714	684163
EW50	961571	997815	1012360	1012371	1012380
EW51	*	*	1574	10871	10871
EW52	39412	42876	57777	61299	98207
EW53	2158667	2173146	2215357	2218369	2220807
EW54	317679	317684	341990	351992	358128
EW55	171553	174020	181043	181110	181110
EW57	300616	334105	396766	425173	425176
EW58	1994080	1994082	1994082	1994082	1994084
EW59	1878472	1878489	1910734	1973814	2117707
EW60	278402	292820	303613	307661	312565
EW61	234133	234895	236089	236125	237325
EW62	130883	136976	142231	144854	149889
EW63	*	*	*	*	*
EW64	117654	120357	122592	124863	132794
EW65	*	*	*	*	*
EW67	481717	502676	517746	533645	556044
EW68	2032232	2045329	2058910	2069944	2082975
EW94	292269	320203	320205	320206	363274

 Table 5.
 Summary of Dual Extraction Well Pump Stroke Counter Data

Based on this data and stroke counts taken on June 27, 2023, SCS can estimate the number of gallons of liquid pumped from each well. SCS assumed that each stroke correlates to approximately 0.3 gallons of liquid removed from the well. This data will then be used to repair or replace pumps or replace nonfunctional stroke counters. Estimates of the quantities of liquids removed between the reading dates are shown in Table 5.

		L'and L. D			
	Liquids Removed	Liquids Removed (gal)	Liquids Removed	Liquids Removed	Liquids Removed
Well	(gal) May 22, 2023	(gai) May 30, 2023	(gal) June 5, 2023	(gal) June 12, 2023	(gal) June 19, 2023
weii	to	to	to	to	to
	May 30, 2023	June 5, 2023	June 12, 2023	June 19, 2023	June 27, 2023
EW49	8469	1991	7213	3340	3434
EW50	3082	10873	4363	4	3
EW51	0	0	472	2789	0
EW52	10294	1039	4470	1056	11072
EW53	9179	4343	12663	903	731
EW54	3161	2	7291	3001	1841
EW55	2079	740	2107	20	0
EW57	5400	10047	18798	8522	1
EW58	3393	1	0	0	1
EW59	17328	5	9673	18924	43167
EW60	2941	4325	3237	1214	1471
EW61	413	229	358	11	360
EW62	2024	1828	1576	787	1511
EW63	0	0	0	0	0
EW64	5861	811	671	681	2379
EW65	0	0	0	0	0
EW67	301	6288	4521	4769	6719
EW68	22907	3929	4074	3310	3909
EW94	36980	8380	1	1	12920

Table 6. Summary of Dual Extraction Well Pump Liquids Removal

SCS estimates that approximately 275,000 gallons of liquids were removed from the landfill gas collection and control system during the month of June. This is a decrease o when compared to the previous month. SCS-FS continues to implement an aggressive maintenance schedule for landfill gas liquids removal pumps. As shown in Table 6, the initial installation of pumps in Wells EW-68 and EW-94 contributed over 60,000 gallons to the total volume for the last week May. The volumes removed

during initial pump installation and subsequent drawn down of liquids in the gas well may be difficult to repeat on a monthly basis. The change in landfill gas liquids removal over the last three months is depicted in Figure 16.

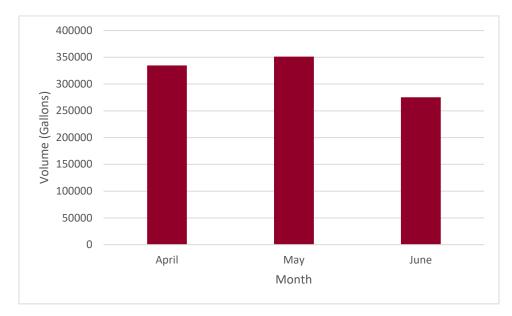


Figure 16. Estimated Volume of Liquids Removed from Landfill Gas Wells

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations. Pumps require servicing after relatively short intervals. During June pump maintenance occurred on June 1, 2023; June 7, 2023; June 8, 2023; June 15, 2023; June 20, 2023; June 21, 2023; and June 28, 2023.

Pumps that were determined to be inoperative were removed from their respective extraction wells and replaced with a clean, functioning pump. In June, EW-51, EW-52, EW-53, EW-57, EW-59, EW-60 and EW-68 had their pumps removed and replaced. The pump tri-tubing for EW-53 and EW-57 was found to be compromised and was repaired while those pumps were being maintained. The check valve for EW-60 was also replaced during June.

Five pumps were installed during the month of June. Two Jeneer float-less pumps were installed on June 15, 2023 into EW-71 and EW-72. Additionally, three PumpOne pneumatic pumps were installed into EW-33B, EW-74, and EW-75 at the end of the month. These pumps' performance will be tracked accordingly, and their gallons removed will be reflected in July and going forward.

EW-65 was disconnected from the airline used to power the pump for the month of June 2023 due to continued infrastructure relocation associated with the sidewall odor mitigation system and landfill GCCS expansion construction projects. The pump for EW-51 was reinstalled on June 6, 2023.

During the construction of the LFGCCS expansion outlined in Sections 1.4 and 2.1, multiple types of leachate extraction pumps will be installed. After installation, the City and SCS will evaluate the performance of those pumps. Based on that evaluation, the City will select the pump type that is most effective given the landfill conditions. SCS has developed a priority list for installations based on liquid levels that were collected during May 2023 and are continuing to install additional pumps based off this list where applicable.

4.2 SAMPLING AND ANALYSIS PLAN

On November 1, 2022, SCS submitted to VDEQ the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan for the Bristol Integrated Solid Waste Management Facility Solid Waste Permit No. 588 Landfill and the plan was subsequently revised on December 1, 2022. Refer to the November 2022 and December 2022 Compliance Reports for the SWP No. 588 Landfill for additional information.

4.2.1 Sample Collection

On June 20 and 21, 2023, SCS collected leachate samples from three Dual Phase LFG-EWs (EW-59, EW-61 and EW-64). At the time of sample collection dissolved oxygen, oxidation-reduction potential, pH, specific conductance, temperature, and turbidity were measured and recorded. The sample collection log is included in **Appendix F**.

SCS' field staff was not able to collect samples from the other wells for the following reasons:

- Pumps were not running at the time of sample collection in the following wells: EW-49, EW-50, EW-51, EW-52, EW-60, EW-62, EW-63, EW-65, EW-67, EW-68, EW-71, EW-72, EW-74, and EW-75.
- No pump was installed in well EW-53.
- The airline was disconnected from wells EW-54, EW-55, EW-57, EW-58, and EW-94.

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia and Weck Laboratories, Inc (Weck) in City of Industry, California for analysis. The Enthalpy's Virginia Division of Consolidated Laboratory Services (VELAP) certifications are provided on the certificate of analysis (COA) included in **Appendix F**. The samples were analyzed for the parameters utilizing the analytical methods described in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan.

4.2.2 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for volatile organic compound (VOC) analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analyses. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A brief summary of each of these is presented below:

• Method Blank – The method blank is deionized water subjected to the same reagents and manipulations to which site samples are subjected. Positive results in the method

blanks may indicate either contamination of the chemical reagents or the glassware and implements used to store or prepare the sample and resulting solutions.

- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis.
 MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.
- LCS These samples consist of distilled/deionized water injected with the parameters of interest for single parameter methods and selected parameters for multi-parameter methods according to the appropriate analytical method. LCS samples are prepared and analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are similar to the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

Field and laboratory QA/QC also involves the routine collection and analysis of duplicate field samples. These samples are collected at a rate of one per sample event. A duplicate is a separate sample collected independently in such a manner that it equally represents the medium at a given time and location. Co-located samples provide intra-laboratory precision information for the entire measurement system, including sample collection, homogeneity, handling, shipping, storage, preparation, and analysis.

No method or trip blank detects were identified for the June 2023 monitoring event. The laboratory analysis report for the June 2023 monitoring event trip blank is included in **Appendix F**. The June 2023 monitoring event laboratory QA/QC reports, including the method blank results, are included in the COAs in **Appendix F**.

4.2.3 Data Validation

To identify analytical data that may not represent valid results, data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection Agency (EPA) guidance⁴. Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with parameter detections less than five times that of the trip blank, field blank, and/or method blank detection but greater than the laboratory contaminant

⁴ United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. January 2017.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. January 2017.

parameter detections less than 10 times that of the trip blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not validated as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis.

No leachate results were flagged with a "B" qualifier for the June 2023 monitoring event as no constituents were detected in the June 2023 method and trip blanks. The constituent detection flagged with a "J" qualifier is shown on **Table 7**.

4.2.4 Laboratory Analytical Results

Chemical characteristics of leachate samples collected from extraction wells EW-59, EW-61 and EW-64 are summarized in **Table 7**. The associated COA is included in **Appendix F**. Parameter results from June 2023 and previous monitoring events (November 2022 – May 2023) are presented on a table in **Appendix F**.

Well ID	EW-59	EW-61	EW-64	LOD	LOQ
Parameter	June 2	023 Concer	tration	LOD	100
Ammonia as N (mg/L)	2740	2370	2170	146	200
Biological Oxygen Demand (mg/L)	20000	27400	23100	0.2	2
Chamical Owners Domand (mg/l)		44800		5000	5000
Chemical Oxygen Demand (mg/L)	41300		55000	10000	10000
Nitroto oc N (mg/l)	ND		ND	1.1	5.1
Nitrate as N (mg/L)		ND		1.2	5.2
Nitrite as N (mg/L)	2 J	ND	ND	1	5
	3080		2750	100	250
Total Kjeldahl Nitrogen (mg/L)		2650		200	500
Total Recoverable Phenolics (mg/L)	39.1	45.6	80.6	1.5	2.5
SEMI-VOLATILE ORGANIC COMPOUND (ug/L)				
	ND		ND	485	971
Anthracene		ND		490	980
TOTAL METALS (mg/L)					
Arsenic	0.26	0.5	0.14	0.0025	0.005
Derium	1.69		1.65	0.005	0.025
Barium		3.01		0.01	0.05
Cadmium	ND	ND	ND	0.0005	0.005
Chromium	0.251	0.191	0.272	0.002	0.005
Copper	0.00154 J	0.00362 J	0.00269 J	0.0015	0.005
Lead	ND	ND	0.0069	0.005	0.005
Mercury	ND	ND	ND	0.004	0.004
Nickel	0.05978	0.05892	0.07161	0.005	0.005
Selenium	ND	ND	ND	0.0043	0.005
Silver	ND	ND	ND	0.0003	0.005

Table 7.	Monthly LFG-EW Leachate Monitoring Event Summary
	Monthly Li O-Livi Leachate Montoning Livent Summary

Well ID	EW-59	EW-61	EW-64				
Parameter	June 2023 Concentration			LOD	LOQ		
TOTAL METAL (mg/L)							
Zinc	0.0538	0.0253	0.945	0.0125	0.025		
VOLATILE ORGANIC COMPOUNDS (ug/L)							
2 Putanona (MEK)	13800			750	2500		
2-Butanone (MEK)		20100	22600	1500	5000		
Acatana	29600			1750	2500		
Acetone		61800	50800	3500	5000		
Benzene	2630			8	20		
Delizerie		1400	1590	20	50		
Ethylhonzono	104			8	20		
Ethylbenzene		98	116	20	50		
Tatrabudrafuran	2100			200	200		
Tetrahydrofuran		7320	6670	500	500		
Taluana	165			10	20		
Toluene		67	212	25	50		
Vulonos Total	177			20	60		
Xylenes, Total		92 J	136 J	50	150		

Table 7. Monthly LFG-EW Leachate Monitoring Event Summary

--- = not available

J = Constituent was detected at a concentration above the laboratory's LOD but below the laboratory's LOQ. Concentration is estimated and not validated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

On behalf of the City, SCS submitted a settlement monitoring and management plan to VDEQ on November 15, 2022. Refer to the November Monthly Compliance Report for the SWP No. 588 Landfill for additional information.

5.2 MONTHLY SURVEYS

5.2.1 Topographic Data Collection

The City, through SCS, collected topographic data of the Solid Waste Permit No. 588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone). On June 9, 2023 the flight was completed and the topographic data collected. The topographic data collected is shown on Sheet 2 in Appendix E.

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on May 11, 2023. A drawing depicting the May 11, 2023 topography is included as Sheet 1 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 14,700 cubic yards. During that same time period approximately 5,500 cubic yards of construction related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 9,200 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 17. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 3 in Appendix E.

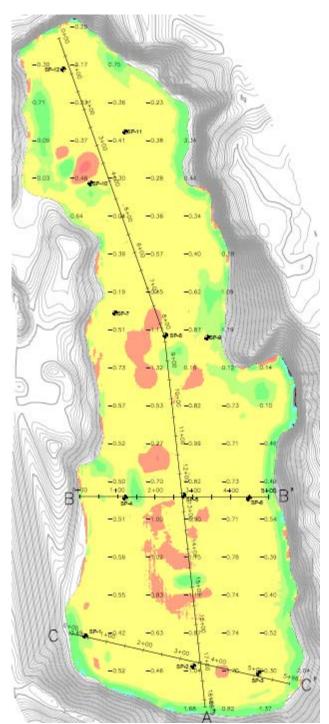


Figure 17. 1-Month Elevation Change Color Map

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 1 foot or more in some areas. Settlement in the southern end of the landfill appears to have slightly increased relative to last month. The southern end of the landfill is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions. Settlement in the northern portion of the landfill was generally less substantial or was offset by soil placement associated with construction activities. These changes in elevation are more representative of typical settlement at municipal landfills. The perimeter of the landfill exhibited an increase in elevation, likely due to soil placement associated with construction of the Sidewall Odor Mitigation System. Some soil stockpile locations associated with the Sidewall Odor Mitigation System showed large elevation changes due to material removal from the stockpiles.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation decrease was approximately 0.3 feet.

SCS also compared the topographic data collected in June to the topographic data collected on March 9, 2023. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 36,800 cubic yards. During that same time period approximately 9,400 cubic yards of construction related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 27,400 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 18. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 4 in Appendix E.

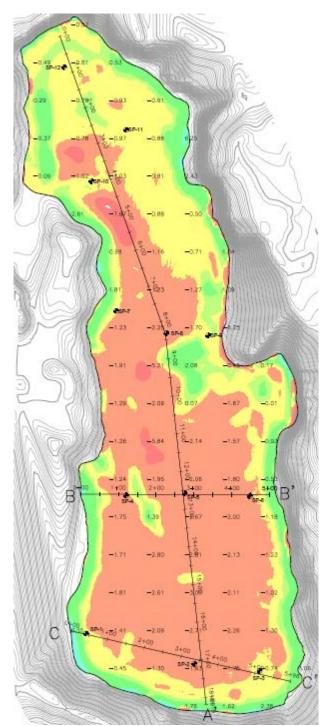
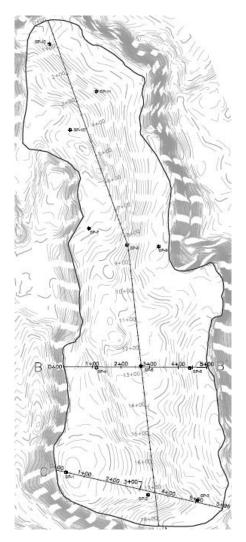


Figure 18. 3-Month Elevation Change Color Map


The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 2 feet or more in some areas. The southern end of the landfill is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions. Settlement in the northern portion of the landfill was generally less substantial or was offset by soil placement associated with construction

activities. Changes in elevation in these areas are more representative of typical settlement at municipal landfills. The eastern side of the landfill exhibited an increase in elevation, likely due to sediment deposition during storm events and waste relocation associated with construction of the Sidewall Odor Mitigation System. Increases in elevation along the western edge of the landfill are most likely due to installation of the Sidewall Odor Mitigation System. There were some large variations in elevation associated with soil stockpiling operations.

SCS will collect topographic data covering the landfill surface again in July using photogrammetric methods via UAV. This data will be compared to the data collected in June and April.

5.2.2 Settlement Plate Surveys

On November 7, 2022 SCS field services installed 12 settlement plates on the Solid Waste Permit No. 588 landfill. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan. The tops of the PVC pipes were spray painted orange to improve visibility. The settlement plate locations are depicted in Figure 19 and on Sheet 1 in Appendix E.

The locations of the settlement plates were surveyed by the City's surveyor on November 14, 2022. The settlement plates were surveyed again on December 13, 2022; January 3, 2023; February 6, 2023; March 8, 2023; April 3, 2023; May 11, 2023; and June 5, 2023. The surveyed coordinates⁵ and elevation changes of the settlement plates are shown in Table 8.

Settlement Plate	Northing	Easting	Elevation on June 05, 2023	Elevation Change Since May 11, 2023	Strain⁴ Since May 11, 2023	Elevation Change Since Installation	Strain Since Installation
SP-1	3,397,886.7	10,412,078.8	1,832.2	-0.2	-0.3%	-2.2	-3.4%
SP-2	3,397,808.0	10,412,365.0	1,806.0	-0.6	-0.4%	-4.6	-2.8%
SP-3	3,397,787.2	10,412,536.6	1,783.1	-0.1	-0.1%	-0.5	-0.8%
SP-47	3,398,250.1	10,412,188.2	1,812.0	-0.7	-0.4%	-5.5	-3.5%
SP-5	3,398,256.1	10,412,338.9	1,797.0	-0.6	-0.2%	-3.7	-1.5%
SP-6	3,398,249.2	10,412,510.9	1,776.5	-0.2	-0.1%	-1.2	-0.9%
SP-78	3,398,735.9	10,412,157.3	1,827.3	-0.2	-0.2%	-1.4	-1.2%
SP-8	3,398,679.0	10,412,290.7	1,804.4	-0.4	-0.2%	-2.9	-1.2%
SP-9	3,398,673.9	10,412,401.0	1,784.3	-0.2	-0.2%	-1.5	-1.5%
SP-10	3,399,080.4	10,412,092.2	1,839.2	-0.1	0.0%	-1.0	-0.4%
SP-11	3,399,216.3	10,412,183.6	1,815.8	-0.1	0.0%	-0.5	-0.2%
SP-12	3,399,382.0	10,412,019.6	1,810.3	-0.1	-0.1%	-0.3	-0.3%

Table 8.Settlement Plate Locations

Settlement Plates 2, 4, and 5 continue to demonstrate substantial elevation change. SCS believes that Settlement Plate 4 was disturbed by grading work on an adjacent roadway. The other 2 settlement plates (2 and 5) are located towards the center of the waste mass and in the southern end of the landfill. This area is where waste was most recently placed and is expected to show the most rapid settlement. This area is also the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions.

The change in elevation at Settlement Plates 10, 11, and 12 continues to be lower and more representative of typical settlement at municipal landfills. The change in elevation at Settlement Plates 1, 3, 6, 8, and 9 falls somewhere in between these two categories. Field observations indicate that Settlement Plate 7 may also have been damaged during construction operations.

The settlement plates will be surveyed again during the month of August. The elevations surveyed will be compared to the elevations surveyed the previous months.

⁵ Settlement plate locations and coordinates are based on a local coordinate system.

⁶ Strain is defined as the change in elevation divided by the estimated waste depth.

⁷ Based on field observations SP-4 appears to have been disturbed during grading on an adjacent roadway.

⁸ Based on field observations SP-7 appears to have been disturbed during grading on an adjacent stockpile.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City is taking steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below outline the steps taken by the City.

6.1 INTERMEDIATE COVER INSTALLATION

The City completed hauling and placement of a 12-inch thick intermediate cover across the entire landfill prior to October 10, 2022. The cover was placed in accordance with 9VAC20-81-140(B)(1)(d). SCS coordinated with the City to dig a series of test holes to verify cover thickness in select locations. Details of these verifications were discussed in the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill.

6.2 EVOH COVER SYSTEM DESIGN

SCS submitted responses, including revised documents, on March 20, 2023 to comments received from VDEQ concerning the Interim EVOH Cover System Preliminary Design Plans. The submitted documents included a revised operations manual and settlement calculations for the proposed stormwater basin. On April 28, 2023, SCS submitted the EVOH Cover System Stormwater Management Plan to VDEQ for the No. 588 landfill. SCS received a comment letter dated May 16, 2023 concerning the stormwater management plan. SCS prepared a response letter with revised drawings, documents, and calculations. The response package was submitted to VDEQ on June 23, 2023.

SCS is preparing construction drawings for the EVOH Cover System, including revisions discussed in the response to comments letters. The construction drawings build upon the preliminary design plans and the stormwater management plan. Potential modifications to the stormwater management plan submitted to VDEQ on April 28, 2023 will be included in the construction drawing set along with applicable calculations. Other additions to the construction drawings include additional design cross sections, landfill gas management plans and details, access road design, and other items.

SCS continues to prepare specifications and contract documents for the construction of the EVOH Cover System.

6.3 EVOH COVER SYSTEM PROCUREMENT

Drawings used for the purposes of bidding, procurement and construction of the EVOH cover system will generally conform to the layout and details in the drawings described in section 6.2. SCS also prepared and submitted to VDEQ a specification for the EVOH geomembrane on January 30, 2023 based upon industry standards and discussions with material manufacturers. This specification and drawing set represent the first steps in the procurement process. SCS and the City have coordinated with potential suppliers to specify a product that is not currently anticipated to have long lead times. SCS has received a pro-forma data sheet from one manufacturer which is preparing a customized EVOH product for the No. 588 landfill.

6.4 EVOH COVER SYSTEM INSTALLATION

Installation of the EVOH cover system will begin after the installation of other infrastructure is complete.

7.0 STORMWATER MANAGEMENT

The City is taking steps to implement a stormwater management plan at the landfill. The sections below outline the steps taken by the City.

7.1 STORMWATER MANAGEMENT PLAN DEVELOPMENT

The stormwater management plan was submitted to VDEQ on April 28, 2023. The plan addresses the stormwater volume calculations, assumptions, design, and control measures. SCS received a comment letter dated May 16, 2023 concerning the stormwater management plan. SCS prepared a response letter with revised drawings, documents, and calculations. The response package was submitted to VDEQ on June 23, 2023.

The plan proposes a stormwater pumping system to convey stormwater collected atop the EVOH cover system to an existing discharge point permitted under VPDES permit VAR050053. The proposed system includes the construction of a collection basin in the southeast corner of the quarry and the installation of a nearby long-term stormwater pumping station. The stormwater will be conveyed by a force main pipe adjacent to the basin access road.

The plan proposes modifications to the existing stormwater basins west of the quarry to achieve discharge quantity targets. Modifications include increasing the basin depths and installing new outlet riser structures.

7.2 STORMWATER MANAGEMENT BASIN DESIGN AND CONSTRUCTION

The landfill surface will be regraded to form the SWM basin proposed in the stormwater management plan. The earthwork will be completed as the first stage of the interim EVOH cover system installation project. A revised landfill gas management plan is being prepared to facilitate the regrading of the landfill, which will affect existing landfill gas infrastructure.

A concrete pad is being designed for installation adjacent to the stormwater basin. The prefabricated stormwater pumping station will be installed atop the concrete pad, along with associated electrical panels. The pumping station will be equipped with a suction lift line to draw stormwater out of the basin.

Attention is being given to settlement concerns in the vicinity of the stormwater basin. Calculations provided to VDEQ on June 23, 2023 demonstrate the weight of the ponded water should not cause excessive settlement relative to ongoing settlement observed within the quarry.

7.3 STORMWATER MANAGEMENT PLAN IMPLEMENTATION

The stormwater management plan design drawings are being incorporated into the overall construction drawings for the interim EVOH cover system. The interim EVOH cover system installation and stormwater management features will be bid and constructed as one project to facilitate simultaneous progress and completion.

7.4 LONG-TERM STORMWATER CONTROL AND REMOVAL

The stormwater management plan is designed with resiliency and redundancy to promote long-term operation. Two stormwater pumps will be installed in parallel, with each pump capable of operating independently. The pumps may be operated in parallel in contingency scenarios. The City plans to install a backup generator for the stormwater pumping station to allow for continued operation in the event of a temporary power loss. The pumps have been selected to include additional capacity to allow for future settlement.

A variable frequency drive control system is planned for the stormwater pumping system. The water level will be gauged using a transducer cable or comparable monitoring system to allow for automation of the pumping system. Appropriate telemetry will be used to allow for remote monitoring of the pumping system.

The operations manual will be updated to discuss the long-term operation and maintenance of the pumping system and other stormwater management features. Periodic inspections of the stormwater management system will be completed. The regular inspections will include monitoring the rate of settlement. If excessive settlement occurs, repairs will be planned and conducted as necessary to maintain the stormwater management system and cover system integrity.

7.5 STORMWATER MONITORING

Stormwater monitoring will commence upon initial discharge of stormwater from the quarry stormwater pumping system. As stated in the stormwater management plan drawings, the stormwater shall be monitored in accordance with the facility's VPDES general permit for discharge of stormwater associated with industrial activity. Additional requirements include collecting an additional stormwater sample at the discharge of the quarry stormwater pumping system. The stormwater from the quarry basin will be sampled on a monthly basis prior to discharge to the upper stormwater ponds. The Operations Manual has been revised to include these additional requirements.

If the stormwater becomes contaminated or sampling indicates contamination above discharge limits, the stormwater will be diverted to the sanitary sewer system. The diversion to the sanitary sewer system will continue until the source of contamination is identified and resolved. The stormwater discharge pipe alignment was adjusted to pass adjacent to the existing sanitary sewer manhole. A tee with isolation valves will be used to direct the stormwater to the upper basins or the sanitary sewer manhole.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit No. 588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

SCS submitted the Monitoring, Maintenance, and Repair Plan to VDEQ for the SWP No. 588 landfill on December 30, 2022. Refer to the December 2022 Monthly Compliance Report for the SWP No.

588 Landfill for additional information. The City has taken steps to implement the plan that were detailed in the March 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

8.3 MONTHLY COMPLIANCE REPORTS

As described in the introduction this report is intended to provide comprehensive updates regarding progress towards completion of each item described in Appendix A of the Consent Decree between the City and VDEQ,

8.4 COMMUNITY OUTREACH PROGRAM

The City's consultant leading community outreach, McGuireWoods Consulting, described the actions taken as part of their community outreach efforts. For the month of June, those actions include:

- June ongoing basis: Twelve posts on the BristalVALandfill.org site and the existing City of Bristol Landfill Notifications and Information page covering several important updates including:
 - Progress updates during construction and completion of the Sidewall Odor Mitigation System (SOMS).
 - Progress updates during installation and completion of the gas well expansion project
 - Announcement of the start of air sampling and monitoring at the quarry landfill.
 - Shared news article related to the completion of the Sidewall Odor Mitigation System (SOMS).
 - Provided links to news articles chronicling construction updates and information on legal updates about the quarry landfill.
- Published new "Ask the Experts" resource on Bristolvalandfill.org, which leverages the expertise of Craig H. Benson, PHD, PE, DGE, BCEE, NAE and Robert B. Gardner, PE, BCEE to answer common questions asked about the quarry landfill and the recent and ongoing remediation efforts.
- E-mail communication sent to the list of members of the public signed up through the Bristol, VA website, the BristolVALandfill.org website, or at the November 1 Open House to receive information via e-mail
 - E-mails sent included weekly remediation progress update and links to website updates and latest news articles on the following days:
 - Friday, June 2nd
 - Wednesday, June 7th
 - Friday, June 9th
 - Friday, June 23rd
 - Friday, June 30th

Appendix A

Surface Emissions Monitoring Summary Letters

June 14, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – June 6, 2023 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on June 6, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Description	Quantity
Number of Points Sampled	164
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	64
Number of Exceedances	3
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	3

Table 1.Summary of Surface Emissions Monitoring

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120 days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	6/6/23 Event	6/6/23 Event Result	Comments
EW-89	4/27/2023	N/A	Passed	Subject to 1960(c)(4)(v)
EW-100	4/27/2023	N/A	Passed	Subject to 1960(c)(4)(v)
EW-66	5/25/2023	2nd 10-day retest	Failed	Subject to 1960(c)(4)(v)

Table 2.	Onaoina	Weekly SEM	Exceedances
	Grigonig		Encoordiantood

Mr. Jonathan Chapman June 14, 2023 Page 3

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Borner

Quinn F. Bernier, PE Project Professional SCS Engineers

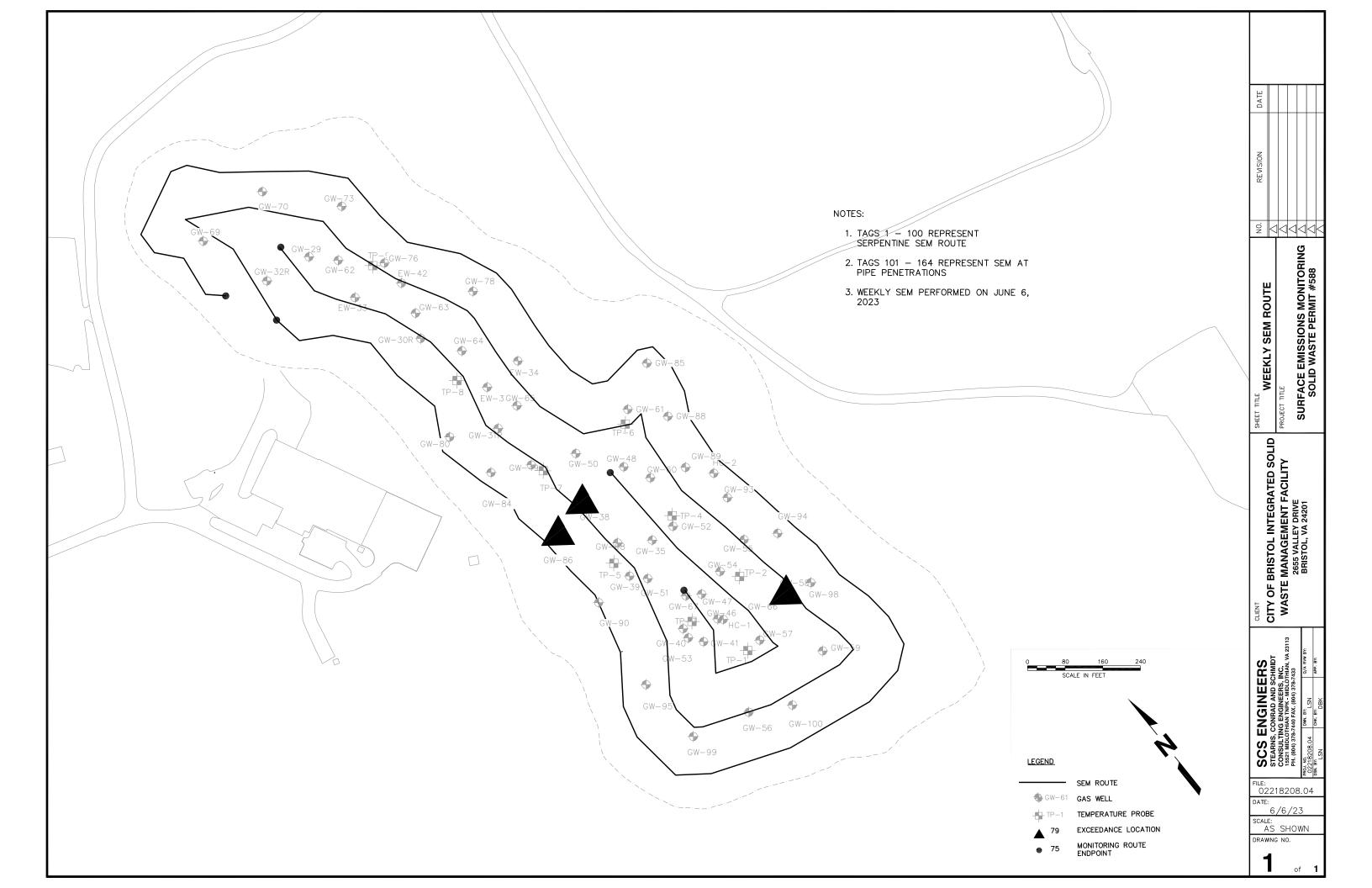
Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

LSN/QFB/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	1.5 PPM	ОК			Start Serpentine
2	1.6 PPM	OK			Route
3	1.1 PPM	OK			
4	1.4 PPM	OK			
5	2.9 PPM	OK			
6	2.0 PPM	OK			
7	2.4 PPM	OK			
8	2.8 PPM	OK			
9	2.3 PPM	OK			
10	5.4 PPM	OK			
11	1.8 PPM	OK			
12	2.0 PPM	OK			
13	2.6 PPM	OK			
14	2.7 PPM	OK			
15	2.2 PPM	OK			
16	3.8 PPM	OK			
17	1.7 PPM	OK			
18	2.0 PPM	OK			
19	21.4 PPM	ОК			
20	38.6 PPM	OK			
21	8.4 PPM	ОК			
22	13.9 PPM	ОК			
23	23.8 PPM	OK			
24	1.8 PPM	OK			
25	1.3 PPM	OK			
26	1.1 PPM	OK			
27	1.0 PPM	ОК			
28	99.4 PPM	ОК			
29	11.5 PPM	OK			
30	2.9 PPM	ОК			
31	4.5 PPM	OK			
32	8.1 PPM	ОК			
33	3.6 PPM	ОК			
34	3.3 PPM	OK			
35	1.6 PPM	OK			
36	0.8 PPM	OK			
37	1.5 PPM	OK			
38	14.0 PPM	OK			
39	5.8 PPM	OK			
40	8.4 PPM	ОК			
41	7.4 PPM	ОК			
42	2.1 PPM	OK			


	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
				-	
43	2.4 PPM	OK			
44	0.7 PPM	OK			
45	3.7 PPM	OK			
46	2.6 PPM	OK			
47	1.5 PPM	OK			
48	0.5 PPM	OK			
49	0.5 PPM	OK			
50	0.5 PPM	OK			
51	0.6 PPM	OK			
52	0.5 PPM	OK			
53	1.6 PPM	OK			
54	36.9 PPM	OK			
55	9.9 PPM	OK			
56	0.8 PPM	OK			
57	0.7 PPM	OK			
58	1.2 PPM	OK			
59	1.2 PPM	OK			
60	1.4 PPM	OK			
61	0.5 PPM	OK			
62	0.6 PPM	OK			
63	1.2 PPM	OK			
64	1.6 PPM	OK			
65	17.3 PPM	OK			
66	5.5 PPM	OK			
67	16.7 PPM	OK			
68	4.5 PPM	OK			
69	72.1 PPM	OK			
70	21.3 PPM	OK			
71	23.0 PPM	OK			
72	0.7 PPM	OK			
73	12.3 PPM	OK			
74	33.5 PPM	OK			
75	25.6 PPM	OK			
76	56.7 PPM	OK			
77	18.4 PPM	OK			
78	4.3 PPM	OK			
79	10.4 PPM	OK			
80	103.0 PPM	OK			
81	137.0 PPM	OK			
82	10.6 PPM	OK			
83	260.0 PPM	OK			
84	34.3 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
0.5		01			
85	5.8 PPM	OK			
86	1.1 PPM	OK OK			
87 88	4.0 PPM	OK			
89	9.5 PPM 0.9 PPM	OK			
90	0.9 PPM 0.1 PPM	OK			
90	15.2 PPM	OK			
91	45.3 PPM	OK			
93	26.7 PPM	OK			
94	14.5 PPM	OK			
95	12.6 PPM	OK			
96	87.3 PPM	OK			
97	43.5 PPM	OK			
98	128.0 PPM	OK			
99	2.7 PPM	OK			
100	58.9 PPM	OK			End Serpentine
100	30.9 FFM	<u>UK</u>			Route
101	34.2 PPM	ОК			EW-35
101	110.0 PPM	OK			EW-52
102	64.3 PPM	OK			TP-4
103	53.4 PPM	OK			EW-60
104	43.8 PPM	OK			EW-48
105	0.4 PPM	OK			TP-6
100	13.8 PPM	OK			EW-61
108	61.7 PPM	OK			EW-34
109	0.7 PPM	OK			EW-50
110	117.0 PPM	OK			EW-67
111	129.0 PPM	OK			EW-47
112	198.0 PPM	OK			EW-54
113	332.0 PPM	OK			EW-55
114	11.8 PPM	OK			TP-2
115	5927.0 PPM	HIGH_ALRM	36.59842	-82.14736	EW-66
116	18.0 PPM	OK	00.07072	02.14/00	EW-58
117	91.2 PPM	OK			EW-57
118	236.0 PPM	OK			TP-1
119	84.3 PPM	OK			EW-59
120	282.0 PPM	OK			EW-56
120	227.0 PPM	OK			EW-41
122	96.3 PPM	OK			EW-53
122	173.0 PPM	OK			EW-40
124	15.0 PPM	OK			TP-3
125	29.5 PPM	OK			EW-51

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
126	31.9 PPM	ОК			EW-39
127	27.3 PPM	OK			TP-5
128	107.0 PPM	OK			EW-68
129	841.0 PPM	HIGH_ALRM	36.59926	-82.14802	EW-38
130	96.9 PPM	OK			TP-7
131	2.1 PPM	OK			EW-49
132	7.0 PPM	OK			EW-31R
133	1.6 PPM	OK			EW-65
134	1.4 PPM	OK			TP-8
135	1.0 PPM	OK			EW-64
136	0.1 PPM	OK			EW-30R
137	0.2 PPM	OK			EW-63
138	0.3 PPM	OK			EW-42
139	0.1 PPM	OK			TP-9
140	0.2 PPM	OK			EW-33R
141	0.1 PPM	OK			EW-62
142	0.0 PPM	OK			EW-29R
143	0.2 PPM	OK			EW-32R
144	102.0 PPM	OK			EW-69
145	5.7 PPM	OK			EW-32
146	0.6 PPM	OK			EW-70
147	353.0 PPM	OK			EW-73
148	0.0 PPM	OK			EW-76
149	4.2 PPM	OK			EW-78
150	26.3 PPM	OK			EW-82
151	18.4 PPM	OK			EW-85
152	0.7 PPM	OK			EW-88
153	0.5 PPM	OK			EW-89
154	40.4 PPM	OK			EW-93
155	14.1 PPM	OK			EW-94
156	25.7 PPM	OK			EW-98
157	0.6 PPM	OK			EW-100
158	39.4 PPM	OK			EW-99
159	3.2 PPM	OK			EW-95
160	4.2 PPM	OK			EW-90
162	2864.0 PPM	HIGH_ALRM	36.59932	-82.14824	EW-86
163	2.0 PPM	OK		-	EW-84
164	8.0 PPM	OK			EW-80

0	00		De
Э	63	GIN	RЭ

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Com
	Number of locations sc	ampled	164		
	Number of exceedance l	•	3		
Points 1 through Points 101 throu	100 represent serpentir gh 164 represent SEM c ions: Sunny, 70°F Wind:	at Pipe Penetration	15		
Points 101 throu Weather Condit	gh 164 represent SEM o	at Pipe Penetration 0 S			
Points 1 through Points 101 throu Weather Condit	gh 164 represent SEM c ions: Sunny, 70°F Wind:	at Pipe Penetration 0 S	<u>ppm</u>		
Points 1 through Points 101 throu Weather Condit <u>Sampling Calibr</u>	gh 164 represent SEM o ions: Sunny, 70°F Wind: ation: Methane - 500 pg	at Pipe Penetration 0 S om, Zero Air - 0.0	<u>ppm</u> PM		
Points 1 through Points 101 throu Weather Condit <u>Sampling Calibr</u> 6/6/2023 6/6/2023	gh 164 represent SEM o ions: Sunny, 70°F Wind: <u>ation: Methane - 500 pp</u> ZERO SPAN	at Pipe Penetration 0 S om, Zero Air - 0.0 0.0 P	<u>ppm</u> PM		
Points 1 through Points 101 throu Weather Condit Sampling Calibr 6/6/2023	gh 164 represent SEM o ions: Sunny, 70°F Wind: <u>ation: Methane - 500 pp</u> ZERO SPAN	at Pipe Penetration 0 S om, Zero Air - 0.0 0.0 P	<u>ppm</u> PM PM		

June 21, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – June 13, 2023 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on June 13, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Description	Quantity
Number of Points Sampled	168
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	68
Number of Exceedances	4
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	4

Table 1.Summary of Surface Emissions Monitoring

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

Two of the four exceedance locations identified during this monitoring event were located at a newly installed landfill gas extraction well. These wells have been connected to vacuum but have not yet been equipped with supplemental emissions reducing components, such as liquids extraction pumps and wellbore seals. Those components will be added in the near future.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	6/13/23 Event	6/13/23 Event Result	Comments
EW-89	4/27/23	N/A	Passed	Subject to 1960(c)(4)(v)
EW-100	4/27/23	N/A	Passed	Subject to 1960(c)(4)(v)
EW-66	5/25/2023	N/A	Failed	Subject to 1960(c)(4)(v)

Table 2. Ongoing Weekly SEM Exceedances

EW-38	6/6/2023	10-day retest	Failed	Requires 2nd 10-day retest
EW-86	6/6/2023	10-day retest	Passed	Requires 30-day retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

William J. Fabrie

Will J. Fabrie Staff Professional SCS Engineers

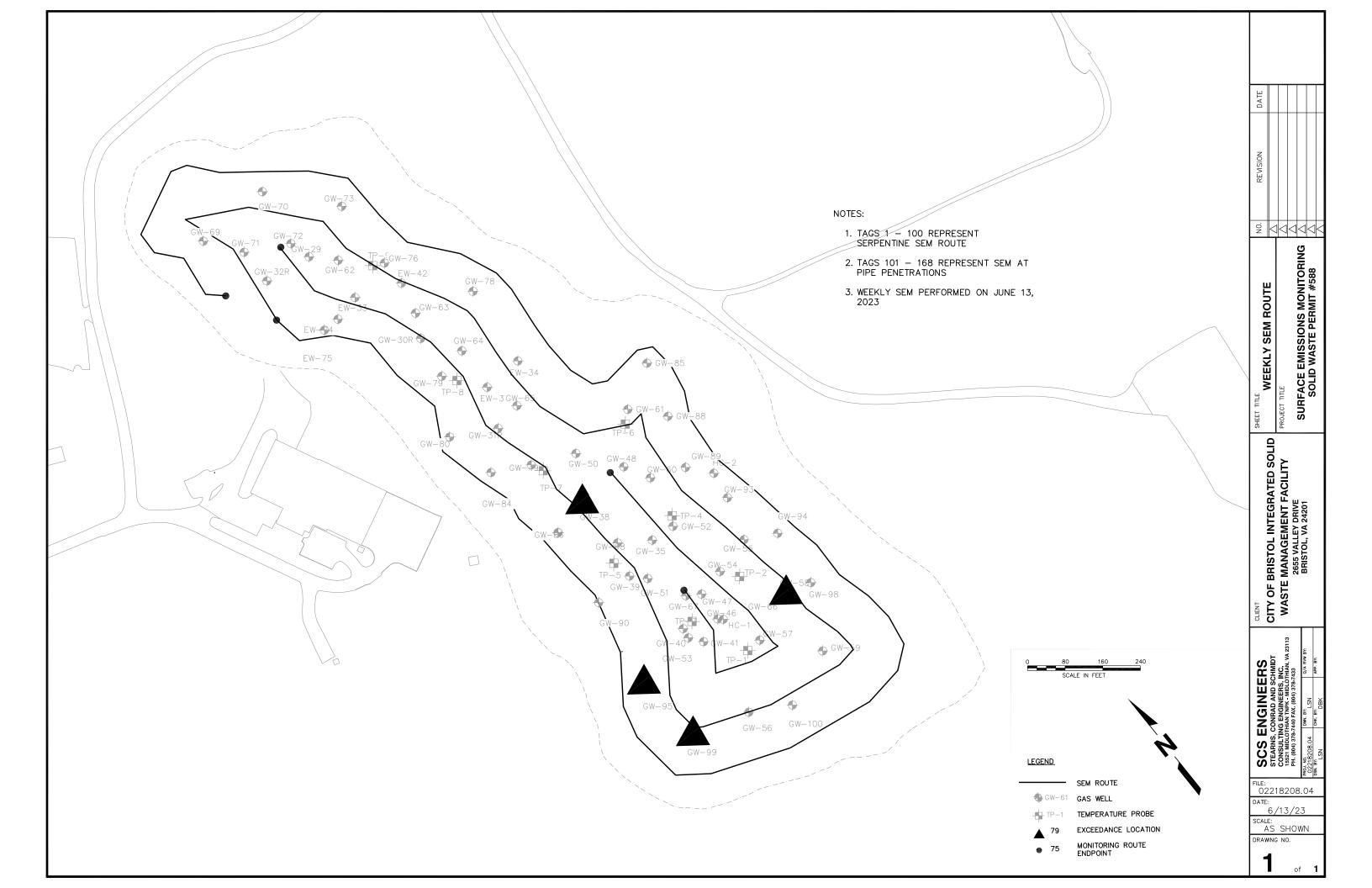
Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

LSN/QFB/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Methane			GPS Co	ordinates	
ID #	Concentration		Compliance	Lat.	Long.	Comments
1	1.2	PPM	ОК			Start Serpentine
2	2.4	PPM	OK			Route
3	1.8	PPM	OK			
4	1.5	PPM	OK			
5	1.6	PPM	OK			
6	1.7	PPM	OK			
7	1.3	PPM	OK			
8	2.6	PPM	OK			
9	1.8	PPM	OK			
10	2	PPM	OK			
11	1.6	PPM	OK			
12	1.7	PPM	OK			
13	13.6	PPM	OK			
14	2.4	PPM	OK			
15	2.7	PPM	OK			
16	2.2	PPM	OK			
17	45.8	PPM	OK			
18	1.9	PPM	OK			
19	12.3	PPM	OK			
20	2.7	PPM	OK			
21	2	PPM	OK			
22	2.8	PPM	OK			
23	168	PPM	OK			
24	3.2	PPM	OK			
25	12.3	PPM	OK			
26	12.4	PPM	OK			
27	39.1	PPM	OK			
28	264	PPM	OK			
29	3.3	PPM	OK			
30	22.8	PPM	OK			
31	17.4	PPM	OK			
32	22.7	PPM	OK			
33	12.3	PPM	OK			
34	342	PPM	OK			
35	7.7	PPM	OK			
36	95.5	PPM	OK			
37	3.4	PPM	OK			
38	15.4	PPM	OK			
39	3.5	PPM	OK			
40	3.7	PPM	OK			
41	1	PPM	OK			
42	3.8	PPM	OK			


Methane					ordinates	
ID #	Concentration		Compliance	Lat.	Long.	Comments
43	4.9	PPM	ОК			
44	2.5	PPM	OK			
45	2.2	PPM	OK			
46	12.5	PPM	OK			
47	3	PPM	OK			
48	1	PPM	OK			
49	2.1	PPM	OK			
50	1.7	PPM	OK			
51	0.6	PPM	OK			
52	0.6	PPM	OK			
53	2.2	PPM	OK			
54	0.5	PPM	OK			
55	0.4	PPM	OK			
56	0.4	PPM	OK			
57	0.5	PPM	OK			
58	1.4	PPM	OK			
59	0.5	PPM	OK			
60	1.9	PPM	OK			
61	0.7	PPM	OK			
62	1.7	PPM	OK			
63	2.5	PPM	OK			
64	3.4	PPM	OK			
65	17.5	PPM	ОК			
66	15	PPM	OK			
67	53.5	PPM	OK			
68	2.8	PPM	OK			
69	1.2	PPM	OK			
70	6.4	PPM	OK			
71	42.6	PPM	OK			
72	4	PPM	OK			
73	5.4	PPM	OK			
74	267	PPM	OK			
75	5.2	PPM	OK			
76	93.4	PPM	OK			
77	405	PPM	OK			
78	314	PPM	OK			
79	75.3	PPM	OK			
80	58.4	PPM	OK			
81	88.9	PPM	OK			
82	59.9	PPM	OK			
83	21.8	PPM	OK			
84	9.1	PPM	OK			

	Methane		_		ordinates	_
ID #	Concentration		Compliance	Lat.	Long.	Comments
85	54.7	PPM	OK			
86	6	PPM	OK			
87	0.8	PPM	OK			
88	3.1	PPM	OK			
89	16.6	PPM	OK			
90	15.7	PPM	OK			
91	4.8	PPM	OK			
92	14.3	PPM	OK			
93	139	PPM	OK			
94	240	PPM	OK			
95	3.2	PPM	OK			
96	54	PPM	OK			
97	111	PPM	OK			
98	49.8	PPM	OK			
99	103	PPM	OK			
		PPM	OK			End Serpentine
100	5.9					Route
101	310	PPM	OK			EW-35
102	222	PPM	OK			EW-52
103	26.9	PPM	OK			TP-4
104	105	PPM	OK			EW-60
105	185	PPM	OK			EW-48
106	3.2	PPM	OK			TP-6
107	19.6	PPM	OK			EW-61
108	7	PPM	OK			EW-34
109	0.4	PPM	OK			EW-50
110	341	PPM	OK			EW-67
111	149	PPM	OK			EW-47
112	244	PPM	OK			EW-54
113	146	PPM	OK			EW-55
114	339	PPM	OK			TP-2
115	2264	PPM	HIGH_ALRM	36.59842	-82.14736	EW-66
116	137	PPM	OK			EW-58
117	72.7	PPM	OK			EW-57
118	22.3	PPM	OK			TP-1
119	118	PPM	OK			EW-59
120	285	PPM	OK			EW-56
121	159	PPM	OK			EW-41
122	205	PPM	OK			EW-53
123	79.9	PPM	OK			EW-40
124	38.6	PPM	OK			TP-3
125	13.9	PPM	OK			EW-51

	Methane			GPS Cod	ordinates	
ID #	Concentration		Compliance	Lat.	Long.	Comments
126	30.4	PPM	ОК			EW-39
127	189	PPM	OK			TP-5
128	19.1	PPM	OK			EW-68
129	722	PPM	HIGH_ALRM	36.59926	-82.14802	EW-38
130	41.3	PPM	OK			TP-7
131	1.5	PPM	OK			EW-49
132	2.9	PPM	OK			EW-31R
133	6.7	PPM	OK			EW-65
134	1.8	PPM	OK			EW-37
135	7.5	PPM	OK			TP-8
136	1.1	PPM	OK			EW-64
137	0.7	PPM	OK			EW-30R
138	0.6	PPM	OK			EW-63
139	0.6	PPM	OK			EW-42
140	0.6	PPM	OK			TP-9
141	1	PPM	OK			EW-33R
142	0.7	PPM	OK			EW-62
143	1.7	PPM	OK			EW-29R
144	0.1	PPM	OK			EW-74
145	1.6	PPM	OK			EW-32R
146	0.2	PPM	OK			EW-69
147	0.7	PPM	OK			EW-71
148	0.4	PPM	OK			EW-72
149	0	PPM	OK			EW-70
150	0	PPM	OK			EW-73
151	0.6	PPM	OK			EW-76
152	9	PPM	OK			EW-78
153	5.1	PPM	OK			EW-82
154	1.2	PPM	OK			EW-85
155	6.1	PPM	OK			EW-88
156	101	PPM	OK			EW-89
157	4.8	PPM	OK			EW-93
158	98.6	PPM	OK			EW-94
159	46.7	PPM	OK			EW-98
160	305	PPM	OK			EW-100
161	2947	PPM	HIGH_ALRM	36.59794	-82.14828	EW-99
162	1172	PPM	HIGH_ALRM	36.59794	-82.14828	EW-95
163	11.1	PPM	OK			EW-90
164	154	PPM	OK			EW-86
165	0.8	PPM	OK			EW-84
166	1.3	PPM	OK			EW-80
167	3.2	PPM	OK			EW-79

CCC ENCIN	EEDQ
SCS ENGIN	EERS

Methane				GPS Coordinates		
ID #	Concentration		Compliance	Lat.	Long.	Comm
168	92.6	PPM	ОК			EW
	Number of	f locations san	npled:	168]	
	Number of e	xceedance lo	cations:	4		
NOTES:						
Points 101	ough 100 represe through 168 represe anditions: Sunny, 7	esent SEM at	Pipe Penetration	15	J	
Points 1 thro Points 101 t Weather Co	through 168 representations: Sunny, 7	esent SEM at 73°F Wind: 6	Pipe Penetration SW		J	
Points 1 thro Points 101 t Weather Co Sampling C	through 168 representations: Sunny, 7 alibration: Methan	esent SEM at 73°F Wind: 6	Pipe Penetration SW	<u>ppm</u>	J	
Points 1 thro Points 101 t Weather Co	through 168 repre- onditions: Sunny, 7 alibration: Methan 13	esent SEM at 73°F Wind: 6 ne - 500 ppr	Pipe Penetration SW m, Zero Air - 0.0	<u>ppm</u> PM	J	
Points 1 thro Points 101 Weather Co Sampling C 6/13/202	through 168 repre- onditions: Sunny, 7 <u>alibration: Methan</u> 3 3	esent SEM at 73°F Wind: 6 <u>ne - 500 ppr</u> ZERO	Pipe Penetration SW m <u>, Zero Air - 0.0</u> 0.1 P	<u>ppm</u> PM	J	
Points 1 thro Points 101 Weather Co <u>Sampling C</u> 6/13/202 6/13/202	through 168 repre- onditions: Sunny, 7 <u>alibration: Methan</u> 3 .3 <u>Reading:</u>	esent SEM at 73°F Wind: 6 <u>ne - 500 ppr</u> ZERO	Pipe Penetration SW m <u>, Zero Air - 0.0</u> 0.1 P	<u>ppm</u> PM PM	J	

June 28, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – June 23, 2023 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on June 23, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Description	Quantity
Number of Points Sampled	169
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	69
Number of Exceedances	2
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	2

Table 1. Summary of Surface Emissions Monitoring

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	6/23/23 Event	6/23/23 Event Result	Comments
EW-89	4/27/23	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-100	4/27/23	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-66	5/25/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-38	6/6/23	2 nd 10-Day Retest	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-86	6/6/23	NA	Passed	Requires 30-day retest
EW-95	6/13/23	10-Day Retest	Passed	Requires 30-day retest
EW-99	6/13/23	10-Day Retest	Passed	Requires 30-Day Retest

Table 2.	Ongoing Weekly SEM Exceedances

Mr. Jonathan Chapman June 28, 2023 Page 3

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Om Dorner

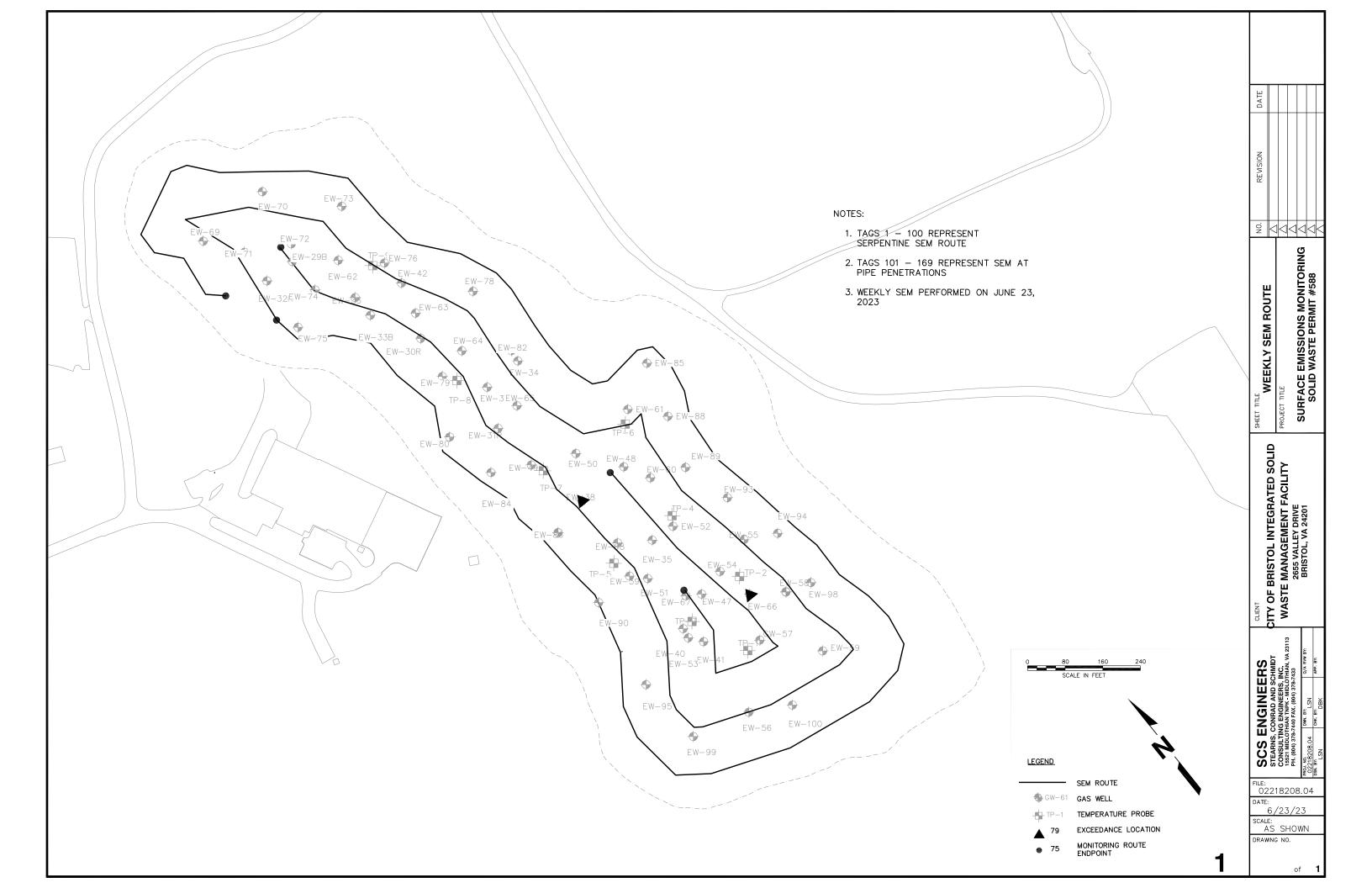
Quinn F. Bernier, PE Project Professional SCS Engineers

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

LSN/QFB/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing


	Methane			GPS Co	ordinates	
ID #	Concentration		Compliance	Lat.	Long.	Comments
1	3.9	PPM	OK			Start Serpentine
2	4.5	PPM	OK			Route
3	1.4	PPM	OK			
4	1.5	PPM	OK			
5	1.5	PPM	OK			
6	1.5	PPM	OK			
7	1.4	PPM	OK			
8	1.4	PPM	OK			
9	1.3	PPM	OK			
10	1.7	PPM	OK			
11	1.7	PPM	OK			
12	1.5	PPM	OK			
13	1.4	PPM	OK			
14	2.0	PPM	OK			
15	1.3	PPM	OK			
16	2.3	PPM	OK			
17	1.8	PPM	OK			
18	21.1	PPM	OK			
19	2.3	PPM	OK			
20	1.5	PPM	OK			
21	1.2	PPM	OK			
22	8.5	PPM	OK			
23	6.3	PPM	OK			
24	281.0	PPM	OK			
25	5.2	PPM	OK			
26	7.1	PPM	OK			
27	16.8	PPM	OK			
28	59.9	PPM	OK			
29	405.0	PPM	OK			
30	15.0	PPM	OK			
31	17.3	PPM	OK			
32	71.9	PPM	OK			
33	61.9	PPM	OK			
34	47.5	PPM	OK			
35	131.0	PPM	OK			
36	155.0	PPM	OK			
37	23.7	PPM	OK			
38	17.7	PPM	OK			
39	29.5	PPM	OK			
40	4.3	PPM	OK			
41	1.3	PPM	OK			
42	4.4	PPM	OK			

Methane				GPS Co	ordinates	
ID #	Concentration		Compliance	Lat.	Long.	Comments
43	2.4	PPM	ОК			
44	4.2	PPM	OK			
45	5.2	PPM	OK			
46	1.6	PPM	OK			
47	1.0	PPM	OK			
48	0.7	PPM	OK			
49	31.4	PPM	OK			
50	0.9	PPM	OK			
51	0.9	PPM	OK			
52	0.8	PPM	OK			
53	0.7	PPM	OK			
54	0.8	PPM	OK			
55	0.7	PPM	OK			
56	1.1	PPM	OK			
57	1.4	PPM	OK			
58	0.8	PPM	OK			
59	1.1	PPM	OK			
60	3.3	PPM	OK			
61	3.3	PPM	OK			
62	2.7	PPM	OK			
63	3.2	PPM	OK			
64	2.8	PPM	OK			
65	86.3	PPM	OK			
66	31.9	PPM	OK			
67	46.8	PPM	OK			
68	19.8	PPM	OK			
69	18.5	PPM	OK			
70	44.1	PPM	OK			
71	67.9	PPM	OK			
72	11.6	PPM	OK			
73	20.4	PPM	OK			
74	50.2	PPM	OK			
75	32.2	PPM	OK			
76	93.7	PPM	OK			
77	18.9	PPM	OK			
78	123.0	PPM	OK			
79	79.2	PPM	OK			
80	104.0	PPM	OK			
81	327.0	PPM	OK			
82	103.0	PPM	OK			
83	3.4	PPM	OK			
84	3.6	PPM	OK			

Methane				GPS Coordinates				
ID #	Concentration		Compliance	Lat.	Long.	Comments		
85	7.0	PPM	ОК					
86	5.2	PPM	OK					
87	2.2	PPM	OK					
88	1.1	PPM	OK					
89	1.5	PPM	OK					
90	0.6	PPM	OK					
91	11.6	PPM	OK					
92	132.0	PPM	OK					
93	60.9	PPM	OK					
94	23.9	PPM	OK					
95	26.3	PPM	OK					
96	13.7	PPM	OK					
97	34.1	PPM	OK					
98	42.2	PPM	OK					
99	17.9	PPM	OK					
100	44.5	PPM	OK			End Serpentine		
						Route		
101	262.0	PPM	OK			EW-35		
102	229.0	PPM	OK			EW-52		
103	55.9	PPM	OK			TP-4		
104	23.2	PPM	OK			EW-60		
105	116.0	PPM	OK			EW-48		
106	115.0	PPM	OK			TP-6		
107	67.9	PPM	OK			EW-61		
108	59.2	PPM	OK			EW-34		
109	2.4	PPM	OK			EW-50		
110	20.3	PPM	OK			EW-67		
111	133.0	PPM	OK			EW-47		
112	168.0	PPM	OK			EW-54		
113	420.0	PPM	OK			EW-55		
114	8.8	PPM	OK			TP-2		
115	11800.0	PPM	HIGH_ALRM	36.59842	-82.14736	EW-66		
116	41.4	PPM	OK			EW-58		
117	55.0	PPM	OK			EW-57		
118	35.4	PPM	OK			TP-1		
119	230.0	PPM	OK			EW-59		
120	273.0	PPM	OK			EW-56		
121	321.0	PPM	OK			EW-41		
122	291.0	PPM	OK			EW-53		
123	99.0	PPM	OK			EW-40		
124	11.8	PPM	ОК			TP-3		
125	11.0	PPM	OK			EW-51		

