May 2023 Monthly Compliance Report

Solid Waste Permit No. 588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-18 | June 9, 2023

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sect	tion			Page
	Intro	duction		4
1.0	Gas	Collectio	on	4
	1.1	Surfac	e and Leachate Collection Emissions	4
		1.1.1	Surface Emissions	4
		1.1.1.1	1 Quarterly SEM	4
		1.1.1.1	2 Weekly SEM	4
		1.1.2	Leachate Collection Emissions	5
	1.2	Existin	g Gas Extraction System Performance	7
	1.3	Remot	te Monitoring System	7
	1.4	Large-	Diameter Dual-Phase Extraction Wells	7
	1.5	VDEQ	Concurrence on Wells	8
2.0	Side	wall Odd	or Mitigation	8
	2.1	Perime	eter Gas Collection System	8
	2.2	Sidewa	all Odor Mitigation System	9
	2.3	Pilot S	ystem Construction	9
	2.4	Full Sy	stem Construction	
3.0	Was	te Temp	perature Monitoring	13
	3.1	Tempe	erature Monitoring System Design	
	3.2	Tempe	erature Monitoring System Installation	
4.0	Lead	hate Ex	traction and Monitoring	
	4.1	Existin	g System Optimization	
	4.2	Sampl	ing and Analysis Plan	
		4.2.1	Sample Collection	
		4.2.2	Quality Assurance and Quality Control	
		4.2.3	Data Validation	
		4.2.4	Laboratory Analytical Results	
5.0	Settl	ement I	Monitoring and Management	
	5.1	Settler	ment Monitoring and Management Plan	
	5.2	Month	ly Surveys	
		5.2.1	Topographic Data Collection	
		5.2.2	Settlement Plate Surveys	
6.0	Inter	mediate	e Cover and EVOH Cover System	
	6.1	Interm	ediate Cover Installation	

Table of Contents

Sect	ion	F	Page
	6.2	EVOH Cover System Design	37
	6.3	EVOH Cover System Procurement	37
	6.4	EVOH Cover System Installation	37
7.0	Storn	nWater Management	37
	7.1	Stormwater Management Plan Development	37
	7.2	Stormwater Management Basin Design and Construction	38
	7.3	Stormwater Management Plan Implementation	38
	7.4	Long-Term Stormwater Control and Removal	38
	7.5	Stormwater Monitoring	38
8.0	Misc	ellaneous	38
	8.1	Cease Waste Acceptance	38
	8.2	Long-Term Plan	39
	8.3	Monthly Compliance Reports	39
	8.4	Community Outreach Program	39

Figures

Deep Well Drilling at the SWP No. 588 Landfill	7
Phase 2 SOMS Low Permeability Soil Placement	11
Phase 2 Sidewall Odor Mitigation System Progress As-Built	12
Phase 2 SOMS Lower Collector Construction	13
Average Temperatures within TP-1 During the Months of March, April, and May	15
Average Temperatures within TP-2 During the Months of March, April, and May	16
Average Temperatures within TP-3 During the Months of March, April, and May	17
Average Temperatures within TP-4 During the Months of March, April, and May	18
Average Temperatures within TP-5 During the Months of March, April, and May	19
Average Temperatures within TP-6 During the Months of March, April, and May	20
Average Temperatures within TP-7 During the Months of March, April, and May	21
Average Temperatures within TP-8 During the Months of March, April, and May	22
Average Temperatures within TP-9 During the Months of March, April, and May	23
Estimated Volume of Liquids Removed from Landfill Gas Wells	26
1-Month Elevation Change Color Map	32
3-Month Elevation Change Color Map	33
Settlement Plate Locations	35
	 Deep-Well Drilling at the SWP No. 588 Landfill Perimeter Landfill Gas Extraction Well EW-78 Connected to Lateral Piping. SOMS Phase I As-Built Phase 2 SOMS Low Permeability Soil Placement Phase 2 Sidewall Odor Mitigation System Progress As-Built Phase 2 SOMS Lower Collector Construction Average Temperatures within TP-1 During the Months of March, April, and May Average Temperatures within TP-2 During the Months of March, April, and May Average Temperatures within TP-4 During the Months of March, April, and May Average Temperatures within TP-5 During the Months of March, April, and May Average Temperatures within TP-6 During the Months of March, April, and May Average Temperatures within TP-7 During the Months of March, April, and May Average Temperatures within TP-8 During the Months of March, April, and May Average Temperatures within TP-9 During the Months of March, April, and May Average Temperatures within TP-9 During the Months of March, April, and May Average Temperatures within TP-9 During the Months of March, April, and May Average Temperatures within TP-9 During the Months of March, April, and May Average Temperatures within TP-9 During the Months of March, April, and May Average Temperatures within TP-9 During the Months of March, April, and May Average Temperatures within TP-9 During the Months of March, April, and May Average Temperatures within TP-9 During the Months of March, April, and May Average Temperatures within TP-9 During the Months of March, April, and May Average Temperatures within TP-9 During the Months of March, April, and May Average Temperatures within TP-9 During the Months of March, April, and May Average Temperatures within TP-9 During the Months of March, April, and May Average Temperatures within TP-9 During the Months of March, April, and May

Table of Contents

Tables

Table 1.	Summary of May Surface Emissions Monitoring	5
Table 2.	Leachate Cleanout Pipe Monitoring Results	
Table 3.	Sidewall HC Wellhead Gas Quality Measurements	
Table 4.	Summary of Dual Extraction Well Pump Stroke Counter Data	24
Table 5.	Summary of Dual Extraction Well Pump Liquids Removal	
Table 6.	Monthly LFG-EW Leachate Monitoring Event Summary	29
Table 7.	Settlement Plate Locations	35

Appendices

- Appendix A Surface Emissions Monitoring Summary Letters
- Appendix B In-Waste Temperatures on Select Days in May
- Appendix C Semi-Monthly Temperature Update Memos
- Appendix D Solid Waste Permit 588 Daily Borehole Temperature Averages
- Appendix E Monthly Topography Analysis
- Appendix F Sample Collection Log, Lab Reports, and Historical LFG-EW Leachate Monitoring Results Summary
- Appendix G Sidewall Odor Mitigation System Progress Drawings

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report provides updates regarding the progress towards completion of the items outlined in Appendix A of the Consent Decree between the City and VDEQ. The following sections outline progress during the month of May 2023 related to Solid Waste Permit (SWP) No. 588.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

1.1.1.1 Quarterly SEM

SCS performed the Second Quarter surface emissions monitoring event on May 30, 2023. The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint outside of the active filling area.

No exceedances were detected during this quarterly monitoring event on the serpentine route, but one exceedance was detected at the pipe penetrations. This monitoring event also represented the weekly monitoring event for that week. A quarterly SEM report will be submitted to the VDEQ as part of the Semi-Annual Report. In addition, monitoring results were presented to the VDEQ in a letter dated June 7, 2023.

1.1.1.2 Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, SCS performed additional surface emissions monitoring on May 5, 2023; May 10, 2023; May 18, 2023; May 25, 2023; and May 30, 2023. These Weekly Surface Emissions Monitoring (SEM) Events were performed in accordance item 1.i in Appendix A of the Consent Decree between the City and VDEQ.

The monitoring in May generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame lonization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated

concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint.

SCS submitted letters to VDEQ outlining the results of the April monitoring events on May 10, 2023; May 17, 2023; May 24, 2023; May 31, 2023; and June 7, 2023. Copies of those submittals are included in Appendix A. Table 1 summarizes the results of the five monitoring events in May.

Description	May 5, 2023	May 10, 2023	May 18 2023	May 25, 2023	May 30, 2023
Number of Points Sampled	163	163	164	163	162
Number of Points in Serpentine Route	100	100	100	100	100
Number of Points at Surface Cover Penetrations	63	63	64	63	62
Number of Exceedances	2	2	1	3	1
Number of Serpentine Exceedances	0	0	0	0	0
Number of Pipe Penetration Exceedances	2	2	1	3	1

 Table 1.
 Summary of May Surface Emissions Monitoring

No serpentine exceedances were detected in May 2023. This is an improvement from April where three separate exceedances were detected adjacent to construction of the Sidewall Odor Mitigation System (SOMS). Additional soil was placed in the vicinity of the April exceedances as a result of the ongoing construction of the SOMS. Based on the results of the May monitoring, soil placement was effective at reducing emissions at these locations.

Exceedances were detected at the pipe penetration of four vertical extraction wells. Three of these points were located at recently installed vertical wells 89, 95, and 100. These three wells along with newly installed vertical wells 84, 90, and 94, were equipped with wellbore seals during May and subsequently recorded compliant readings. The remaining exceedance, at vertical well 66, is likely a result of ongoing construction activity in the vicinity of that well. Modification or reinstallation of the existing wellbore seal at the well will likely return that well to compliance. Corrective actions to address exceedances at well 66 are planned for the month of June 2023.

1.1.2 Leachate Collection Emissions

SCS Field Services (SCS-FS) visited the Bristol Landfill on May 1, 2023, and performed monitoring of the leachate, witness zone, and gradient control clean-outs at the northern and southern ends of the landfill. The results of that monitoring are included in Table 2. The monitoring data for the clean-outs at the southern end of the landfill are listed as LC01 – LC10. The monitoring data for the clean-outs at the northern end of the landfill are listed as NC01 – NC10. Table 2 also lists the cleanout pipe description based on site records and a review of correspondence.

Leachate Cleanout Pipe Monitoring Results

Description	ID#	CH₄ (% by Vol)	CO₂ (% by Vol)	O2 (% by Vol)	Balance Gas (% by Vol)	Initial Temp (°F)	Adj Temp (°F)	Initial Static Pressure (in H ₂ O)	Adj Static Pressure (in H ₂ O)	System Pressure (in H2O)
Southern Cleanouts Gradient West	LC01	49.8	49.9	0.0	0.3	57.6	57.6	-17.0	-16.9	-17.7
Southern Cleanouts Gradient East	LC02	44.7	54.2	0.0	1.1	56.8	56.8	-17.4	-17.4	-17.8
Southern Cleanouts Leachate Center	LC03	4.8	6.2	19.5	69.6	47.3	47.4	-17.6	-17.6	-17.7
Southern Cleanouts Witness East	LC04	19.2	15.9	12.2	52.7	47.7	47.7	-17.8	-17.7	-17.8
Southern Cleanouts Leachate West	LC05	49.0	50.1	0.0	0.8	57.7	57.6	-16.8	-16.8	-17.5
Southern Cleanouts Gradient Center West	LC06	37.5	33.9	6.0	22.7	51.3	51.2	-17.4	-17.5	-17.5
Southern Cleanouts Leachate East	LC08	48.2	51.1	0.0	0.8	57.2	57.2	-16.9	-16.9	-17.6
Southern Cleanouts Gradient Center East	LC09	36.2	28.7	6.1	29.0	49.9	49.9	-17.5	-17.6	-17.6
Southern Cleanouts Leachate West	LC10	25.5	18.3	11.6	44.5	50.1	50.1	-17.6	-17.5	-17.6
Northern Cleanouts Leachate East	NC01	0.2	3.1	20.9	75.8	57.1	58.7	-16.8	-16.6	0.3
Northern Cleanouts Leachate Center	NC02	0.1	0.7	21.3	78.0	53.3	53.2	-20.2	-20.0	0.0
Northern Cleanouts Leachate West	NC03	0.0	0.0	21.5	78.5	51.1	52.0	-16.9	-16.9	0.3
Northern Cleanouts Witness East	NC04	0.0	0.0	21.6	78.4	52.8	51.8	-15.4	-15.3	0.2
Northern Cleanouts Witness Center	NC05	0.0	0.0	21.7	78.4	51.1	53.0	-15.3	-15.3	0.2
Northern Cleanouts Witness West	NC06	0.0	0.0	21.7	78.3	54.3	53.2	-15.3	-15.2	0.3
Northern Cleanouts Gradient East	NC07	52.5	35.3	1.7	10.6	51.7	51.6	-17.2	-17.2	0.2
Northern Cleanouts Gradient Center East	NC08	58.2	39.5	0.0	2.3	54.9	55.4	-17.3	-17.4	0.3
Northern Cleanouts Gradient Center West	NC09	55.6	39.7	0.7	4.1	54.8	54.7	-17.3	-17.4	0.2
Northern Cleanouts Gradient West	NC10	0.2	3.0	21.2	75.6	52.2	51.8	-15.2	-15.2	0.2

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in SCS-FS's summary report for the month of April.

1.3 REMOTE MONITORING SYSTEM

In the fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas well-heads. The purpose of the sensors is to record and transmit well-head gas temperatures via a cellular connection to a database managed by SCS-RMC.

The City is providing average temperatures recorded by the sensors to VDEQ on a daily basis via email. In addition, SCS prepares a semi-monthly report with analysis of this data. The semi-monthly reports for May are included in Appendix C.

1.4 LARGE-DIAMETER DUAL-PHASE EXTRACTION WELLS

SCS completed design work on an expansion of the existing GCCS during the month of December 2022. The proposed expansion includes at least 5 large diameter dual-phase extraction wells. SCS submitted the design to VDEQ prior to December 31, 2022. The City commenced solicitation of contractor's bids for this project by advertising for bids and received one bid for the project from SCS Field Services Construction (SCS-CONS). On January 26, 2023, the City awarded the project to SCS-CONS.

During the month of May, work on the expansion of the GCCS focused on the construction of deep well gas collection system. Eight wells were drilled reaching a depth of 185 feet. The City and SCS-CONS anticipate installation of the first five pumps in June, and are awaiting the delivery of the remaining pumps. The expanded GCCS is on track to connect to these wells vacuum and begin liquids extraction no later than June 30, 2023.

Figure 1. Deep-Well Drilling at the SWP No. 588 Landfill

1.5 VDEQ CONCURRENCE ON WELLS

As described in previous monthly compliance reports, the City engaged with VDEQ in discussions about the proposed approach for landfill GCCS improvements and expansions. Upon completion of the landfill gas collection system, SCS will submit updated as-built drawings depicting the completed system to VDEQ. The City intends to delay installation of interim or final cover systems until the City and VDEQ agree that the GCCS is sufficient.

2.0 SIDEWALL ODOR MITIGATION

The City has designed and is constructing a system to control fugitive emissions emanating from the quarry sidewalls. Specific aspects of the proposed design features are described in the following sections.

2.1 PERIMETER GAS COLLECTION SYSTEM

SCS's design of the GCCS expansion described in Section 1.4 included perimeter LFG wells. These wells are closer to the sidewall to intercept landfill gas that potentially could migrate to the quarry wall. These wells will supplement the sidewall odor mitigation system described in Section 2.2. The City completed bidding and contracting of construction for the perimeter LFG wells as part of the large diameter dual extraction well installation described in Section 1.4.

As described in the April 2023 Monthly Compliance Report for the SWP No. 588 Landfill, construction of the perimeter gas collection system was completed. SCS submitted a letter to VDEQ documenting completion of the Perimeter Gas Collection System on May 1, 2023. One of the perimeter gas collection system wells connected to lateral piping is shown in Figure 2.

Figure 2. Perimeter Landfill Gas Extraction Well EW-78 Connected to Lateral Piping

2.2 SIDEWALL ODOR MITIGATION SYSTEM

On behalf of the City and in an effort to capture emissions from the quarry sidewall, SCS designed a sidewall odor mitigation system (SOMS) during the month of October 2022. On October 20, 2022 SCS provided an overview of the proposed system to VDEQ staff. The design of this system was prepared and submitted to VDEQ on November 1, 2022. A project manual detailing the specifications of the system was developed concurrently with the design of the system.

2.3 PILOT SYSTEM CONSTRUCTION

SCS-CONS completed substantial construction of Phase 1 of the SOMS during the month of February 2023, SCS-FS began monitoring Phase 1 connected Horizontal Collector (HC) wellheads during the month of March, and SCS-FS continued weekly wellhead monitoring into the month of May 2023. Phase 1 is considered the pilot system portion of the SOMS. SCS submitted a design engineer certification to VDEQ on February 10, 2023 that documented the substantial completion of Phase 1 of the SOMS. Figure 3 shows the Phase 1 as-built, which includes the locations of the HC wellheads and HC sumps installed in Phase I, as well as the 4" header connection to the existing LFGCCS. The lower collector installed as part of Phase II was tied-in to the north end of the Phase I lower collector, and the upper collector installed as part of Phase II was tied-in to the south end of the Phase I upper collector.

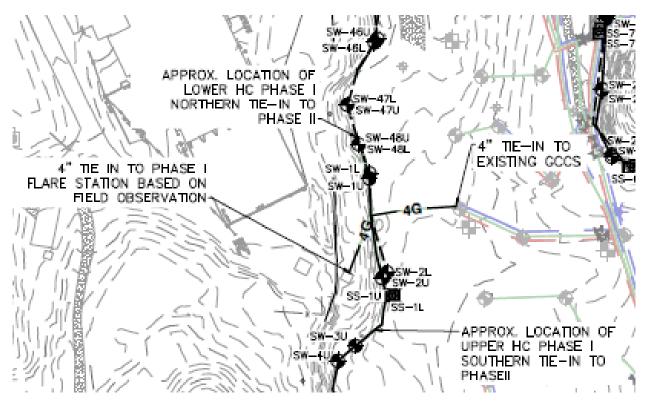


Figure 3. SOMS Phase | As-Built¹

¹ Location data was collected using mapping grape global positioning system equipment.

Phase 1 was initially connected to an auxiliary flare located near the system. HC wellhead measurements of gas quality continued to be taken on a weekly basis during the month of May 2023. A summary of those measurements is shown in Table 3.

Device ID	Date/Time	CH₄ (%)	CO ₂ (%)	O ₂ (%)
SW1L	5/4/2023 9:12:00 AM	16.7	31.8	8.9
SW1L	5/8/2023 11:16:05 AM	8.8	25.9	11.6
SW1L	5/15/2023 9:17:54 AM	8.9	28.0	10.2
SW1L	5/22/2023 12:49:19 PM	7.9	24.4	10.3
SW1L	5/30/2023 9:43:51 AM	4.7	18.2	13.0
SW1U	5/4/2023 9:09:32 AM	3.0	11.5	17.1
SW1U	5/8/2023 11:13:40 AM	0.4	6.3	20.1
SW1U	5/15/2023 9:15:43 AM	1.1	4.0	18.9
SW1U	5/22/2023 12:47:24 PM	3.7	12.5	15.4
SW1U	5/30/2023 9:45:53 AM	3.8	13.9	15.8
SW2L	5/4/2023 9:14:41 AM	18.1	35.6	7.9
SW2L	5/8/2023 11:18:38 AM	15.4	34.0	9.1
SW2L	5/15/2023 9:23:36 AM	15.4	35.3	9.1
SW2L	5/22/2023 12:52:28 PM	14.3	29.3	9.0
SW2L	5/30/2023 9:48:26 AM	11.2	23.1	10.9
SW2U	5/4/2023 5:07:00 PM	17.9	60.6	2.2
SW2U	5/8/2023 11:23:16 AM	1.6	7.7	18.5
SW2U	5/15/2023 9:25:45 AM	1.8	6.7	18.1
SW2U	5/22/2023 1:02:06 PM	2.3	8.5	17.7
SW2U	5/30/2023 9:52:31 AM	0.8	2.8	18.7

Table 3. Sidewall HC Wellhead Gas Quality Measuremen	nts
--	-----

Sidewall wellhead lower collector 1 (SW1L) is connected to the horizontal collector placed in waste inside the landfill liner close to the northern limit of Phase 1. Measurements of gas composition taken at SW1L indicate that methane levels are low, but that landfill gas continues to be captured by the system. Sidewall wellhead upper collector 1 (SW1U) is connected to the horizontal collector placed outside of the liner and waste. SW1U is close to the northern limit of Phase 1. Measurements of gas composition taken at SW1U indicate that ambient air is being pulled in at this location. This is expected for the proximity of this section of the horizontal collector to the Phase 1 temporary termination.

Sidewall wellhead lower collector 2 (SW2L) is connected to the horizontal collector placed in waste inside the landfill liner close to the center of Phase 1. Measurements of gas composition taken at SW1L indicate that methane levels are lower than typical of landfill gas collection systems, but the presence of methane in addition to high carbon dioxide levels indicate that landfill gas is being captured by the system. Sidewall wellhead upper collector 2 (SW2U) is connected to the horizontal collector placed outside of the liner and waste and is close to the center of Phase 1. Measurements of gas composition taken at SW2U indicate that methane levels are low, but that landfill gas is being captured by the system.

Both the upper and lower collectors of Phase 1 of the system have been connected to the partially completed Phase 2 of the system. Because construction of Phase 2 is ongoing, higher levels of ambient air are being captured by the Phase 1 system through these connections. This is expected to be addressed as construction progresses.

Collection of landfill gas by both the upper and lower collectors indicates that the system is capturing fugitive emissions. Based on this data, Phase 2 is being constructed utilizing the same general configuration. SCS-FS will continue to monitor Phase 1 of the system during the month of June 2023.

2.4 FULL SYSTEM CONSTRUCTION

SCS-CONS continued construction of Phase 2 of the SOMS during the month of May 2023. Lower horizontal collector (HC) placement was considered complete along all sections of the sidewall as of May 5, 2023. Liner and clay placement continued throughout the month of May and will continue into June. The remaining section of the upper horizontal collector was installed along the northern sidewall with a section of solid piping for the road crossing in that area. Figure 4 shows Phase 2 construction activities. The crew continued the installation of liquids collection sumps at low elevation points, and wellhead(s) installation at every 100'. Phase 2 lower and upper collectors construction progress, including HC wellhead and sump locations, is shown in the as-built depicted as Figure 5². An additional drawing showing the completed portions of the SOMS is included in Appendix G.

Figure 4. Phase 2 SOMS Low Permeability Soil Placement

² During construction, redundant risers were put in place to accommodate supplemental wellhead installation in the future. Figure 5 shows all riser locations. A final submittal to VDEQ will show the locations of actual wellhead installation.

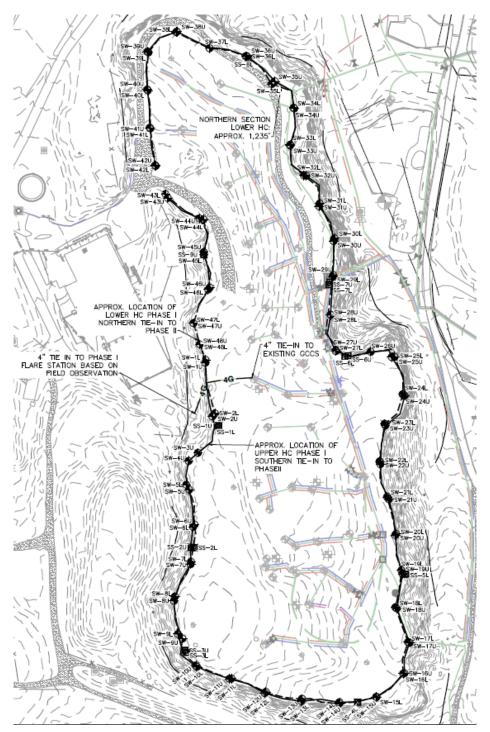


Figure 5. Phase 2 Sidewall Odor Mitigation System Progress As-Built³

During the month of May 2023, SCS-CONS completed installation of Phase 2 lower and upper horizontal collectors. GCCS liquids removal infrastructure and header pipes were temporarily relocated successfully in order to complete the remaining portions of the SOMS. Installation of the

³ Location data was collected using mapping grape global positioning system equipment.

lower collector at the location previously occupied by GCCS liquids removal infrastructure is shown in Figure 6.

Figure 6. Phase 2 SOMS Lower Collector Construction

3.0 WASTE TEMPERATURE MONITORING

On behalf of the City, SCS designed a temperature monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

3.1 TEMPERATURE MONITORING SYSTEM DESIGN


The temperature monitoring system consists of 9 boreholes drilled into the waste mass. A steel casing was placed in each borehole and the hole was backfilled around the casing with aggregate. A series of temperature sensors was placed inside the steel casing. At the top of each borehole, an IIoT transmitter collects the data from the sensors and transmits it to a cloud-based RMC system. The City submitted design of the temperature monitoring system to VDEQ on November 30, 2022.

3.2 TEMPERATURE MONITORING SYSTEM INSTALLATION

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP No. 588 Landfill.

SCS began collecting temperature data daily on February 15, 2023. The temperature sensors continued to transmit temperature data from all 9 casings during the month of May. Average daily temperatures recorded by the sensors for the Month of May are included in Appendix D. Each week the average temperatures from a select day of that week are downloaded and compared to temperatures recorded during the previous week. Average daily temperatures recorded on select days during the month of May are shown in Appendix B. The average temperatures for the month recorded during the months of March, April, and May are shown in Figures 7 through 15 on the following pages.