	Methane			GPS Cod	ordinates	
ID #	Concentration		Compliance	Lat.	Long.	Comments
126	74.1	PPM	ОК			EW-39
120	381.0	PPM	OK			TP-5
			OK			
128	3.2	PPM		24 50024	0014000	EW-68
129	1343.0	PPM		36.59926	-82.14802	EW-38
130	19.2	PPM	OK			TP-7
131	0.9	PPM	OK			EW-49
132	17.1	PPM	OK			EW-31R
133	1.2	PPM	OK			EW-65
134	19.1	PPM	OK			EW-37
135	2.9	PPM	OK			TP-8
136	1.8	PPM	OK			EW-64
137	0.5	PPM	OK			EW-30R
138	0.4	PPM	OK			EW-63
139	1.2	PPM	OK			EW-42
140	13.0	PPM	OK			TP-9
141	0.3	PPM	OK			EW-33R
142	0.3	PPM	OK			EW-62
143	0.1	PPM	OK			EW-29R
144	2.2	PPM	OK			EW-74
145	0.1	PPM	OK			EW-32R
146	0.3	PPM	OK			EW-69
147	0.4	PPM	OK			EW-71
148	0.7	PPM	OK			EW-72
149	0.3	PPM	OK			EW-70
150	0.1	PPM	OK			EW-73
151	6.3	PPM	OK			EW-76
152	0.4	PPM	OK			EW-78
153	33.4	PPM	OK			EW-82
154	3.0	PPM	OK			EW-85
155	43.5	PPM	OK			EW-88
156	6.7	PPM	OK			EW-89
157	4.0	PPM	OK			EW-93
158	31.1	PPM	OK			EW-94
159	64.7	PPM	OK			EW-98
160	78.2	PPM	OK			EW-100
161	19.9	PPM	OK			EW-99
162	56.1	PPM	OK			EW-95
163	23.5	PPM	OK			EW-90
164	87.1	PPM	OK			EW-86
165	2.2	PPM	OK			EW-84
166	3.9	PPM	OK			EW-80
167	1.2	PPM	OK			EW-79

Methane				GPS Co	ordinates	
ID #	Concentration		Compliance	Lat.	Long.	Comment
168	2.0	PPM	OK			EW-75
169	2.3	PPM	OK			EW-338
	Number of	lo optiono ora	un la d	169]	
		locations san				
	Number of ex	ceedance lo	cations:	2		
NOTES:	augh 100 rangeag	t comontine	SEM routo			
Points 1 thro Points 101 t	ough 100 represer through 169 repre	sent SEM at	Pipe Penetration	s		
Points 1 thro Points 101 t Weather Co	hrough 169 repre onditions: Cloudy, 2	sent SEM at 75°F Wind:	Pipe Penetration 3 E			
Points 1 thro Points 101 t Weather Co Sampling C	hrough 169 repre onditions: Cloudy, 2 alibration: Methan	sent SEM at 75°F Wind: e - 500 ppi	Pipe Penetration 3 E m, Zero Air - 0.0	<u>ppm</u>		
Points 1 thro Points 101 t Weather Co <u>Sampling C</u> 6/23/202	hrough 169 repre onditions: Cloudy, 2 alibration: Methan 3	sent SEM at 75°F Wind: <u>e - 500 ppi</u> ZERO	Pipe Penetration 3 E <u>m, Zero Air - 0.0</u> 0.0 Pl	<u>ppm</u> PM		
Points 1 thro Points 101 t Weather Co Sampling C	hrough 169 repre onditions: Cloudy, 2 alibration: Methan 3	sent SEM at 75°F Wind: e - 500 ppi	Pipe Penetration 3 E m, Zero Air - 0.0	<u>ppm</u> PM		
Points 1 thro Points 101 t Weather Co <u>Sampling C</u> 6/23/202	hrough 169 repre onditions: Cloudy, 2 <u>alibration: Methan</u> 3 3	sent SEM at 75°F Wind: <u>e - 500 ppi</u> ZERO	Pipe Penetration 3 E <u>m, Zero Air - 0.0</u> 0.0 Pl	<u>ppm</u> PM		
Points 1 thro Points 101 the Weather Co <u>Sampling C</u> 6/23/202 6/23/202	hrough 169 repre onditions: Cloudy, 2 <u>alibration: Methan</u> 3 3 <u>Reading:</u>	sent SEM at 75°F Wind: <u>e - 500 ppi</u> ZERO	Pipe Penetration 3 E <u>m, Zero Air - 0.0</u> 0.0 Pl	<u>ppm</u> PM PM		

July 5, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – June 29, 2023 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on June 29, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Description	Quantity
Number of Points Sampled	169
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	69
Number of Exceedances	4
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	4

Table 1.Summary of Surface Emissions Monitoring

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	6/29/23 Event	6/29/23 Event Result	Comments
EW-89	4/27/23	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-100	4/27/23	N/A	Passed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-66	5/25/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-38	6/6/23	N/A	Failed	Subject to 40 CFR 63.1960(c)(4)(v)
EW-86	6/6/23	N/A	Passed	Requires 30-Day Retest
EW-95	6/13/23	N/A	Passed	Requires 30-Day Retest
EW-99	6/13/23	N/A	Passed	Requires 30-Day Retest

 Table 2.
 Ongoing Weekly SEM Exceedances

Mr. Jonathan Chapman July 5, 2023 Page 3

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Om Done

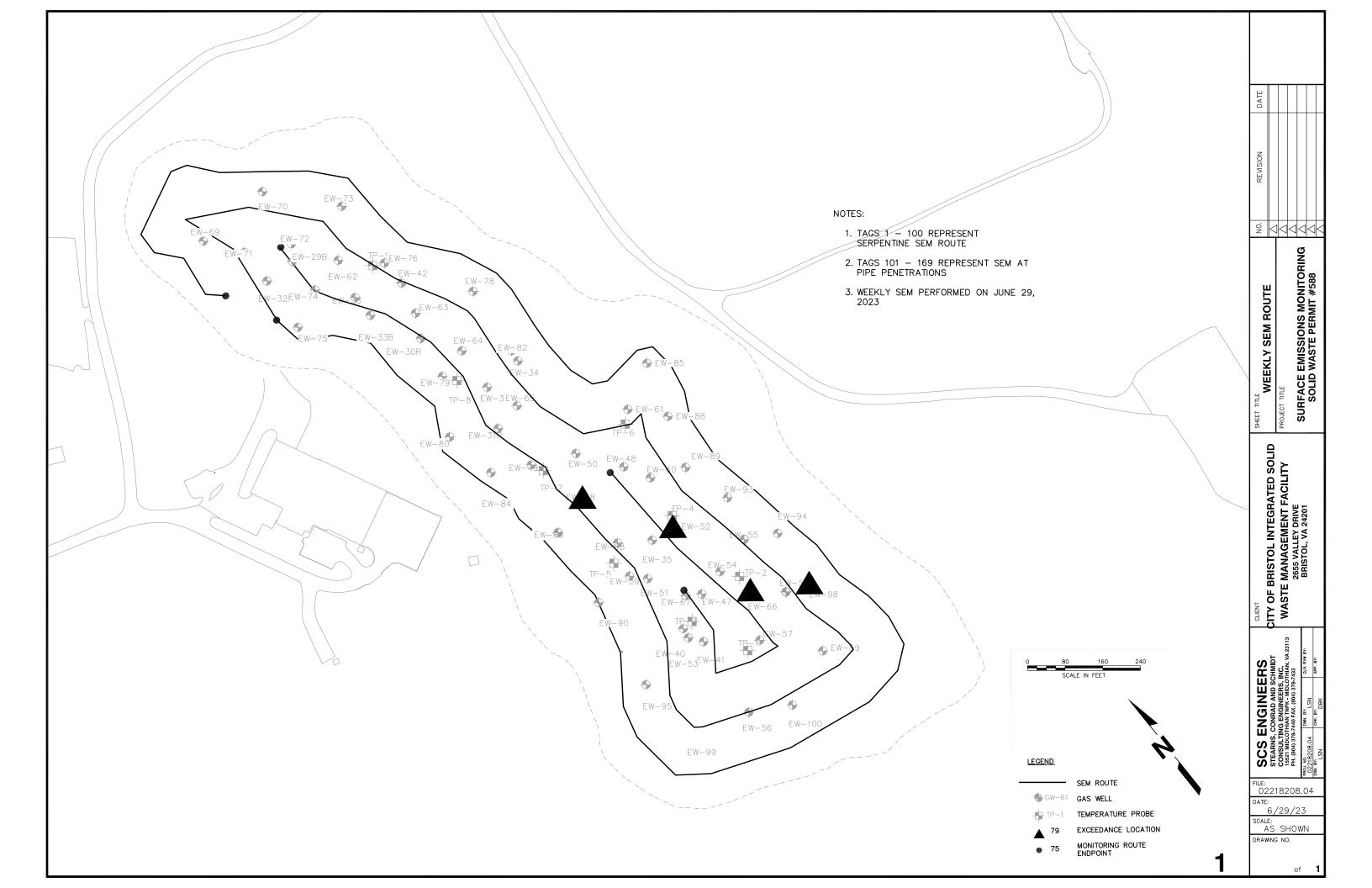
Quinn F. Bernier, PE Project Professional SCS Engineers

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

LSN/QFB/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing


	Methane		GPS Co	ordinates		
ID #	Concentration		Compliance	Lat.	Long.	Comments
1	3.1	PPM	ОК			Start Serpentine
2	27.4	PPM	OK			Route
3	3.1	PPM	OK			
4	2.4	PPM	OK			
5	2.5	PPM	OK			
6	2.5	PPM	OK			
7	3.2	PPM	OK			
8	2.2	PPM	OK			
9	2.1	PPM	OK			
10	2.1	PPM	OK			
11	2.7	PPM	OK			
12	2.6	PPM	OK			
13	2.5	PPM	OK			
14	2.4	PPM	OK			
15	32.4	PPM	OK			
16	8.2	PPM	OK			
17	13.7	PPM	OK			
18	22.3	PPM	OK			
19	2.1	PPM	OK			
20	1.9	PPM	OK			
21	2.8	PPM	OK			
22	2.2	PPM	OK			
23	10.7	PPM	OK			
24	3.5	PPM	OK			
25	13.6	PPM	OK			
26	5.5	PPM	OK			
27	4.8	PPM	OK			
28	83.4	PPM	OK			
29	72.5	PPM	OK			
30	93.0	PPM	OK			
31	65.8	PPM	OK			
32	26.5	PPM	OK			
33	5.7	PPM	OK			
34	46.2	PPM	OK			
35	7.8	PPM	OK			
36	7.7	PPM	OK			
37	12.5	PPM	OK			
38	6.3	PPM	OK			
39	10.7	PPM	OK			
40	12.1	PPM	OK			
41	7.5	PPM	OK			
42	150.0	PPM	OK			

	Methane			GPS Co	ordinates	
ID #	Concentration		Compliance	Lat.	Long.	Comments
43	7.9	PPM	ОК			
44	2.7	PPM	OK			
45	2.2	PPM	OK			
46	6.4	PPM	OK			
47	1.5	PPM	OK			
48	1.0	PPM	OK			
49	0.7	PPM	OK			
50	0.4	PPM	OK			
51	0.3	PPM	OK			
52	1.0	PPM	OK			
53	0.3	PPM	OK			
54	0.4	PPM	ОК			
55	0.3	PPM	OK			
56	0.2	PPM	OK			
57	0.3	PPM	OK			
58	0.5	PPM	OK			
59	1.5	PPM	OK			
60	0.6	PPM	OK			
61	0.9	PPM	OK			
62	1.6	PPM	OK			
63	21.1	PPM	OK			
64	19.2	PPM	OK			
65	3.9	PPM	OK			
66	15.7	PPM	OK			
67	1.6	PPM	OK			
68	5.1	PPM	OK			
69	150.0	PPM	OK			
70	159.0	PPM	OK			
71	39.3	PPM	ОК			
72	120.0	PPM	OK			
73	21.1	PPM	ОК			
74	220.0	PPM	ОК			
75	28.5	PPM	OK			
76	32.6	PPM	ОК			
77	24.6	PPM	ОК			
78	7.5	PPM	ОК			
79	302.0	PPM	ОК			
80	53.1	PPM	ОК			
81	102.0	PPM	ОК			
82	21.5	PPM	OK			
83	4.7	PPM	ОК			
84	21.5	PPM	OK			

	Methane			GPS Co	ordinates	
ID #	Concentration		Compliance	Lat.	Long.	Comments
 85	0.6	PPM	OK			
86	3.6	PPM	OK			
87	6.7	PPM	OK			
88	5.0	PPM	OK			
89	1.2	PPM	OK			
90	0.6	PPM	OK			
91	22.8	PPM	OK			
92	2.5	PPM	OK			
93	162.0	PPM	OK			
94	158.0	PPM	OK			
95	89.8	PPM	OK			
96	95.8	PPM	OK			
97	3.4	PPM	OK			
98	213.0	PPM	OK			
99	3.4	PPM	OK			
100	4.4	PPM	OK			End Serpentine
						Route
101	1 30.0	PPM	OK			EW-35
102	671.0	PPM	HIGH_ALRM	36.59885	-82.14788	EW-52
103	9.3	PPM	OK			TP-4
104	278.0	PPM	OK			EW-60
105	275.0	PPM	OK			EW-48
106	24.6	PPM	OK			TP-6
107	25.1	PPM	OK			EW-61
108	6.6	PPM	OK			EW-34
109	3.0	PPM	OK			E₩-50
110	307.0	PPM	OK			EW-67
111	236.0	PPM	OK			EW-47
112	365.0	PPM	OK			EW-54
113	250.0	PPM	OK			EW-55
114	125.0	PPM	OK			TP-2
115	2658.0	PPM	HIGH_ALRM	36.59842	-82.14736	EW-66
116	139.0	PPM	OK			EW-58
117	17.3	PPM	OK			EW-57
118	2.2	PPM	OK			TP-1
119	171.0	PPM	OK			EW-59
120	372.0	PPM	OK			EW-56
121	12.5	PPM	OK			EW-41
122	430.0	PPM	OK			EW-53
123	140.0	PPM	OK			EW-40
124	72.3	PPM	OK			TP-3
125	6.2	PPM	OK			EW-51

	Methane			GPS Co	ordinates	
ID #	Concentration		Compliance	Lat.	Long.	Comments
126	46.4	PPM	OK			EW-39
127	28.6	PPM	OK			TP-5
128	2140.0 PPM		OK			EW-68
129			HIGH_ALRM	36.59926	-82.14802	EW-38
130	269.0	PPM	OK			TP-7
131	2.4	PPM	OK			EW-49
132	44.5	PPM	OK			EW-31R
133	1.6	PPM	OK			EW-65
134	6.8	PPM	OK			EW-37
135	3.5	PPM	OK			TP-8
136	4.3	PPM	OK			EW-64
137	1.5	PPM	OK			EW-30R
138	1.0	PPM	OK			EW-63
139	2.1	PPM	OK			EW-42
140	7.5	PPM	OK			TP-9
141	0.0	PPM	OK			EW-33R
142	0.4	PPM	OK			EW-62
143	0.0	PPM	OK			EW-29R
144	0.5	PPM	OK			EW-74
145	0.4	PPM	OK			EW-32R
146	0.0	PPM	OK			EW-69
147	0.0	PPM	OK			EW-71
148	15.3	PPM	OK			EW-72
149	0.0	PPM	OK			EW-70
150	0.3	PPM	OK			EW-73
151	135.0	PPM	OK			EW-76
152	21.1	PPM	OK			EW-78
153	70.1	PPM	OK			EW-82
154	30.9	PPM	OK			EW-85
155	20.8	PPM	OK			EW-88
156	2.0	PPM	OK			EW-89
157	0.9	PPM	OK			EW-93
158	5.6	PPM	OK			EW-94
159	2116.0	PPM	HIGH_ALRM	36.59836	-82.14678	EW-98
160	48.5	PPM	OK			EW-100
161	68.8	PPM	OK			EW-99
162	10.8	PPM	OK			EW-95
163	12.0	PPM	OK			EW-90
164	149.0	PPM	OK			EW-86
165	3.2	PPM	OK			EW-84
166	3.5	PPM	OK			EW-80
167	1.1	PPM	OK			EW-79

	Methane			GPS Co	ordinates	
ID #	Concentration		Compliance	Lat.	Long.	Comment
168	1.2	PPM	OK			EW-338
169	57.9	PPM	OK			EW-75
				1/0]	
		locations sar		169		
	Number of e	xceedance lo	ocations:	4		
NOTES:						
Points 1 thro Points 101 t	ough 100 represer through 169 repre	sent SEM at	Pipe Penetration	15		
Points 1 thro Points 101 t		sent SEM at	Pipe Penetration	15		
Points 1 thro Points 101 t Weather Co <u>Sampling C</u>	through 169 repre onditions: Sunny, 7 alibration: Methan	sent SEM at 7°F Wind: 5 e - 500 ppr	t Pipe Penetration 5.5 E m, Zero Air - 0.0	<u>ppm</u>		
Points 1 thro Points 101 t Weather Co <u>Sampling C</u> 6/29/202	through 169 repre onditions: Sunny, 7 <u>alibration: Methan</u> 3	sent SEM at 7°F Wind: 5	t Pipe Penetration 5.5 E	<u>ppm</u>		
Points 1 thro Points 101 t Weather Co <u>Sampling C</u>	through 169 repre onditions: Sunny, 7 <u>alibration: Methan</u> 3	sent SEM at 7°F Wind: 5 e - 500 ppr	t Pipe Penetration 5.5 E m, Zero Air - 0.0	<u>ppm</u> PM		
Points 1 thro Points 101 t Weather Co <u>Sampling C</u> 6/29/202	through 169 repre onditions: Sunny, 7 <u>alibration: Methan</u> 3 3	sent SEM at 7°F Wind: 5 <u>e - 500 ppr</u> ZERO	t Pipe Penetration 5.5 E m, Zero Air - 0.0 0.0 P	<u>ppm</u> PM		
Points 1 throphones 1 throphones 1 throphones 101 throphones 101 throphones 101 throphones 100 t	through 169 repre onditions: Sunny, 7 <u>alibration: Methan</u> 3 3 <u>Reading:</u>	sent SEM at 7°F Wind: 5 <u>e - 500 ppr</u> ZERO	t Pipe Penetration 5.5 E m, Zero Air - 0.0 0.0 P	<u>ppm</u> PM PM		

Appendix B

In-Waste Temperatures on Select Days in June

Appendix B Figures

Figure B-1. Average Temperatures Recorded by TP-1 on June 7, 2023	B-3
Figure B-2. Average Temperatures Recorded by TP-1 on June 14, 2023	B-3
Figure B-3. Average Temperatures Recorded by TP-1 on June 21, 2023	B-4
Figure B-4. Average Temperatures Recorded by TP-1 on June 28, 2023	B-4
Figure B-5. Average Temperatures Recorded by TP-2 on June 7, 2023	B-5
Figure B-6. Average Temperatures Recorded by TP-2 on June 14, 2023	B-5
Figure B-7. Average Temperatures Recorded by TP-2 on June 21, 2023	B-6
Figure B-8. Average Temperatures Recorded by TP-2 on June 28, 2023	B-6
Figure B-9. Average Temperatures Recorded by TP-3 on June 7, 2023	B-7
Figure B-10. Average Temperatures Recorded by TP-3 on June 14, 2023	B-7
Figure B-11. Average Temperatures Recorded by TP-3 on June 21, 2023	B-8
Figure B-12. Average Temperatures Recorded by TP-3 on June 28, 2023	B-8
Figure B-13. Average Temperatures Recorded by TP-4 on June 7, 2023	B-9
Figure B-14. Average Temperatures Recorded by TP-4 on June 14, 2023	B-9
Figure B-15. Average Temperatures Recorded by TP-4 on June 21, 2023	3-10
Figure B-16. Average Temperatures Recorded by TP-4 on June 28, 2023	3-10
Figure B-17. Average Temperatures Recorded by TP-5 on June 7, 2023	3-11
Figure B-18. Average Temperatures Recorded by TP-5 on June 14, 2023	3-11
Figure B-19. Average Temperatures Recorded by TP-5 on June 21, 2023	3-12
Figure B- 20. Average Temperatures Recorded by TP-5 on June 28, 2023	3-12
Figure B-21. Average Temperatures Recorded by TP-6 on June 7, 2023	3-13
Figure B-22. Average Temperatures Recorded by TP-6 on June 14, 2023	3-13
Figure B-23. Average Temperatures Recorded by TP-6 on June 21, 2023	3-14
Figure B-24. Average Temperatures Recorded by TP-6 on June 28, 2023	3-14
Figure B-25. Average Temperatures Recorded by TP-7 on June 7, 2023	3-15
Figure B-26. Average Temperatures Recorded by TP-7 on June 14, 2023	3-15
Figure B-27. Average Temperatures Recorded by TP-7 on June 21, 2023	3-16
Figure B-28. Average Temperatures Recorded by TP-7 on June 28, 2023	3-16
Figure B-29. Average Temperatures Recorded by TP-8 on June 7, 2023	3-17
Figure B- 30. Average Temperatures Recorded by TP-8 on June 14, 2023	3-17
Figure B-31. Average Temperatures Recorded by TP-8 on June 21, 2023	3-18
Figure B-32. Average Temperatures Recorded by TP-8 on June 28, 2023	3-18
Figure B-33. Average Temperatures Recorded by TP-9 on June 7, 2023	3-19
Figure B-34. Average Temperatures Recorded by TP-9 on June 14, 2023	3-19
Figure B-35. Average Temperatures Recorded by TP-9 on June 21, 2023	
Figure B- 36. Average Temperatures Recorded by TP-9 on June 28, 2023	3-20

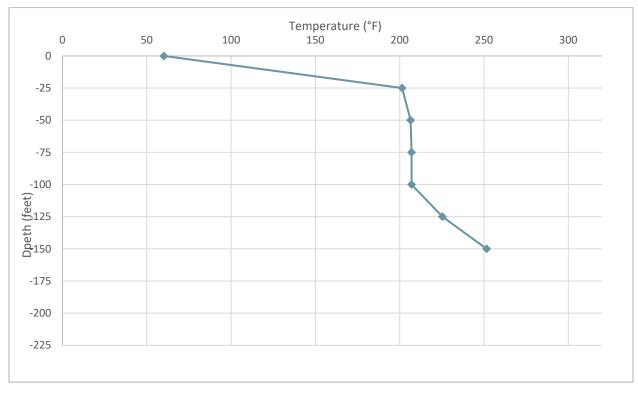
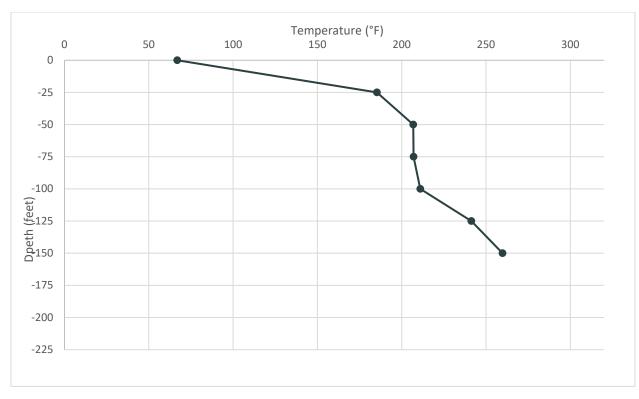



Figure B-1. Average Temperatures Recorded by TP-1 on June 7, 2023

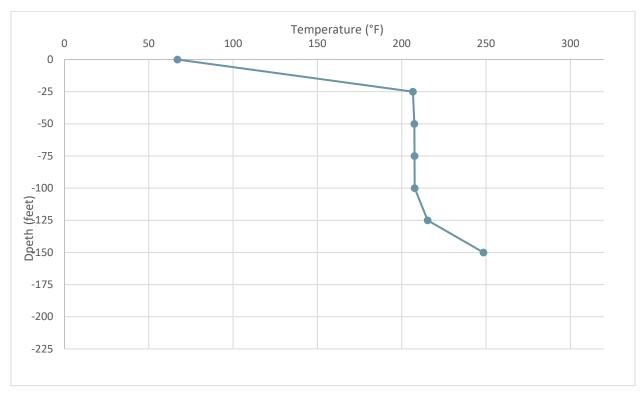



Figure B-3. Average Temperatures Recorded by TP-1 on June 21, 2023

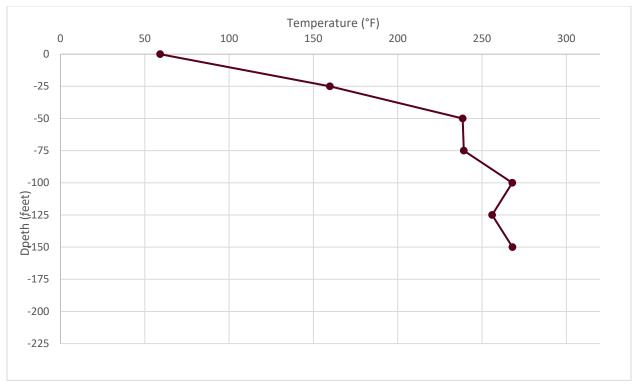
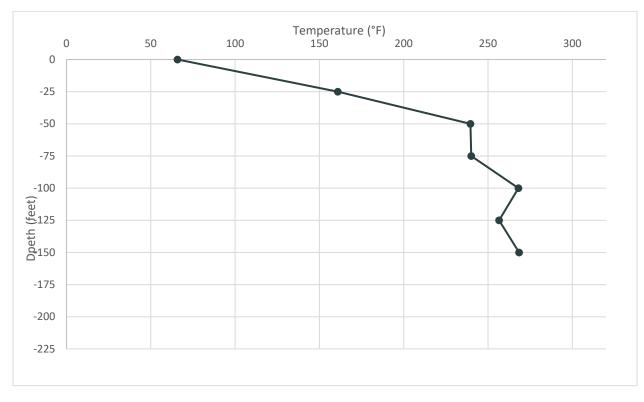



Figure B-5. Average Temperatures Recorded by TP-2 on June 7, 2023

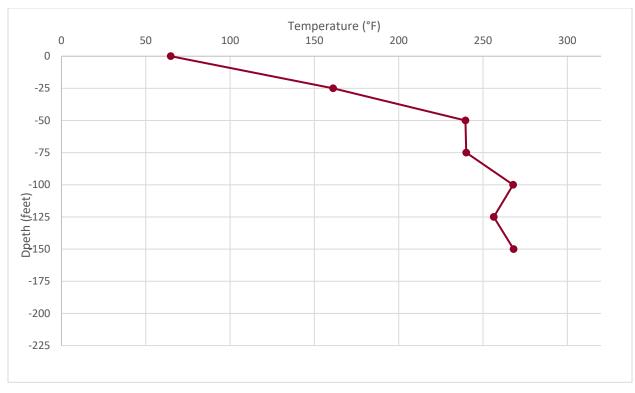
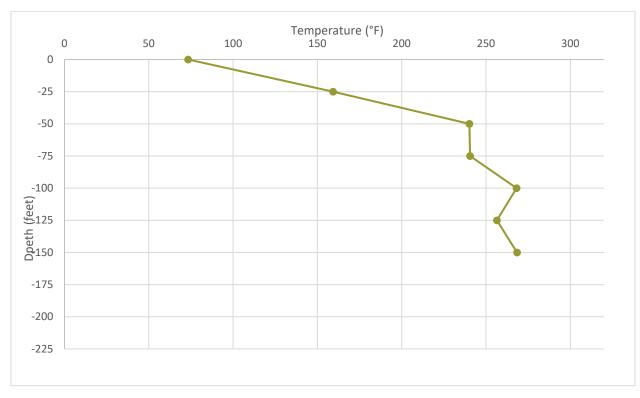



Figure B-7. Average Temperatures Recorded by TP-2 on June 21, 2023

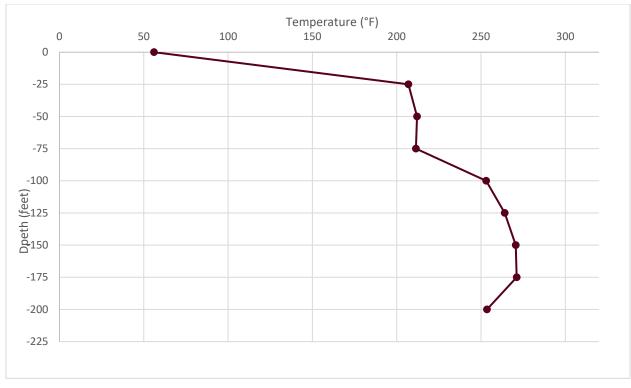
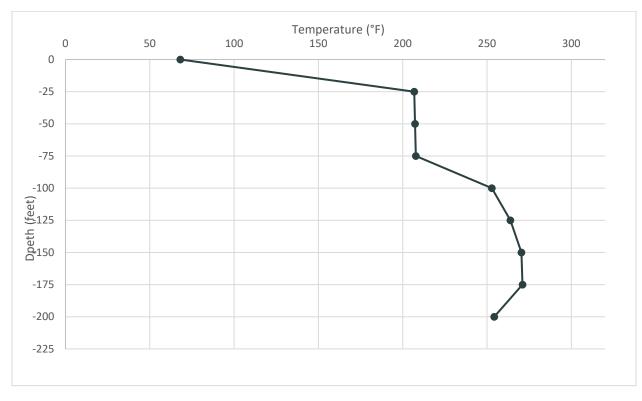



Figure B-9. Average Temperatures Recorded by TP-3 on June 7, 2023

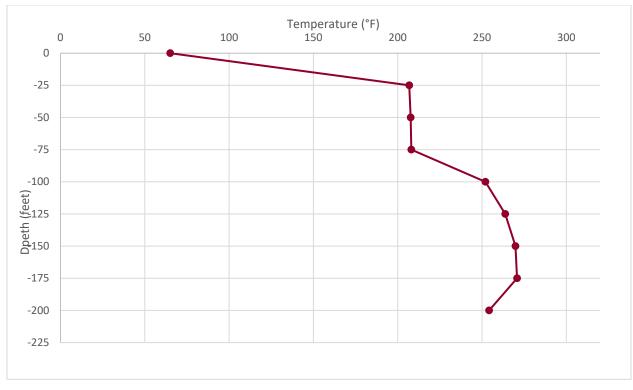
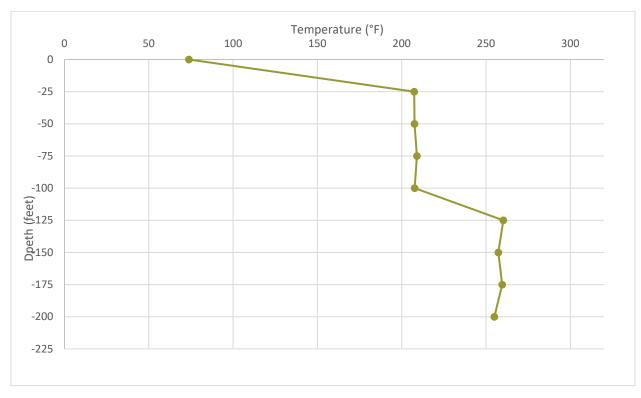



Figure B-11. Average Temperatures Recorded by TP-3 on June 21, 2023

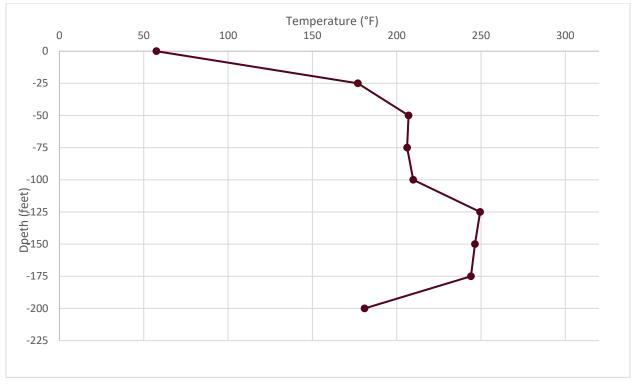
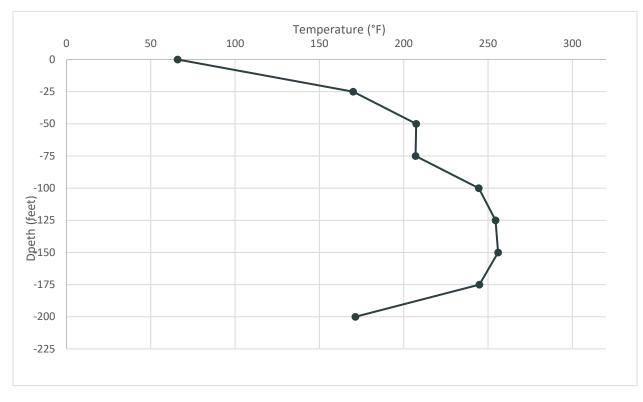



Figure B-13. Average Temperatures Recorded by TP-4 on June 7, 2023

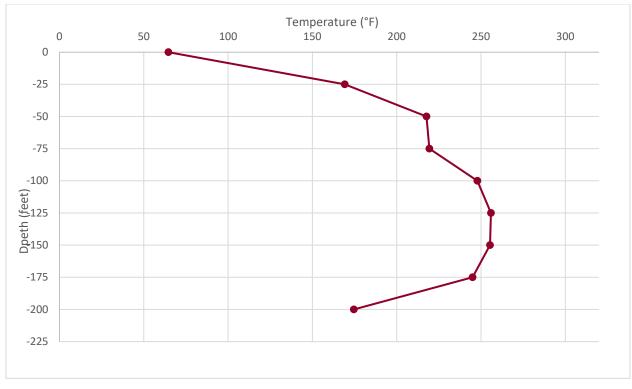
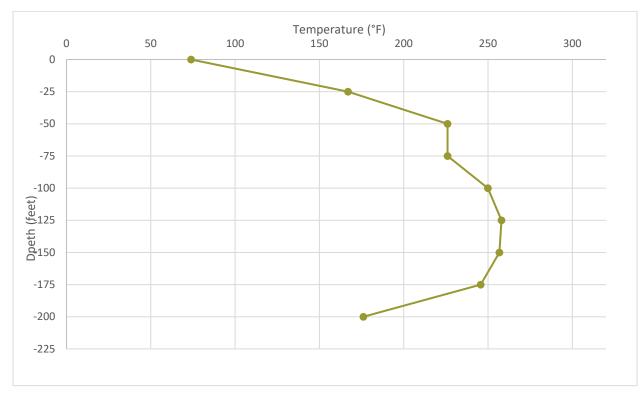



Figure B-15. Average Temperatures Recorded by TP-4 on June 21, 2023

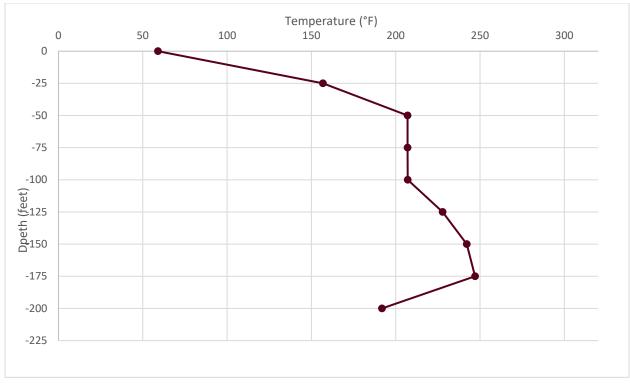
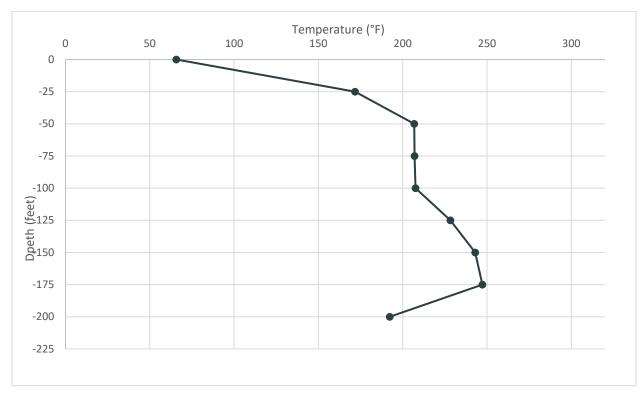



Figure B-17. Average Temperatures Recorded by TP-5 on June 7, 2023

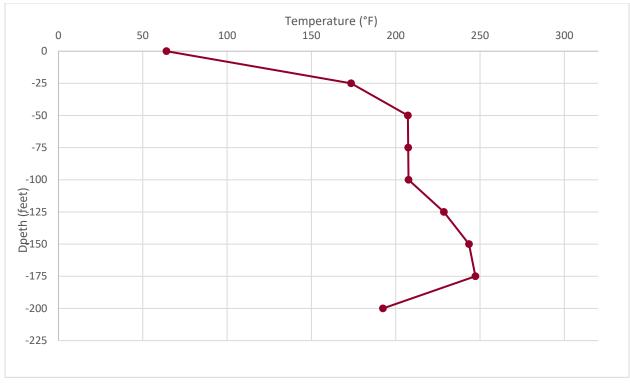
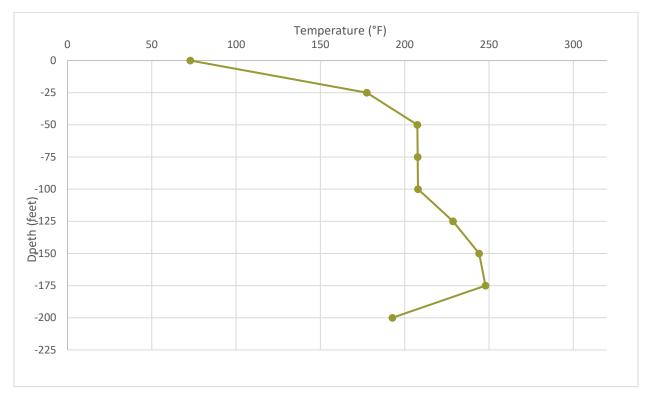



Figure B-19. Average Temperatures Recorded by TP-5 on June 21, 2023

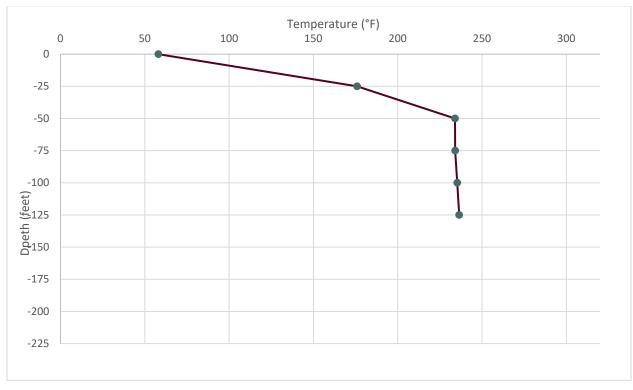
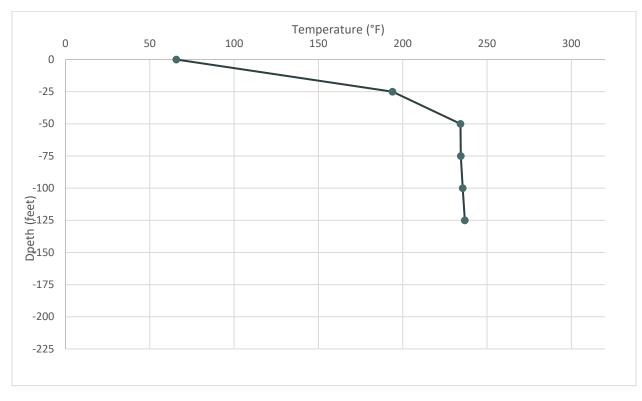



Figure B- 21. Average Temperatures Recorded by TP-6 on June 7, 2023

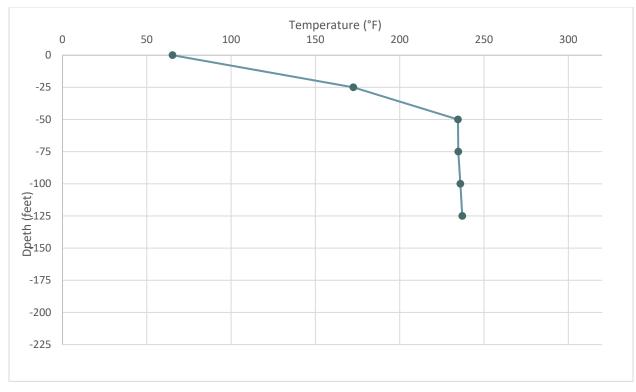
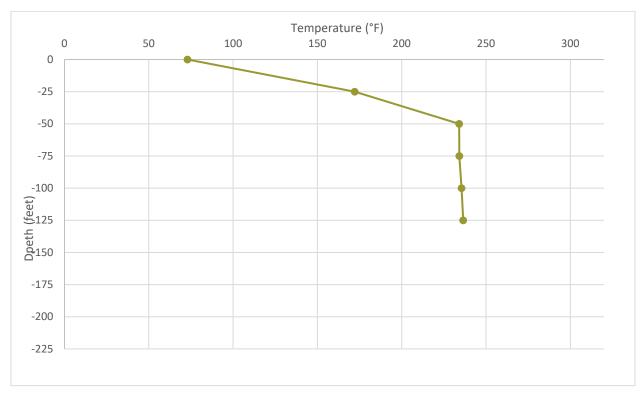



Figure B-23. Average Temperatures Recorded by TP-6 on June 21, 2023

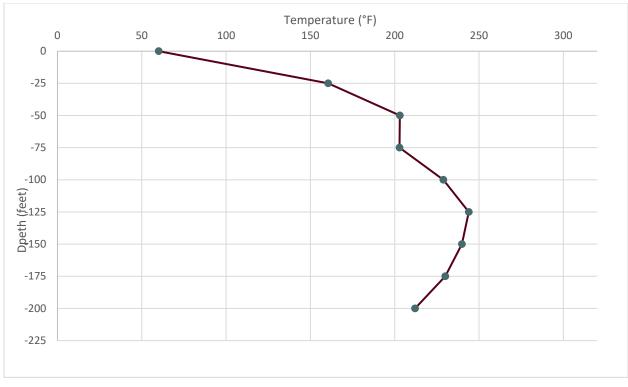
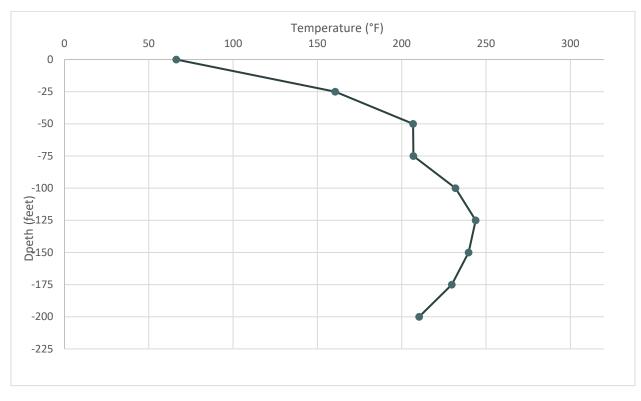



Figure B-25. Average Temperatures Recorded by TP-7 on June 7, 2023

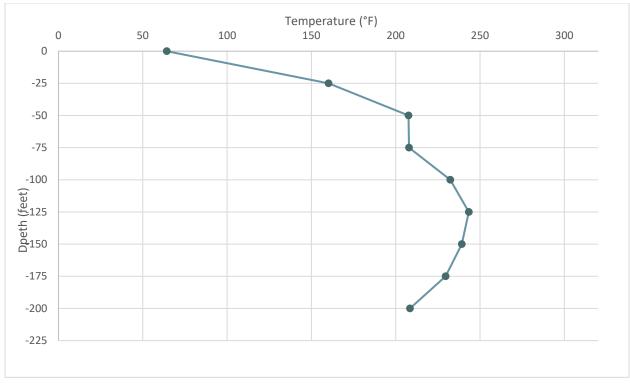
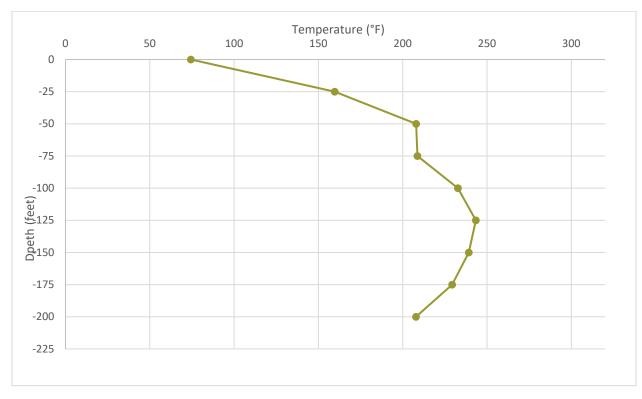



Figure B-27. Average Temperatures Recorded by TP-7 on June 21, 2023

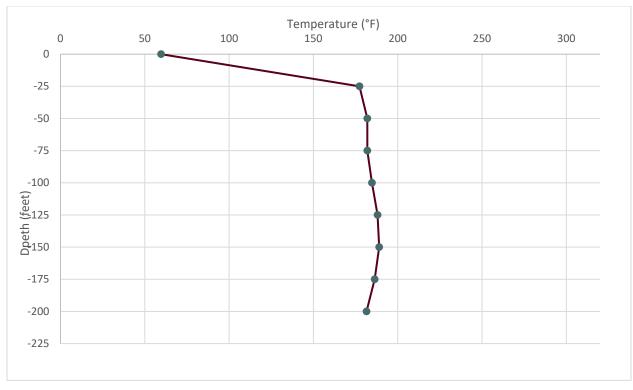
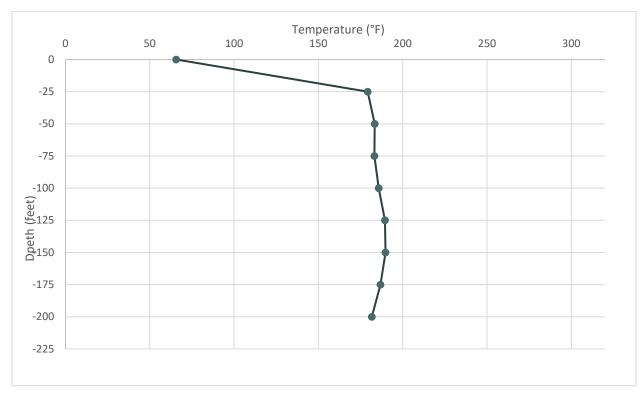



Figure B- 29. Average Temperatures Recorded by TP-8 on June 7, 2023

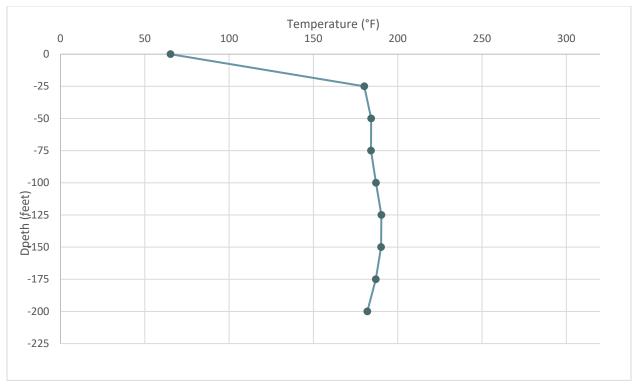
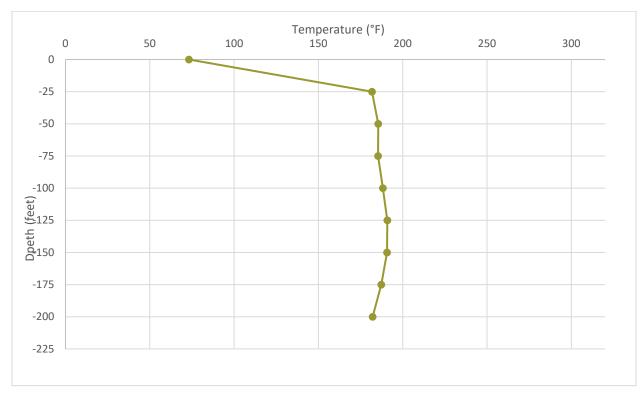



Figure B- 31. Average Temperatures Recorded by TP-8 on June 21, 2023

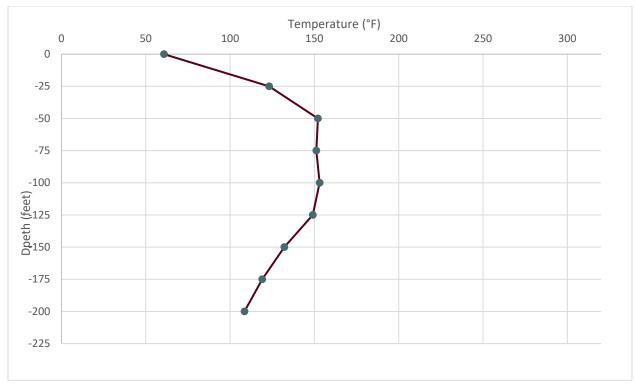
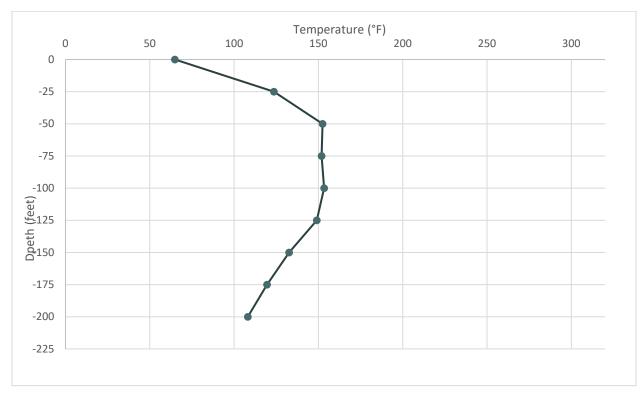



Figure B-33. Average Temperatures Recorded by TP-9 on June 7, 2023

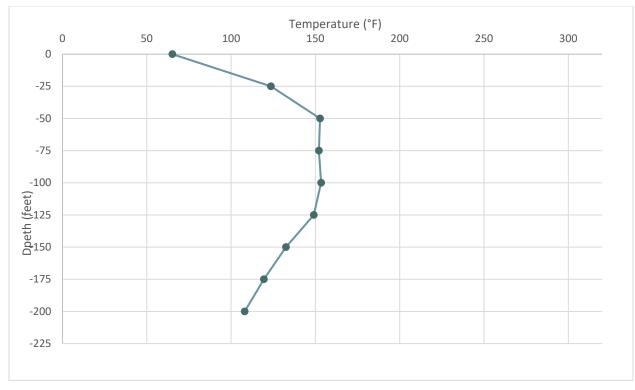
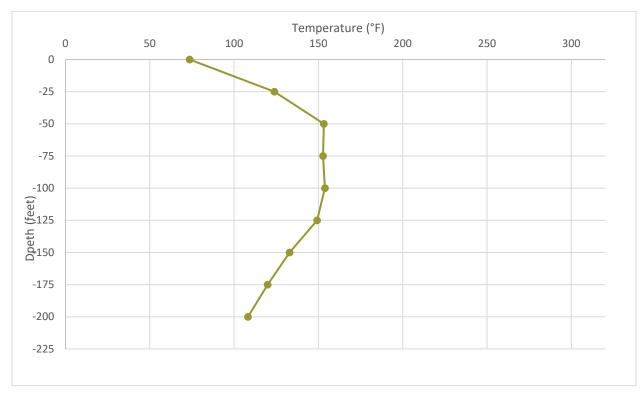



Figure B-35. Average Temperatures Recorded by TP-9 on June 21, 2023

Appendix C

Semi-Monthly Temperature Update Memo

July 10, 2023 File No. 02218208.04

MEMORANDUM

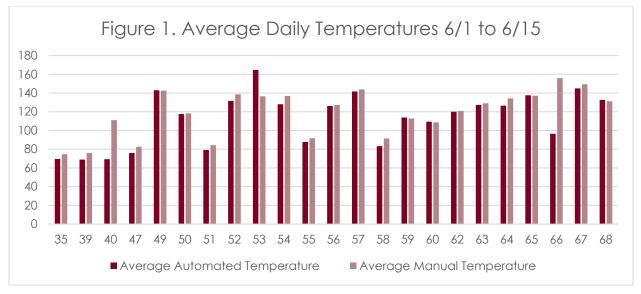
- TO: Kristin Hall, EPA Region III Tracy Blalock, VDEQ-SWRO
- FROM: D. Brandon King, SCS Engineers Quinn Bernier, SCS Engineers
- SUBJECT: Semi-Monthly Status Update June 1st through June 15th, 2023 Bristol Integrated Waste Management Facility, Bristol, Virginia

SCS is submitting this semi-monthly status update to satisfy the conditions of compliance provision #2 of the Environmental Protection Agency (EPA) Region III letter, *Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility*, dated 8/23/21. Accordingly, this memo is a summary of temperature monitoring activities as well as work accomplished during the semi-monthly monitoring period of 6/1/23 through 6/15/23.

TEMPERATURE MONITORING

Automated Wellhead Temperature Measurements

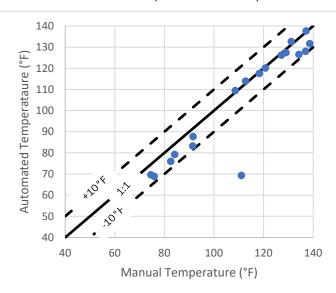
Twenty-five (25) individual landfill gas (LFG) wellheads in the Permit #588 Landfill have automated temperature sensors installed. VDEQ and USEPA have been receiving Daily Gas Well Temperature Reports with data from these automated temperature sensors since 12/1/22.


The 25 wellheads have 2-inch automated sensors. SCS believes that the 2-inch sensors measure temperature with more accuracy than the 1-inch sensors that were used in the majority of the 25 wells prior to March 1, 2023, but we are still comparing with manual temperature to assess the validity of this assertion.

SCS reviewed the automated hourly temperature measurements from 6/1/23 to 6/15/23, and identified the following trends:

• Temperatures over 145°F: Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded at nine wells during this monitoring period. Although temperatures fluctuate throughout the wellfield, SCS is continuing to see higher temperatures at certain wells during these monitoring periods. Temperatures greater than 145°F appear to be most consistent at EW-52, 53, 54 and 55. The highest temperatures were measured at EW-51 and EW-53 (greater than 190° at times). SCS believes that the general increase in wellfield temperatures suggests that, with the increase of pneumatic pump operations and increased liquids removal, the collection system is being successfully dewatered. Liquids removal in combination with the addition of new LFG collection infrastructure from the recent GCCS expansion is likely providing more pathways for extraction of the warmer landfill gas; thus the increased average temperatures.

• Low temperatures at certain wells: Average temperatures between 50°F and 80°F have been most consistent at eight wells. This generally correlated with low LFG flow rates measured during monthly wellfield monitoring events. These low temperatures are likely close to ambient because little to no LFG is passing through the wellhead where the sensors are placed.



Manual Daily Temperature Monitoring

Manual temperature measurements are being made daily by field staff with a GEM5000 or equivalent LFG analyzer. The manual measurements are used to verify the automated wellhead temperature sensors and to provide temperature data for the 13 wellheads without automated sensors.

During this monitoring period, the average automated temperatures and the average manual temperatures generally correlated ± 10 °F. As shown in Figure 2, EW-40 is the only clear outlier, with automated temperature measurements trending lower than manual measurements. SCS recommends inspecting the probe at EW-40 for proper function, however the cause may simply be that LFG flow is minimal at this device. During wellfield monitoring events in June, the flow recorded by a GEM5000 was less than 5 scfm.

Figure 2. Manual vs. Automated Temperature Comparison

The automated temperature sensor at EW-32R continues to erroneously record 0°F. This data was removed from the dataset used to produce Figure 1 and 2 until the issue can be resolved. SCS is investigating what we suspect is an issue with signal. The average manual temperature for EW-32R was 121.4°F during this monitoring period.

MEMORANDUM 7/10/23 Page 3

In general, the continued correlation of manual and automated temperature measurements supports SCS' belief that the 2-inch automated sensors are measuring temperatures accurately. All daily temperatures recorded manually are provided in **Attachment A**.

Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted 6/5/23, with follow-up monitoring on several days after. Additionally, SCS monitors the Permit #588 Landfill on a weekly basis. During this monitoring period, temperature exceedances were resolved at EW-34, EW-37, EW-61, and EW-94. An HOV request was submitted for EW-37 to VDEQ on 5/17/23. The approval for that HOV request is currently pending. See Table 1 for the statuses of all exceedances recorded during this monitoring period.

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 6/15/23
EW-34	5/30/23	6/8/23 131.2°F	9 days	Resolved, within 15- day timeline
EW-37	4/4/23	6/15/23 94.6°F	72 days	Resolved, within 120- day timeline
EW-53	6/5/23	6/15/23 161.5°F	10 days	Ongoing, within 15-day timeline
EW-61	6/12/23	6/15/23 130.8°F	3 days	Resolved, within 15- day timeline
EW-84	4/27/23	6/15/23 180.0°F	49 days	Ongoing, within 60-day timeline
EW-86	4/27/23	6/15/23 153.2°F	49 days	Ongoing, within 60-day timeline
EW-89	5/30/23	6/15/23 154.3°F	16 days	Ongoing, within 60-day timeline
EW-90	4/27/23	6/15/23 166.3°F	49 days	Ongoing, within 60-day timeline
EW-94	5/26/23	6/1/23 87.6°F	6 days	Resolved, within 15- day timeline
EW-94	6/12/23	6/15/23 84.8°F	3 days	Resolved, within 15- day timeline
EW-100	4/27/23	6/15/23 158.3°	49 days	Ongoing, within 60-day timeline

Table 1. June Temperature Exceedance Summary

Work Accomplished During Monitoring Period

LFG Sampling

SCS collected LFG samples from wells with temperature exceedances lasting more than 7 days using 1.5-L Summa canisters on 6/1/23 and 6/12/23 to fulfill the requirement in 40 CFR 63.1961(a)(5). The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen

 (H_2) content. Lab results are summarized in Table 2. Full laboratory analytical data is included in **Attachment B** for further detail.

Sample Da	te	6/1/2023	6/12/23
34	CO (ppmv)	1260	
54	H2 (Vol. %)	20.8	
53	CO (ppmv)		671
55	H2 (Vol. %)		13.1
84	CO (ppmv)	390	400
04	H2 (Vol. %)	8.71	8.84
86	CO (ppmv)	126	106
80	H2 (Vol. %)	2.29	2.01
89	CO (ppmv)	939	963
09	H2 (Vol. %)	37.6	38.2
90	CO (ppmv)	125	110
90	H2 (Vol. %)	2.47	2.16
100	CO (ppmv)	ND	ND
100	H2 (Vol. %)	4.20	3.81
Blower	CO (ppmv)		ND
Inlet	H2 (Vol. %)		1.25

Table 2. LFG Wellhead Sampling Summary

The presence of hydrogen in all the samples collected during this monitoring period indicates that combustion reactions are unlikely. The carbon monoxide measurements were greater than 100 ppmv in all but EW-100, which was non-detect.

During this monitoring period, a voluntary LFG sample was collected at the blower inlet. This shows the collective value for carbon monoxide and hydrogen of the overall gas quality. During this initial sampling, carbon monoxide was found to be non-detect and hydrogen was found to be 1.25% of the total volume of gas.

Construction Activities

All 16 of the 304 stainless steel (SS) LFG wells have been completed as of 6/15/23. During this monitoring period, EW-75, EW-87, and EW-97 were drilled. This concludes LFG well drilling installation activities in the Permit #588 Landfill. The LFG System contractor, SCS Field Services (SCS-FS), equipped SS LFG wells EW-71 and EW-72 with Jeneer pumps and connected the wells to the LFG Collection and Dewatering Systems. In addition, the LFG System contractor equipped SS LFG wells EW-75 with QED pumps and connected those wells to the LFG Collection and Dewatering Systems. This satisfies the conditions of connecting five dual phase extraction wells to vacuum and the existing dewatering system prior to the Consent Order deadline of 6/30/23.

MEMORANDUM 7/10/23 Page 5

SCS-FS connected the sidewall odor mitigation system (SOMS) collectors to vacuum during this period. The SOMS collectors were opened to applied vacuum from the existing LFG Collection System and initial monitoring and tuning of the collectors occurred on 6/14/23. This satisfies the conditions of the Consent Order deadline to have an active sidewall order mitigation system operational and under applied vacuum prior to 6/14/23.

The liner subcontractor, Chesapeake Containment, finished the final lower liner section along the eastern section of the SOMS at the beginning of this period. SCS-FS completed upper collector and soil placement over the lower liner in this area. Chesapeake installed the upper liner over the remaining perimeter areas of the SOMS during this period, primarily the northern, eastern, and southern sections of the SOMS prior to the system undergoing vacuum on 6/14/23. SCS-FS continued placing soil on the northwest, northern, and northeastern, and southwest side of the SOMS during this reporting period. SCS-FS will continue soil placement activities over the upper liner of the SOMS during the second half of June. SCS-FS began installation of safety grates and well bore seals on the 34 new LFG extraction wells at the end of this reporting period.

Weekly SEM

SCS is continuing weekly surface emissions monitoring (SEM) per the Plan of Action Report dated 7/6/22. Three exceedances of the 500-ppmv threshold were recorded during the weekly SEM event held on 6/6/23, and four exceedances were recorded during the weekly event conducted on 6/13/23. All exceedances during this monitoring period were located at pipe penetrations within the landfill.

The ongoing construction of new wells and the sidewall odor mitigation system, in addition to connection of the new LFG collection infrastructure, is likely contributing to the exceedances located at pipe penetrations in June. As SCS' dewatering efforts continue to advance, landfill gas collection will increase, and pipe penetration exceedances should decrease. In addition, SCS is continuing to connect these new wells to permanent vacuum as well as installing well bore skirts and placing additional cover where necessary.

LFG System O&M

The City's 0&M contractor conducted initial June LFG wellfield monitoring on 6/1/23 and 6/5/23, including 18 new CPVC wells and the pilot SOMS during this monitoring period. Samples were collected at seven wells during this period. The 0&M contractor performed initial monitoring and tuning of the SOMS collectors on 6/14/23. The vacuum set point was increased at the blower/flare station to provide more vacuum to the SOMS when it was connected to vacuum. The 0&M contractor monitored, tuned, and balanced the LFG wellfield to account for the vacuum set point adjustment.

Routine well and pump maintenance continued during this monitoring period. The O&M contractor replaced pumps in EW-51, EW-53, EW-57, EW-59, and EW-68. Tritubing was replaced in EW-53 and EW-57. Repaired wellheads in EW-51 and EW-57. Spare pumps were cleaned and rebuilt on 6/1/23, 6/7/23, and 6/8/23. In addition, wires were adjusted in temperature probe TP-8 to account for settlement.

MEMORANDUM 7/10/23 Page 6

Please contact SCS or City personnel if you have any questions or require additional information.

cc: Randall Eads, City of Bristol Jon Hayes, City of Bristol Jeff Hurst, VDEQ-SWRO Tom Lock, SCS Field Services David Cochran, City of Bristol Erin Willard, EPA Region III Stacy Bowers, VDEQ-SWRO Robert E. Dick, P.E., SCS Engineers

Attachment A

City of Bristol Daily LFG Well Temperature Readings

Month	June	June	June	June	June	June	June	June	June	June	June	June	June	June	June
Day	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday
Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Well Number															
35	85	88	87	85	85	67	59	71	84	54	56	75	72	74	77
39	85	90	91	88	88	64	59	70	81	56	60	79	76	73	79
40	90	94	93	90	85	62	59	71	88	156	154	171	161	153	139
46 Well															
Decomissioned															
47	93	97	98	90	94	73	66	78	90	62	62	82	79	84	91
29	120	124	118	117	120	116	115	114	120	98	82	95	99	97	98
30R	121	119	120	118	110	112	114	116	114	127	128	129	129	127	127
31R	174	172	172	172	166	160	156	153	149	140	126	110	116	110	129
32 Well															
Decommissioned	91	93	93	92	90	91	90	98	99						
33	124	126	126	124	125	122	120	121	120	122	122	122	123	122	123
34	96	98	98	98	90	88	80	82	88	102	104	140	91	89	94
36 Well															
Decommissioned															
37										194	195	193	190	184	97
38	99	95	94	96	92	90	88	86	87	64	66	82	86	104	103
41	94	96	95	94	96	95	90	93	90	58	57	80	83	79	87
42	120	122	120	121	122	121	120	119	120	122	122	116	117	116	117
48	92	94	93	94	95	95	90	90	92	55	56	78	79	77	85
32R	122	122	122	121	122	122	126	128	123	122	119	119	120	119	114
49	142	143	143	142	143	142	145	144	145	140	141	143	143	140	142
50	120	121	120	122	121	119	119	120	118	116	116	116	117	115	115
51	86	89	89	88	88	66	60	72	85	54	57	149	106	83	91
52	132	131	130	132	172	138	142	135	132	175	119	190	118	115	119
53	181	180	180	176	157	176	146	155	160	77	87	87	88	95	102
54	130	128	129	128	131	144	128	127	131	162	130	170	143	140	133
55	103	104	102	103	151	72	72	77	85	67	69	88	98	88	95
56	130	133	131	132	134	131	126	131	130	117	122	118	123	123	127
57	127	148	145	146	162	169	143	138	160	127	120	169	154	124	126
58	101	102	102	101	98	82	76	80	90	98	86	76	77	98	105
59	111	111	111	111	117	124	110	111	112	110	110	113	111	112	118
60	110	111	111	110	111	107	107	109	109	105	106	110	109	107	107
61	126	128	127	126	122	110	124	121	124	122	121	133	122	123	128
62	120	121	121	120	122	120	119	121	122	120	121	121	122	123	119
63	130	131	131	132	131	128	125	130	129	127	127	129	130	129	127
64	131	132	132	132	131	126	125	130	126	140	140	145	142	140	142
65	138	139	137	138	139	137	124	138	139	138	137	139	139	138	137
66	118	111	116	118	107	94	88	108	118	110	114	83	891	78	86
67	137	126	125	126	182	153	155	179	151	135	120	137	181	167	166
68	129	127	128	129	142	136	134	134	132	130	129	134	130	127	127

Attachment B

Laboratory Analytical Reports

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	June 2, 2023 11:30
	4330 Lewis Road, Suite 1	Date Issued:	June 9, 2023 15:56
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 06/02/2023 11:30. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTATS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	June 2, 2023 11:30
	4330 Lewis Road, Suite 1	Date Issued:	June 9, 2023 15:56
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
84	23F0137-01	Air	06/01/2023 10:38	06/02/2023 11:30
86	23F0137-02	Air	06/01/2023 10:47	06/02/2023 11:30
90	23F0137-03	Air	06/01/2023 10:57	06/02/2023 11:30
100	23F0137-04	Air	06/01/2023 11:07	06/02/2023 11:30
89	23F0137-05	Air	06/01/2023 11:23	06/02/2023 11:30
34	23F0137-06	Air	06/01/2023 11:44	06/02/2023 11:30

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 84	Sub Description/Location:		Final Vacuum(in Hg): 5.0
Sample ID: 23F0137-01	Canister ID: 063-00214::00277		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 6/1/2023 10:38			Flow Controller ID:
Campical 6, 1/2020 10:00			

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as i	eceived basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	390	90.0	90.0		9	1	6/5/23 11:03	MER

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as receiv	ed basis			
		Vol%		EPA 3C			D. () (T)	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	12.0	0.45	0.45		9	1	6/5/23 11:03	MER
Carbon dioxide, as received	48.3	0.45	0.45		9	1	6/5/23 11:03	MER
Oxygen (O2), as received	0.79	0.45	0.45		9	1	6/5/23 11:03	MER
Hydrogen (H2), as received	8.71	0.54	0.54		27	1	6/5/23 17:00	MER
Nitrogen (N2), as received	24.3	9.00	9.00		9	1	6/5/23 11:03	MER
Carbon Monoxide, as received	0.04	0.009	0.009		9	1	6/5/23 11:03	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	191000	10500	26200		610000	34000	84000	52500	1	6/6/23 15:39	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			90.0		ł	30-120				6/6/23 15:39	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 86	Sub Description/Location:		Final Vacuum(in Hg): 4.6
Sample ID: 23F0137-02	Canister ID: 063-00207::00300		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 6/1/2023 10:47			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as rec	eived basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	126	90.0	90.0		9	1	6/5/23 11:54	MER

	Vola	-	c Compour	ds by GC/TCD - Unadjusted, as received EPA 3C	basis			
		Vol%					Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	33.3	0.45	0.45		9	1	6/5/23 11:54	MER
Carbon dioxide, as received	48.3	0.45	0.45		9	1	6/5/23 11:54	MER
Oxygen (O2), as received	0.97	0.45	0.45		9	1	6/5/23 11:54	MER
Hydrogen (H2), as received	2.29	0.18	0.18		9	1	6/5/23 11:54	MER
Nitrogen (N2), as received	9.49	9.00	9.00		9	1	6/5/23 11:54	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	6/5/23 11:54	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	113000	2330	5830		360000	7500	19000	11700	1	6/6/23 17:10	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			94.8		8	30-120				6/6/23 17:10	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 90	Sub Description/Location:		Final Vacuum(in Hg): 4.4
Sample ID: 23F0137-03	Canister ID: 063-00026::1151		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 6/1/2023 10:57			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as received	d basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	125	90.0	90.0		9	1	6/5/23 13:20	MER

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as received	basis			
		Vol%		EPA 3C			D. () (T)	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	36.3	0.45	0.45		9	1	6/5/23 13:20	MER
Carbon dioxide, as received	53.0	0.45	0.45		9	1	6/5/23 13:20	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	6/5/23 13:20	MER
Hydrogen (H2), as received	2.47	0.18	0.18		9	1	6/5/23 13:20	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	6/5/23 13:20	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	6/5/23 13:20	MER

			Volatile C	Organic Compo EPA TO-1		S					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	207000	4670	11700		660000	15000	37000	23300	1	6/6/23 18:43	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			92.6		8	30-120				6/6/23 18:43	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS	6	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 100	Sub Description/Location:		Final Vacuum(in Hg): 5.0
Sample ID: 23F0137-04	Canister ID: 063-00009::10039		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 6/1/2023 11:07			Flow Controller ID:
Campica. 0/ 1/2020 11.0/			

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as r	eceived basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	ND	90.0	90.0		9	1	6/5/23 16:12	MER

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as received	basis			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	41.2	0.45	0.45		9	1	6/5/23 16:12	MER
Carbon dioxide, as received	48.2	0.45	0.45		9	1	6/5/23 16:12	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	6/5/23 16:12	MER
Hydrogen (H2), as received	4.20	0.18	0.18		9	1	6/5/23 16:12	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	6/5/23 16:12	MER
Carbon Monoxide, as received	ND	0.009	0.009		9	1	6/5/23 16:12	MER

			Volatile (Organic Compo EPA TO-1		S					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	40900	778	1940		130000	2500	6200	3890	1	6/6/23 20:15	DFH
Surrogate(s)		% Re	covery		% Re	covery Lin	nits				
4-Bromofluorobenzene (Surr)			95.4		8	30-120				6/6/23 20:15	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 89	Sub Description/Location:		Final Vacuum(in Hg): 5.6
Sample ID: 23F0137-05	Canister ID: 063-00110::12785		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 6/1/2023 11:23			Flow Controller ID:
·			

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted	, as received basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	939	90.0	90.0		9	1	6/6/23 11:57	MER

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as receiv	ed basis			
		Vol%		EPA 3C			Dete/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	0.66	0.45	0.45		9	1	6/6/23 11:57	MER
Carbon dioxide, as received	67.6	0.90	0.90		18	1	6/6/23 14:37	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	6/6/23 11:57	MER
Hydrogen (H2), as received	37.6	3.24	3.24		162	1	6/6/23 15:03	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	6/6/23 11:57	MER
Carbon Monoxide, as received	0.09	0.009	0.009		9	1	6/6/23 11:57	MER

			Volatile C	Organic Compo EPA TO-1		S					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	434000	7000	17500		1400000	22000	56000	35000	1	6/7/23 14:31	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			92.0		8	30-120				6/7/23 14:31	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 34	Sub Description/Location:		Final Vacuum(in Hg): 11.8
Sample ID: 23F0137-06	Canister ID: 063-00155::12850		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 6/1/2023 11:44			Flow Controller ID:
Cumpica. 0/ 1/2020 11.44			

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis										
		ppmv		ALT-145			Date/Time			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst		
Carbon Monoxide, as received	1260	90.0	90.0		9	1	6/6/23 12:55	MER		

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basi	s			
		Vol%		EPA 3C				Analyst
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	
Methane, as received	0.70	0.45	0.45		9	1	6/6/23 12:55	MER
Carbon dioxide, as received	76.6	0.90	0.90		18	1	6/6/23 15:18	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	6/6/23 12:55	MER
Hydrogen (H2), as received	20.8	2.16	2.16		108	1	6/6/23 15:40	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	6/6/23 12:55	MER
Carbon Monoxide, as received	0.13	0.009	0.009		9	1	6/6/23 12:55	MER

Volatile Organic Compounds by GCMS EPA TO-15										
		ppbv				ug/M ³			Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ Dilutio	n PF	Analyzed	Analyst
Benzene	46400000	5040000	12600000)	150000000	160000004	400000002520000	0 1	6/8/23 20:07	DFH
Surrogate(s)		% Re	covery		% Re	covery Lim	nits			
4-Bromofluorobenzene (Surr)			116		8	30-120			6/8/23 20:07	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Corr	pounds by GC/TCD - Unadjusted	d, as received basis	Preparation Method:	No Prep VOC GC A	Air
23F0137-01	1.00 mL / 1.00 mL	ALT-145	BGF0135	SGF0127	AG00026
23F0137-02	1.00 mL / 1.00 mL	ALT-145	BGF0135	SGF0127	AG00026
23F0137-03	1.00 mL / 1.00 mL	ALT-145	BGF0135	SGF0127	AG00026
23F0137-04	1.00 mL / 1.00 mL	ALT-145	BGF0135	SGF0127	AG00026
23F0137-05	1.00 mL / 1.00 mL	ALT-145	BGF0135	SGF0190	AG00026
23F0137-06	1.00 mL / 1.00 mL	ALT-145	BGF0135	SGF0190	AG00026
23F0137-01	1.00 mL / 1.00 mL	EPA 3C	BGF0135	SGF0127	AG00026
23F0137-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGF0135	SGF0127	AG00026
23F0137-02	1.00 mL / 1.00 mL	EPA 3C	BGF0135	SGF0127	AG00026
23F0137-03	1.00 mL / 1.00 mL	EPA 3C	BGF0135	SGF0127	AG00026
23F0137-04	1.00 mL / 1.00 mL	EPA 3C	BGF0135	SGF0127	AG00026
23F0137-05	1.00 mL / 1.00 mL	EPA 3C	BGF0135	SGF0190	AG00026
23F0137-05RE1	1.00 mL / 1.00 mL	EPA 3C	BGF0135	SGF0190	AG00026
23F0137-05RE2	1.00 mL / 1.00 mL	EPA 3C	BGF0135	SGF0190	AG00026
23F0137-06	1.00 mL / 1.00 mL	EPA 3C	BGF0135	SGF0190	AG00026
23F0137-06RE1	1.00 mL / 1.00 mL	EPA 3C	BGF0135	SGF0190	AG00026
23F0137-06RE2	1.00 mL / 1.00 mL	EPA 3C	BGF0135	SGF0190	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	No Prep VOC Air	
23F0137-01	400 mL / 400 mL	EPA TO-15	BGF0010	SGF0178	AE30194
23F0137-02	400 mL / 400 mL	EPA TO-15	BGF0010	SGF0178	AE30194
23F0137-03	400 mL / 400 mL	EPA TO-15	BGF0010	SGF0178	AE30194
23F0137-04	400 mL / 400 mL	EPA TO-15	BGF0010	SGF0178	AE30194
23F0137-05	400 mL / 400 mL	EPA TO-15	BGF0010	SGF0233	AE30194
23F0137-06	400 mL / 400 mL	EPA TO-15	BGF0010	SGF0296	AE30194

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Analyta		eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGF0010 - No Prep VO	C Air									
Blank (BGF0010-BLK1)					Prep	ared & A	Analyzed	: 06/01/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene (Surr)	4.53		ppbv	5.00		90.6	80-120			
LCS (BGF0010-BS1)					Prep	ared & A	Analyzed	: 06/01/2	023	
1,1,1-Trichloroethane	4.49	0.5	ppbv	5.00		89.8	70-130			
1,1,2,2-Tetrachloroethane	4.68	0.5	ppbv	5.00		93.6	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha	3.89	0.5	ppbv	5.00		77.8	70-130			
ne 1,1,2-Trichloroethane	4.69	0.5	ppbv	5.00		93.8	70-130			
1,1,2-mcmoroethane	4.69	0.5	ppbv	5.00 5.00		93.8 85.4	70-130			
1,1-Dichloroethylene	4.27	0.5	ppbv	5.00		88.0	70-130			
1,2,4-Trimethylbenzene	4.70	0.5	ppbv	5.00		94.0	70-130			
1,2-Dibromoethane (EDB)	4.46	0.5	ppbv	5.00		89.2	70-130			
1,2-Dichlorobenzene	4.60	0.5	ppbv	5.00		92.0	70-130			
1,2-Dichloroethane	4.61	0.5	ppbv	5.00		92.2	70-130			
1,2-Dichloropropane	4.76	0.5	ppbv	5.00		95.2	70-130			
1,2-Dichlorotetrafluoroethane	4.50	0.5	ppbv	5.00		90.0	70-130			
1,3,5-Trimethylbenzene	4.58	0.5	ppbv	5.00		91.6	70-130			
1,3-Butadiene	4.70	0.5	ppbv	5.00		94.0	70-130			
1,3-Dichlorobenzene	4.47	0.5	ppbv	5.00		89.4	70-130			
1,4-Dichlorobenzene	4.48	0.5	ppbv	5.00		89.6	70-130			
1,4-Dioxane	4.86	0.5	ppbv	5.00		97.2	70-130			
2-Butanone (MEK)	4.34	0.5	ppbv	5.00		86.8	70-130			
4-Methyl-2-pentanone (MIBK)	4.91	0.5	ppbv	5.00		98.2	70-130			
Allyl chloride	4.34	0.5	ppbv	5.00		86.8	70-130			
Benzene	4.58	0.5	ppbv	5.00		91.6	70-130			
Benzyl Chloride	3.65	0.5	ppbv	5.00		73.0	70-130			
Bromodichloromethane	4.12	0.5	ppbv	5.00		82.4	70-130			
Bromoform	0.38	0.5	ppbv	5.00		7.60	70-130			L
Bromomethane	5.02	0.5	ppbv	5.00		100	70-130			
Carbon Disulfide	3.64	0.5	ppbv	5.00		72.8	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

				linaipy	Analyti					
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGF0010 - No Prep V	OC Air									
LCS (BGF0010-BS1)					Prep	bared & A	Analyzed	: 06/01/2	023	
Carbon Tetrachloride	4.36	0.5	ppbv	5.00		87.2	70-130			
Chlorobenzene	4.35	0.5	ppbv	5.00		87.0	70-130			
Chloroethane	4.62	0.5	ppbv	5.00		92.4	70-130			
Chloroform	4.34	0.5	ppbv	5.00		86.8	70-130			
Chloromethane	4.89	0.5	ppbv	5.00		97.8	70-130			
cis-1,2-Dichloroethylene	4.30	0.5	ppbv	5.00		86.0	70-130			
cis-1,3-Dichloropropene	4.82	0.5	ppbv	5.00		96.4	70-130			
Cyclohexane	4.72	0.5	ppbv	5.00		94.4	70-130			
Dichlorodifluoromethane	4.42	0.5	ppbv	5.00		88.4	70-130			
Ethyl acetate	4.37	0.5	ppbv	5.00		87.4	70-130			
Ethylbenzene	4.60	0.5	ppbv	5.00		92.0	70-130			
Heptane	5.08	0.5	ppbv	5.00		102	70-130			
Hexane	4.70	0.5	ppbv	5.00		94.0	70-130			
m+p-Xylenes	9.03	1	ppbv	10.0		90.3	70-130			
Methylene chloride	4.54	1	ppbv	5.00		90.8	70-130			
Methyl-t-butyl ether (MTBE)	4.36	0.5	ppbv	5.00		87.2	70-130			
Naphthalene	3.66	0.5	ppbv	5.00		73.2	60-140			
o-Xylene	4.52	0.5	ppbv	5.00		90.4	70-130			
Propylene	4.87	1	ppbv	5.00		97.4	70-130			
Styrene	4.56	0.5	ppbv	5.00		91.2	70-130			
Tetrachloroethylene (PCE)	4.10	0.5	ppbv	5.00		82.0	70-130			
Tetrahydrofuran	5.20	0.5	ppbv	5.00		104	70-130			
Toluene	4.67	0.5	ppbv	5.00		93.4	70-130			
trans-1,2-Dichloroethylene	3.69	0.5	ppbv	5.00		73.8	70-130			
trans-1,3-Dichloropropene	4.34	0.5	ppbv	5.00		86.8	70-130			
Trichloroethylene	4.64	0.5	ppbv	5.00		92.8	70-130			
Trichlorofluoromethane	4.75	0.5	ppbv	5.00		95.0	70-130			
√inyl acetate	4.58	0.5	ppbv	5.00		91.6	70-130			
Vinyl bromide	4.47	0.5	ppbv	5.00		89.4	70-130			
Vinyl chloride	4.70	0.5	ppbv	5.00		94.0	70-130			
Surr: 4-Bromofluorobenzene (Surr)	5.02		ppbv	5.00		100	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical											
	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGF0010 - No Prep VO	C Air										
LCS Dup (BGF0010-BSD1)					Prep	bared &	Analyzed	: 06/01/20	023		
1,1,1-Trichloroethane	4.50	0.5	ppbv	5.00		90.0	70-130	0.222	25		
1,1,2,2-Tetrachloroethane	4.78	0.5	ppbv	5.00		95.6	70-130	2.11	25		
1,1,2-Trichloro-1,2,2-trifluoroetha ne	3.75	0.5	ppbv	5.00		75.0	70-130	3.66	25		
1,1,2-Trichloroethane	4.67	0.5	ppbv	5.00		93.4	70-130	0.427	25		
1,1-Dichloroethane	4.26	0.5	ppbv	5.00		85.2	70-130	0.234	25		
1,1-Dichloroethylene	4.35	0.5	ppbv	5.00		87.0	70-130	1.14	25		
1,2,4-Trimethylbenzene	4.81	0.5	ppbv	5.00		96.2	70-130	2.31	25		
1,2-Dibromoethane (EDB)	4.59	0.5	ppbv	5.00		91.8	70-130	2.87	25		
1,2-Dichlorobenzene	4.68	0.5	ppbv	5.00		93.6	70-130	1.72	25		
1,2-Dichloroethane	4.62	0.5	ppbv	5.00		92.4	70-130	0.217	25		
1,2-Dichloropropane	4.81	0.5	ppbv	5.00		96.2	70-130	1.04	25		
1,2-Dichlorotetrafluoroethane	4.50	0.5	ppbv	5.00		90.0	70-130	0.00	25		
1,3,5-Trimethylbenzene	4.68	0.5	ppbv	5.00		93.6	70-130	2.16	25		
1,3-Butadiene	4.52	0.5	ppbv	5.00		90.4	70-130	3.90	25		
1,3-Dichlorobenzene	4.59	0.5	ppbv	5.00		91.8	70-130	2.65	25		
1,4-Dichlorobenzene	4.62	0.5	ppbv	5.00		92.4	70-130	3.08	25		
1,4-Dioxane	4.84	0.5	ppbv	5.00		96.8	70-130	0.412	25		
2-Butanone (MEK)	4.28	0.5	ppbv	5.00		85.6	70-130	1.39	25		
4-Methyl-2-pentanone (MIBK)	4.92	0.5	ppbv	5.00		98.4	70-130	0.203	25		
Allyl chloride	4.11	0.5	ppbv	5.00		82.2	70-130	5.44	25		
Benzene	4.62	0.5	ppbv	5.00		92.4	70-130	0.870	25		
Benzyl Chloride	3.78	0.5	ppbv	5.00		75.6	70-130	3.50	25		
Bromodichloromethane	4.13	0.5	ppbv	5.00		82.6	70-130	0.242	25		
Bromoform	0.39	0.5	ppbv	5.00		7.80	70-130	2.60	25	L	
Bromomethane	4.94	0.5	ppbv	5.00		98.8	70-130	1.61	25		
Carbon Disulfide	3.49	0.5	ppbv	5.00		69.8	70-130	4.21	25	L	
Carbon Tetrachloride	4.41	0.5	ppbv	5.00		88.2	70-130	1.14	25		
Chlorobenzene	4.46	0.5	ppbv	5.00		89.2	70-130	2.50	25		
Chloroethane	4.56	0.5	ppbv	5.00		91.2	70-130	1.31	25		
Chloroform	4.33	0.5	ppbv	5.00		86.6	70-130	0.231	25		
Chloromethane	4.86	0.5	ppbv	5.00		97.2	70-130	0.615	25		
cis-1,2-Dichloroethylene	4.31	0.5	ppbv	5.00		86.2	70-130	0.232	25		
cis-1,3-Dichloropropene	4.90	0.5	ppbv	5.00		98.0	70-130	1.65	25		
			••								

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
		,	

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

			En	ithalpy	Analyt	cal				
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGF0010 - No Prep VC	DC Air									
LCS Dup (BGF0010-BSD1)					Prep	bared & /	Analyzed	: 06/01/20	023	
Cyclohexane	4.75	0.5	ppbv	5.00		95.0	70-130	0.634	25	
Dichlorodifluoromethane	4.38	0.5	ppbv	5.00		87.6	70-130	0.909	25	
Ethyl acetate	4.33	0.5	ppbv	5.00		86.6	70-130	0.920	25	
Ethylbenzene	4.69	0.5	ppbv	5.00		93.8	70-130	1.94	25	
Heptane	5.12	0.5	ppbv	5.00		102	70-130	0.784	25	
Hexane	4.71	0.5	ppbv	5.00		94.2	70-130	0.213	25	
m+p-Xylenes	9.25	1	ppbv	10.0		92.5	70-130	2.41	25	
Methylene chloride	4.38	1	ppbv	5.00		87.6	70-130	3.59	25	
Methyl-t-butyl ether (MTBE)	4.37	0.5	ppbv	5.00		87.4	70-130	0.229	25	
Naphthalene	3.74	0.5	ppbv	5.00		74.8	60-140	2.16	25	
o-Xylene	4.67	0.5	ppbv	5.00		93.4	70-130	3.26	25	
Propylene	4.84	1	ppbv	5.00		96.8	70-130	0.618	25	
Styrene	4.64	0.5	ppbv	5.00		92.8	70-130	1.74	25	
Tetrachloroethylene (PCE)	4.21	0.5	ppbv	5.00		84.2	70-130	2.65	25	
Tetrahydrofuran	5.19	0.5	ppbv	5.00		104	70-130	0.192	25	
Toluene	4.73	0.5	ppbv	5.00		94.6	70-130	1.28	25	
rans-1,2-Dichloroethylene	3.67	0.5	ppbv	5.00		73.4	70-130	0.543	25	
trans-1,3-Dichloropropene	4.35	0.5	ppbv	5.00		87.0	70-130	0.230	25	
Trichloroethylene	4.66	0.5	ppbv	5.00		93.2	70-130	0.430	25	
Trichlorofluoromethane	4.71	0.5	ppbv	5.00		94.2	70-130	0.846	25	
/inyl acetate	4.52	0.5	ppbv	5.00		90.4	70-130	1.32	25	
Vinyl bromide	4.50	0.5	ppbv	5.00		90.0	70-130	0.669	25	
Vinyl chloride	4.71	0.5	ppbv	5.00		94.2	70-130	0.213	25	
Surr: 4-Bromofluorobenzene	5.07		ppbv	5.00		101	70-130			

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

Batch BGF0135 - No Prep VOC GC Air

Blank (BGF0135-BLK1)					Prepared &	Analyzed:	06/05/202	23	
Methane	<	0.05	Vol%						
Carbon dioxide	<	0.05	Vol%						
Oxygen (O2)	<	0.05	Vol%						
Nitrogen (N2)	<	1.00	Vol%						
Hydrogen (H2)	<	0.02	Vol%						
Carbon Monoxide	<	10.0	ppmv						
Carbon Monoxide	<	0.001	Vol%						
LCS (BGF0135-BS1)					Prepared &	Analyzed:	06/05/202	23	
Methane	4650	500	ppmv	5000	93.0	0-200			
Methane	4650	0.05	ppmv	5000	93.0	80-120			
Carbon dioxide	5820	500	ppmv	5000	116	0-200			
Carbon dioxide	5820	0.05	ppmv	5000	116	80-120			
Oxygen (O2)	5170	500	ppmv	5000	103	0-200			
Dxygen (O2)	5170	0.05	ppmv	5000	103	80-120			
Nitrogen (N2)	5500	2000	ppmv	5000	110	0-200			
lydrogen (H2)	5860	200	ppmv	5100	115	0-200			
Nitrogen (N2)	5500	1	ppmv	5000	110	80-120			
Hydrogen (H2)	5860	0.02	ppmv	5100	115	80-120			
Carbon Monoxide	4870	0.001	ppmv	5000	97.3	80-120			
Carbon Monoxide	4870	10	ppmv	5000	97.3	0-200			
Duplicate (BGF0135-DUP1)		So	urce: 23F	0137-01	Prepared &	Analyzed:	06/05/202	23	
Methane	12.0	0.45	Vol%		12.0		0.0616	5	
Methane	120000	4500	ppmv		120000		0.0616	25	
Carbon dioxide	485000	4500	ppmv		483000		0.225	25	
Carbon dioxide	48.5	0.45	Vol%		48.3		0.225	5	
Dxygen (O2)	7800	4500	ppmv		7880		1.09	25	
Dxygen (O2)	0.78	0.45	Vol%		0.79		1.09	5	
Hydrogen (H2)	90500	1800	ppmv		91000		0.552	25	
Nitrogen (N2)	244000	18000	ppmv		243000		0.247	25	
Nitrogen (N2)	24.4	9.00	Vol%		24.3		0.247	5	
Carbon Monoxide	402	90.0	ppmv		390		2.98	25	
Carbon Monoxide	0.04	0.009	Vol%		0.04		2.98	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGF0135 - No Prep VOC G	C Air										
Duplicate (BGF0135-DUP2)		Sou	rce: 23F	0137-02	Prep	pared & A	Analyzeo	1: 06/05/2	023		

Duplicate (DOI 0100-DOI 2)		000			alyzea. 00/00/202	.0
Methane	330000	4500	ppmv	333000	0.933	25
Methane	33.0	0.45	Vol%	33.3	0.933	5
Carbon dioxide	475000	4500	ppmv	483000	1.68	25
Carbon dioxide	47.5	0.45	Vol%	48.3	1.68	5
Oxygen (O2)	0.96	0.45	Vol%	0.97	0.845	5
Oxygen (O2)	9620	4500	ppmv	9700	0.845	25
Hydrogen (H2)	23000	1800	ppmv	22900	0.347	25
Hydrogen (H2)	2.30	0.18	Vol%	2.29	0.347	5
Nitrogen (N2)	9.39	9.00	Vol%	9.49	1.07	5
Nitrogen (N2)	93900	18000	ppmv	94900	1.07	25
Carbon Monoxide	0.01	0.009	Vol%	0.01	3.92	5
Carbon Monoxide	122	90.0	ppmv	126	3.92	25
Duplicate (BGF0135-DUP3)		So	urce: 23F0137-0	3 Prepared & An	alyzed: 06/05/202	23
Methane	362000	4500	ppmv	363000	0.0810	25
Methane	36.2	0.45	Vol%	36.3	0.0810	5
Carbon dioxide	52.9	0.45	Vol%	53.0	0.225	5
Carbon dioxide	529000	4500	ppmv	530000	0.225	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Hydrogen (H2)	24500	1800	ppmv	24700	0.982	25
Hydrogen (H2)	2.45	0.18	Vol%	2.47	0.982	5
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Carbon Monoxide	125	90.0	ppmv	125	0.360	25
Carbon Monoxide	0.01	0.009	Vol%	0.01	0.360	5
Duplicate (BGF0135-DUP4)		So	urce: 23F0137-0	4 Prepared & An	alyzed: 06/05/202	23
Methane	412000	4500	ppmv	412000	0.134	25
Methane	41.2	0.45	Vol%	41.2	0.134	5
Carbon dioxide	478000	4500	ppmv	482000	0.837	25
Carbon dioxide	47.8	0.45	Vol%	48.2	0.837	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

			En	thalpy	Analyti	cal					
	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGF0135 - No Prep VC	C GC Air										
Duplicate (BGF0135-DUP4)		So	urce: 23F	0137-04	Prep	ared & A	Analyzed	1: 06/05/20)23		
Hydrogen (H2)	41800	1800	ppmv		4200	0		0.490	25		
Nitrogen (N2)	<	9.00	Vol%		<9.0	D		NA	5		
Hydrogen (H2)	4.18	0.18	Vol%		4.20			0.490	5		
Carbon Monoxide	<	90.0	ppmv		<90.	<90.0		NA	25		
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5		
Duplicate (BGF0135-DUP5)		So	urce: 23F	0137-05	Prep	ared & A	Analyzed	I: 06/06/20)23		
Methane	0.66	0.45	Vol%		0.66	;		0.0464	5		
Methane	6600	4500	ppmv		6600)		0.0464	25		
Carbon dioxide	654000	4500	ppmv		65400	00		0.00893	25		
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25		
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5		
Hydrogen (H2)	388000	1800	ppmv		38800	00		0.0420	25		

Carbon Monoxide	0.10	0.009	Vol%	0.09	1.59	5
Duplicate (BGF0135-DUP6)		So	urce: 23F0137-06	Prepared & A	Analyzed: 06/06/202	3
Methane	0.70	0.45	Vol%	0.70	0.329	5
Methane	7020	4500	ppmv	7000	0.329	25
Carbon dioxide	726000	4500	ppmv	725000	0.186	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Hydrogen (H2)	230000	1800	ppmv	229000	0.212	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Carbon Monoxide	0.13	0.009	Vol%	0.13	1.07	5
Carbon Monoxide	1280	90.0	ppmv	1260	1.07	25

<18000

<9.00

939

NA

NA

1.59

25

5

25

18000

9.00

90.0

<

<

954

ppmv

ppmv

Vol%

Nitrogen (N2)

Nitrogen (N2)

Carbon Monoxide

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	

Batch BGF0135 - No Prep VOC GC Air

Duplicate (BGF0135-DUP7)		So	urce: 23F0134-01	Prepared & Ar	nalyzed: 06/06/20	23
Methane	45.3	0.45	Vol%	45.2	0.202	5
Methane	453000	4500	ppmv	452000	0.202	25
Carbon dioxide	43.2	0.45	Vol%	43.0	0.471	5
Carbon dioxide	432000	4500	ppmv	430000	0.471	25
Oxygen (O2)	0.48	0.45	Vol%	0.48	1.34	5
Oxygen (O2)	4760	4500	ppmv	4830	1.34	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
lydrogen (H2)	0.40	0.18	Vol%	0.42	4.49	5
Nitrogen (N2)	55500	18000	ppmv	55800	0.463	25
Hydrogen (H2)	3980	1800	ppmv	4170	4.49	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Service 4330 Lewis Road	es - Harrisburg, PA I, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17	/111		
Submitted To:	Tom Lock		Project Number:	07223016.00
Client Site I.D.:	Bristol	ristol Pur		07-SO04485
Code		Description	Laboratory ID	Expires
MdDOE		Maryland DE Drinking Water	341	12/31/2023
NC		North Carolina DENR	495	12/31/2023
NCDEQ		North Carolina DEQ	495	12/31/2023
NCDOH		North Carolina Department of Health	51714	07/31/2023
NYDOH		New York DOH Drinking Water	12069	04/01/2024
PADEP		NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC		South Carolina Dept of Health and Environme	ntal 93016	06/14/2023
TXCEQ		Texas Comm on Environmental Quality #T104	704 T104704576	05/31/2024
VELAP		NELAP-Virginia Certificate #12333	460021	06/14/2023
WVDEP		West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

L	LCS recovery is outside of established acceptance limits
RPD	Relative Percent Difference
Qual	Qualifers
-RE	Denotes sample was re-analyzed
PF	Preparation Factor
MDL	Method Detection Limit
LOQ	Limit of Quantitation

ppbv parts per billion by volume

TIC

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

AIR ANALYSIS

TOT	meriy Air, y	vuler or 5	on La	0010101	162			CHAIN	OF CUS	TODY	E	quipn	nent due	e 6/30/20	023		F	age	e 1	of 3
CON	MPANY NAME	: SCS Fiel	d Servi	ces - Harr	risbu	irg INVOI	CE TO:	Same				PROJ	ECT NAM	IE/Quote	#: Bristo	bl		1		
CON	NTACT:					INVOI	CE CONT	ACT:				SITE		SALST	DL	-		1		
ADD	RESS:					INVOI	CE ADDR	ESS:							122301	6.00	0			
PHC	DNE #:					INVOI	CE PHON	E #:				P.O. #	# :	f.				 		
FAX	: #:			EN	ΛAIL							Pretre	eatment Pr	rogram:						1
ls sa	ample for comp	oliance rep	orting?	VES NO	D	Regulatory	State: 🐧	A Is	sample fro	m a chlori	nated sup	ply?	YES 🤇	NO PV	VS I.D. #:					ī
SAN	IPLER NAME	(PRINT):	LOGA	r Cu	ut	ANE SAMP	LER SIGN	ATURE:	$\langle \langle$			Turn	Around T	ime: Circ	cle: 10 (5 Days)	or _	_ D	ay(s)
Matrix	Codes: AA=Indoc	or/Ambient Air	SG=Soil	Gas LV=Lar	ndfill/	Vent Gas OT=Ot	her		0				063	3-23E-001	8			×		
		Regulator	Info	Canister Ir	nform	nation	1		Sampling	Start Inform	nation		Sampling	Stop Inforn	nation		Codes)	ANA	ALYS	SIS
	CLIENT						LAB	LAB	Barometric	Pres. (in H	1	1	Barometrie	c Pres. (in H	18 1 COLM	r	(See Co	00	5	
	SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in ^{Hg)}	Receiving Canister Vacuum (in ^{Hg)}	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in ^{Hg)}	Starting Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in ^{Hg)}	Ending Sample Temp °F	Matrix (s	145	3C TO-15	Benzene only
1)	84			277	1.4	BC230518-01	30	5:0	61	10341	30	17571	611	1034	10	1.75.6		x		x
2)	86			300	1.4	BC230518-01	30	4.6	6/1	10:43	30	149.7	6-1	10:47	10	1.641	LG	x	x	x
3)	90			1151	1.4	BC230518-01	30	4.4	6/1	10:53	30	151.6	6-1	10:51	10	1515	LG	x	x	x
4)	100			10039	1.4	BC230518-01	30	5.0	6-1	11:03	30	159.1	6-1	11:07	10	159.0	LG	x	x	x
RELIN	NQUISHED:	P			REC	EIVED:		DAT	E / TIME	QC Data P	Package LA	BUSE	EONLY 2	310 20	0.1 ND_	Icz				
		- 6	11		1	EIVED:	how 6.	2-23 1	E / TIME	Level II Level III			Field S	ervices	23F	0137				
		lef G	0,11							Level IV				023 Du	ıe: 06/09	/2023	1			

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

AIR ANALYSIS

Tormeny An, Water & Son Euboratories	CHAIN	OF CUS	TODY	Ec	quipm	ent due	e 6/30/20	023		Ρ	ag	e 2	of 3
COMPANY NAME: SCS Field Services - Harrisburg	INVOICE TO: Sam	е			PROJ	ECT NAN	IE/Quote a	#: Bristo	ol				
CONTACT:	INVOICE CONTACT:				SITEN	NAME: 💦	E BRISTOL						
ADDRESS:	ADDRESS: INVOICE ADDRESS: PROJECT NUMBER: 07223				72230	16.00	>						
PHONE #:	INVOICE PHONE #:				P.O. #	:	1						
FAX #: EMAIL:					Pretre	atment Pr	ogram:						
Is sample for compliance reporting?	latory State: VA	s sample fro	m a chlori	nated sup	ply?	YES (NO PV	VS I.D. #:					
SAMPLER NAME (PRINT): LOGAN CULLARS	SAMPLER SIGNATURE	5			Turn A	Around T	ime: Cire	cle: 10 🤇	5 Days		or _	_ C	Day(s)
Matrix Codes: AA=Indoor/Ambient Air SG=Soil Gas LV=Landfill/Vent Ga	OT=Other	0				063	3-23E-001	8					
Regulator Info Canister Information		Sampling S	Start Inform	ation	2	Sampling	Stop Inform	nation		Codes)	ANA		SIS
CLIENT	LAB LAB		Pres. (in Hg			Barometrie	: Pres. (in H	T		(See Co	0		
SAMPLE I.D. Flow Cal Controller Flow ID (mL/min) Canister ID 55 Cleaning	Outgoing Receiving Canister Canister Vacuum (in Vacuum	(in	Start Time	Initial Canister Vacuum (in	Starting Sample		Stop Time	Final Canister Vacuum (in	Ending Sample	Matrix (s	lt 145 (1.0-15 Benzene only
ID (m⊥/min) Canister ID öö Cleanin	g Batch ID Hg) Hg)	Start Date	(24hr clock)	Hg)	Temp °F	Stop Date	(24hr clock)	Hg)	Temp °F	2	4	m F	- 00 0
1) 89 12785 1.4 BC23	⁰⁵¹⁸⁻⁰¹ 30 5.6	6-1	11:19	30	156	6-1	11:23	10	157.	LG	x	x	x
2) <u>34</u> 12850 1.4 BC23	0518-01 30	36-1	11:41	30	199.6	6-1	(1:44	15	199.5	LG	x	x	x
3) / 3 12851 1.4 BC23	0518-01 30	6-1				6-1				LG	x	x	x
4) 2 5 13368 1.4 BC23	0518-01 30									LG	x	x	x
RELINQUISHED:	Di	ATE / TIME	QC Data P			ONLY Scn (310 2	10.1 n	io Ic	و	1		
RELINQUISHED DATE / TIME RECEIVED:		ATE / TIME	Level I				<u>di</u>	005	1175				
6/1 4:00	Sen 6-2-23 11 30		Level II				ervices	23F(J157				
RELINQUISHED: DATE / TIME RECEIVED:	D	ATE / TIME	Level III		Bristo				10 0 0000				
Fldge 6			Level IV		Recd:	06/02/2	023 Du	ie: 06/09/	2023	-			

AIR ANALYSIS

formerly Air, Water & Soil Laboratories	CHAIN	OF CUSTODY E	quipment due 6/30/2023	Page 3 of 3
COMPANY NAME: SCS Field Services - Harrisburg	INVOICE TO: Same	e	PROJECT NAME/Quote #: Bristol	
CONTACT:	INVOICE CONTACT:		SITE NAME: BRESTOL	
ADDRESS:	INVOICE ADDRESS:		PROJECT NUMBER: 072230	600
PHONE #:	INVOICE PHONE #:		P.O. #:	0.00
FAX #: EMAIL:			Pretreatment Program:	e di atawa kala kulon da kewakila senerah
s sample for compliance reporting? (YES NO Reg	ulatory State: VA	sample from a chlorinated sup	ply? YES NO PWS I.D. #:	
SAMPLER NAME (PRINT): LOGAN CULOON	SAMPLER SIGNATURE:	SC	Turn Around Time: Circle: 10 5	Days or _ Day(s)
Aatrix Codes: AA=Indoor/Ambient Air SG=Soil Gas LV=Landfill/Vent G	Gas OT=Other	0	063-23E-0018	
Regulator Info Canister Information	1	Sampling Start Information	Sampling Stop Information	
CLIENT SAMPLE I.D. Flow ID (mL/min) Canister ID	ILAB LAB Outgoing Receiving Canister Canister Vacuum (in Hg) Hg)	Canister	Sample Stop Time Vacuum (in Sa	Alt 145 CO 3C Benzene only
	30518-01 30			LG x x x
2) 2 14291 1.4 BC2	30518-01 30			LG x x x
3)				
4)				
RELINQUISHED: RECEIVED	Day Maria DA		AB USE ONLY 3/0 20, 1 No Zag No Seal	
RELINQUISHED: DATE / TIME RÉCEIVER Fedre G		(136) Level III Level III ATE / TIME Level III Level III	SCS Field Services 23F01 Bristol Recd: 06/02/2023 Due: 06/09/20	
			Recd: 06/02/2025 Duc. 00/07/2025	25002

Page 21 of 22

v130325002

Certificate of Analysis

Final Report

Laboratory Order ID 23F0137

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 2, 2023 11:30 June 9, 2023 15:56
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Sample Conditions Checklist

Samples Received at:	20.10°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
ls a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	June 12, 2023 11:14
	4330 Lewis Road, Suite 1	Date Issued:	June 16, 2023 15:07
	Harrisburg, PA 17111	Project Number:	[none]
Submitted To:	Tom Lock	Purchase Order:	07223016.00

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 06/12/2023 11:14. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTATS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	June 12, 2023 11:14
	4330 Lewis Road, Suite 1	Date Issued:	June 16, 2023 15:07
	Harrisburg, PA 17111	Project Number:	[none]
Submitted To:	Tom Lock	Purchase Order:	07223016.00
Client Site I.D.:	Bristol		

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
84	23F0579-01	Air	06/08/2023 09:47	06/12/2023 11:14
86	23F0579-02	Air	06/08/2023 09:54	06/12/2023 11:14
90	23F0579-03	Air	06/08/2023 10:11	06/12/2023 11:14
100	23F0579-04	Air	06/08/2023 10:19	06/12/2023 11:14
89	23F0579-05	Air	06/08/2023 10:28	06/12/2023 11:14
53	23F0579-06	Air	06/08/2023 10:38	06/12/2023 11:14
BLRI	23F0579-07	Air	06/08/2023 04:46	06/12/2023 11:14

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 84	Sub Description/Location:		Final Vacuum(in Hg): 5.2
Sample ID: 23F0579-01	Canister ID: 063-00217::00261		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 6/8/2023 09:47			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, a	s received basis			
		ppmv		ALT-145			Dete (Times	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Carbon Monoxide, as received	400	90.0	90.0		9	1	6/13/23 11:12	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basis	;			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	12.2	0.45	0.45		9	1	6/13/23 11:12	MER
Carbon dioxide, as received	48.5	0.45	0.45		9	1	6/13/23 11:12	MER
Oxygen (O2), as received	0.57	0.45	0.45		9	1	6/13/23 11:12	MER
Hydrogen (H2), as received	8.84	0.54	0.54		27	1	6/13/23 13:24	MER
Nitrogen (N2), as received	22.3	9.00	9.00		9	1	6/13/23 11:12	MER
Carbon Monoxide, as received	0.04	0.009	0.009		9	1	6/13/23 11:12	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	514000	10500	26200		1600000	34000	84000	52500	1	6/14/23 12:32	DFH
Surrogate(s)		% Re	covery		% Red	covery Lir	nits				
4-Bromofluorobenzene (Surr)			111		8	30-120				6/14/23 12:32	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 86	Sub Description/Location:		Final Vacuum(in Hg): 4.6
Sample ID: 23F0579-02	Canister ID: 063-00074::10045		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 6/8/2023 09:54			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as	received basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	106	90.0	90.0		9	1	6/13/23 12:48	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basi	s			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	35.0	0.45	0.45		9	1	6/13/23 12:48	MER
Carbon dioxide, as received	48.6	0.45	0.45		9	1	6/13/23 12:48	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	6/13/23 12:48	MER
Hydrogen (H2), as received	2.01	0.18	0.18		9	1	6/13/23 12:48	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	6/13/23 12:48	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	6/13/23 12:48	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	460000	21000	52500		1500000	67000	170000	105000	1	6/15/23 13:10	DFH
Surrogate(s)		% Re	covery		% Re	covery Li	nits				
4-Bromofluorobenzene (Surr)			109		6	30-120				6/15/23 13:10	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 90	Sub Description/Location:		Final Vacuum(in Hg): 5.0
Sample ID: 23F0579-03	Canister ID: 063-00320::11297		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 6/8/2023 10:11			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as receive	ed basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	110	90.0	90.0		9	1	6/13/23 14:03	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basi	S			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	36.8	0.45	0.45		9	1	6/13/23 14:03	MER
Carbon dioxide, as received	52.1	0.45	0.45		9	1	6/13/23 14:03	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	6/13/23 14:03	MER
Hydrogen (H2), as received	2.16	0.18	0.18		9	1	6/13/23 14:03	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	6/13/23 14:03	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	6/13/23 14:03	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	534000	14000	35000		1700000	45000	110000	70000	1	6/15/23 16:02	DFH
Surrogate(s)		% Re	covery		% Red	covery Li	nits				
4-Bromofluorobenzene (Surr)			109		8	30-120				6/15/23 16:02	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00
	ANALYTICAL RE	SULTS	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 100	Sub Description/Location:		Final Vacuum(in Hg): 5.0
Sample ID: 23F0579-04	Canister ID: 063-00220::12464		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 6/8/2023 10:19			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as received ba	isis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	ND	90.0	90.0		9	1	6/13/23 14:54	MER

	Vola	-	c Compour	ds by GC/TCD - Unadjusted, as receive EPA 3C	d basis			
		Vol%		EIA30			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	39.3	0.45	0.45		9	1	6/13/23 14:54	MER
Carbon dioxide, as received	45.7	0.45	0.45		9	1	6/13/23 14:54	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	6/13/23 14:54	MER
Hydrogen (H2), as received	3.81	0.18	0.18		9	1	6/13/23 14:54	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	6/13/23 14:54	MER
Carbon Monoxide, as received	ND	0.009	0.009		9	1	6/13/23 14:54	MER

			Volatile (Organic Compo EPA TO-1		S					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	52300	778	1940		170000	2500	6200	3890	1	6/14/23 21:46	DFH
Surrogate(s)		% Re	covery		% Re	covery Lin	nits				
4-Bromofluorobenzene (Surr)			108		6	30-120				6/14/23 21:46	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 89	Sub Description/Location:		Final Vacuum(in Hg): 4.8
Sample ID: 23F0579-05	Canister ID: 063-00317::12473		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 6/8/2023 10:28			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as r	eceived basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF		nalyst
Carbon Monoxide, as received	963	90.0	90.0		9	1	6/13/23 15:45 ME	ER

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as received b	asis			
		Vol%		EPA 3C			D. () (T)	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	0.68	0.45	0.45		9	1	6/13/23 15:45	MER
Carbon dioxide, as received	68.0	0.90	0.90		18	1	6/13/23 17:15	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	6/13/23 15:45	MER
Hydrogen (H2), as received	38.2	2.16	2.16		108	1	6/13/23 17:46	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	6/13/23 15:45	MER
Carbon Monoxide, as received	0.10	0.009	0.009		9	1	6/13/23 15:45	MER

			Volatile C	rganic Compo EPA TO-1		S					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	509000	7000	17500		1600000	22000	56000	35000	1	6/15/23 0:52	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			98.8		8	30-120				6/15/23 0:52	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 53	Sub Description/Location:		Final Vacuum(in Hg): 4.8
Sample ID: 23F0579-06	Canister ID: 063-00020::12658		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 6/8/2023 10:38			Flow Controller ID:

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as recei	ved basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	671	90.0	90.0		9	1	6/13/23 16:39	MER

	Vola	atile Organi Vol%	c Compour	ds by GC/TCD - Unadjusted, as received base EPA 3C	sis			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	18.3	0.45	0.45		9	1	6/13/23 16:39	MER
Carbon dioxide, as received	66.4	0.90	0.90		18	1	6/13/23 17:30	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	6/13/23 16:39	MER
Hydrogen (H2), as received	13.1	1.08	1.08		54	1	6/13/23 18:02	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	6/13/23 16:39	MER
Carbon Monoxide, as received	0.07	0.009	0.009		9	1	6/13/23 16:39	MER

			Volatile C	Organic Compo EPA TO-1		IS					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	299000	4670	11700		960000	15000	37000	23300	1	6/15/23 3:12	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			97.4			30-120				6/15/23 3:12	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: BLRI	Sub Description/Location:		Final Vacuum(in Hg): 5.8
Sample ID: 23F0579-07	Canister ID: 063-00480::15041		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 6/8/2023 04:46			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as rece	eived basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	ND	90.0	90.0		9	1	6/14/23 11:53	MER

	Vola	atile Organi Vol%	c Compour	ds by GC/TCD - Unadjusted, as received bas EPA 3C	sis			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	25.8	0.45	0.45		9	1	6/14/23 11:53	MER
Carbon dioxide, as received	32.4	0.45	0.45		9	1	6/14/23 11:53	MER
Oxygen (O2), as received	4.35	0.45	0.45		9	1	6/14/23 11:53	MER
Hydrogen (H2), as received	1.25	0.18	0.18		9	1	6/14/23 11:53	MER
Nitrogen (N2), as received	25.9	9.00	9.00		9	1	6/14/23 11:53	MER
Carbon Monoxide, as received	ND	0.009	0.009		9	1	6/14/23 11:53	MER

Volatile Organic Compounds by GCMS EPA TO-15												
		ppbv				ug/M³		-		Date/Time		
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst	
Benzene	87700	4670	11700		280000	15000	37000	23300	1	6/15/23 11:38	DFH	
Surrogate(s)		% Re	covery		% Re	covery Lir	nits					
4-Bromofluorobenzene (Surr)			103		8	30-120				6/15/23 11:38		

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
Harrisburg, PA 17111		
Tom Lock	Project Number:	[none]
Bristol	Purchase Order:	07223016.00
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111 Tom Lock	4330 Lewis Road, Suite 1Date Issued:Harrisburg, PA 17111Tom LockProject Number:

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjusted	l, as received basis	Preparation Method:	No Prep VOC GC	Air
23F0579-01	1.00 mL / 1.00 mL	ALT-145	BGF0490	SGF0492	AG00026
23F0579-02	1.00 mL / 1.00 mL	ALT-145	BGF0490	SGF0492	AG00026
23F0579-03	1.00 mL / 1.00 mL	ALT-145	BGF0490	SGF0492	AG00026
23F0579-04	1.00 mL / 1.00 mL	ALT-145	BGF0490	SGF0492	AG00026
23F0579-05	1.00 mL / 1.00 mL	ALT-145	BGF0490	SGF0492	AG00026
23F0579-06	1.00 mL / 1.00 mL	ALT-145	BGF0490	SGF0492	AG00026
23F0579-07	1.00 mL / 1.00 mL	ALT-145	BGF0490	SGF0565	AG00026
23F0579-01	1.00 mL / 1.00 mL	EPA 3C	BGF0490	SGF0492	AG00026
23F0579-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGF0490	SGF0492	AG00026
23F0579-02	1.00 mL / 1.00 mL	EPA 3C	BGF0490	SGF0492	AG00026
23F0579-03	1.00 mL / 1.00 mL	EPA 3C	BGF0490	SGF0492	AG00026
23F0579-04	1.00 mL / 1.00 mL	EPA 3C	BGF0490	SGF0492	AG00026
23F0579-05	1.00 mL / 1.00 mL	EPA 3C	BGF0490	SGF0492	AG00026
23F0579-05RE1	1.00 mL / 1.00 mL	EPA 3C	BGF0490	SGF0492	AG00026
23F0579-05RE2	1.00 mL / 1.00 mL	EPA 3C	BGF0490	SGF0492	AG00026
23F0579-06	1.00 mL / 1.00 mL	EPA 3C	BGF0490	SGF0492	AG00026
23F0579-06RE1	1.00 mL / 1.00 mL	EPA 3C	BGF0490	SGF0492	AG00026
23F0579-06RE2	1.00 mL / 1.00 mL	EPA 3C	BGF0490	SGF0492	AG00026
23F0579-07	1.00 mL / 1.00 mL	EPA 3C	BGF0490	SGF0565	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	No Prep VOC Air	
23F0579-01	400 mL / 400 mL	EPA TO-15	BGF0543	SGF0556	AE30194
23F0579-02	400 mL / 400 mL	EPA TO-15	BGF0543	SGF0611	AE30194
23F0579-03	400 mL / 400 mL	EPA TO-15	BGF0543	SGF0611	AE30194
23F0579-04	400 mL / 400 mL	EPA TO-15	BGF0543	SGF0556	AE30194
23F0579-05	400 mL / 400 mL	EPA TO-15	BGF0543	SGF0556	AE30194
23F0579-06	400 mL / 400 mL	EPA TO-15	BGF0543	SGF0556	AE30194
23F0579-07	400 mL / 400 mL	EPA TO-15	BGF0543	SGF0611	AE30194

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00

Volatile Organic Compounds by GCMS - Quality Control

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
atch BGF0543 - No Prep VO	C Air									
Blank (BGF0543-BLK1)					Prep	ared & /	Analyzed	: 06/14/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene Surr)	4.60		ppbv	5.00		92.0	80-120			
-CS (BGF0543-BS1)					Prep	ared & A	Analyzed	: 06/14/2	023	
,1,1-Trichloroethane	4.57	0.5	ppbv	5.00		91.4	70-130			
,1,2,2-Tetrachloroethane	4.80	0.5	ppbv	5.00		96.0	70-130			
,1,2-Trichloro-1,2,2-trifluoroetha	4.34	0.5	ppbv	5.00		86.8	70-130			
e 1 2 Trichloroothana	A 74	05	nnh.	E 00		94.2	70 420			
,1,2-Trichloroethane	4.71 4.22	0.5 0.5	ppbv	5.00 5.00		94.2 84.4	70-130 70-130			
1-Dichloroethane 1-Dichloroethylene	4.22	0.5 0.5	ppbv ppbv	5.00 5.00		84.4 86.4	70-130			
2,4-Trimethylbenzene	4.32	0.5	ppbv	5.00		98.6	70-130			
2-Dibromoethane (EDB)	4.93	0.5	ppbv	5.00		90.0 91.6	70-130			
2-Dichlorobenzene	4.36	0.5	ppbv	5.00		97.2	70-130			
2-Dichloroethane	4.65	0.5	ppbv	5.00		93.0	70-130			
2-Dichloropropane	4.75	0.5	ppbv	5.00		95.0	70-130			
2-Dichlorotetrafluoroethane	4.47	0.5	ppbv	5.00		89.4	70-130			
,3,5-Trimethylbenzene	4.78	0.5	ppbv	5.00		95.6	70-130			
,3-Butadiene	4.50	0.5	ppbv	5.00		90.0	70-130			
,3-Dichlorobenzene	4.77	0.5	ppbv	5.00		95.4	70-130			
,4-Dichlorobenzene	4.72	0.5	ppbv	5.00		94.4	70-130			
,4-Dioxane	4.89	0.5	ppbv	5.00		97.8	70-130			
-Butanone (MEK)	4.32	0.5	ppbv	5.00		86.4	70-130			
-Methyl-2-pentanone (MIBK)	4.97	0.5	ppbv	5.00		99.4	70-130			
llyl chloride	4.20	0.5	ppbv	5.00		84.0	70-130			
Benzene	4.67	0.5	ppbv	5.00		93.4	70-130			
enzyl Chloride	3.87	0.5	ppbv	5.00		77.4	70-130			
Bromodichloromethane	4.11	0.5	ppbv	5.00		82.2	70-130			
Bromoform	0.38	0.5	ppbv	5.00		7.60	70-130			L
Bromomethane	4.97	0.5	ppbv	5.00		99.4	70-130			
Carbon Disulfide	4.22	0.5	ppbv	5.00		84.4	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00

Volatile Organic Compounds by GCMS - Quality Control

Entholmy Analytical

			En	thalpy	Analyti	cal				
	Re	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGF0543 - No Prep V	OC Air									
LCS (BGF0543-BS1)					Prep	bared & A	Analyzed	: 06/14/2	023	
Carbon Tetrachloride	4.48	0.5	ppbv	5.00		89.6	70-130			
Chlorobenzene	4.57	0.5	ppbv	5.00		91.4	70-130			
Chloroethane	4.50	0.5	ppbv	5.00		90.0	70-130			
Chloroform	4.32	0.5	ppbv	5.00		86.4	70-130			
Chloromethane	4.63	0.5	ppbv	5.00		92.6	70-130			
cis-1,2-Dichloroethylene	4.35	0.5	ppbv	5.00		87.0	70-130			
cis-1,3-Dichloropropene	4.82	0.5	ppbv	5.00		96.4	70-130			
Cyclohexane	4.75	0.5	ppbv	5.00		95.0	70-130			
Dichlorodifluoromethane	4.38	0.5	ppbv	5.00		87.6	70-130			
Ethyl acetate	4.38	0.5	ppbv	5.00		87.6	70-130			
Ethylbenzene	4.78	0.5	ppbv	5.00		95.6	70-130			
Heptane	5.06	0.5	ppbv	5.00		101	70-130			
Hexane	4.64	0.5	ppbv	5.00		92.8	70-130			
n+p-Xylenes	9.41	1	ppbv	10.0		94.1	70-130			
Methylene chloride	4.42	1	ppbv	5.00		88.4	70-130			
Methyl-t-butyl ether (MTBE)	4.40	0.5	ppbv	5.00		88.0	70-130			
Naphthalene	3.82	0.5	ppbv	5.00		76.4	60-140			
o-Xylene	4.74	0.5	ppbv	5.00		94.8	70-130			
Propylene	4.66	1	ppbv	5.00		93.2	70-130			
Styrene	4.80	0.5	ppbv	5.00		96.0	70-130			
Tetrachloroethylene (PCE)	4.41	0.5	ppbv	5.00		88.2	70-130			
Tetrahydrofuran	5.15	0.5	ppbv	5.00		103	70-130			
Toluene	4.79	0.5	ppbv	5.00		95.8	70-130			
trans-1,2-Dichloroethylene	3.71	0.5	ppbv	5.00		74.2	70-130			
rans-1,3-Dichloropropene	4.34	0.5	ppbv	5.00		86.8	70-130			
Trichloroethylene	4.71	0.5	ppbv	5.00		94.2	70-130			
Trichlorofluoromethane	4.24	0.5	ppbv	5.00		84.8	70-130			
√inyl acetate	4.49	0.5	ppbv	5.00		89.8	70-130			
Vinyl bromide	4.47	0.5	ppbv	5.00		89.4	70-130			
Vinyl chloride	4.57	0.5	ppbv	5.00		91.4	70-130			
Surr: 4-Bromofluorobenzene (Surr)	5.01		ppbv	5.00		100	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
Harrisburg, PA 17111		
Tom Lock	Project Number:	[none]
Bristol	Purchase Order:	07223016.00
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111 Tom Lock	4330 Lewis Road, Suite 1Date Issued:Harrisburg, PA 17111Tom LockProject Number:

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical										
	Re	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGF0543 - No Prep VO	C Air									
LCS Dup (BGF0543-BSD1)					Prep	bared & /	Analyzed	: 06/14/20)23	
1,1,1-Trichloroethane	4.53	0.5	ppbv	5.00		90.6	70-130	0.879	25	
I,1,2,2-Tetrachloroethane	4.84	0.5	ppbv	5.00		96.8	70-130	0.830	25	
1,1,2-Trichloro-1,2,2-trifluoroetha	3.35	0.5	ppbv	5.00		67.0	70-130	25.7	25	L, P
1,1,2-Trichloroethane	4.62	0.5	ppbv	5.00		92.4	70-130	1.93	25	
1,1-Dichloroethane	4.18	0.5	ppbv	5.00		83.6	70-130	0.952	25	
I,1-Dichloroethylene	4.32	0.5	ppbv	5.00		86.4	70-130	0.00	25	
1,2,4-Trimethylbenzene	4.97	0.5	ppbv	5.00		99.4	70-130	0.808	25	
I,2-Dibromoethane (EDB)	4.68	0.5	ppbv	5.00		93.6	70-130	2.16	25	
1,2-Dichlorobenzene	4.91	0.5	ppbv	5.00		98.2	70-130	1.02	25	
,2-Dichloroethane	4.63	0.5	ppbv	5.00		92.6	70-130	0.431	25	
,2-Dichloropropane	4.72	0.5	ppbv	5.00		94.4	70-130	0.634	25	
,2-Dichlorotetrafluoroethane	4.46	0.5	ppbv	5.00		89.2	70-130	0.224	25	
,3,5-Trimethylbenzene	4.86	0.5	ppbv	5.00		97.2	70-130	1.66	25	
,3-Butadiene	4.37	0.5	ppbv	5.00		87.4	70-130	2.93	25	
,3-Dichlorobenzene	4.81	0.5	ppbv	5.00		96.2	70-130	0.835	25	
,4-Dichlorobenzene	4.76	0.5	ppbv	5.00		95.2	70-130	0.844	25	
,4-Dioxane	4.84	0.5	ppbv	5.00		96.8	70-130	1.03	25	
P-Butanone (MEK)	4.20	0.5	ppbv	5.00		84.0	70-130	2.82	25	
-Methyl-2-pentanone (MIBK)	4.92	0.5	ppbv	5.00		98.4	70-130	1.01	25	
llyl chloride	4.07	0.5	ppbv	5.00		81.4	70-130	3.14	25	
Benzene	4.61	0.5	ppbv	5.00		92.2	70-130	1.29	25	
Benzyl Chloride	3.87	0.5	ppbv	5.00		77.4	70-130	0.00	25	
Bromodichloromethane	4.07	0.5	ppbv	5.00		81.4	70-130	0.978	25	
Bromoform	0.38	0.5	ppbv	5.00		7.60	70-130	0.00	25	L
Bromomethane	4.91	0.5	ppbv	5.00		98.2	70-130	1.21	25	
Carbon Disulfide	3.06	0.5	ppbv	5.00		61.2	70-130	31.9	25	L, P
Carbon Tetrachloride	4.42	0.5	ppbv	5.00		88.4	70-130	1.35	25	
Chlorobenzene	4.60	0.5	ppbv	5.00		92.0	70-130	0.654	25	
Chloroethane	4.42	0.5	ppbv	5.00		88.4	70-130	1.79	25	
Chloroform	4.23	0.5	ppbv	5.00		84.6	70-130	2.11	25	
Chloromethane	4.77	0.5	ppbv	5.00		95.4	70-130	2.98	25	
is-1,2-Dichloroethylene	4.33	0.5	ppbv	5.00		86.6	70-130	0.461	25	
is-1,3-Dichloropropene	4.79	0.5	ppbv	5.00		95.8	70-130	0.624	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07	
Harrisburg, PA 17111			
Tom Lock	Project Number:	[none]	
Bristol	Purchase Order:	07223016.00	
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111 Tom Lock	4330 Lewis Road, Suite 1Date Issued:Harrisburg, PA 17111Tom LockProject Number:	