Figure 7 shows daily average temperatures in Temperature Probe 1 (TP-1) in March, April, and May. Based on the data, temperatures have been consistent during the last three months. TP-1 was originally drilled to a depth of 180 feet, but the contractor was unable to install the casing beyond a depth of 160 feet.

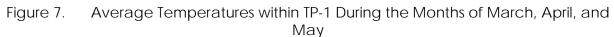
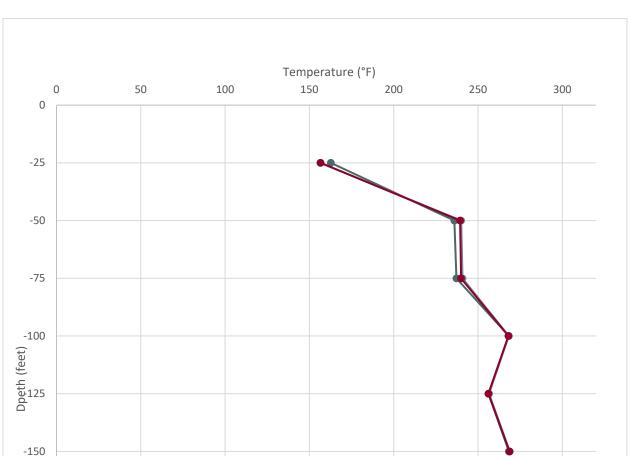
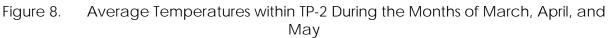
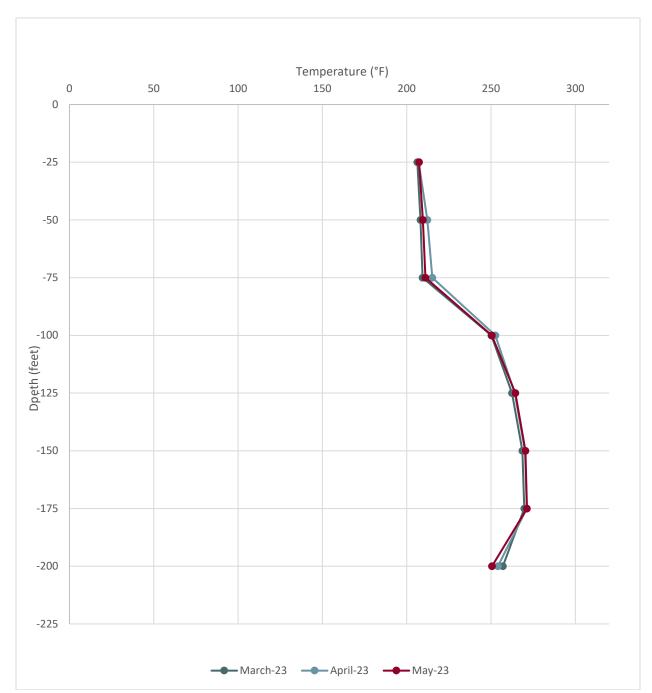




Figure 8 shows daily average temperatures in Temperature Probe 2 (TP-2) in March, April, and May. Based on the data, temperatures have been consistent during the last three months. TP-2 was originally drilled to a depth of 160 feet.



-175

-200

-225

Figure 9 shows daily average temperatures in Temperature Probe 3 (TP-3) in March, April, and May. Based on the data, temperatures have been consistent during the last three months.

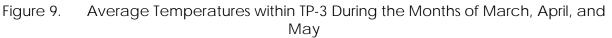


Figure 10 shows daily average temperatures in Temperature Probe 4 (TP-4) in March, April, and May. Based on the data, temperatures have been consistent during the last three months.

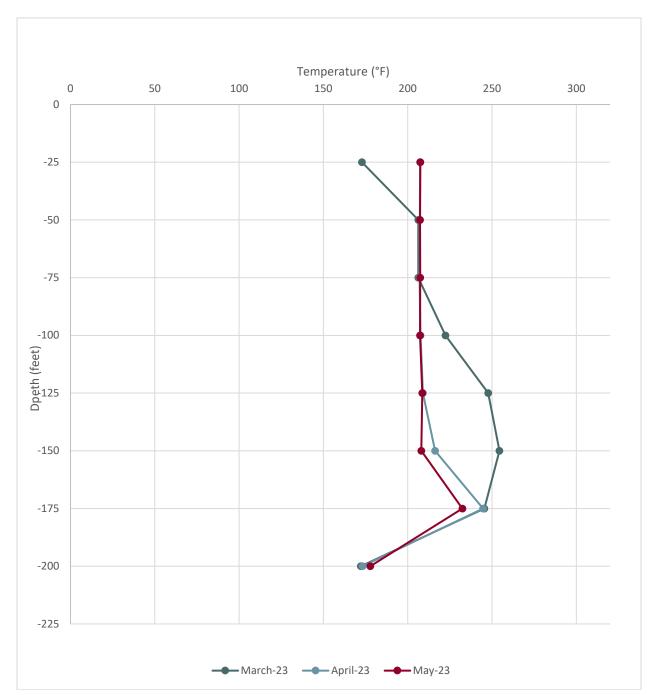


Figure 10. Average Temperatures within TP-4 During the Months of March, April, and May

Figure 11 shows daily average temperatures in Temperature Probe 5 (TP-5) in March, April, and May. Based on the data, temperatures have been consistent during the last three months.

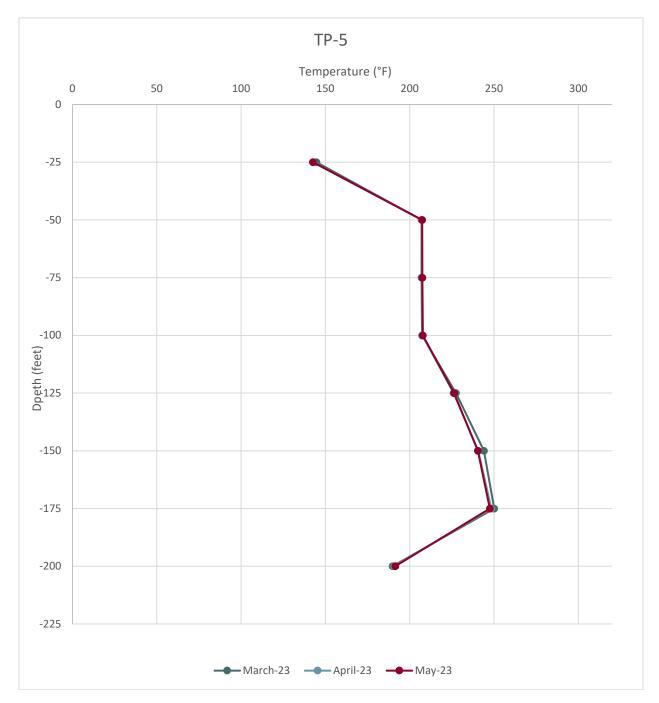
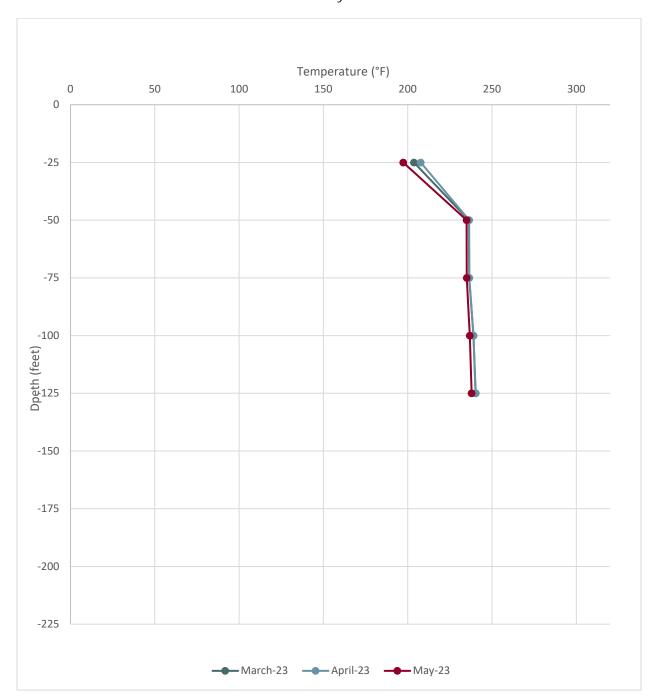



Figure 11. Average Temperatures within TP-5 During the Months of March, April, and May

Figure 12 shows daily average temperatures in Temperature Probe 6 (TP-6) in March, April, and May. Based on the data, temperatures have been consistent during the last three months. TP-6 was originally drilled to a depth of 208 feet and casing was installed to the full depth. During the installation of the installation of replacement sensors, a blockage within the casing prevented placement of sensors below the 125-foot depth.

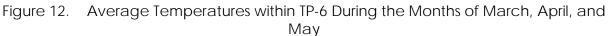
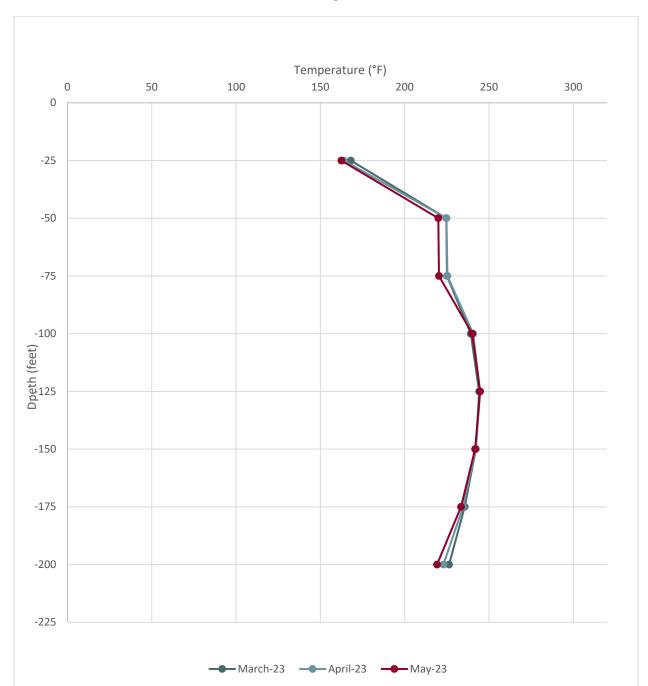



Figure 13 shows daily average temperatures in Temperature Probe 7 (TP-7) in March, April, and May. Based on the data, temperatures have been consistent during the last three months.

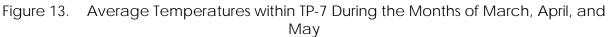
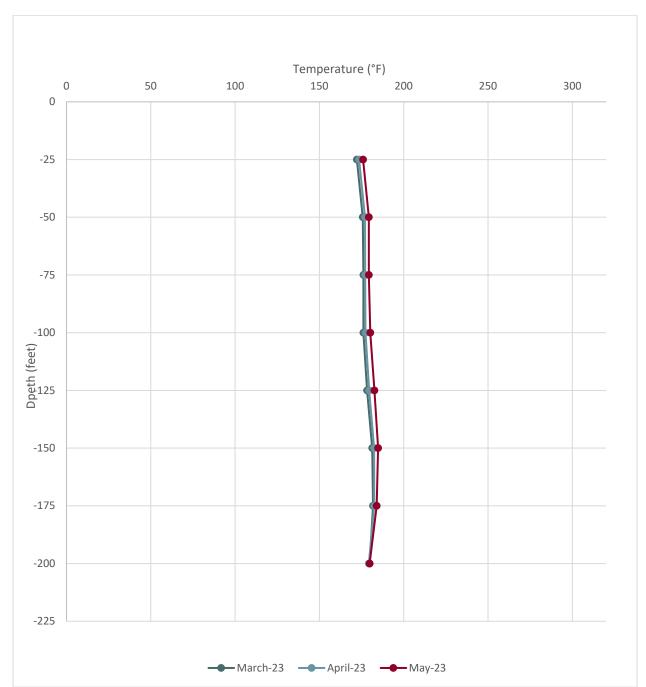



Figure 14 shows daily average temperatures in Temperature Probe 8 (TP-8) in March, April, and May. Based on the data, temperatures have been consistent during the last three months.

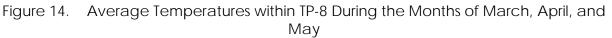
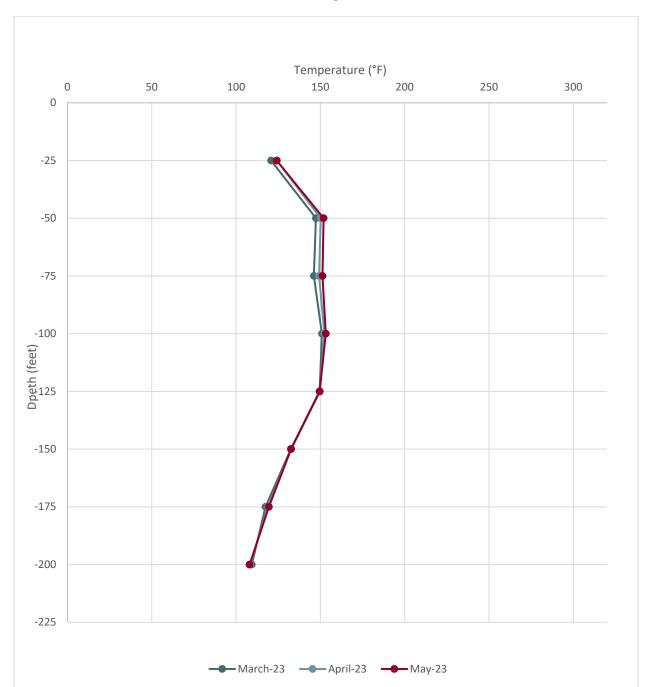
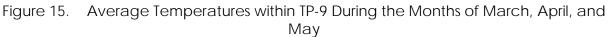




Figure 15 shows daily average temperatures in Temperature Probe 9 (TP-9) in March, April, and May. Based on the data, temperatures have been consistent during the last three months.

The data indicate that temperatures within the landfill are stable and are typical of those observe at elevated temperature landfills (ETLFs). These temperatures are substantially lower than those associated with landfill fires or other combustion processes, which can exceed 1000°F.

4.0 LEACHATE EXTRACTION AND MONITORING

The City has begun taking steps to improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals.

4.1 EXISTING SYSTEM OPTIMIZATION

During weekly gas extraction well monitoring, SCS also collected stroke counter data from the pumps installed in the GCCS extraction wells. Stroke counts were collected from 19 wells on May 4, 2023; May 8, 2023; May 15, 2023; May 22, 2023; and May 30, 2023. The data collected is summarized in Table 4. Cells marked with "*" represent dates when the pump was removed from the well for maintenance or had not yet been installed.

Well	May 4, 2023	May 8, 2023	May 15, 2023	May 22, 2023	May 30, 2023
EW49	562596	582704	582708	602671	630900
EW50	931616	944471	945222	951297	961571
EW51	*	*	*	*	*
EW52	6	12	15	5097	39412
EW53	2088656	2093928	2093928	2128068	2158667
EW54	241211	241220	241220	307143	317679
EW55	115064	118770	149748	164622	171553
EW57	272446	279934	282603	282616	300616
EW58	1902975	1913310	1935845	1982769	1994080
EW59	1718560	1777230	1791736	1820711	1878472
EW60	172066	172071	247396	268597	278402
EW61	215034	222181	223211	232757	234133
EW62	114045	114047	117810	124136	130883
EW63	*	*	*	*	*
EW64	98090	98090	98099	98116	117654
EW65	3973	*	*	*	*
EW67	462026	470570	470574	480714	481717
EW68	1852972	1853386	1853898	1955873	2032232
EW94	102290	104849	168976	169002	292269

 Table 4.
 Summary of Dual Extraction Well Pump Stroke Counter Data

Based on this data and stroke counts taken on May 30, 2023, SCS can estimate the number of gallons of liquid pumped from each well. SCS assumed that each stroke correlates to approximately 0.3 gallons of liquid removed from the well. This data will then be used to repair or replace pumps or

replace nonfunctional stroke counters. Estimates of the quantities of liquids removed between the reading dates is shown in Table 5.

Well	Liquids Removed (gal) April 24, 2023 to May 4, 2023	Liquids Removed (gal) May 4, 2023 to May 8, 2023	Liquids Removed (gal) May 8, 2023 to May 15, 2023	Liquids Removed (gal) May 15, 2023 to May 22, 2023	Liquids Removed (gal) May 22, 2023 to May 30, 2023
EW49	26714	6032	2	5989	8469
EW50	16820	3857	225	1822	3082
EW51	*	*	*	*	*
EW52	2	2	1	1524	10294
EW53	8920	1581	0	10242	9179
EW54	1	3	0	19776	3160
EW55	12359	1112	9293	4462	2079
EW57	355	2246	801	4	5400
EW58	12293	3100	6760	14077	3933
EW59	31560	17601	4352	8692	17328
EW60	3	2	22597	6361	2941
EW61	877	2144	309	2863	412
EW62	0	1	1129	1897	2024
EW63	0	*	*	*	*
EW64	0	0	3	5	5861
EW65	*	*	*	*	*
EW67	3468	2563	2	3042	301
EW68	306	124	153	30592	22907
EW94	20699	768	19238	8	36980

Table 5.Summary of Dual Extraction Well Pump Liquids Removal

SCS estimates that approximately 351,200 gallons of liquids were removed from the landfill gas collection and control system during the month of May. This is an increase of approximately 17,000 gallons when compared to the previous month. The change in landfill gas liquids removal over the last three months is depicted in Figure 16.

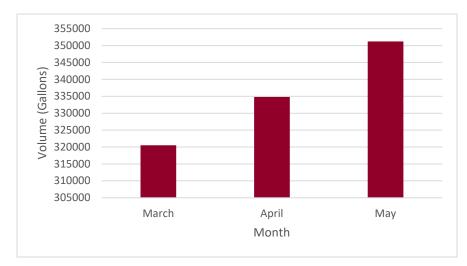


Figure 16. Estimated Volume of Liquids Removed from Landfill Gas Wells

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations. Pumps require servicing after relatively short intervals. During May pump maintenance occurred on 5/3, 5/11, 5/12, 5/15, 5/16, 5/17, 5/24, 5/25, and 5/31.

Pumps that were determined to be inoperative were removed from their respective extraction wells and replaced with a clean, functioning pump. In May, EW-49, EW-52, EW-53, EW-54, EW-57, EW-58, EW-60, EW-61, EW-63, EW-67, EW-68, and EW-94 had their pumps removed and replaced. The pump tri-tubing for EW-67 was found to be compromised and was repaired while the pump was being maintained.

Seven new Pump One pneumatic pumps were delivered to the site during May. These pumps have been designated as spares and will be used to streamline repairs and replacements in the field. This is likely a contributor to the increase in liquids removed month over month.

During April, four pumps were removed and shipped back to the manufacturer's facility (Pump One) for cleaning and repair. These pumps were returned to the site in May and have been put back into rotation for when repairs, replacements, or installations are necessary.

EW-65 was disconnected from the airline used to power the pumps for the month of May 2023 due infrastructure relocation associated with the sidewall odor mitigation system and landfill GCCS expansion construction projects. The pump for EW-51 has also been removed for construction activities and will be reinstalled once feasible. The pump for EW-63 was reinstalled now that construction has progressed further.

During the construction of the LFGCCS expansion outlined in Sections 1.4 and 2.1, multiple types of leachate extraction pumps will be installed. After installation, the City and SCS will evaluate the performance of those pumps. Based on that evaluation, the City will select the pump type that is most effective given the landfill conditions. SCS has developed a priority list for installations based on liquid levels that were collected during May 2023.

4.2 SAMPLING AND ANALYSIS PLAN

On November 1, 2022, SCS submitted to VDEQ the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan for the Bristol Integrated Solid Waste Management Facility Solid Waste Permit No. 588 Landfill and the plan was subsequently revised on December 1, 2022. Refer to the November 2022 and December 2022 Compliance Reports for the SWP No. 588 Landfill for additional information.

4.2.1 Sample Collection

On May 4, 2023, SCS collected leachate samples from three Dual Phase LFG-EWs (EW-50, EW-58 and EW-59). At the time of sample collection dissolved oxygen, oxidation-reduction potential, pH, specific conductance, temperature, and turbidity were measured and recorded. The sample collection log is included in **Appendix F**.

SCS' field staff was not able to collect samples from the other wells for the following reasons:

- Pumps were not running at the time of sample collection in the following wells: EW-49, EW-53, EW-54, EW-55, EW-57, EW-60, EW-61, EW-62, EW-63, EW-64, EW-65, EW-67, and EW-68.
- Pump was disconnected in well EW-56
- No pump was installed in well EW-51.
- The airline was disconnected from well EW-52.

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia and Weck Laboratories, Inc (Weck) in City of Industry, California for analysis. The Enthalpy's Virginia Division of Consolidated Laboratory Services (VELAP) certifications are provided on the certificate of analysis (COA) included in **Appendix F**. The samples were analyzed for the parameters utilizing the analytical methods described in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan.

4.2.2 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for volatile organic compound (VOC) analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analyses. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A brief summary of each of these is presented below:

- Method Blank The method blank is deionized water subjected to the same reagents and manipulations to which site samples are subjected. Positive results in the method blanks may indicate either contamination of the chemical reagents or the glassware and implements used to store or prepare the sample and resulting solutions.
- **MS/MSD** A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis. MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.
- LCS These samples consist of distilled/deionized water injected with the parameters of interest for single parameter methods and selected parameters for multi-parameter methods according to the appropriate analytical method. LCS samples are prepared and analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are similar to the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

Field and laboratory QA/QC also involves the routine collection and analysis of duplicate field samples. These samples are collected at a rate of one per sample event. A duplicate is a separate sample collected independently in such a manner that it equally represents the medium at a given time and location. Co-located samples provide intra-laboratory precision information for the entire measurement system, including sample collection, homogeneity, handling, shipping, storage, preparation, and analysis.

No method or trip blank detects were identified for the May 2023 monitoring event. The laboratory analysis report for the May 2023 monitoring event trip blank is included in **Appendix F**. The May 2023 monitoring event laboratory QA/QC reports, including the method blank results, are included in the COAs in **Appendix F**.

4.2.3 Data Validation

To identify analytical data that may not represent valid results, data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection Agency (EPA) guidance⁴. Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with parameter detections less

⁴ United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. January 2017.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. January 2017.

than five times that of the trip blank, field blank, and/or method blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Samples with common laboratory contaminant parameter detections less than 10 times that of the trip blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not validated as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis.

No leachate results were flagged with a "B" qualifier for the May 2023 monitoring event as no constituents were detected in the May 2023 method and trip blanks. The constituent detection flagged with a "J" qualifier is shown on **Table 6**.

4.2.4 Laboratory Analytical Results

Chemical characteristics of leachate samples collected from extraction wells EW-50, EW-58 and EW-59 are summarized in **Table 6**. The associated COA is included in **Appendix F**. Parameter results from May 2023 and previous monitoring events (November 2022 – April 2023) are presented on a table in **Appendix F**.

Well ID	EW-50	EW-58	EW-59		100
Parameter	May 20	23 Concen	tration	LOD	LOQ
Ammonia as N (mg/L)	1390	1860	2380	146	200
Biological Oxygen Demand (mg/L)	7350	11900	35300	0.2	2
Chemical Oxygen Demand	7590	18700		2000	2000
(mg/L)			44700	4000	4000
Nitrata as N (mg (l)	ND			1.1	5.1
Nitrate as N (mg/L)		ND	ND	1.2	5.2
Nitrite as N (mg/L)	ND	ND	ND	1	5
Total Kjeldahl Nitrogen (mg/L)	1590	1950	2910	40	100
Total Recoverable Phenolics (mg/L)	18.6	20	50	1.5	2.5
SEMI-VOLATILE ORGANIC COMP	OUND (ug/l	_)			
Anthracene	ND		ND	93.5	187
Antiliacene		ND		467	935
TOTAL METALS (mg/L)					
Arsenic	0.26	0.3	0.27	0.0025	0.005
Dorium	0.636			0.005	0.025
Barium		1.2	1.83	0.01	0.05
Cadmium	ND	ND	ND	0.0005	0.005
Chromium	0.422	0.281	0.237	0.002	0.005
Copper	ND	ND	ND	0.0015	0.005
Lead	ND	ND	ND	0.005	0.005
Mercury	ND	ND	ND	0.0002	0.0002
Nickel	0.113	0.09726	0.05657	0.005	0.005

Table 6.	Monthly LFG-EW Leachate Monitoring Event Summary
TUDIC 0.	Monthly El C EW Ecachate Montoling Event Sammary

Well ID	EW-50	EW-58	EW-59		100			
Parameter	May 20	23 Concen	LOD	LOQ				
Selenium	ND	ND	0.00569	0.0043	0.005			
Silver	ND	ND	ND	0.0003	0.005			
Zinc	0.079	0.0635	0.0519	0.0125	0.025			
VOLATILE FATTY ACIDS (mg/L)								
Acetic Acid	990	1800	3000	370	500			
Butyric Acid	ND	ND	1200	330	500			
Propionic Acid	520	800	1400	340	500			
VOLATILE ORGANIC COMPOUNDS (ug/L)								
2-Butanone (MEK)	5360	5970		150	500			
			13600	750	2500			
Acatopa	10700	11700		350	500			
Acetone			29600	1750	2500			
Benzene	814	4890	3370	20	50			
Ethylbenzene	124	276	144	20	50			
Tetrahydrofuran	ND	2740	2380	500	500			
Toluene	258	371	239	25	50			
Xylenes, Total	274	441	230	50	150			

Table 6. Monthly LFG-EW Leachate Monitoring Event Summary

--- = not available

J = Constituent was detected at a concentration above the laboratory's LOD but below the laboratory's LOQ. Concentration is estimated and not validated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

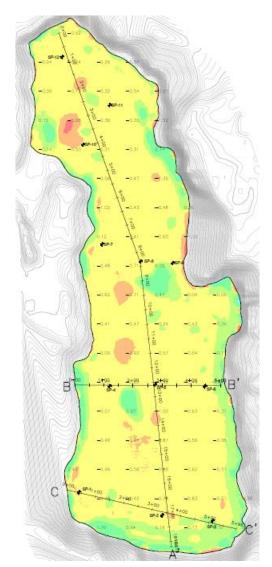
5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

On behalf of the City, SCS submitted a settlement monitoring and management plan to VDEQ on November 15, 2022. Refer to the November Monthly Compliance Report for the SWP No. 588 Landfill for additional information.

5.2 MONTHLY SURVEYS

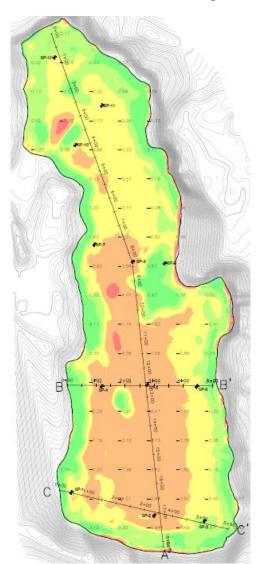

5.2.1 Topographic Data Collection

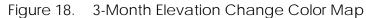
The City, through SCS, collected topographic data of the Solid Waste Permit No. 588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone). On May 11, 2023 the flight was completed and the topographic data collected. The topographic data collected is shown on Sheet 2 in Appendix E.

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on April 11, 2023. A drawing depicting the April 11, 2023 topography is included as Sheet 1 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 13,200 cubic yards. During that same time period approximately 4,900 cubic yards of construction related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 8,300 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 17. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 3 in Appendix E.


Figure 17. 1-Month Elevation Change Color Map


The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 0.5 feet or more in some areas. Settlement in the southern end of the landfill appears to have slowed relative to last month. The southern end of the landfill is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions. Settlement in the northern portion of the landfill was generally less substantial or was offset by soil placement associated with construction activities. These changes in elevation are more representative of typical settlement at municipal landfills. The eastern side of the landfill exhibited an increase in elevation, likely due to soil placement associated with construction of the Sidewall Odor Mitigation System. Increases in elevation along the western edge of the landfill are most likely also due to installation of the Sidewall Odor Mitigation System. Some soil stockpile locations associated with the Sidewall Odor Mitigation System showed a large negative elevation change due to material removal from the stockpiles.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation decrease was approximately 0.3 feet.

SCS also compared the topographic data collected in April to the topographic data collected on January 10, 2023. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 25,200 cubic yards. During that same time period approximately 10,500 cubic yards of construction related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 14,700 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 18. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 4 in Appendix E.

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 2 feet or more in some areas. The southern end of the landfill is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions. Settlement in the northern portion of the landfill was generally less substantial or was offset by soil placement associated with construction activities. Changes in elevation in these areas are more representative of typical settlement at municipal landfills. The eastern side of the landfill exhibited an increase in elevation, likely due to sediment deposition during storm events and waste relocation associated with construction of the Sidewall Odor Mitigation System. Increases in elevation along the western edge of the landfill are most likely due to installation of the Sidewall Odor Mitigation System. There were some large variations in elevation associated with soil stockpiling operations.

SCS will collect topographic data covering the landfill surface again in June using photogrammetric methods via UAV. This data will be compared to the data collected in May and March.

5.2.2 Settlement Plate Surveys

On November 7, 2022 SCS field services installed 12 settlement plates on the Solid Waste Permit No. 588 landfill. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan. The tops of the PVC pipes were spray painted orange to improve visibility.

The locations of the settlement plates were surveyed by the City's surveyor on November 14, 2022. The settlement plates were surveyed again on December 13, 2022; January 3, 2023; February 6, 2023; March 8, 2023; April 3, 2023; and May 11, 2023. The settlement plate locations are depicted in Figure 19 on Sheet 1 in Appendix E. The surveyed coordinates⁵ and elevation changes of the settlement plates are shown in Table 7.

⁵ Settlement plate locations and coordinates are based on a local coordinate system.

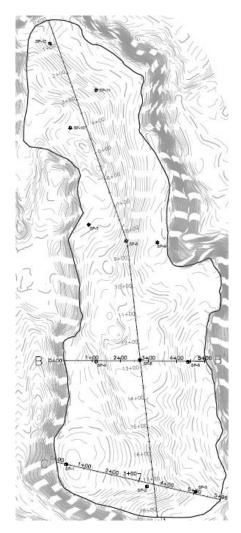


Figure 19. Settlement Plate Locations

Table 7.Settlement Plate Locations

Settlement Plate	Northing	Easting	Elevation on May 11, 2023	Elevation Change Since April 4, 2023	Strain ⁶ Since April 4, 2023	Elevation Change Since Installation	Strain Since Installation
SP-1	3,397,886.6	10,412,078.6	1,832.4	-0.6	-0.9%	-2.0	-3.1%
SP-2	3,397,807.9	10,412,364.8	1,806.5	-0.9	-0.5%	-4.0	-2.5%
SP-3	3,397,787.3	10,412,536.6	1,783.2	-0.2	-0.3%	-0.4	-0.7%
SP-47	3,398,250.2	10,412,187.8	1,812.6	-1.1	-0.7%	-4.9	-3.1%
SP-5	3,398,256.0	10,412,338.8	1,797.6	-0.7	-0.3%	-3.2	-1.2%

⁶ Strain is defined as the change in elevation divided by the estimated waste depth.

⁷ Based on field observations SP-4 appears to have been disturbed during grading on an adjacent roadway.

Settlement Plate	Northing	Easting	Elevation on May 11, 2023	Elevation Change Since April 4, 2023	Strain⁴ Since April 4, 2023	Elevation Change Since Installation	Strain Since Installation
SP-6	3,398,249.4	10,412,511.0	1,776.7	-0.3	-0.2%	-1.0	-0.7%
SP-78	3,398,736.1	10,412,157.2	1,827.4	-0.3	-0.2%	-1.2	-1.0%
SP-8	3,398,679.2	10,412,290.6	1,804.8	-0.6	-0.2%	-2.5	-1.0%
SP-9	3,398,674.0	10,412,401.2	1,784.5	-0.5	-0.5%	-1.3	-1.3%
SP-10	3,399,080.6	10,412,092.3	1,839.3	-0.1	-0.1%	-0.9	-0.3%
SP-11	3,399,216.2	10,412,183.8	1,815.9	-0.2	-0.1%	-0.5	-0.2%
SP-12	3,399,382.1	10,412,019.6	1,810.5	0.0	0.0%	-0.2	-0.2%

Settlement Plates 1, 2, and 4 continue to demonstrate substantial elevation change. SCS believes that Settlement Plate 4 was disturbed by grading work on an adjacent roadway. The other 2 settlement plates (1 and 2) are located towards the center of the waste mass and in the southern end of the landfill. This area is where waste was most recently placed and is expected to show the most rapid settlement. This area is also the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions.

The changed in elevation at Settlement Plates 10, 11, and 12 is lower and more representative of typical settlement at municipal landfills. The change in elevation at Settlement Plates 3, 5, 6, 8, and 9 falls somewhere in between these two categories. Field observations indicate that Settlement Plate 7 may also have been damaged during construction operations.

The settlement plates will be surveyed again during the month of June. The elevations surveyed will be compared to the elevations surveyed the previous months.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City is taking steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below outline the steps taken by the City.

6.1 INTERMEDIATE COVER INSTALLATION

The City completed hauling and placement of a 12-inch thick intermediate cover across the entire landfill prior to October 10, 2022. The cover was placed in accordance with 9VAC20-81-14O(B)(1)(d). SCS coordinated with the City to dig a series of test holes to verify cover thickness in select locations. Details of these verifications were discussed in the October 2022 Monthly Compliance Report for the SWP No. 588 Landfill.

⁸ Based on field observations SP-7 appears to have been disturbed during grading on an adjacent stockpile.

6.2 EVOH COVER SYSTEM DESIGN

SCS submitted responses, including revised documents, on March 20, 2023 to comments received from VDEQ concerning the Interim EVOH Cover System Preliminary Design Plans. The submitted documents included a revised operations manual and settlement calculations for the proposed stormwater basin.

SCS is preparing construction drawings for the EVOH Cover System, including revisions discussed in the response to comments letter. The construction drawings build upon the preliminary design plans. The stormwater management plan drawings will be incorporated into the construction drawing set. Potential modifications to the stormwater management plan submitted to VDEQ on April 28, 2023 will be included in the construction drawing set along with applicable calculations. Other additions to the construction drawings include additional design cross sections, landfill gas management plans and details, access road design, and other items.

SCS received a comment letter dated May 16, 2023 concerning the stormwater management plan, and SCS is preparing a response letter and revised drawings. SCS is also drafting specifications and contract documents for the construction of the EVOH Cover System.

6.3 EVOH COVER SYSTEM PROCUREMENT

Drawings used for the purposes of bidding, procurement and construction of the EVOH cover system will generally conform to the layout and details in the drawings described in section 6.2. SCS also prepared and submitted to VDEQ a specification for the EVOH geomembrane on January 30, 2023 based upon industry standards and discussions with material manufacturers. This specification and drawing set represent the first steps in the procurement process. SCS and the City have coordinated with potential suppliers to specify a product that is not currently anticipated to have long lead times. SCS has received a pro-forma data sheet from one manufacturer which is preparing a customized EVOH product for the No. 588 landfill.

6.4 EVOH COVER SYSTEM INSTALLATION

Installation of the EVOH cover system will begin after the installation of other infrastructure is complete.

7.0 STORMWATER MANAGEMENT

The City is taking steps to implement a stormwater management plan at the landfill. The sections below outline the steps taken by the City.

7.1 STORMWATER MANAGEMENT PLAN DEVELOPMENT

The stormwater management plan was submitted to VDEQ on April 28, 2023. The plan addresses the stormwater volume calculations, assumptions, design, and control measures.

The plan proposes a stormwater pumping system to convey stormwater collected atop the EVOH cover system to an existing discharge point permitted under VPDES permit VAR050053. The proposed system includes the construction of a collection basin in the southeast corner of the quarry and the installation of a nearby long-term stormwater pumping station. The stormwater will be conveyed by a pipe adjacent to the basin access road.

The plan proposes modifications to the existing stormwater basins west of the quarry to achieve discharge quantity targets. Modifications include increasing the basin depths and installing new outlet riser structures.

SCS received a comments letter from DEQ concerning the stormwater management plan dated May 16, 2023. SCS is preparing a response letter with revised documents.

7.2 STORMWATER MANAGEMENT BASIN DESIGN AND CONSTRUCTION

The landfill surface will be regraded to form the SWM basin proposed in the stormwater management plan. The earthwork will be completed as the first stage of the interim EVOH cover system installation project. A revised landfill gas management plan is being prepared to facilitate the regrading of the landfill, which will affect existing landfill gas infrastructure.

7.3 STORMWATER MANAGEMENT PLAN IMPLEMENTATION

The stormwater management plan design drawings are being incorporated into the overall construction drawings for the interim EVOH cover system. The interim EVOH cover system installation and stormwater management features will be bid and constructed as one project to facilitate simultaneous progress and completion.

7.4 LONG-TERM STORMWATER CONTROL AND REMOVAL

The stormwater management plan is designed with resiliency and redundancy to promote long-term operation. Two stormwater pumps will be installed in parallel, with each pump capable of operating independently. The pumps may be operated in parallel in contingency scenarios. The City plans to install a backup generator adjacent to the pumping station to allow for continued operation in the event of a temporary power loss. The pumps have been selected to include additional capacity to allow for future settlement.

The operations manual will be updated to discuss the long-term operation and maintenance of the pumping system and other stormwater management features. Periodic inspections of the stormwater management system will be completed.

7.5 STORMWATER MONITORING

Stormwater monitoring will commence upon initial discharge of stormwater from the quarry stormwater pumping system. As stated in the stormwater management plan drawings, the stormwater shall be monitored in accordance with the facility's VPDES general permit for discharge of stormwater associated with industrial activity. Additional requirements include collecting an additional stormwater sample at the discharge of the quarry stormwater pumping system.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit No. 588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

SCS submitted the Monitoring, Maintenance, and Repair Plan to VDEQ for the SWP No. 588 landfill on December 30, 2022. Refer to the December 2022 Monthly Compliance Report for the SWP No. 588 Landfill for additional information. The City has taken steps to implement the plan that were detailed in the March 2023 Monthly Compliance Report for the SWP No. 588 Landfill.

8.3 MONTHLY COMPLIANCE REPORTS

As described in the introduction this report is intended to provide comprehensive updates regarding progress towards completion of each item described in Appendix A of the Consent Decree between the City and VDEQ,

8.4 COMMUNITY OUTREACH PROGRAM

The City's consultant leading community outreach, McGuireWoods Consulting, described the actions taken as part of their community outreach efforts. For the month of May, those actions include:

- **May ongoing basis:** Thirteen posts on the BristalVALandfill.org site and the existing City of Bristol Landfill Notifications and Information page covering several important updates including:
 - Progress updates during construction of the Sidewall Odor Mitigation System (SOMS).
 - Progress updates during installation of the gas well expansion project
 - Released statement regarding No Deficiency Letters from Virginia DEQ dated April 28, 2023.
 - Shared information related to the scheduling of public comment in the Federal District Court for the Western District of Virginia related to the consent order between Bristol, VA and Bristol, TN.
 - Shared content of letter sent by City of Bristol to President Biden related to request for funds to assist in remediation at the quarry landfill.
 - Provided links to news articles chronicling construction updates and information on legal updates about the quarry landfill.
- New drone footage of progress at the quarry landfill posted this month: footage taken on May 17th highlights the progress made on the Sidewall Odor Mitigation System and gas well expansion project.
- E-mail communication sent to the list of members of the public signed up through the Bristol, VA website, the BristolVALandfill.org website, or at the November 1 Open House to receive information via e-mail
 - E-mails sent included weekly remediation progress update and links to website updates and latest news articles on the following days:
 - Friday, May 5th
 - Friday, May 12th

- Friday, May 19th
- Friday, May 26th

Appendix A

Surface Emissions Monitoring Summary Letters

May 10, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – May 5, 2023 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on May 5, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Description	Quantity
Number of Points Sampled	163
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	63
Number of Exceedances	2
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	2

Table 1.Summary of Surface Emissions Monitoring

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

The two exceedance locations identified during this monitoring event were located at newly installed landfill gas extraction wells. These wells have been connected to vacuum but have not yet been equipped with supplemental emissions reducing components, such as liquids extraction pumps and wellbore seals. Those components will be added after the expansion is complete.

The City and the installation contractor are working diligently to minimize the duration and impacts of these temporary factors.

Mr. Jonathan Chapman May 10, 2023 Page 3

	Table 2.	Ongoing Weekly	SEM Exceedan	ces
Point ID	Initial Exceedance Date	5/5/23 Event	5/5/23 Event Result	Comments
Tag 26	4/4/23	30-Day Retest	Passed	Exceedance Resolved
EW-59	4/13/23	N/A	Passed	Requires 30-Day Retest
Tag 21	4/20/23	N/A	Passed	Requires 30-Day Retest
EW-38	4/20/23	N/A	Passed	Requires 30-Day Retest
EW-84	4/20/23	N/A	Passed	Requires 30-Day Retest
EW-90	4/20/23	N/A	Passed	Requires 30-Day Retest
EW-94	4/20/23	N/A	Passed	Requires 30-Day Retest
Tag 37	4/27/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-89	4/27/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-95	4/27/23	10-Day Retest	Failed	Requires 2 nd 10-Day Retest
EW-100	4/27/23	10-Day Retest	Failed	Requires 2 nd 10 Day Retest

A summary of ongoing exceedance points is provided in Table 2.

Mr. Jonathan Chapman May 10, 2023 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Om Dorner

Quinn F. Bernier, PE Project Professional SCS Engineers

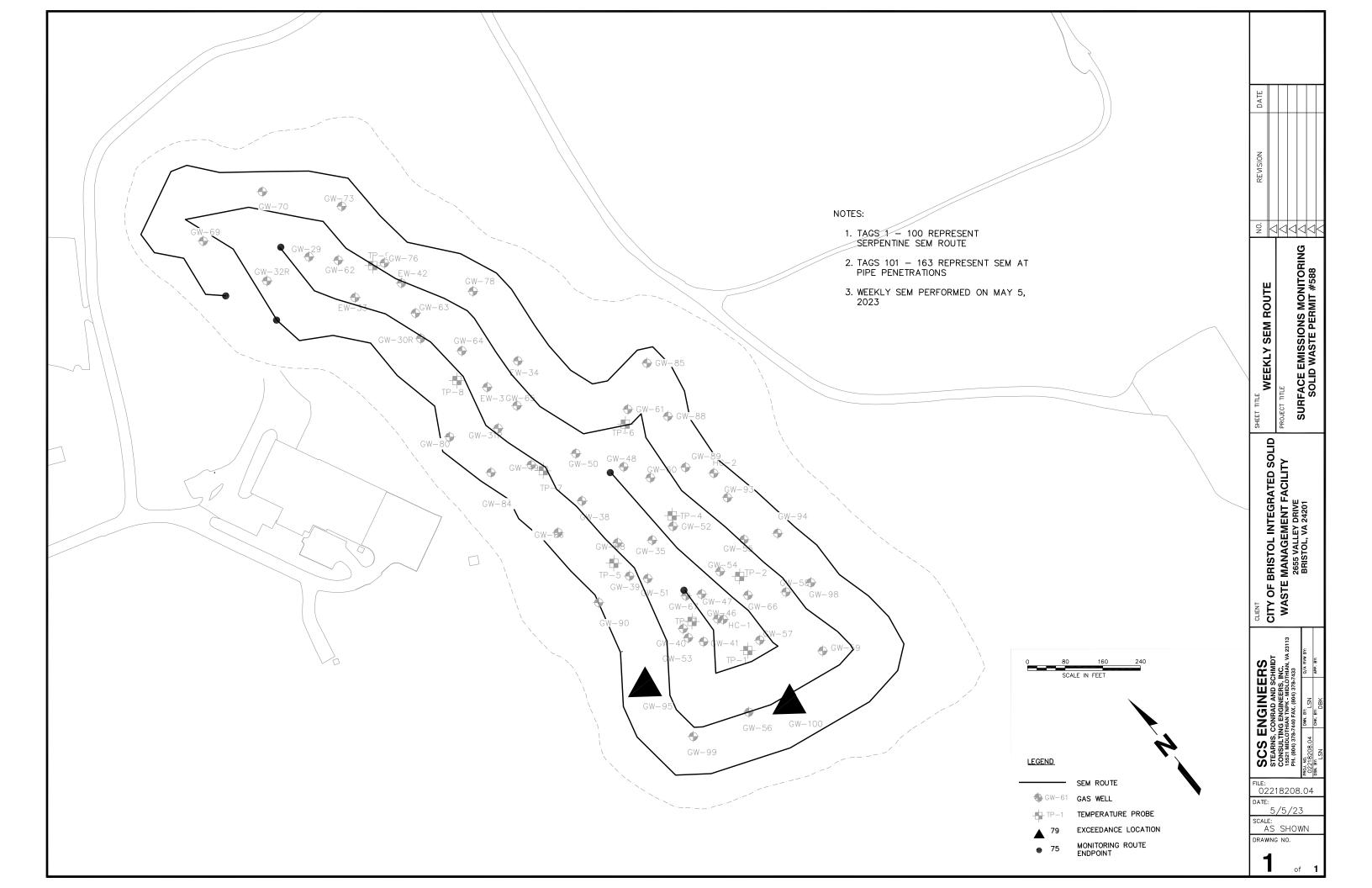
LSN/NG/cjw

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	51.6 PPM	ОК			Start Serpentine
2	1.2 PPM	OK			Route
3	1.1 PPM	OK			
4	1.1 PPM	OK			
5	1.1 PPM	OK			
	0.9 PPM	OK			
6 7	1.1 PPM	OK			
8		OK			
9	1.1 PPM	OK			
10	1.2 PPM 21.2 PPM	OK			
11	3.1 PPM	OK			
12	3.4 PPM	OK			
13	10.5 PPM	OK			
14	51.1 PPM	OK			
15	99.9 PPM	OK			
16	29.9 PPM	OK			
17	64.2 PPM	OK			
18	111 PPM	OK			
19	2.2 PPM	OK			
20	18.1 PPM	OK			
21	29.6 PPM	OK			
22	7.4 PPM	OK			
23	196 PPM	OK			
24	254 PPM	OK			
25	182 PPM	OK			
26	459 PPM	OK			
27	308 PPM	OK			
28	4.7 PPM	OK			
29	295 PPM	OK			
30	20.9 PPM	OK			
31	191 PPM	OK			
32	19.7 PPM	OK			
33	11.1 PPM	OK			
34	3.8 PPM	OK			
35	1.8 PPM	OK			
36	8.7 PPM	OK			
37	20.5 PPM	OK			
38	43.5 PPM	OK			
39	5.2 PPM	OK			
40	4.4 PPM	OK			
41	4.1 PPM	OK			
42	5.9 PPM	OK			


	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
				0	
43	2.2 PPM	OK			
44	12.1 PPM	OK			
45	2 PPM	OK			
46	1.4 PPM	OK			
47	1.3 PPM	OK			
48	1.3 PPM	OK			
49	2.1 PPM	OK			
50	9.9 PPM	OK			
51	0.6 PPM	OK			
52	0.6 PPM	OK			
53	0.7 PPM	OK			
54	0.6 PPM	OK			
55	3 PPM	OK			
56	1.2 PPM	OK			
57	2.7 PPM	OK			
58	0.9 PPM	OK			
59	1.7 PPM	OK			
60	4.8 PPM	OK			
61	3.2 PPM	OK			
62	1.3 PPM	OK			
63	21.1 PPM	OK			
64	33.5 PPM	OK			
65	38 PPM	OK			
66	69.1 PPM	OK			
67	20.9 PPM	OK			
68	3.5 PPM	OK			
69	68 PPM	OK			
70	23.7 PPM	OK			
71	3.8 PPM	OK			
72	11.8 PPM	OK			
73	2.8 PPM	OK			
74	6.6 PPM	OK			
75	20.5 PPM	OK			
76	10.2 PPM	OK			
77	46.8 PPM	OK			
78	29.2 PPM	OK			
79	0.7 PPM	OK			
80	0.7 PPM	OK			
81	0.5 PPM	OK			
82	0.8 PPM	OK			
83	0.4 PPM	OK			
84	0.4 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
85	2.9 PPM	OK			
86	20.6 PPM	OK			
87	8.5 PPM	OK			
88	2.3 PPM	OK			
89	0.6 PPM	OK			
90	0.4 PPM	OK			
91	53 PPM	OK			
92	36.5 PPM	OK			
93	10.8 PPM	OK			
94	200 PPM	OK			
95	24.2 PPM	OK			
96	3.8 PPM	OK			
97	6.7 PPM	OK			
98	12.3 PPM	OK			
99	1.2 PPM	OK			
100	1.4 PPM	OK			End Serpentine
					Route
101	42.7 PPM	OK			EW-35
102	190 PPM	OK			EW-52
103	184 PPM	OK			TP-4
104	138 PPM	OK			EW-60
105	232 PPM	OK			EW-48
106	1.3 PPM	OK			TP-6
107	0.6 PPM	OK			EW-61
108	5 PPM	OK			EW-34
109	7.1 PPM	OK			EW-50
110	186 PPM	OK			EW-67
111	217 PPM	OK			EW-47
112	93.6 PPM	OK			EW-54
113	39.2 PPM	OK			EW-55
114	5.3 PPM	OK			TP-2
115	0 PPM	OK			EW-46
116	1 <i>57</i> PPM	OK			EW-66
117	1 PPM	OK			EW-58
118	37.2 PPM	OK			EW-57
119	2.8 PPM	OK			TP-1
120	97.7 PPM	OK			EW-59
121	268 PPM	OK			EW-56
122	55 PPM	OK			EW-41
123	43.1 PPM	OK			EW-53
124	47.3 PPM	OK			EW-40
125	4.7 PPM	OK			TP-3