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Enthalpy Analytical										
	Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGF0543 - No Prep VC	DC Air									
LCS Dup (BGF0543-BSD1)	Prepared & Analyzed: 06/14/2023									
Cyclohexane	4.75	0.5	ppbv	5.00		95.0	70-130	0.00	25	
Dichlorodifluoromethane	4.30	0.5	ppbv	5.00		86.0	70-130	1.84	25	
Ethyl acetate	4.17	0.5	ppbv	5.00		83.4	70-130	4.91	25	
Ethylbenzene	4.77	0.5	ppbv	5.00		95.4	70-130	0.209	25	
Heptane	4.94	0.5	ppbv	5.00		98.8	70-130	2.40	25	
lexane	4.58	0.5	ppbv	5.00		91.6	70-130	1.30	25	
n+p-Xylenes	9.42	1	ppbv	10.0		94.2	70-130	0.106	25	
lethylene chloride	4.43	1	ppbv	5.00		88.6	70-130	0.226	25	
/lethyl-t-butyl ether (MTBE)	4.33	0.5	ppbv	5.00		86.6	70-130	1.60	25	
laphthalene	3.90	0.5	ppbv	5.00		78.0	60-140	2.07	25	
o-Xylene	4.73	0.5	ppbv	5.00		94.6	70-130	0.211	25	
Propylene	4.58	1	ppbv	5.00		91.6	70-130	1.73	25	
Styrene	4.80	0.5	ppbv	5.00		96.0	70-130	0.00	25	
Fetrachloroethylene (PCE)	4.50	0.5	ppbv	5.00		90.0	70-130	2.02	25	
letrahydrofuran	5.02	0.5	ppbv	5.00		100	70-130	2.56	25	
oluene	4.78	0.5	ppbv	5.00		95.6	70-130	0.209	25	
rans-1,2-Dichloroethylene	3.64	0.5	ppbv	5.00		72.8	70-130	1.90	25	
rans-1,3-Dichloropropene	4.28	0.5	ppbv	5.00		85.6	70-130	1.39	25	
Frichloroethylene	4.70	0.5	ppbv	5.00		94.0	70-130	0.213	25	
Frichlorofluoromethane	4.30	0.5	ppbv	5.00		86.0	70-130	1.41	25	
/inyl acetate	4.39	0.5	ppbv	5.00		87.8	70-130	2.25	25	
/inyl bromide	4.46	0.5	ppbv	5.00		89.2	70-130	0.224	25	
/inyl chloride	4.56	0.5	ppbv	5.00		91.2	70-130	0.219	25	
Surr: 4-Bromofluorobenzene	5.14		ppbv	5.00		103	70-130			

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

Batch BGF0490 - No Prep VOC GC Air

	007.01					
Blank (BGF0490-BLK1)					Prepared & Analyzed: 06/13/2023	
Methane	<	0.05	Vol%			
Carbon dioxide	<	0.05	Vol%			
Oxygen (O2)	<	0.05	Vol%			
Nitrogen (N2)	<	1.00	Vol%			
Hydrogen (H2)	<	0.02	Vol%			
Carbon Monoxide	<	10.0	ppmv			
Carbon Monoxide	<	0.001	Vol%			
Blank (BGF0490-BLK2)					Prepared & Analyzed: 06/13/2023	
Methane	<	0.05	Vol%			
Carbon dioxide	<	0.05	Vol%			
Oxygen (O2)	<	0.05	Vol%			
Hydrogen (H2)	<	0.02	Vol%			
Nitrogen (N2)	<	1.00	Vol%			
Carbon Monoxide	<	10.0	ppmv			
Carbon Monoxide	<	0.001	Vol%			
LCS (BGF0490-BS1)					Prepared & Analyzed: 06/13/2023	
Methane	4610	500	ppmv	5000	92.2 0-200	
Methane	4610	0.05	ppmv	5000	92.2 80-120	
Carbon dioxide	5660	500	ppmv	5000	113 0-200	
Carbon dioxide	5660	0.05	ppmv	5000	113 80-120	
Oxygen (O2)	5110	500	ppmv	5000	102 0-200	
Oxygen (O2)	5110	0.05	ppmv	5000	102 80-120	
Hydrogen (H2)	5900	200	ppmv	5100	116 0-200	
Hydrogen (H2)	5900	0.02	ppmv	5100	116 80-120	
Nitrogen (N2)	5470	2000	ppmv	5000	109 0-200	
Nitrogen (N2)	5470	1	ppmv	5000	109 80-120	
Carbon Monoxide	4810	10	ppmv	5000	96.2 0-200	
Carbon Monoxide	4810	0.001	ppmv	5000	96.2 80-120	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1		June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00

Enthalpy Analytical										
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGF0490 - No Prep VC	DC GC Air									
Duplicate (BGF0490-DUP1)		Sou	urce: 23F	0579-01	Prep	ared &	Analyzeo	1: 06/13/20)23	
Methane	12.3	0.45	Vol%		12.2			0.696	5	
Methane	123000	4500	ppmv		12200	00		0.695	25	
Carbon dioxide	48.9	0.45	Vol%		48.5	i		0.773	5	
Carbon dioxide	489000	4500	ppmv		48500	00		0.773	25	
Oxygen (O2)	0.57	0.45	Vol%		0.57			0.160	5	
Oxygen (O2)	5680	4500	ppmv		5690)		0.160	25	
Nitrogen (N2)	225000	18000	ppmv		22300	00		0.693	25	
Nitrogen (N2)	22.5	9.00	Vol%		22.3	1		0.693	5	
Hydrogen (H2)	90600	1800	ppmv		8970	0		0.966	25	
Carbon Monoxide	0.04	0.009	Vol%		0.04			0.382	5	
Carbon Monoxide	401	90.0	ppmv		400			0.382	25	
Duplicate (BGF0490-DUP2)		Sou	urce: 23F	0579-02	Prep	ared &	Analyzeo	1: 06/13/20)23	
Methane	347000	4500	ppmv		35000	00		0.900	25	
Methane	34.7	0.45	Vol%		35.0	1		0.900	5	
Carbon dioxide	482000	4500	ppmv		48600	00		0.882	25	
Carbon dioxide	48.2	0.45	Vol%		48.6	;		0.882	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Dxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Hydrogen (H2)	20000	1800	ppmv		2010	0		0.0691	25	
Hydrogen (H2)	2.00	0.18	Vol%		2.01			0.0691	5	
Nitrogen (N2)	<	9.00	Vol%		<9.0	D		NA	5	
Nitrogen (N2)	62600	18000	ppmv		6320	0		0.982	25	
Carbon Monoxide	104	90.0	ppmv		106			2.05	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01			2.05	5	
Duplicate (BGF0490-DUP3)		Sou	urce: 23F	0579-03	Prep	ared &	Analyzeo	l: 06/13/20)23	
Methane	369000	4500	ppmv		36800)0		0.410	25	
Methane	36.9	0.45	Vol%		36.8			0.410	5	
Carbon dioxide	521000	4500	ppmv		52100	00		0.0344	25	
Carbon dioxide	52.1	0.45	Vol%		52.1			0.0344	5	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Nitrogen (N2)	<	9.00	Vol%		<9.0	n		NA	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

			En	thalpy	Analyti	ical				
	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGF0490 - No Prep VC	C GC Air									
Duplicate (BGF0490-DUP3)		Sou	urce: 23F	0579-03	Prep	bared & A	Analyzed	: 06/13/20)23	
Hydrogen (H2)	2.20	0.18	Vol%		2.16	6		1.72	5	
Hydrogen (H2)	22000	1800	ppmv		2160	0		1.72	25	
Carbon Monoxide	111	90.0	ppmv		110			0.407	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01			0.407	5	
Duplicate (BGF0490-DUP4)		Sou	urce: 23F	0579-04	Prep	bared & A	Analyzed	: 06/13/20)23	
Methane	394000	4500	ppmv		39300	00		0.274	25	
Methane	39.4	0.45	Vol%		39.3	3		0.274	5	
Carbon dioxide	460000	4500	ppmv		45700	00		0.613	25	
Carbon dioxide	46.0	0.45	Vol%		45.7	7		0.613	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Hydrogen (H2)	38500	1800	ppmv		3810	0		1.08	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Hydrogen (H2)	3.85	0.18	Vol%		3.81			1.08	5	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00)9		NA	5	
Duplicate (BGF0490-DUP5)		Sou	urce: 23F	0579-05	Prep	bared & A	Analyzed	: 06/13/20)23	
Methane	6830	4500	ppmv		6850			0.175	25	
Methane	0.68	0.45	Vol%		0.68	3		0.175	5	
Carbon dioxide	657000	4500	ppmv		65700	00		0.103	25	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Hydrogen (H2)	392000	1800	ppmv		38900	00		0.638	25	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Carbon Monoxide	959	90.0	ppmv		963			0.459	25	
Carbon Monoxide	0.10	0.009	Vol%		0.10)		0.459	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGF0490 - No Prep VOC GC Air											

Methane 18.4 0.45 Vol% 18.3 0.786 5 Carbon dioxide 65.0 0.45 Vol% 65.9 1.37 5 Carbon dioxide 650000 4500 ppmv 659000 1.37 25 Oxygen (O2) < 0.45 Vol% <0.45 NA 5 Oxygen (O2) < 4500 ppmv <4500 NA 25 Nitrogen (N2) < 9.00 Vol% <9.00 NA 5	Duplicate (BGF0490-DUP6)		So	urce: 23F0579-06	Prepared & Ar	nalyzed: 06/13/20	23
Carbon dioxide 65.0 0.45 Vol% 65.9 1.37 5 Carbon dioxide 650000 4500 ppmv 659000 1.37 25 Oxygen (O2) < 0.45 Vol% <0.45 NA 5 Oxygen (O2) < 4500 ppmv <4500 NA 25 Nitrogen (N2) < 9.00 Vol% <9.00 NA 25 Nitrogen (N2) < 13000 ppmv <134000 0.742 25 Nitrogen (N2) < 1800 ppmv <18000 NA 25 Carbon Monoxide 0.07 0.09 Vol% 0.07 0.762 25 Carbon Monoxide 676 90.0 ppmv 671 0.762 25 Duplicate (BGF0490-DUP7) Surger: 23F0579-07 Prepared & Analyzet: 06/14/2022 25 Methane 262.00 4500 ppmv 258000 1.26 25 Carbon dioxide 32.7 0.45	Methane	184000	4500	ppmv	183000	0.786	25
Carbon dioxide 65000 4500 ppmv 659000 1.37 25 Oxygen (O2) <	Methane	18.4	0.45	Vol%	18.3	0.786	5
Oxygen (O2) < 0.45 Vol% <0.45 NA 5 Oxygen (O2) <	Carbon dioxide	65.0	0.45	Vol%	65.9	1.37	5
Oxygen (O2) < 4500 ppmv <4500 NA 25 Nitrogen (N2) <	Carbon dioxide	650000	4500	ppmv	659000	1.37	25
Nitrogen (N2) < 9.00 Vol% <9.00 NA 5 Hydrogen (H2) 135000 1800 ppmv 134000 0.742 25 Nitrogen (N2) <	Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Hydrogen (H2)1350001800ppmv1340000.74225Nitrogen (N2)<	Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Nitrogen (N2) < 18000 pmv <18000 NA 25 Carbon Monoxide 0.07 0.009 Vol% 0.07 0.762 5 Carbon Monoxide 676 90.0 pmv 671 0.762 25 Duplicate (BGF0490-DUP7) Source: 23F0579-07 Prepared & Analyzed: 06/14/2023 Methane 26.2 0.45 Vol% 25.8 1.26 5 Methane 26200 4500 pmv 258000 1.26 25 Carbon dioxide 32.7 0.45 Vol% 32.4 0.926 5 Carbon dioxide 327000 4500 pmv 324000 0.926 25 Oxygen (O2) 4.39 0.45 Vol% 4.35 0.815 5 Oxygen (N2) 26.1 9.00 Vol% 25.9 0.784 5 Hydrogen (H2) 1.28 0.18 Vol% 1.25 2.11 5 Hydrogen (H2) 12800 1800 pmv	Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Carbon Monoxide 0.07 0.09 Vol% 0.07 0.762 5 Carbon Monoxide 676 90.0 ppmv 671 0.762 25 Duplicate (BGF0490-DUP7) Source: 23F0579-07 Prepared & Analyzed: 06/14/2023 Methane 26.2 0.45 Vol% 25.8 1.26 5 Methane 26200 4500 ppmv 258000 1.26 25 Carbon dioxide 32.7 0.45 Vol% 32.4 0.926 5 Carbon dioxide 327000 4500 ppmv 324000 0.926 25 Oxygen (O2) 4.39 0.45 Vol% 4.35 0.815 5 Oxygen (N2) 43900 4500 ppmv 43500 0.815 25 Nitrogen (N2) 26.1 9.00 Vol% 1.25 2.11 5 Hydrogen (H2) 1.28 0.18 Vol% 1.25 2.11 5 Nitrogen (N2) 261000 1800 ppm	Hydrogen (H2)	135000	1800	ppmv	134000	0.742	25
Carbon Monoxide 676 90.0 ppmv 671 0.762 25 Duplicate (BGF0490-DUP7) Source: 23F0579-07 Prepared & Analyzet: 06/14/2023 Methane 26.2 0.45 Vol% 25.8 1.26 5 Methane 26.200 4500 ppmv 258000 1.26 25 Carbon dioxide 32.7 0.45 Vol% 32.4 0.926 25 Carbon dioxide 32.700 4500 ppmv 324000 0.926 25 Oxygen (O2) 4.39 0.45 Vol% 4.35 0.815 25 Oxygen (N2) 4.390 4500 ppmv 43500 0.815 25 Nitrogen (N2) 26.1 9.00 Vol% 25.9 0.784 5 Hydrogen (H2) 1.28 0.18 Vol% 1.25 2.11 5 Nitrogen (N2) 261000 18000 ppmv 259000 0.784 25 Nitrogen (N2) 261000 18000	Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Buplicate (BGF0490-DUP7) Source: 23F0579-07 Prepared & Analyzed: 06/14/2023 Methane 26.2 0.45 Vol% 25.8 1.26 5 Methane 262000 4500 ppmv 258000 1.26 25 Carbon dioxide 32.7 0.45 Vol% 32.4 0.926 25 Carbon dioxide 327000 4500 ppmv 324000 0.926 25 Oxygen (O2) 4.39 0.45 Vol% 4.35 0.815 5 Oxygen (O2) 43900 4500 ppmv 43500 0.815 25 Nitrogen (N2) 26.1 9.00 Vol% 25.9 0.784 5 Hydrogen (H2) 1.28 0.18 Vol% 1.25 2.11 5 Nitrogen (N2) 261000 18000 ppmv 259000 0.784 25 Nitrogen (N2) 261000 18000 ppmv 259000 0.784 25 Nitrogen (N2) 261000 18000	Carbon Monoxide	0.07	0.009	Vol%	0.07	0.762	5
Methane 26.2 0.45 Vol% 25.8 1.26 5 Methane 262000 4500 ppmv 258000 1.26 25 Carbon dioxide 32.7 0.45 Vol% 32.4 0.926 5 Carbon dioxide 327000 4500 ppmv 324000 0.926 25 Oxygen (O2) 4.39 0.45 Vol% 4.35 0.815 5 Oxygen (O2) 4.3900 4500 ppmv 43500 0.815 25 Nitrogen (N2) 26.1 9.00 Vol% 25.9 0.784 5 Hydrogen (H2) 1.28 0.18 Vol% 1.25 2.11 5 Hydrogen (H2) 12800 1800 ppmv 259000 0.784 25 Nitrogen (N2) 261000 18000 ppmv 259000 0.784 25 Carbon Monoxide < 0.009	Carbon Monoxide	676	90.0	ppmv	671	0.762	25
Methane 262000 4500 ppmv 258000 1.26 25 Carbon dioxide 32.7 0.45 Vol% 32.4 0.926 5 Carbon dioxide 32700 4500 ppmv 324000 0.926 25 Oxygen (O2) 4.39 0.45 Vol% 4.35 0.815 5 Oxygen (O2) 43900 4500 ppmv 43500 0.815 25 Oxygen (O2) 43900 4500 ppmv 43500 0.815 25 Nitrogen (N2) 26.1 9.00 Vol% 25.9 0.784 5 Hydrogen (H2) 1.28 0.18 Vol% 1.25 2.11 5 Nitrogen (N2) 261000 1800 ppmv 259000 0.784 25 Nitrogen (N2) 261000 18000 ppmv 259000 0.784 25 Nitrogen (N2) 261000 18000 ppmv 259000 0.784 25 Carbon Monoxide	Duplicate (BGF0490-DUP7)		So	urce: 23F0579-07	Prepared & Ar	nalyzed: 06/14/20	23
Carbon dioxide32.70.45Vol%32.40.9265Carbon dioxide3270004500ppmv3240000.92625Dxygen (O2)4.390.45Vol%4.350.8155Dxygen (O2)439004500ppmv435000.81525Nitrogen (N2)26.19.00Vol%25.90.7845Hydrogen (H2)1.280.18Vol%1.252.115Nitrogen (N2)2610001800ppmv2590000.78425Nitrogen (N2)26100018000ppmv2590000.78425Carbon Monoxide<	Methane	26.2	0.45	Vol%	25.8	1.26	5
Carbon dioxide 327000 4500 ppmv 324000 0.926 25 Oxygen (O2) 4.39 0.45 Vol% 4.35 0.815 5 Oxygen (O2) 43900 4500 ppmv 43500 0.815 25 Nitrogen (N2) 26.1 9.00 Vol% 25.9 0.784 5 Hydrogen (H2) 1.28 0.18 Vol% 1.25 2.11 5 Nitrogen (N2) 261000 1800 ppmv 259000 0.784 25 Nitrogen (H2) 12800 1800 ppmv 25000 2.11 25 Nitrogen (N2) 261000 18000 ppmv 259000 0.784 25 Nitrogen (N2) 261000 18000 ppmv 259000 0.784 25 Carbon Monoxide <	Methane	262000	4500	ppmv	258000	1.26	25
Oxygen (O2) 4.39 0.45 Vol% 4.35 0.815 5 Oxygen (O2) 43900 4500 ppmv 43500 0.815 25 Nitrogen (N2) 26.1 9.00 Vol% 25.9 0.784 5 Hydrogen (H2) 1.28 0.18 Vol% 1.25 2.11 5 Hydrogen (H2) 12800 1800 ppmv 12500 2.11 25 Nitrogen (N2) 261000 18000 ppmv 259000 0.784 25 Carbon Monoxide <	Carbon dioxide	32.7	0.45	Vol%	32.4	0.926	5
Dxygen (O2) 43900 4500 ppmv 43500 0.815 25 Nitrogen (N2) 26.1 9.00 Vol% 25.9 0.784 5 Hydrogen (H2) 1.28 0.18 Vol% 1.25 2.11 5 Hydrogen (H2) 12800 1800 ppmv 12500 2.11 25 Nitrogen (N2) 261000 18000 ppmv 259000 0.784 25 Carbon Monoxide < 0.009	Carbon dioxide	327000	4500	ppmv	324000	0.926	25
Nitrogen (N2) 26.1 9.00 Vol% 25.9 0.784 5 Hydrogen (H2) 1.28 0.18 Vol% 1.25 2.11 5 Hydrogen (H2) 12800 1800 ppmv 12500 2.11 25 Nitrogen (N2) 261000 18000 ppmv 259000 0.784 25 Carbon Monoxide < 0.009	$O_{\rm M}$ (O2)		0.45	14.104			-
Hydrogen (H2) 1.28 0.18 Vol% 1.25 2.11 5 Hydrogen (H2) 12800 1800 ppmv 12500 2.11 25 Nitrogen (N2) 261000 18000 ppmv 259000 0.784 25 Carbon Monoxide <	Oxygen (Oz)	4.39	0.45	Vol%	4.35	0.815	5
Hydrogen (H2) 12800 1800 ppmv 12500 2.11 25 Nitrogen (N2) 261000 18000 ppmv 259000 0.784 25 Carbon Monoxide < 0.009							
Nitrogen (N2) 261000 18000 ppmv 259000 0.784 25 Carbon Monoxide <	Oxygen (O2)	43900	4500	ppmv	43500	0.815	25
Carbon Monoxide < 0.009 Vol% <0.009 NA 5	Oxygen (O2) Nitrogen (N2)	43900 26.1	4500 9.00	ppmv Vol%	43500 25.9	0.815 0.784	25 5
	Oxygen (O2) Nitrogen (N2) Hydrogen (H2)	43900 26.1 1.28	4500 9.00 0.18	ppmv Vol% Vol%	43500 25.9 1.25	0.815 0.784 2.11	25 5 5
Carbon Monoxide < 90.0 ppmv <90.0 NA 25	Oxygen (O2) Nitrogen (N2) Hydrogen (H2) Hydrogen (H2)	43900 26.1 1.28 12800	4500 9.00 0.18 1800	ppmv Vol% Vol% ppmv	43500 25.9 1.25 12500	0.815 0.784 2.11 2.11	25 5 5 25
	Oxygen (O2) Nitrogen (N2) Hydrogen (H2) Hydrogen (H2) Nitrogen (N2)	43900 26.1 1.28 12800 261000	4500 9.00 0.18 1800 18000	ppmv Vol% Vol% ppmv ppmv	43500 25.9 1.25 12500 259000	0.815 0.784 2.11 2.11 0.784	25 5 5 25 25

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental	93016	06/14/2023
TXCEQ	Texas Comm on Environmental Quality #T104704	T104704576	05/31/2024
VELAP	NELAP-Virginia Certificate #12417	460021	06/14/2024
WVDEP	West Virginia DEP	350	11/30/2023

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00

Qualifiers and Definitions

- L LCS recovery is outside of established acceptance limits
- P Duplicate analysis does not meet the acceptance criteria for precision
- RPD Relative Percent Difference
- Qual Qualifers
- -RE Denotes sample was re-analyzed
- PF Preparation Factor
- MDL Method Detection Limit
- LOQ Limit of Quantitation
- ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

ENTHALPY ANALYTICAL

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

AIR ANALYSIS

101	merly Air, N	rater & S	on Lu	0010101	123			CHAIN	OF CUS	TODY	E	quipm	ent due	e 7/5/202	23		Ρ	age	1 of 3
COI	IPANY NAME	: SCS Field	d Servi	ces - Harr	isbu	INVOI	CE TO:	Same				PROJ	ECT NAM	1E/Quote #	#: Bristo	bl			
100	NTACT:					INVOI	CE CONT	ACT:				SITE	NAME:	SALE STOC	-				
ADD	RESS:					INVOI	CE ADDRI	ESS:				PROJECT NUMBER:							
PHO	DNE #:					INVOI	CE PHON	E #:				P.O. #: 07223016.00							
FAX	:#:			EN	1AIL	:						Pretre	atment P	rogram:					
ls sa	ample for comp	liance rep	orting?	YES NO)	Regulatory	State: VI	4 Is :	sample fro	m a chlori	nated sup	ply?	YES 🔇	NO PV	VS I.D. #:				
SAN	IPLER NAME	(PRINT):	LOGA	~ Cuc	HA	NE SAMP	LER SIGN	IATURE:	5	5-	-	Turn	Around T	ime: Circ	de: 10	5 Days		or _	_ Day(s)
Matri	Codes: AA=Indoo	or/Ambient Air	SG=Soil	Gas LV=Lar	dfill/\	/ent Gas OT=Ot	her		0				06:	3-23E-003	3				
		Regulator I	nfo	Canister Ir	form	nation			Sampling	Start Inform	ation		Sampling	Stop Inform	nation		Codes)	ANA	LYSIS
	CLIENT						LAB	LAB	Barometric	e Pres. (in Ho	g):		Barometri	c Pres. (in H	g):		e Cod	8	
	SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in _{Hg)}	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (ir _{Hg)}	Starting Sample Temp *F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in ^{Hg)}	Ending Sample Temp °F	Matrix (see	Alt 145 C	TO-15 Benzene
1)	44			261	1.4	BC230515-01	30	5.2	6/4	9:43	30	1.2.L	6/8	9:47	10	13.6	LG		
2)	86			10045	1.4	BC230511-03	30	4.6	6/8	9:51	30	148	68	9:54	10	148	LG	x	x
3)	90			11297	1.4	BC230511-03	30	5.0	616	10:07	30	151	69	10:11	10	1.121	LG	x	x x
4)	100			12464	1.4	BC230511-03	30	5.0	619	10:15	30	1589	68	10:19	10	158.9	LG	x	(x
RELI	QUISHED:				REC	EIVED:		DAT	E / TIME	QC Data P		BUSE	ONLY	noreq	20.	a'c			
RELI	QUISHED:	14 14 14 14		E / TIME	REC	EIVED:	<u> </u>	DAT	E / TIME	Level I		CS F Bristol	ield Se	rvices	23F0	579			
RELI	NQUISHED	- 6/2 C	DAT	E / TIME		Flder EIVED:	<u>(a</u>	1 ,	E / TIME	Level III			06/12/20	23 Due					
	Fedex	(51		a na l	10	mi Har	may (/ /	1114	Level IV					v130	325002	1		

Page 21 of 24

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

AIR ANALYSIS

tormeny An, water a son Eusorator		CHAIN C	OF CUSTODY	Eq	uipment due 7	7/5/2023	Page	e 2 of 3			
COMPANY NAME: SCS Field Services - Harr	isburg INVOICE T	TO: Same		1	PROJECT NAME/Quote #: Bristol						
CONTACT:	INVOICE C	CONTACT:		:	SITE NAME: BRESTOL						
ADDRESS:	INVOICE A	ADDRESS:		1	PROJECT NUMBER:						
PHONE #:	INVOICE P	PHONE #:		1	P.O. #: 07223016.00						
FAX #: EN	IAIL:				Pretreatment Prog	gram:					
Is sample for compliance reporting?	Regulatory State	te: NA Is sa	ample from a chlorir	nated supp	ly? YES NO) PWS I.D. #:					
SAMPLER NAME (PRINT): LOCAN CL	CHANE SAMPLER	SIGNATURE: <	4		Turn Around Tim		5 Days or _	_ Day(s)			
Matrix Codes: AA=Indoor/Ambient Air SG=Soil Gas LV=La	dfill/Vent Gas OT=Other		0	_	063-2	23E-0033					
Regulator Info Canister In	formation		Sampling Start Inform	ation		op Information		LYSIS			
CLIENT			Barometric Pres. (in Hg	· · · · · ·	Barometric P	T					
SAMPLE I.D. Flow Cal Controller ID (mL/min) Canister ID	(T) Ca Vacu	utgoing Receiving anister Canister cuum (in Vacuum (in Hg) Hg)	Start Time Start Date (24hr clock)	Initial Canister Vacuum (in ^{Hg)}		top Time Vacuum (in 24hr clock) Hg)	Ending Sample Temp *F	Ju TO-15 Benzene only			
1) 59 12473			6/8 10:25	30	121-57	0:28 10	2 LG x				
²⁾ 53 12658	1.4 BC230511-03	30 4.8	6:35	30	1:551	0:39 10		x x			
3)	1.4 BC230511-03	30					LG x	x x			
4) 2 13953	1.4 BC230511-03	30					LG x	x x			
			31		vice notes	20.2-					
RELINQUISHED:	RECEIVED:	DATE			B USE ONLY	···· 32E05	70				
RELINQUISHED: DATE / TIME	/ TIME		CS Field Serv	vices 23F05	17						
618 5:00	Fedex G		Level II		istol						
RELINQUISHED DATE / TIME	RECEIVED:	6/12/2		10000	ecd: 06/12/2023	Due: 06/19/20					
Feder G	Jemi Heijo	1 /03 11	14 Level IV			v13032					

ENTHALPY ANALYTICAL

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

AIR ANALYSIS

formerly Air, Water & Soil Laboratories	CHAIN	OF CUS	TODY	Ed	quipm	ent due	7/5/202	23		Pa	age	3 of 3
COMPANY NAME: SCS Field Services - Harrisburg INVOICE TO	D: Same				PROJ	ECT NAM	IE/Quote	#: Bristo	I			
CONTACT: INVOICE CC	ONTACT:				SITE NAME: BRESTOL							
ADDRESS: INVOICE AD	DDRESS:				PROJECT NUMBER:							
PHONE #: INVOICE PH	HONE #:				P.O. #	072	23016	60.				
FAX #: EMAIL:					Pretrea	atment Pr	ogram:					
Is sample for compliance reporting? ES NO Regulatory State:	: VA Is s	ample fro	m a chlorii	nated sup	ply?	YES 🔨	VO PV	VS I.D. #:			1	
SAMPLER NAME (PRINT): SAMPLER S	SIGNATURE:				Turn A	round T	ime: Cire	cle: 10 (5 Days	c	or _	_ Day(s)
Matrix Codes: AA=Indoor/Ambient Air SG=Soil Gas LV=Landfill/Vent Gas OT=Other						063	3-23E-003	3				
Regulator Info Canister Information		Sampling S	Start Inform	ation		Sampling	Stop Inforr	nation		les)	١NA	LYSIS
CLIENT	B LAB	Barometric	Pres. (in Hg):		Barometric	e Pres. (in H	T		(See Codes)	ខ	
SAMPLE I.D. Flow Cal Controller Flow ID (mL/min) Canister ID $\stackrel{\circ}{10}$ Cleaning Batch ID Hg)	ster Canister Im (in Vacuum (in	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in _{Hg)}	Starting Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in _{Hg)}	Ending Sample Temp °F	Matrix (Se	Alt 145 U 3C	TO-15 Benzene onlv
1) 2000 100 100 100 100 100 100 100 100 10							9				x	
2) 2500 15041 1.4 BC230515-01 30	0 5.8	6/8	4.43	30	84.5	68	4:46	D	9.12	LG	x	x
3)												
4)												
			QC Data Pa	310	nui	ie	no)eau	20.3	2°C			
RELINQUISHED: RECEIVED:	DATI	E / TIME				ield Se	rvices	23F05	579			
RELINQUISHED: DATE / TIME RECEIVED:	DAT	E / TIME	Level I		ristol	ielu Se	1 11005		505 50X			
RELINQUISHED DATE / TIME RECEIVED:		E / TIME	Level II Level III			6/12/20	23 Due	e: 06/19/2	023 325002			
Feder Gr Jami Haip	6/2/23	14	Level IV					1				

Certificate of Analysis

Final Report

Laboratory Order ID 23F0579

Client Name:	ent Name: SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1		June 12, 2023 11:14 June 16, 2023 15:07
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07223016.00

Sample Conditions Checklist

Samples Received at:	20.20°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

Appendix D Table of Contents

ection Pag	je
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 1D)-3
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 2 D)-4
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 3 D)-5
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 4 D)-6
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 5D)-7
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 6D)-8
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 7D)-9
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 8D-1	10
Solid Waste Permit 588 Daily Borehole Temperature Averages for Borehole 9D-1	11

			Depth fro	m Surface		
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft
1-Jun	205.4	207.7	207.7	207.9	220.4	249.6
2-Jun	205.3	207.6	207.7	207.7	220.8	250.0
3-Jun	204.8	207.6	207.7	207.8	221.4	250.3
4-Jun	204.7	207.5	207.7	207.8	222.1	250.5
5-Jun	204.3	207.4	207.6	207.6	223.0	250.6
6-Jun	204.2	207.4	207.5	207.6	223.9	250.9
7-Jun	201.5	206.5	207.0	207.0	225.4	251.5
8-Jun	198.4	206.8	207.2	207.5	228.0	253.3
9-Jun	193.4	206.8	207.0	207.6	230.5	254.6
10-Jun	191.1	207.0	207.2	207.9	233.2	255.9
11-Jun	188.6	207.0	207.1	207.7	235.1	256.8
12-Jun	185.6	206.9	207.0	207.9	237.2	257.6
13-Jun	186.9	207.0	207.2	210.5	239.2	258.8
14-Jun	185.3	206.8	207.0	211.0	241.3	259.8
15-Jun	183.1	207.2	207.4	211.7	243.2	260.7
16-Jun	180.6	206.9	207.1	215.3	245.6	261.3
17-Jun	177.0	206.8	207.0	219.7	248.5	262.0
18-Jun	175.7	206.3	206.5	224.6	252.1	262.9
19-Jun	174.8	205.3	205.6	227.8	255.6	263.6
20-Jun	174.0	205.1	205.6	229.7	258.3	263.9
21-Jun	173.4	205.5	206.3	230.6	259.5	264.3
22-Jun	173.1	206.6	207.2	231.6	260.3	264.6
23-Jun	172.8	207.6	207.9	232.6	261.1	265.1
24-Jun	172.4	207.7	208.0	234.3	262.1	265.5
25-Jun	172.2	207.4	207.8	235.7	262.9	265.9
26-Jun	172.0	208.0	208.4	237.2	263.4	266.3
27-Jun	171.4	208.0	208.4	238.0	263.6	266.4
28-Jun	171.4	208.3	208.8	238.7	264.0	266.8
29-Jun	171.3	208.6	209.1	239.5	264.4	267.1
30-Jun	171.1	208.8	209.2	239.8	264.4	267.1
Average	184.9	207.1	207.4	220.0	244.3	259.5

			Depth fro	m Surface		
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft
1-Jun	158.3	239.2	239.7	268.4	256.5	268.8
2-Jun	158.3	239.1	239.5	268.3	256.5	268.6
3-Jun	158.4	239.1	239.5	268.4	256.4	268.5
4-Jun	158.7	239.0	239.4	268.4	256.4	268.5
5-Jun	159.1	239.4	239.7	268.3	256.4	268.6
6-Jun	159.5	239.1	239.6	268.2	256.5	268.5
7-Jun	159.7	238.5	239.2	268.0	256.0	268.0
8-Jun	161.0	239.3	239.8	268.3	256.4	268.5
9-Jun	161.0	239.0	239.4	267.9	256.5	268.3
10-Jun	160.6	239.4	239.9	268.0	256.4	268.3
11-Jun	160.8	239.4	239.9	268.0	256.5	268.4
12-Jun	161.5	239.6	240.1	268.2	256.3	268.4
13-Jun	161.0	239.5	239.9	268.1	256.4	268.4
14-Jun	161.0	239.6	240.0	268.0	256.5	268.5
15-Jun	161.1	240.1	240.4	268.3	256.5	268.5
16-Jun	161.1	239.7	240.1	268.3	256.6	268.5
17-Jun	160.7	240.0	240.4	268.1	256.7	268.4
18-Jun	160.8	239.9	240.4	268.1	256.7	268.3
19-Jun	161.3	239.9	240.3	268.0	256.5	268.3
20-Jun	161.4	239.8	240.2	268.0	256.4	268.2
21-Jun	161.0	239.6	240.0	267.8	256.3	268.1
22-Jun	160.6	240.0	240.3	267.8	256.4	268.1
23-Jun	160.4	239.8	240.2	268.0	256.5	268.3
24-Jun	160.0	239.9	240.3	268.1	256.5	268.3
25-Jun	159.9	240.0	240.3	268.0	256.4	268.2
26-Jun	159.9	240.0	240.4	268.1	256.4	268.4
27-Jun	159.7	239.9	240.3	268.0	256.4	268.3
28-Jun	159.3	240.1	240.5	268.1	256.5	268.4
29-Jun	159.5	240.2	240.6	268.0	256.5	268.3
30-Jun	159.0	240.2	240.6	268.0	256.5	268.3
Average	160.1	239.6	240.0	268.1	256.4	268.4

]				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Jun	208.0	234.6	233.7	253.5	264.6	270.8	271.9	253.9
2-Jun	207.7	236.9	235.9	253.6	264.5	270.8	271.9	253.8
3-Jun	207.7	233.7	232.6	253.7	264.6	270.8	272.0	254.2
4-Jun	207.8	217.1	222.8	253.6	264.6	271.1	272.0	254.3
5-Jun	207.9	208.3	208.1	253.5	264.5	271.3	271.9	254.3
6-Jun	207.4	207.6	207.8	253.4	264.2	270.9	271.5	253.8
7-Jun	207.0	212.0	211.4	253.0	264.0	270.6	271.1	253.5
8-Jun	207.5	211.9	212.7	253.5	264.3	270.9	271.6	253.7
9-Jun	207.5	233.0	232.6	253.5	264.1	270.9	271.7	253.9
10-Jun	207.5	210.0	210.9	253.6	264.4	271.0	271.8	254.1
11-Jun	207.4	208.0	207.8	253.4	264.3	270.9	271.4	254.0
12-Jun	207.1	207.2	207.3	251.1	264.2	270.9	271.6	254.0
13-Jun	207.3	207.4	207.5	253.3	264.0	270.4	271.4	254.2
14-Jun	206.8	207.3	207.8	252.8	263.9	270.4	271.0	254.3
15-Jun	206.8	207.3	208.3	252.1	263.5	270.1	270.6	254.4
16-Jun	207.0	208.4	208.3	252.1	263.9	270.2	270.9	254.5
17-Jun	207.0	215.0	208.4	251.9	263.6	270.0	270.6	254.6
18-Jun	206.8	215.8	208.3	252.0	263.8	269.9	270.7	254.8
19-Jun	206.6	207.5	208.2	251.8	263.4	269.7	270.5	254.6
20-Jun	206.6	207.5	208.1	251.9	263.7	269.8	270.7	254.3
21-Jun	206.8	207.7	208.0	252.0	263.7	269.8	270.8	254.2
22-Jun	206.5	208.3	207.9	251.7	263.6	269.7	270.6	253.9
23-Jun	206.6	211.0	208.2	251.6	263.5	269.5	270.4	254.0
24-Jun	207.4	207.7	207.9	251.6	264.1	270.4	271.4	254.1
25-Jun	206.8	207.4	208.4	249.0	263.3	269.4	270.7	254.3
26-Jun	207.0	207.4	208.3	227.7	262.6	269.7	270.9	254.5
27-Jun	206.9	207.1	208.3	208.0	260.8	268.4	270.6	254.4
28-Jun	207.4	207.6	209.1	207.7	260.3	268.1	270.5	255.0
29-Jun	207.7	207.9	209.6	208.2	258.4	267.6	270.3	255.3
30-Jun	207.6	207.9	209.5	208.1	257.1	266.9	269.9	255.1
Average	207.2	212.6	212.5	245.8	263.3	270.0	271.1	254.3

]				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Jun	200.8	207.6	207.9	207.3	235.0	234.2	242.8	182.5
2-Jun	189.1	207.5	207.7	207.4	240.8	237.7	243.2	181.6
3-Jun	184.7	207.5	207.6	207.5	243.7	240.2	243.7	182.0
4-Jun	182.3	207.6	207.2	207.7	245.9	242.4	243.8	184.5
5-Jun	181.4	207.5	206.9	207.5	247.7	244.3	244.3	184.1
6-Jun	179.8	207.5	206.8	207.9	248.8	245.4	244.3	183.0
7-Jun	176.9	207.0	206.1	209.8	249.5	246.4	244.0	181.0
8-Jun	171.2	207.4	206.6	211.3	251.1	248.3	244.5	183.1
9-Jun	173.8	207.2	206.6	232.4	251.7	250.0	244.7	183.2
10-Jun	175.8	207.5	206.7	238.9	252.3	252.0	244.8	177.8
11-Jun	174.9	207.5	206.5	242.0	253.0	254.2	244.6	173.1
12-Jun	170.5	207.3	206.7	242.8	253.6	255.8	244.9	171.5
13-Jun	169.3	207.5	207.1	242.4	254.1	257.1	244.8	171.3
14-Jun	170.0	207.4	207.0	244.5	254.5	256.0	244.9	171.3
15-Jun	170.5	207.7	207.5	246.0	255.0	255.4	245.2	172.1
16-Jun	170.4	208.9	209.9	246.9	255.4	255.1	245.2	172.4
17-Jun	170.1	210.7	209.2	247.3	255.5	255.3	245.2	173.2
18-Jun	170.2	212.9	213.1	247.4	255.5	256.3	245.2	173.4
19-Jun	169.7	214.6	215.7	247.7	255.6	256.7	245.1	173.8
20-Jun	169.6	217.4	219.2	248.2	255.6	256.4	245.2	174.2
21-Jun	169.1	217.6	219.4	247.8	255.9	255.3	245.0	174.6
22-Jun	168.6	221.3	222.9	248.4	256.2	255.0	245.1	174.9
23-Jun	168.3	223.8	224.3	248.9	256.2	255.0	245.2	175.4
24-Jun	167.6	224.4	224.2	248.8	256.8	256.2	245.4	175.2
25-Jun	167.2	224.6	224.2	249.1	257.3	255.7	245.2	175.4
26-Jun	167.6	226.1	225.7	249.6	257.6	256.3	245.5	175.7
27-Jun	167.1	226.5	226.3	249.7	257.5	256.3	245.4	175.7
28-Jun	167.0	226.0	226.0	249.9	258.0	256.8	245.6	176.1
29-Jun	166.7	226.9	226.9	250.1	258.1	256.9	245.6	176.1
30-Jun	166.0	226.3	226.2	250.1	258.2	257.2	245.6	176.2
Average	173.2	214.0	213.9	236.2	252.9	252.0	244.8	176.8

]				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Jun	152.5	207.7	207.7	208.4	228.6	242.8	247.6	192.0
2-Jun	153.1	207.4	207.5	208.0	228.3	242.5	247.4	191.9
3-Jun	153.8	207.4	207.6	207.7	228.1	242.6	247.6	192.2
4-Jun	155.1	207.5	207.6	207.8	228.5	242.5	247.6	192.3
5-Jun	156.0	207.5	207.5	207.9	228.3	242.6	247.6	192.4
6-Jun	156.3	207.4	207.5	207.5	228.1	242.5	247.5	192.0
7-Jun	156.8	207.0	207.0	207.1	227.8	242.1	247.0	191.9
8-Jun	162.5	207.1	207.3	207.4	228.1	242.5	247.2	192.2
9-Jun	164.8	207.0	207.2	207.6	228.1	242.7	247.1	191.9
10-Jun	167.1	207.3	207.4	207.7	228.5	242.7	247.6	192.2
11-Jun	168.1	207.4	207.4	207.5	228.4	242.9	247.4	192.3
12-Jun	168.8	207.2	207.3	207.4	228.3	243.1	247.4	192.3
13-Jun	171.0	207.3	207.4	207.6	228.3	242.9	247.4	192.3
14-Jun	171.7	206.8	207.0	207.5	228.3	243.0	247.3	192.3
15-Jun	172.4	207.3	207.3	207.6	228.3	243.3	247.4	192.4
16-Jun	173.4	207.1	207.2	207.6	228.3	243.2	247.3	192.4
17-Jun	173.8	207.3	207.5	207.9	228.6	243.4	247.5	192.6
18-Jun	174.5	207.4	207.5	207.8	228.6	243.4	247.4	192.6
19-Jun	176.0	207.3	207.4	207.7	228.6	243.5	247.4	192.5
20-Jun	175.9	207.2	207.3	207.6	228.5	243.4	247.3	192.4
21-Jun	173.5	207.2	207.4	207.6	228.6	243.5	247.3	192.4
22-Jun	172.4	207.1	207.2	207.5	228.7	243.9	247.2	192.4
23-Jun	173.0	207.2	207.3	207.6	228.9	244.2	247.4	192.5
24-Jun	173.3	207.4	207.5	207.7	228.9	244.4	247.5	192.6
25-Jun	174.1	207.4	207.5	207.7	228.9	244.5	247.7	192.7
26-Jun	175.6	207.2	207.3	207.6	228.8	244.5	247.7	192.7
27-Jun	175.9	207.1	207.3	207.6	228.8	244.5	247.6	192.6
28-Jun	177.5	207.5	207.7	207.9	228.7	244.2	247.9	192.7
29-Jun	177.5	207.7	208.4	208.1	229.0	244.1	248.1	192.9
30-Jun	178.2	207.6	211.5	208.1	228.7	243.9	248.0	192.8
Average	168.5	207.3	207.6	207.7	228.5	243.3	247.5	192.4

		Dept	th from Su	rface	
Date	25 ft	50 ft	75 ft	100 ft	125 ft
1-Jun	207.5	234.8	235.1	236.5	237.5
2-Jun	198.7	235.1	235.3	236.5	237.6
3-Jun	185.6	234.8	234.9	236.4	237.5
4-Jun	180.9	234.5	234.6	236.3	237.4
5-Jun	178.5	234.5	234.5	236.2	237.2
6-Jun	177.2	234.4	234.4	235.5	236.8
7-Jun	175.9	234.0	34.0 234.0		236.5
8-Jun	175.5	234.4	234.4	235.6	236.8
9-Jun	177.2	234.1	234.4	235.9	237.0
10-Jun	195.8	234.3	234.4	235.9	237.0
11-Jun	195.0	234.4	234.5	235.7	237.0
12-Jun	178.8	234.3	234.4	235.7	236.9
13-Jun	187.8	234.3	234.5	235.5	236.7
14-Jun	193.9	234.2	234.4	235.5	236.8
15-Jun	176.3	234.4	234.5	235.9	237.1
16-Jun	175.4	234.5	234.6	235.7	237.1
17-Jun	174.4	234.5	234.6	235.9	237.1
18-Jun	173.7	234.5	234.7	235.9	237.1
19-Jun	173.5	234.6	234.7	235.9	237.1
20-Jun	172.9	234.6	234.7	235.9	237.1
21-Jun	172.5	234.6	234.7	235.9	237.1
22-Jun	172.3	234.1	234.2	235.4	236.6
23-Jun	172.4	234.1	234.2	235.4	236.4
24-Jun	172.1	234.1	234.2	235.5	236.6
25-Jun	172.0	234.1	234.2	235.4	236.6
26-Jun	172.4	234.1	234.2	235.4	236.6
27-Jun	172.2	233.9	234.1	235.4	236.4
28-Jun	172.1	234.1	234.2	235.5	236.5
29-Jun	171.4	234.1	234.1	235.5	236.5
30-Jun	171.4	234.0	234.2	235.5	236.4
Average	179.2	234.3	234.5	235.8	236.9

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Jun	161.7	208.0	208.0	236.9	244.0	240.7	231.5	215.8
2-Jun	161.7	206.5	206.5	235.6	244.1	240.6	230.9	215.0
3-Jun	161.5	205.0	204.9	233.5	244.4	240.6	230.7	214.3
4-Jun	161.4	207.0	207.2	233.0	244.3	240.4	230.6	213.6
5-Jun	161.3	209.1	209.9	232.8	244.3	240.4	230.6	213.3
6-Jun	161.0	207.5	207.8	232.5	244.1	240.0	230.5	212.6
7-Jun	160.5	203.0	202.9	228.8	243.9	239.9	230.0	212.0
8-Jun	160.9	204.5	204.5	229.0	244.1	239.8	230.2	212.1
9-Jun	160.8	208.3	207.9	231.1	243.9	239.7	229.9	211.8
10-Jun	160.9	208.9	209.2	231.9	244.0	239.7	229.8	211.4
11-Jun	161.2	208.9	209.1	232.4	244.1	239.7	229.9	210.5
12-Jun	160.8	208.8	208.8	232.4	244.1	239.6	230.1	211.0
13-Jun	160.6	205.0	205.3	231.8	244.0	239.8	229.7	211.4
14-Jun	160.5	206.7	207.0	231.9	243.9	239.6	229.7	210.3
15-Jun	160.5	207.7	208.1	232.3	244.1	239.8	229.8	210.1
16-Jun	160.6	208.2	208.5	232.4	243.8	239.6	229.8	209.5
17-Jun	160.5	208.5	208.9	232.6	243.9	239.6	229.9	209.9
18-Jun	160.7	208.4	208.8	232.7	243.7	239.4	229.7	209.5
19-Jun	160.7	207.6	208.0	232.7	243.6	239.3	229.6	209.0
20-Jun	160.5	206.0	206.3	232.2	243.5	239.3	229.7	208.7
21-Jun	160.2	207.6	207.9	232.3	243.3	239.2	229.6	208.4
22-Jun	160.0	208.3	208.7	232.3	243.3	239.2	229.5	208.4
23-Jun	159.9	207.2	207.6	232.2	243.4	239.3	229.6	208.3
24-Jun	159.9	207.6	208.0	232.3	243.4	239.3	229.7	208.2
25-Jun	160.2	208.0	208.6	232.3	243.2	238.9	229.6	207.9
26-Jun	159.8	208.0	208.6	232.6	243.3	239.0	229.8	207.9
27-Jun	159.5	207.2	207.9	232.4	243.3	239.1	229.7	208.1
28-Jun	159.7	207.9	208.7	232.7	243.4	239.2	229.4	207.9
29-Jun	159.8	209.1	209.8	232.7	243.4	239.0	228.6	207.8
30-Jun	159.9	209.2	209.8	232.7	243.3	238.8	229.5	207.6
Average	160.6	207.5	207.8	232.4	243.8	239.6	229.9	210.4

[Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Jun	177.0	181.7	181.6	184.3	187.6	188.6	186.3	181.5
2-Jun	177.0	182.0	181.8	184.3	187.8	188.6	186.4	181.5
3-Jun	177.4	182.1	181.8	184.4	188.0	188.8	186.5	181.5
4-Jun	177.4	182.2	182.1	184.3	188.2	189.0	186.3	181.5
5-Jun	177.6	182.3	182.2	184.6	188.4	189.4	186.6	181.8
6-Jun	177.5	182.3	182.2	184.7	188.4	189.1	186.7	181.7
7-Jun	177.3	182.0	182.0	184.8	188.0	189.0	186.3	181.5
8-Jun	177.6	182.4	182.3	185.0	188.5	189.2	186.5	181.4
9-Jun	178.0	182.5	182.4	185.0	188.7	189.1	186.7	181.5
10-Jun	178.6	182.6	182.5	185.4	189.0	189.6	186.7	181.6
11-Jun	178.7	182.7	182.7	185.5	189.3	189.6	186.7	181.5
12-Jun	178.9	183.1	182.9	185.9	189.3	189.8	187.1	181.7
13-Jun	179.0	183.1	183.0	185.7	189.5	189.7	186.9	181.7
14-Jun	179.2	183.4	183.2	185.8	189.5	189.8	186.8	181.7
15-Jun	179.4	183.5	183.5	186.2	189.8	190.2	187.2	182.2
16-Jun	179.5	183.6	183.5	186.2	189.8	190.0	187.1	182.0
17-Jun	179.8	183.8	183.7	186.4	190.0	190.2	187.1	182.1
18-Jun	179.8	183.9	183.8	186.6	190.2	190.3	187.2	182.1
19-Jun	180.1	184.1	183.9	186.8	190.2	190.3	187.2	182.1
20-Jun	180.2	184.2	184.0	187.0	190.2	190.2	187.1	182.0
21-Jun	180.1	184.3	184.1	187.1	190.3	190.2	187.0	182.0
22-Jun	180.5	184.4	184.3	187.4	190.3	190.2	187.0	182.0
23-Jun	180.7	184.7	184.6	187.7	190.5	190.3	187.2	182.1
24-Jun	181.0	184.9	184.8	187.8	190.7	190.4	187.2	182.1
25-Jun	181.1	185.0	184.9	187.8	190.6	190.3	187.1	182.0
26-Jun	181.4	185.1	185.1	187.9	190.6	190.4	187.3	182.2
27-Jun	181.5	185.2	185.1	188.0	190.6	190.4	187.2	182.1
28-Jun	181.7	185.5	185.4	188.2	190.9	190.7	187.3	182.2
29-Jun	181.9	185.6	185.5	188.4	190.9	190.8	187.4	182.1
30-Jun	182.1	185.8	185.7	188.6	191.1	191.0	187.5	182.2
Average	179.4	183.6	183.5	186.3	189.6	189.8	186.9	181.9

[Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Jun	124.3	152.7	152.1	153.7	149.8	132.8	119.8	108.3
2-Jun	124.1	152.8	152.0	153.8	149.8	132.9	119.8	108.7
3-Jun	123.9	152.8	152.0	153.7	149.7	132.8	119.7	108.7
4-Jun	124.1	152.8	152.0	153.7	149.7	132.8	119.7	108.9
5-Jun	123.9	152.7	152.0	153.6	149.6	132.7	119.7	109.2
6-Jun	123.9	152.7	151.8	153.5	149.5	132.7	119.7	108.8
7-Jun	123.1	152.0	151.2	153.1	149.1	132.1	119.1	108.5
8-Jun	123.6	152.4	151.6	153.5	149.5	132.6	119.6	108.8
9-Jun	123.4	152.2	151.6	153.2	149.2	132.5	119.4	108.8
10-Jun	123.8	152.6	151.8	153.5	149.3	132.7	119.6	108.8
11-Jun	123.8	152.5	151.9	153.5	149.4	132.5	119.5	108.5
12-Jun	123.6	152.4	151.8	153.4	149.4	132.6	119.6	108.7
13-Jun	123.7	152.6	152.0	153.5	149.3	132.7	119.6	108.6
14-Jun	123.6	152.4	151.9	153.4	149.1	132.6	119.5	108.1
15-Jun	123.7	152.6	152.2	153.6	149.4	132.7	119.7	108.6
16-Jun	123.9	152.7	152.1	153.5	149.3	132.7	119.6	108.5
17-Jun	124.0	152.8	152.2	153.5	149.3	132.7	119.6	108.5
18-Jun	123.9	153.0	152.3	153.6	149.3	132.8	119.7	108.4
19-Jun	123.9	152.9	152.2	153.6	149.3	132.7	119.7	108.3
20-Jun	123.7	152.9	152.2	153.5	149.2	132.6	119.6	108.2
21-Jun	123.6	152.7	152.1	153.4	149.0	132.5	119.4	108.0
22-Jun	123.7	152.8	152.1	153.4	149.0	132.5	119.5	108.1
23-Jun	123.9	153.0	152.3	153.5	149.2	132.7	119.6	108.3
24-Jun	123.8	153.1	152.5	153.6	149.2	132.8	119.7	108.4
25-Jun	123.7	152.9	152.3	153.6	149.2	132.7	119.6	108.2
26-Jun	123.9	153.1	152.4	153.7	149.3	132.9	119.8	108.1
27-Jun	123.7	153.0	152.4	153.6	149.1	132.7	119.6	108.0
28-Jun	124.0	153.2	152.7	153.9	149.3	132.9	119.9	108.3
29-Jun	123.9	153.2	152.6	153.8	149.2	132.9	119.8	108.3
30-Jun	123.8	153.1	152.7	153.7	149.1	132.8	119.7	108.3
Average	123.8	152.7	152.1	153.6	149.3	132.7	119.6	108.5

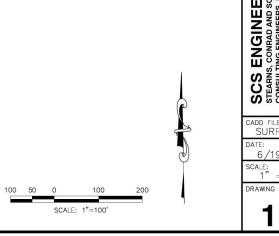
Appendix E

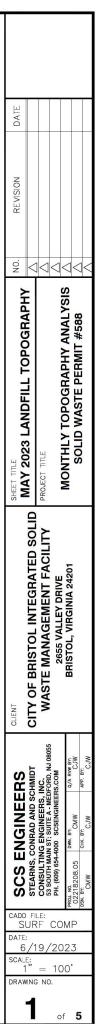
Monthly Topography Analysis

<u>LEGEND</u>

SP-9

NOTES:


MAJOR CONTOURS (EVERY 10')


MINOR CONTOURS (EVERY 2')

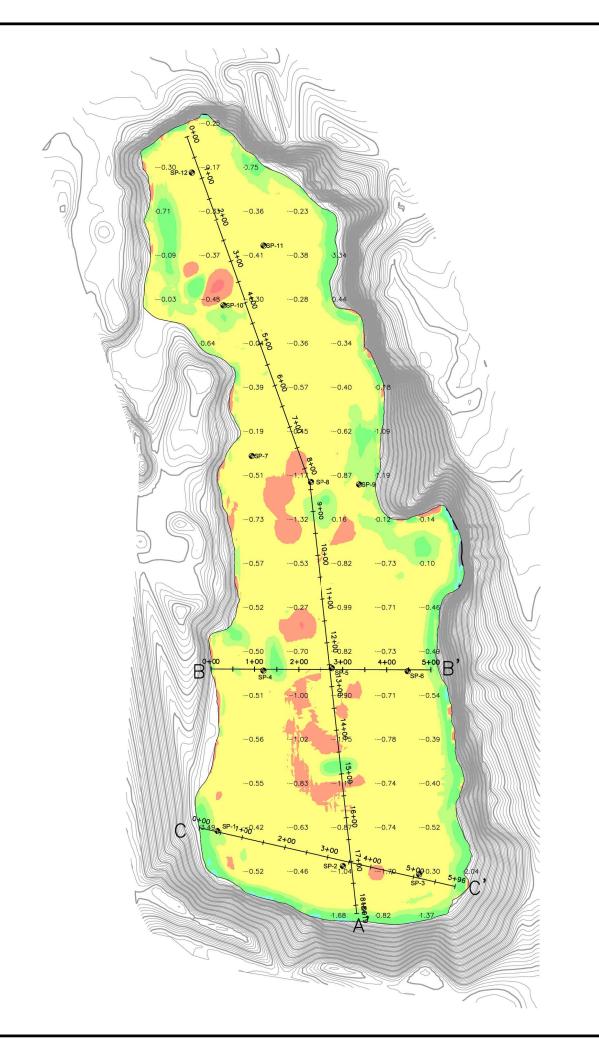
APPROXIMATE SIDEWALL LOCATION

SETTLEMENT PLATE

GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENTS THE TOPOGRAPHY CAPTURED ON MAY 11, 2023 BY SCS ENGINEERS.
 ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
 THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
 THE VERTICAL DATUM IS BASED UPON NAVD-88.

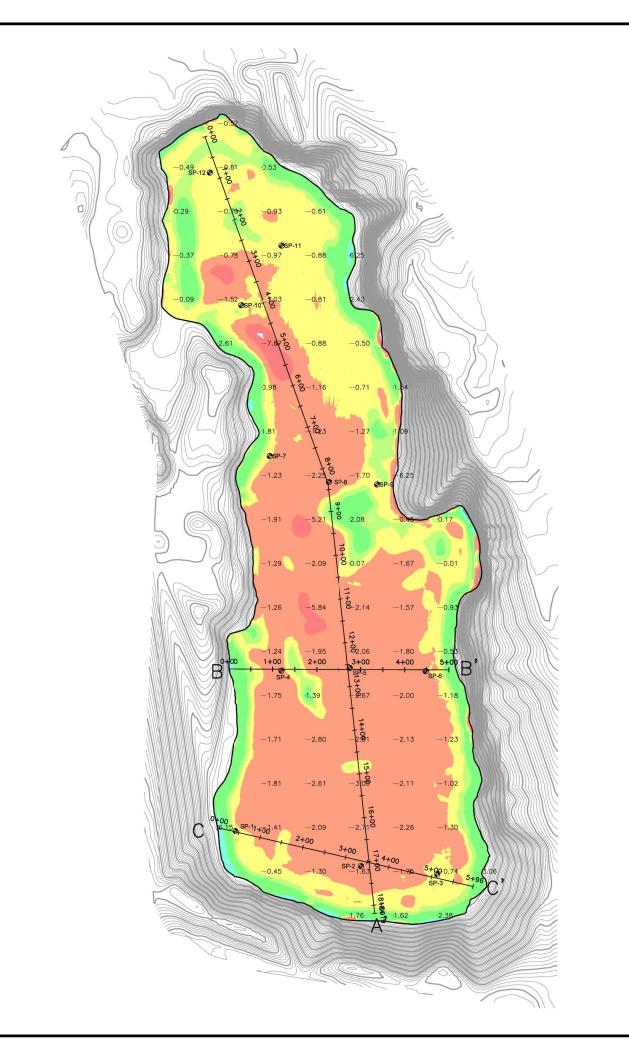


<u>LEGEND</u> MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2') APPROXIMATE SIDEWALL LOCATION SP-9

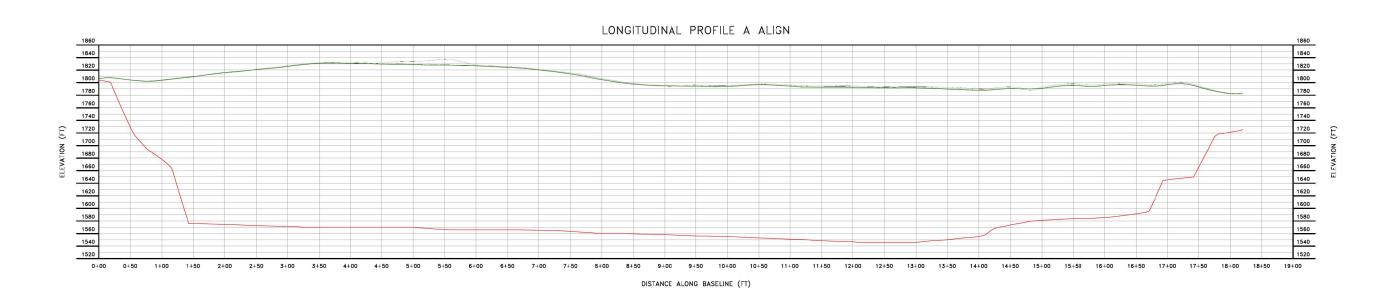

NOTES:

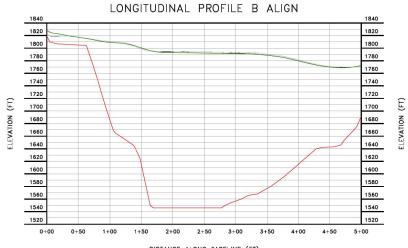
SETTLEMENT PLATE

GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENTS THE TOPOGRAPHY CAPTURED ON JUNE 9, 2023 BY SCS ENGINEERS.
 ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
 THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
 THE VERTICAL DATUM IS BASED UPON NAVD-88.