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
126	28.5 PPM	ОК			EW-51
127	96.3 PPM	OK			EW-39
128	173 PPM	OK			TP-5
129	206 PPM	OK			EW-68
130	136 PPM	OK			EW-38
131	49.5 PPM	OK			TP-7
132	10.1 PPM	OK			EW-49
133	0 PPM	OK			EW-31R
134	0.7 PPM	OK			EW-65
135	0.2 PPM	OK			EW-37
136	0 PPM	OK			TP-8
137	0 PPM	OK			EW-64
138	1 PPM	OK			EW-30R
139	0.1 PPM	OK			EW-63
140	0 PPM	OK			EW-42
141	6.1 PPM	OK			TP-9
142	3.8 PPM	OK			EW-33R
143	0.2 PPM	OK			EW-62
144	0.6 PPM	OK			EW-29R
145	0 PPM	OK			EW-32R
146	2.3 PPM	OK			EW-69
147	0 PPM	OK			EW-70
148	2.5 PPM	OK			EW-73
149	0 PPM	OK			EW-76
150	165 PPM	OK			EW-78
151	3.2 PPM	OK			EW-85
152	82.6 PPM	OK			EW-88
153	353 PPM	OK			EW-89
154	2 PPM	OK			EW-93
155	299 PPM	OK			EW-94
156	6.7 PPM	OK			EW-98
157	2258 PPM	HIGH_ALRM	36.59775	-82.14757	EW-100
158	3.7 PPM	OK			EW-99
159	959 PPM	HIGH_ALRM	36.59835	-82.14834	EW-95
160	1.5 PPM	OK			EW-90
161	467 PPM	OK			EW-86
162	1.6 PPM	OK			EW-84
163	5.4 PPM	OK			EW-80

SCS ENGINEERS	0	00		\mathbf{C}		C
	5	63	EN	GIN	Εĸ	3

Number of locations sampled: 163 Number of exceedance locations: 2 Notes: 2 Points 1 through 100 represent serpentine SEM route. Points 101 through 163 represent SEM at Pipe Penetrations Weather Conditions: Sunny, 60°F Wind: Calm		Methane			GPS Co	oordinates	
Number of exceedance locations: 2 NOTES: Points 1 through 100 represent serpentine SEM route. Points 101 through 163 represent SEM at Pipe Penetrations Weather Conditions: Sunny, 60°F Wind: Calm	ID #	Concentratio	on Con	npliance	Lat.	Long.	Com
Number of exceedance locations: 2 NOTES: Points 1 through 100 represent serpentine SEM route. Points 101 through 163 represent SEM at Pipe Penetrations Weather Conditions: Sunny, 60°F Wind: Calm		Number of loce	ations sampled:		163]	
Points 1 through 100 represent serpentine SEM route. Points 101 through 163 represent SEM at Pipe Penetrations Weather Conditions: Sunny, 60°F Wind: Calm			•	5:	2		
Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm	Points 1 through Points 101 thro	ugh 163 represen	t SEM at Pipe		ons		
5/5/2023 9:31 ZERO 0.0 PPM 5/5/2023 9:34 SPAN 501.0 PPM	Points 1 through Points 101 thro Weather Condi	ugh 163 represen itions: Sunny, 60°F	t SEM at Pipe Wind: Calm	Penetratio			

May 17, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject:Weekly Surface Emissions Monitoring Event - May 10, 2023Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on May 10, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Description	Quantity
Number of Points Sampled	163
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	63
Number of Exceedances	2
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	2

Table 1.Summary of Surface Emissions Monitoring

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

The two exceedance locations identified during this monitoring event were located at newly installed landfill gas extraction wells. These wells have been connected to vacuum but have not yet been equipped with supplemental emissions reducing components, such as liquids extraction pumps and wellbore seals. Those components will be added after the expansion is complete.

The City and the installation contractor are working diligently to minimize the duration and impacts of these temporary factors.

Mr. Jonathan Chapman May 17, 2023 Page 3

Point ID	Initial Exceedance Date	5/10/23 Event	5/10/23 Event Result	Comments
EW-59	4/13/2023	30-Day Retest	Passed	Exceedance Resolved
Tag 21	4/20/2023	N/A	Passed	Requires 30-Day Retest
EW-38	4/20/2023	N/A	Passed	Requires 30-Day Retest
EW-84	4/20/2023	N/A	Passed	Requires 30-Day Retest
EW-90	4/20/2023	N/A	Passed	Requires 30-Day Retest
EW-94	4/20/2023	N/A	Passed	Requires 30-Day Retest
Tag 37	4/27/2023	N/A	Passed	Requires 30-Day Retest
EW-89	4/27/2023	N/A	Failed	Requires 2 nd 10-Day Retest
EW-95	4/27/2023	2 nd 10-Day Retest	Passed	Requires 30-Day Retest
EW-100	4/27/2023	2nd 10-Day Retest	Failed	Subject to 1960(c)(4)(v)

Ongoing Weekly SEM Exceedances

A summary of ongoing exceedance points is provided in Table 2.

Table 2.

Mr. Jonathan Chapman May 17, 2023 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

William J. Fabrie

Will J. Fabrie Staff Professional SCS Engineers

LSN/WJF/cjw

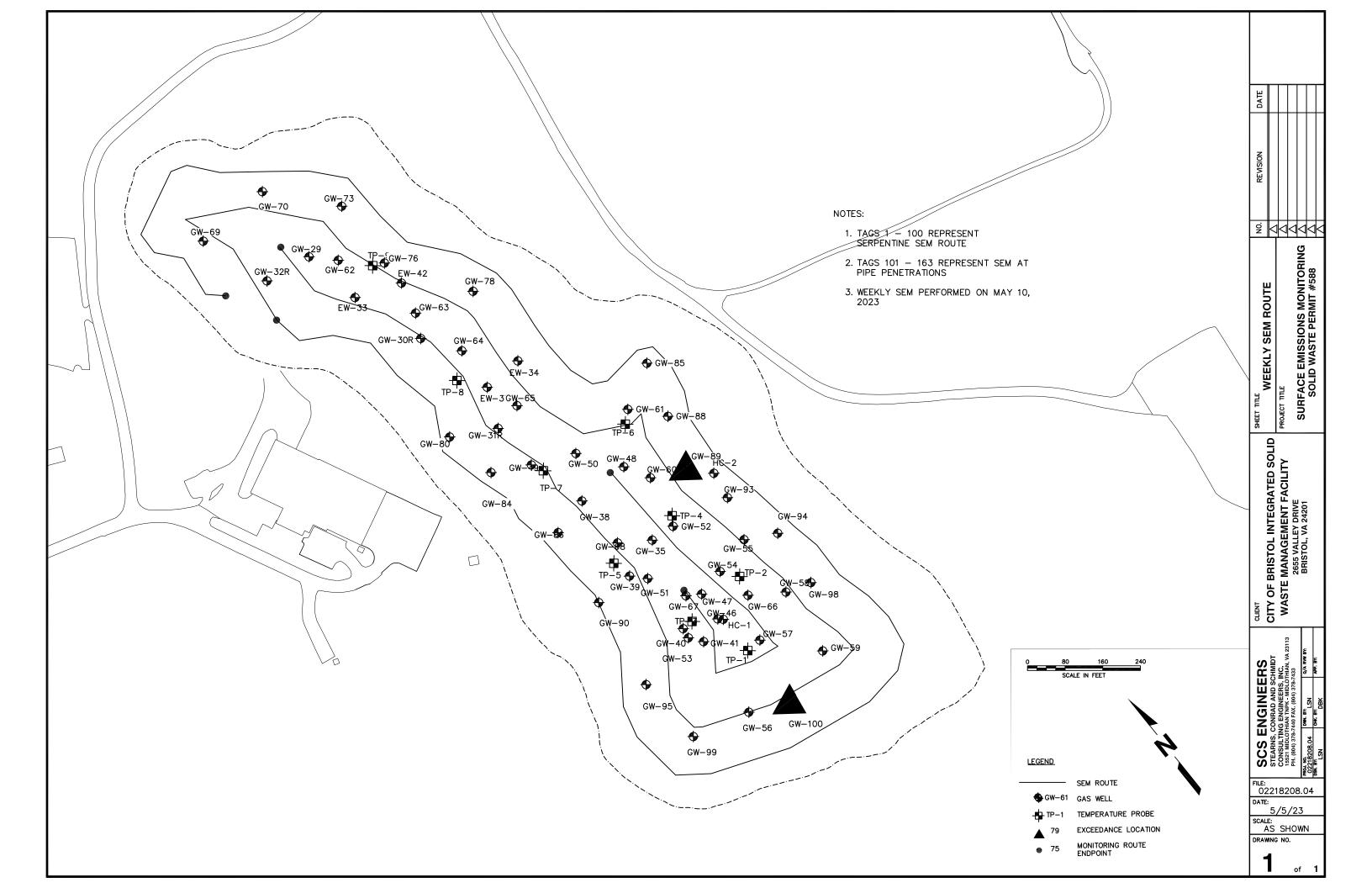
Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	36.2 PPM	OK			Start Serpentine
2	3.3 PPM	OK			Route
3	2.2 PPM	OK			
4	2.9 PPM	OK			
5	4.6 PPM	OK			
6	5.3 PPM	OK			
7	4.6 PPM	OK			
8	4.4 PPM	OK			
9	5.9 PPM	OK			
10	1.5 PPM	OK			
11	9.6 PPM	OK			
12	21.8 PPM	OK			
13	29.7 PPM	OK			
14	24.9 PPM	OK			
15	6.7 PPM	OK			
16	5 PPM	OK			
17	8.6 PPM	OK			
18	13.5 PPM	OK			
19	28.6 PPM	OK			
20	214 PPM	OK			
21	157 PPM	OK			
22	192 PPM	OK			
23	167 PPM	OK			
24	64.1 PPM	OK			
25	239 PPM	OK			
26	234 PPM	OK			
27	58.7 PPM	OK			
28	255 PPM	OK			
29	311 PPM	OK			
30	135 PPM	OK			
31	34.1 PPM	OK			
32	5.4 PPM	OK			
33	8.1 PPM	OK			
34	34.5 PPM	OK			
35	7 PPM	OK			
36	5.9 PPM	OK			
37	1.7 PPM	OK			
38	29.5 PPM	OK			
39	24.5 PPM	OK			
40	7.9 PPM	OK			
41	5.2 PPM	OK			
42	2.6 PPM	OK			


	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
43	4.1 PPM	OK			
44	4 PPM	OK			
45	1.1 PPM	OK			
46	0.8 PPM	OK			
47	1 PPM	OK			
48	7.6 PPM	OK			
49	260 PPM	OK			
50	2.8 PPM	OK			
51	4.4 PPM	OK			
52	1.7 PPM	OK			
53	3.8 PPM	OK			
54	1.8 PPM	OK			
55	0.7 PPM	OK			
56	0.9 PPM	OK			
57	0.7 PPM	OK			
58	5.5 PPM	OK			
59	0.7 PPM	OK			
60	7.3 PPM	OK			
61	1.7 PPM	OK			
62	1.3 PPM	OK			
63	1.2 PPM	OK			
64	1.4 PPM	OK			
65	3.2 PPM	OK			
66	38.9 PPM	OK			
67	65.1 PPM	OK			
68	3.8 PPM	OK			
69	106 PPM	OK			
70	3.9 PPM	OK			
71	3.3 PPM	OK			
72	58.4 PPM	OK			
73	13.5 PPM	OK			
74	16.6 PPM	OK			
75	13.5 PPM	OK			
76	61.1 PPM	OK			
77	4.2 PPM	OK			
78	15 PPM	OK			
79	99.7 PPM	OK			
80	33.6 PPM	OK			
81	13.6 PPM	OK			
82	20.1 PPM	OK			
83	9.8 PPM	OK			
84	9.1 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
85	10.4 PPM	ОК			
86	6.2 PPM	OK			
87	1.4 PPM	OK			
88	1 PPM	OK			
89	1.1 PPM	OK			
90	0.2 PPM	OK			
91	6.2 PPM	OK			
92	20 PPM	OK			
93	81.3 PPM	OK			
94	47.4 PPM	OK			
95	62.9 PPM	OK			
96	113 PPM	OK			
97	25.6 PPM	OK			
98	40.9 PPM	OK			
99	34.7 PPM	OK			
100	4.4 PPM	OK			End Serpentine
		-			Route
101	96.2 PPM	OK			EW-35
102	438 PPM	OK			EW-52
103	2.7 PPM	OK			TP-4
104	194 PPM	OK			EW-60
105	307 PPM	OK			EW-48
106	2.5 PPM	OK			TP-6
107	0.4 PPM	OK			EW-61
108	249 PPM	OK			EW-34
109	0 PPM	OK			EW-50
110	277 PPM	OK			EW-67
111	30 PPM	OK			EW-47
112	110 PPM	OK			EW-54
113	135 PPM	OK			EW-55
114	14.3 PPM	OK			TP-2
115	11.4 PPM	OK			EW-46
116	15.5 PPM	OK			EW-66
117	1 PPM	OK			EW-58
118	104 PPM	OK			EW-57
119	170 PPM	OK			TP-1
120	192 PPM	OK			EW-59
121	189 PPM	OK			EW-56
122	68.6 PPM	OK			EW-41
123	13.5 PPM	OK			EW-53
124	22 PPM	OK			EW-40
125	18.4 PPM	OK			TP-3

	Met	hane		GPS Coo	rdinates	
ID ‡	¢ Conce	ntration C	Compliance	Lat.	Long.	Comments
120	40.9	PPM	OK			EW-51
127	7 38.9	PPM	OK			EW-39
128	3 203	PPM	OK			TP-5
129	0.8	PPM	OK			EW-68
130) 71.7	PPM	OK			EW-38
13	17.3	PPM	OK			TP-7
132	2 5.4	PPM	OK			EW-49
133	3 0.1	PPM	OK			E₩-31R
134	4 0.4	PPM	OK			EW-65
13	5 2.6	PPM	OK			EW-37
130	5 0.5	PPM	OK			TP-8
137	7 5.5	PPM	OK			EW-64
138	3 1.1	PPM	OK			EW-30R
139) 0	PPM	OK			EW-63
140) 1.2	PPM	OK			EW-42
14	3.7	PPM	OK			TP-9
142	2 0.1	PPM	OK			EW-33R
143	3 2	PPM	OK			EW-62
144	4 5.3	PPM	OK			EW-29R
14	5 0.7	PPM	OK			EW-32R
140	5 13.3	PPM	OK			EW-69
147	7 1.5	PPM	OK			EW-70
148	3 0.8	PPM	OK			EW-73
149	2 2	PPM	OK			EW-76
150) 25.5	PPM	OK			EW-78
15	207	PPM	OK			EW-85
152	2 8.4	PPM	OK			EW-88
153	3 14800	PPM H	IIGH_ALRM	36.59923	-82.14716	EW-89
154	4 20.7	PPM	OK			EW-93
15	5 143	PPM	OK			EW-94
150	9.5	PPM	OK			EW-98
157	7 10020	PPM H	IIGH_ALRM	36.59775	-82.14757	EW-100
158	3 1	PPM	OK			EW-99
159	9 3.5	PPM	OK			EW-95
160) 30.8	PPM	OK			EW-90
16	31.8	PPM	OK			EW-86
162	2 0.3	PPM	OK			EW-84
163	3 5.5	PPM	OK			EW-80

6	\mathbf{c}		C I N	
Э	63	EN	GIN	КЭ

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comr
	Number of locatic	ns sampled:	163]	
	Number of exceede	•	2		
Points 101 thro	n 100 represent serp ugh 163 represent S itions: Sunny, 78°F W	EM at Pipe Penetration	ns		
Points 1 through Points 101 thro Weather Cond	ugh 163 represent S itions: Sunny, 78°F W	EM at Pipe Penetration			
Points 1 through Points 101 thro Weather Cond	ugh 163 represent S itions: Sunny, 78°F W	EM at Pipe Penetration 'ind: 3 SW <u>0 ppm, Zero Air - 0.0</u> O 0.0 F	<u>ppm</u> PM		
Points 1 through Points 101 thro Weather Cond Sampling Calib 5/10/2023	ugh 163 represent S itions: Sunny, 78°F W <u>ration: Methane - 50</u> 10:33 ZER 10:34 SPA	EM at Pipe Penetration 'ind: 3 SW <u>0 ppm, Zero Air - 0.0</u> O 0.0 F	<u>ppm</u> PM		
Points 1 through Points 101 thro Weather Cond <u>Sampling Calib</u> 5/10/2023 5/10/2023	ugh 163 represent S itions: Sunny, 78°F W <u>ration: Methane - 50</u> 10:33 ZER 10:34 SPA	EM at Pipe Penetration 'ind: 3 SW <u>0 ppm, Zero Air - 0.0</u> O 0.0 F N 501.0 F	<u>ppm</u> PPM PPM		

May 24, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject:Weekly Surface Emissions Monitoring Event - May 18, 2023Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on May 18, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Description	Quantity
Number of Points Sampled	164
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	64
Number of Exceedances	1
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	1

Table 1.Summary of Surface Emissions Monitoring

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

The one exceedance location identified during this monitoring event was located at a newly installed landfill gas extraction well. This well has been connected to vacuum but has not yet been equipped with supplemental emissions reducing components, such as liquids extraction pumps and wellbore seals. Those components will be added after the expansion is complete.

The City and the installation contractor are working diligently to minimize the duration and impacts of these temporary factors.

Mr. Jonathan Chapman May 24, 2023 Page 3

Initial Exceedance 5/18/23 5/18/23 Event Point ID Comments Event Result Date 4/20/2023 Tag 21 30-Day Retest Passed Exceedance Resolved EW-38 4/20/2023 30-Day Retest Passed Exceedance Resolved EW-84 4/20/2023 30-Day Retest Passed Exceedance Resolved EW-90 4/20/2023 30-Day Retest Passed Exceedance Resolved EW-94 4/20/2023 30-Day Retest Passed Exceedance Resolved Tag 37 4/27/2023 N/A Passed **Requires 30-Day Retest** 2nd 10-Day EW-89 4/27/2023 Failed Subject to 1960(c)(4)(v)Retest EW-95 4/27/2023 N/A Passed **Requires 30-Day Retest** EW-100 4/27/2023 N/A Failed Subject to 1960(c)(4)(v)

Ongoing Weekly SEM Exceedances

A summary of ongoing exceedance points is provided in Table 2.

Table 2.

Mr. Jonathan Chapman May 24, 2023 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

William J. Fabrie

Will J. Fabrie Staff Professional SCS Engineers

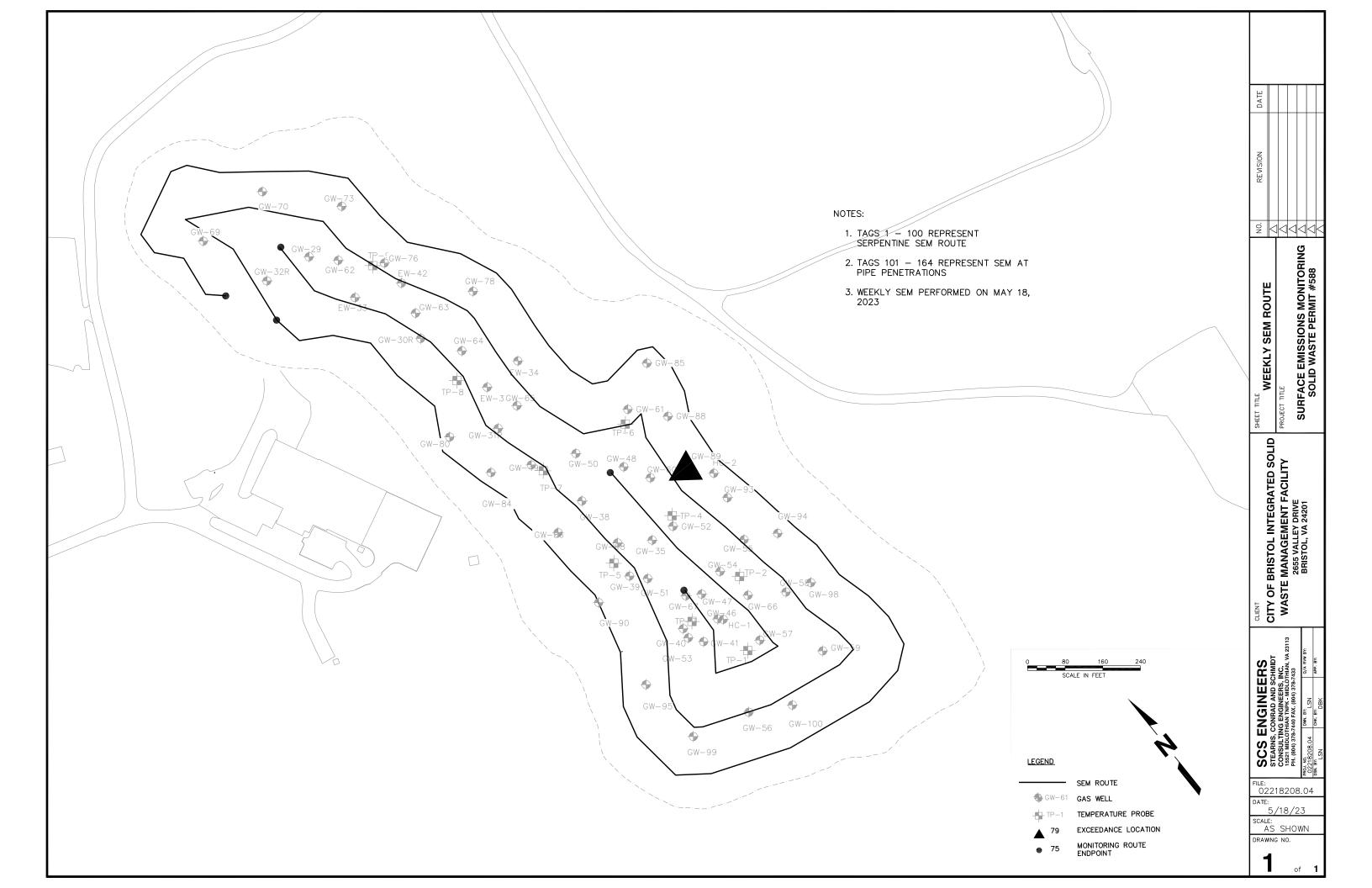
LSN/WJF/cjw

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Met	hane		GPS Co	ordinates	
ID #	Concer	ntration	Compliance	Lat.	Long.	Comments
1	9.2	PPM	ОК			Start Serpentine
2	16.5	PPM	OK			Route
3	7.7	PPM	OK			
4	2.4	PPM	OK			
5	5.2	PPM	OK			
6	3.7	PPM	OK			
7	3.4	PPM	OK			
8	1.9	PPM	OK			
9	2.8	PPM	OK			
10	1.7	PPM	OK			
11	4	PPM	OK			
12	4.8	PPM	OK			
13	3.9	PPM	OK			
14	1.4	PPM	OK			
15	4	PPM	OK			
16	18.4	PPM	OK			
17	5.2	PPM	OK			
18	8.4	PPM	OK			
19	3.8	PPM	OK			
20	8.1	PPM	OK			
20	45.3	PPM	OK			
22	24.7	PPM	OK			
23	12	PPM	OK			
23	8.6	PPM	OK			
25	31	PPM	OK			
26	13.7	PPM	OK			
27	8.1	PPM	OK			
28	71.6	PPM	OK			
29	47.5	PPM	OK			
30	74.2	PPM	OK			
31	367	PPM	OK			
32	265	PPM	OK			
33	28.8	PPM	OK			
34	14.1	PPM	OK			
35	13.4	PPM	OK			
36	9.9	PPM	OK			
30 37	7.4	PPM	OK			
38	17.3	PPM	OK			
38 39	2.1	PPM	OK			
40	2.1	PPM	OK			
40	1.7	PPM	OK			
41	25.7	PPM	OK			


	Met	hane		GPS Co	ordinates	
ID #	Concer	ntration	Compliance	Lat.	Long.	Comments
43	45.4	PPM	OK			
44	4.2	PPM	OK			
45	6.1	PPM	OK			
46	1.7	PPM	OK			
47	36.3	PPM	OK			
48	10.8	PPM	OK			
49	4.2	PPM	OK			
50	4.1	PPM	OK			
51	8.9	PPM	OK			
52	9.5	PPM	OK			
53	30.3	PPM	OK			
54	1.1	PPM	OK			
55	0.8	PPM	OK			
56	1	PPM	OK			
57	1	PPM	OK			
58	1.3	PPM	OK			
59	1.2	PPM	OK			
60	1.8	PPM	OK			
61	2.4	PPM	OK			
62	1.3	PPM	OK			
63	1.6	PPM	OK			
64	2.1	PPM	OK			
65	4.7	PPM	OK			
66	7.9	PPM	OK			
67	20	PPM	OK			
68	6.7	PPM	OK			
69	2.8	PPM	OK			
70	52.4	PPM	OK			
71	29.1	PPM	OK			
72	8	PPM	OK			
73	33.3	PPM	OK			
74	97.9	PPM	OK			
75	1.2	PPM	OK			
76	2.6	PPM	OK			
77	62.6	PPM	OK			
78	0.1	PPM	OK			
79	0.3	PPM	OK			
80	10.4	PPM	OK			
81	70.7	PPM	OK			
82	12.9	PPM	OK			
83	2.3	PPM	OK			
84	3.5	PPM	OK			

	M	ethane		GPS Co	ordinates	
ID #	Conc	entration	Compliance	Lat.	Long.	Comments
	0.7		01/			
85	0.7	PPM	OK OK			
86 87	2.3	PPM				
87	4.2 2.2	PPM PPM	OK OK			
89	2.2	PPM	OK			
90	0.8	PPM	OK			
90	13.8					
91	36.3	PPM PPM	OK OK			
93	49.3	PPM	OK			
94	50	PPM	OK			
95	77.6	PPM	OK			
96	5	PPM	OK			
97	4.6	PPM	OK			
98	31.7	PPM	OK			
99	2.9	PPM	OK			
100	8.4	PPM	OK			End Serpentine
						Route
101	462	PPM	OK			EW-35
102	51.7	PPM	OK			EW-52
103	1.3	PPM	OK			TP-4
104	419	PPM	OK			EW-60
105	170	PPM	OK			EW-48
106	9.4	PPM	OK			TP-6
107	7	PPM	OK			EW-61
108	4.1	PPM	OK			EW-34
109	3.9	PPM	OK			EW-50
110	3.3	PPM	OK			EW-67
111	11.9	PPM	OK			EW-47
112	21.5	PPM	OK			EW-54
113	51.2	PPM	OK			EW-55
114	3.2	PPM	OK			TP-2
115	2.9	PPM	OK			EW-46
116	19.7	PPM	OK			EW-66
117	4.1	PPM	OK			EW-58
118	95.9	PPM	OK			EW-57
119	30.4	PPM	OK			TP-1
120	86.7	PPM	OK			EW-59
121	86.3	PPM	OK			EW-56
122	131	PPM	OK			EW-41
123	13.2	PPM	OK			EW-53
124	51.4	PPM	OK			EW-40
125	9.3	PPM	OK			TP-3

	Met	nane		GPS Co	ordinates	
ID #	Concer	ntration	Compliance	Lat.	Long.	Comments
126	2	PPM	ОК			EW-51
127	4.8	PPM	OK			EW-39
128	182	PPM	OK			TP-5
129	34.1	PPM	OK			EW-68
130	41	PPM	OK			EW-38
131	15.5	PPM	OK			TP-7
132	178	PPM	OK			EW-49
133	1.1	PPM	OK			EW-31R
134	0.1	PPM	OK			EW-65
135	0.9	PPM	OK			EW-37
136	1	PPM	ОК			TP-8
137	1.6	PPM	OK			EW-64
138	0.7	PPM	OK			EW-30R
139	0.1	PPM	OK			EW-63
140	2.2	PPM	OK			EW-42
141	2.1	PPM	OK			TP-9
142	1.3	PPM	OK			EW-33R
143	1.3	PPM	OK			EW-62
144	2.5	PPM	OK			EW-29R
145	2.7	PPM	OK			EW-32R
146	3.5	PPM	OK			EW-69
147	6.2	PPM	OK			EW-32
148	2.5	PPM	OK			EW-70
149	3.5	PPM	OK			EW-73
150	0.5	PPM	OK			EW-76
151	5.8	PPM	OK			EW-78
152	10.9	PPM	OK			EW-85
153	6.1	PPM	OK			EW-88
154	7330	PPM	HIGH_ALRM	36.59923	-82.14716	EW-89
155	46.1	PPM	OK			EW-93
156	4.9	PPM	OK			EW-94
157	6.4	PPM	OK			EW-98
158	80.8	PPM	OK			EW-100
159	0.2	PPM	OK			EW-99
160	0.5	PPM	OK			EW-95
161	8.6	PPM	OK			EW-90
162	201	PPM	OK			EW-86
163	0.7	PPM	OK			EW-84
164	0.1	PPM	OK			EW-80

0	00		De
Э	63	GIN	RЭ

	Methan	e		GPS Co	ordinates	
ID #	Concentro	ition	Compliance	Lat.	Long.	Com
	Number of I	ocations sam	nled	164]	
	Number of exc		•	1		
Points 101 thro	h 100 represent ugh 164 repres itions: Sunny, 73	ent SEM at	Pipe Penetration	15		
Points 1 throug Points 101 thro Weather Cond	ugh 164 represe itions: Sunny, 73 pration: Methane	ent SEM at °F Wind: 9 - 500 ppr	Pipe Penetration S m, Zero Air - 0.0	<u>ppm</u>		
Points 1 throug Points 101 thro Weather Cond	ugh 164 represe itions: Sunny, 73	ent SEM at °F Wind: 9	Pipe Penetration S	<u>ppm</u> PM		
Points 1 throug Points 101 thro Weather Cond Sampling Calik 5/18/2023	ugh 164 represe itions: Sunny, 73 pration: Methane 10:26 10:28	ent SEM at °F Wind: 9 <u>- 500 ppr</u> ZERO	Pipe Penetration S m, Zero Air - 0.0 0.0 P	<u>ppm</u> PM		
Points 1 throug Points 101 thro Weather Cond <u>Sampling Calik</u> 5/18/2023 5/18/2023	ugh 164 represe itions: Sunny, 73 pration: Methane 10:26 10:28 ading:	ent SEM at °F Wind: 9 <u>- 500 ppr</u> ZERO	Pipe Penetration S m, Zero Air - 0.0 0.0 P	<u>ppm</u> PM PM		

May 31, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject:Weekly Surface Emissions Monitoring Event - May 25, 2023Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on May 25, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Description	Quantity
Number of Points Sampled	163
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	63
Number of Exceedances	3
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	3

Table 1.Summary of Surface Emissions Monitoring

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

Two of the three exceedance locations identified during this monitoring event were located at a newly installed landfill gas extraction well. These wells have been connected to vacuum but have not yet been equipped with supplemental emissions reducing components, such as liquids extraction pumps and wellbore seals. Those components will be added after the expansion is complete.

The City and the LFG installation contractor are working diligently to minimize the duration and impacts of these temporary factors.

Mr. Jonathan Chapman May 31, 2023 Page 3

Point ID	Initial Exceedance Date 5/25/23 Event		5/25/23 Event Result	Comments
Tag 37	4/27/2023	30-Day Retest	Passed	Exceedance resolved
EW-89	4/27/2023	N/A	Failed	Subject to 1960(c)(4)(v)
EW-95	4/27/2023	30-Day Retest	Passed	Exceedance resolved
EW-100	4/27/2023	N/A	Failed	Subject to 1960(c)(4)(v)

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Borner

Quinn F. Bernier, PE Project Professional SCS Engineers

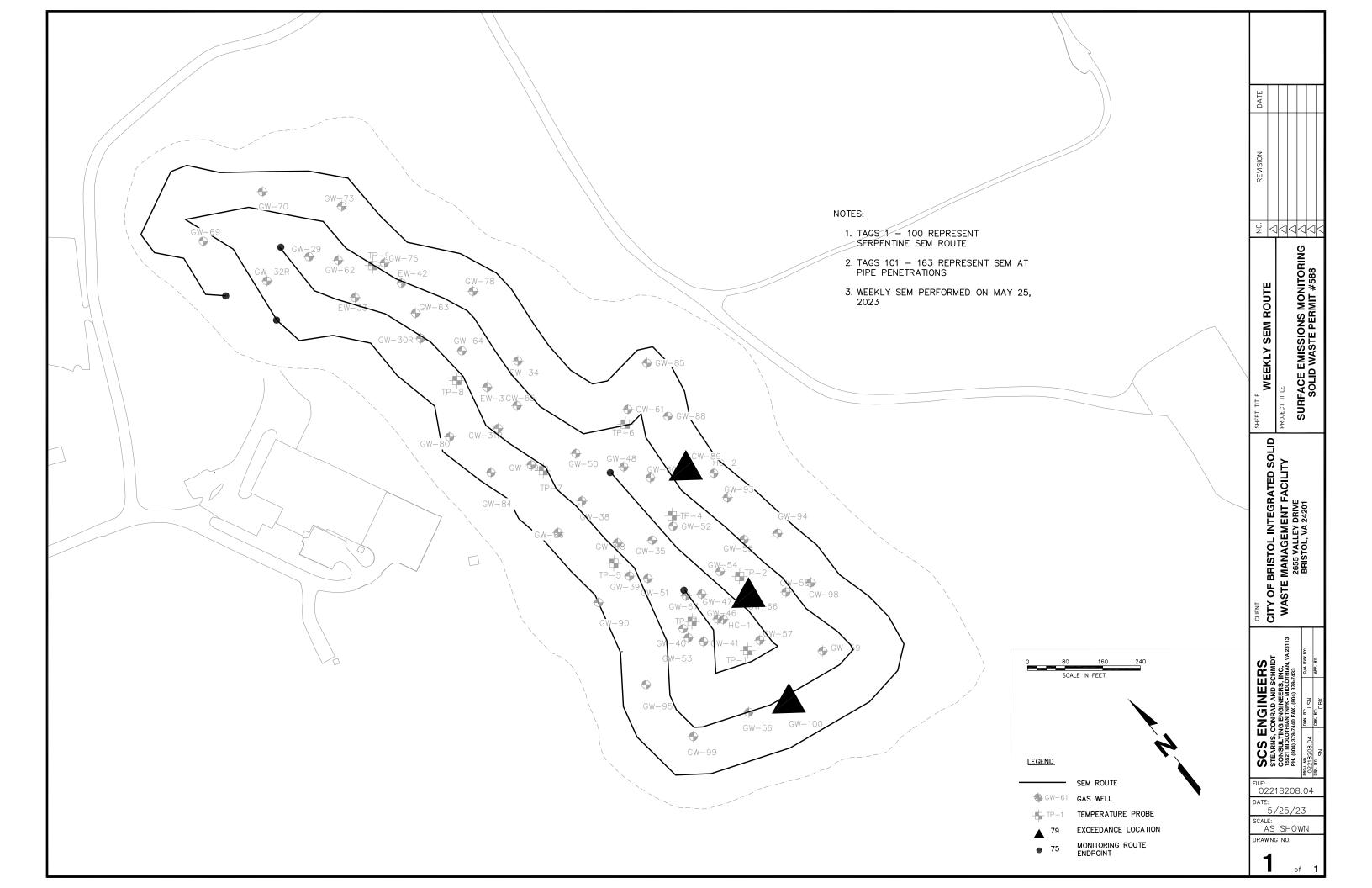
LSN/QFB/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

	Met	hane		GPS Co	ordinates	
ID #	Concer	ntration	Compliance	Lat.	Long.	Comments
1	0.9	PPM	OK			Start Serpentine
2	0.7	PPM	OK			Route
3	0.6	PPM	OK			
4	0.6	PPM	OK			
5	1.5	PPM	OK			
6	7.5	PPM	OK			
7	9	PPM	OK			
8	19.2	PPM	OK			
9	22.4	PPM	OK			
10	29.3	PPM	OK			
11	22	PPM	OK			
12	7.9	PPM	OK			
13	4.9	PPM	OK			
14	61.8	PPM	OK			
15	38.9	PPM	OK			
16	9.9	PPM	OK			
17	195	PPM	OK			
18	31.6	PPM	OK			
19	16.8	PPM	OK			
20	13.5	PPM	OK			
21	194	PPM	OK			
22	42.6	PPM	OK			
23	218	PPM	OK			
24	225	PPM	OK			
25	57.8	PPM	OK			
26	169	PPM	OK			
27	5.3	PPM	OK			
28	4	PPM	OK			
29	1.6	PPM	OK			
30	8	PPM	OK			
31	7.7	PPM	OK			
32	11	PPM	OK			
33	3	PPM	OK			
34	3	PPM	OK			
35	2.8	PPM	OK			
36	10.9	PPM	OK			
37	0.9	PPM	OK			
38	7.6	PPM	OK			
39	2.6	PPM	OK			
40	2.2	PPM	OK			
41	4.3	PPM	ОК			
42	65.2	PPM	OK			


	Met		GPS Co	ordinates		
ID #	Concer	ntration	Compliance	Lat.	Long.	Comments
	00.1		011			
43	22.1	PPM	OK			
44	26.6	PPM	OK			
45	7.4	PPM	OK			
46	5.8	PPM	OK			
47	6.1	PPM	OK			
48	7.3	PPM	OK			
49	6.9	PPM	OK			
50	31.8	PPM	OK			
51	9.1	PPM	OK			
52	8.1	PPM	OK			
53	8.1	PPM	OK			
54	27.1	PPM	OK			
55	10.8	PPM	OK			
56	10	PPM	OK			
57	9.6	PPM	OK			
58	5	PPM	OK			
59	6	PPM	OK			
60	7.8	PPM	OK			
61	5.6	PPM	OK			
62	40.8	PPM	OK			
63	20.6	PPM	OK			
64	29.1	PPM	OK			
65	85.6	PPM	OK			
66	96.3	PPM	OK			
67	26.8	PPM	OK			
68	43.4	PPM	OK			
69	42.4	PPM	OK			
70	3.6	PPM	OK			
71	1	PPM	OK			
72	3	PPM	OK			
73	12.2	PPM	OK			
74	1.6	PPM	OK			
75	7.3	PPM	OK			
76	34.7	PPM	OK			
77	5	PPM	OK			
78	2.8	PPM	OK			
79	3	PPM	OK			
80	2.7	PPM	OK			
81	3.9	PPM	OK			
82	4.3	PPM	OK			
83	4.1	PPM	OK			
84	4.2	PPM	OK			

	Methane			GPS Cod	ordinates	
ID #	Concer	ntration	Compliance	Lat.	Long.	Comments
85	4.2	PPM	OK			
86	6.3	PPM	OK			
87	2.9	PPM	OK			
88	3	PPM	OK			
89	5	PPM	OK			
90	9.3	PPM	OK			
91	39.5	PPM	OK			
92	118	PPM	OK			
93	132	PPM	OK			
94	2	PPM	OK			
94	65.6	PPM	OK			
96	32.3	PPM	OK			
97	13	PPM	OK			
98	18.7	PPM	OK			
99	21.8	PPM	OK			
100	108	PPM	OK			End Serpentine
						Route
101	200	PPM	OK			EW-35
102	134	PPM	OK			EW-52
103	25.8	PPM	OK			TP-4
104	459	PPM	OK			EW-60
105	144	PPM	OK			EW-48
106	15.5	PPM	OK			TP-6
107	18.3	PPM	OK			EW-61
108	11.3	PPM	OK			EW-34
109	2.2	PPM	OK			EW-50
110	230	PPM	OK			EW-67
111	96	PPM	OK			EW-47
112	333	PPM	OK			EW-54
113	2.1	PPM	OK			EW-55
114	59.9	PPM	OK			TP-2
115	3966	PPM	HIGH_ALRM	36.59829	-82.14754	EW-66
116	5.7	PPM	OK			EW-58
117	143	PPM	OK			EW-57
118	134	PPM	OK			TP-1
119	207	PPM	OK			EW-59
120	29.9	PPM	ОК			EW-56
121	194	PPM	OK			EW-41
122	192	PPM	OK			EW-53
123	59.5	PPM	OK			EW-40
124	9.5	PPM	OK			TP-3
125	18	PPM	OK			EW-51

	Meth	thane		GPS Cod	Comments	
ID #	Concen	tration	Compliance Lat. Long.			
126	226	PPM	OK			EW-39
127	1	PPM	OK			TP-5
128	2.6	PPM	OK			EW-68
129	53.9	PPM	OK			EW-38
130	49.9	PPM	OK			TP-7
131	2.3	PPM	OK			EW-49
132	2.7	PPM	OK			EW-31R
133	4.1	PPM	OK			EW-65
134	1.2	PPM	OK			EW-37
135	0	PPM	OK			TP-8
136	0.7	PPM	OK			EW-64
137	2.3	PPM	OK			EW-30R
138	2.9	PPM	OK			EW-63
139	0.9	PPM	OK			EW-42
140	3.3	PPM	OK			TP-9
141	3	PPM	OK			EW-33R
142	3.8	PPM	OK			EW-62
143	-0.2	PPM	OK			EW-29R
144	2.1	PPM	OK			EW-32R
145	46.1	PPM	OK			EW-69
146	3.4	PPM	OK			EW-32
147	8.5	PPM	OK			EW-70
148	148	PPM	OK			EW-73
149	0	PPM	OK			EW-76
150	54.7	PPM	OK			EW-78
151	4.2	PPM	OK			EW-85
152	4.5	PPM	OK			EW-88
153	22200	PPM	HIGH_ALRM	36.59931	-82.14683	EW-89
154	45.7	PPM	OK			EW-93
155	275	PPM	OK			EW-94
156	8	PPM	OK			EW-98
157	807	PPM	HIGH_ALRM	36.59773	-82.14748	EW-100
158	1	PPM	OK			EW-99
159	1.3	PPM	OK			EW-95
160	111	PPM	OK			EW-90
161	403	PPM	OK			EW-86
162	4.7	PPM	OK			EW-84
163	8.5	PPM	OK			EW-80

6	\mathbf{c}		C I N	
Э	63	EN	GIN	КЭ

	Methane		GPS Co	ordinates	
ID #	Concentratio	n Compliance	Lat.	Long.	Com
	Number of locc	tions sampled:	163]	
	Number of excee	•	3		
Points 101 thro Weather Cond	ugh 163 represent itions: Sunny, 73°F				
Points 1 throug Points 101 thro Weather Cond	ugh 163 represent itions: Sunny, 73°F pration: Methane -	SEM at Pipe Penetra Wind: 5 S 500 ppm, Zero Air - C	0.0 ppm		
Points 1 throug Points 101 thro Weather Cond	ugh 163 represent itions: Sunny, 73°F <u>ration: Methane -</u> 10:03 Z	SEM at Pipe Penetrat Wind: 5 S 500 ppm, Zero Air - 0 ERO 0.0			
Points 1 throug Points 101 thro Weather Cond Sampling Calik 5/25/2023	ugh 163 represent itions: Sunny, 73°F vration: Methane - 10:03 Z 10:08 S	SEM at Pipe Penetrat Wind: 5 S 500 ppm, Zero Air - 0 ERO 0.0).0 ppm) PPM		
Points 1 throug Points 101 thro Weather Cond <u>Sampling Calik</u> 5/25/2023 5/25/2023	ugh 163 represent itions: Sunny, 73°F <u>vration: Methane -</u> 10:03 Z 10:08 S <u>ading:</u>	SEM at Pipe Penetrat Wind: 5 S 500 ppm, Zero Air - 0 ERO 0.0 PAN 502.0).0 ppm) PPM		

June 7, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – May 30, 2023 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on May 30, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Description	Quantity
Number of Points Sampled	162
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	62
Number of Exceedances	1
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	1

Table 1.Summary of Surface Emissions Monitoring

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Point ID	Initial Exceedance Date	5/30/23 Event	5/30/23 Event Result	Comments
EW-89	4/27/2023	N/A	Passed	Subject to 1960(c)(4)(v)
EW-100	4/27/2023	N/A	Passed	Subject to 1960(c)(4)(v)
EW-66	5/25/2023	First 10-day retest	Failed	Requires 2 nd 10-day retest

Table 2. Ongoing Weekly SEM Exceedances

Mr. Jonathan Chapman June 7, 2023 Page 3

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

m

Quinn F. Bernier, PE Project Professional SCS Engineers

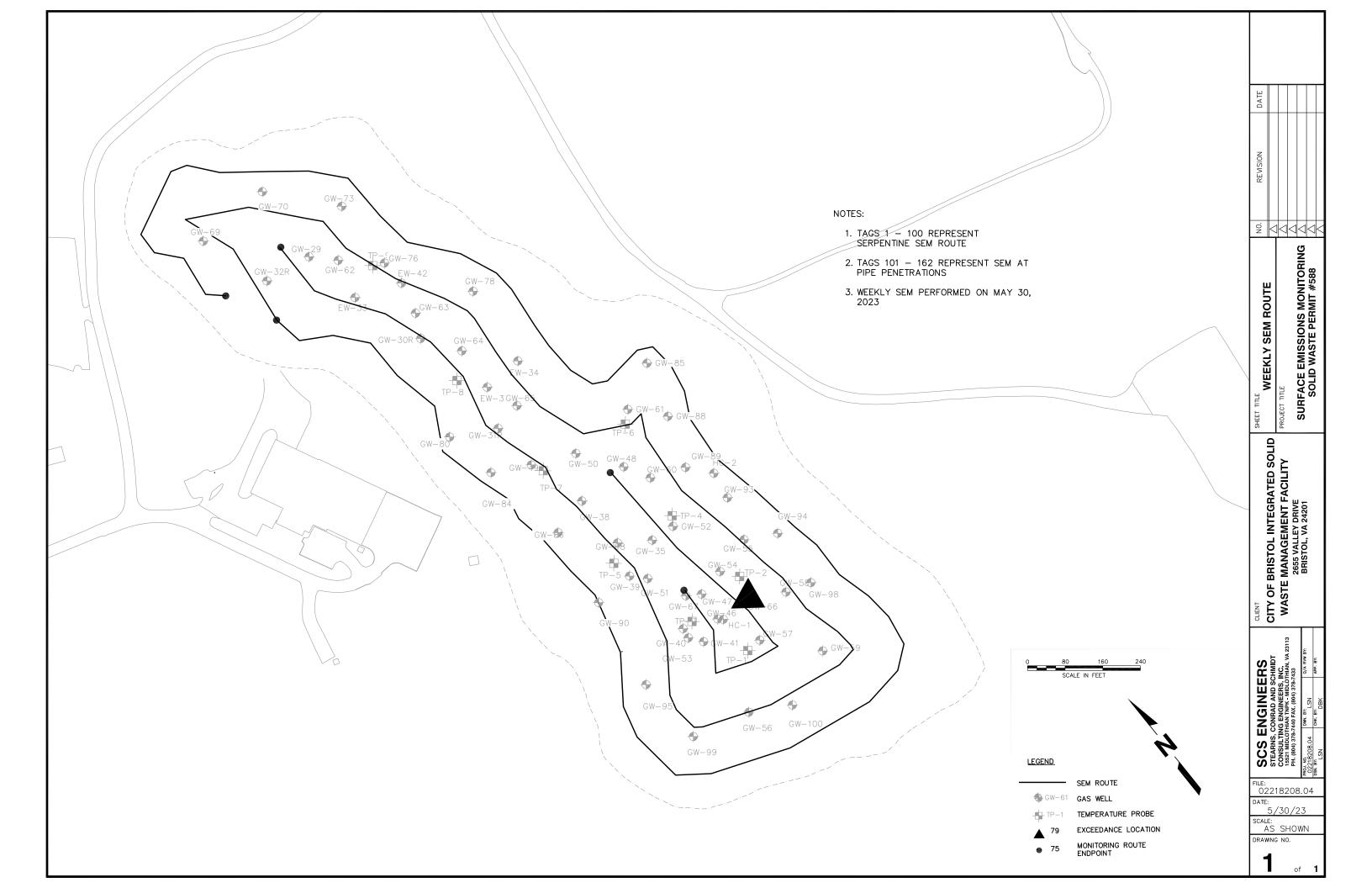
Lucus D. Nachman

Lucas S. Nachman Senior Project Professional SCS Engineers

LSN/QFB/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Methc	ine		GPS Co	ordinates	
ID #	Concentr	ation	Compliance	Lat.	Long.	Comments
1	4.2	PPM	OK			Start Serpentine
2	14.4	PPM	OK			Route
3	7.2	PPM	OK			
4	4.2	PPM	OK			
5	4.1	PPM	OK			
6	4.9	PPM	OK			
7	4.2	PPM	OK			
8	1.8	PPM	OK			
9	2	PPM	OK			
10	1.9	PPM	OK			
11	5.3	PPM	OK			
12	5	PPM	OK			
13	11.1	PPM	OK			
14	5.9	PPM	OK			
15	3.3	PPM	OK			
16	3.1	PPM	OK			
17	10.8	PPM	OK			
18	16.7	PPM	OK			
19	16.1	PPM	OK			
20	1.2	PPM	OK			
21	1.5	PPM	OK			
22	5.5	PPM	OK			
23	3.8	PPM	OK			
24	2	PPM	OK			
25	1.2	PPM	OK			
26	3.9	PPM	OK			
27	86.5	PPM	OK			
28	110	PPM	OK			
29	196	PPM	OK			
30	149	PPM	OK			
31	469	PPM	OK			
32	60.9	PPM	OK			
33	52.5	PPM	OK			
34	14.7	PPM	OK			
35	2.5	PPM	OK			
36	3.4	PPM	OK			
37	7.9	PPM	OK			
38	1.9	PPM	OK			
39	5.6	PPM	OK			
40	3.1	PPM	OK			
41	323	PPM	OK			
42	171	PPM	OK			