	LEGEND				
	MAJOR CONTOURS (EVERY 1C')			
	MINOR CONTOURS (EVERY 2')			
	APPROXIMATE SIDEW	ALL LOCATION		DATE	
SP-9	SETTLEMENT PLATE				
0.39	SPOT ELEVATION ON	100' GRID		z	
ume				REVISION	
Bas	se Surface TOP mparison Surface TOP	PO – MAY 11, 2023 PO – JUNE 9, 2023			
Fill	Volume 5	664 Cu. Yd. ,458 Cu. Yd.		NO.	<u>s</u>
Net	Cut 9	,206 Cu. Yd.		33 E	ALYSI 88
	Eleva	tions Table		JUNE VOLUME CHANGE MAY 2023 TO JUNE 2023	DJECT TITLE MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588
nber	Minimum Elevation	Maximum Elevation	Color	UME O	PERM
1	-10.000	-5.000		IE VOL	OGF STE F
2	-5.000	-1.000		MUL	/ TOF
3	-1.000	0.000		щ	
4	0.000	1.000		SHEET TITLE	PROJECT TITLE MONTH SO
5	1.000	5.000			2
6	5.000	10.000		SOL	
APTURED -) INDICA ETTLEME NY DETER PROVEME ND SHAL PROVEME IE HORIZ	ON MAY 11, 2023 AND JUNE 9, 3 TTE AREAS OF FILL AND NEGATIVE NT). VALUES ARE ROUNDED TO TH RMINATION OF TOPOGRAPHY OR CO NTS, PROPERTY LINES, OR BOUND NOT BE USED FOR DESIGN, MOD NTS TO REAL PROPERTY OR FOR	DNTOURS, OR ANY DEPICTION OF PH ARIES IS FOR GENERAL INFORMATIC IFICATION, OR CONSTRUCTION OF FLOOD PLAIN DETERMINATION. RGINIA SOUTH ZONE NAD-83 (2011	VALUES JUT HYSICAL IN ONLY	CLENT CITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201
		100 50 0 100 SCALE: 1"=100'	200	SCS ENGINEERS SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT BATERINS, CONRAD AND SCHMIDT	te: RF COMP 19/2023 = 100'


Cut Volume	14
Fill Volume	Ę
Net Cut	Ċ


	LEGEND			
	MAJOR CONTOURS (
	MINOR CONTOURS (E			DATE
	APPROXIMATE SIDEW	VALL LOCATION		Í
SP-9	SETTLEMENT PLATE			
-0.39	SPOT ELEVATION ON	I 100° GRID		REVISION
	se Surface TOP mparison Surface TOP	PO – MAY 11, 2023 PO – JUNE 9, 2023		RE
Fill	Volume 5	664 Cu. Yd. ,458 Cu. Yd. ,206 Cu. Yd.		
	Eleva	tions Table		LET TITLE JUNE VOLUME CHANGE MAY 2023 TO JUNE 2023 DJEOT TITLE
Number	Minimum Elevation	Maximum Elevation	Color	
1	-10.000	-5.000		INE VC
2	-5.000	-1.000		
3	-1.000	0.000		TILE
4	0.000	1.000		SHEET TITLE PROJECT TITLE
5	1.000	5.000		
6	5.000	10.000		SoL
				E FATE
CAPTURED (+) INDICA (SETTLEME ANY DETER IMPROVEME AND SHALI IMPROVEME 3. THE HORIZ	ON MAY 11, 2023 AND JUNE 9, 2 ITE AREAS OF FILL AND NEGATIVE NT). VALUES ARE ROUNDED TO TH RMINATION OF TOPOGRAPHY OR CO INTS, PROPERTY LINES, OR BOUND - NOT BE USED FOR DESIGN, MOD INTS TO REAL PROPERTY OR FOR	DNTOURS, OR ANY DEPICTION OF PH' DARIES IS FOR GENERAL INFORMATION IFICATION, OR CONSTRUCTION OF FLOOD PLAIN DETERMINATION. RGINIA SOUTH ZONE NAD-83 (2011)	VALUES JT YSICAL	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONULTING REGINEERS, UN BOOLS BROUTH AMN ST: SUITE A. MEDICIOL. PH. (609) 654-4000 SCSENGINEERS.COM PH. (600) FRANCINC SCSENGIN FRANCINC FRANCINC SCSENGIN FRANCINC FRANCINC FRANCINC FRANCINC FRANCINC FRAN

	LEGEND				
	MAJOR CONTOURS (EVERY 10')			
	MINOR CONTOURS (EVERY 2')			
	APPROXIMATE SIDEW	ALL LOCATION		DATE	
SP-9	SETTLEMENT PLATE				
-0.39	SPOT ELEVATION ON	100' GRID		z	
		PO — MARC⊢ 9, 202 PO — JUNE 9, 2023	3	REVISION	
Fill	Volume 36,784 Volume 9,429 Cut 27,354	Cu. Yd.		16 023	MECT TILE CONCRAPHY ANALYSIS COLID WASTE PERMIT #588
	Eleva	tions Table		JUNE VOLUME CHANGE MARCH 2023 TO JUNE 2023	лЕ THLY TOPOGRAPHY ANAL SOLID WASTE PERMIT #588
lumber	Minimum Elevation	Maximum Elevation	Color	UME 0	RAPH
1	-10.000	-5.000		LE VOL	STE
2	-5.000	-1.000			Y TOF
3	-1.000	0.000		щ	UTHL SOLI
4	0.000	1.000		SHEET TITLE	PROJECT TITLE MONTH SO
5	1.000	5.000			
6	5.000	10.000			
CAP VALU CUT 2. ANY IMPF AND IMPF 3. THE	TURED ON MARCH 9, 2023 AND , JES (+) INDICATE AREAS OF FILL (SETILEMENT). VALUES ARE ROU DETERMINATION OF TOPOGRAPHY ROVEMENTS, PROPERTY LINES, OR SHALL NOT BE USED FOR DESIG ROVEMENTS TO REAL PROPERTY C	OR CONTOURS, OR ANY DEPICTION BOUNDARIES IS FOR GENERAL INF N, MODIFICATION, OR CONSTRUCTIO R FOR FLOOD PLAIN DETERMINATIO ANE VIRGINIA SOUTH ZONE NAD-8	POSITIVE ATE AREAS OF N OF PHYSICAL DRMATION ONLY N OF N.		ULT OF BRISTOL IN EGRATED SOLID WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201
		100 50 0 SCALE: 1"	100 200	CADD SU DATE:	RF COMP (19/2023) = 100'

	LEGEND				
	MAJOR CONTOURS (EVERY 10')			
	MINOR CONTOURS (1	EVERY 2')		ш	
	APPROXIMATE SIDEW	VALL LOCATION		DATE	
SP-9	SETTLEMENT PLATE				
-0.39	SPOT ELEVATION ON	100' GRID		NOIS	
	se Surface TOP mparison Surface TOP	PO — MARC⊢ 9, 2023 PO — JUNE 9, 2023		REVISION	
Fill	t Volume 36,784 Volume 9,429 t Cut 27,354	Cu. Yd.			
	Eleva	tions Table		JUNE VOLUME CHANGE MARCH 2023 TO JUNE 2023	MUNIHLY IOPOGRAPHY ANALYSIS
Number	Minimum Elevation	Maximum Elevation	Color	23 TO	LAPA
1	-10.000	-5.000			500
2	-5.000	-1.000		MAR	5
3	-1.000	0.000		а П	N H
4	0.000	1.000		SHEET TITLE	N C
5	1.000	5.000			
6	5.000	10.000		RATED SOLID T FACILITY IVE	
CAF VAL CUT 2. AN IMP ANI IMP 3. THE	PTURED ON MARCH 9, 2023 AND ULES (+) INDICATE AREAS OF FIL (SETTLEMENT), VALUES ARE ROU Y DETERMINATION OF TOPOGRAPHY ROVEMENTS, PROPERTY LINES, OR O SHALL NOT BE USED FOR DESIG ROVEMENTS TO REAL PROPERTY C	OR CONTOURS, OR ANY DEPICTION (BOUNDARIES IS FOR GENERAL INFOR N, MODIFICATION, OR CONSTRUCTION NF FOR FLOOD PLAIN DETERMINATION. ANE VIRGINIA SOUTH ZONE NAD-83	DSTIVE E AREAS OF OF PHYSICAL MATION ONLY OF	CLIENT CLITY OF BRISTOL INTEG WASTE MANAGEMEN 2655 VALLEY DR	BRISTOL, VIRGINIA 2420
				SCS ENGINEERS SCONTANA AND SCHMIDT STEARNS, CONAD AND SCHMIDT STEARNS, CONAD AND SCHMIDT STEARNS, INC. SOULD AND SCHMIDT STEARNS, INC. SCOTTER, INC. SCOTTER, SUITE A. INC. SCOTTER, SCOTTER,	

LEGEND BOTTOM LINER ELEVATION MARCH 2023 TOPO MAY 2023 TOPO JUNE 2023 TOPO Appendix F

Sample Collection Log and Lab Report

Appendix F

Field Log

Lab Report

Historical LFG-EW Leachate Monitoring Results Summary

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date					06	/20-21/2023	3				
Personnel					L. Hov	ward & C. Ki	rby				
Location ID	Date	Scheduled Borehole Depth (ft)	Measured Well	Casing Depth (Date)	Should Have Pump	Pump Depth (ft)	Cycle Count	Depth to Liquid (ft)	Casing Sickup (ft)	Liquid Column Thickness (ff)	Comments
EW-32B		180	(ft)	(Dale)	romp				(11)	mickness (ii)	Decommisioned?
EW-49	6/21/2023		96.15	12/20-21/2022	x	90	1675634	55.30	5.49	40.85	
EW-50	6/21/2023		77.70	12/20-21/2022	x	83	1012311	33.90	2.71	43.80	
EW-51	6/21/2023		92.80	12/20-21/2022	х	95	23130	41.30	3.32	51.50	
EW-52	6/21/2023		98.70	12/20-21/2022	x	93	81077	40.85	2.41	57.85	
EW-53	6/21/2023		100.70	12/20-21/2022	x		N/A	26.15	3.61	74.55	No Pump
EW-54	6/21/2023		82.70	12/20-21/2022	x	75	351997	31.20	4.32	51.50	Air Off
EW-55	6/21/2023		90.40	12/20-21/2022	x	90	181110	31.95	5.28	58.45	Air Disconnected
EW-56	6/20/2023		58.50	12/20-21/2022		58	N/A	43.40			
EW-57	6/20/2023		107.40	12/20-21/2022	x	425173	40.56	39.06	3.69	68.34	Air Off, Tight spot at 25'
EW-58	6/20/2023		84.50	12/20-21/2022	x	82	199408	20.32	4.98	64.18	Air Off
EW-59	6/20/2023		73.40	12/20-21/2022	x	64	2002497		3.41		Sampled
EW-60	6/21/2023		81.80	12/20-21/2022	x	70	309437	39.70	2.52	42.10	
EW-61	6/20/2023		87.80	12/20-21/2022	x	66	236661		3.53		Sampled
EW-62	6/20/2023		110.60	12/20-21/2022	x	80	145873	89.70	3.62	20.90	One cycle approximately every to 2 minutes
EW-63	6/20/2023		62.10	12/20-21/2022	х	64	N/A	55.10	4.09	7.00	Obtruction? Doesn't seem to be liquid
EW-64	6/21/2023		109.00	12/20-21/2022	х	113	129653		6.41		Sampled
EW-65	6/21/2023		88.40	12/20-21/2022	х	50	3973	47.5	5.23	40.90	
EW-67	6/21/2023		107.75	12/20-21/2022	х	62.5	55592	8.60	4.21	99.15	
EW-68	6/21/2023		73.57	12/20-21/2022	х	68	2082636	37.60	3.29	35.97	
EW-69	6/20/2023	93	98.00	5/3/2023			N/A	93.32		4.68	

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date					06	/20-21/2023							
Personnel		L. Howard & C. Kirby											
Location ID	Date	Scheduled Borehole	Measured We	ll Casing Depth	Should Have	Pump	Cycle	Depth to	Casing Sickup	Liquid Column	Comments		
EW-70	6/20/2023	66	71.00	5/3/2023			N/A	67.70		3.30			
EW-71	6/21/2023	180			x		N/A	130.00			Lost 2 Bottles in well		
EW-72	6/21/2023	180			х		N/A	103.50					
EW-73	6/20/2023	111	116.00	5/3/2023			N/A	108.20		7.80			
EW-74	6/21/2023	180			x		11	167.50					
EW-75	6/20/2023	179			x		9	176.50					
EW-76	6/20/2023	122	127.00	5/3/2023			N/A	113.20		13.80			
EW-77	6/20/2023	180					N/A	135.50					
EW-78	6/20/2023	52	57.00	5/3/2023			N/A	34.60		22.40			
EW-79	6/21/2023	180					N/A	145.50					
EW-80	6/20/2023	144	149.00	5/3/2023			N/A	133.90		15.10			
EW-81	6/21/2023	180					N/A	117.50					
EW-82	6/21/2023	180					N/A				Could not get Flange of		
EW-83	6/21/2023	180					N/A	105.50			not certain on depth		
EW-84	6/20/2023	137	142.00	5/3/2023			N/A	112.50		29.50			
EW-85	6/20/2023	86	91.00	5/3/2023			N/A	40.70		50.30			
EW-86	6/20/2023	148	153.00	5/3/2023			N/A	87.60		65.40			
EW-87	6/21/2023	180					N/A	43.70					

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date	06/20-21/2023											
Personnel		L. Howard & C. Kirby										
Location ID	Date	Scheduled Borehole	Measured Well Casing Depth		Should Have	Pump	Cycle	Depth to	Casing Sickup	Liquid Column	Comments	
EW-88	6/21/2023	95	100.00	5/3/2023			N/A	32.50		67.50		
EW-89	6/21/2023	121	126.00	5/3/2023			N/A	29.00		97.00		
EW-90	6/20/2023	109	114.00	5/3/2023			N/A	82.05		31.95		
EW-91	6/21/2023	180					N/A	31.00				
EW-92	6/21/2023	140					N/A	35.60				
EW-93	6/21/2023	106	111.00	5/3/2023			N/A	23.62		87.38		
EW-94	6/21/2023	45	50.00	5/3/2023	x		320206	19.09		30.91	Air Off	
EW-95	6/20/2023	63	68.00	5/3/2023			N/A	65.74		2.26		
EW-96	6/21/2023	180					N/A	38.30				
EW-97	6/21/2023	180					N/A	61.30				
EW-98	6/21/2023	51	56.00	5/3/2023			N/A	17.17		38.83		
EW-99	6/20/2023	60	65.00	5/3/2023			N/A	62.84		2.16		
EW-100	6/20/2023	130	135.00	5/3/2023			N/A	59.32		75.68		

.

--- = not applicable/available

Well casing depths for EW-49 - EW-68 measured on 12/20-21/2022 from top of PVC.

Well casing stickup for EW-49 - EW-68 measured on 01/17/2023.

Well casing depths and stickup for EW-69 - EW-100 measured on 5/3/2023.

Log Checked B J. Robb

Certificate of Analysis

DRAFT REPORT

Laboratory Order ID 23F1095

Client Name: SCS Engineers-Winchester 296 Victory Road

Winchester, VA 22602

Submitted To: Logan Howard

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Enclosed are the results of analyses for samples received by the laboratory on 06/21/2023 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

Enthalpy Analytical 1941 Reymet Road Richmond, VA 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

			Analysia Datas	to Domo <i>n</i> t					
			<u>Analysis Detec</u>	ts Report					
Client Name:	SCS Engineers-Wir	nchester	Date Issued:	7/7/2023 5:12:03PM					
Client Site ID:	2023 City of Bristol								
-	-								
Submitted To:	Logan Howard								
Laboratory Sample ID	: 23F1095-01	Client Sa	ample ID: EW-59						
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Arsenic		01RE1	SW6020B	260		2.5	5.0	5	ug/L
Barium		01RE1	SW6020B	1690		5.00	25.0	5	ug/L
Chromium		01RE1	SW6020B	251		2.00	5.00	5	ug/L
Copper		01RE1	SW6020B	1.54	J	1.50	5.00	5	ug/L
Nickel		01RE1	SW6020B	59.78		5.000	5.000	5	ug/L
Zinc		01RE1	SW6020B	53.8		12.5	25.0	5	ug/L
2-Butanone (MEK)		01RE1	SW8260D	13800		750	2500	250	ug/L
Acetone		01RE1	SW8260D	29600		1750	2500	250	ug/L
Benzene		01	SW8260D	2630		8.00	20.0	20	ug/L
Ethylbenzene		01	SW8260D	104		8.00	20.0	20	ug/L
Tetrahydrofuran		01	SW8260D	2100		200	200	20	ug/L
Toluene		01	SW8260D	165		10.0	20.0	20	ug/L
Xylenes, Total		01	SW8260D	177		20.0	60.0	20	ug/L
Ammonia as N		01	EPA350.1 R2.0	2740		146	200	2000	mg/L
BOD		01	SM5210B-2011	20000		0.2	2.0	1	mg/L
COD		01	SM5220D-2011	41300		10000	10000	1000	mg/L
Nitrate+Nitrite as N		01RE1	SM4500-NO3F-2011	4.45		0.10	0.10	1	mg/L
Nitrite as N		01	SM4500-NO2B-2011	2.00	J	1.00	5.00	100	mg/L
TKN as N		01	EPA351.2 R2.0	3080		100	250	500	mg/L
Total Recoverable Pheno	lics	01	SW9065	39.1		1.50	2.50	50	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

Enthalpy Analytical 1941 Reymet Road Richmond, Virginia 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

7/7/2023 5:12:03PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Logan Howard

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-59	23F1095-01	Ground Water	06/20/2023 07:40	06/21/2023 08:00
Trip Blank	23F1095-02	Ground Water	06/20/2023 00:00	06/21/2023 08:00

Enthalpy Analytical 1941 Reymet Road Richmond, Virginia 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

				<u>c</u>	<u>Certificate c</u>	of Analysis							
Client Name:	SCS Engineers-Winchester							Date Issued:			3 5:1	2:03PM	
Client Site I.D.:	2023 City of												
Submitted To:	Logan Howa	rd											
Client Sample ID:	EW-59					Laboratory	/ Sample ID:	Sample ID: 23F1095-01					
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
Metals (Total) by EPA	6000/7000 Series N	lethods											
Silver		01RE1	7440-22-4	SW6020B	06/23/2023 17:00	06/26/2023 14:17	BLOD		0.300	5.00	5	ug/L	AB
Arsenic		01RE1	7440-38-2	SW6020B	06/23/2023 17:00	06/26/2023 14:17	260		2.5	5.0	5	ug/L	AB
Barium		01RE1	7440-39-3	SW6020B	06/23/2023 17:00	06/26/2023 14:17	1690		5.00	25.0	5	ug/L	AB
Cadmium		01RE1	7440-43-9	SW6020B	06/23/2023 17:00	06/26/2023 14:17	BLOD		0.500	5.00	5	ug/L	AB
Chromium		01RE1	7440-47-3	SW6020B	06/23/2023 17:00	06/26/2023 14:17	251		2.00	5.00	5	ug/L	AB
Copper		01RE1	7440-50-8	SW6020B	06/23/2023 17:00	06/26/2023 14:17	1.54	J	1.50	5.00	5	ug/L	AB
Mercury		01	7439-97-6	SW7470A	06/22/2023 10:20	06/22/2023 13:30	BLOD		0.00400	0.00400	1	mg/L	SGT
Nickel		01RE1	7440-02-0	SW6020B	06/23/2023 17:00	06/26/2023 14:17	59.78		5.000	5.000	5	ug/L	AB
Lead		01RE1	7439-92-1	SW6020B	06/23/2023 17:00	06/26/2023 14:17	BLOD		5.0	5.0	5	ug/L	AB
Selenium		01RE1	7782-49-2	SW6020B	06/23/2023 17:00	06/26/2023 14:17	BLOD		4.25	5.00	5	ug/L	AB
Zinc		01RE1	7440-66-6	SW6020B	06/23/2023 17:00	06/26/2023 14:17	53.8		12.5	25.0	5	ug/L	AB
Volatile Organic Com	pounds by GCMS												
2-Butanone (MEK)		01RE1	78-93-3	SW8260D	06/22/2023 18:12	06/22/2023 18:12	13800		750	2500	250	ug/L	RJB
Acetone		01RE1	67-64-1	SW8260D	06/22/2023 18:12	06/22/2023 18:12	29600		1750	2500	250	ug/L	RJB
Benzene		01	71-43-2	SW8260D	06/21/2023 19:50	06/21/2023 19:50	2630		8.00	20.0	20	ug/L	TLH
Ethylbenzene		01	100-41-4	SW8260D	06/21/2023 19:50	06/21/2023 19:50	104		8.00	20.0	20	ug/L	TLH
Toluene		01	108-88-3	SW8260D	06/21/2023 19:50	06/21/2023 19:50	165		10.0	20.0	20	ug/L	TLH
Xylenes, Total		01	1330-20-7	SW8260D	06/21/2023 19:50	06/21/2023 19:50	177		20.0	60.0	20	ug/L	TLH
Tetrahydrofuran		01	109-99-9	SW8260D	06/21/2023 19:50	06/21/2023 19:50	2100		200	200	20	ug/L	TLH
Surr: 1,2-Dichloroetha	ne-d4 (Surr)	01	94.1	% 70-120	06/21/2023 1	9:50 06/21/2023 19:	50						
Surr: 4-Bromofluorobe	, ,	01	103	% 75-120	06/21/2023 1	9:50 06/21/2023 19:	50						
Surr: Dibromofluorome		01	94.9		06/21/2023 1								
Surr: Toluene-d8 (Sur	,	01	101		06/21/2023 1								
Surr: 1,2-Dichloroetha	()	01RE1	100		06/22/2023 1								
Surr: 4-Bromofluorobe	enzene (Surr)	01RE1	102	% 75-120	06/22/2023 18	8:12 06/22/2023 18:	12						

				0	Certificate o	f Analysis							
Client Name:	SCS Engir	neers-Winch	ester				Da	te Issue	d:	7/7/202	3 5:1	12:03PM	
Client Site I.D.:	2023 City	of Bristol La	ndfill Leac	hate									
Submitted To:	Logan Hov	ward											
Client Sample ID:	EW-59					Laborator	y Sample ID:	23F1	095-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Com	pounds by GCM	IS											
Surr: Dibromofluorom Surr: Toluene-d8 (Sur	()	01RE1 01RE1	102 98.0		06/22/2023 18 06/22/2023 18								
Semivolatile Organic	Compounds by	GCMS											
Anthracene		01	120-12-7	SW8270E	06/23/2023 09:00	06/23/2023 20:09	BLOD		485	971	50	ug/L	BMS
Naphthalene		01	91-20-3	SW8270E	06/23/2023 09:00	06/23/2023 20:09	BLOD		340	485	50	ug/L	BMS
Surr: 2,4,6-Tribromopl	henol (Surr)	01		% 5-136	06/23/2023 09	:00 06/23/2023 20	:09						DS
Surr: 2-Fluorobipheny	l (Surr)	01	16.0	% 9-117	06/23/2023 09	:00 06/23/2023 20	:09						
Surr: 2-Fluorophenol ((Surr)	01	15.0	% 5-60	06/23/2023 09	:00 06/23/2023 20	:09						
Surr: Nitrobenzene-d5	5 (Surr)	01	38.0	% 5-151	06/23/2023 09	:00 06/23/2023 20	:09						
Surr: Phenol-d5 (Surr)		01	26.0		06/23/2023 09								
Surr: p-Terphenyl-d14	(Surr)	01	12.0	% 5-141	06/23/2023 09	:00 06/23/2023 20	:09						

					Certificate o	of Analysis							
Client Name:	SCS Engir	neers-Winch	lester	_			Da	te Issue	ed:	7/7/202	3 5:1	2:03PM	
Client Site I.D.:	2023 City	of Bristol La	andfill Lead	chate									
Submitted To:	Logan Hov	vard											
Client Sample ID:	EW-59					Laborator	ry Sample ID:	23F1	095-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analys	sis												
Ammonia as N		01	7664-41-7	EPA350.1 R2.0	07/03/2023 13:04	07/03/2023 13:04	2740		146	200	2000	mg/L	MKS
BOD		01	E1640606	SM5210B-20 11	06/21/2023 09:59	06/21/2023 09:59	20000		0.2	2.0	1	mg/L	NBT
COD		01	NA	SM5220D-20 11	06/28/2023 09:30	06/28/2023 09:30	41300		10000	10000	1000	mg/L	MJRL
Nitrate as N		01	14797-55-8	Calc.	06/30/2023 15:10	06/30/2023 15:10	BLOD		1.10	5.10	100	mg/L	MKS
Nitrate+Nitrite as N		01RE1	E701177	SM4500-NO 3F-2011	06/30/2023 15:10	06/30/2023 15:10	4.45		0.10	0.10	1	mg/L	MKS
Nitrite as N		01	14797-65-0	SM4500-NO 2B-2011	06/21/2023 14:00	06/21/2023 14:00	2.00	J	1.00	5.00	100	mg/L	MKS
Total Recoverable Phe	enolics	01	NA	SW9065	07/05/2023 16:24	07/05/2023 16:24	39.1		1.50	2.50	50	mg/L	AAL
TKN as N		01	E17148461	EPA351.2 R2.0	07/02/2023 00:00	07/02/2023 00:00	3080		100	250	500	mg/L	TMB

				<u>(</u>	Certificate of	f Analysis							
Client Name:	SCS Engine	ers-Winch	ester				Da	te Issued	d:	7/7/202	3 5:1	2:03PM	
Client Site I.D.:	2023 City o	f Bristol La	Indfill Leac	hate									
Submitted To:	Logan Howa	ard											
Client Sample ID:	Trip Blank					Laborator	y Sample ID:	23F10	95-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
Volatile Organic Compo	ounds by GCMS												
2-Butanone (MEK)		02	78-93-3	SW8260D	06/21/2023 14:47	06/21/2023 14:47	BLOD		3.00	10.0	1	ug/L	TLH
Acetone		02	67-64-1	SW8260D	06/21/2023 14:47	06/21/2023 14:47	BLOD		7.00	10.0	1	ug/L	TLH
Benzene		02	71-43-2	SW8260D	06/21/2023 14:47	06/21/2023 14:47	BLOD		0.40	1.00	1	ug/L	TLH
Ethylbenzene		02	100-41-4	SW8260D	06/21/2023 14:47	06/21/2023 14:47	BLOD		0.40	1.00	1	ug/L	TLH
Toluene		02	108-88-3	SW8260D	06/21/2023 14:47	06/21/2023 14:47	BLOD		0.50	1.00	1	ug/L	TLH
Xylenes, Total		02	1330-20-7	SW8260D	06/21/2023 14:47	06/21/2023 14:47	BLOD		1.00	3.00	1	ug/L	TLH
Tetrahydrofuran		02	109-99-9	SW8260D	06/21/2023 14:47	06/21/2023 14:47	BLOD		10.0	10.0	1	ug/L	TLH
Surr: 1,2-Dichloroethane	e-d4 (Surr)	02	101	% 70-120	06/21/2023 14:	47 06/21/2023 14	:47						
Surr: 4-Bromofluorobenz	zene (Surr)	02	104	% 75-120	06/21/2023 14:	47 06/21/2023 14	:47						
Surr: Dibromofluorometh	hane (Surr)	02	103	% 70-130	06/21/2023 14	47 06/21/2023 14	:47						

			<u> </u>	ertificate o	f Analysia	•				
Client Name:	SCS Engineers-Winchester				I Allalysia	<u>></u>	Date Issue	٩.	7/7/2023	5:12:03PM
	•						Date 1550e	u.	11112020	0.12.001 W
Client Site I.D.:	2023 City of Bristol Landfill I	_eachate								
Submitted To:	Logan Howard									
		Metal	s (Total) bv	EPA 6000/7000 Se	ries Methods - Qi	uality Control				
			- (, ,			, -				
				Enthalpy An	aiyucai					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0861 - SW747	'0A								
Blank (BGF0861-BLK1				Prepared & Analy	zed: 06/22/2023					
Mercury	, ND	0.00020	mg/L	i roparoa a raidiy	200.00/22/2020					
LCS (BGF0861-BS1)			0	Prepared & Analy	zed: 06/22/2023					
Mercury	0.00247	0.00020	mg/L	0.00250	200.00,22,2020	98.8	80-120			
······ ·	Batch BGF0945 - EPA20									
		0.0 1(3.4		Duran and 00/00/0						
Blank (BGF0945-BLK1 Arsenic)ND	1.0	ug/L	Prepared: 06/23/2	023 Analyzed: 06	/26/2023				
Barium	ND	5.00	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	1.00	ug/L							
Copper	ND	1.00	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	1.000	ug/L							
Selenium	ND	1.00	ug/L							
Silver	ND	1.00	ug/L							
Zinc	ND	5.00	ug/L							
LCS (BGF0945-BS1)				Prepared: 06/23/2	023 Analyzed: 06	/26/2023				
Arsenic	51	1.0	ug/L	50.0		102	80-120			
Barium	50.0	5.00	ug/L	50.0		99.9	80-120			
Cadmium	51.3	1.00	ug/L	50.0		103	80-120			
Chromium	50.8	1.00	ug/L	50.0		102	80-120			
Copper	50.7	1.00	ug/L	50.0		101	80-120			
Lead	51	1.0	ug/L	50.0		102	80-120			
Nickel	50.61	1.000	ug/L	50.0		101	80-120			

			C	ertificate o	of Analys	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of Bristol Landfill Le	eachate								
Submitted To:	Logan Howard									
		Motol	a (Tatal) by	EPA 6000/7000 S	orion Mothoda (Quality Control				
		Metal	s (Total) by							
				Enthalpy Ar	nalytical					
Amelida	Decult		Linita	Spike	Source	% DE0	%REC		RPD	Qual
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGF0945 - EPA200.	8 R5.4								
LCS (BGF0945-BS1)				Prepared: 06/23/	2023 Analyzed: (06/26/2023				
Selenium	50.8	1.00	ug/L	50.0		102	80-120			
Silver	10.1	1.00	ug/L	10.0		101	80-120			
Zinc	50.8	5.00	ug/L	50.0		102	80-120			
Matrix Spike (BGF0945-I	MS1) Source	: 23F1093-0)4	Prepared: 06/23/	2023 Analyzed: (06/26/2023				
Arsenic	51	1.0	ug/L	50.0	BLOD	101	75-125			
Barium	51.6	5.00	ug/L	50.0	BLOD	103	75-125			
Cadmium	50.9	1.00	ug/L	50.0	BLOD	102	75-125			
Chromium	50.6	1.00	ug/L	50.0	BLOD	101	75-125			
Copper	50.3	1.00	ug/L	50.0	BLOD	101	75-125			
Lead	51	1.0	ug/L	50.0	BLOD	101	75-125			
Nickel	50.09	1.000	ug/L	50.0	BLOD	100	75-125			
Selenium	50.2	1.00	ug/L	50.0	BLOD	100	75-125			
Silver	10.0	1.00	ug/L	10.0	BLOD	100	75-125			
Zinc	50.9	5.00	ug/L	50.0	BLOD	102	75-125			
Matrix Spike (BGF0945-I	MS2) Source	: 23F1222-0)1	Prepared: 06/23/	2023 Analyzed: (06/26/2023				
Arsenic	51	1.0	ug/L	50.0	0.61	102	75-125			
Barium	151	5.00	ug/L	50.0	99.8	103	75-125			
Cadmium	50.6	1.00	ug/L	50.0	BLOD	101	75-125			
Chromium	50.7	1.00	ug/L	50.0	BLOD	101	75-125			
Copper	47.2	1.00	ug/L	50.0	BLOD	94.4	75-125			
Lead	50	1.0	ug/L	50.0	BLOD	100	75-125			
Nickel	48.11	1.000	ug/L	50.0	BLOD	96.2	75-125			
Selenium	47.8	1.00	ug/L	50.0	BLOD	95.7	75-125			
Silver	9.91	1.00	ug/L	10.0	BLOD	99.1	75-125			

				Ce	ertificate o	of Analys	is				
Client Name:	SCS Engineer	s-Winchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of F	Bristol Landfill L	eachate								
-	-		ouonato								
Submitted To:	Logan Howard	1									
			Metals	(Total) by	EPA 6000/7000 S	eries Methods - (Quality Control				
					Enthalpy Ar	nalytical					
					Spike	Source		%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch B	3GF0945 - EPA200).8 R5.4								
Matrix Spike (BGF094	5-MS2)	Sourc	e: 23F1222-01		Prepared: 06/23/	2023 Analyzed: ()6/26/2023				
Zinc		46.8	5.00	ug/L	50.0	BLOD	93.5	75-125			
Matrix Spike Dup (BGI	F0945-MSD1)	Sourc	e: 23F1093-04		Prepared: 06/23/	2023 Analyzed: ()6/26/2023				
Arsenic		51	1.0	ug/L	50.0	BLOD	102	75-125	0.761	20	
Barium		50.7	5.00	ug/L	50.0	BLOD	101	75-125	1.88	20	
Cadmium		51.0	1.00	ug/L	50.0	BLOD	102	75-125	0.116	20	
Chromium		50.4	1.00	ug/L	50.0	BLOD	101	75-125	0.252	20	
Copper		50.7	1.00	ug/L	50.0	BLOD	101	75-125	0.720	20	
Lead		51	1.0	ug/L	50.0	BLOD	101	75-125	0.0500	20	
Nickel		50.85	1.000	ug/L	50.0	BLOD	102	75-125	1.51	20	
Selenium		50.5	1.00	ug/L	50.0	BLOD	101	75-125	0.625	20	
Silver		10.0	1.00	ug/L	10.0	BLOD	100	75-125	0.329	20	
Zinc		50.7	5.00	ug/L	50.0	BLOD	101	75-125	0.303	20	
Matrix Spike Dup (BGI	F0945-MSD2)	Sourc	e: 23F1222-01		Prepared: 06/23/	2023 Analyzed: (06/26/2023				
Arsenic		52	1.0	ug/L	50.0	0.61	102	75-125	0.381	20	
Barium		152	5.00	ug/L	50.0	99.8	104	75-125	0.282	20	
Cadmium		50.2	1.00	ug/L	50.0	BLOD	100	75-125	0.802	20	
Chromium		49.9	1.00	ug/L	50.0	BLOD	99.8	75-125	1.49	20	
Copper		47.4	1.00	ug/L	50.0	BLOD	94.8	75-125	0.396	20	
Lead		50	1.0	ug/L	50.0	BLOD	99.8	75-125	0.232	20	
Nickel		48.28	1.000	ug/L	50.0	BLOD	96.6	75-125	0.348	20	
Selenium		47.6	1.00	ug/L	50.0	BLOD	95.2	75-125	0.484	20	
Silver		10.1	1.00	ug/L	10.0	BLOD	101	75-125	1.38	20	
Zinc		46.6	5.00	ug/L	50.0	BLOD	93.1	75-125	0.418	20	

				Cer	tificate o	of Analysi	is				
Client Name: S	SCS Engineers-	Winchester				-		Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of Bri	stol Landfill L	eachate								
	_ogan Howard										
	Logan noward		,		i o o mana a da da		0				
			١	/olatile Organ	ic Compounds t	oy GCMS - Qualit	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BG	F0832 - SW5030)B-MS								
Blank (BGF0832-BLK1)				F	Prepared & Analy	/zed: 06/21/2023					
2-Butanone (MEK)		ND	10.0	ug/L							
Acetone		ND	10.0	ug/L							
Benzene		ND	1.00	ug/L							
Ethylbenzene		ND	1.00	ug/L							
Toluene		ND	1.00	ug/L							
Xylenes, Total		ND	3.00	ug/L							
Surr: 1,2-Dichloroethan	e-d4 (Surr)	48.5		ug/L	50.0		96.9	70-120			
Surr: 4-Bromofluoroben	nzene (Surr)	51.2		ug/L	50.0		102	75-120			
Surr: Dibromofluoromet		50.0		ug/L	50.0		100	70-130			
Surr: Toluene-d8 (Surr)		49.1		ug/L	50.0		98.2	70-130			
LCS (BGF0832-BS1)				F	Prepared & Analy	/zed: 06/21/2023	i				
1,1,1,2-Tetrachloroetha	ne	39.4	0.4	ug/L	50.0		78.9	80-130			L
1,1,1-Trichloroethane		40.0	1	ug/L	50.0		79.9	65-130			
1,1,2,2-Tetrachloroetha	ne	40.6	0.4	ug/L	50.0		81.3	65-130			
1,1,2-Trichloroethane		41.7	1	ug/L	50.0		83.4	75-125			
1,1-Dichloroethane		38.1	1	ug/L	50.0		76.3	70-135			
1,1-Dichloroethylene		36.5	1	ug/L	50.0		73.0	70-130			
1,1-Dichloropropene		37.7	1	ug/L	50.0		75.3	75-135			
1,2,3-Trichlorobenzene		38.9	1	ug/L	50.0		77.7	55-140			
1,2,3-Trichloropropane		41.3	1	ug/L	50.0		82.6	75-125			
1,2,4-Trichlorobenzene		38.4	1	ug/L	50.0		76.7	65-135			
1,2,4-Trimethylbenzene		36.7	1	ug/L	50.0		73.5	75-130			L
1,2-Dibromo-3-chloropr		48.3	1	ug/L	50.0		96.5	50-130			
1,2-Dibromoethane (ED	DB)	40.5	1	ug/L	50.0		80.9	80-120			

			Cei	rtificate o	of Analysi	is				
Client Name:	SCS Engineers-Winchest	er			-		Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of Bristol Land	fill Leachate								
	•									
Submitted To:	Logan Howard									
		١	/olatile Orgar	nic Compounds b	oy GCMS - Quali	ty Control				
				Enthalpy Ar	nalytical					
										
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0832 - SW	5030B-MS								
LCS (BGF0832-BS1)				Prepared & Anal	/zed: 06/21/2023					
1,2-Dichlorobenzene	36.6	0.5	ug/L	50.0		73.2	70-120			
1,2-Dichloroethane	40.3	1	ug/L	50.0		80.6	70-130			
1,2-Dichloropropane	37.4	0.5	ug/L	50.0		74.7	75-125			L
1,3,5-Trimethylbenzen	e 35.7	1	ug/L	50.0		71.4	75-125			L
1,3-Dichlorobenzene	37.2	1	ug/L	50.0		74.4	75-125			L
1,3-Dichloropropane	38.7	1	ug/L	50.0		77.4	75-125			
1,4-Dichlorobenzene	34.5	1	ug/L	50.0		69.0	75-125			L
2,2-Dichloropropane	42.7	1	ug/L	50.0		85.4	70-135			
2-Butanone (MEK)	40.2	10	ug/L	50.0		80.4	30-150			
2-Chlorotoluene	35.2	1	ug/L	50.0		70.4	75-125			L
2-Hexanone (MBK)	43.6	5	ug/L	50.0		87.3	55-130			
4-Chlorotoluene	35.4	1	ug/L	50.0		70.9	75-130			L
4-Isopropyltoluene	37.0	1	ug/L	50.0		73.9	75-130			L
4-Methyl-2-pentanone	(MIBK) 43.6	5	ug/L	50.0		87.1	60-135			
Acetone	36.7	10	ug/L	50.0		73.4	40-140			
Benzene	36.3	1	ug/L	50.0		72.5	80-120			L
Bromobenzene	37.8	1	ug/L	50.0		75.6	75-125			
Bromochloromethane	38.1	1	ug/L	50.0		76.2	65-130			
Bromodichloromethan	e 42.1	0.5	ug/L	50.0		84.1	75-120			
Bromoform	45.8	1	ug/L	50.0		91.6	70-130			
Bromomethane	24.7	1	ug/L	50.0		49.5	30-145			
Carbon disulfide	30.8	10	ug/L	50.0		61.7	35-160			
Carbon tetrachloride	40.4	1	ug/L	50.0		80.8	65-140			
Chlorobenzene	37.2	1	ug/L	50.0		74.5	80-120			L
Chloroethane	31.9	1	ug/L	50.0		63.7	60-135			

				Cei	tificate o	of Analysi	is				
Client Name:	SCS Engine	ers-Winchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of	f Bristol Landfill L	eachate								
	-		ouonato								
Submitted To:	Logan Howa	ard									
			١	/olatile Orgar	nic Compounds I	by GCMS - Quali	ty Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch	BGF0832 - SW5030	0B-MS								
LCS (BGF0832-BS1)			-	F	Prepared & Anal	yzed: 06/21/2023	5				
Chloroform		37.0	0.5	ug/L	50.0	,	74.0	65-135			
Chloromethane		33.7	1	ug/L	50.0		67.4	40-125			
cis-1,2-Dichloroethy	/lene	36.9	1	ug/L	50.0		73.8	70-125			
cis-1,3-Dichloroprop	pene	40.8	1	ug/L	50.0		81.6	70-130			
Dibromochlorometh	ane	44.4	0.5	ug/L	50.0		88.8	60-135			
Dibromomethane		40.1	1	ug/L	50.0		80.1	75-125			
Dichlorodifluoromet	hane	52.3	1	ug/L	50.0		105	30-155			
Ethylbenzene		37.1	1	ug/L	50.0		74.2	75-125			L
Hexachlorobutadier	ne	41.7	0.8	ug/L	50.0		83.5	50-140			
lsopropylbenzene		35.4	1	ug/L	50.0		70.8	75-125			L
m+p-Xylenes		70.8	2	ug/L	100		70.8	75-130			L
Methylene chloride		33.5	4	ug/L	50.0		67.0	55-140			
Methyl-t-butyl ether	(MTBE)	40.2	1	ug/L	50.0		80.4	65-125			
Naphthalene		40.1	1	ug/L	50.0		80.1	55-140			
n-Butylbenzene		36.6	1	ug/L	50.0		73.3	70-135			
n-Propylbenzene		35.7	1	ug/L	50.0		71.4	70-130			
o-Xylene		37.8	1	ug/L	50.0		75.6	80-120			L
sec-Butylbenzene		37.8	1	ug/L	50.0		75.6	70-125			
Styrene		37.2	1	ug/L	50.0		74.4	65-135			
tert-Butylbenzene		36.2	1	ug/L	50.0		72.4	70-130			
Tetrachloroethylene	e (PCE)	37.3	1	ug/L	50.0		74.7	45-150			
Toluene		37.3	1	ug/L	50.0		74.7	75-120			L
trans-1,2-Dichloroet	thylene	36.2	1	ug/L	50.0		72.3	60-140			
trans-1,3-Dichlorop	ropene	45.8	1	ug/L	50.0		91.6	55-140			
Trichloroethylene		36.6	1	ug/L	50.0		73.3	70-125			

			<u>Ce</u>	ertificate o	of Analysi	<u>s</u>				
Client Name: SCS Enginee	ers-Winchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.: 2023 City of	Bristol Landfill Leach	nate								
Submitted To: Logan Howa										
Submitted 10. Logan nowa		.,				0 1 1				
		Vo	latile Orga	anic Compounds	by GCMS - Quality	/ Control				
				Enthalpy A	nalytical					
Analyte	Result L	_0Q	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
			Onits	Level	Result	JIILO	Linito		Linin	Quai
LCS (BGF0832-BS1)	BGF0832 - SW5030B-M	3		Prenared & Anal	yzed: 06/21/2023					
Trichlorofluoromethane	45.1	1	ug/L	50.0	yzed. 00/21/2023	90.1	60-145			
Vinyl chloride	34.8	0.5	ug/L	50.0		69.7	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	47.8		ug/L	50.0		95.6	70-120			
Surr: 4-Bromofluorobenzene (Surr)	50.6		ug/L	50.0		101	75-120			
Surr: Dibromofluoromethane (Surr)	50.5		ug/L	50.0		101	70-130			
Surr: Toluene-d8 (Surr)	49.9		ug/L	50.0		99.9	70-130			
Duplicate (BGF0832-DUP1)	Source: 23F	1020-02		Prepared & Anal	yzed: 06/21/2023					
1,1,1,2-Tetrachloroethane	ND	0.40	ug/L	•	BLOD			NA	30	
1,1,1-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroethane	ND	0.40	ug/L		BLOD			NA	30	
1,1,2-Trichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
1,1-Dichloropropene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichloropropane	ND	1.00	ug/L		BLOD			NA	30	
1,2,4-Trichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2,4-Trimethylbenzene	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dibromo-3-chloropropane (DBCP)	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dibromoethane (EDB)	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dichlorobenzene	ND	0.50	ug/L		BLOD			NA	30	
1,2-Dichloroethane	ND	1.00	ug/L		BLOD			NA	30	
1,2-Dichloropropane	ND	0.50	ug/L		BLOD			NA	30	
1,3,5-Trimethylbenzene	ND	1.00	ug/L		BLOD			NA	30	

			Ce	ertificate of	Analysi	<u>s</u>				
Client Name:	SCS Engineers-Winchester				-		Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of Bristol Landfill	l eachate								
-	2	Louonato								
Submitted To:	Logan Howard									
		N N	/olatile Org	anic Compounds by (GCMS - Quality	/ Control				
				Enthalpy Analy	/tical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0832 - SW50	30B-MS								
Duplicate (BGF0832-DU	P1) Sour	ce: 23F1020-()2	Prepared & Analyze	d: 06/21/2023					
1,3-Dichlorobenzene	ND	1.00	ug/L	· · ·	BLOD			NA	30	
1,3-Dichloropropane	ND	1.00	ug/L		BLOD			NA	30	
1,4-Dichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
2,2-Dichloropropane	ND	1.00	ug/L		BLOD			NA	30	
2-Butanone (MEK)	ND	10.0	ug/L		BLOD			NA	30	
2-Chlorotoluene	ND	1.00	ug/L		BLOD			NA	30	
2-Hexanone (MBK)	ND	5.00	ug/L		BLOD			NA	30	
4-Chlorotoluene	ND	1.00	ug/L		BLOD			NA	30	
4-Isopropyltoluene	ND	1.00	ug/L		BLOD			NA	30	
4-Methyl-2-pentanone	(MIBK) ND	5.00	ug/L		BLOD			NA	30	
Acetone	ND	10.0	ug/L		BLOD			NA	30	
Benzene	ND	1.00	ug/L		BLOD			NA	30	
Bromobenzene	ND	1.00	ug/L		BLOD			NA	30	
Bromochloromethane	ND	1.00	ug/L		BLOD			NA	30	
Bromodichloromethan	ND	0.50	ug/L		BLOD			NA	30	
Bromoform	ND	1.00	ug/L		BLOD			NA	30	
Bromomethane	ND	1.00	ug/L		BLOD			NA	30	
Carbon disulfide	ND	10.0	ug/L		BLOD			NA	30	
Carbon tetrachloride	ND	1.00	ug/L		BLOD			NA	30	
Chlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
Chloroethane	ND	1.00	ug/L		BLOD			NA	30	
Chloroform	ND	0.50	ug/L		BLOD			NA	30	
Chloromethane	ND	1.00	ug/L		BLOD			NA	30	
cis-1,2-Dichloroethyle	ne ND	1.00	ug/L		BLOD			NA	30	
cis-1,3-Dichloroproper	ne ND	1.00	ug/L		BLOD			NA	30	

				Ce	ertificate o	f Analysi:	<u>s</u>				
Client Name:	SCS Enginee	rs-Winchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of I	Bristol Landfill L	eachate								
Submitted To:	Logan Howar										
Submitted 10.	LUgan nowah	u									
			V	olatile Org	anic Compounds by	/ GCMS - Quality	/ Control				
					Enthalpy Ana	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B	BGF0832 - SW503	0B-MS								
Duplicate (BGF0832-D	DUP1)	Sourc	e: 23F1020-0	2	Prepared & Analyz	zed: 06/21/2023					
Dibromochlorometh	nane	ND	0.50	ug/L		BLOD			NA	30	
Dibromomethane		ND	1.00	ug/L		BLOD			NA	30	
Dichlorodifluoromet	thane	ND	1.00	ug/L		BLOD			NA	30	
Di-isopropyl ether (I	DIPE)	ND	5.00	ug/L		BLOD			NA	30	
Ethylbenzene		ND	1.00	ug/L		BLOD			NA	30	
Hexachlorobutadier	ne	ND	0.80	ug/L		BLOD			NA	30	
lodomethane		ND	10.0	ug/L		BLOD			NA	30	
Isopropylbenzene		ND	1.00	ug/L		BLOD			NA	30	
m+p-Xylenes		ND	2.00	ug/L		BLOD			NA	30	
Methylene chloride		ND	4.00	ug/L		BLOD			NA	30	
Methyl-t-butyl ether	·(MTBE)	ND	1.00	ug/L		BLOD			NA	30	
Naphthalene		ND	1.00	ug/L		BLOD			NA	30	
n-Butylbenzene		2.64	1.00	ug/L		2.64			0.00	30	
n-Propylbenzene		ND	1.00	ug/L		BLOD			NA	30	
o-Xylene		ND	1.00	ug/L		BLOD			NA	30	
sec-Butylbenzene		1.26	1.00	ug/L		BLOD			NA	30	
Styrene		ND	1.00	ug/L		BLOD			NA	30	
tert-Butylbenzene		ND	1.00	ug/L		BLOD			NA	30	
Tetrachloroethylene	e (PCE)	ND	1.00	ug/L		BLOD			NA	30	
Toluene		ND	1.00	ug/L		BLOD			NA	30	
trans-1,2-Dichloroet	thylene	ND	1.00	ug/L		BLOD			NA	30	
trans-1,3-Dichlorop	ropene	ND	1.00	ug/L		BLOD			NA	30	
Trichloroethylene		ND	1.00	ug/L		BLOD			NA	30	
Trichlorofluorometh	ane	ND	1.00	ug/L		BLOD			NA	30	
Vinyl acetate		ND	10.0	ug/L		BLOD			NA	30	

			<u>Ce</u>	ertificate o	of Analysi	<u>s</u>				
Client Name: SC	CS Engineers-Winchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.: 20	023 City of Bristol Landfill	Leachate								
	gan Howard									
	gan noward	,				0 1 1				
		١	olatile Org	anic Compounds	by GCMS - Quality	/ Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
			00							Q 1 3
Duplicate (BGF0832-DUP1)	Batch BGF0832 - SW503	Ce: 23F1020-0	•	Droporod & Apol	yzed: 06/21/2023					
Vinyl chloride	Sourc	0.50	ug/L	Prepared & Ariai	BLOD			NA	30	
Xylenes, Total	ND	3.00	ug/L		BLOD			NA	30	
Tetrahydrofuran	ND	10.0	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroethane-	d4 (Surr) 54.2		ug/L	50.0		108	70-120			
Surr: 4-Bromofluorobenze	. ,		ug/L	50.0		103	75-120			
Surr: Dibromofluorometha			ug/L	50.0		107	70-130			
Surr: Toluene-d8 (Surr)	45.7		ug/L	50.0		91.4	70-130			
Matrix Spike (BGF0832-MS1) Sour	ce: 23F1020-0	1	Prepared & Anal	yzed: 06/21/2023					
1,1,1,2-Tetrachloroethane	52.7	0.4	ug/L	50.0	BLOD	105	80-130			
1,1,1-Trichloroethane	55.0	1	ug/L	50.0	BLOD	110	65-130			
1,1,2,2-Tetrachloroethane	50.2	0.4	ug/L	50.0	BLOD	100	65-130			
1,1,2-Trichloroethane	54.9	1	ug/L	50.0	BLOD	110	75-125			
1,1-Dichloroethane	53.0	1	ug/L	50.0	BLOD	106	70-135			
1,1-Dichloroethylene	53.9	1	ug/L	50.0	BLOD	108	50-145			
1,1-Dichloropropene	52.3	1	ug/L	50.0	BLOD	105	75-135			
1,2,3-Trichlorobenzene	52.8	1	ug/L	50.0	BLOD	106	55-140			
1,2,3-Trichloropropane	49.1	1	ug/L	50.0	BLOD	98.1	75-125			
1,2,4-Trichlorobenzene	54.3	1	ug/L	50.0	BLOD	109	65-135			
1,2,4-Trimethylbenzene	55.3	1	ug/L	50.0	BLOD	111	75-130			
1,2-Dibromo-3-chloroprop		1	ug/L	50.0	BLOD	110	50-130			
1,2-Dibromoethane (EDB)	•	1	ug/L	50.0	BLOD	100	80-120			
1,2-Dichlorobenzene	53.2	0.5	ug/L	50.0	BLOD	106	70-120			
1,2-Dichloroethane	49.3	1	ug/L	50.0	BLOD	98.5	70-130			
1,2-Dichloropropane	53.2	0.5	ug/L	50.0	BLOD	106	75-125			

				Ce	ertificate o	f Analysi	S				
Client Name:	SCS Engineers-	Winchester				-		Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of Bris	stol Landfill L	eachate								
Submitted To:	Logan Howard										
Submitted 10.	Logan noward										
			Vo	latile Org	anic Compounds b	y GCMS - Qualit	y Control				
					Enthalpy Ar	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF	-0832 - SW503	0B-MS								
Matrix Spike (BGF0832	-MS1)	Sourc	e: 23F1020-01		Prepared & Analy	zed: 06/21/2023					
1,3,5-Trimethylbenze	ene	53.6	1	ug/L	50.0	BLOD	107	75-124			
1,3-Dichlorobenzene		53.4	1	ug/L	50.0	BLOD	107	75-125			
1,3-Dichloropropane		51.4	1	ug/L	50.0	BLOD	103	75-125			
1,4-Dichlorobenzene		49.7	1	ug/L	50.0	BLOD	99.5	75-125			
2,2-Dichloropropane		50.5	1	ug/L	50.0	BLOD	101	70-135			
2-Butanone (MEK)		46.9	10	ug/L	50.0	BLOD	93.7	30-150			
2-Chlorotoluene		53.3	1	ug/L	50.0	BLOD	107	75-125			
2-Hexanone (MBK)		46.0	5	ug/L	50.0	BLOD	92.0	55-130			
4-Chlorotoluene		52.3	1	ug/L	50.0	BLOD	105	75-130			
4-Isopropyltoluene		55.6	1	ug/L	50.0	BLOD	111	75-130			
4-Methyl-2-pentanon	e (MIBK)	49.0	5	ug/L	50.0	BLOD	98.1	60-135			
Acetone		45.1	10	ug/L	50.0	BLOD	78.4	40-140			
Benzene		53.2	1	ug/L	50.0	BLOD	106	80-120			
Bromobenzene		52.7	1	ug/L	50.0	BLOD	105	75-125			
Bromochloromethane	е	51.8	1	ug/L	50.0	BLOD	104	65-130			
Bromodichlorometha	ne	56.8	0.5	ug/L	50.0	BLOD	114	75-136			
Bromoform		55.8	1	ug/L	50.0	BLOD	112	70-130			
Bromomethane		32.0	1	ug/L	50.0	BLOD	63.9	30-145			
Carbon disulfide		31.8	10	ug/L	50.0	BLOD	63.5	35-160			
Carbon tetrachloride		56.2	1	ug/L	50.0	BLOD	112	65-140			
Chlorobenzene		51.8	1	ug/L	50.0	BLOD	104	80-120			
Chloroethane		46.5	1	ug/L	50.0	BLOD	93.0	60-135			
Chloroform		50.1	0.5	ug/L	50.0	BLOD	100	65-135			
Chloromethane		48.2	1	ug/L	50.0	BLOD	96.3	40-125			
cis-1,2-Dichloroethyle	ene	52.5	1	ug/L	50.0	BLOD	105	70-125			

			Ce	ertificate o	of Analysis	<u>s</u>				
Client Name: SCS E	Engineers-Winchester				_		Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.: 2023	City of Bristol Landfill Lead	chate								
	Howard									
Submitted to. Logan	Howard									
		<u>۱</u>	/olatile Org	anic Compounds I	by GCMS - Quality	/ Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0832 - SW5030B-I	NS								
Matrix Spike (BGF0832-MS1)	Source: 23		1	Prepared & Anal	yzed: 06/21/2023					
cis-1,3-Dichloropropene	54.8	1	ug/L	50.0	BLOD	110	47-136			
Dibromochloromethane	58.3	0.5	ug/L	50.0	BLOD	117	60-135			
Dibromomethane	51.8	1	ug/L	50.0	BLOD	104	75-125			
Dichlorodifluoromethane	65.7	1	ug/L	50.0	BLOD	131	30-155			
Ethylbenzene	53.3	1	ug/L	50.0	BLOD	107	75-125			
Hexachlorobutadiene	47.9	0.8	ug/L	50.0	BLOD	95.9	50-140			
Isopropylbenzene	50.9	1	ug/L	50.0	BLOD	102	75-125			
m+p-Xylenes	104	2	ug/L	100	BLOD	104	75-130			
Methylene chloride	51.9	4	ug/L	50.0	BLOD	104	55-140			
Methyl-t-butyl ether (MTBE)	50.3	1	ug/L	50.0	BLOD	101	65-125			
Naphthalene	55.9	1	ug/L	50.0	BLOD	112	55-140			
n-Butylbenzene	54.5	1	ug/L	50.0	BLOD	109	70-135			
n-Propylbenzene	54.8	1	ug/L	50.0	BLOD	110	70-130			
o-Xylene	54.7	1	ug/L	50.0	BLOD	109	80-120			
sec-Butylbenzene	56.9	1	ug/L	50.0	BLOD	114	70-125			
Styrene	53.8	1	ug/L	50.0	BLOD	108	65-135			
tert-Butylbenzene	54.2	1	ug/L	50.0	BLOD	108	70-130			
Tetrachloroethylene (PCE)	52.2	1	ug/L	50.0	BLOD	104	51-231			
Toluene	55.6	1	ug/L	50.0	BLOD	111	75-120			
trans-1,2-Dichloroethylene	51.4	1	ug/L	50.0	BLOD	103	60-140			
trans-1,3-Dichloropropene	59.6	1	ug/L	50.0	BLOD	119	55-140			
Trichloroethylene	53.0	1	ug/L	50.0	BLOD	106	70-125			
Trichlorofluoromethane	58.4	1	ug/L	50.0	BLOD	117	60-145			
Vinyl chloride	53.5	0.5	ug/L	50.0	BLOD	107	50-145			
Surr: 1,2-Dichloroethane-d4 (S	Surr) 49.6		ug/L	50.0		99.3	70-120			

				<u>C</u>	ertificate o	of Analysi	<u>s</u>				
Client Name: So	CS Engineer	s-Winchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.: 2	023 City of E	Bristol Landfill L	eachate								
	ogan Howard										
	gannieware	a	,	/alatila Ora	anic Compounds		Control				
			v		•						
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B	GF0832 - SW5030)B-MS								
Matrix Spike (BGF0832-MS			e: 23F1020-0	1	Prepared & Anal	yzed: 06/21/2023					
Surr: 4-Bromofluorobenz	ene (Surr)	49.2		ug/L	50.0		98.5	75-120			
Surr: Dibromofluorometh	ane (Surr)	49.4		ug/L	50.0		98.7	70-130			
Surr: Toluene-d8 (Surr)		51.0		ug/L	50.0		102	70-130			
	Batch B	GF0891 - SW5030)B-MS								
Blank (BGF0891-BLK1)					Prepared & Anal	yzed: 06/22/2023					
2-Butanone (MEK)		ND	10.0	ug/L							
Acetone		ND	10.0	ug/L							
Benzene		ND	1.00	ug/L							
Ethylbenzene		ND	1.00	ug/L							
Toluene		ND	1.00	ug/L							
Xylenes, Total		ND	3.00	ug/L							
Surr: 1,2-Dichloroethane		49.1		ug/L	50.0		98.2	70-120			
Surr: 4-Bromofluorobenz	ene (Surr)	49.6		ug/L	50.0		99.1	75-120			
Surr: Dibromofluorometh	ane (Surr)	48.5		ug/L	50.0		97.0	70-130			
Surr: Toluene-d8 (Surr)		48.6		ug/L	50.0		97.2	70-130			
LCS (BGF0891-BS1)					Prepared & Anal	yzed: 06/22/2023					
1,1,1,2-Tetrachloroethan	e	51.3	0.4	ug/L	50.0		103	80-130			
1,1,1-Trichloroethane		55.8	1	ug/L	50.0		112	65-130			
1,1,2,2-Tetrachloroethan	e	46.6	0.4	ug/L	50.0		93.2	65-130			
1,1,2-Trichloroethane		51.0	1	ug/L	50.0		102	75-125			
1,1-Dichloroethane		52.1	1	ug/L	50.0		104	70-135			
1,1-Dichloroethylene		54.1	1	ug/L	50.0		108	70-130			
1,1-Dichloropropene		54.5	1	ug/L	50.0		109	75-135			

				Cer	tificate o	of Analysi	<u>is</u>				
Client Name:	SCS Engineers	s-Winchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of B	ristol I andfill I	eachate								
			ouonato								
Submitted To:	Logan Howard										
			١	/olatile Orgar	ic Compounds	by GCMS - Qualit	ty Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B(GF0891 - SW5030									
LCS (BGF0891-BS1)	Batch Ba			F	Prepared & Anal	yzed: 06/22/2023					
1,2,3-Trichlorobenzo	ene	53.3	1	ug/L	50.0	<u>y200.00/22/2020</u>	107	55-140			
1,2,3-Trichloropropa		46.8	1	ug/L	50.0		93.7	75-125			
1,2,4-Trichlorobenzo		53.2	1	ug/L	50.0		106	65-135			
1,2,4-Trimethylbenz	zene	53.8	1	ug/L	50.0		108	75-130			
1,2-Dibromo-3-chlor		53.1	1	ug/L	50.0		106	50-130			
1,2-Dibromoethane	(EDB)	48.4	1	ug/L	50.0		96.8	80-120			
1,2-Dichlorobenzen	e	49.8	0.5	ug/L	50.0		99.6	70-120			
1,2-Dichloroethane		49.5	1	ug/L	50.0		99.0	70-130			
1,2-Dichloropropane	е	49.4	0.5	ug/L	50.0		98.9	75-125			
1,3,5-Trimethylbenz	zene	52.2	1	ug/L	50.0		104	75-125			
1,3-Dichlorobenzen	e	51.8	1	ug/L	50.0		104	75-125			
1,3-Dichloropropane	е	48.4	1	ug/L	50.0		96.9	75-125			
1,4-Dichlorobenzen	e	49.3	1	ug/L	50.0		98.5	75-125			
2,2-Dichloropropane	е	59.9	1	ug/L	50.0		120	70-135			
2-Butanone (MEK)		38.2	10	ug/L	50.0		76.4	30-150			
2-Chlorotoluene		51.0	1	ug/L	50.0		102	75-125			
2-Hexanone (MBK)		45.3	5	ug/L	50.0		90.6	55-130			
4-Chlorotoluene		51.1	1	ug/L	50.0		102	75-130			
4-Isopropyltoluene		55.4	1	ug/L	50.0		111	75-130			
4-Methyl-2-pentano	ne (MIBK)	45.4	5	ug/L	50.0		90.8	60-135			
Acetone		35.4	10	ug/L	50.0		70.9	40-140			
Benzene		49.7	1	ug/L	50.0		99.4	80-120			
Bromobenzene		51.2	1	ug/L	50.0		102	75-125			
Bromochloromethar	ne	51.6	1	ug/L	50.0		103	65-130			
Bromodichlorometh	ane	52.3	0.5	ug/L	50.0		105	75-120			

				Ce	rtificate c	of Analysi	<u>s</u>				
Client Name:	SCS Engineers-Wi	nchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of Bristo	l I andfill	l eachate								
-	•	Lanam	Louonato								
Submitted To:	Logan Howard										
			V	olatile Orga	nic Compounds I	oy GCMS - Qualit	y Control				
					Enthalpy Ar	nalytical					
					Spike	Source		%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGF08	891 - SW503	30B-MS								
LCS (BGF0891-BS1)					Prepared & Analy	yzed: 06/22/2023					
Bromoform		54.6	1	ug/L	50.0		109	70-130			
Bromomethane		35.6	1	ug/L	50.0		71.2	30-145			
Carbon disulfide		44.9	10	ug/L	50.0		89.8	35-160			
Carbon tetrachloride	9	55.7	1	ug/L	50.0		111	65-140			
Chlorobenzene		49.7	1	ug/L	50.0		99.3	80-120			
Chloroethane		46.5	1	ug/L	50.0		93.0	60-135			
Chloroform		50.4	0.5	ug/L	50.0		101	65-135			
Chloromethane		46.9	1	ug/L	50.0		93.9	40-125			
cis-1,2-Dichloroethy	lene	51.8	1	ug/L	50.0		104	70-125			
cis-1,3-Dichloroprop	ene	53.0	1	ug/L	50.0		106	70-130			
Dibromochlorometha	ane	55.2	0.5	ug/L	50.0		110	60-135			
Dibromomethane		48.9	1	ug/L	50.0		97.9	75-125			
Dichlorodifluorometh	nane	71.3	1	ug/L	50.0		143	30-155			
Ethylbenzene		51.2	1	ug/L	50.0		102	75-125			
Hexachlorobutadien	e	56.9	0.8	ug/L	50.0		114	50-140			
Isopropylbenzene		49.8	1	ug/L	50.0		99.7	75-125			
m+p-Xylenes		100	2	ug/L	100		100	75-130			
Methylene chloride		46.2	4	ug/L	50.0		92.4	55-140			
Methyl-t-butyl ether	(MTBE)	50.3	1	ug/L	50.0		101	65-125			
Naphthalene		52.5	1	ug/L	50.0		105	55-140			
n-Butylbenzene		54.4	1	ug/L	50.0		109	70-135			
n-Propylbenzene		52.5	1	ug/L	50.0		105	70-130			
o-Xylene		51.9	1	ug/L	50.0		104	80-120			
sec-Butylbenzene		55.0	1	ug/L	50.0		110	70-125			
Styrene		49.9	1	ug/L	50.0		99.7	65-135			

			<u>C</u>	ertificate o	of Analysi	<u>s</u>				
Client Name: SC	S Engineers-Winchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.: 20	23 City of Bristol Landfill	Leachate								
Submitted To: Log	gan Howard									
	gan noward	,	/alatila Ora	anic Compounds		Control				
		۱. ۱	/olatile Org			Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0891 - SW50	30B-MS								
LCS (BGF0891-BS1)				Prepared & Anal	yzed: 06/22/2023					
tert-Butylbenzene	52.3	1	ug/L	50.0		105	70-130			
Tetrachloroethylene (PCE)	51.8	1	ug/L	50.0		104	45-150			
Toluene	51.8	1	ug/L	50.0		104	75-120			
trans-1,2-Dichloroethylene	51.3	1	ug/L	50.0		103	60-140			
trans-1,3-Dichloropropene	57.8	1	ug/L	50.0		116	55-140			
Trichloroethylene	50.8	1	ug/L	50.0		102	70-125			
Trichlorofluoromethane	60.5	1	ug/L	50.0		121	60-145			
Vinyl chloride	52.2	0.5	ug/L	50.0		104	50-145			
Surr: 1,2-Dichloroethane-o	14 (Surr) 48.5		ug/L	50.0		97.0	70-120			
Surr: 4-Bromofluorobenze	ne (Surr) 48.6		ug/L	50.0		97.2	75-120			
Surr: Dibromofluorometha	ne (Surr) 51.2		ug/L	50.0		102	70-130			
Surr: Toluene-d8 (Surr)	50.0		ug/L	50.0		100	70-130			
Duplicate (BGF0891-DUP1)	Sou	ce: 23F1105-0	1	Prepared & Anal	yzed: 06/22/2023					
1,1,1,2-Tetrachloroethane	ND	8.00	ug/L		BLOD			NA	30	
1,1,1-Trichloroethane	ND	20.0	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroethane	ND	8.00	ug/L		BLOD			NA	30	
1,1,2-Trichloroethane	ND	20.0	ug/L		BLOD			NA	30	
1,1-Dichloroethane	ND	20.0	ug/L		BLOD			NA	30	
1,1-Dichloroethylene	ND	20.0	ug/L		BLOD			NA	30	
1,1-Dichloropropene	ND	20.0	ug/L		BLOD			NA	30	
1,2,3-Trichlorobenzene	ND	20.0	ug/L		BLOD			NA	30	
1,2,3-Trichloropropane	ND	20.0	ug/L		BLOD			NA	30	
1,2,4-Trichlorobenzene	ND	20.0	ug/L		BLOD			NA	30	
1,2,4-Trimethylbenzene	ND	20.0	ug/L		BLOD			NA	30	