	Methane			GPS Co	ordinates	
ID #	Concentr	ation	Compliance	Lat.	Long.	Comments
43	10.3	PPM	OK			
44	1.8	PPM	OK			
45	1.9	PPM	OK			
46	2.6	PPM	OK			
47	16.5	PPM	OK			
48	17.4	PPM	OK			
49	13.2	PPM	OK			
50	2.2	PPM	OK			
51	1.2	PPM	OK			
52	2.8	PPM	OK			
53	1	PPM	OK			
54	1	PPM	OK			
55	0.8	PPM	OK			
56	92.8	PPM	OK			
57	63.1	PPM	OK			
58	1.2	PPM	OK			
59	1.4	PPM	OK			
60	0.8	PPM	OK			
61	0.7	PPM	OK			
62	0.6	PPM	OK			
63	0.6	PPM	OK			
64	1	PPM	OK			
65	0.6	PPM	OK			
66	0.4	PPM	OK			
67	1.5	PPM	OK			
68	1.6	PPM	OK			
69	3.4	PPM	OK			
70	32.9	PPM	OK			
71	3.9	PPM	OK			
72	21.1	PPM	OK			
73	86.8	PPM	OK			
74	15.5	PPM	OK			
75	12.4	PPM	OK			
76	33.9	PPM	OK			
77	4.6	PPM	OK			
78	216	PPM	OK			
79	48.8	PPM	OK			
80	7.3	PPM	OK			
81	3.8	PPM	OK			
82	5.2	PPM	OK			
83	4.2	PPM	OK			
84	27.6	PPM	OK			

	Metha	ne	GPS Coordinates				
ID #	Concentr	ation	Compliance	Lat.	Long.	Comments	
85	4.5	PPM	ОК				
86	3	PPM	OK				
87	4.8	PPM	OK				
88	4.5	PPM	OK				
89	4.3	PPM	OK				
90	4.3	PPM	OK				
91	8.4	PPM	OK				
92	7.1	PPM	OK				
93	19.3	PPM	OK				
94	175	PPM	OK				
95	47.1	PPM	OK				
96	42.7	PPM	OK				
97	86.9	PPM	OK				
98	3.5	PPM	OK				
99	67.2	PPM	OK				
100	9.4	PPM	OK			End Serpentine	
						Route	
101	185	PPM	OK			EW-35	
102	127	PPM	OK			EW-52	
103	9.5	PPM	OK			TP-4	
104	370	PPM	OK			EW-60	
105	119	PPM	OK			EW-48	
106	3.1	PPM	OK			TP-6	
107	12	PPM	OK			EW-61	
108	98.4	PPM	OK			EW-34	
109	1.5	PPM	OK			EW-50	
110	186	PPM	OK			EW-67	
111	129	PPM	OK			EW-47	
112	254	PPM	OK			EW-54	
113	453	PPM	OK			EW-55	
114	278	PPM	OK			TP-2	
115	5924	PPM	HIGH_ALRM	36.59842	-82.14736	EW-66	
116	178	PPM	OK			EW-58	
117	259	PPM	OK			EW-57	
118	5.3	PPM	OK			TP-1	
119	402	PPM	OK			EW-59	
120	409	PPM	OK			EW-56	
121	227	PPM	OK			EW-41	
122	435	PPM	OK			EW-53	
123	171	PPM	OK			EW-40	
124	59.4	PPM	OK			TP-3	
125	26.6	PPM	OK			EW-51	

	Metho	GPS Coordinates				
ID #	Concentr	ation	Compliance	Lat.	Lat. Long.	
126	10.5	PPM	ОК			EW-39
127	17.4	PPM	OK			TP-5
128	3	PPM	OK			EW-68
129	31.2	PPM	OK			EW-38
130	2.5	PPM	OK			TP-7
131	10.3	PPM	OK			EW-49
132	2.6	PPM	OK			EW-31R
133	3	PPM	OK			EW-65
134	3.1	PPM	OK			TP-8
135	0.2	PPM	OK			EW-64
136	3.9	PPM	OK			EW-30R
137	0.1	PPM	OK			EW-63
138	0.1	PPM	OK			EW-42
139	0.5	PPM	OK			TP-9
140	0.8	PPM	OK			EW-33R
141	0.1	PPM	OK			EW-62
142	0.3	PPM	OK			EW-29R
143	0.5	PPM	OK			EW-32R
144	309	PPM	OK			EW-69
145	10.8	PPM	OK			EW-32
146	0.1	PPM	OK			EW-70
147	487	PPM	OK			EW-73
148	11.4	PPM	OK			EW-76
149	34	PPM	OK			EW-78
150	11.5	PPM	OK			EW-85
151	13.5	PPM	OK			EW-88
152	97.4	PPM	OK			EW-89
153	18	PPM	OK			EW-93
154	8.9	PPM	OK			EW-94
155	135	PPM	OK			EW-98
156	0.8	PPM	OK			EW-100
157	0.5	PPM	OK			EW-99
158	19.1	PPM	OK			EW-95
159	155	PPM	OK			EW-90
160	18.4	PPM	OK			EW-86
161	12	PPM	OK			EW-84
162	3	PPM	OK			EW-80

SCS ENGINEERS	60	0		ЕВ	0
	36	5	GI	ЕК	0

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comm
				1	
	Number of locatio Number of exceeda	•	162 1		
L					
•	n 100 represent serp ugh 162 represent S	entine SEM route. EM at Pipe Penetratic	ons		
Points 1 through Points 101 thro		EM at Pipe Penetratio	ons		
Points 1 through Points 101 thro Weather Cond	ugh 162 represent S itions: Sunny, 65°F W	EM at Pipe Penetratio			
Points 1 through Points 101 thro Weather Cond	ugh 162 represent S itions: Sunny, 65°F W	EM at Pipe Penetratic 'ind: 3 S 10 ppm, Zero Air - 0.0) <u>ppm</u>		
Points 1 through Points 101 thro Weather Cond Sampling Calib	ugh 162 represent S itions: Sunny, 65°F W ration: Methane - 50	EM at Pipe Penetratic 'ind: 3 S 1 <u>0 ppm, Zero Air - 0.0</u> 0 0.1 I	<u>) ppm</u> PPM		
Points 1 through Points 101 thro Weather Cond Sampling Calib 5/30/2023	ugh 162 represent S itions: Sunny, 65°F W <u>ration: Methane - 50</u> 11:13 ZER 11:16 SPA	EM at Pipe Penetratic 'ind: 3 S 1 <u>0 ppm, Zero Air - 0.0</u> 0 0.1 1	<u>) ppm</u> PPM		
Points 1 through Points 101 thro Weather Cond Sampling Calib 5/30/2023 5/30/2023	ugh 162 represent S itions: Sunny, 65°F W <u>ration: Methane - 50</u> 11:13 ZER 11:16 SPA	EM at Pipe Penetratic 'ind: 3 S 1 <u>0 ppm, Zero Air - 0.0</u> 0 0.1 N 500.0	<u>) ppm</u> PPM PPM		

Appendix B

In-Waste Temperatures on Select Days in May

Figures

Figure B- 1.	Average Temperatures Recorded by TP-1 on May 3, 2023	3
Figure B- 2.	Average Temperatures Recorded by TP-1 on May 10, 2023	3
Figure B- 3.	Average Temperatures Recorded by TP-1 on May 17, 2023	4
Figure B- 4.	Average Temperatures Recorded by TP-1 on May 25, 2023	4
Figure B- 5.	Average Temperatures Recorded by TP-1 on May 31, 2023	5
Figure B- 6.	Average Temperatures Recorded by TP-2 on May 3, 2023	6
0	Average Temperatures Recorded by TP-2 on May 10, 2023	
	Average Temperatures Recorded by TP-2 on May 17, 2023	
•	Average Temperatures Recorded by TP-2 on May 25, 2023	
Figure B- 10.	5 1 5 5	
Figure B- 11.		
Figure B- 12.		
Figure B- 13.		
Figure B- 14.		
Figure B- 15.		
Figure B- 16.		
Figure B- 17.		
Figure B- 18.		
Figure B- 19.		
Figure B- 20.		
Figure B- 21.		
Figure B- 22.		
Figure B- 23.		
Figure B- 24.		
Figure B- 25.		
Figure B- 26.		
Figure B- 27.		
Figure B- 28.		
Figure B- 29.		
Figure B- 30.		
Figure B- 31.		
Figure B- 32.		
Figure B- 33.		
Figure B- 34.		
Figure B- 35.		
Figure B- 36.		
Figure B- 37.		
Figure B- 38.		
Figure B- 39.		
Figure B- 40.		
Figure B- 41.		
Figure B- 42.		
Figure B- 43.		
Figure B- 44.		
Figure B- 45.	Average Temperatures Recorded by TP-9 on May 31, 2023	29

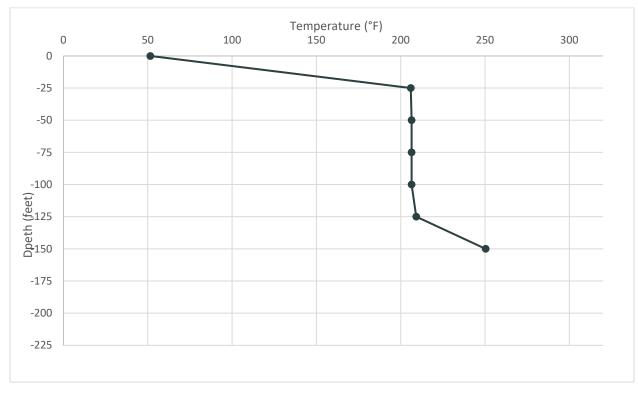
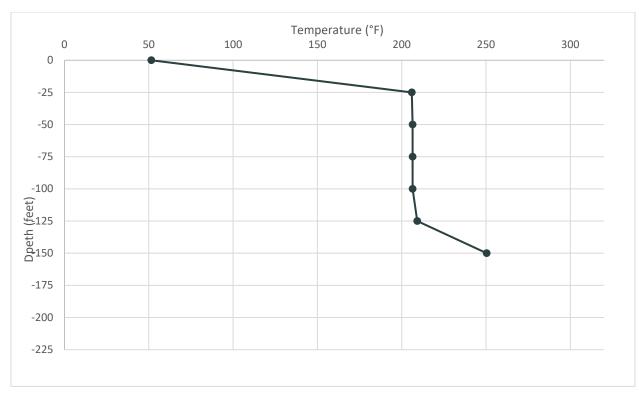



Figure B-1. Average Temperatures Recorded by TP-1 on May 3, 2023

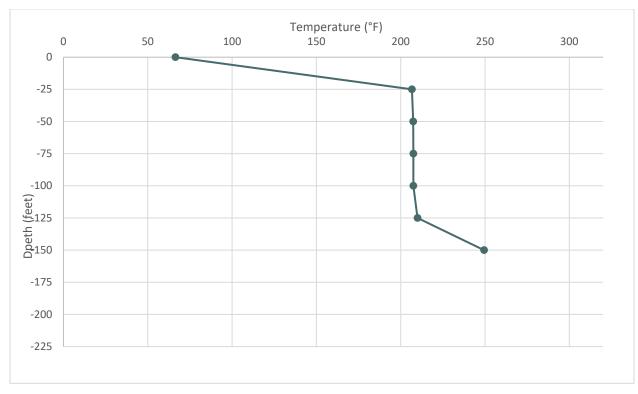
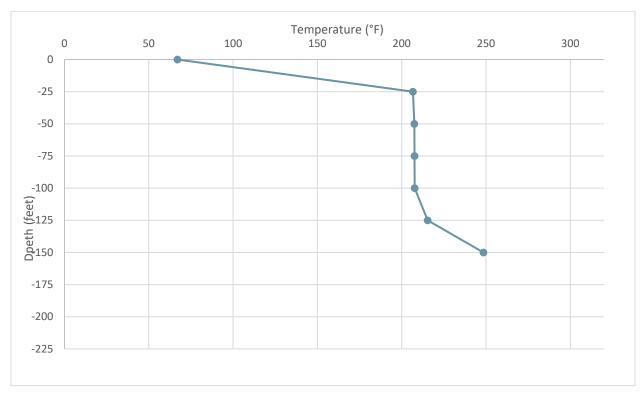



Figure B-3. Average Temperatures Recorded by TP-1 on May 17, 2023

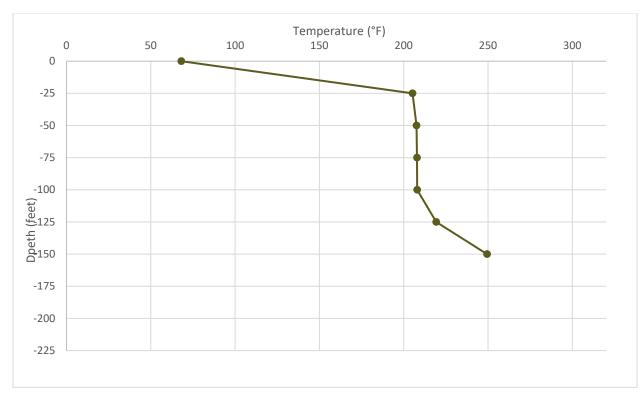


Figure B-5. Average Temperatures Recorded by TP-1 on May 31, 2023

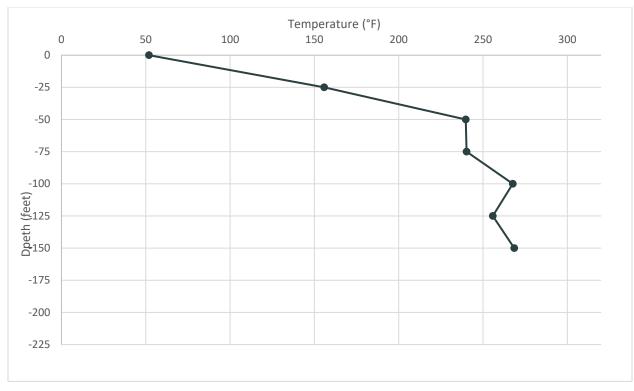
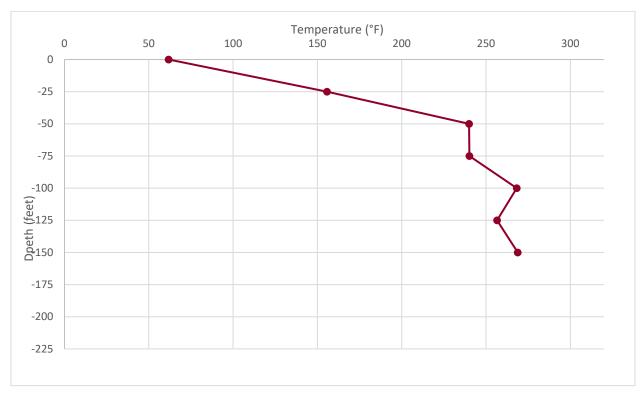



Figure B-6. Average Temperatures Recorded by TP-2 on May 3, 2023

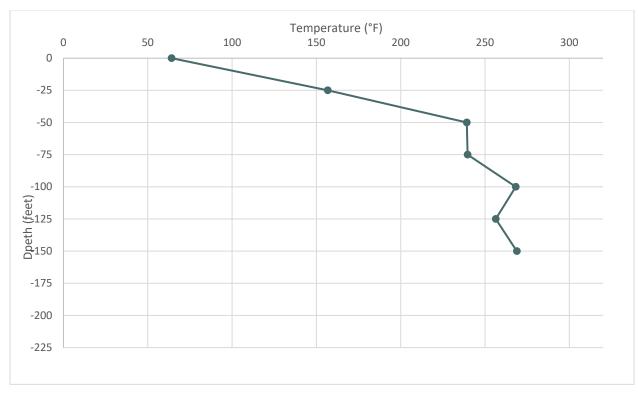
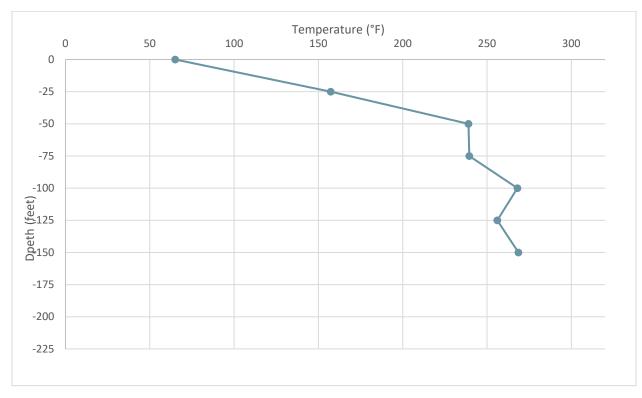



Figure B-8. Average Temperatures Recorded by TP-2 on May 17, 2023

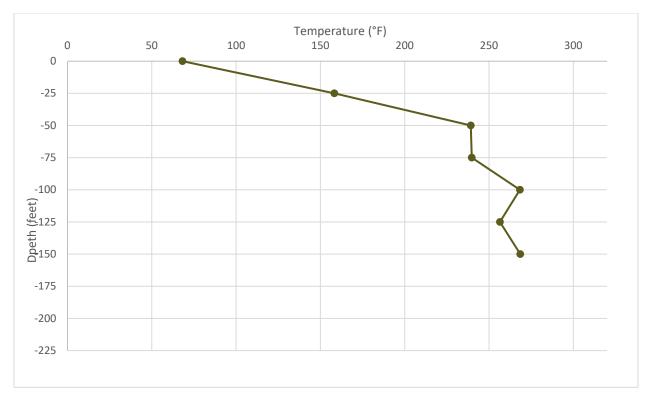


Figure B-10. Average Temperatures Recorded by TP-2 on May 31, 2023

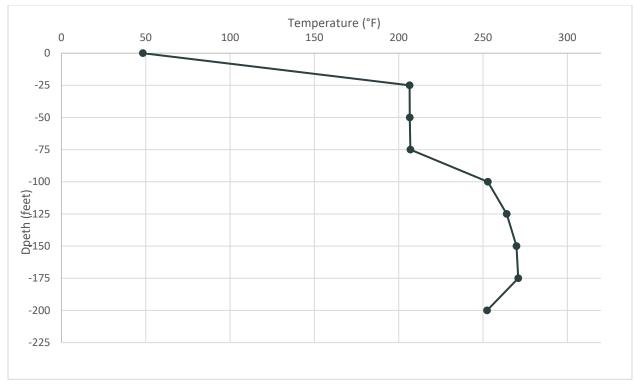
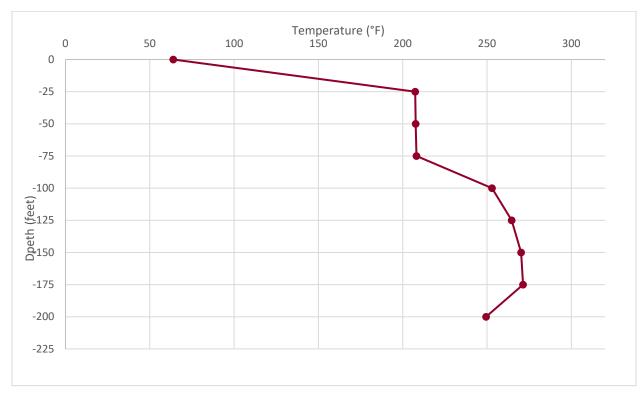



Figure B-11. Average Temperatures Recorded by TP-3 on May 3, 2023

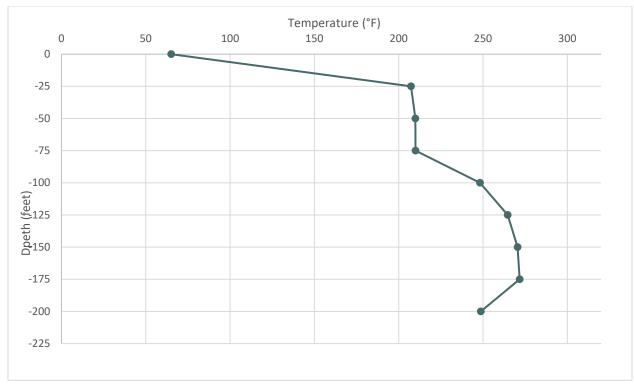
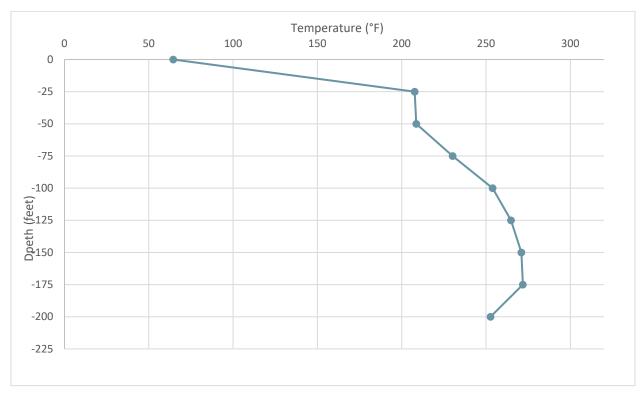



Figure B-13. Average Temperatures Recorded by TP-3 on May 17, 2023

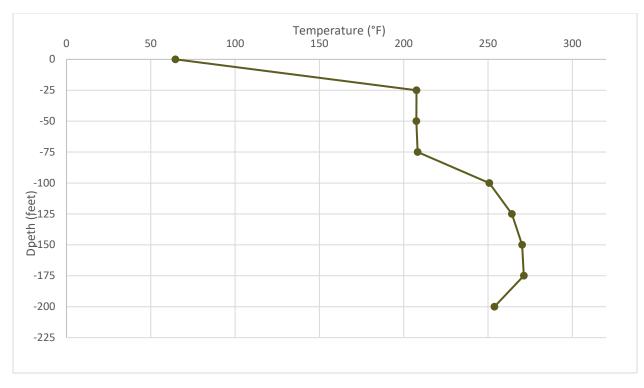


Figure B-15. Average Temperatures Recorded by TP-3 on May 31, 2023

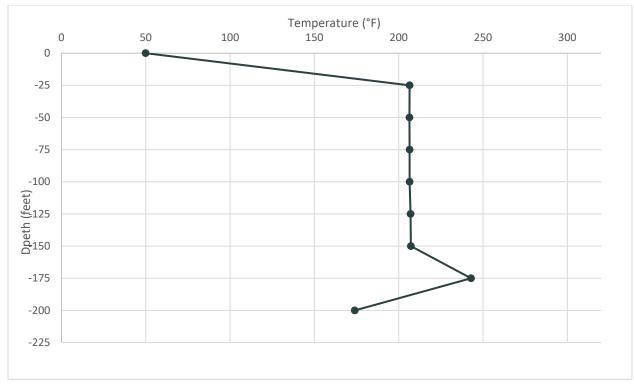
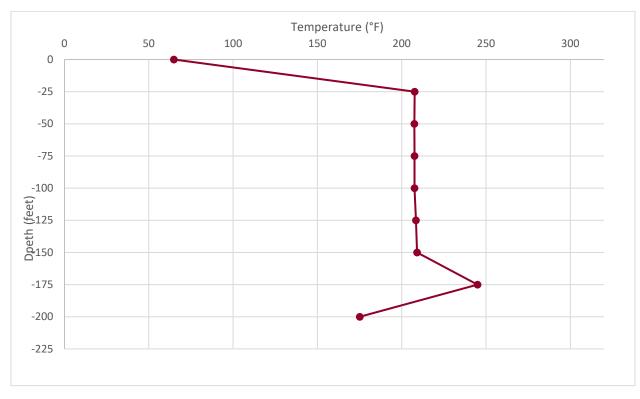