				Ce	ertificate of	f Analysi	<u>s</u>				
Client Name:	SCS Engineers	s-Winchester				-	_	Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of B	ristol I andfill I	eachate								
Submitted To:	-		ouonato								
Submitted to:	Logan Howard										
			V	olatile Org	anic Compounds by	GCMS - Quality	y Control				
					Enthalpy Ana	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BC	GF0891 - SW5030	0B-MS								
Duplicate (BGF0891-DU	JP1)	Source	e: 23F1105-01		Prepared & Analyz	zed: 06/22/2023					
1,2-Dibromo-3-chloro	propane (DBCP)	ND	20.0	ug/L		BLOD			NA	30	
1,2-Dibromoethane (I	EDB)	ND	20.0	ug/L		BLOD			NA	30	
1,2-Dichlorobenzene		ND	10.0	ug/L		BLOD			NA	30	
1,2-Dichloroethane		ND	20.0	ug/L		BLOD			NA	30	
1,2-Dichloropropane		ND	10.0	ug/L		BLOD			NA	30	
1,3,5-Trimethylbenze	ne	ND	20.0	ug/L		BLOD			NA	30	
1,3-Dichlorobenzene		ND	20.0	ug/L		BLOD			NA	30	
1,3-Dichloropropane		ND	20.0	ug/L		BLOD			NA	30	
1,4-Dichlorobenzene		ND	20.0	ug/L		BLOD			NA	30	
2,2-Dichloropropane		ND	20.0	ug/L		BLOD			NA	30	
2-Butanone (MEK)		ND	200	ug/L		BLOD			NA	30	
2-Chlorotoluene		ND	20.0	ug/L		BLOD			NA	30	
2-Hexanone (MBK)		ND	100	ug/L		BLOD			NA	30	
4-Chlorotoluene		ND	20.0	ug/L		BLOD			NA	30	
4-Isopropyltoluene		ND	20.0	ug/L		BLOD			NA	30	
4-Methyl-2-pentanon	e (MIBK)	ND	100	ug/L		BLOD			NA	30	
Acetone		38200	200	ug/L		35100			8.67	30	
Benzene		ND	20.0	ug/L		BLOD			NA	30	
Bromobenzene		ND	20.0	ug/L		BLOD			NA	30	
Bromochloromethane	9	ND	20.0	ug/L		BLOD			NA	30	
Bromodichlorometha	ne	ND	10.0	ug/L		BLOD			NA	30	
Bromoform		ND	20.0	ug/L		BLOD			NA	30	
Bromomethane		ND	20.0	ug/L		BLOD			NA	30	
Carbon disulfide		265	200	ug/L		BLOD			NA	30	
Carbon tetrachloride		ND	20.0	ug/L		BLOD			NA	30	

			Ce	ertificate of	Analysi	<u>s</u>				
Client Name:	SCS Engineers-Wincheste	er					Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of Bristol Landfi	ll Leachate								
	Logan Howard									
Submitted 10.	Logan noward					a				
		V	olatile Org	anic Compounds by G	CMS - Quality	/ Control				
				Enthalpy Analy	tical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0891 - SW	030B-MS								
Duplicate (BGF0891-DUF	P1) So	urce: 23F1105-0	1	Prepared & Analyzed	1: 06/22/2023					
Chlorobenzene	ND	20.0	ug/L		BLOD			NA	30	
Chloroethane	ND	20.0	ug/L		BLOD			NA	30	
Chloroform	ND	10.0	ug/L		BLOD			NA	30	
Chloromethane	ND	20.0	ug/L		BLOD			NA	30	
cis-1,2-Dichloroethylen	ne ND	20.0	ug/L		BLOD			NA	30	
cis-1,3-Dichloropropen	e ND	20.0	ug/L		BLOD			NA	30	
Dibromochloromethane	e ND	10.0	ug/L		BLOD			NA	30	
Dibromomethane	ND	20.0	ug/L		BLOD			NA	30	
Dichlorodifluoromethar	ne ND	20.0	ug/L		BLOD			NA	30	
Di-isopropyl ether (DIP	E) ND	100	ug/L		BLOD			NA	30	
Ethylbenzene	ND	20.0	ug/L		BLOD			NA	30	
Hexachlorobutadiene	ND	16.0	ug/L		BLOD			NA	30	
lodomethane	ND	200	ug/L		BLOD			NA	30	
lsopropylbenzene	ND	20.0	ug/L		BLOD			NA	30	
m+p-Xylenes	ND	40.0	ug/L		BLOD			NA	30	
Methylene chloride	ND	80.0	ug/L		BLOD			NA	30	
Methyl-t-butyl ether (M	TBE) ND	20.0	ug/L		BLOD			NA	30	
Naphthalene	ND	20.0	ug/L		BLOD			NA	30	
n-Butylbenzene	ND	20.0	ug/L		BLOD			NA	30	
n-Propylbenzene	ND	20.0	ug/L		BLOD			NA	30	
o-Xylene	ND	20.0	ug/L		BLOD			NA	30	
sec-Butylbenzene	ND	20.0	ug/L		BLOD			NA	30	
Styrene	ND	20.0	ug/L		BLOD			NA	30	
tert-Butylbenzene	ND	20.0	ug/L		BLOD			NA	30	
Tetrachloroethylene (P	CE) ND	20.0	ug/L		BLOD			NA	30	

				Ce	ertificate o	of Analysis	<u>s</u>				
Client Name:	SCS Engineers-	Winchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of Bris	stol Landfill Le	achate								
	Logan Howard										
Submitted 10.	Logan noward						Orienteral				
			VC	blatile Org		oy GCMS - Quality	Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF	-0891 - SW5030I	B-MS								
Duplicate (BGF0891-DU	P1)	Source:	23F1105-01		Prepared & Anal	yzed: 06/22/2023					
Toluene		ND	20.0	ug/L		BLOD			NA	30	
trans-1,2-Dichloroethy	lene	ND	20.0	ug/L		BLOD			NA	30	
trans-1,3-Dichloroprop	bene	ND	20.0	ug/L		BLOD			NA	30	
Trichloroethylene		ND	20.0	ug/L		BLOD			NA	30	
Trichlorofluoromethan	e	ND	20.0	ug/L		BLOD			NA	30	
Vinyl acetate		ND	200	ug/L		BLOD			NA	30	
Vinyl chloride		ND	10.0	ug/L		BLOD			NA	30	
Xylenes, Total		ND	60.0	ug/L		BLOD			NA	30	
Tetrahydrofuran		ND	200	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroetha	ne-d4 (Surr)	48.6		ug/L	50.0		97.3	70-120			
Surr: 4-Bromofluorobe	enzene (Surr)	49.8		ug/L	50.0		99.7	75-120			
Surr: Dibromofluorome	ethane (Surr)	49.7		ug/L	50.0		99.5	70-130			
Surr: Toluene-d8 (Surr	r)	49.1		ug/L	50.0		98.3	70-130			
Matrix Spike (BGF0891-I	MS1)	Source:	23F1105-01		Prepared & Anal	yzed: 06/22/2023					
1,1,1,2-Tetrachloroeth	ane	49.4	0.4	ug/L	50.0	BLOD	98.9	80-130			
1,1,1-Trichloroethane		49.9	1	ug/L	50.0	BLOD	99.7	65-130			
1,1,2,2-Tetrachloroeth	ane	45.6	0.4	ug/L	50.0	BLOD	91.2	65-130			
1,1,2-Trichloroethane		48.8	1	ug/L	50.0	BLOD	97.6	75-125			
1,1-Dichloroethane		47.4	1	ug/L	50.0	BLOD	94.7	70-135			
1,1-Dichloroethylene		46.9	1	ug/L	50.0	BLOD	93.8	50-145			
1,1-Dichloropropene		47.6	1	ug/L	50.0	BLOD	95.2	75-135			
1,2,3-Trichlorobenzen		47.9	1	ug/L	50.0	BLOD	95.7	55-140			
1,2,3-Trichloropropane		46.2	1	ug/L	50.0	BLOD	92.3	75-125			
1,2,4-Trichlorobenzen	e	48.8	1	ug/L	50.0	BLOD	97.5	65-135			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 7/7/2023 5:12:03PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Logan Howard Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGF0891 - SW5030B-MS Prepared & Analyzed: 06/22/2023 Matrix Spike (BGF0891-MS1) Source: 23F1105-01 49.8 99.5 1,2,4-Trimethylbenzene 1 ug/L 50.0 BLOD 75-130 1,2-Dibromo-3-chloropropane (DBCP) 50.9 1 ug/L 50.0 BLOD 102 50-130 50.0 BLOD 92.9 1,2-Dibromoethane (EDB) 46.5 1 ug/L 80-120 1.2-Dichlorobenzene 46.8 0.5 50.0 BLOD 93.5 70-120 ug/L 1.2-Dichloroethane 47.0 1 ug/L 50.0 BI OD 94.1 70-130 47.7 0.5 BI OD 75-125 1,2-Dichloropropane ug/L 50.0 95.4 1,3,5-Trimethylbenzene 48.1 1 ug/L 50.0 BI OD 96.2 75-124 48.3 1 BLOD 96.6 75-125 1.3-Dichlorobenzene ug/L 50.0 BLOD 75-125 1,3-Dichloropropane 46.5 1 ug/L 50.0 93.1 45.6 1 50.0 BLOD 91.3 75-125 1.4-Dichlorobenzene ua/L 2,2-Dichloropropane 50.2 1 50.0 BLOD 100 70-135 ug/L 2-Butanone (MEK) 43.6 10 ug/L 50.0 BLOD 87.3 30-150 2-Chlorotoluene 46.1 1 50.0 BLOD 92.2 75-125 ug/L 5 43.0 BLOD 85.9 55-130 2-Hexanone (MBK) ug/L 50.0 4-Chlorotoluene 47.1 1 50.0 BI OD 94.2 75-130 ug/L 49.7 1 BLOD 99.4 75-130 4-Isopropyltoluene ug/L 50.0 4-Methyl-2-pentanone (MIBK) 43.4 5 ug/L 50.0 BLOD 86.7 60-135 1950 10 50.0 35100 -66200 40-140 Acetone ug/L Μ 46.4 1 50.0 BLOD 92.7 80-120 Benzene ug/L 75-125 Bromobenzene 47.9 1 ug/L 50.0 BLOD 95.8 Bromochloromethane 45.8 1 50.0 BLOD 65-130 ug/L 91.5 Bromodichloromethane 52.5 0.5 ug/L 50.0 BI OD 105 75-136 Bromoform 52.1 1 BI OD 104 70-130 ug/L 50.0 Bromomethane 26.6 1 ug/L 50.0 BI OD 53.1 30-145 10 87.7 Carbon disulfide 43.8 ug/L 50.0 BLOD 35-160

				Ce	ertificate o	of Analysi	is				
Client Name:	SCS Engineers-	Winchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of Bri	stol Landfill L	eachate								
Submitted To:	Logan Howard										
Submitted 10.	Logan noward										
			Vo	latile Org	anic Compounds b	by GCMS - Quali	ty Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BG	F0891 - SW503	0B-MS								
Matrix Spike (BGF089	91-MS1)	Sourc	e: 23F1105-01		Prepared & Analy	/zed: 06/22/2023					
Carbon tetrachloride	e	51.4	1	ug/L	50.0	BLOD	103	65-140			
Chlorobenzene		46.9	1	ug/L	50.0	BLOD	93.7	80-120			
Chloroethane		40.4	1	ug/L	50.0	BLOD	80.8	60-135			
Chloroform		46.8	0.5	ug/L	50.0	BLOD	93.5	65-135			
Chloromethane		41.2	1	ug/L	50.0	BLOD	82.3	40-125			
cis-1,2-Dichloroethy	ylene	46.4	1	ug/L	50.0	BLOD	92.7	70-125			
cis-1,3-Dichloroprop	pene	49.4	1	ug/L	50.0	BLOD	98.8	47-136			
Dibromochlorometh	nane	52.5	0.5	ug/L	50.0	BLOD	105	60-135			
Dibromomethane		47.4	1	ug/L	50.0	BLOD	94.8	75-125			
Dichlorodifluoromet	thane	60.2	1	ug/L	50.0	BLOD	120	30-155			
Ethylbenzene		48.1	1	ug/L	50.0	BLOD	96.3	75-125			
Hexachlorobutadier	ne	49.2	0.8	ug/L	50.0	BLOD	98.5	50-140			
Isopropylbenzene		46.6	1	ug/L	50.0	BLOD	93.2	75-125			
m+p-Xylenes		93.4	2	ug/L	100	BLOD	93.4	75-130			
Methylene chloride		45.3	4	ug/L	50.0	BLOD	90.5	55-140			
Methyl-t-butyl ether	· (MTBE)	46.3	1	ug/L	50.0	BLOD	92.7	65-125			
Naphthalene		48.6	1	ug/L	50.0	BLOD	97.3	55-140			
n-Butylbenzene		49.0	1	ug/L	50.0	BLOD	98.0	70-135			
n-Propylbenzene		47.7	1	ug/L	50.0	BLOD	95.4	70-130			
o-Xylene		49.4	1	ug/L	50.0	BLOD	98.8	80-120			
sec-Butylbenzene		50.6	1	ug/L	50.0	BLOD	101	70-125			
Styrene		47.7	1	ug/L	50.0	BLOD	95.4	65-135			
tert-Butylbenzene		48.8	1	ug/L	50.0	BLOD	97.5	70-130			
Tetrachloroethylene	e (PCE)	46.7	1	ug/L	50.0	BLOD	93.5	51-231			
Toluene		47.9	1	ug/L	50.0	BLOD	95.8	75-120			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 7/7/2023 5:12:03PM Client Site I.D.: 2023 City of Bristol Landfill Leachate Logan Howard Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** RPD Spike Source %REC Analyte Result LOQ Units Level Result %REC Limits RPD Limit Qual Batch BGF0891 - SW5030B-MS Matrix Spike (BGF0891-MS1) Prepared & Analyzed: 06/22/2023 Source: 23F1105-01 45.3 50.0 BLOD 90.6 trans-1,2-Dichloroethylene 1 ug/L 60-140 trans-1,3-Dichloropropene 54.7 1 ug/L 50.0 BLOD 109 55-140 46.9 1 50.0 BLOD 93.7 70-125 Trichloroethylene ug/L Trichlorofluoromethane 54.7 1 50.0 BLOD 109 60-145 ug/L 0.5 Vinyl chloride 43.4 ug/L 50.0 BLOD 86.9 50-145 Surr: 1,2-Dichloroethane-d4 (Surr) 48.7 50.0 97.4 70-120 ug/L Surr: 4-Bromofluorobenzene (Surr) 49.9 50.0 99.8 75-120 ug/L Surr: Dibromofluoromethane (Surr) 49.6 ug/L 50.0 99.1 70-130 70-130 Surr: Toluene-d8 (Surr) 49.2 ug/L 50.0 98.4

				<u>Ce</u>	rtificate o	of Analysi	is				
Client Name:	SCS Enginee	ers-Winchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of	Bristol Landfill Le	eachate								
Submitted To:	Logan Howar										
oublinition to.	Logan nowa	u	6.0	mi valatila On			alita Control				
			Sel	mivolatile Or		ls by GCMS - Qu	ality Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
y	Batch	BGF0869 - SW3510									
Blank (BGF0869-BLK					Prepared & Anal	yzed: 06/22/2023					
Anthracene	-	ND	10.0	ug/L	· ·	-					
Surr: 2,4,6-Tribrom	ophenol (Surr)	64.4		ug/L	100		64.4	5-136			
Surr: 2-Fluorobiphe		31.2		ug/L	50.0		62.4	9-117			
Surr: 2-Fluorophene		32.2		ug/L	100		32.2	5-60			
Surr: Nitrobenzene-	-d5 (Surr)	34.1		ug/L	50.0		68.2	5-151			
Surr: Phenol-d5 (Su	urr)	22.1		ug/L	100		22.1	5-60			
Surr: p-Terphenyl-d	14 (Surr)	60.6		ug/L	50.0		121	5-141			
LCS (BGF0869-BS1)					Prepared & Anal	yzed: 06/22/2023					
1,2,4-Trichlorobenz	ene	25.8	10.0	ug/L	50.0		51.5	57-130			L
1,2-Dichlorobenzen	e	19.6	10.0	ug/L	50.0		39.1	22-115			
1,3-Dichlorobenzen	e	20.8	10.0	ug/L	50.0		41.7	22-112			
1,4-Dichlorobenzen	e	22.3	10.0	ug/L	50.0		44.6	13-112			
2,4,6-Trichlorophen	ol	37.0	10.0	ug/L	50.0		74.0	52-129			
2,4-Dichlorophenol		31.3	10.0	ug/L	50.0		62.5	53-122			
2,4-Dimethylphenol		35.7	5.00	ug/L	50.0		71.4	42-120			
2,4-Dinitrophenol		21.9	50.0	ug/L	50.0		43.7	48-127			L
2,4-Dinitrotoluene		39.4	10.0	ug/L	50.0		78.8	10-173			
2,6-Dinitrotoluene		36.7	10.0	ug/L	50.0		73.3	68-137			
2-Chloronaphthaler	ne	34.7	10.0	ug/L	50.0		69.4	65-120			
2-Chlorophenol		32.6	10.0	ug/L	50.0		65.2	36-120			
2-Nitrophenol		32.5	10.0	ug/L	50.0		65.1	45-167			
3,3'-Dichlorobenzid	ine	25.5	10.0	ug/L	50.0		51.1	10-213			
4,6-Dinitro-2-methy	lphenol	35.7	50.0	ug/L	50.0		71.4	53-130			
4-Bromophenyl phe	enyl ether	36.2	10.0	ug/L	50.0		72.4	65-120			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 7/7/2023 5:12:03PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Logan Howard Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGF0869 - SW3510C/EPA600-MS LCS (BGF0869-BS1) Prepared & Analyzed: 06/22/2023 74.1 4-Chlorophenyl phenyl ether 37.0 10.0 ug/L 50.0 38-145 4-Nitrophenol 11.1 50.0 ug/L 50.0 22.2 13-129 39.0 50.0 60-132 Acenaphthene 10.0 ug/L 78.0 Acenaphthylene 40.6 50.0 81.2 54-126 10.0 ug/L Acetophenone 36.1 20.0 ug/L 50.0 72.2 0-200 Anthracene 47.9 95.8 43-120 10.0 ug/L 50.0 Benzo (a) anthracene 46.1 10.0 ug/L 50.0 92.2 42-133 50.9 102 32-148 Benzo (a) pyrene 10.0 ua/L 50.0 Benzo (b) fluoranthene 48.4 10.0 ug/L 50.0 96.8 42-140 60.0 50.0 120 10-195 Benzo (g,h,i) perylene 10.0 ua/L Benzo (k) fluoranthene 46.7 10.0 50.0 93.5 25-146 ug/L bis (2-Chloroethoxy) methane 41.9 10.0 ug/L 50.0 83.9 49-165 bis (2-Chloroethyl) ether 33.5 10.0 50.0 66.9 43-126 ug/L 27.8 50.0 63-139 2,2'-Oxybis (1-chloropropane) 10.0 ug/L 55.6 L bis (2-Ethylhexyl) phthalate 60.1 50.0 120 29-137 10.0 ug/L 62.1 50.0 10-140 Butyl benzyl phthalate 10.0 ug/L 124 Chrysene 46.5 10.0 ug/L 50.0 93.0 44-140 47.8 50.0 95.5 10-200 Dibenz (a,h) anthracene 10.0 ug/L Diethyl phthalate 50.1 10.0 50.0 100 10-120 ug/L 42.7 Dimethyl phthalate 10.0 ug/L 50.0 85.4 10-120 Di-n-butyl phthalate 53.0 50.0 106 10-120 10.0 ug/L Di-n-octyl phthalate 75.2 10.0 ug/L 50.0 150 19-132 L Fluoranthene 49.3 43-121 10.0 ug/L 50.0 98.6 Fluorene 46.3 10.0 ug/L 50.0 92.6 70-120 40.0 80.0 10-142 Hexachlorobenzene 1.00 ug/L 50.0

			<u>Cer</u>	tificate o	of Analysi	is				
Client Name: S	CS Engineers-Winchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.: 2	023 City of Bristol Landfill	Leachate								
-	ogan Howard									
	Sgan Howard	_								
		Se	mivolatile Org	anic Compound	s by GCMS - Qu	ality Control				
				Enthalpy A	nalytical					
				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGF0869 - SW35	10C/EPA600	-MS							
LCS (BGF0869-BS1)			F	Prepared & Anal	yzed: 06/22/2023					
Hexachlorobutadiene	25.5	10.0	ug/L	50.0		51.1	38-120			
Hexachlorocyclopentadie	ene 14.6	10.0	ug/L	50.0		29.1	10-76			
Hexachloroethane	22.2	10.0	ug/L	50.0		44.5	55-120			L
Indeno (1,2,3-cd) pyrene	e 50.9	10.0	ug/L	50.0		102	10-151			
Isophorone	20.7	10.0	ug/L	50.0		41.4	47-180			L
Naphthalene	31.5	5.00	ug/L	50.0		62.9	36-120			
Nitrobenzene	35.3	10.0	ug/L	50.0		70.5	54-158			
n-Nitrosodimethylamine	23.0	10.0	ug/L	50.0		46.1	10-85			
n-Nitrosodi-n-propylamin	ie 41.4	10.0	ug/L	50.0		82.7	14-198			
n-Nitrosodiphenylamine	33.3	10.0	ug/L	50.0		66.7	12-97			
p-Chloro-m-cresol	29.8	10.0	ug/L	50.0		59.6	10-142			
Pentachlorophenol	35.4	20.0	ug/L	50.0		70.9	38-152			
Phenanthrene	50.4	10.0	ug/L	50.0		101	65-120			
Phenol	11.2	10.0	ug/L	50.5		22.3	17-120			
Pyrene	66.4	10.0	ug/L	50.0		133	70-120			L
Pyridine	33.0	10.0	ug/L	50.0		66.1	10-103			
Surr: 2,4,6-Tribromopher	nol (Surr) 89.7		ug/L	100		89.7	5-136			
Surr: 2-Fluorobiphenyl (S	Surr) 42.3		ug/L	50.0		84.5	9-117			
Surr: 2-Fluorophenol (Su	ırr) 41.9		ug/L	100		41.9	5-60			
Surr: Nitrobenzene-d5 (S	Surr) 38.3		ug/L	50.0		76.6	5-151			
Surr: Phenol-d5 (Surr)	24.1		ug/L	100		24.1	5-60			
Surr: p-Terphenyl-d14 (S	Surr) 39.0		ug/L	50.0		78.1	5-141			

			Ce	ertificate of Ana	lvsis				
Client Name:	SCS Engineers-Winchester				<u> </u>	Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of Bristol Landfill L	eachate							
Submitted To:	Logan Howard								
	C .		Wet	Chemistry Analysis - Quality	Control				
				Enthalpy Analytical					
Analyte	Result	LOQ	Units	Spike Sour Level Res		%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0817 - No Pre	o Wet Chen	1 <u> </u>						
Blank (BGF0817-BLK1)			Prepared & Analyzed: 06/2	1/2023				
Nitrite as N	ND	0.05	mg/L						
LCS (BGF0817-BS1)				Prepared & Analyzed: 06/2	1/2023				
Nitrite as N	0.10	0.05	mg/L	0.100	98.0	80-120			
Matrix Spike (BGF0817	7-MS1) Sourc	e: 23F1000-0	1	Prepared & Analyzed: 06/2	1/2023				
Nitrite as N	0.10	0.05	mg/L	0.100 BLC	D 96.0	80-120			
Matrix Spike Dup (BGF	F0817-MSD1) Sourc	e: 23F1000-0	1	Prepared & Analyzed: 06/2	1/2023				
Nitrite as N	0.10	0.05	mg/L	0.100 BLC	D 96.0	80-120	0.00	20	
	Batch BGF0823 - No Pre	o Wet Chem	1 <u> </u>						
Blank (BGF0823-BLK1)			Prepared & Analyzed: 06/2	1/2023				
BOD	ND	2.0	mg/L						
LCS (BGF0823-BS1)				Prepared & Analyzed: 06/2	1/2023				
BOD	195	2	mg/L	198	98.5	84.6-115.4			
Duplicate (BGF0823-D	UP1) Sourc	e: 23F0993-0	1	Prepared & Analyzed: 06/2	1/2023				
BOD	3.8	2.0	mg/L	3.4	L		11.5	20	
	Batch BGF1095 - No Pre	wet Chen	ı						
Blank (BGF1095-BLK1)			Prepared & Analyzed: 06/2	8/2023				
COD	ND	10.0	mg/L						

				•		6 A I	_				
					ertificate o	ot Analysis	<u>s</u>	Data la su		7/7/0000	E.40.00DM
Client Name:	SCS Engineers-Wi	Inchester						Date Issue	ed:	////2023	5:12:03PM
Client Site I.D.:	2023 City of Bristo	ol Landfill Le	eachate								
Submitted To:	Logan Howard										
				Wet	Chemistry Analysi	is - Quality Contro	I				
					Enthalpy An	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF10)95 - No Prep	Wet Chem	1 <u> </u>							
LCS (BGF1095-BS1)					Prepared & Analy	/zed: 06/28/2023					
COD		49.8	10.0	mg/L	50.0		99.5	88-119			
Matrix Spike (BGF1095	5-MS1)	Source	: 23F1162-0	1	Prepared & Analy	/zed: 06/28/2023					
COD		57.2	10.0	mg/L	50.0	10.6	93.4	72.4-130			
Matrix Spike Dup (BGF	F1095-MSD1)	Source: 23F1162-01		Prepared & Analyzed: 06/28/2023							
COD		58.9	10.0	mg/L	50.0	10.6	96.6	72.4-130	2.82	20	
	Batch BGF12	206 - No Prep	Wet Chem	า							
Blank (BGF1206-BLK1)				Prepared & Analy	/zed: 06/30/2023					
Nitrate+Nitrite as N		ND	0.10	mg/L							
LCS (BGF1206-BS1)					Prepared & Analy	/zed: 06/30/2023					
Nitrate+Nitrite as N		2.54	0.1	mg/L	2.50		102	90-110			
Matrix Spike (BGF1206	6-MS1)	Source	: 23F1156-0	2	Prepared & Analy						
Nitrate+Nitrite as N		4.51	0.1	mg/L	2.50	1.87	106	90-120			
Matrix Spike Dup (BGF	F1206-MSD1)	Source	: 23F1156-0	2	Prepared & Analy	/zed: 06/30/2023					
Nitrate+Nitrite as N		4.53	0.1	mg/L	2.50	1.87	107	90-120	0.575	20	
	Batch BGG0	006 - No Prep	Wet Cher	n							
Blank (BGG0006-BLK1	1)				Prepared & Analy	/zed: 07/02/2023					
TKN as N		ND	0.50	mg/L							

				<u>Ce</u>	ertificate o	of Analysis	<u> </u>				
Client Name:	SCS Engineers-W	inchester						Date Issue	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of Bristo	ol Landfill L	eachate								
Submitted To:	Logan Howard										
	Ū			Wet	Chemistry Analys	is - Quality Control					
					Enthalpy A	nalytical					
[-					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batab BCC0						_				
	Batch BGG0	006 - NO Pre	p wet chen	1							
LCS (BGG0006-BS1) TKN as N		10.7	0.50	mg/L	Prepared & Anar 10.0	yzed: 07/02/2023	107	90-110			
Matrix Spike (BGG000)6-MS1)		e: 23F1129-0'	-		yzed: 07/02/2023	107				
TKN as N		10.8	0.50	mg/L	10.0	0.28	105	90-110			
Matrix Spike (BGG000	06-MS2)	Sourc	e: 23F1501-02	2	Prepared & Anal	yzed: 07/02/2023					
TKN as N		11.1	0.50	mg/L	10.0	BLOD	111	90-110			М
Matrix Spike Dup (BG	G0006-MSD1)	Sourc	e: 23F1129-0 [,]	1	Prepared & Anal	yzed: 07/02/2023					
TKN as N		11.0	0.50	mg/L	10.0	0.28	107	90-110	1.75	20	
Matrix Spike Dup (BG	G0006-MSD2)	Sourc	e: 23F1501-02	2	Prepared & Anal	yzed: 07/02/2023					
TKN as N		11.3	0.50	mg/L	10.0	BLOD	113	90-110	1.30	20	М
	Batch BGG0	023 - No Pre	p Wet Chen	1							
Blank (BGG0023-BLK	1)				Prepared & Anal	yzed: 07/03/2023					
Ammonia as N		ND	0.10	mg/L							
LCS (BGG0023-BS1)					Prepared & Anal	yzed: 07/03/2023					
Ammonia as N		1.08	0.1	mg/L	1.00		108	90-110			
Matrix Spike (BGG002	23-MS1)		e: 23F1414-0	1		yzed: 07/03/2023					
Ammonia as N		1.12	0.10	mg/L	1.00	0.20	92.1	89.3-131			
Matrix Spike (BGG002	23-MS2)	Sourc	e: 23F1499-03	3	Prepared & Anal	yzed: 07/03/2023					
Ammonia as N		1.22	0.10	mg/L	1.00	0.15	107	89.3-131			

				C	ertificate o	of Analysis	6				
Client Name:	SCS Engineers-W	/inchester				-		Date Issu	ed:	7/7/2023	5:12:03PM
Client Site I.D.:	2023 City of Brist	ol Landfill I	_eachate								
Submitted To:	Logan Howard										
	0			We	t Chemistry Analys	is - Quality Contro					
					Enthalpy A	-					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGG0	023 - No Pre	ep Wet Chem	1							
Matrix Spike Dup (BGG	60023-MSD1)	Sourc	e: 23F1414-0 ⁴	I	Prepared & Anal	yzed: 07/03/2023					
Ammonia as N		1.12	0.10	mg/L	1.00	0.20	92.0	89.3-131	0.0894	20	
Matrix Spike Dup (BGG	60023-MSD2)	Sourc	e: 23F1499-0	3	Prepared & Anal	yzed: 07/03/2023					
Ammonia as N		1.24	0.10	mg/L	1.00	0.15	109	89.3-131	1.54	20	
	Batch BGG0)077 - No Pre	p Wet Chem	ı							
Blank (BGG0077-BLK1)				Prepared & Anal	yzed: 07/05/2023					
Total Recoverable Pl	henolics	ND	0.050	mg/L	•	<u>, </u>					
LCS (BGG0077-BS1)					Prepared & Anal	yzed: 07/05/2023					
Total Recoverable Pl	henolics	0.45	0.050	mg/L	0.500		90.4	80-120			
Matrix Spike (BGG0077	7-MS1)	Sourc	e: 23F1095-0 [,]	I	Prepared & Anal	yzed: 07/05/2023					
Total Recoverable Pl	henolics	65.0	2.50	mg/L	25.0	39.1	104	70-130			
Matrix Spike Dup (BGG	60077-MSD1)	Sourc	e: 23F1095-0 [,]		Prepared & Anal	yzed: 07/05/2023					
Total Recoverable Pl	henolics	62.6	2.50	mg/L	25.0	39.1	94.0	70-130	3.76	20	

			Certificate	of Analysis	
Client Name:	SCS Engineers-Winch	nester			Date Issued
Client Site I.D.:	2023 City of Bristol La	andfill Leachate			
Submitted To:	Logan Howard				
	Analytical Summary				
	Analytical Summary				
23F1095-01		Subcontract			
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
23F1095-01	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
23F1095-01RE1	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analys	is		Preparation Method:	No Prep Wet Chem	
23F1095-01	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGF0817	SGF0819	AD30177
23F1095-01	300 mL / 300 mL	SM5210B-2011	BGF0823	SGF0978	
23F1095-01	2.00 mL / 2.00 mL	SM5220D-2011	BGF1095	SGF1080	
23F1095-01	5.00 mL / 5.00 mL	SM4500-NO3F-2011	BGF1206	SGF1186	AF30333
23F1095-01RE1	5.00 mL / 5.00 mL	SM4500-NO3F-2011	BGF1206	SGF1186	AF30333
23F1095-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0006	SGG0004	AG30158
23F1095-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGG0023	SGG0029	AG30161
23F1095-01	5.00 mL / 10.0 mL	SW9065	BGG0077	SGG0097	AG30176
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic O	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-M	s
23F1095-01	1030 mL / 2.00 mL	SW8270E	BGF0869	SGF0976	AE30336
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Comp	oounds by GCMS		Preparation Method:	SW5030B-MS	
23F1095-01	5.00 mL / 5.00 mL	SW8260D	BGF0832	SGF0851	AF30236

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Logan Howard

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
23F1095-02	5.00 mL / 5.00 mL	SW8260D	BGF0832	SGF0851	AF30236
23F1095-01RE1	5.00 mL / 5.00 mL	SW8260D	BGF0891	SGF0897	AF30236
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EP/	A 6000/7000 Series Methods		Preparation Method:	SW7470A	
23F1095-01	1.00 mL / 20.0 mL	SW7470A	BGF0861	SGF0889	AF30286

Date Issued:

7/7/2023 5:12:03PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Logan Howard

QC Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
BGF0945-BLK1	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
BGF0945-BS1	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
BGF0945-MS1	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
BGF0945-MS2	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
BGF0945-MSD1	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
BGF0945-MSD2	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	/sis		Preparation Method:	No Prep Wet Chem	I
BGF0817-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGF0817	SGF0819	AD30177
BGF0817-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGF0817	SGF0819	AD30177
BGF0817-MRL1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGF0817	SGF0819	AD30177
BGF0817-MS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGF0817	SGF0819	AD30177
BGF0817-MSD1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGF0817	SGF0819	AD30177
BGF0823-BLK1	300 mL / 300 mL	SM5210B-2011	BGF0823	SGF0978	
BGF0823-BS1	300 mL / 300 mL	SM5210B-2011	BGF0823	SGF0978	
BGF0823-DUP1	300 mL / 300 mL	SM5210B-2011	BGF0823	SGF0978	
BGF1095-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BGF1095	SGF1080	
BGF1095-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BGF1095	SGF1080	
BGF1095-MRL1	2.00 mL / 2.00 mL	SM5220D-2011	BGF1095	SGF1080	
BGF1095-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BGF1095	SGF1080	
BGF1095-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BGF1095	SGF1080	
BGF1206-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2011	BGF1206	SGF1186	AF30333

Date Issued:

7/7/2023 5:12:03PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Logan Howard

BGF0869-BS1

1000 mL / 1.00 mL

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	sis		Preparation Method:	No Prep Wet Chem	
BGF1206-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2011	BGF1206	SGF1186	AF30333
BGF1206-MS1	50.0 mL / 50.0 mL	SM4500-NO3F-2011	BGF1206	SGF1186	AF30333
BGF1206-MSD1	50.0 mL / 50.0 mL	SM4500-NO3F-2011	BGF1206	SGF1186	AF30333
BGG0006-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0006	SGG0004	AG30158
BGG0006-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0006	SGG0004	AG30158
BGG0006-MRL1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0006	SGG0004	AG30158
BGG0006-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0006	SGG0004	AG30158
BGG0006-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0006	SGG0004	AG30158
BGG0006-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0006	SGG0004	AG30158
BGG0006-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0006	SGG0004	AG30158
BGG0023-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGG0023	SGG0029	AG30161
BGG0023-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGG0023	SGG0029	AG30161
BGG0023-MRL1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGG0023	SGG0029	AG30161
BGG0023-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGG0023	SGG0029	AG30161
BGG0023-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGG0023	SGG0029	AG30161
BGG0023-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGG0023	SGG0029	AG30161
BGG0023-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGG0023	SGG0029	AG30161
BGG0077-BLK1	5.00 mL / 10.0 mL	SW9065	BGG0077	SGG0097	AG30176
BGG0077-BS1	5.00 mL / 10.0 mL	SW9065	BGG0077	SGG0097	AG30176
BGG0077-MRL1	5.00 mL / 10.0 mL	SW9065	BGG0077	SGG0097	AG30176
BGG0077-MS1	0.100 mL / 10.0 mL	SW9065	BGG0077	SGG0097	AG30176
BGG0077-MSD1	0.100 mL / 10.0 mL	SW9065	BGG0077	SGG0097	AG30176
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-MS	
BGF0869-BLK1	1000 mL / 1.00 mL	SW8270E	BGF0869	SGF0961	AD30296

BGF0869

SGF0961

SW8270E

Date Issued:

AD30296

7/7/2023 5:12:03PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Logan Howard

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	SW5030B-MS	
BGF0832-BLK1	5.00 mL / 5.00 mL	SW8260D	BGF0832	SGF0851	AF30236
BGF0832-BS1	5.00 mL / 5.00 mL	SW8260D	BGF0832	SGF0851	AF30236
BGF0832-DUP1	5.00 mL / 5.00 mL	SW8260D	BGF0832	SGF0851	AF30236
BGF0832-MS1	5.00 mL / 5.00 mL	SW8260D	BGF0832	SGF0851	AF30236
BGF0891-BLK1	5.00 mL / 5.00 mL	SW8260D	BGF0891	SGF0897	AF30236
BGF0891-BS1	5.00 mL / 5.00 mL	SW8260D	BGF0891	SGF0897	AF30236
BGF0891-DUP1	5.00 mL / 5.00 mL	SW8260D	BGF0891	SGF0897	AF30236
BGF0891-MS1	5.00 mL / 5.00 mL	SW8260D	BGF0891	SGF0897	AF30236
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	6000/7000 Series Methods		Preparation Method:	SW7470A	
BGF0861-BLK1	20.0 mL / 20.0 mL	SW7470A	BGF0861	SGF0889	AF30286
BGF0861-BS1	20.0 mL / 20.0 mL	SW7470A	BGF0861	SGF0889	AF30286
BGF0861-MS1		SW7470A	BGF0861		
BGF0861-MSD1		SW7470A	BGF0861		

Date Issued:

7/7/2023 5:12:03PM

		<u>Certificate of Analysis</u>		
Client Name:	SCS Engineers-Winchester		Date Issued:	7/7/2023 5:12:03PM
Client Site I.D.:	2023 City of Bristol Landfill Leachate			
Submitted To:	Logan Howard			
	-			
-	ses included in this Report			
Analyte		Certifications		
EPA350.1 R2.0 in l	Non-Potable Water			
Ammonia as N		VELAP,NCDEQ,PADEP,WVDEP		
EPA351.2 R2.0 in l	Non-Potable Water			
TKN as N		VELAP,NCDEQ,WVDEP		
SM4500-NO2B-201	11 in Non-Potable Water			
Nitrite as N		VELAP,WVDEP,NCDEQ		
SM4500-NO3F-201	11 in Non-Potable Water			
Nitrate+Nitrite as N		VELAP,WVDEP		
SM5210B-2011 in l	Non-Potable Water			
BOD		VELAP,NCDEQ,WVDEP		
SM5220D-2011 in l	Non-Potable Water			
COD		VELAP,NCDEQ,PADEP,WVDEP		
SW6020B in Non-H	Potable Water			
Arsenic		VELAP,WVDEP		
Barium		VELAP,WVDEP		
Cadmium		VELAP,WVDEP		
Chromium		VELAP,WVDEP		
Copper		VELAP,WVDEP		
Lead		VELAP,WVDEP		
Nickel		VELAP,WVDEP		
Selenium		VELAP,WVDEP		
Silver		VELAP,WVDEP		
Zinc		VELAP,WVDEP		
SW7470A in Non-F	Potable Water			
Mercury		VELAP,NCDEQ,WVDEP		

		<u>Certificate of Analysis</u>		
Client Name:	SCS Engineers-Winchester		Date Issued:	7/7/2023 5:12:03PM
Client Site I.D.:	2023 City of Bristol Landfill Leachate			
Submitted To:	Logan Howard			
Certified Analy	ses included in this Report			
Analyte		Certifications		
SW8260D in Non-l	Potable Water			
2-Butanone (MEK)		VELAP,NCDEQ,PADEP,WVDEP		
Acetone		VELAP,NCDEQ,PADEP,WVDEP		
Benzene		VELAP,NCDEQ,PADEP,WVDEP		
Ethylbenzene		VELAP,NCDEQ,PADEP,WVDEP		
Toluene		VELAP,NCDEQ,PADEP,WVDEP		
Xylenes, Total		VELAP,NCDEQ,PADEP,WVDEP		
Tetrahydrofuran		VELAP, PADEP		
SW8270E in Non-I	Potable Water			
Anthracene		VELAP,PADEP,NCDEQ,WVDEP		
Naphthalene		VELAP, PADEP, NCDEQ, WVDEP		
SW9065 in Non-Po	otable Water			
Total Recoverable	Phenolics	VELAP,WVDEP		

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Logan Howard

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/30/2024
TXCEQ	Texas Comm on Environmental Quality #T104704576-23-1	T104704576	05/31/2024
VELAP	NELAP-Virginia Certificate #12417	460021	06/14/2024
WVDEP	West Virginia DEP	350	11/30/2023

Date Issued:

7/7/2023 5:12:03PM

		Certificate of Analysis			
Client Na	ime:	SCS Engineers-Winchester	Date Issued:	7/7/2023	5:12:03PM
Client Sit	e I.D.:	2023 City of Bristol Landfill Leachate			
Submitte	d To:	Logan Howard			
		Qualifiers and Definitions			
DS	Surrogate	concentration reflects a dilution factor.			
J	The report	ed result is an estimated value.			
L	LCS recov	ery is outside of established acceptance limits			
М	Matrix spik	e recovery is outside established acceptance limits			
RPD	Relative Pe	rcent Difference			
Qual	Qualifers				
-RE	Denotes sa	mple was re-analyzed			
LOD	Limit of Dete	ection			
BLOD	Below Limit	of Detection			
LOQ	Limit of Qua	antitation			
DF	Dilution Fac	tor			
TIC	library. A TI	dentified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral C spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are nd are calculated using an internal standard response factor of 1.			
PCBs, Total	Total PC	Bs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.			

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

CHAIN OF CUSTODY

PAGE 1 OF 1

COMPANY NAME: SCS En	gine	ers	5		IN	VOICE TO	:		S	AM	E				PRO	DJE	СТ	NAM	IE/C	Quot	te #:				TAGETO
CONTACT: Jennifer Robb					IN	VOICE CO	NTAC	Т:	24						SITI	E N	AM	E:	20	23	City	of B	Iris	stol	Landfill Leachate
ADDRESS: 11260 Roger Bac	on D	riv	e,		IN	VOICE AD	DRESS	S:							PRC	DJE	СТ	NUM		_			_	_	Task 1
Ste. 300, Reston V/	1 20	190)		IN	VOICE PH	ONE #	:	R						P.0	_									
PHONE #: 703-471-6150				EMAIL:	jrobb@	scsengin	ers.co	m	1						Pret	treat	tme	ent Pr	ogr	am:					
Is sample for compliance reporti	ng?	(YE	S NO Reg	gulato	ry State:	V A	ls san	ple fro	m a	ch]	lorin	ate	d supp			YES		10)	PW	S I.[D. ‡	#:	
SAMPLER NAME (PRINT):	-	L	2000	1 Caster	-	-	MPLE			_		-	6	D	6	Ini	11	To	M	Tu	irn A	roun	id 7	Tim	e: 10 Day(s)
Matrix Codes: WW=Waste Water/Storm W			Groun				/Solids (OR=Orga	nic A=Ai	WF	-Wip	be OT	r=Ot	her	Cary.		q	, M	P	1					COMMENTS
CLIENT SAMPLE I.D.	Grab	Composite	ed (Dissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Time Preserved	Matrix (See Codes)	Number of Containers	onia - EPA 350.1	- SM22 5210B-2021		Nitrate SM22 450-NO3F-2011 VA (report seperatly from Nitrite)	Nitrite SM22 450-NO3F-		Т	Total Metals (As, Ba, Cd, Cr,) Cu, Pb, Ni, Se, Ag, Zn) 6010	Т	ury - 7470	overable	Phenolics - 9065	V. Fatty Acids (See List) 8015	Cs (See Li	Preservative Codes: N=Nitric Aci C=Hydrochloric Acid S=Sulfuric Ac H=Sodium Hydroxide A=Ascorbit Acid Z=Zinc Acetate T=Sodium Thiosulfate M=Methanol Note VOC 8260 no HCI PLEASE NOTE PRESERVATIVE(S INTERFERENCE CHECKS or PUN RATE (L/min)
1) EW-59	X					062023	740		GW	12	~	_	-	No. of Concession, Name				Contraction of the	-			-	-	1	
2)									GW																
3)									GW																
4)									GW														\square		
5)									GW				_			$ \rightarrow $	\perp						\downarrow	_	
6)									GW							_							\downarrow	_	1
7)									GW				_			_	_					_	+	_	1
8)									GW				_				_						\rightarrow	_	and the second sec
9)									GW										_				\downarrow		
10) Irry Glak	DAT	TE /	TIME	A SO	D:	042427 CIV	1520	DATE /	DI	2	Dat	ta Pa	cka	ge LAE				The and int			271 N)		co		ER TEMP 5.5 °C Received on ice? ((Y) N)
RELINQUISHED: RELINQUISHED:	DA	E /	TIME	RECEIVE	en l	Stur	6/2	DATE / 1/27 DATE /	0600	Leve	el III el IV		20	CS-V 023 C	ity (ndf		eac	hi		
									1	-			R	ecd:	06/2	1/2	02	3 D	Due	: 01		/ 20 / 30325		-	Page 46 of 5

Bottle Kit Example

Parameter	Analytical Method	Bottle	Preservative
Biological Oxygen Demand	SM22 5210B-2021	1 L Plastic	Cool <6C
Ammonia	EPA 350.1 R2.0		
Chemical Oxygen Demand	SM22 5220D-2011		
Nitrite	SM22 4500-NO3F-2011	1 500 mL Plastic	H2SO4
Nitrate	SM22 4500-NO3F-2011		
Total Kjeldahl Nitrogen	EPA 351.2 R2.0		
Nitrate	SM22 4500-NO3F-2011	1 250 mL Plastic	Cool <6C
Semi-Volatile Organic Compound: Anthracene	SW-846 Method 8270	1 L Amber	Cool <6C
Total Metals: Arsenic, Barium, Cadmium, Chromium, Copper, Lead, Nickel, Selenium, Silver, and Zinc	SW-846 Method 6010	1 500 mL Plastic	HNO3
Total Metal: Mercury	SW-846 Method 7470		
Total Recoverable Phenolics	SW-846 Method 9065	1 250 mL glass Amber	H2SO4
Volatile Fatty Acids: Acetic Acid, Butyric Acid, Lactic Acid, Propionic Acid, and Pyruvic Acid	SW-846 Method 8015	3 40 mL VOA Clear	Cool <6C
Volatile Organic Compounds: Acetone, Benzene, Ethyl benzene Methyl ethyl ketone, Tetrahydrofuran, Toluene, and Total Xylenes	' SW-846 Method 8260	3 40 mL VOA Clear	HCI

Sample Preservation Log Form #: F1301 Rev # 13.0 Effective: June 14, 2023 Page 1 of 1

Sample Preservation Log

Order II)	23	3F1()95											Date	Perfo	omeo	l:	6-	.2	-2	1			-				Ала	lyst f	Perfor	ming (Check:	Ľ		テ			_			
	Q		Meta	ls		yanlo	de		Sulfic	de		mmo	nla		TKN		Pho	os, T	_	NC	03+N	102		DRO)	(808) PC	estic 1/608 B DW	(de 1/508)	(52	SVO: 6/8270	C		* **	S	est/P (508) VOC(!	СВ)/	C	D [2	р.	, ten e	x ; c
Sample ID	Container ID	Rec	other		Rec	i as sived Other	Finel pH	Rec	H as setved Other	12	Rec	i as eived Other	Finel pH	Rec	as elved Other	Final pH	pH a Recent	is ved ther	Finel pH		as elved Other	1	Rec	H as ceived Other	Finst pH		elved s. Cl	finai + or -	Rec Rea	sived s. Cl	final + or -	Received PH	Finel pH	Rec	H as selved Other	-	pH Rec こ入	as sived Other	Final pH	pH Reco	as elved	Hq lari
ी	Ā		-	42	÷ – –																										i	·	<u> </u>				<u> </u>					
01	Ŕ											7	<2	Ħ	7	ઝ					7	८२												Π			· ·	7	د2			
01	F							Π						Π	•	-				H																					7	L A
														Η																				┢┤								
														H				1		\square														┢┥								
				\vdash	\square			\square			\square							-																┢┤								
				\vdash	┢									\mathbb{H}				╡																┢┤								
— —					\square									┠┤						\square														┢┤								
							\vdash	$\left - \right $					<u> </u>	$\left \cdot \right $				\dashv									_		-					H						_		
				-			-				\square			$\left \cdot \right $				-		\square														H				-				
										<u> </u>	$\left - \right $							\dashv										-						\mathbb{H}								-
												-						_														<u>.</u>		\vdash								
																		_																\square								
				<u> </u>			ļ											_																$\left - \right $		<u> </u>		<u> </u>				
																																		Ц				_				
L																																		\square								
NaOH II):								HNO	3 ID:	3	E	04	50	94		- c	rVip Man	orese ust h	erve e adl	d dat	e/tim	0: <u></u>).3 - 9.7	7					Ana	l yst I r	itials: _					<u>,</u>					
H2SO4	D: <u>3</u>	P	6	43)		_	Na ₂ S	6203	ID: _						_ В	uffei	r Sol'	'n ID	:															and the second se						
HCL ID:								_	Na ₂ S	603 II	D:						_ [1	N Na	aOH	ID:										5N I	NaO⊦	l:		\angle								
																			M We	eta is a in t	ls w ddeo he I	vere d on Log	rec 21 -In	eive Jun roon	d w 202 n to	ith 23 a bri	pH = t 09 ng p	= 7)50 {)H=	HN by R <2.	03 CJ								Г	De		0.04	<u></u>

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Logan Howard

Date Issued:

7/7/2023 5:12:03PM

	<u>Certificate of Analysis</u>		
Client Name:		Date Issued:	7/7/2023 5:12:03PM
Client Site I.D.:	2023 City of Bristol Landfill Leachate		
Submitted To:	Logan Howard		
	Laboratory Order ID: 23F1095		
	Sample Conditions Checklist		
	Samples Received at:		5.50°C
	How were samples received?	Lo	ogistics Courier
	Were Custody Seals used? If so, were they received intact?		Yes
	Are the custody papers filled out completely and correctly?		No
	Do all bottle labels agree with custody papers?		Yes
	Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?		Yes
	Are all samples within holding time for requested laboratory tests?		Yes
	Is a sufficient amount of sample provided to perform the tests included?		Yes
	Are all samples in appropriate containers for the analyses requested?		Yes
	Were volatile organic containers received?		Yes
	Are all volatile organic and TOX containers free of headspace?		Yes
	ls a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.		Yes
	Are all samples received appropriately preserved? Note that metals containers do not require field preservation but la preservation may delay analysis.	ab	Νο
	Work Order Comments		
	*Metals were logged for analysis by 6020 per project history, which differs chain of custody (6010).		

*H2SO4-preserved bottles were received with a pH greater than 2; H2SO4 was added to bring the pH to less than 2.

7/7/2023 5:12:03PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Logan Howard

Jennifer Robb notified via email. MRS 06/21/23 1048

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

DRAFT REPORT

Laboratory Order ID 23F1204

Client Name: SCS Engineers-Winchester 296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Date Received:June 22, 2023 8:00Date Issued:July 7, 2023 16:20Project Number:02218208.15 Task 1Purchase Order:

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Enclosed are the results of analyses for samples received by the laboratory on 06/22/2023 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

			Analysis Detec	ts Report					
Client Name:	SCS Engineers-Wi	nchester			Date Issued:	7/7/	/2023 4:2	0:33PM	
Client Site ID:	2023 City of Bristol	I andfill I eachate							
	•								
Submitted To:	Jennifer Robb								
Laboratory Sample ID:	23F1204-01	Client Sa	mple ID: EW-61						
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Arsenic		01RE1	SW6020B	500		2.5	5.0	5	ug/L
Barium		01RE2	SW6020B	3010		10.0	50.0	10	ug/L
Chromium		01RE1	SW6020B	191		2.00	5.00	5	ug/L
Copper		01RE1	SW6020B	3.62	J	1.50	5.00	5	ug/L
Nickel		01RE1	SW6020B	58.92		5.000	5.000	5	ug/L
Zinc		01RE1	SW6020B	25.3		12.5	25.0	5	ug/L
2-Butanone (MEK)		01RE1	SW8260D	20100		1500	5000	500	ug/L
Acetone		01RE1	SW8260D	61800		3500	5000	500	ug/L
Benzene		01	SW8260D	1400		20.0	50.0	50	ug/L
Ethylbenzene		01	SW8260D	98.0		20.0	50.0	50	ug/L
Tetrahydrofuran		01	SW8260D	7320		500	500	50	ug/L
Toluene		01	SW8260D	67.0		25.0	50.0	50	ug/L
Xylenes, Total		01	SW8260D	92.0	J	50.0	150	50	ug/L
Ammonia as N		01RE1	EPA350.1 R2.0	2370		146	200	2000	mg/L
BOD		01	SM5210B-2011	27400		0.2	2.0	1	mg/L
COD		01	SM5220D-2011	44800		5000	5000	500	mg/L
Nitrate+Nitrite as N		01RE2	SM4500-NO3F-2011	3.19		0.20	0.20	1	mg/L
TKN as N		01RE1	EPA351.2 R2.0	2650		200	500	1000	mg/L
Total Recoverable Phenol	ics	01	SW9065	45.6		1.50	2.50	50	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

7/7/2023 4:20:33PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-61	23F1204-01	Ground Water	06/20/2023 17:30	06/22/2023 08:00

				<u>(</u>	<u>Certificate o</u>	<u>f Analysis</u>							
Client Name:	SCS Engine	ers-Winch	ester			-	Da	ite Issue	ed:	7/7/202	3 4:2	20:33PM	
Client Site I.D.:	2023 City o	f Bristol La	andfill Leac	hate									
Submitted To:	Jennifer Rol	b											
Client Sample ID:	EW-61					Laboratory	Sample ID:	23F1	204-01				
				Reference	Sample Prep	Analyzed	Sample						
Parameter		Samp ID	CAS	Method	Date/Time	Date/Time	Results	Qual	LOD	LOQ	DF	Units	Analys
Metals (Total) by EPA	6000/7000 Series	Methods											
Silver		01RE1	7440-22-4	SW6020B	06/23/2023 17:00	06/26/2023 14:25	BLOD		0.300	5.00	5	ug/L	AB
Arsenic		01RE1	7440-38-2	SW6020B	06/23/2023 17:00	06/26/2023 14:25	500		2.5	5.0	5	ug/L	AB
Barium		01RE2	7440-39-3	SW6020B	06/23/2023 17:00	06/26/2023 14:30	3010		10.0	50.0	10	ug/L	AB
Cadmium		01RE1	7440-43-9	SW6020B	06/23/2023 17:00	06/26/2023 14:25	BLOD		0.500	5.00	5	ug/L	AB
Chromium		01RE1	7440-47-3	SW6020B	06/23/2023 17:00	06/26/2023 14:25	191		2.00	5.00	5	ug/L	AB
Copper		01RE1	7440-50-8	SW6020B	06/23/2023 17:00	06/26/2023 14:25	3.62	J	1.50	5.00	5	ug/L	AB
Mercury		01	7439-97-6	SW7470A	06/26/2023 10:00	06/26/2023 14:13	BLOD		0.00400	0.00400	1	mg/L	SGT
Nickel		01RE1	7440-02-0	SW6020B	06/23/2023 17:00	06/26/2023 14:25	58.92		5.000	5.000	5	ug/L	AB
Lead		01RE1	7439-92-1	SW6020B	06/23/2023 17:00	06/26/2023 14:25	BLOD		5.0	5.0	5	ug/L	AB
Selenium		01RE1	7782-49-2	SW6020B	06/23/2023 17:00	06/26/2023 14:25	BLOD		4.25	5.00	5	ug/L	AB
Zinc		01RE1	7440-66-6	SW6020B	06/23/2023 17:00	06/26/2023 14:25	25.3		12.5	25.0	5	ug/L	AB
Volatile Organic Com	pounds by GCMS												
2-Butanone (MEK)		01RE1	78-93-3	SW8260D	06/26/2023 18:07	06/26/2023 18:07	20100		1500	5000	500	ug/L	ZDR
Acetone		01RE1	67-64-1	SW8260D	06/26/2023 18:07	06/26/2023 18:07	61800		3500	5000	500	ug/L	ZDR
Benzene		01	71-43-2	SW8260D	06/23/2023 17:01	06/23/2023 17:01	1400		20.0	50.0	50	ug/L	RJB
Ethylbenzene		01	100-41-4	SW8260D	06/23/2023 17:01	06/23/2023 17:01	98.0		20.0	50.0	50	ug/L	RJB
Toluene		01	108-88-3	SW8260D	06/23/2023 17:01	06/23/2023 17:01	67.0		25.0	50.0	50	ug/L	RJB
Xylenes, Total		01	1330-20-7	SW8260D	06/23/2023 17:01	06/23/2023 17:01	92.0	J	50.0	150	50	ug/L	RJB
Tetrahydrofuran		01	109-99-9	SW8260D	06/23/2023 17:01	06/23/2023 17:01	7320		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroetha	ne-d4 (Surr)	01	98.0	% 70-120	06/23/2023 17	7:01 06/23/2023 17:0	1						
Surr: 4-Bromofluorobe	· · ·	01	102	% 75-120	06/23/2023 17	7:01 06/23/2023 17:0	1						
Surr: Dibromofluorome	ethane (Surr)	01	99.0	% 70-130	06/23/2023 17	7:01 06/23/2023 17:0	1						
Surr: Toluene-d8 (Surr	,	01	97.3		06/23/2023 17								
Surr: 1,2-Dichloroetha	()	01RE1	101		06/26/2023 18								
Surr: 4-Bromofluorobe	enzene (Surr)	01RE1	99.9	% 75-120	06/26/2023 18	3:07 06/26/2023 18:0	17						

					<u>Certificate o</u>	<u>f Analysis</u>							
Client Name:	SCS Engir	neers-Winch	lester				Da	te Issued	1:	7/7/202	23 4:2	0:33PM	
Client Site I.D.:	2023 City	of Bristol La	andfill Lead	hate									
Submitted To:	Jennifer Ro	obb											
Client Sample ID:	EW-61					Laborator	y Sample ID:	23F12	204-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
Volatile Organic Com	pounds by GCM	s											
Surr: Dibromofluorome Surr: Toluene-d8 (Surr	· ,	01RE1 01RE1	103 97.8										
Semivolatile Organic	Compounds by	GCMS											
Anthracene		01	120-12-7	SW8270E	06/23/2023 09:00	06/23/2023 22:08	BLOD		490	980	50	ug/L	BMS
Surr: 2,4,6-Tribromoph	henol (Surr)	01		% 5-136	06/23/2023 09	:00 06/23/2023 22	:08						DS
Surr: 2-Fluorobiphenyl	I (Surr)	01	34.0	% 9-117	06/23/2023 09	:00 06/23/2023 22	2:08						
Surr: 2-Fluorophenol (,	01	17.0		06/23/2023 09								
Surr: Nitrobenzene-d5	· ,	01	28.0		06/23/2023 09								
Surr: Phenol-d5 (Surr)		01	21.0		06/23/2023 09								
Surr: p-Terphenyl-d14	(Surr)	01	16.0	% 5-141	06/23/2023 09	:00 06/23/2023 22	2:08						
Wet Chemistry Analys	sis												
Ammonia as N		01RE1	7664-41-7	EPA350.1 R2.0	07/03/2023 13:10	07/03/2023 13:10	2370		146	200	2000	mg/L	MKS
BOD		01	E1640606	SM5210B-20 11	06/22/2023 12:48	06/22/2023 12:48	27400		0.2	2.0	1	mg/L	NBT
COD		01	NA	SM5220D-20 11	06/28/2023 09:30	06/28/2023 09:30	44800		5000	5000	500	mg/L	MJRL
Nitrate as N		01	14797-55-8	Calc.	07/03/2023 15:04	07/03/2023 15:04	BLOD		1.20	5.20	100	mg/L	MJRL
Nitrate+Nitrite as N		01RE2	E701177	SM4500-NO 3F-2011	07/03/2023 15:04	07/03/2023 15:04	3.19		0.20	0.20	1	mg/L	MJRL
Nitrite as N		01	14797-65-0	SM4500-NO 2B-2011	06/22/2023 14:00	06/22/2023 14:00	BLOD		1.00	5.00	100	mg/L	MKS
Total Recoverable Pho	enolics	01	NA	SW9065	07/05/2023 16:24	07/05/2023 16:24	45.6		1.50	2.50	50	mg/L	AAL
TKN as N		01RE1	E17148461	EPA351.2 R2.0	07/02/2023 00:00	07/06/2023 17:05	2650		200	500	1000	mg/L	AAL

			Ce	ertificate o	of Analysi	is				
Client Name: S	SCS Engineers-Winchester				-		Date Issu	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of Bristol Landfill Le	eachate								
	lennifer Robb									
Submitted 10. 0										
		Metals	s (Total) by	EPA 6000/7000 S	eries Methods - (Quality Control				
				Enthalpy Ar	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0945 - EPA200.	8 R5.4								
Blank (BGF0945-BLK1)				Prepared: 06/23/	2023 Analvzed: (06/26/2023				
Arsenic	ND	1.0	ug/L	p						
Barium	ND	5.00	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	1.00	ug/L							
Copper	ND	1.00	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	1.000	ug/L							
Selenium	ND	1.00	ug/L							
Silver	ND	1.00	ug/L							
Zinc	ND	5.00	ug/L							
LCS (BGF0945-BS1)				Prepared: 06/23/	2023 Analyzed: (06/26/2023				
Arsenic	51	1.0	ug/L	50.0		102	80-120			
Barium	50.0	5.00	ug/L	50.0		99.9	80-120			
Cadmium	51.3	1.00	ug/L	50.0		103	80-120			
Chromium	50.8	1.00	ug/L	50.0		102	80-120			
Copper	50.7	1.00	ug/L	50.0		101	80-120			
Lead	51	1.0	ug/L	50.0		102	80-120			
Nickel	50.61	1.000	ug/L	50.0		101	80-120			
Selenium	50.8	1.00	ug/L	50.0		102	80-120			
Silver	10.1	1.00	ug/L	10.0		101	80-120			
Zinc	50.8	5.00	ug/L	50.0		102	80-120			
Matrix Spike (BGF0945-M	S1) Source	: 23F1093-0	4	Prepared: 06/23/	2023 Analyzed: (06/26/2023				
Arsenic	51	1.0	ug/L	50.0	BLOD	101	75-125			
Barium	51.6	5.00	ug/L	50.0	BLOD	103	75-125			

7/7/2023 4:20:33PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	3GF0945 - EPA20	0.8 R5.4								
Matrix Spike (BGF0945-MS1)	Sour	ce: 23F1093-0	4	Prepared: 06/23/	2023 Analyzed: (06/26/2023				
Cadmium	50.9	1.00	ug/L	50.0	BLOD	102	75-125			
Chromium	50.6	1.00	ug/L	50.0	BLOD	101	75-125			
Copper	50.3	1.00	ug/L	50.0	BLOD	101	75-125			
Lead	51	1.0	ug/L	50.0	BLOD	101	75-125			
Nickel	50.09	1.000	ug/L	50.0	BLOD	100	75-125			
Selenium	50.2	1.00	ug/L	50.0	BLOD	100	75-125			
Silver	10.0	1.00	ug/L	10.0	BLOD	100	75-125			
Zinc	50.9	5.00	ug/L	50.0	BLOD	102	75-125			
Matrix Spike (BGF0945-MS2)	Sour	ce: 23F1222-0	1	Prepared: 06/23/	2023 Analyzed: (06/26/2023				
Arsenic	51	1.0	ug/L	50.0	0.61	102	75-125			
Barium	151	5.00	ug/L	50.0	99.8	103	75-125			
Cadmium	50.6	1.00	ug/L	50.0	BLOD	101	75-125			
Chromium	50.7	1.00	ug/L	50.0	BLOD	101	75-125			
Copper	47.2	1.00	ug/L	50.0	BLOD	94.4	75-125			
Lead	50	1.0	ug/L	50.0	BLOD	100	75-125			
Nickel	48.11	1.000	ug/L	50.0	BLOD	96.2	75-125			
Selenium	47.8	1.00	ug/L	50.0	BLOD	95.7	75-125			
Silver	9.91	1.00	ug/L	10.0	BLOD	99.1	75-125			
Zinc	46.8	5.00	ug/L	50.0	BLOD	93.5	75-125			
Matrix Spike Dup (BGF0945-MSD1)	Sour	ce: 23F1093-0	4	Prepared: 06/23/	2023 Analyzed: (06/26/2023				
Arsenic	51	1.0	ug/L	50.0	BLOD	102	75-125	0.761	20	
Barium	50.7	5.00	ug/L	50.0	BLOD	101	75-125	1.88	20	
Cadmium	51.0	1.00	ug/L	50.0	BLOD	102	75-125	0.116	20	
Chromium	50.4	1.00	ug/L	50.0	BLOD	101	75-125	0.252	20	

7/7/2023 4:20:33PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BGF0945 - EPA2	00.8 R5.4								
Matrix Spike Dup (BGF0945-MSD1)	Sou	rce: 23F1093-0	4	Prepared: 06/23	/2023 Analyzed: (06/26/2023				
Copper	50.7	1.00	ug/L	50.0	BLOD	101	75-125	0.720	20	
Lead	51	1.0	ug/L	50.0	BLOD	101	75-125	0.0500	20	
Nickel	50.85	1.000	ug/L	50.0	BLOD	102	75-125	1.51	20	
Selenium	50.5	1.00	ug/L	50.0	BLOD	101	75-125	0.625	20	
Silver	10.0	1.00	ug/L	10.0	BLOD	100	75-125	0.329	20	
Zinc	50.7	5.00	ug/L	50.0	BLOD	101	75-125	0.303	20	
Matrix Spike Dup (BGF0945-MSD2)	Sou	rce: 23F1222-0	1	Prepared: 06/23	/2023 Analyzed: (06/26/2023				
Arsenic	52	1.0	ug/L	50.0	0.61	102	75-125	0.381	20	
Barium	152	5.00	ug/L	50.0	99.8	104	75-125	0.282	20	
Cadmium	50.2	1.00	ug/L	50.0	BLOD	100	75-125	0.802	20	
Chromium	49.9	1.00	ug/L	50.0	BLOD	99.8	75-125	1.49	20	
Copper	47.4	1.00	ug/L	50.0	BLOD	94.8	75-125	0.396	20	
Lead	50	1.0	ug/L	50.0	BLOD	99.8	75-125	0.232	20	
Nickel	48.28	1.000	ug/L	50.0	BLOD	96.6	75-125	0.348	20	
Selenium	47.6	1.00	ug/L	50.0	BLOD	95.2	75-125	0.484	20	
Silver	10.1	1.00	ug/L	10.0	BLOD	101	75-125	1.38	20	
Zinc	46.6	5.00	ug/L	50.0	BLOD	93.1	75-125	0.418	20	
Batch	n BGF0980 - SW74	70A								
Blank (BGF0980-BLK1)				Prepared & Anal	yzed: 06/26/2023	}				
Mercury	ND	0.00020	mg/L							
_CS (BGF0980-BS1)				Prepared & Anal	yzed: 06/26/2023	}				
Mercury	0.00265	0.00020	mg/L	0.00250	-	106	80-120			

				<u>Ce</u>	ertificate o	of Analysi	<u>s</u>				
Client Name:	SCS Enginee	rs-Winchester						Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of I	Bristol Landfill	Leachate								
Submitted To:	Jennifer Robb)									
			Metal	s (Total) by	EPA 6000/7000 S	eries Methods - C	Quality Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch E	BGF0980 - SW74	70A								
Matrix Spike (BGF098	0-MS1)	Sou	rce: 23F1302-0	01	Prepared & Analy	yzed: 06/26/2023					
Mercury		0.00284	0.00020	mg/L	0.00250	BLOD	114	80-120			
Matrix Spike Dup (BG	F0980-MSD1)	Sou	rce: 23F1302-0)1	Prepared & Analy	yzed: 06/26/2023					
Mercury		0.00278	0.00020	mg/L	0.00250	BLOD	111	80-120	2.14	20	

			Ce	rtificate o	of Analysi	S				
Client Name: SC	S Engineers-Winchester						Date Issue	d:	7/7/2023	4:20:33PM
Client Site I.D.: 20	23 City of Bristol Landfill L	eachate								
Submitted To: Jer	nnifer Robb									
		,	/olatila Orga	nia Compounda	by GCMS - Qualit	w Control				
		,	volatile Orga	•	•	y Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0926 - SW5030	B-MS								
Blank (BGF0926-BLK1)				Prepared & Anal	yzed: 06/23/2023					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-c	14 (Surr) 49.7		ug/L	50.0		99.4	70-120			
Surr: 4-Bromofluorobenze	ne (Surr) 51.0		ug/L	50.0		102	75-120			
Surr: Dibromofluorometha	ne (Surr) 51.1		ug/L	50.0		102	70-130			
Surr: Toluene-d8 (Surr)	49.1		ug/L	50.0		98.1	70-130			
LCS (BGF0926-BS1)				Prepared & Anal	yzed: 06/23/2023					
1,1,1,2-Tetrachloroethane	53.6	0.4	ug/L	50.0		107	80-130			
1,1,1-Trichloroethane	55.2	1	ug/L	50.0		110	65-130			
1,1,2,2-Tetrachloroethane	47.8	0.4	ug/L	50.0		95.6	65-130			
1,1,2-Trichloroethane	52.0	1	ug/L	50.0		104	75-125			
1,1-Dichloroethane	50.7	1	ug/L	50.0		101	70-135			
1,1-Dichloroethylene	50.4	1	ug/L	50.0		101	70-130			
1,1-Dichloropropene	51.6	1	ug/L	50.0		103	75-135			
1,2,3-Trichlorobenzene	53.0	1	ug/L	50.0		106	55-140			
1,2,3-Trichloropropane	48.1	1	ug/L	50.0		96.1	75-125			
1,2,4-Trichlorobenzene	53.8	1	ug/L	50.0		108	65-135			
1,2,4-Trimethylbenzene	53.9	1	ug/L	50.0		108	75-130			
1,2-Dibromo-3-chloropropa		1	ug/L	50.0		116	50-130			
1,2-Dibromoethane (EDB)	49.4	1	ug/L	50.0		98.8	80-120			

			Ce	rtificate o	of Analysi	S				
Client Name:	SCS Engineers-Winchest	er					Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of Bristol Landf	ill Leachate								
	•	III Eouonato								
Submitted To:	Jennifer Robb									
		N	Volatile Orgai	nic Compounds I	by GCMS - Qualit	y Control				
				Enthalpy A	nalytical					
				Ortilar	0		0/ DE 0			
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0926 - SW	5030B-MS								
LCS (BGF0926-BS1)	Datch DGI 0920 - 3W			Propared & Apal	yzed: 06/23/2023					
1,2-Dichlorobenzene	e 50.8	0.5	ug/L	50.0	yzeu. 00/23/2023	102	70-120			
1.2-Dichloroethane	e 50.8 49.8	0.5	ug/L	50.0		99.6	70-120			
1,2-Dichloropropane		0.5	ug/L	50.0		101	75-125			
1,3,5-Trimethylbenz		1	ug/L	50.0		101	75-125			
1,3-Dichlorobenzene		1	ug/L	50.0		104	75-125			
1,3-Dichloropropane		1	ug/L	50.0		99.6	75-125			
1,4-Dichlorobenzene		1	ug/L	50.0		98.0	75-125			
2,2-Dichloropropane		1	ug/L	50.0		119	70-135			
2-Butanone (MEK)	38.7	10	ug/L	50.0		77.3	30-150			
2-Chlorotoluene	52.0	1	ug/L	50.0		104	75-125			
2-Hexanone (MBK)	45.1	5	ug/L	50.0		90.3	55-130			
4-Chlorotoluene	51.5	1	ug/L	50.0		103	75-130			
4-Isopropyltoluene	55.5	1	ug/L	50.0		111	75-130			
4-Methyl-2-pentanor	ne (MIBK) 46.6	5	ug/L	50.0		93.3	60-135			
Acetone	34.2	10	ug/L	50.0		68.4	40-140			
Benzene	50.1	1	ug/L	50.0		100	80-120			
Bromobenzene	51.2	1	ug/L	50.0		102	75-125			
Bromochloromethan	19.8 de	1	ug/L	50.0		99.5	65-130			
Bromodichlorometha	ane 56.9	0.5	ug/L	50.0		114	75-120			
Bromoform	56.3	1	ug/L	50.0		113	70-130			
Bromomethane	32.8	1	ug/L	50.0		65.7	30-145			
Carbon disulfide	44.1	10	ug/L	50.0		88.3	35-160			
Carbon tetrachloride	e 59.1	1	ug/L	50.0		118	65-140			
Chlorobenzene	50.7	1	ug/L	50.0		101	80-120			
Chloroethane	42.6	1	ug/L	50.0		85.1	60-135			

			Cei	tificate o	of Analysi	is				
Client Name:	SCS Engineers-Wincheste	-					Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of Bristol Landfil	Leachate								
	•	Leaonate								
Submitted To:	Jennifer Robb									
		١	/olatile Orgar	nic Compounds I	by GCMS - Quali	ty Control				
				Enthalpy A	nalytical					
				15	,					
				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGF0926 - SW5	030B-MS								
LCS (BGF0926-BS1)			1	Prepared & Anal	yzed: 06/23/2023					
Chloroform	49.4	0.5	ug/L	50.0	, ,	98.7	65-135			
Chloromethane	43.8	1	ug/L	50.0		87.7	40-125			
cis-1,2-Dichloroethy	dene 49.3	1	ug/L	50.0		98.7	70-125			
cis-1,3-Dichloroprop	bene 54.3	1	ug/L	50.0		109	70-130			
Dibromochlorometha	ane 58.2	0.5	ug/L	50.0		116	60-135			
Dibromomethane	50.2	1	ug/L	50.0		100	75-125			
Dichlorodifluorometh	hane 69.6	1	ug/L	50.0		139	30-155			
Ethylbenzene	51.9	1	ug/L	50.0		104	75-125			
Hexachlorobutadien	ne 57.5	0.8	ug/L	50.0		115	50-140			
Isopropylbenzene	50.5	1	ug/L	50.0		101	75-125			
m+p-Xylenes	100	2	ug/L	100		100	75-130			
Methylene chloride	43.8	4	ug/L	50.0		87.5	55-140			
Methyl-t-butyl ether	(MTBE) 47.7	1	ug/L	50.0		95.5	65-125			
Naphthalene	51.6	1	ug/L	50.0		103	55-140			
n-Butylbenzene	55.6	1	ug/L	50.0		111	70-135			
n-Propylbenzene	53.4	1	ug/L	50.0		107	70-130			
o-Xylene	53.8	1	ug/L	50.0		108	80-120			
sec-Butylbenzene	55.8	1	ug/L	50.0		112	70-125			
Styrene	51.1	1	ug/L	50.0		102	65-135			
tert-Butylbenzene	54.5	1	ug/L	50.0		109	70-130			
Tetrachloroethylene		1	ug/L	50.0		107	45-150			
Toluene	52.4	1	ug/L	50.0		105	75-120			
trans-1,2-Dichloroet	-	1	ug/L	50.0		96.8	60-140			
trans-1,3-Dichloropr	ropene 60.2	1	ug/L	50.0		120	55-140			
Trichloroethylene	52.0	1	ug/L	50.0		104	70-125			

			<u>Ce</u>	ertificate o	of Analysi	is				
Client Name: SC	S Engineers-Winchester						Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.: 202	23 City of Bristol Landfill L	eachate								
	nifer Robb									
		,			0010 0 1					
		V	olatile Org	anic Compounds	by GCMS - Qualit	ty Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
, indigite	Batch BGF0926 - SW5030		Orinto	20101	rtooun	, in (EG	Linito		Linit	Quai
LCS (BGF0926-BS1)	Balch BGr 0320 - 349030			Prepared & Anal	yzed: 06/23/2023					
Trichlorofluoromethane	61.9	1	ug/L	50.0	,204. 00/20/20/20/20	124	60-145			
Vinyl chloride	46.8	0.5	ug/L	50.0		93.6	50-145			
Surr: 1,2-Dichloroethane-d	4 (Surr) 46.3		ug/L	50.0		92.6	70-120			
Surr: 4-Bromofluorobenzer	. ,		ug/L	50.0		98.9	75-120			
Surr: Dibromofluoromethar			ug/L	50.0		95.4	70-130			
Surr: Toluene-d8 (Surr)	49.8		ug/L	50.0		99.7	70-130			
Matrix Spike (BGF0926-MS1)	Source	: 23F1222-0	1	Prepared & Anal	yzed: 06/23/2023					
1,1,1,2-Tetrachloroethane	50.2	0.4	ug/L	50.0	BLOD	100	80-130			
1,1,1-Trichloroethane	53.3	1	ug/L	50.0	BLOD	107	65-130			
1,1,2,2-Tetrachloroethane	46.1	0.4	ug/L	50.0	BLOD	92.2	65-130			
1,1,2-Trichloroethane	50.5	1	ug/L	50.0	BLOD	101	75-125			
1,1-Dichloroethane	49.0	1	ug/L	50.0	BLOD	98.0	70-135			
1,1-Dichloroethylene	49.8	1	ug/L	50.0	BLOD	99.6	50-145			
1,1-Dichloropropene	50.0	1	ug/L	50.0	BLOD	100	75-135			
1,2,3-Trichlorobenzene	50.4	1	ug/L	50.0	BLOD	101	55-140			
1,2,3-Trichloropropane	47.0	1	ug/L	50.0	BLOD	94.1	75-125			
1,2,4-Trichlorobenzene	51.2	1	ug/L	50.0	BLOD	102	65-135			
1,2,4-Trimethylbenzene	51.3	1	ug/L	50.0	BLOD	103	75-130			
1,2-Dibromo-3-chloropropa	ine (DBCP) 54.5	1	ug/L	50.0	BLOD	109	50-130			
1,2-Dibromoethane (EDB)	46.7	1	ug/L	50.0	BLOD	93.4	80-120			
1,2-Dichlorobenzene	47.6	0.5	ug/L	50.0	BLOD	95.2	70-120			
1,2-Dichloroethane	48.1	1	ug/L	50.0	BLOD	96.2	70-130			
1,2-Dichloropropane	49.0	0.5	ug/L	50.0	BLOD	98.0	75-125			
1,3,5-Trimethylbenzene	50.1	1	ug/L	50.0	BLOD	100	75-124			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 7/7/2023 4:20:33PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGF0926 - SW5030B-MS Prepared & Analyzed: 06/23/2023 Matrix Spike (BGF0926-MS1) Source: 23F1222-01 49.7 99.4 1.3-Dichlorobenzene 1 ug/L 50.0 BLOD 75-125 1,3-Dichloropropane 48.7 1 ug/L 50.0 BLOD 97.5 75-125 BLOD 75-125 1,4-Dichlorobenzene 47.3 1 ug/L 50.0 94.6 56.7 1 50.0 BLOD 113 70-135 2.2-Dichloropropane ug/L 2-Butanone (MEK) 42.6 10 ug/L 50.0 BI OD 85.2 30-150 47.3 1 BI OD 75-125 2-Chlorotoluene ug/L 50.0 94.6 2-Hexanone (MBK) 45.0 5 ug/L 50.0 BI OD 90.0 55-130 48.9 1 BLOD 97.8 75-130 4-Chlorotoluene ug/L 50.0 BLOD 4-Isopropyltoluene 52.4 1 ug/L 50.0 105 75-130 45.6 5 50.0 BLOD 91.1 60-135 4-Methyl-2-pentanone (MIBK) ua/L 34.2 10 50.0 BLOD 68.3 40-140 Acetone ug/L Benzene 48.0 1 ug/L 50.0 BLOD 95.9 80-120 49.0 1 50.0 BLOD 98.1 75-125 Bromobenzene ug/L 47.7 1 BLOD 65-130 Bromochloromethane ug/L 50.0 95.5 Bromodichloromethane 53.7 0.5 50.0 BI OD 107 75-136 ug/L Bromoform 54.2 BLOD 70-130 1 ug/L 50.0 108 Bromomethane 31.5 1 ug/L 50.0 BLOD 63.0 30-145 36.9 50.0 BLOD 71.9 35-160 Carbon disulfide 10 ug/L Carbon tetrachloride 56.1 1 50.0 BLOD 112 65-140 ug/L Chlorobenzene 48.4 1 ug/L 50.0 BLOD 96.9 80-120 Chloroethane 41.3 1 50.0 BLOD 82.6 60-135 ug/L Chloroform 48.1 0.5 ug/L 50.0 BI OD 96.2 65-135 Chloromethane 1 BLOD 40-125 43.3 ug/L 50.0 86.6 cis-1,2-Dichloroethylene 47.8 1 ug/L 50.0 BI OD 95.5 70-125 52.4 1 ug/L cis-1,3-Dichloropropene 50.0 BLOD 105 47-136

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 7/7/2023 4:20:33PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGF0926 - SW5030B-MS Prepared & Analyzed: 06/23/2023 Matrix Spike (BGF0926-MS1) Source: 23F1222-01 Dibromochloromethane 55.1 0.5 ug/L 50.0 BLOD 110 60-135 Dibromomethane 48.8 1 ug/L 50.0 BLOD 97.7 75-125 Dichlorodifluoromethane 50.0 BLOD 135 67.3 1 ug/L 30-155 Ethvlbenzene 49.7 1 50.0 BLOD 99.3 75-125 ug/L Hexachlorobutadiene 56.3 0.8 ug/L 50.0 BI OD 113 50-140 Isopropylbenzene 48.4 1 BI OD 96.9 75-125 ug/L 50.0 m+p-Xylenes 97.0 2 ug/L 100 BI OD 97.0 75-130 42.3 4 50.0 BLOD 84.7 55-140 Methylene chloride ug/L BLOD 95.2 Methyl-t-butyl ether (MTBE) 47.6 1 ug/L 50.0 65-125 Naphthalene 51.0 1 50.0 BLOD 102 55-140 ua/L n-Butylbenzene 51.4 1 50.0 BLOD 103 70-135 ug/L n-Propylbenzene 50.0 1 ug/L 50.0 BLOD 100 70-130 o-Xylene 50.6 1 50.0 BLOD 101 80-120 ug/L BLOD 70-125 sec-Butylbenzene 53.1 1 ug/L 50.0 106 Styrene 49.0 1 50.0 BI OD 65-135 ug/L 98.1 50.3 1 50.0 BLOD 70-130 tert-Butylbenzene ug/L 101 Tetrachloroethylene (PCE) 50.2 1 ug/L 50.0 BLOD 100 51-231 50.6 1 50.0 BLOD 101 75-120 Toluene ug/L trans-1,2-Dichloroethylene 48.2 1 50.0 BLOD 96.4 60-140 ug/L BLOD 55-140 trans-1,3-Dichloropropene 57.4 1 ug/L 50.0 115 Trichloroethylene 50.0 1 50.0 BLOD 100 70-125 ug/L Trichlorofluoromethane 59.7 1 ug/L 50.0 BI OD 119 60-145 Vinvl chloride 0.5 BLOD 46.5 ug/L 50.0 93.0 50-145 70-120 Surr: 1,2-Dichloroethane-d4 (Surr) 47.0 ug/L 50.0 94.0 Surr: 4-Bromofluorobenzene (Surr) 50.5 50.0 101 75-120 ug/L

				<u>Ce</u>	ertificate o	of Analysis	<u>s</u>				
Client Name:	SCS Engineers	-Winchester						Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of Br	ristol Landfill Le	eachate								
	Jennifer Robb										
Submitted 10.			,		ania Oanna ann da l		Original				
			V	volatile Org	anic Compounds i	by GCMS - Quality	Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BG	F0926 - SW5030	B-MS								
Matrix Spike (BGF0926-I			: 23F1222-0	1	Prepared & Anal	yzed: 06/23/2023					
Surr: Dibromofluorome	ethane (Surr)	49.7		ug/L	50.0		99.5	70-130			
Surr: Toluene-d8 (Surr	r)	50.5		ug/L	50.0		101	70-130			
Matrix Spike Dup (BGF0	926-MSD1)	Source	: 23F1222-0	1	Prepared & Anal	yzed: 06/23/2023					
1,1,1,2-Tetrachloroeth	ane	55.3	0.4	ug/L	50.0	BLOD	111	80-130	9.55	30	
1,1,1-Trichloroethane		55.6	1	ug/L	50.0	BLOD	111	65-130	4.19	30	
1,1,2,2-Tetrachloroeth	ane	50.8	0.4	ug/L	50.0	BLOD	102	65-130	9.76	30	
1,1,2-Trichloroethane		53.3	1	ug/L	50.0	BLOD	107	75-125	5.45	30	
1,1-Dichloroethane		51.2	1	ug/L	50.0	BLOD	102	70-135	4.43	30	
1,1-Dichloroethylene		50.8	1	ug/L	50.0	BLOD	102	50-145	1.93	30	
1,1-Dichloropropene		52.3	1	ug/L	50.0	BLOD	105	75-135	4.50	30	
1,2,3-Trichlorobenzen	e	56.0	1	ug/L	50.0	BLOD	112	55-140	10.7	30	
1,2,3-Trichloropropane	e	50.4	1	ug/L	50.0	BLOD	101	75-125	6.78	30	
1,2,4-Trichlorobenzen	e	55.7	1	ug/L	50.0	BLOD	111	65-135	8.53	30	
1,2,4-Trimethylbenzen	ne	55.2	1	ug/L	50.0	BLOD	110	75-130	7.34	30	
1,2-Dibromo-3-chlorop	propane (DBCP)	57.4	1	ug/L	50.0	BLOD	115	50-130	5.13	30	
1,2-Dibromoethane (E	DB)	50.6	1	ug/L	50.0	BLOD	101	80-120	8.14	30	
1,2-Dichlorobenzene		52.0	0.5	ug/L	50.0	BLOD	104	70-120	8.89	30	
1,2-Dichloroethane		50.9	1	ug/L	50.0	BLOD	102	70-130	5.63	30	
1,2-Dichloropropane		52.3	0.5	ug/L	50.0	BLOD	105	75-125	6.52	30	
1,3,5-Trimethylbenzen	ne	55.0	1	ug/L	50.0	BLOD	110	75-124	9.35	30	
1,3-Dichlorobenzene		54.3	1	ug/L	50.0	BLOD	109	75-125	8.88	30	
1,3-Dichloropropane		52.1	1	ug/L	50.0	BLOD	104	75-125	6.63	30	
1,4-Dichlorobenzene		50.2	1	ug/L	50.0	BLOD	100	75-125	6.03	30	
2,2-Dichloropropane		59.4	1	ug/L	50.0	BLOD	119	70-135	4.60	30	

Analyte

Acetone

Benzene

Ethylbenzene

Enthalpy Analytical 1941 Reymet Road Richmond, Virginia 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

Certificate of Analysis SCS Engineers-Winchester Date Issued: 7/7/2023 4:20:33PM Client Name: 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Batch BGF0926 - SW5030B-MS Matrix Spike Dup (BGF0926-MSD1) Prepared & Analyzed: 06/23/2023 Source: 23F1222-01 39.1 2-Butanone (MEK) 10 ug/L 50.0 BLOD 78.2 30-150 8.61 30 2-Chlorotoluene 51.5 1 ug/L 50.0 BLOD 103 75-125 8.42 30 5 BLOD 0.871 2-Hexanone (MBK) 44.6 ug/L 50.0 89.2 55-130 30 4-Chlorotoluene 53.2 1 50.0 BLOD 106 75-130 8.42 30 ug/L 4-Isopropyltoluene 57.8 1 ug/L 50.0 BI OD 116 75-130 9.73 30 5 BI OD 4-Methyl-2-pentanone (MIBK) 45.0 ug/L 50.0 90.1 60-135 1.15 30 34.4 10 ug/L 50.0 BI OD 68.9 40-140 0.816 30 51.4 1 BLOD ua/L 50.0 103 80-120 6.91 30 Bromobenzene 52.6 1 ug/L 50.0 BLOD 105 75-125 7.02 30 50.2 1 50.0 BLOD 100 65-130 5.10 30 Bromochloromethane ua/L Bromodichloromethane 56.7 0.5 50.0 BLOD 113 75-136 5.40 30 ug/L Bromoform 58.4 1 ug/L 50.0 BLOD 117 70-130 7.50 30 Bromomethane 34.5 1 50.0 BLOD 68.9 30-145 8.97 30 ug/L Carbon disulfide BLOD 37.1 10 ug/L 50.0 72.3 35-160 0.595 30 Carbon tetrachloride 59.6 1 50.0 BI OD 65-140 6.19 30 ug/L 119 53.2 1 BLOD 9.40 Chlorobenzene ug/L 50.0 106 80-120 30 Chloroethane 43.5 1 ug/L 50.0 BLOD 87.0 60-135 5.21 30 49.8 0.5 BLOD 99.5 65-135 3.43 30 Chloroform ug/L 50.0 Chloromethane 45.3 1 50.0 BLOD 90.5 40-125 4.47 30 ug/L cis-1,2-Dichloroethylene 50.4 1 ug/L 50.0 BLOD 101 70-125 5.32 30 55.9 1 50.0 BLOD 47-136 6.43 30 cis-1,3-Dichloropropene ug/L 112 Dibromochloromethane 59.5 0.5 ug/L 50.0 BI OD 119 60-135 7.70 30 Dibromomethane 1 BI OD 52.8 ug/L 50.0 106 75-125 7.81 30 Dichlorodifluoromethane 70.2 1 ug/L 50.0 BI OD 140 30-155 4 16 30

BLOD

107

75-125

7.78

30

1

ug/L

50.0

53.7

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 7/7/2023 4:20:33PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGF0926 - SW5030B-MS Prepared & Analyzed: 06/23/2023 Matrix Spike Dup (BGF0926-MSD1) Source: 23F1222-01 60.6 7.24 Hexachlorobutadiene 0.8 ug/L 50.0 BLOD 121 50-140 30 Isopropylbenzene 52.5 1 ug/L 50.0 BLOD 105 75-125 8.10 30 2 BLOD 105 75-130 m+p-Xylenes 105 ug/L 100 7.94 30 Methylene chloride 44.3 4 50.0 BLOD 88.6 55-140 4.48 30 ug/L Methyl-t-butyl ether (MTBE) 49.1 1 ug/L 50.0 BI OD 98.1 65-125 3.00 30 Naphthalene 54.8 1 BI OD 55-140 7.30 ug/L 50.0 110 30 n-Butylbenzene 56.1 1 ug/L 50.0 BI OD 112 70-135 8 74 30 n-Propylbenzene 1 BLOD 111 70-130 9.93 55.3 ug/L 50.0 30 BLOD o-Xylene 55.4 1 ug/L 50.0 111 80-120 9.03 30 57.3 1 50.0 BLOD 115 70-125 7.53 30 sec-Butylbenzene ua/L Styrene 53.3 1 50.0 BLOD 107 65-135 8.30 30 ug/L tert-Butylbenzene 55.5 1 ug/L 50.0 BLOD 111 70-130 9.80 30 Tetrachloroethylene (PCE) 54.4 1 50.0 BLOD 109 51-231 8.09 30 ug/L BLOD 6.99 Toluene 54.3 1 ug/L 50.0 109 75-120 30 trans-1,2-Dichloroethylene 494 1 50.0 BI OD 60-140 2.48 30 ug/L 98.8 trans-1,3-Dichloropropene 1 BLOD 55-140 7.58 30 61.9 ug/L 50.0 124 Trichloroethylene 53.7 1 ug/L 50.0 BLOD 107 70-125 7.13 30 62.5 1 50.0 BLOD 125 60-145 4.49 30 Trichlorofluoromethane ug/L Vinyl chloride 47.0 0.5 50.0 BLOD 94.0 50-145 1.05 30 ug/L Surr: 1,2-Dichloroethane-d4 (Surr) 46.5 ug/L 50.0 93.0 70-120 Surr: 4-Bromofluorobenzene (Surr) 50.4 50.0 101 75-120 ug/L 70-130 Surr: Dibromofluoromethane (Surr) 48.3 ug/L 50.0 96.5 Surr: Toluene-d8 (Surr) 50.8 ug/L 50.0 102 70-130 Batch BGF0971 - SW5030B-MS

			<u>Cer</u>	tificate o	of Analysi	is				
Client Name: SCS Er	ngineers-Winchester						Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.: 2023 C	City of Bristol Landfill L	eachate								
Submitted To: Jennife	•									
	11(000	,	lalatila Organ	ia Compoundo I	by GCMS - Qualit	h Control				
		\	/olatile Organ		•	ly Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0971 - SW5030	B-MS								
Blank (BGF0971-BLK1)			F	Prepared & Anal	yzed: 06/26/2023					
2-Butanone (MEK)	ND	10.0	ug/L	-	-					
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 (Su	urr) 49.7		ug/L	50.0		99.4	70-120			
Surr: 4-Bromofluorobenzene (Su	urr) 51.2		ug/L	50.0		102	75-120			
Surr: Dibromofluoromethane (Su	urr) 50.7		ug/L	50.0		101	70-130			
Surr: Toluene-d8 (Surr)	48.8		ug/L	50.0		97.7	70-130			
LCS (BGF0971-BS1)			F	Prepared & Anal	yzed: 06/26/2023	i i				
1,1,1,2-Tetrachloroethane	47.9	0.4	ug/L	50.0		95.9	80-130			
1,1,1-Trichloroethane	46.9	1	ug/L	50.0		93.8	65-130			
1,1,2,2-Tetrachloroethane	43.5	0.4	ug/L	50.0		86.9	65-130			
1,1,2-Trichloroethane	47.7	1	ug/L	50.0		95.4	75-125			
1,1-Dichloroethane	43.8	1	ug/L	50.0		87.7	70-135			
1,1-Dichloroethylene	44.2	1	ug/L	50.0		88.4	70-130			
1,1-Dichloropropene	45.0	1	ug/L	50.0		89.9	75-135			
1,2,3-Trichlorobenzene	47.8	1	ug/L	50.0		95.6	55-140			
1,2,3-Trichloropropane	43.5	1	ug/L	50.0		87.0	75-125			
1,2,4-Trichlorobenzene	48.3	1	ug/L	50.0		96.7	65-135			
1,2,4-Trimethylbenzene	47.2	1	ug/L	50.0		94.4	75-130			
1,2-Dibromo-3-chloropropane (D	DBCP) 48.7	1	ug/L	50.0		97.4	50-130			
1,2-Dibromoethane (EDB)	45.9	1	ug/L	50.0		91.9	80-120			

			Cer	tificate o	of Analysi	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of Bristol Landfill L	eachate								
	•	Louonato								
Submitted To:	Jennifer Robb									
		N	/olatile Orgar	nic Compounds I	by GCMS - Qualit	ty Control				
				Enthalpy A	nalytical					
				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGF0971 - SW503	0B-MS								
LCS (BGF0971-BS1)		-	F	Prepared & Anal	yzed: 06/26/2023					
1,2-Dichlorobenzene	44.8	0.5	ug/L	50.0	,	89.6	70-120			
1,2-Dichloroethane	42.8	1	ug/L	50.0		85.5	70-130			
1,2-Dichloropropane	43.4	0.5	ug/L	50.0		86.9	75-125			
1,3,5-Trimethylbenze	ne 46.1	1	ug/L	50.0		92.1	75-125			
1,3-Dichlorobenzene	46.8	1	ug/L	50.0		93.5	75-125			
1,3-Dichloropropane	44.8	1	ug/L	50.0		89.6	75-125			
1,4-Dichlorobenzene	43.6	1	ug/L	50.0		87.2	75-125			
2,2-Dichloropropane	51.3	1	ug/L	50.0		103	70-135			
2-Butanone (MEK)	37.7	10	ug/L	50.0		75.5	30-150			
2-Chlorotoluene	44.9	1	ug/L	50.0		89.9	75-125			
2-Hexanone (MBK)	46.6	5	ug/L	50.0		93.3	55-130			
4-Chlorotoluene	45.6	1	ug/L	50.0		91.2	75-130			
4-Isopropyltoluene	47.6	1	ug/L	50.0		95.2	75-130			
4-Methyl-2-pentanone	e (MIBK) 43.2	5	ug/L	50.0		86.3	60-135			
Acetone	35.3	10	ug/L	50.0		70.5	40-140			
Benzene	43.9	1	ug/L	50.0		87.9	80-120			
Bromobenzene	46.2	1	ug/L	50.0		92.4	75-125			
Bromochloromethane	e 46.1	1	ug/L	50.0		92.1	65-130			
Bromodichloromethar	ne 47.8	0.5	ug/L	50.0		95.7	75-120			
Bromoform	52.5	1	ug/L	50.0		105	70-130			
Bromomethane	28.7	1	ug/L	50.0		57.5	30-145			
Carbon disulfide	38.8	10	ug/L	50.0		77.7	35-160			
Carbon tetrachloride	47.4	1	ug/L	50.0		94.8	65-140			
Chlorobenzene	45.3	1	ug/L	50.0		90.5	80-120			
Chloroethane	37.9	1	ug/L	50.0		75.9	60-135			

			Ce	rtificate o	of Analysi	is				
Client Name:	SCS Engineers-Winchest	er					Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of Bristol Land	fill Leachate								
	•									
Submitted To:	Jennifer Robb									
		·	Volatile Orga	nic Compounds	by GCMS - Quali	ty Control				
				Enthalpy A	nalytical					
Analyta	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Analyte	Result	LUQ	Units	Level	Result	%REC	LIMITS	RPD	LITTIL	Quai
	Batch BGF0971 - SW	/5030B-MS								
LCS (BGF0971-BS1)				Prepared & Anal	yzed: 06/26/2023	1				
Chloroform	43.2	0.5	ug/L	50.0		86.4	65-135			
Chloromethane	36.4	1	ug/L	50.0		72.7	40-125			
cis-1,2-Dichloroethy	vlene 44.1	1	ug/L	50.0		88.2	70-125			
cis-1,3-Dichloroprop	bene 36.8	1	ug/L	50.0		73.5	70-130			
Dibromochlorometha	ane 51.8	0.5	ug/L	50.0		104	60-135			
Dibromomethane	43.3	1	ug/L	50.0		86.7	75-125			
Dichlorodifluorometh	hane 53.4	1	ug/L	50.0		107	30-155			
Ethylbenzene	46.0	1	ug/L	50.0		92.0	75-125			
Hexachlorobutadien	ne 51.4	0.8	ug/L	50.0		103	50-140			
Isopropylbenzene	45.4	1	ug/L	50.0		90.9	75-125			
m+p-Xylenes	90.5	2	ug/L	100		90.5	75-130			
Methylene chloride	42.1	4	ug/L	50.0		84.2	55-140			
Methyl-t-butyl ether	(MTBE) 44.4	1	ug/L	50.0		88.7	65-125			
Naphthalene	47.1	1	ug/L	50.0		94.1	55-140			
n-Butylbenzene	47.3	1	ug/L	50.0		94.6	70-135			
n-Propylbenzene	46.5	1	ug/L	50.0		93.0	70-130			
o-Xylene	47.0	1	ug/L	50.0		94.1	80-120			
sec-Butylbenzene	48.4	1	ug/L	50.0		96.9	70-125			
Styrene	46.3	1	ug/L	50.0		92.7	65-135			
tert-Butylbenzene	46.9	1	ug/L	50.0		93.9	70-130			
Tetrachloroethylene	(PCE) 46.3	1	ug/L	50.0		92.7	45-150			
Toluene	46.6	1	ug/L	50.0		93.3	75-120			
trans-1,2-Dichloroet	hylene 42.8	1	ug/L	50.0		85.6	60-140			
trans-1,3-Dichloropr	ropene 55.0	1	ug/L	50.0		110	55-140			
Trichloroethylene	45.0	1	ug/L	50.0		90.0	70-125			

			<u>Ce</u>	rtificate o	of Analysis	<u>S</u>				
Client Name: SCS Engine	ers-Winchester						Date Issue	d:	7/7/2023	4:20:33PM
Client Site I.D.: 2023 City of	f Bristol Landfill Leach	ate								
Submitted To: Jennifer Rob										
	U									
		Volati	ile Orga	inic Compounds b	by GCMS - Quality	/ Control				
				Enthalpy Ar	nalytical					
				Spike	Source		%REC		RPD	
Analyte	Result L	OQ Ur	nits	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch	BGF0971 - SW5030B-MS	6								
LCS (BGF0971-BS1)				Prepared & Anal	/zed: 06/26/2023					
Trichlorofluoromethane	49.6		ug/L	50.0		99.2	60-145			
Vinyl chloride	38.5	0.5	ug/L	50.0		77.0	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	47.6		ug/L	50.0		95.1	70-120			
Surr: 4-Bromofluorobenzene (Surr)	50.9		ug/L	50.0		102	75-120			
Surr: Dibromofluoromethane (Surr)	48.4		ug/L	50.0		96.7	70-130			
Surr: Toluene-d8 (Surr)	49.6		ug/L	50.0		99.2	70-130			
Duplicate (BGF0971-DUP1)	Source: 23F1	1273-02		Prepared & Analy	/zed: 06/26/2023					
1,1,1,2-Tetrachloroethane	ND ().40	ug/L		BLOD			NA	30	
1,1,1-Trichloroethane	ND 1	1.00	ug/L		BLOD			NA	30	
1,1,2,2-Tetrachloroethane	ND (0.40	ug/L		BLOD			NA	30	
1,1,2-Trichloroethane	ND 1	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethane	ND 1	1.00	ug/L		BLOD			NA	30	
1,1-Dichloroethylene	ND 1	1.00	ug/L		BLOD			NA	30	
1,1-Dichloropropene	ND 1	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichlorobenzene	ND 1	1.00	ug/L		BLOD			NA	30	
1,2,3-Trichloropropane	ND 1	1.00	ug/L		BLOD			NA	30	
1,2,4-Trichlorobenzene	ND 1	1.00	ug/L		BLOD			NA	30	
1,2,4-Trimethylbenzene	ND 1	1.00	ug/L		BLOD			NA	30	
1,2-Dibromo-3-chloropropane (DBCP)	ND 1	1.00	ug/L		BLOD			NA	30	
1,2-Dibromoethane (EDB)	ND 1	1.00	ug/L		BLOD			NA	30	
1,2-Dichlorobenzene	ND C	0.50	ug/L		BLOD			NA	30	
1,2-Dichloroethane	ND 1	1.00	ug/L		BLOD			NA	30	
1,2-Dichloropropane	ND (0.50	ug/L		BLOD			NA	30	
1,3,5-Trimethylbenzene	ND 1	1.00	ug/L		BLOD			NA	30	

			Ce	ertificate of	Analysi	S				
Client Name: S	CS Engineers-Winchester						Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.: 2	2023 City of Bristol Landfill I	eachate								
	ennifer Robb	Louonato								
Submitted To: Je	enniier Robb									
		١	/olatile Org	anic Compounds by	GCMS - Qualit	y Control				
				Enthalpy Anal	ytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0971 - SW503	0B-MS								
Duplicate (BGF0971-DUP1) Source	:e: 23F1273-0	2	Prepared & Analyze	ed: 06/26/2023					
1,3-Dichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
1,3-Dichloropropane	ND	1.00	ug/L		BLOD			NA	30	
1,4-Dichlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
2,2-Dichloropropane	ND	1.00	ug/L		BLOD			NA	30	
2-Butanone (MEK)	ND	10.0	ug/L		BLOD			NA	30	
2-Chlorotoluene	ND	1.00	ug/L		BLOD			NA	30	
2-Hexanone (MBK)	ND	5.00	ug/L		BLOD			NA	30	
4-Chlorotoluene	ND	1.00	ug/L		BLOD			NA	30	
4-Isopropyltoluene	ND	1.00	ug/L		BLOD			NA	30	
4-Methyl-2-pentanone (M	MIBK) ND	5.00	ug/L		BLOD			NA	30	
Acetone	ND	10.0	ug/L		BLOD			NA	30	
Benzene	ND	1.00	ug/L		BLOD			NA	30	
Bromobenzene	ND	1.00	ug/L		BLOD			NA	30	
Bromochloromethane	ND	1.00	ug/L		BLOD			NA	30	
Bromodichloromethane	ND	0.50	ug/L		BLOD			NA	30	
Bromoform	ND	1.00	ug/L		BLOD			NA	30	
Bromomethane	ND	1.00	ug/L		BLOD			NA	30	
Carbon disulfide	ND	10.0	ug/L		BLOD			NA	30	
Carbon tetrachloride	ND	1.00	ug/L		BLOD			NA	30	
Chlorobenzene	ND	1.00	ug/L		BLOD			NA	30	
Chloroethane	ND	1.00	ug/L		BLOD			NA	30	
Chloroform	ND	0.50	ug/L		BLOD			NA	30	
Chloromethane	ND	1.00	ug/L		BLOD			NA	30	
cis-1,2-Dichloroethylene	ND	1.00	ug/L		BLOD			NA	30	
cis-1,3-Dichloropropene		1.00	ug/L		BLOD			NA	30	

				Ce	ertificate o	f Analysi	<u>s</u>				
Client Name:	SCS Engineers-	Winchester				-		Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of Bris	stol Landfill L	eachate								
-	Jennifer Robb										
Submitted To:											
			V	/olatile Org	anic Compounds by	GCMS - Quality	/ Control				
					Enthalpy Ana	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF	- 0971 - SW503	0B-MS								
Duplicate (BGF0971-D	OUP1)	Sourc	e: 23F1273-0	2	Prepared & Analyz	zed: 06/26/2023					
Dibromochlorometh	ane	ND	0.50	ug/L	-	BLOD			NA	30	
Dibromomethane		ND	1.00	ug/L		BLOD			NA	30	
Dichlorodifluoromet	hane	ND	1.00	ug/L		BLOD			NA	30	
Di-isopropyl ether ([DIPE)	ND	5.00	ug/L		BLOD			NA	30	
Ethylbenzene		ND	1.00	ug/L		BLOD			NA	30	
Hexachlorobutadien	ne	ND	0.80	ug/L		BLOD			NA	30	
lodomethane		ND	10.0	ug/L		BLOD			NA	30	
Isopropylbenzene		ND	1.00	ug/L		BLOD			NA	30	
m+p-Xylenes		ND	2.00	ug/L		BLOD			NA	30	
Methylene chloride		ND	4.00	ug/L		BLOD			NA	30	
Methyl-t-butyl ether	(MTBE)	ND	1.00	ug/L		BLOD			NA	30	
Naphthalene		ND	1.00	ug/L		BLOD			NA	30	
n-Butylbenzene		ND	1.00	ug/L		BLOD			NA	30	
n-Propylbenzene		ND	1.00	ug/L		BLOD			NA	30	
o-Xylene		ND	1.00	ug/L		BLOD			NA	30	
sec-Butylbenzene		ND	1.00	ug/L		BLOD			NA	30	
Styrene		ND	1.00	ug/L		BLOD			NA	30	
tert-Butylbenzene		ND	1.00	ug/L		BLOD			NA	30	
Tetrachloroethylene	e (PCE)	ND	1.00	ug/L		BLOD			NA	30	
Toluene		ND	1.00	ug/L		BLOD			NA	30	
trans-1,2-Dichloroet	thylene	ND	1.00	ug/L		BLOD			NA	30	
trans-1,3-Dichloropr	ropene	ND	1.00	ug/L		BLOD			NA	30	
Trichloroethylene		ND	1.00	ug/L		BLOD			NA	30	
Trichlorofluorometha	ane	ND	1.00	ug/L		BLOD			NA	30	
Vinyl acetate		ND	10.0	ug/L		BLOD			NA	30	

				<u>Ce</u>	ertificate o	of Analysi	<u>s</u>				
Client Name:	SCS Engineers	s-Winchester						Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	ient Site I.D.: 2023 City of Bristol Landfill Leachate										
Submitted To:	Jennifer Robb										
Submitted 10.											
			۱ ۱	/olatile Org	anic Compounds	by GCMS - Qualit	y Control				
					Enthalpy A	nalytical					
		_			Spike	Source		%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BC	GF0971 - SW5030E	B-MS								
Duplicate (BGF0971-D	0UP1)	Source:	23F1273-0	2	Prepared & Anal	yzed: 06/26/2023					
Vinyl chloride		ND	0.50	ug/L		BLOD			NA	30	
Xylenes, Total		ND	3.00	ug/L		BLOD			NA	30	
Tetrahydrofuran		ND	10.0	ug/L		BLOD			NA	30	
Surr: 1,2-Dichloroet	hane-d4 (Surr)	53.2		ug/L	50.0		106	70-120			
Surr: 4-Bromofluoro	benzene (Surr)	51.8		ug/L	50.0		104	75-120			
Surr: Dibromofluoro	methane (Surr)	54.1		ug/L	50.0		108	70-130			
Surr: Toluene-d8 (S	urr)	49.5		ug/L	50.0		99.0	70-130			
Matrix Spike (BGF097	1-MS1)	Source:	23F1273-0	4	Prepared & Anal	yzed: 06/26/2023					
1,1,1,2-Tetrachloroe	ethane	42.6	0.4	ug/L	50.0	BLOD	85.1	80-130			
1,1,1-Trichloroethar	ne	39.7	1	ug/L	50.0	BLOD	79.4	65-130			
1,1,2,2-Tetrachloroe	ethane	40.6	0.4	ug/L	50.0	BLOD	81.2	65-130			
1,1,2-Trichloroethar	ie	42.7	1	ug/L	50.0	BLOD	85.4	75-125			
1,1-Dichloroethane		38.7	1	ug/L	50.0	BLOD	76.3	70-135			
1,1-Dichloroethylen	е	38.3	1	ug/L	50.0	BLOD	76.7	50-145			
1,1-Dichloropropene	e	38.4	1	ug/L	50.0	BLOD	76.9	75-135			
1,2,3-Trichlorobenze		41.3	1	ug/L	50.0	BLOD	82.6	55-140			
1,2,3-Trichloropropa		40.4	1	ug/L	50.0	BLOD	80.9	75-125			
1,2,4-Trichlorobenze		40.8	1	ug/L	50.0	BLOD	81.6	65-135			
1,2,4-Trimethylbenz		40.6	1	ug/L	50.0	BLOD	81.2	75-130			
1,2-Dibromo-3-chlor	,	44.2	1	ug/L	50.0	BLOD	88.5	50-130			
1,2-Dibromoethane		41.2	1	ug/L	50.0	BLOD	82.4	80-120			
1,2-Dichlorobenzen	e	38.4	0.5	ug/L	50.0	BLOD	76.9	70-120			
1,2-Dichloroethane		38.1	1	ug/L	50.0	BLOD	76.1	70-130			
1,2-Dichloropropane	e	39.8	0.5	ug/L	50.0	BLOD	79.7	75-125			

				Ce	ertificate o	of Analysi	is				
Client Name:	SCS Engineers-W	'inchester				-		Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of Bristo	ol Landfill L	eachate								
-	Jennifer Robb										
Submitted 10.											
			Vol	atile Org	anic Compounds b	y GCMS - Qualit	ty Control				
					Enthalpy An	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0	971 - SW503	0B-MS								
Matrix Spike (BGF0971-I	MS1)	Sourc	e: 23F1273-04		Prepared & Analy	/zed: 06/26/2023	;				
1,3,5-Trimethylbenzer		39.2	1	ug/L	50.0	BLOD	78.5	75-124			
1,3-Dichlorobenzene		40.0	1	ug/L	50.0	BLOD	79.9	75-125			
1,3-Dichloropropane		40.1	1	ug/L	50.0	BLOD	80.2	75-125			
1,4-Dichlorobenzene		37.5	1	ug/L	50.0	BLOD	75.0	75-125			М
2,2-Dichloropropane		43.4	1	ug/L	50.0	BLOD	86.9	70-135			
2-Butanone (MEK)		45.3	10	ug/L	50.0	BLOD	90.6	30-150			
2-Chlorotoluene		39.4	1	ug/L	50.0	BLOD	78.8	75-125			
2-Hexanone (MBK)		45.5	5	ug/L	50.0	BLOD	90.9	55-130			
4-Chlorotoluene		39.6	1	ug/L	50.0	BLOD	79.3	75-130			
4-Isopropyltoluene		42.2	1	ug/L	50.0	BLOD	84.5	75-130			
4-Methyl-2-pentanone	e (MIBK)	46.2	5	ug/L	50.0	BLOD	92.5	60-135			
Acetone		33.5	10	ug/L	50.0	BLOD	67.0	40-140			
Benzene		38.5	1	ug/L	50.0	BLOD	77.0	80-120			М
Bromobenzene		41.0	1	ug/L	50.0	BLOD	82.1	75-125			
Bromochloromethane		40.5	1	ug/L	50.0	BLOD	81.0	65-130			
Bromodichloromethan	ie	43.3	0.5	ug/L	50.0	BLOD	86.5	75-136			
Bromoform		46.9	1	ug/L	50.0	BLOD	93.8	70-130			
Bromomethane		25.5	1	ug/L	50.0	BLOD	51.0	30-145			
Carbon disulfide		42.6	10	ug/L	50.0	BLOD	84.4	35-160			
Carbon tetrachloride		41.6	1	ug/L	50.0	BLOD	83.1	65-140			
Chlorobenzene		40.0	1	ug/L	50.0	BLOD	79.9	80-120			Μ
Chloroethane		31.6	1	ug/L	50.0	BLOD	63.3	60-135			
Chloroform		37.5	0.5	ug/L	50.0	BLOD	75.1	65-135			
Chloromethane		31.9	1	ug/L	50.0	BLOD	63.8	40-125			
cis-1,2-Dichloroethyle	ne	38.9	1	ug/L	50.0	BLOD	77.7	70-125			

			C	ertificate o	of Analysis	<u>s</u>				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of Bristol Landfill	Leachate								
	Jennifer Robb									
Submitted IO.						a				
		,	Volatile Org	anic Compounds	by GCMS - Quality	Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0971 - SW503	BOR MS								
Matrix Spike (BGF0971-M		ce: 23F1273-0	<u>а</u>	Prenared & Anal	yzed: 06/26/2023					
cis-1,3-Dichloropropene		1 1273-0	ug/L	50.0	BLOD	87.1	47-136			
Dibromochloromethane		0.5	ug/L	50.0	BLOD	92.6	60-135			
Dibromomethane	40.4	1	ug/L	50.0	BLOD	80.9	75-125			
Dichlorodifluoromethan		1	ug/L	50.0	BLOD	92.8	30-155			
Ethylbenzene	40.0	1	ug/L	50.0	BLOD	80.1	75-125			
Hexachlorobutadiene	45.8	0.8	ug/L	50.0	BLOD	91.6	50-140			
Isopropylbenzene	38.4	1	ug/L	50.0	BLOD	76.9	75-125			
m+p-Xylenes	77.0	2	ug/L	100	BLOD	77.0	75-130			
Methylene chloride	33.8	4	ug/L	50.0	BLOD	67.5	55-140			
Methyl-t-butyl ether (M	TBE) 40.3	1	ug/L	50.0	BLOD	80.6	65-125			
Naphthalene	42.0	1	ug/L	50.0	BLOD	84.1	55-140			
n-Butylbenzene	40.7	1	ug/L	50.0	BLOD	81.4	70-135			
n-Propylbenzene	39.3	1	ug/L	50.0	BLOD	78.6	70-130			
o-Xylene	41.9	1	ug/L	50.0	BLOD	83.7	80-120			
sec-Butylbenzene	41.8	1	ug/L	50.0	BLOD	83.5	70-125			
Styrene	40.6	1	ug/L	50.0	BLOD	81.2	65-135			
tert-Butylbenzene	40.2	1	ug/L	50.0	BLOD	80.5	70-130			
Tetrachloroethylene (PC	CE) 41.2	1	ug/L	50.0	BLOD	82.4	51-231			
Toluene	40.0	1	ug/L	50.0	BLOD	80.0	75-120			
trans-1,2-Dichloroethyle	ene 36.7	1	ug/L	50.0	BLOD	73.4	60-140			
trans-1,3-Dichloroprope	ene 47.6	1	ug/L	50.0	BLOD	95.1	55-140			
Trichloroethylene	39.2	1	ug/L	50.0	BLOD	78.4	70-125			
Trichlorofluoromethane	42.6	1	ug/L	50.0	BLOD	85.1	60-145			
Vinyl chloride	34.9	0.5	ug/L	50.0	BLOD	69.7	50-145			
Surr: 1,2-Dichloroethan	e-d4 (Surr) 46.0		ug/L	50.0		91.9	70-120			

			<u>C</u>	ertificate o	of Analysi	<u>s</u>				
Client Name: SCS	Engineers-Wind	chester					Date Issued:		7/7/2023	4:20:33PM
Client Site I.D.: 2023	3 City of Bristol I	Landfill Leacha	te							
Submitted To: Jenn	ifer Robb									
			Volatile Or	ganic Compounds	by GCMS - Qualit	y Control				
				Enthalpy A	nalytical					
Analyte	Re	esult LO	Q Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0971	- SW5030B-MS								
Matrix Spike (BGF0971-MS1)		Source: 23F12	73-04	Prepared & Anal	yzed: 06/26/2023					
Surr: 4-Bromofluorobenzene	(Surr)	50.1	ug/L	50.0		100	75-120			
Surr: Dibromofluoromethane	(Surr)	47.7	ug/L	50.0		95.3	70-130			
Surr: Toluene-d8 (Surr)		49.4	ug/L	50.0		98.7	70-130			

				<u>Ce</u>	rtificate o	of Analysi	is				
Client Name:	SCS Enginee	ers-Winchester						Date Issued	1:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of	Bristol Landfill Lea	achate								
Submitted To:	Jennifer Robl										
oublinition to.		5	Co	mi valatila On			alita (Canatara I				
			Sei	mivolatile Or		ls by GCMS - Qu	anty Control				
					Enthalpy A	nalytical					
Apolyto		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Analyte					Levei	Result	70REC	Linits	RFD	LIIIIII	Quai
		BGF0869 - SW3510C	/EPA600								
Blank (BGF0869-BLK	1)		40.0		Prepared & Anal	yzed: 06/22/2023					
Anthracene		ND	10.0	ug/L							
Surr: 2,4,6-Tribrom		64.4		ug/L	100		64.4	5-136			
Surr: 2-Fluorobiphe	• • •	31.2		ug/L	50.0		62.4	9-117			
Surr: 2-Fluorophene		32.2		ug/L	100		32.2	5-60			
Surr: Nitrobenzene-	. ,	34.1		ug/L	50.0		68.2	5-151			
Surr: Phenol-d5 (Su	,	22.1		ug/L	100		22.1	5-60			
Surr: p-Terphenyl-d	14 (Surr)	60.6		ug/L	50.0		121	5-141			
LCS (BGF0869-BS1)					-	yzed: 06/22/2023					
1,2,4-Trichlorobenz		25.8	10.0	ug/L	50.0		51.5	57-130			L
1,2-Dichlorobenzen		19.6	10.0	ug/L	50.0		39.1	22-115			
1,3-Dichlorobenzen		20.8	10.0	ug/L	50.0		41.7	22-112			
1,4-Dichlorobenzen		22.3	10.0	ug/L	50.0		44.6	13-112			
2,4,6-Trichlorophen	ol	37.0	10.0	ug/L	50.0		74.0	52-129			
2,4-Dichlorophenol		31.3	10.0	ug/L	50.0		62.5	53-122			
2,4-Dimethylphenol		35.7	5.00	ug/L	50.0		71.4	42-120			
2,4-Dinitrophenol		21.9	50.0	ug/L	50.0		43.7	48-127			L
2,4-Dinitrotoluene		39.4	10.0	ug/L	50.0		78.8	10-173			
2,6-Dinitrotoluene		36.7	10.0	ug/L	50.0		73.3	68-137			
2-Chloronaphthaler	ne	34.7	10.0	ug/L	50.0		69.4	65-120			
2-Chlorophenol		32.6	10.0	ug/L	50.0		65.2	36-120			
2-Nitrophenol		32.5	10.0	ug/L	50.0		65.1	45-167			
3,3'-Dichlorobenzid		25.5	10.0	ug/L	50.0		51.1	10-213			
4,6-Dinitro-2-methy	•	35.7	50.0	ug/L	50.0		71.4	53-130			
4-Bromophenyl phe	enyl ether	36.2	10.0	ug/L	50.0		72.4	65-120			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 7/7/2023 4:20:33PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGF0869 - SW3510C/EPA600-MS LCS (BGF0869-BS1) Prepared & Analyzed: 06/22/2023 74.1 4-Chlorophenyl phenyl ether 37.0 10.0 ug/L 50.0 38-145 4-Nitrophenol 11.1 50.0 ug/L 50.0 22.2 13-129 39.0 50.0 60-132 Acenaphthene 10.0 ug/L 78.0 Acenaphthylene 40.6 50.0 81.2 54-126 10.0 ug/L Acetophenone 36.1 20.0 ug/L 50.0 72.2 0-200 Anthracene 47.9 95.8 43-120 10.0 ug/L 50.0 Benzo (a) anthracene 46.1 10.0 ug/L 50.0 92.2 42-133 50.9 102 32-148 Benzo (a) pyrene 10.0 ua/L 50.0 Benzo (b) fluoranthene 48.4 10.0 ug/L 50.0 96.8 42-140 60.0 50.0 120 10-195 Benzo (g,h,i) perylene 10.0 ua/L Benzo (k) fluoranthene 46.7 10.0 50.0 93.5 25-146 ug/L bis (2-Chloroethoxy) methane 41.9 10.0 ug/L 50.0 83.9 49-165 bis (2-Chloroethyl) ether 33.5 10.0 50.0 66.9 43-126 ug/L 27.8 50.0 63-139 2,2'-Oxybis (1-chloropropane) 10.0 ug/L 55.6 L bis (2-Ethylhexyl) phthalate 60.1 50.0 120 29-137 10.0 ug/L 62.1 50.0 10-140 Butyl benzyl phthalate 10.0 ug/L 124 Chrysene 46.5 10.0 ug/L 50.0 93.0 44-140 47.8 50.0 95.5 10-200 Dibenz (a,h) anthracene 10.0 ug/L Diethyl phthalate 50.1 10.0 50.0 100 10-120 ug/L 42.7 Dimethyl phthalate 10.0 ug/L 50.0 85.4 10-120 Di-n-butyl phthalate 53.0 50.0 106 10-120 10.0 ug/L Di-n-octyl phthalate 75.2 10.0 ug/L 50.0 150 19-132 L Fluoranthene 49.3 43-121 10.0 ug/L 50.0 98.6 Fluorene 46.3 10.0 ug/L 50.0 92.6 70-120 40.0 80.0 10-142 Hexachlorobenzene 1.00 ug/L 50.0

			Cer	tificate o	of Analysi	is				
Client Name: SCS	Engineers-Winchester						Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.: 202	3 City of Bristol Landfill Lo	eachate								
	nifer Robb									
Submitted To: Jenr										
		Se	mivolatile Org	anic Compound	ls by GCMS - Qu	ality Control				
				Enthalpy A	nalytical					
				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGF0869 - SW3510	C/EPA600	-MS							
LCS (BGF0869-BS1)			F	Prepared & Anal	yzed: 06/22/2023					
Hexachlorobutadiene	25.5	10.0	ug/L	50.0		51.1	38-120			
Hexachlorocyclopentadiene	14.6	10.0	ug/L	50.0		29.1	10-76			
Hexachloroethane	22.2	10.0	ug/L	50.0		44.5	55-120			L
Indeno (1,2,3-cd) pyrene	50.9	10.0	ug/L	50.0		102	10-151			
Isophorone	20.7	10.0	ug/L	50.0		41.4	47-180			L
Naphthalene	31.5	5.00	ug/L	50.0		62.9	36-120			
Nitrobenzene	35.3	10.0	ug/L	50.0		70.5	54-158			
n-Nitrosodimethylamine	23.0	10.0	ug/L	50.0		46.1	10-85			
n-Nitrosodi-n-propylamine	41.4	10.0	ug/L	50.0		82.7	14-198			
n-Nitrosodiphenylamine	33.3	10.0	ug/L	50.0		66.7	12-97			
p-Chloro-m-cresol	29.8	10.0	ug/L	50.0		59.6	10-142			
Pentachlorophenol	35.4	20.0	ug/L	50.0		70.9	38-152			
Phenanthrene	50.4	10.0	ug/L	50.0		101	65-120			
Phenol	11.2	10.0	ug/L	50.5		22.3	17-120			
Pyrene	66.4	10.0	ug/L	50.0		133	70-120			L
Pyridine	33.0	10.0	ug/L	50.0		66.1	10-103			
Surr: 2,4,6-Tribromophenol	(Surr) 89.7		ug/L	100		89.7	5-136			
Surr: 2-Fluorobiphenyl (Surr	r) 42.3		ug/L	50.0		84.5	9-117			
Surr: 2-Fluorophenol (Surr)	41.9		ug/L	100		41.9	5-60			
Surr: Nitrobenzene-d5 (Surr) 38.3		ug/L	50.0		76.6	5-151			
Surr: Phenol-d5 (Surr)	24.1		ug/L	100		24.1	5-60			
Surr: p-Terphenyl-d14 (Surr,) 39.0		ug/L	50.0		78.1	5-141			