Figure B-16. Average Temperatures Recorded by TP-4 on May 3, 2023

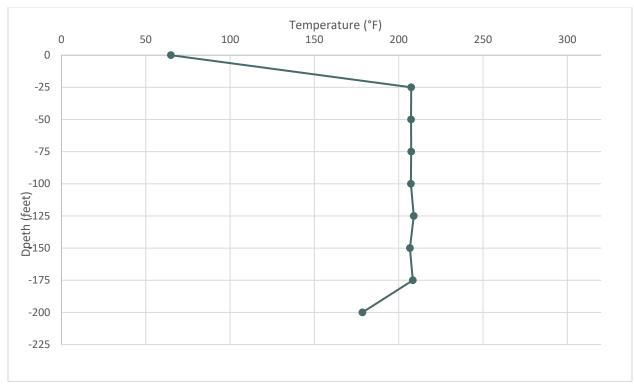
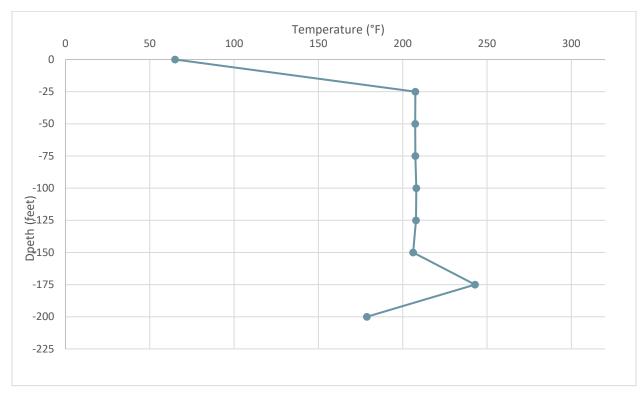



Figure B-18. Average Temperatures Recorded by TP-4 on May 17, 2023

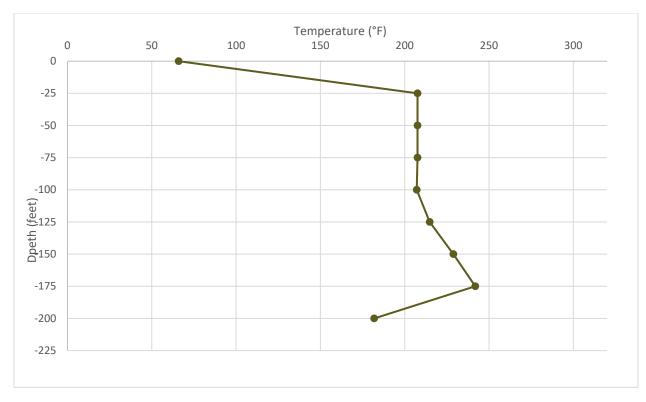


Figure B- 20. Average Temperatures Recorded by TP-4 on May 31, 2023

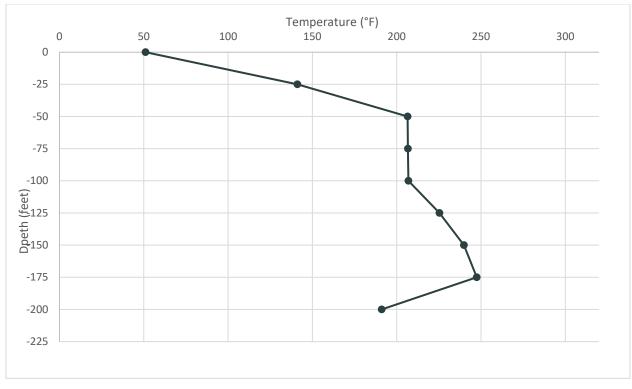
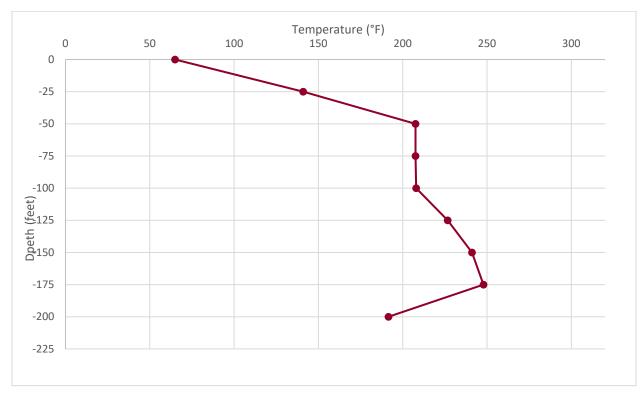



Figure B- 21. Average Temperatures Recorded by TP-5 on May 3, 2023

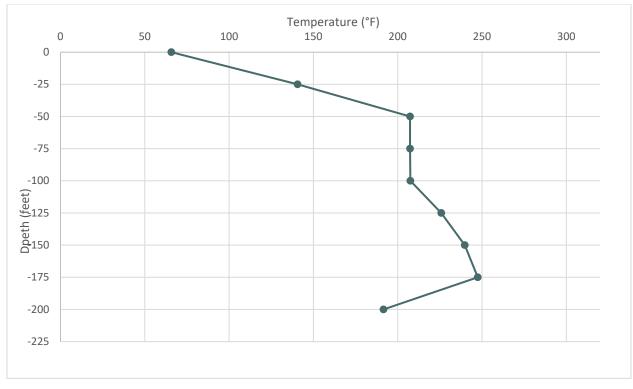
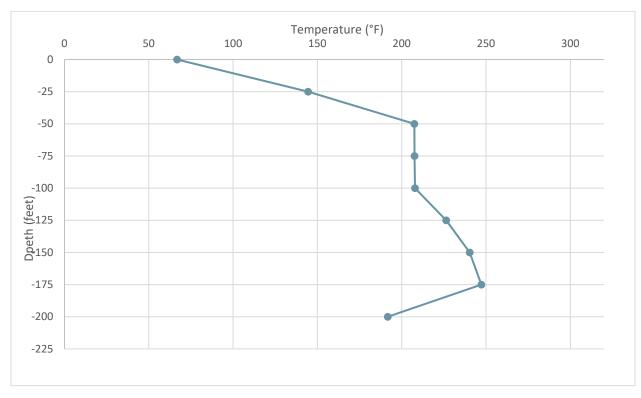



Figure B-23. Average Temperatures Recorded by TP-5 on May 17, 2023

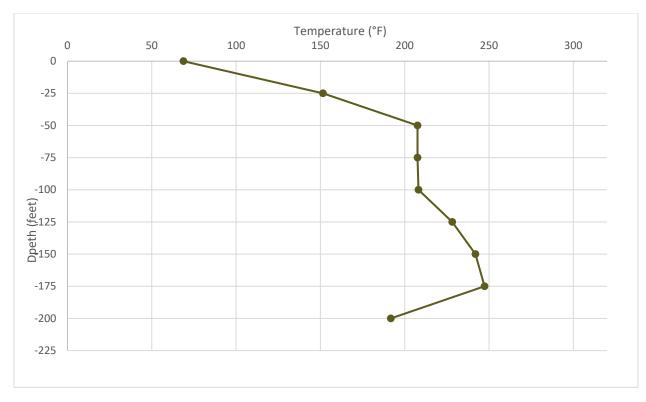


Figure B-25. Average Temperatures Recorded by TP-5 on May 31, 2023

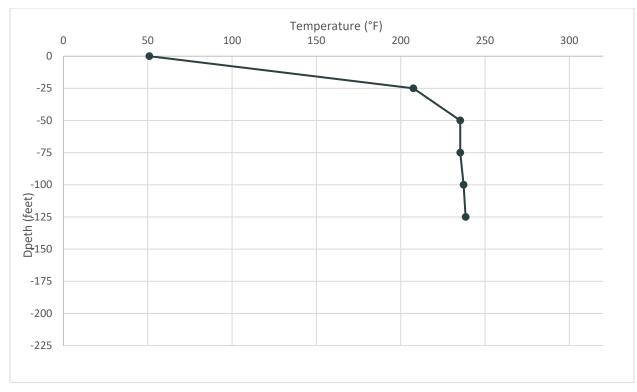
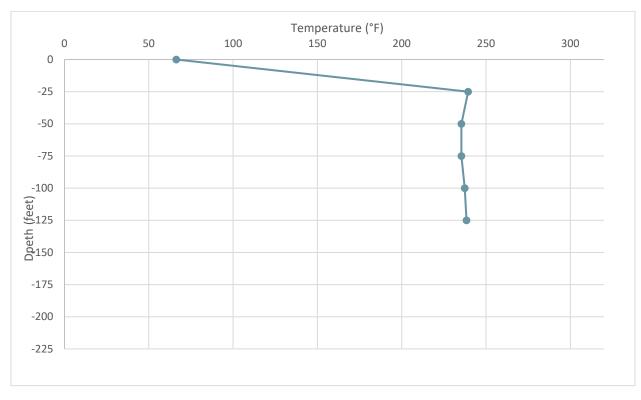



Figure B- 26. Average Temperatures Recorded by TP-6 on May 3, 2023

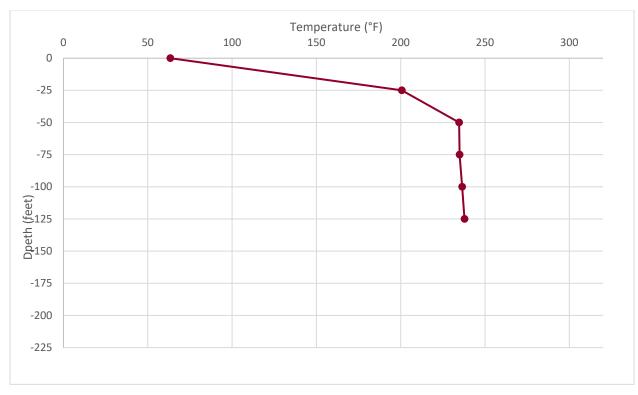
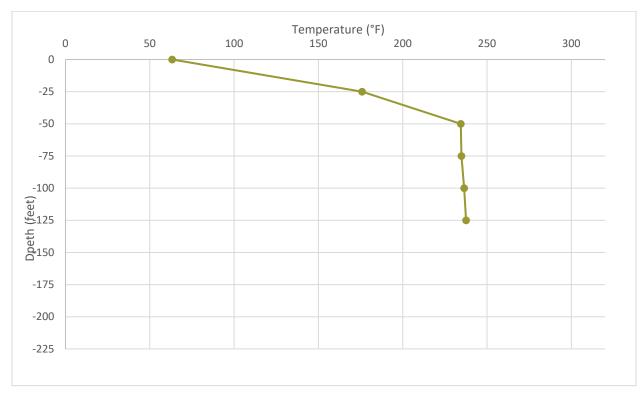



Figure B-28. Average Temperatures Recorded by TP-6 on May 17, 2023

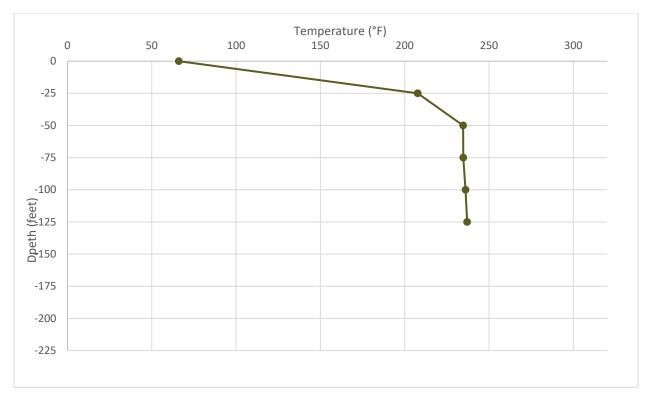


Figure B- 30. Average Temperatures Recorded by TP-6 on May 31, 2023

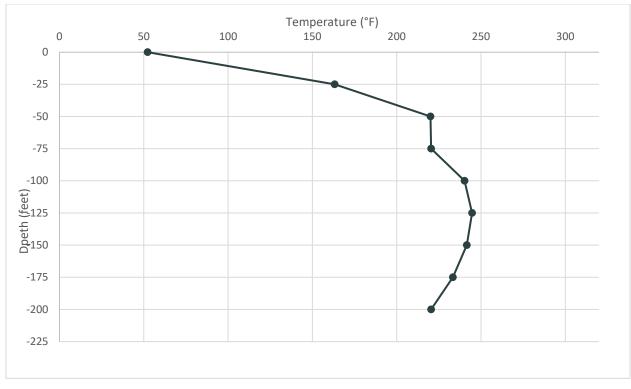
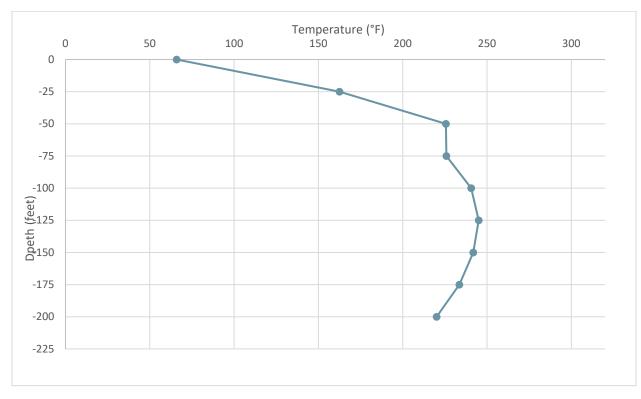



Figure B- 31. Average Temperatures Recorded by TP-7 on May 3, 2023

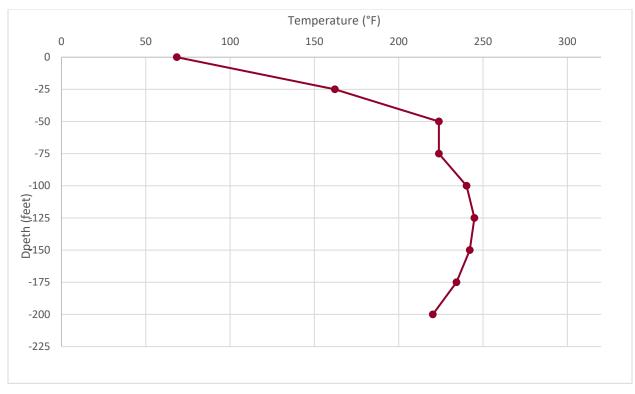
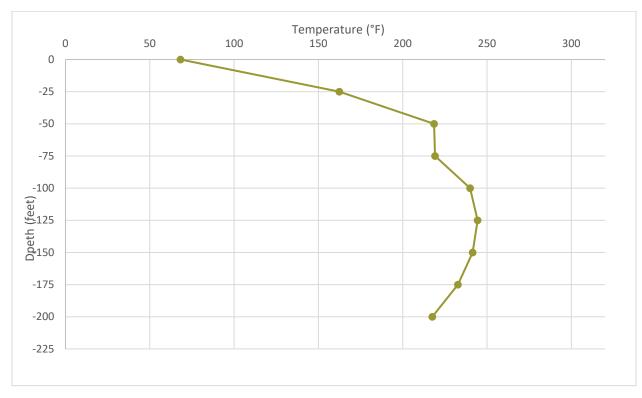



Figure B-33. Average Temperatures Recorded by TP-7 on May 17, 2023

Page B-22

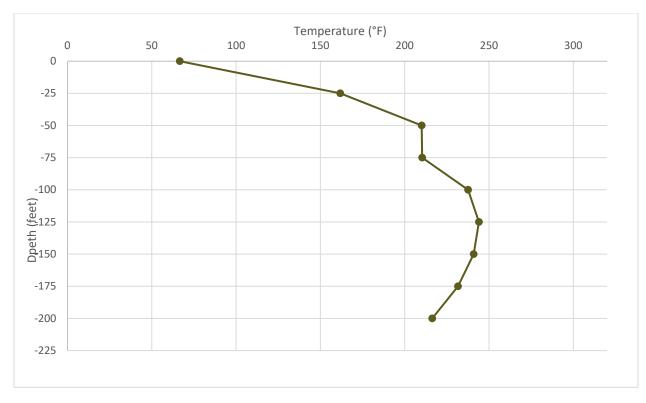


Figure B-35. Average Temperatures Recorded by TP-7 on May 31, 2023

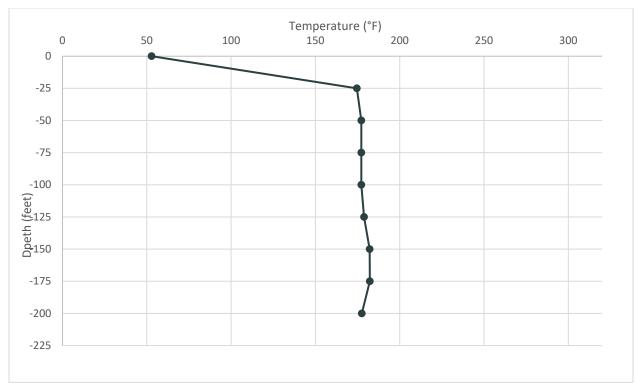
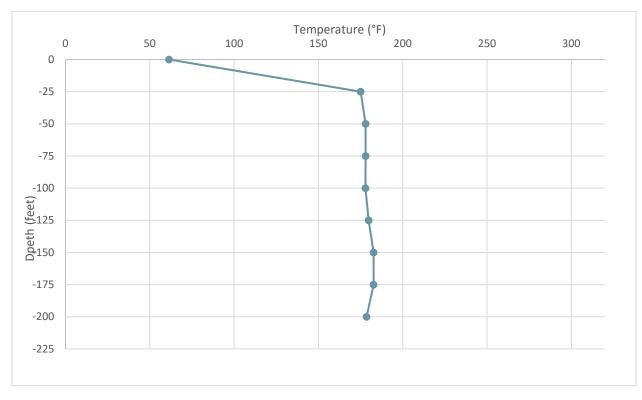



Figure B- 36. Average Temperatures Recorded by TP-8 on May 3, 2023

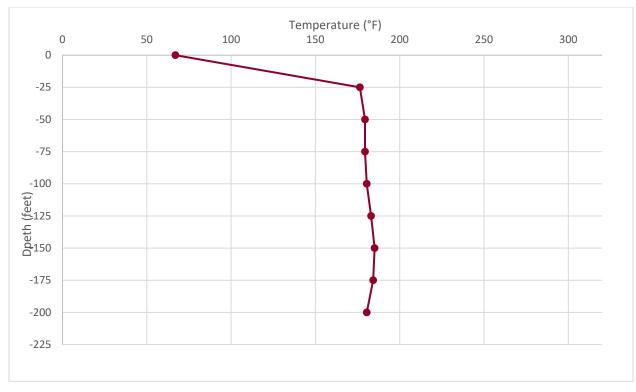


Figure B-38. Average Temperatures Recorded by TP-8 on May 17, 2023

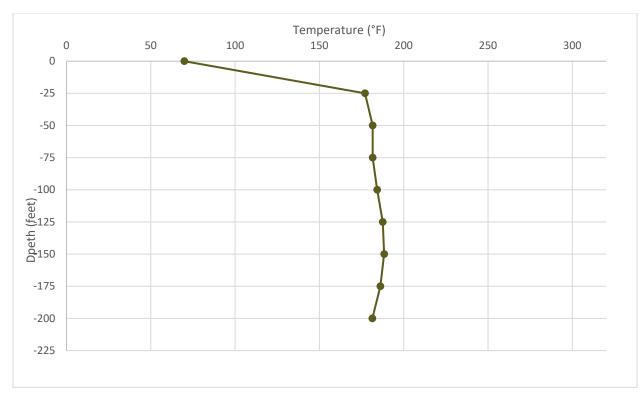


Figure B-40. Average Temperatures Recorded by TP-8 on May 31, 2023

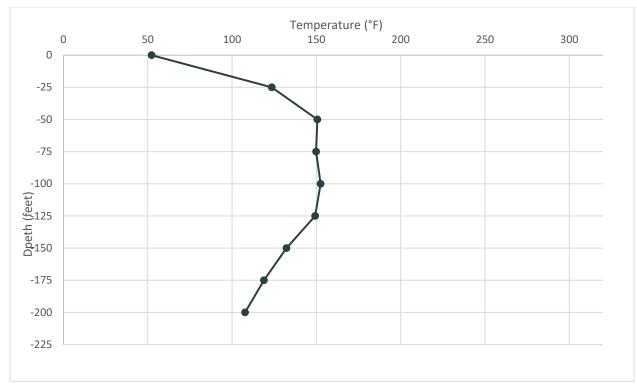
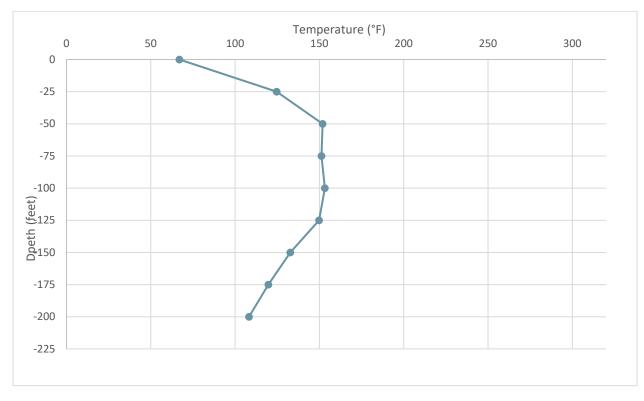



Figure B- 41. Average Temperatures Recorded by TP-9 on May 3, 2023

Page B-27

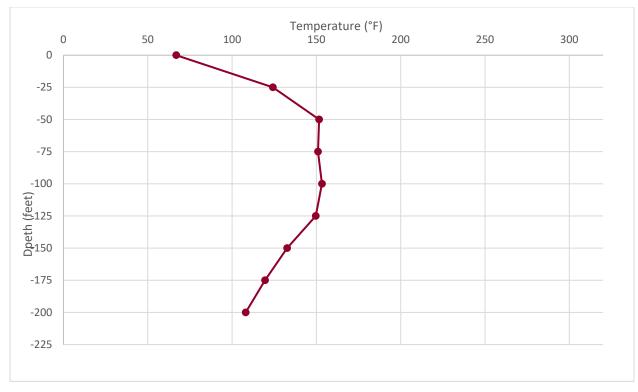
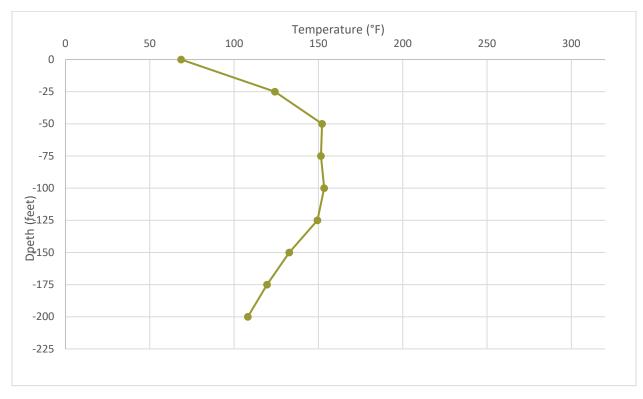



Figure B- 43. Average Temperatures Recorded by TP-9 on May 17, 2023

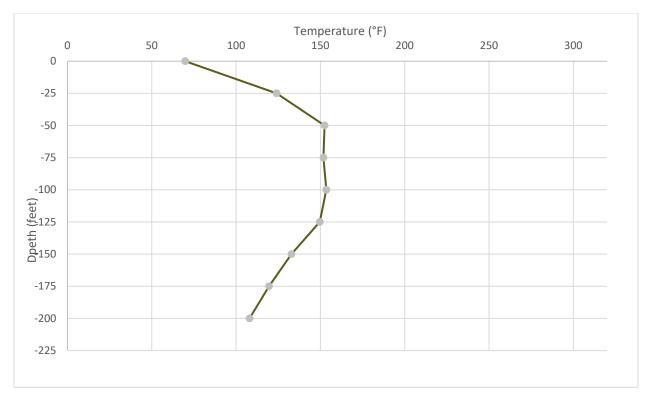


Figure B- 45. Average Temperatures Recorded by TP-9 on May 31, 2023

Appendix C

Semi-Monthly Temperature Update Memos

SCS ENGINEERS

May 30, 2023 File No. 02218208.04

MEMORANDUM

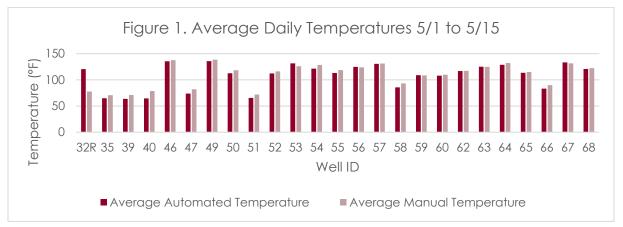
- TO: Kristin Hall, EPA Region III Tracy Blalock, VDEQ-SWRO
- FROM: D. Brandon King, SCS Engineers Quinn Bernier, SCS Engineers
- SUBJECT: Semi-Monthly Status Update May 1st through May 15th, 2023 Bristol Integrated Waste Management Facility, Bristol, Virginia

SCS is submitting this semi-monthly status update to satisfy the conditions of compliance provision #2 of the Environmental Protection Agency (EPA) Region III letter, *Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility*, dated 8/23/21. Accordingly, this memo is a summary of temperature monitoring activities as well as work accomplished during the semi-monthly monitoring period of 5/1/23 through 5/15/23.