			Ce	ertificate of Ana	lysis				
Client Name:	SCS Engineers-Winchester					Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of Bristol Landfill L	eachate							
Submitted To:	Jennifer Robb								
			Wet	t Chemistry Analysis - Quality	Control				
				Enthalpy Analytical					
Analyte	Result	LOQ	Units	Spike Sour Level Res		%REC Limits	RPD	RPD Limit	Qual
	Batch BGF0874 - No Prep	Wet Chen	า						
Blank (BGF0874-BLK	1)			Prepared & Analyzed: 06/2	2/2023				
Nitrite as N	ND	0.05	mg/L						
LCS (BGF0874-BS1)				Prepared & Analyzed: 06/2	2/2023				
Nitrite as N	0.09	0.05	mg/L	0.100	91.0	80-120			
Matrix Spike (BGF087	4-MS1) Source	e: 23F1157-0	3	Prepared & Analyzed: 06/2	2/2023				
Nitrite as N	0.80	0.25	mg/L	0.500 0.3	2 97.0	80-120			
Matrix Spike Dup (BG	F0874-MSD1) Source	e: 23F1157-0	3	Prepared & Analyzed: 06/2	2/2023				
Nitrite as N	0.80	0.25	mg/L	0.500 0.3	2 97.0	80-120	0.00	20	
	Batch BGF0881 - No Prep	Wet Chem	า						
Blank (BGF0881-BLK	1)			Prepared & Analyzed: 06/2	2/2023				
BOD	ND	2.0	mg/L						
LCS (BGF0881-BS1)				Prepared & Analyzed: 06/2	2/2023				
BOD	188	2	mg/L	198	94.9	84.6-115.4			
Duplicate (BGF0881-D	OUP1) Source	e: 23F1052-0	1	Prepared & Analyzed: 06/2	2/2023				
BOD	5.4	2.0	mg/L	5.0)		7.82	20	
	Batch BGF1095 - No Prep	Wet Chem	า						
Blank (BGF1095-BLK	1)			Prepared & Analyzed: 06/2	8/2023				
COD	ND	10.0	mg/L						

				C	ertificate o	of Analysis	3				
Client Name:	SCS Engineers-W	/inchester						Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of Brist	ol Landfill L	eachate								
Submitted To:	Jennifer Robb										
				We	t Chemistry Analys	is - Quality Control					
					Enthalpy A	•					
					Ентару А	halytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGF1	095 - No Prep	Wet Chem)							
LCS (BGF1095-BS1)					Prepared & Anal	yzed: 06/28/2023					
COD		49.8	10.0	mg/L	50.0	<u>, </u>	99.5	88-119			
Matrix Spike (BGF109	95-MS1)	Source	e: 23F1162-01	1	Prepared & Anal	yzed: 06/28/2023					
COD		57.2	10.0	mg/L	50.0	10.6	93.4	72.4-130			
Matrix Spike Dup (BG	GF1095-MSD1)	Source	e: 23F1162-01	1	Prepared & Anal	yzed: 06/28/2023					
COD		58.9	10.0	mg/L	50.0	10.6	96.6	72.4-130	2.82	20	
	Batch BGG0	0005 - No Prep	o Wet Chem	า							
Blank (BGG0005-BLK	(1)				Prepared & Anal	yzed: 07/02/2023					
TKN as N		ND	0.50	mg/L							
LCS (BGG0005-BS1)					Prepared & Anal	yzed: 07/02/2023					
TKN as N		10.8	0.50	mg/L	10.0		108	90-110			
Matrix Spike (BGG000	05-MS1)	Source	e: 23F1607-02	2	Prepared & Anal	yzed: 07/02/2023					
TKN as N		11.0	0.50	mg/L	10.0	0.44	105	90-110			
Matrix Spike (BGG000	05-MS2)	Source	e: 23F1656-02	2	Prepared & Anal	yzed: 07/02/2023					
TKN as N		11.3	0.50	mg/L	10.0	0.79	105	90-110			
Matrix Spike Dup (BG	G0005-MSD1)		e: 23F1607-02	2	•	yzed: 07/02/2023					
TKN as N		11.1	0.50	mg/L	10.0	0.44	107	90-110	1.26	20	
Matrix Spike Dup (BG	G0005-MSD2)		e: 23F1656-02	2	•	yzed: 07/02/2023					
TKN as N		ND	0.50	mg/L	10.0	0.79	-7.90	90-110		20	M, P

			<u>Ce</u>	ertificate o	f Analysis	5				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of Bristol Landfill I	_eachate								
Submitted To:	Jennifer Robb									
			Wet	Chemistry Analysis	s - Quality Control					
				Enthalpy Ana	alytical					
				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGG0024 - No Pre	p Wet Chen	ı							
Blank (BGG0024-BLK1)				Prepared & Analyz	zed: 07/03/2023					
Ammonia as N	ND	0.10	mg/L							
LCS (BGG0024-BS1)				Prepared & Analyz	zed: 07/03/2023					
Ammonia as N	1.09	0.1	mg/L	1.00		109	90-110			
Matrix Spike (BGG0024-I	MS1) Source	e: 23F1499-0	8	Prepared & Analyz	zed: 07/03/2023					
Ammonia as N	1.25	0.10	mg/L	1.00	0.14	111	89.3-131			
Matrix Spike Dup (BGG0	024-MSD1) Source	e: 23F1499-0	8	Prepared & Analyz	zed: 07/03/2023					
Ammonia as N	1.26	0.10	mg/L	1.00	0.14	113	89.3-131	1.11	20	
	Batch BGG0031 - No Pre	ep Wet Chen	า							
Blank (BGG0031-BLK1)				Prepared & Analyz	zed: 07/03/2023					
Nitrate+Nitrite as N	ND	0.10	mg/L							
LCS (BGG0031-BS1)				Prepared & Analyz	zed: 07/03/2023					
Nitrate+Nitrite as N	2.52	0.1	mg/L	2.50		101	90-110			
Matrix Spike (BGG0031-I	MS1) Source	e: 23F1297-0	1	Prepared & Analyz	zed: 07/03/2023					
Nitrate+Nitrite as N	4.87	0.10	mg/L	2.50	2.26	104	90-120			
Matrix Spike Dup (BGG0	031-MSD1) Source	e: 23F1297-0	1	Prepared & Analyz	zed: 07/03/2023					
Nitrate+Nitrite as N	4.86	0.10	mg/L	2.50	2.26	104	90-120	0.0822	20	
	Batch BGG0077 - No Pre	ep Wet Chen	า							
Blank (BGG0077-BLK1)				Prepared & Analyz	zed: 07/05/2023					
Total Recoverable Phe	enolics ND	0.050	mg/L							

				Ce	ertificate o	of Analysi	S				
Client Name:	SCS Engineers-	Winchester				-		Date Issue	ed:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of Bri	stol Landfill L	eachate								
Submitted To:	Jennifer Robb										
				Wet	Chemistry Analys	is - Quality Contro	bl				
					Enthalpy A	nalytical					
					Spike	Source		%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BG	G0077 - No Pre	p Wet Chen	1							
LCS (BGG0077-BS1)					Prepared & Anal	yzed: 07/05/2023					
Total Recoverable Pr	henolics	0.45	0.050	mg/L	0.500		90.4	80-120			
Matrix Spike (BGG0077	7-MS1)	Sourc	e: 23F1095-0 [,]	1	Prepared & Anal	yzed: 07/05/2023					
Total Recoverable Pr	henolics	65.0	2.50	mg/L	25.0	39.1	104	70-130			
Matrix Spike Dup (BGG	G0077-MSD1)	Sourc	e: 23F1095-0 [,]	1	Prepared & Anal	yzed: 07/05/2023					
Total Recoverable Pr	henolics	62.6	2.50	mg/L	25.0	39.1	94.0	70-130	3.76	20	
	Batch BG	G0162 - No Pre	p Wet Chem	ı							
Blank (BGG0162-BLK1)				Prepared & Anal	yzed: 07/06/2023					
TKN as N		ND	0.50	mg/L							
LCS (BGG0162-BS1)					Prepared & Anal	yzed: 07/06/2023					
TKN as N		10.1	0.50	mg/L	10.0		101	90-110			
Matrix Spike (BGG0162	2-MS1)	Sourc	e: 23F1544-02	2	Prepared & Anal	yzed: 07/06/2023					
TKN as N		10.4	0.50	mg/L	10.0	0.50	99.2	90-110			
Matrix Spike Dup (BGG	G0162-MSD1)	Sourc	e: 23F1544-02	2	Prepared & Anal	yzed: 07/06/2023					
TKN as N		10.4	0.50	mg/L	10.0	0.50	99.3	90-110	0.106	20	

			Certificate	of Analysis	
Client Name:	SCS Engineers-Winch	nester		Ē	Date Issued
Client Site I.D.:	2023 City of Bristol La	andfill Leachate			
Submitted To:	Jennifer Robb				
	Analytical Summary				
23F1204-01		Subcontract			
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA 6	6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
23F1204-01	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
23F1204-01RE1	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
23F1204-01RE2	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analysi	is		Preparation Method:	No Prep Wet Chem	
23F1204-01	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGF0874	SGF0874	AD30177
23F1204-01	300 mL / 300 mL	SM5210B-2011	BGF0881	SGF1041	
23F1204-01	2.00 mL / 2.00 mL	SM5220D-2011	BGF1095	SGF1080	
23F1204-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0005	SGG0004	AG30158
23F1204-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGG0024	SGG0029	AG30161
23F1204-01RE1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGG0024	SGG0029	AG30161
23F1204-01	5.00 mL / 5.00 mL	SM4500-NO3F-2011	BGG0031	SGG0046	AG30163
23F1204-01RE1	1.00 mL / 5.00 mL	SM4500-NO3F-2011	BGG0031	SGG0046	AG30163
23F1204-01RE2	2.50 mL / 5.00 mL	SM4500-NO3F-2011	BGG0031	SGG0046	AG30163
23F1204-01	5.00 mL / 10.0 mL	SW9065	BGG0077	SGG0097	AG30176
23F1204-01RE1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0162	SGG0171	AG30191
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic C	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-M	s
23F1204-01	1020 mL / 2.00 mL	SW8270E	BGF0869	SGF0976	AE30336

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
23F1204-01	5.00 mL / 5.00 mL	SW8260D	BGF0926	SGF0950	AF30236
23F1204-01RE1	5.00 mL / 5.00 mL	SW8260D	BGF0971	SGF0992	AF30236
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EP/	A 6000/7000 Series Methods		Preparation Method:	SW7470A	
23F1204-01	1.00 mL / 20.0 mL	SW7470A	BGF0980	SGF0988	AF30304

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

QC Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
BGF0945-BLK1	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
BGF0945-BS1	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
BGF0945-MS1	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
BGF0945-MS2	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
BGF0945-MSD1	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
BGF0945-MSD2	50.0 mL / 50.0 mL	SW6020B	BGF0945	SGF0986	AF30302
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	sis		Preparation Method:	No Prep Wet Chem	I
BGF0874-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGF0874	SGF0874	AD30177
BGF0874-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGF0874	SGF0874	AD30177
BGF0874-MRL1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGF0874	SGF0874	AD30177
BGF0874-MS1	5.00 mL / 25.0 mL	SM4500-NO2B-2011	BGF0874	SGF0874	AD30177
BGF0874-MSD1	5.00 mL / 25.0 mL	SM4500-NO2B-2011	BGF0874	SGF0874	AD30177
BGF0881-BLK1	300 mL / 300 mL	SM5210B-2011	BGF0881	SGF1041	
BGF0881-BS1	300 mL / 300 mL	SM5210B-2011	BGF0881	SGF1041	
BGF0881-DUP1	300 mL / 300 mL	SM5210B-2011	BGF0881	SGF1041	
BGF1095-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BGF1095	SGF1080	
BGF1095-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BGF1095	SGF1080	
BGF1095-MRL1	2.00 mL / 2.00 mL	SM5220D-2011	BGF1095	SGF1080	
BGF1095-MS1	2.00 mL / 2.00 mL	SM5220D-2011	BGF1095	SGF1080	
BGF1095-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BGF1095	SGF1080	
BGG0005-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0005	SGG0004	AG30158

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

- Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	/sis		Preparation Method:	No Prep Wet Chem	
BGG0005-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0005	SGG0004	AG30158
BGG0005-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0005	SGG0004	AG30158
BGG0005-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0005	SGG0004	AG30158
BGG0005-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0005	SGG0004	AG30158
BGG0005-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0005	SGG0004	AG30158
BGG0024-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGG0024	SGG0029	AG30161
BGG0024-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGG0024	SGG0029	AG30161
BGG0024-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGG0024	SGG0029	AG30161
BGG0024-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGG0024	SGG0029	AG30161
BGG0031-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2011	BGG0031	SGG0046	AG30163
BGG0031-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2011	BGG0031	SGG0046	AG30163
BGG0031-MRL1	5.00 mL / 5.00 mL	SM4500-NO3F-2011	BGG0031	SGG0046	AG30163
BGG0031-MS1	50.0 mL / 50.0 mL	SM4500-NO3F-2011	BGG0031	SGG0046	AG30163
BGG0031-MSD1	50.0 mL / 50.0 mL	SM4500-NO3F-2011	BGG0031	SGG0046	AG30163
BGG0077-BLK1	5.00 mL / 10.0 mL	SW9065	BGG0077	SGG0097	AG30176
BGG0077-BS1	5.00 mL / 10.0 mL	SW9065	BGG0077	SGG0097	AG30176
BGG0077-MRL1	5.00 mL / 10.0 mL	SW9065	BGG0077	SGG0097	AG30176
BGG0077-MS1	0.100 mL / 10.0 mL	SW9065	BGG0077	SGG0097	AG30176
BGG0077-MSD1	0.100 mL / 10.0 mL	SW9065	BGG0077	SGG0097	AG30176
BGG0162-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0162	SGG0171	AG30191
BGG0162-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0162	SGG0171	AG30191
BGG0162-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0162	SGG0171	AG30191
BGG0162-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGG0162	SGG0171	AG30191
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-MS	
BGF0869-BLK1	1000 mL / 1.00 mL	SW8270E	BGF0869	SGF0961	AD30296
BGF0869-BS1	1000 mL / 1.00 mL	SW8270E	BGF0869	SGF0961	AD30296

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
BGF0926-BLK1	5.00 mL / 5.00 mL	SW8260D	BGF0926	SGF0950	AF30236
BGF0926-BS1	5.00 mL / 5.00 mL	SW8260D	BGF0926	SGF0950	AF30236
BGF0926-MS1	5.00 mL / 5.00 mL	SW8260D	BGF0926	SGF0950	AF30236
BGF0926-MSD1	5.00 mL / 5.00 mL	SW8260D	BGF0926	SGF0950	AF30236
BGF0971-BLK1	5.00 mL / 5.00 mL	SW8260D	BGF0971	SGF0992	AF30236
BGF0971-BS1	5.00 mL / 5.00 mL	SW8260D	BGF0971	SGF0992	AF30236
BGF0971-DUP1	5.00 mL / 5.00 mL	SW8260D	BGF0971	SGF0992	AF30236
BGF0971-MS1	5.00 mL / 5.00 mL	SW8260D	BGF0971	SGF0992	AF30236
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	SW7470A	
BGF0980-BLK1	20.0 mL / 20.0 mL	SW7470A	BGF0980	SGF0988	AF30304
BGF0980-BS1	20.0 mL / 20.0 mL	SW7470A	BGF0980	SGF0988	AF30304
BGF0980-MS1	20.0 mL / 20.0 mL	SW7470A	BGF0980	SGF0988	AF30304
BGF0980-MSD1	20.0 mL / 20.0 mL	SW7470A	BGF0980	SGF0988	AF30304

Date Issued:

		Certificate of Analysis		
Client Name:	SCS Engineers-Winchester		Date Issued:	7/7/2023 4:20:33PM
Client Site I.D.:	2023 City of Bristol Landfill Leachate			
Submitted To:	Jennifer Robb			
Certified Analys	ses included in this Report			
Analyte		Certifications		
EPA350.1 R2.0 in l	Non-Potable Water			
Ammonia as N		VELAP,NCDEQ,PADEP,WVDEP		
EPA351.2 R2.0 in l	Non-Potable Water			
TKN as N		VELAP,NCDEQ,WVDEP		
SM4500-NO2B-201	11 in Non-Potable Water			
Nitrite as N		VELAP,WVDEP,NCDEQ		
	11 in Non-Potable Water			
Nitrate+Nitrite as N		VELAP,WVDEP		
	Non-Potable Water			
BOD	Non-r olable waler	VELAP,NCDEQ,WVDEP		
	Non-Potable Water			
COD		VELAP,NCDEQ,PADEP,WVDEP		
		VELAF,NODEQ,FADEF,VVVDEF		
SW6020B in Non-I	Potable Water			
Arsenic Barium		VELAP,WVDEP VELAP,WVDEP		
Cadmium		VELAP,WVDEP		
Chromium		VELAP,WVDEP		
Copper		VELAP,WVDEP		
Lead		VELAP,WVDEP		
Nickel		VELAP,WVDEP		
Selenium		VELAP,WVDEP		
Silver		VELAP,WVDEP		
Zinc		VELAP,WVDEP		
SW7470A in Non-H	Potable Water			
Mercury		VELAP,NCDEQ,WVDEP		

		Certificate of Analysis		
Client Name:	SCS Engineers-Winchester		Date Issued:	7/7/2023 4:20:33PM
Client Site I.D.:	2023 City of Bristol Landfill Leachate			
Submitted To:	Jennifer Robb			
Certified Analys	es included in this Report			
Analyte		Certifications		
SW8260D in Non-P	Potable Water			
2-Butanone (MEK)		VELAP,NCDEQ,PADEP,WVDEP		
Acetone		VELAP,NCDEQ,PADEP,WVDEP		
Benzene		VELAP,NCDEQ,PADEP,WVDEP		
Ethylbenzene		VELAP,NCDEQ,PADEP,WVDEP		
Toluene		VELAP,NCDEQ,PADEP,WVDEP		
Xylenes, Total		VELAP,NCDEQ,PADEP,WVDEP		
Tetrahydrofuran		VELAP, PADEP		
SW8270E in Non-P	otable Water			
Anthracene		VELAP, PADEP, NCDEQ, WVDEP		
SW9065 in Non-Po	table Water			
Total Recoverable F	Phenolics	VELAP,WVDEP		

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/30/2024
TXCEQ	Texas Comm on Environmental Quality #T104704576-23-1	T104704576	05/31/2024
VELAP	NELAP-Virginia Certificate #12417	460021	06/14/2024
WVDEP	West Virginia DEP	350	11/30/2023

Date Issued:

		Certificate of Analysis			
Client Na	ame:	SCS Engineers-Winchester	Date Issued:	7/7/2023	4:20:33PM
Client Sit	te I.D.:	2023 City of Bristol Landfill Leachate			
Submitte	ed To:	Jennifer Robb			
		Qualifiers and Definitions			
DS	Surrogate	concentration reflects a dilution factor.			
J	The report	ed result is an estimated value.			
L	LCS recov	ery is outside of established acceptance limits			
М	Matrix spik	e recovery is outside established acceptance limits			
Р	Duplicate a	analysis does not meet the acceptance criteria for precision			
RPD	Relative Per	rcent Difference			
Qual	Qualifers				
-RE	Denotes sar	mple was re-analyzed			
LOD	Limit of Dete	ection			
BLOD	Below Limit	of Detection			
LOQ	Limit of Qua	Intitation			
DF	Dilution Fac	tor			
TIC	library. A TIC	dentified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral C spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are nd are calculated using an internal standard response factor of 1.			
PCBs, Tota	I Total PC	Bs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.			

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

CHAIN OF CUSTODY

PAGE 1 OF 1

COMPANY NAME: SCS En	gine	ers			IN	VOICE TO	:		S	AM	E				PRO	JEC		NE/C	Quo	te #:			TAGETOTT
CONTACT: Jennifer Robb					IN	VOICE CC	NTAC	Г:	16						SITE	NAN	1E:	20	23	City	of B	rist	ol Landfill Leachate
ADDRESS: 11260 Roger Baco	on D	rive	э,		IN	VOICE AD	DRES	S:	12						PRO	IEC ⁻							5 Task 1
Ste. 300, Reston VA	1 20	190			IN	VOICE PH	ONE #	:							P.O.								
PHONE #: 703-471-6150			1	EMAIL:	irobb@	scsengin	eers.co	m							Pretre	atm	ent P	rogr	am:				
Is sample for compliance reporti	na?		YES	NO Re	gulator	y State:	VA	Is sam	ple fro	m a	ı chl	orina	ated	sup	ply?	YE	S	NO		PW	S I.D	. #:	1
SAMPLER NAME (PRINT):	-175	_			urint		MPLE				6	. 6	les	1	/	her	Im. K	Sm	Tu	Irn A	round	iT t	me: 10 Day(s)
Matrix Codes: WW=Waste Water/Storm Wa									10.75	-	-Wip	be OT	=Oth	er	CAN			a g					COMMENTS
			ved Metals)	Ø	Ø	0	osite Stop			S	0.1	2021			YSIS /	Ì		Т		E)	8015		Preservative Codes: N=Nitric Acid C=Hydrochloric Acid S=Sulfuric Acid H=Sodium Hydroxide A=Ascorbic Acid Z=Zinc Acetate T=Sodium Thiosulfate M=Methanol
CLIENT SAMPLE I.D.		ite	Field Filtered (Dissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Time	eserved	Matrix (See Codes)	Number of Containers	ia - EPA 350.1	2 5210B-	- SM22 5220D-	Nitrate SM22 450-NO3F-2011 (report seperatly from Nitrite)	SM22 450-NO3F-	SVOC (Anthracene) 8270	Total Metals (As, Ba, Cd, Cr, Cii Pb Ni Se Ag 7n) 6010	TKN - EPA 351.2 R2	7470		Phenolics - 9065 V. Fatty Acids (See List) 8015	VOCs (See List) 8260	Note VOC 8260 no HCl
	Grab		Field Filt	Compos	Compos			Time Preserved		-	Ammon	BOD - SM2	cop - S	Nitrate SI (report sep	Nitrite 3 2011	svoc (Total Me	TKN - E	Mercury -	Total Re	V. Fatty Acids	VOCs (PLEASE NOTE PRESERVATIVE(S), INTERFERENCE CHECKS or PUMP RATE (L/min)
1) EW-GI	×		\square			062023	1730		GW	12-	-	-						+			_	+	•
2)		┢	$\left \right $						GW GW			_	_			-		_	-			+	
3)		-	+						GW	-			+			+		+	-	-		+	
4) 5)		\vdash	\vdash						GW									-					
6)									GW														
7)							-4		GW														
8)							12		GW											_	_	\perp	
9)							0		GW			_	_			-		_	-		_	╇	
10) RELINQUISHED:	DAT	re / 123	TIME		D: CN			DATE /	DI TIME	QC	C Da	ta Pa	ckag	e LA Cu	B USE (DNLY Is use	Th d and ir	erm ntact?	ID: ()	27	7		DLER TEMP Received on ice? (N)
RELINGUISHED: LCW RELINQUISHED:	DAT	TE /	TIME	RECEIVE	D: M	Sh	april	DATE /	850		el III el IV				SCS- 2023		y of l	Bris	tol	Lar			1204 Jeach:
*	all a		A.			1			5	1					Recd	: 06	/22/2	2023	6]	Due	07/		/2023 30325002 Page 45 of 49

Bottle Kit Example

Parameter	Analytical Method	Bottle	Preservative
Biological Oxygen Demand	SM22 5210B-2021	1 L Plastic	Cool <6C
Ammonia	EPA 350.1 R2.0		
Chemical Oxygen Demand	SM22 5220D-2011		
Nitrite	SM22 4500-NO3F-2011	1 500 mL Plastic	H2SO4
Nitrate	SM22 4500-NO3F-2011		
Total Kjeldahl Nitrogen	EPA 351.2 R2.0		
Nitrate	SM22 4500-NO3F-2011	1 250 mL Plastic	Cool <6C
Semi-Volatile Organic Compound: Anthracene	SW-846 Method 8270	1 L Amber	Cool <6C
Total Metals: Arsenic, Barium, Cadmium, Chromium, Copper, Lead, Nickel, Selenium, Silver, and Zinc	SW-846 Method 6010	1 500 mL Plastic	HNO3
Total Metal: Mercury	SW-846 Method 7470		
Total Recoverable Phenolics	SW-846 Method 9065	1 250 mL glass Amber	H2SO4
Volatile Fatty Acids: Acetic Acid, Butyric Acid, Lactic Acid, Propionic Acid, and Pyruvic Acid	SW-846 Method 8015	3 40 mL VOA Clear	Cool <6C
Volatile Organic Compounds: Acetone, Benzene, Ethyl benzene, Methyl ethyl ketone, Tetrahydrofuran, Toluene, and Total Xylenes	SW-846 Method 8260	3 40 mL VOA Clear	Cool <6C

LAFT HAT HAT

N. W

11 or 12 2reds 3 yollars War) (vous)

Page 46 of 49

Sample Preservation Log Form # F1301 Rev # 14.0 Effective: June 22, 2023 Page 1 of 1

ය

' a J	Select.	F	NT	Т	Ц	Λ.	T	DN	1																																Effec	ctive: .
		L A	N N	l A L	Y Y	л. Ţl	L L C	A	L						ļ	Sa	m	pl	e	Pı	res	se	rv	ati	io	n I	_0	g													
Order ID	2	31	F١	2(, L	1									Date	Perf	ome	ed: _	6-	0	ໄລ	- 6	23	3	_				An	alyst	Perfo	rming (Check	<u> </u>	<u> </u>	2	۲ 					
			Metal	8		yanic	le		Sulfid	le		mmo	nia		TKN	1		hos,	Tot			NO2		DR	0	(80 PC	estic 81/60 8 DW	:109 8/508) only	(6)	SVC	C	CrV	I • ••	Pe /	st/PC	B (508) C(525)	C	0 [2		heno	,1:0
Sample ID	Container ID		l as eived	FinalpH		i as eived	Hq lett		H as ceived	FinalpH		H as eived	FinalpH		H as elved	FinalpH	-	H as eived	FinalpH		H as ceived	FinalpH	Re	Has ceived	FinalpH		ceived es.Cl	final+ or-		ceived es.Cl	final+ or-	Received pH	FinalpH	R	pH as acelved	Fraipt	ा ह दुर्	H as ceived	Final pH		ceived	FhalpH
	8 A	<2	Other		> 12	Other		>9	Other	_	<2	Other	-	<2	Other		<2	Other		<2	Othe	-	<2	Othe	r —	ŀ	ŀ		ŀ	ŀ	-	<u>*</u>	╞╌	÷	2 Othe		Ě	Othe	<u></u>	┢	Othe	<u> </u>
01			7	5																				_	_	┢	┢			┢			-	╀		+	┢	╞	Ļ	<u> </u>	┢	╞
01	ß								_			7	ပ		7	Q	_				7	42				_	-							∔		╞	┢	17	7<7	₽	╇	
01	6																													<u> </u>	_		<u> </u>	╇		╞	┡	╞	╞	╞	7	Ć
01	Н																													-									\bot			
																															i											
													Γ	Г												Γ	Τ							Т		Т	Γ	Γ	Τ	Г	Τ	Γ
		Π																				Γ				Γ	Γ		Γ					T		Τ	Γ	T	T	T	T	Γ
<u> </u>		П												T								T	T			T	┢	┢		T				╋	\uparrow	\uparrow		t	\uparrow	┢		┢
							┢												╞	┢		┢			<u> </u>	┢	\square				-			╋	┼	\uparrow	┢	┢	╈	╋	+	┢
—					_															\vdash		╀				┢	┼─	+	┢	┢			$\left \right $	╋	╀╴	┼─		╆╴	┢	┢	+	┢
							-					-					_		┢	┝		┢	1	┝	+	-	┼─	\vdash	┢	-	-		┼──	╋	┢	┢	┢	┢	┢	┢	+	┢
<u> </u>							_							-				_		┝		+	┢	.			┢			┢	-		┢	╋	┢┈	+	┢──	┢╴	┢	╊	╋	–
								-	_								_		<u> </u>	┡	_	╀	┢	┝	_	-	\vdash	-		-			-	╋	┢	┢	┢	╞	╇	┢	╋	┢
								_											ļ	_	-	-					-		-				-	╇	-	┢	┢	┢	╇	┡	╀	
												-																												L		
NaOH II	D:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			١.				HNO	s ID:	3	た	64	3(24		-		•			te/tim led be			. 97				_	Ana	alyst l	nitials:							-			
NaOH II H2SO4 I		SU	00	13	R	>		_	Na ₂ S	S2O3	ID: _						-	Buffe			-																					
HCL ID:									Na ₂ S	6 0 3	D:						_	I (м	atal	e	0.00	***		۔ ا ہ م		T	r	- -	INC											
																				IVIC	rial	5 W	ere	rec	eiv	ea v	with	ı pH	1 =	1. F	1N(13										

was added at 1240 on 22 JUNE 2023 by RCJ in the Log-In room to bring pH=<2.

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Date Issued:

	Certificate of Analysis			
Client Name:	SCS Engineers-Winchester	Date Issued:	7/7/2023	4:20:33PM
Client Site I.D.:	2023 City of Bristol Landfill Leachate			
Submitted To:	Jennifer Robb			
	Laboratory Order ID: 23F1204			
	Sample Conditions Checklist			
	Samples Received at:		2.20°C	
	How were samples received?	Lo	gistics Courier	
	Were Custody Seals used? If so, were they received intact?		Yes	
	Are the custody papers filled out completely and correctly?		Yes	
	Do all bottle labels agree with custody papers?		Yes	
	Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taker	1?	Yes	
	Are all samples within holding time for requested laboratory tests?		Yes	
	Is a sufficient amount of sample provided to perform the tests included?		Yes	
	Are all samples in appropriate containers for the analyses requested?		Yes	
	Were volatile organic containers received?		Yes	
	Are all volatile organic and TOX containers free of headspace?		No	
	Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EP EPA8015 GRO, EPA8021, EPA524, and RSK-175.	A624,	Yes	
	Are all samples received appropriately preserved? Note that metals containers do not require field preservation preservation may delay analysis.	but lab	Yes	
	Work Order Comments			

Jennifer Robb notified via email for headspace in all unpreserved VOAC40mL. KRC 6/22/23 1356

Per email from Jennifer Robb proceed with analysis. DFE 6/22/23 1527

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Co	oncentratio	n					LOD	LOQ
	November-2022					1560		1400		1380			50	50
	December-2022	1700	2280	2110		1410	1310				1150	1780	100	100
		1520			1500					1330			50	50
	January-2023					2440							100	100
Ammonia as N (mg/L)	February-2023											1490	100	100
	March-2023				667	1480							73.1	100
	April-2023				1410		1220						73.1	100
	May-2023	1390			1860	2380							146	200
	June-2023					2740		2370	2170				146	200
	November-2022					15700		5860		5140			0.2	2
	December-2022	6440	12500	11400		9240	3330				8360	6770	0.2	2
	January-2023	9920			999	28100				7060			0.2	2
Biological Oxygen Demand	February-2023											7230	0.2	2
(mg/L)	March-2023				1570	9190							0.2	2
	April-2023				8430		2860						0.2	2
	May-2023	7350			11900	35300							0.2	2
	June-2023					20000		27400	23100				0.2	2
	November-2022							9790		10800			1000	1000
	NOVEINDEI-2022					23500							2000	2000
		7440											1000	1000
						13200	8000				20300	14100	2000	2000
	December-2022			22400									5000	5000
			86800										10000	10000
					3630								500	500
	January-2023	14900								8430			2000	2000
Chemical Oxygen Demand						47600							5000	5000
(mg/L)	February-2023											9210	1000	1000
					1690								500	500
	March-2023					10600							2000	2000
							7370						1000	1000
-	April-2023				16800								2000	2000
		7590			18700								2000	2000
	May-2023					44700							4000	4000
	June-2023							44800					5000	5000
	JULIE-2023					41300			55000				10000	10000
Nitrate+Nitrite as N (mg/L)	November-2022					2.91		0.16		0.33			0.1	0.1

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Co	oncentratio	n					LOD	LOQ
											ND		0.2	0.2
							ND						0.2	0.6
	December-2022	ND	ND	ND		ND							1.1	5.1
												ND	1.5	5.5
					ND								0.35	1.35
										ND			1.1	1.1
	January-2023 -	3.9											2.1	2.1
Nitrate as N (mg/L)						ND							2.2	2.2
	February-2023											ND	0.35	1.35
	March-2023				ND	ND							1.04	5.1
	April-2023				ND		ND						0.6	2.6
		ND											1.1	5.1
	May-2023 -				ND	ND							1.2	5.2
	June-2023					ND			ND				1.1	5.1
	J011C-2023							ND					1.2	5.2
	December-2022						0.12 J						0.1	0.5
		ND	ND	ND		ND					ND	ND	1	5
					ND								0.25	1.25
	January-2023									ND			1	1
Nitrite as N (mg/L)		ND				ND							2	2
	February-2023											0.48 J	0.25	1.25
	March-2023				ND	ND							1	5
	April-2023				ND		ND						0.5	2.5
	May-2023	ND			ND	ND							1	5
	June-2023					2 J		ND	ND				1	5
	November-2022							1290		1470			20	50
						2110							50	125
	December-2022	1510	3570	1790		1830	1490				1340	1940	200	500
	January-2023	1840			881					1410			20	50
Total Kjeldahl Nitrogen						2970							40	100
(mg/L)	February-2023											1870	16.8	50
/	March-2023				879	1920							33.6	100
	April-2023				1820		1510						16.8	50
	May-2023	1590			1950	2910							40	100
	June-2023					3080			2750				100	250
								2650					200	500

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					C	oncentratio	n					LOD	LUQ
	Neversber 2022							5.68		3			0.3	0.5
	November-2022					28.8							0.75	1.25
							8.94						0.3	0.5
	December-2022	24.9	54.6	28.3		32					20.2	36	1.5	2.5
	1	27.2			1.3					20.2			0.75	1.25
Total Recoverable Phenolics	January-2023					56.5							1.5	2.5
(mg/L)	February-2023											22.4	1.5	2.5
					0.4								0.03	0.05
	March-2023					13.9							0.3	0.5
	April-2023				18.7		5.1						0.3	0.5
	May-2023	18.6			20	50							1.5	2.5
	June-2023					39.1		45.6	80.6				1.5	2.5
SEMI-VOLATILE ORGANIC CO	MPOUND (ug/L)													
	November-2022							ND		ND			46.7	93.5
						ND							93.5	187
						ND	ND					ND	9.35	9.35
	December-2022			ND							ND		11.7	11.7
	December-2022		ND										23.4	23.4
		ND											485	971
					ND								243	485
										ND			253	505
	January-2023	ND											490	980
Anthracene						ND							500	1000
	February-2023											ND	187	374
						ND							51	102
	March-2023				ND								117	234
	A				ND								37.4	74.8
	April-2023						ND						38.8	77.7
	May-2023	ND				ND							93.5	187
	1viGy-2025				ND								467	935
	June-2023					ND			ND				485	971
	June-2023							ND					490	980

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68		100
Parameter	Monitoring Event			2		С	oncentratio	n					LOD	LOQ
TOTAL METALS (mg/L)														
	November-2022					0.863		0.464		1.3			0.02	0.04
	December-2022	1.02	0.406	0.174		1.69	0.49				0.159	0.574	0.02	0.04
	January-2023	0.285			0.596	0.225				0.846			0.01	0.02
	February-2023											0.29	0.005	0.01
Arsenic	March-2023				1.07	1							0.01	0.02
							0.11						0.0005	0.001
	April-2023				0.36								0.005	0.01
	May-2023	0.26			0.3	0.27							0.0025	0.005
	June-2023					0.26		0.5	0.14				0.0025	0.005
	November-2022					0.871		0.485		0.36			0.01	0.02
	December-2022	0.566	0.803	0.978		0.438	0.214				0.856	0.793	0.01	0.02
	January-2023	0.643			0.683	1.92				0.554			0.005	0.01
	February-2023											1.04	0.01	0.05
Barium	March-2023				0.406	0.683							0.005	0.01
	April-2023				1.21		0.326						0.01	0.05
	May-2023	0.636											0.005	0.025
	1010y-2020				1.2	1.83							0.01	0.05
	June-2023					1.69			1.65				0.005	0.025
								3.01					0.01	0.05
	November-2022					ND		ND		ND			0.004	0.008
	December-2022	ND	0.0104	ND		ND	ND				ND	ND	0.004	0.008
	January-2023	ND			ND	ND				ND			0.002	0.004
Cadmium	February-2023											0.000297 J	0.0001	0.001
	March-2023				ND	ND							0.002	0.004
	April-2023				0.000158 J		0.000333 J						0.0001	0.001
	May-2023	ND			ND	ND							0.0005	0.005
	June-2023					ND		ND	ND				0.0005	0.005
	November-2022					0.208		0.112		0.354			0.016	0.02
	December-2022	0.503	1.08	1.76		0.274	0.319				0.499	0.822	0.016	0.02
	January-2023	0.31			0.488	0.178				0.155			0.008	0.01
	February-2023											0.277	0.004	0.01
Chromium	March-2023				0.213	0.188							0.008	0.01
	April-2023						0.142						0.0004	0.001
					0.306								0.004	0.01
	May-2023	0.422			0.281	0.237							0.002	0.005
	June-2023					0.251		0.191	0.272				0.002	0.005

Well I	D	EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68		100
Parameter	Monitoring Event			<u> </u>		Co	oncentratio	'n			·		LOD	LOQ
TOTAL METALS (mg/L)														
	November-2022					ND		ND		ND			0.016	0.02
	December-2022	ND	ND	ND		ND	ND				ND	ND	0.016	0.02
	January-2023	ND			0.0127	0.0256				ND			0.008	0.01
Copper	February-2023											0.00365	0.0003	0.001
Сорреі	March-2023				ND	ND							0.008	0.01
	April-2023				0.00664		0.00767						0.0003	0.001
	May-2023	ND			ND	ND							0.0015	0.005
	June-2023					0.00154 J		0.00362 J	0.00269 J				0.0015	0.005
	November-2022					ND		ND		0.017 J			0.012	0.02
	December-2022	ND	0.0381	ND		ND	ND				ND	ND	0.012	0.02
	January-2023	ND			ND	ND				ND			0.006	0.01
Lead	February-2023											0.006	0.001	0.001
	March-2023				ND	ND							0.006	0.01
	April-2023				0.0022		0.0067						0.001	0.001
	May-2023	ND			ND	ND							0.005	0.005
	June-2023					ND		ND	0.0069				0.005	0.005
	November-2022							0.00169		0.00053			0.0004	0.0004
	NOVEITIDEI-2022					ND							0.0008	0.0008
		0.00051											0.0004	0.0004
	December-2022			0.00118		ND	0.00588				0.0048	ND	0.0008	0.0008
			ND										0.004	0.004
		ND			ND					ND			0.0004	0.0004
Mercury	January-2023					ND							0.004	0.004
Mereory	February-2023											ND	0.0004	0.0004
					ND								0.0002	0.0002
	March-2023					ND							0.0004	0.0004
							0.00128						0.0002	0.0002
	April-2023				ND								0.0004	0.0004
	May-2023	ND			ND	ND							1	0.0002
	June-2023					ND		ND	ND				0.004	0.004
	November-2022					0.0866		0.1344		0.173			0.014	0.02
	December-2022	0.1722	0.5025	0.2989		0.1299	0.287				0.1853	0.346	0.014	0.02
	January-2023	0.1074			0.1442	0.0407				0.0769			0.007	0.01
Nickel	February-2023											0.1726	0.001	0.001
	March-2023				0.1254	0.1033							0.007	0.01
	April-2023				0.1143		0.1732						0.001	0.001
	May-2023	0.113			0.09726	0.05657							0.005	0.005
	June-2023					0.05978		0.05892	0.07161				0.005	0.005

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					C	oncentratio	n					LOD	LOQ
TOTAL METALS (mg/L)														
	November-2022					ND		ND		ND			0.08	0.1
	December-2022	ND	ND	ND		ND	ND				ND	ND	0.08	0.1
	January-2023	ND			ND	ND				ND			0.04	0.05
Selenium	February-2023											0.00199	0.00085	0.001
	March-2023				ND	ND							0.04	0.05
	April-2023				0.00189		0.00185						0.00085	0.001
	May-2023	ND			ND	0.00569							0.00425	0.005
	June-2023					ND		ND	ND				0.00425	0.005
	November-2022					ND		ND		ND			0.01	0.02
	December-2022	ND	0.0187 J	ND		ND	ND				ND	ND	0.01	0.02
	January-2023	ND			ND	ND				ND			0.005	0.01
Silver	February-2023											ND	0.00006	0.001
	March-2023				ND	ND							0.005	0.01
	April-2023				ND		0.00011 J						0.00006	0.001
	May-2023	ND			ND	ND							0.0003	0.005
	June-2023					ND		ND	ND				0.0003	0.005
	November-2022					ND		0.032		0.694			0.02	0.02
	December-2022	0.208	29.7	0.162		0.0686	0.75				0.364	0.286	0.02	0.02
	January-2023	0.133			0.15	0.074				0.0752			0.01	0.01
	February-2023											0.0851	0.0025	0.005
Zinc	March-2023				0.0689	0.0538							0.01	0.01
	April-2023				0.0539								0.0025	0.005
							0.414						0.025	0.05
	May-2023	0.079			0.0635	0.0519							0.0125	0.025
	June-2023					0.0538		0.0253	0.945				0.0125	0.025

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Co	oncentratio	n					LOD	LOQ
VOLATILE FATTY ACIDS mg/L														
	New arehor 2002							1600					25	100
	November-2022					3500				150 J			62	250
	December-2022	1800											62	250
Acetic Acid	January-2023	ND			ND	4400				ND				500
	February-2023											ND		500
	March-2023				ND	640								500
	April-2023				1200		520						370	500
	May-2023	990			1800	3000							370	500
	November-2022							430					12	100
	NOVEITIDEI-2022					830				ND			29	250
	December-2022	ND											29	250
Butyric Acid	January-2023	ND			ND	1800				ND				500
boryine Acid	February-2023											ND		500
	March-2023				ND	ND								500
	April-2023				ND		ND						330	500
	May-2023	ND			ND	1200							330	500
	November-2022							ND					11	100
Lactic Acid						ND				ND			27	250
	December-2022	90 J											27	250
	November-2022							620					11	100
	NOVEITIDEI-2022					1600				73 J			27	250
	December-2022	640											27	250
Propionic Acid	January-2023	ND			ND	2000				ND				500
	February-2023											ND		500
	March-2023				ND	ND								500
	April-2023				600		ND						340	500
	May-2023	520			800	1400							340	500
	November-2022							46 J					12	100
Pyruvic Acid						98 J				ND			30	250
	December-2022	ND											30	250

EW-59 EW-60 EW-50 EW-52 EW-57 EW-58 EW-61 EW-64 EW-65 EW-67 EW-68 LOD **Monitoring Event** Concentration Parameter VOLATILE ORGANIC COMPOUNDS (ug/L) 3510 1140 30 ---------------------------------November-2022 15600 300 ____ --------____ ---------------____ ---30 3140 ____ ___ ---3390 ____ ____ ---------____ December-2022 300 26800 27700 5670 ----21700 7150 ____ ---___ ____ ---30 3480 632 ------------------------------January-2023 300 -------7840 5470 ____ ____ ----____ ____ ____ ____ 2-Butanone (MEK) February-2023 14400 600 ____ ____ ____ ____ ____ ___ ____ ____ --------March-2023 257 2770 30 ----____ ------____ ----____ ------April-2023 750 ____ ____ 3420 ----5530 ___ ------------------5360 5970 ----150 -----------------------------May-2023 750 13600 --13800 ---------------------750 June-2023 20100 22600 1500 -------____ ---____ ---____ --------4420 70 ----____ ----___ ------___ ---------November-2022 16100 38300 700 ____ ____ ___ ___ ----____ ____ ___ ____ ____ 15600 5170 --------9800 700 ____ -----------____ December-2022 1750 8500 ____ ---___ ___ ----___ ___ ____ ___ ____ 3500 ----53100 49900 ----____ ---45600 ____ ----____ ----70 1530 ------------------___ ------------January-2023 22200 14000 700 ____ ___ ___ ____ ____ ___ ____ ____ ____ 8130 --------------------------____ --------1750 Acetone February-2023 23900 1400 ____ -------____ ____ ____ ------____ ----70 375 ---____ ____ ____ ------___ ____ ---____ March-2023 700 ----6810 ____ ---____ ---____ ____ -----------April-2023 8290 7560 1750 ____ ____ ____ ---___ --------____ ---350 10700 11700 ----____ ------------------------May-2023 1750 ---29600 ---____ ____ ----___ ____ ____ ____ ____ 29600 1750 ____ ---____ -------____ ____ ------____ June-2023 50800 3500 61800 ----------------------------November-2022 --------------7.4 J ----2860 ----50.4 -------4 6.3 J 622 1750 179 4 301 2960 -------------------December-2022 6550 ---40 ____ ____ ----____ ____ ____ ____ ____ ----January-2023 240 ____ 28.7 1620 167 ---4 -------____ ____ ---

Historical LFG-EW Leachate Monitoring Results Summary

LOQ

100

1000

100

1000

100

1000

2000

100

2500

500

2500

2500

5000

100

1000

1000

2500

5000

100

1000

2500

2000

100

1000

2500

500

2500

2500

5000

10

10

100

10

10

10

10

50

20

50

4

4

4

20

8

20

1370

1590

Benzene

Well ID

February-2023

March-2023

April-2023

May-2023

June-2023

814

1540

3740

4890

727

3370

2630

320

1400

Well I	D	EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Co	oncentratio	n					LOD	LOQ
VOLATILE ORGANIC COM	POUNDS (ug/L)													
	December-2022	67.3	172	287		ND	48.5				108	27.4	4	10
	November-2022					ND		194		16.2			4	10
	January-2023	65.1			ND	93.9				20.8			4	10
	February-2023											151	4	10
Ethylbenzene	March-2023				131	71.5							4	10
	April-2023				186		43.4						4	10
	May-2023	124			276	144							20	50
	June-2023					104							8	20
								98	116				20	50
	November-2022					309				176			100	100
								8530					1000	1000
	December-2022	151				170	1120					663	100	100
			5210	19800							6130		1000	1000
	January-2023	183			566	1810				352			100	100
Tetrahydrofuran	February-2023											3760	2000	2000
	March-2023				353	464							100	100
	April-2023				2410		4790						100	100
	May-2023	ND			2740	2380							500	500
	June-2023					2100							200	200
								7320	6670				500	500
	November-2022					ND		214		32.8			5	10
	December-2022	122	175	195		ND	113				113	48.3	5	10
	January-2023	122			8 J	139				35.3			5	10
Toluene	February-2023											224	5	10
	March-2023				182	98.1							5	10
	April-2023				303		94.4						5	10
	May-2023	258			371	239							25	50
	June-2023					165							10	20
								67	212				25	50

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-64	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					C	oncentratio	n					LOD	LOQ
VOLATILE ORGANIC COMPOU	IND (ug/L)													
	November-2022					ND		185		37.8			10	30
	December-2022	161	222	186		ND	112				197	59.9	10	30
	January-2023	138			ND	134				38.1			10	30
	February-2023											240	10	30
Xylenes, Total	March-2023				240	111							10	30
	April-2023				329		97.4						10	30
	May-2023	274			441	230							50	150
	June-2023					177							20	60
	JULIC-2023							92 J	136 J				50	150

--- = not applicable/available

J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

Appendix G

Sidewall Odor Mitigation System Certification Letter

SCS ENGINEERS

Revised June 26, 2023 File No. 02218208.11

Mr. Jonathan Chapman Enforcement Specialist VA DEQ – Southwest Regional Office 355-A Deadmore Street Abingdon, Virginia

Subject: Design Engineer Certification –Sidewall Odor Mitigation System Integrated Solid Waste Management Facility – Solid Waste Permit No. 588 Bristol, Virginia

Dear Mr. Chapman:

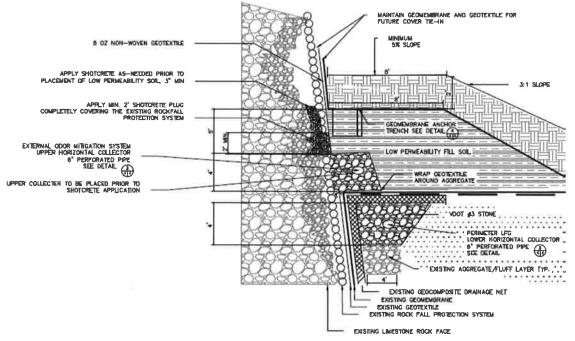
SCS Engineers (SCS) served as Design Engineer and conducted periodic site visits to observe construction of the Sidewall Odor Mitigation System (SOMS) within the Solid Waste Permit No. 588 landfill at the Integrated Solid Waste Management Facility (ISMWF) operated by the City of Bristol, Virginia (City). The SOMS is a landfill gas collection system to mitigate landfill gases emanating along and from behind the landfill sidewall liner system and quarry sidewalls. The SOMS is approximately 4500-feet long and is placed near the outer edge of waste in the landfill. The system includes the initial section that was constructed prior to February 10, 2023 which is referred to as the pilot sidewall odor mitigation system or Phase 1.

Our site visits to observe construction activities occurred between December of 2022 and June of 2023. Please refer to SCS' correspondence, dated November 1, 2022 and titled "Sidewall Odor Mitigation System Design" for general background regarding the construction project, as well as SCS correspondence dated February 10, 2023 titled "Design Engineer Certification – Pilot Sidewall Odor Mitigation System"

Construction of SOMS is substantially complete and functional as of the date of this letter, June 14, 2023. Substantial completion was determined as a point at which the system could begin operation to achieve the intended purpose. Once construction of the system was substantially complete, the SOMS was connected to the existing landfill gas collection and control system (LFGCCS).

SCS measured gas quality and system pressures at the SOMS wellheads. The data collected from those initial measurements are included in Attachment 1 – Sidewall Odor Mitigation System Monitoring Data. Measurements using field instrumentation indicate that methane represented an average of 22.4 percent of the gas and that oxygen represented an average of 8 percent of gas composition. This data supports that the SOMS is functioning as designed because it indicates that landfill gas is being withdrawn and oxygen intrusion is acceptable. Adjustments will be made to apply additional vacuum to the sections where measurements indicate higher level of landfill gas.

The extent of the SOMS system and associated infrastructure are shown in Attachment 2 – Sidewall Odor Mitigation System Approximate As-Built Locations. The system was constructed along the outer edge of waste and adjacent to the quarry wall, apart from a gap at the entrance of the landfill where


0

Mr. Jonathan Chapman June 14, 2023 - Revised June 26, 2023 Page 2

there is effectively no sidewall. The ramp used to access the quarry that was in place prior to the landfill's operation is located in this area. The locations of the SOMS infrastructure were collected using mapping grade field equipment.

SCS coordinated with the City, and the construction contractor (SCS Field Services) regarding the following field modifications prior to and during the construction of the SOMS:

- Changes were made to the planned application of shotcrete:
 - The rockfall protection system was not removed as depicted on Detail 1 on Sheet 4 of the design drawings. Removal of the rockfall protection system presented a safety hazard to those constructing the SOMS and to future landfill staff and contractors working in the landfill. Additional shotcrete and concrete was used to cover portions of the rock fall protection system to improve the interface between the rock wall and the soil.
 - Shotcrete was not applied to the section of the quarry wall adjacent to the upper collector. Based on field observations during construction of Phase 1 of the project, SCS believes that maintaining direct contact between the upper collector and the rock face would result in optimum collection of sidewall emissions.
 - These changes resulted in revisions of the typical SOMS detail that resulted in the revised configuration shown in Figure 1.

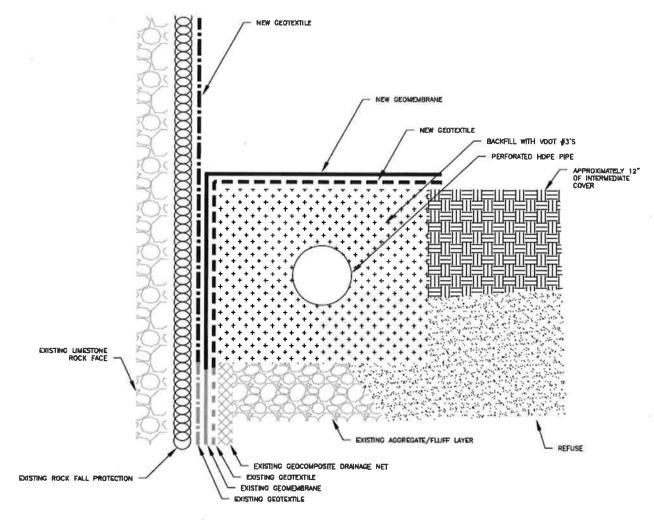
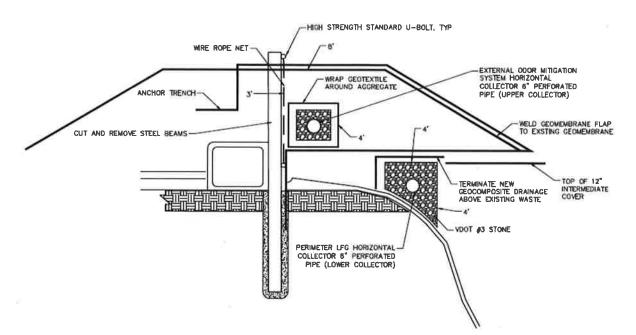


Figure 1. Revised SOMS Typical Detail

• At the time of this certification, placement of low permeability soil, geomembrane cover, and general fill layers is still in progress on some portions of the SOMS. SCS Field


Services has demonstrated that there is enough low permeability soil cover to operate the SOMS effectively. The placement of these layers will serve to enhance the resiliency of the SOMS in the future, but are not required for the system to serve the purpose of collecting emissions from the quarry sidewalls.

- In some cases the existing sidewall liner components were damaged or missing to such an extent that they could not be connected to the SOMS as intended. In those cases, additional geomembrane and geotextile were placed between the lower collector and the quarry wall. If feasible, the new geosynthetics were affixed to any remaining portions of the sidewall liner system. The general arrangement of new geosynthetics placed adjacent to the lower collector in these instances is shown in Figure 2.
 - Figure 2. General Arrangement of Supplemental Geomembrane and Geotextile Installed Coincidently with SOMS Construction

 Along the northern portion of the SWP No. 588 landfill (between wellheads SW-37L and SW 42L), the liner system terminated south of the existing access road. The liner system terminated at the existing bench such that there was no sidewall above grade at the edge of liner. In this case the SOMS typical detail was modified to a configuration that was better suited to this liner termination arrangement. The general arrangement of the SOMS infrastructure in this area is shown in Figure 3. Given the low volumes of gas anticipated in this area, wellheads were not installed at regular intervals along this section. Gas is still collected from other wellheads connected to the horizontal collectors at other points in the system.

Figure 3. General Arrangement of SOMS Components in Areas with No Above-Grade Sidewall

- The drawings for Phase 2 of the SOMS showed wellheads and risers approximately every 200 linear feet along the system. During construction, risers were placed on average every 100 linear feet. Wellheads were installed every 200 linear feet on average. The redundant risers will provide the City with the option to relocate wellheads in the event that a riser becomes damaged or place additional wellheads if additional capacity is required. All risers were assigned a reference number regardless of whether a wellhead was installed.
- Supporting Infrastructure such as liquids removal pumps within the installed sump vessels and compressed air lines have not yet been installed because, based on the observations of SCS' field staff, landfill liquids do not appear to be building up in the horizontal collectors or horizontal collector sumps. Unless liquids are observed in the horizontal collectors or their corresponding sumps, liquid pumps are not required for operation of the SOMS.

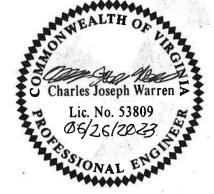
SCS will prepare a Construction Quality Assurance (CQA) Report after construction of supplemental components and infrastructure is complete. The CQA report will include relevant supporting data such as photographs, lab tests, and field reports.

Mr. Jonathan Chapman June 14, 2023 – Revised June 26, 2023 Page 5

Based on the information described above and review of design plans, the following certification statement is submitted for your consideration and determination of compliance with item 2.iv of Appendix A of the Consent Decree between the Department and the City:

I hereby certify as the Design Engineer that the construction of the sidewall odor mitigation system has been completed in substantial accordance, with the exception of the changes described in this letter, with the drawings entitled "Sidewall Odor Mitigation System Bristol, Virginia Integrated Solid Waste Management Facility Solid Waste Permit #588" dated November 1, 2022.

If you have questions, please contact either of the undersigned at the letterhead address.

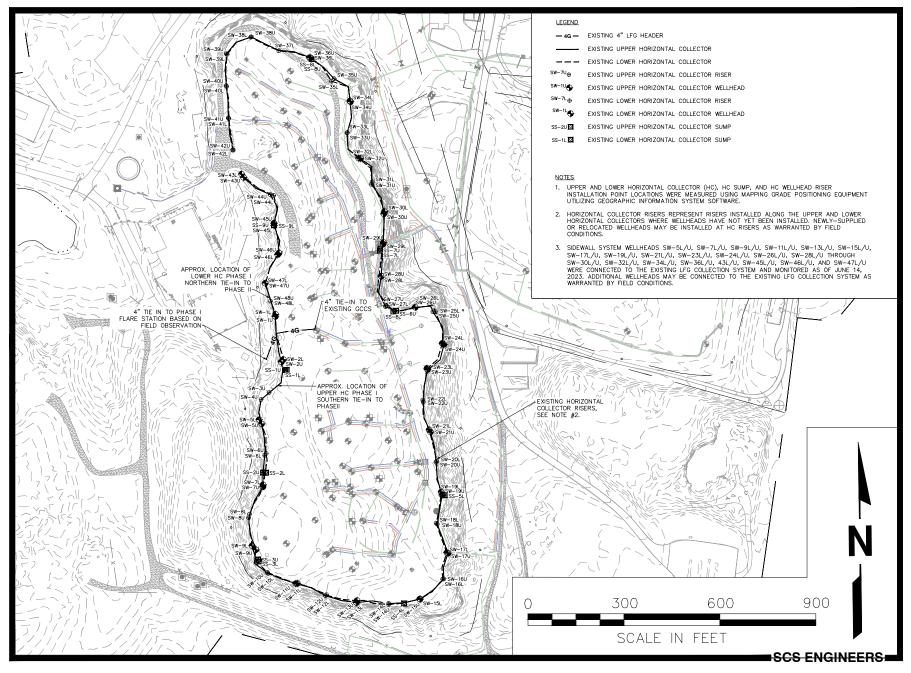

Sincerely,

Calle Varien

Charles J. Warren, PE Project Manager SCS Engineers Virginia PE #053809

H. Grace Wohlford Staff Engineer SCS Engineers

CJW/HGW


- cc: Randall Eads, City of Bristol Tamrya Spradlin, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jake Chandler, City of Bristol Jon Hayes, City of Bristol Jeff Hurst, VDEQ Susan Blalock, VDEQ Stacy Bowers, VDEQ Daniel Scott, VDEQ
- Encl. Attachment 1 Sidewall Odor Mitigation System Monitoring Data Attachment 2 – Sidewall Odor Mitigation System Approximate As-Built Locations

Attachment 1 - Sidewall Odor Mitigation System N	/Ionitoring Data
Phase 2	

Point Name	Status	Record Date	CH4	CO2	02	Bal Gas
			[%]	[%]	[%]	[%]
SW-1L	Active	6/14/2023 9:20:07 AM	5.9	19.4	11.5	63.2
SW-1U	Active	6/14/2023 9:18:17 AM	4.9	17.0	15.5	62.6
SW-2L	Active	6/14/2023 9:13:32 AM	19.2	38.1	6.1	36.6
SW-2U	Active	6/14/2023 9:15:41 AM	2.6	7.4	17.5	72.6
SW-5L	Active	6/14/2023 10:59:06 AM	51.9	43.3	0.0	4.9
SW-5U	Active	6/14/2023 11:03:11 AM	21.3	19.2	10.5	49.1
SW-7L	Active	6/14/2023 11:08:36 AM	54.5	44.5	0.0	1.1
SW-7U	Active	6/14/2023 11:13:26 AM	40.3	38.2	2.4	19.2
SW-9L	Active	6/14/2023 11:23:40 AM	54.4	45.1	0.0	0.5
SW-9U	Active	6/14/2023 11:28:06 AM	29.6	30.5	7.6	32.3
SW-11L	Active	6/14/2023 11:52:20 AM	52.1	47.8	0.0	0.1
SW-11U	Active	6/14/2023 11:37:29 AM	10.7	12.1	15.0	62.2
SW-13L	Active	6/14/2023 1:04:38 PM	48.4	48.4	0.0	3.2
SW-13U	Active	6/14/2023 11:57:03 AM	31.1	36.0	6.0	26.9
SW-15L	Active	6/14/2023 1:18:53 PM	50.8	48.3	0.0	0.9
SW-15U	Active	6/14/2023 1:15:05 PM	21.1	25.5	10.9	42.6
SW-17L	Active	6/14/2023 1:26:17 PM	38.2	60.0	0.0	1.8
SW-17U	Active	6/14/2023 1:22:50 PM	32.9	46.6	4.1	16.4
SW-19L	Active	6/14/2023 1:34:14 PM	26.8	66.6	0.2	6.4
SW-19U	Active	6/14/2023 1:31:05 PM	18.7	43.3	8.1	30.0
SW-21L	Active	6/14/2023 1:42:48 PM	31.3	65.9	0.2	2.6
SW-21U	Active	6/14/2023 1:40:09 PM	22.0	61.7	2.3	14.0
SW-23L	Active	6/14/2023 1:49:19 PM	29.6	49.2	0.7	20.6
SW-23U	Active	6/14/2023 1:47:34 PM	16.3	32.5	8.5	42.7
SW-24L	Active	6/14/2023 1:54:21 PM	28.9	50.0	1.2	19.9
SW-24U	Active	6/14/2023 1:52:05 PM	4.2	9.2	15.9	70.7
SW-26L	Active	6/14/2023 2:01:09 PM	25.8	50.0	2.1	22.1
SW-26U	Active	6/14/2023 1:58:15 PM	20.9	47.6	3.5	28.0
SW-28L	Active	6/14/2023 2:11:18 PM	24.0	44.1	2.7	29.2
SW-28U	Active	6/14/2023 2:08:15 PM	19.0	36.2	5.8	39.0
SW-29L	Active	6/14/2023 2:19:56 PM	40.6	40.9	0.3	18.3
SW-29U	Active	6/14/2023 2:22:26 PM	1.0	3.0	18.8	77.2
SW-30L	Active	6/14/2023 2:16:19 PM	10.4	17.9	11.2	60.5
SW-30U	Active	6/14/2023 2:14:52 PM	34.1	44.3	1.0	20.6
SW-32L	Active	6/14/2023 2:29:26 PM	35.7	34.6	1.7	28.0
SW-32U	Active	6/14/2023 2:26:59 PM	6.7	7.0	15.7	70.6
SW-34L	Active	6/14/2023 2:34:26 PM	5.2	5.5	15.6	73.8
SW-34U	Active	6/14/2023 2:32:31 PM	0.9	3.1	18.9	77.2
SW-36L	Active	6/14/2023 2:41:49 PM	0.4	1.1	18.7	79.8
SW-36U	Active	6/14/2023 2:39:15 PM	0.0	0.1	19.6	80.3

		Thuse 2				
Point Name	Status	Record Date	CH4	CO2	02	Bal Gas
			[%]	[%]	[%]	[%]
SW-43L	Active	6/14/2023 9:43:49 AM	28.4	25.8	4.6	41.2
SW-43U	Active	6/14/2023 9:40:35 AM	20.1	17.7	8.0	54.2
SW-45L	Active	6/14/2023 9:34:30 AM	7.3	9.7	16.3	66.7
SW-45U	Active	6/14/2023 9:37:42 AM	5.5	7.1	16.3	71.1
SW-46L	Active	6/14/2023 9:27:07 AM	14.3	17.5	11.9	56.3
SW-46U	Active	6/14/2023 9:32:00 AM	18.8	22.3	10.8	48.2
SW-47L	Active	6/14/2023 9:22:15 AM	0.8	1.9	19.3	78.0
SW-47U	Active	6/14/2023 9:24:56 AM	8.4	10.5	15.0	66.1

Attachment 1 - Sidewall Odor Mitigation System Monitoring Data Phase 2

SIDEWALL ODOR MITIGATION SYSTEM APPROXIMATE AS-BUILT LOCATIONS