TEMPERATURE MONITORING

Automated Wellhead Temperature Measurements

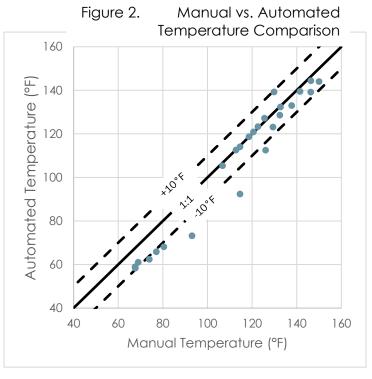
Twenty-five (25) individual landfill gas (LFG) wellheads in the Permit #588 Landfill have automated temperature sensors installed. VDEQ and USEPA have been receiving Daily Gas Well Temperature Reports with data from these automated temperature sensors since 12/1/22.


The 25 wellheads have 2-inch automated sensors. SCS believes that the 2-inch sensors measure temperature with more accuracy than the 1-inch sensors that were used in the majority of the 25 wells prior to March 1, 2023, but we are still comparing with manual temperature to assess the validity of this assertion.

SCS reviewed the automated hourly temperature measurements from 5/1/23 to 5/15/23, and identified the following trends:

• Temperatures over 145°F: Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded at eight wells during this monitoring period. This represents a continuation of higher temperatures across the wellfield since mid-March 2023. Temperatures greater than 145°F were again recorded most consistently at EW-46, however the highest temperatures were measured at EW-52 (greater than 170°F at times), and EW-55 and EW-67 (greater than 180°F at times). Field staff believe that the general increase in wellfield temperatures suggests that, with the increase in pneumatic pump operation, the collection system is being successfully dewatered. Due to the increased perforations available from these efforts, the warmer landfill gases are being collected, thus the elevated average temperature.

• Low temperatures at certain wells: Average temperatures between 50°F and 80°F at five wells generally correlated with low LFG flow rates measured during monthly wellfield monitoring events. These low temperatures are likely close to ambient because little to no LFG is passing through the wellhead where the sensors are placed.


• Temperature Trends by Location:

Manual Daily Temperature Monitoring

Manual temperature measurements are being made daily by field staff with a GEM5000 or equivalent LFG analyzer. The manual measurements are used to verify the automated wellhead temperature sensors and to provide temperature data for the 13 wellheads without automated sensors.

During this monitoring period, the average automated temperatures and the average manual temperatures show continued correlation. The largest discrepancy between measurement methods was noticed at EW-32R. The automated temperature probe for this device has recorded what appears to be erroneous data on multiple monitoring periods and should be inspected for proper operation.

Comparing the difference between manual temperature measurements and automated temperature measurements in Figure 2, the new 2-inch sensors appear to have satisfactory

correlation with manual measurements, with a few outliers. This supports SCS' belief that the 2-inch automated sensors are measuring temperature accurately. SCS recommends that daily manual temperature monitoring be discontinued based on six weeks of reliable results from the automated sensors.

All daily temperatures recorded manually are provided in Attachment A.

Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted 5/4/23, with follow-up monitoring on several days after. During this monitoring period, temperature exceedances were resolved at EW-49, EW-55, EW-61, EW-67, and EW-89. See Table 1 for the statuses of all exceedances recorded during this monitoring period.

		may remperatore		, or miniarly
Well ID	Initial Exceedance Date	Last Duration of Exceedance		Status as of 5/15/23
EW-31R	5/15/23	5/15/23 166.0°F	1 day	Ongoing, within 15-day timeline
EW-37	3/28/23	5/15/23 148.9°F	48 days	Ongoing, within 60-day timeline
EW-49	5/4/23	5/9/23 144.8°F	5 days	Resolved within 15- day timeline
EW-55	4/24/23	5/4/23 113.2°F	10 days	Resolved within 15- day timeline
EW-55	5/8/23	5/15/23 105.8°F	7 days	Resolved within 15- day timeline
EW-61	5/4/23	5/10/23 129.0°F	6 days	Resolved within 15- day timeline
EW-67	5/4/23	5/8/23 137.8°F	4 days	Resolved within 15- day timeline
EW-84	4/18/23	5/15/23 181.2°F	27 days	Ongoing, within 60-day timeline
EW-86	4/18/23	5/15/23 152.7°F	27 days	Ongoing, within 60-day timeline
EW-89	5/4/23	5/8/23 143.2°F	4 days	Resolved within 15- day timeline
EW-89	5/15/23	5/15/23 154.3°F	1 day	Ongoing, within 15-day timeline
EW-90	4/18/23	5/15/23 150.8°F	27 days	Ongoing, within 60-day timeline
EW-100	4/20/23	5/15/23 158.7°	25 days	Ongoing, within 60-day timeline

 Table 1.
 May Temperature Exceedance Summary

Work Accomplished During Monitoring Period

LFG Sampling

SCS collected LFG samples from wells with temperature exceedances lasting more than 7 days using 1.5-L Summa canisters on 5/5/23 and 5/10/23 to fulfill the requirement in 40 CFR 63.1961(a)(5). The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen

 (H_2) content. Lab results are summarized in Table 2. Full laboratory analytical data is included in **Attachment B** for further detail.

Sample D	ate	5/5/2023	5/10/23
EW-37	CO (ppmv)	182	160
EVV-37	H2 (Vol. %)	2.97	2.5
EW-49	CO (ppmv)	203	
EVV-49	H2 (Vol. %)	3.52	
EW-61	CO (ppmv)	182	
EM-OT	H2 (Vol. %)	4.69	
EW-67	CO (ppmv)	593	
EVV-07	H2 (Vol. %)	12.7	
EW-84	CO (ppmv)	536	529
EW-04	H2 (Vol. %)	12.3	12.0
EW-86	CO (ppmv)	162	138
EVV-00	H2 (Vol. %)	3.19	2.5
EW-89	CO (ppmv)	891	
EW-09	H2 (Vol. %)	33.9	
EW-90	CO (ppmv)	129	124
200-90	H2 (Vol. %)	2.53	2.5
EW-100	CO (ppmv)	ND	ND
EVV-100	H2 (Vol. %)	5.46	4.5

Table 2. LFG Wellhead Sampling Summary

The presence of hydrogen in all the samples collected during this monitoring period indicates that combustion reactions are unlikely. The carbon monoxide measurements were greater than 100 ppmv in all but EW-100. The measurement on 5/10/23 makes the fourth carbon monoxide measurement less than 100 ppmv, indicating that continued weekly CO sampling can be discontinued per 40 CFR 63.1961(a)(5)(viii). Continued sampling is required at the other 8 wells.

Construction Activities

The drilling contractor commenced drilling of the 304 stainless steel LFG wells on 5/2/23 with EW-92. The drilling contractor and SCS-FS drilled and installed eight 304 stainless steel deep LFG wells during this monitoring period (EW-92, EW-71, EW-72, EW-74, EW-33B, EW-77, EW-79, and EW-81). SCS-FS Phase I LFG System crew connected new LFG header across the existing eastern access road, as well as the airline and dewatering forcemain along the path of the new 12-inch LFG header. A new 18-inch condensate sump at the low point in the new 12-inch LFG System header was also installed. These connections required a temporary isolation of parts of the LFG collection system.

SCS-Field Services (SCS-FS) removed the poly tank (LCT-1), condensate sump CPS-1, and associated LFG header, air, and forcemain piping from the immediate sidewall odor mitigation system (SOMS)

MEMORANDUM 5/30/23 Page 5

working area along the eastern sidewall, then installed the final 300-foot section of lower horizontal collector. Additional soil cover was added to the lower liner in select sections in the northwest, southwest, and southern sections of the SOMS.

Weekly SEM

SCS is continuing weekly surface emissions monitoring (SEM) per the Plan of Action Report dated 7/6/22. Two exceedances of the 500-ppmv threshold were recorded during the weekly SEM event held on 5/5/23, and two exceedances were recorded during the weekly event conducted on 5/10/23. All exceedances during this monitoring period were located at pipe penetrations within the landfill.

The ongoing construction of new wells and the sidewall odor mitigation system, in addition to connection of the new LFG collection infrastructure, is likely contributing to the reoccurrence of exceedances at pipe penetrations in May. As SCS' dewatering efforts continue to advance, landfill gas collection will increase, and pipe penetration exceedances will decrease. In addition, SCS is continuing to connect these new wells to permanent vacuum as well as installing well bore skirts and placing additional cover where necessary.

LFG System O&M

The City's O&M contractor conducted the May initial monthly LFG wellfield monitoring on 5/1/23 and 5/4/23, including the 18 new CPVC wells during this reporting period. The O&M contractor replaced pumps in wells EW-60, EW-61, and EW-63. A check valve was replaced at EW-68 and sample ports were replaced at various other wells. Dewatering system regulators were replaced in EW-53 and EW-67.

Routine well and pump maintenance continued during this reporting period. Eight spare Pump One pumps were procured to assist 0&M with dewatering system maintenance.

Please contact SCS or City personnel if you have any questions or require additional information.

cc: Randall Eads, City of Bristol Jon Hayes, City of Bristol Jeff Hurst, VDEQ-SWRO Tom Lock, SCS Field Services David Cochran, City of Bristol Erin Willard, EPA Region III Stacy Bowers, VDEQ-SWRO Robert E. Dick, P.E., SCS Engineers

Attachment A

City of Bristol Daily LFG Well Temperature Readings

Month	May	May	May	May	May	May	May	May	May	May	May	May	May	May	May
Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday
Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Well Number															
35	54	46	57	68	79	48	67	69	63	79	90	91	84	89	74
39	52	49	57	64	78	46	70	66	63	80	88	98	88	89	74
40	52	52	59	68	83	46	71	67	62	86	94	90	137	86	124
46	117	52	146	145	145	144	147	145	145	145	146	146	147	147	148
47	63	52	61	77	95	59	87	78	82	94	101	103	96	97	82
29	78	75	70	76	77	92	104	102	103	106	105	110	106	112	106
30R	93	92	90	92	90	127	127	126	126	127	125	127	127	128	128
31R	116	116	117	120	118	135	137	135	132	132	130	131	131	165	170
32	74	75	77	78	76	70	70	70	71	77	90	96	82	87	73
33	123	122	123	124	120	132	122	128	127	126	128	130	77	123	123
34	127	128	126	128	118	141	140	141	140	140	145	146	145	151	138
36	62	66	Being Redrilled												
37	150	150	149	150	149	149	149	150	149	149	150	150	147	147	150
38	66	62	64	66	68	90	89	91	91	92	90	92	100	105	101
41	118	111	112	110	112	85	86	88	86	86	88	89	85	95	73
42	108	110	110	112	116	110	112	113	112	110	112	114	117	117	116
48	62	67	68	70	72	45	68	69	68	65	70	77	82	91	76
32R	119	119	113	120	121	121	121	120	121	121	121	121	120	121	122
49	144	54	145	146	148	146	145	143	143	143	144	144	143	144	143
50	115	96	119	118	116	115	160	119	120	116	117	117	114	116	116
51	55	55	57	66	78	47	68	66	69	81	89	91	88	92	75
52	109	92	74	105	116	96	110	122	110	120	126	128	126	137	171
53	122	121	119	130	137	125	135	133	135	138	141	143	96	132	82
54	107	98	98	123	136	122	142	127	131	132	135	137	143	134	163
55	59	50	144	112	101	73	86	147	155	165	131	169	99	115	175
56	110	106	112	121	127	123	129	128	129	129	130	132	132	131	120
57	118	118	121	154	142	128	129	134	124	132	136	141	129	147	116
58	52	47	83	94	98	78	112	94	93	98	101	104	113	114	119
59	106	50	114	118	118	121	110	112	110	111	111	117	110	111	110
60	104	46	99	106	108	105	108	106	108	108	122	133	146	113	134
61	145	52	144	136	138	139	138	140	132	122	123	126	121	121	136
62	113	112	112	114	115	113	114	114	115	128	127	128	117	118	118
63	122	121	118	124	127	124	127	126	127	128	107	130	129	132	129
64	126	126	124	129	131	137	137	129	129	132	132	132	138	139	139
65	53	52	57	67	140	135	136	134	134	134	135	135	137	138	136
66	55	48	61	74	94	61	88	81	90	109	118	119	115	122	113
67	99	96	85	177	154	134	140	135	132	133	139	148	146	138	115
68	123	111	111	123	125	123	124	124	124	125	125	128	123	123	122

Attachment B

Laboratory Analytical Reports

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	May 8, 2023 11:20
	4330 Lewis Road, Suite 1	Date Issued:	May 15, 2023 16:34
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 05/08/2023 11:20. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTAS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	May 8, 2023 11:20
	4330 Lewis Road, Suite 1	Date Issued:	May 15, 2023 16:34
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
84	23E0499-01	Air	05/05/2023 09:51	05/08/2023 11:20
86	23E0499-02	Air	05/05/2023 10:01	05/08/2023 11:20
90	23E0499-03	Air	05/05/2023 10:12	05/08/2023 11:20
100	23E0499-04	Air	05/05/2023 10:20	05/08/2023 11:20
89	23E0499-05	Air	05/05/2023 10:32	05/08/2023 11:20
61	23E0499-06	Air	05/05/2023 10:42	05/08/2023 11:20
49	23E0499-07	Air	05/05/2023 10:51	05/08/2023 11:20
67	23E0499-08	Air	05/05/2023 11:02	05/08/2023 11:20
37	23E0499-09	Air	05/05/2023 11:11	05/08/2023 11:20

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS	6	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 84	Sub Description/Location:		Final Vacuum(in Hg): 5.4
Sample ID: 23E0499-01	Canister ID: 063-00187::10092		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/5/2023 09:51			Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis										
		ppmv		ALT-145			Date/Time			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst		
Carbon Monoxide, as received	536	90.0	90.0		9	1	5/12/23 9:32	MER		

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basi	S			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution		Date/Time Analyzed	Analyst
Methane, as received	17.7	0.45	0.45		9	1	5/12/23 9:32	MER
Carbon dioxide, as received	55.4	0.45	0.45		9	1	5/12/23 9:32	MER
Oxygen (O2), as received	0.50	0.45	0.45		9	1	5/12/23 9:32	MER
Hydrogen (H2), as received	12.3	1.08	1.08		54	1	5/12/23 11:50	MER
Nitrogen (N2), as received	10.2	9.00	9.00		9	1	5/12/23 9:32	MER
Carbon Monoxide, as received	0.05	0.009	0.009		9	1	5/12/23 9:32	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv		ug/M³				Date/Time			
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	462000	9330	23300		1500000	30000	75000	46700	1	5/12/23 14:17	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			101		6	30-120				5/12/23 14:17	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 86	Sub Description/Location:		Final Vacuum(in Hg): 4.8
Sample ID: 23E0499-02	Canister ID: 063-00178::10224		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/5/2023 10:01			Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis										
		ppmv		ALT-145			Date/Time			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed Analyst			
Carbon Monoxide, as received	162	90.0	90.0		9	1	5/12/23 10:23 MER			

	Vol	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received bas	is			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	39.4	0.45	0.45		9	1	5/12/23 10:23	MER
Carbon dioxide, as received	47.0	0.45	0.45		9	1	5/12/23 10:23	MER
Oxygen (O2), as received	0.55	0.45	0.45		9	1	5/12/23 10:23	MER
Hydrogen (H2), as received	3.19	0.18	0.18		9	1	5/12/23 10:23	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/12/23 10:23	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	5/12/23 10:23	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	116000	4670	11700		370000	15000	37000	23300	1	5/12/23 17:23	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			99.8		8	30-120				5/12/23 17:23	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS	3	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 90	Sub Description/Location:		Final Vacuum(in Hg): 4.4
Sample ID: 23E0499-03	Canister ID: 063-00247::11083		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/5/2023 10:12			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as received ba	sis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	129	90.0	90.0		9	1	5/12/23 11:14	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basi	s			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	36.5	0.45	0.45		9	1	5/12/23 11:14	MER
Carbon dioxide, as received	50.9	0.45	0.45		9	1	5/12/23 11:14	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	5/12/23 11:14	MER
Hydrogen (H2), as received	2.53	0.18	0.18		9	1	5/12/23 11:14	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/12/23 11:14	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	5/12/23 11:14	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		-		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	249000	5250	13100		800000	17000	42000	26200	1	5/12/23 18:53	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			95.8		8	30-120				5/12/23 18:53	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULT	6	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 100	Sub Description/Location:		Final Vacuum(in Hg): 4.4
Sample ID: 23E0499-04	Canister ID: 063-00091::12063		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/5/2023 10:20			Flow Controller ID:

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received b	asis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	ND	90.0	90.0		9	1	5/12/23 12:21	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basis	5			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	41.6	0.45	0.45		9	1	5/12/23 12:21	MER
Carbon dioxide, as received	45.9	0.45	0.45		9	1	5/12/23 12:21	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	5/12/23 12:21	MER
Hydrogen (H2), as received	5.46	0.36	0.36		18	1	5/12/23 13:48	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/12/23 12:21	MER
Carbon Monoxide, as received	ND	0.009	0.009		9	1	5/12/23 12:21	MER

		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	41100	778	1940		130000	2500	6200	3890	1	5/15/23 11:12	DFH
Surrogate(s)		% Re	covery		% Re	covery Lin	nits				
4-Bromofluorobenzene (Surr)			99.6		8	30-120				5/15/23 11:12	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS	3	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 89	Sub Description/Location:		Final Vacuum(in Hg): 4.8
Sample ID: 23E0499-05	Canister ID: 063-00037::12409		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/5/2023 10:32			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as received	ved basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	891	90.0	90.0		9	1	5/12/23 13:12	MER

	Vola	-	c Compour	nds by GC/TCD - Unadjusted, as received basis EPA 3C	5			
		Vol%		EFA 30			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	1.32	0.45	0.45		9	1	5/12/23 13:12	MER
Carbon dioxide, as received	67.6	0.90	0.90		18	1	5/12/23 14:59	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	5/12/23 13:12	MER
Hydrogen (H2), as received	33.9	3.24	3.24		162	1	5/12/23 15:22	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/12/23 13:12	MER
Carbon Monoxide, as received	0.09	0.009	0.009		9	1	5/12/23 13:12	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	542000	7000	17500		1700000	22000	56000	35000	1	5/15/23 11:57	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			96.2		8	30-120				5/15/23 11:57	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 61	Sub Description/Location:		Final Vacuum(in Hg): 4.4
Sample ID: 23E0499-06	Canister ID: 063-00319::12471		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/5/2023 10:42			Flow Controller ID:
•			

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as received b	oasis		
		ppmv		ALT-145			Date/Time
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed Analyst
Carbon Monoxide, as received	182	90.0	90.0		9	1	5/12/23 14:23 MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basi	s			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	15.0	0.45	0.45		9	1	5/12/23 14:23	MER
Carbon dioxide, as received	30.4	0.45	0.45		9	1	5/12/23 14:23	MER
Oxygen (O2), as received	5.93	0.45	0.45		9	1	5/12/23 14:23	MER
Hydrogen (H2), as received	4.69	0.36	0.36		18	1	5/12/23 15:37	MER
Nitrogen (N2), as received	38.3	9.00	9.00		9	1	5/12/23 14:23	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	5/12/23 14:23	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	131000	3110	7780		420000	9900	25000	15600	1	5/15/23 12:42	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			93.8		6	30-120				5/15/23 12:42	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 49	Sub Description/Location:		Final Vacuum(in Hg): 5.2
Sample ID: 23E0499-07	Canister ID: 063-00154::12659		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/5/2023 10:51			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as received bas	is			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	203	90.0	90.0		9	1	5/12/23 16:08	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basi EPA 3C	s			
		Vol%		EFA 3C			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	37.8	0.45	0.45		9	1	5/12/23 16:08	MER
Carbon dioxide, as received	46.3	0.45	0.45		9	1	5/12/23 16:08	MER
Oxygen (O2), as received	1.04	0.45	0.45		9	1	5/12/23 16:08	MER
Hydrogen (H2), as received	3.52	0.18	0.18		9	1	5/12/23 16:08	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/12/23 16:08	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	5/12/23 16:08	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	150000	2330	5830		480000	7500	19000	11700	1	5/15/23 13:27	DFH
Surrogate(s)		% Re	covery		% Red	covery Lir	nits				
4-Bromofluorobenzene (Surr)			95.0		8	30-120				5/15/23 13:27	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 67	Sub Description/Location:		Final Vacuum(in Hg): 4.0
Sample ID: 23E0499-08	Canister ID: 063-00282::13378		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/5/2023 11:02			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as rece	ived basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF		Analyst
Carbon Monoxide, as received	593	90.0	90.0		9	1	5/12/23 17:50 I	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basis	6			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	17.8	0.45	0.45		9	1	5/12/23 17:50	MER
Carbon dioxide, as received	57.9	0.45	0.45		9	1	5/12/23 17:50	MER
Oxygen (O2), as received	2.08	0.45	0.45		9	1	5/12/23 17:50	MER
Hydrogen (H2), as received	12.7	1.08	1.08		54	1	5/12/23 18:42	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/12/23 17:50	MER
Carbon Monoxide, as received	0.06	0.009	0.009		9	1	5/12/23 17:50	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	202000	10500	26200		650000	34000	84000	52500	1	5/15/23 14:12	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			93.4		5	30-120				5/15/23 14:12	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 37	Sub Description/Location:		Final Vacuum(in Hg): 5.2
Sample ID: 23E0499-09	Canister ID: 063-00379::13963		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/5/2023 11:11			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as received bas	sis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	182	90.0	90.0		9	1	5/12/23 16:59	MER

	Vola	-	c Compour	nds by GC/TCD - Unadjusted, as received basi EPA 3C	S			
		Vol%		EFA JC			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	11.5	0.45	0.45		9	1	5/12/23 16:59	MER
Carbon dioxide, as received	26.6	0.45	0.45		9	1	5/12/23 16:59	MER
Oxygen (O2), as received	6.76	0.45	0.45		9	1	5/12/23 16:59	MER
Hydrogen (H2), as received	2.97	0.18	0.18		9	1	5/12/23 16:59	MER
Nitrogen (N2), as received	45.3	18.0	18.0		18	1	5/12/23 18:26	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	5/12/23 16:59	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	122000	1560	3890		390000	5000	12000	7780	1	5/15/23 14:57	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			95.2		6	30-120				5/15/23 14:57	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	npounds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC GC Ai	r
23E0499-01	1.00 mL / 1.00 mL	ALT-145	BGE0409	SGE0510	AG00026
23E0499-02	1.00 mL / 1.00 mL	ALT-145	BGE0409	SGE0510	AG00026
23E0499-03	1.00 mL / 1.00 mL	ALT-145	BGE0409	SGE0510	AG00026
23E0499-04	1.00 mL / 1.00 mL	ALT-145	BGE0409	SGE0510	AG00026
23E0499-05	1.00 mL / 1.00 mL	ALT-145	BGE0409	SGE0510	AG00026
23E0499-06	1.00 mL / 1.00 mL	ALT-145	BGE0409	SGE0510	AG00026
23E0499-07	1.00 mL / 1.00 mL	ALT-145	BGE0409	SGE0510	AG00026
23E0499-08	1.00 mL / 1.00 mL	ALT-145	BGE0409	SGE0510	AG00026
23E0499-09	1.00 mL / 1.00 mL	ALT-145	BGE0409	SGE0510	AG00026
23E0499-01	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-02	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-03	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-04	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-04RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-05	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-05RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-05RE2	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-06	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-06RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-07	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-08	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-08RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-09	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
23E0499-09RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0409	SGE0510	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Corr	npounds by GCMS		Preparation Method:	No Prep VOC Air	
23E0499-01	400 mL / 400 mL	EPA TO-15	BGE0427	SGE0504	AE30194
23E0499-02	400 mL / 400 mL	EPA TO-15	BGE0427	SGE0504	AE30194
23E0499-03	400 mL / 400 mL	EPA TO-15	BGE0427	SGE0504	AE30194
23E0499-04	400 mL / 400 mL	EPA TO-15	BGE0427	SGE0558	AE30194
23E0499-05	400 mL / 400 mL	EPA TO-15	BGE0427	SGE0558	AE30194
23E0499-06	400 mL / 400 mL	EPA TO-15	BGE0427	SGE0558	AE30194
23E0499-07	400 mL / 400 mL	EPA TO-15	BGE0427	SGE0558	AE30194

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Service 4330 Lewis Road	es - Harrisburg, PA , Suite 1	Date Recei Date Issue	, .,	
	Harrisburg, PA 17	'111			
Submitted To:	Tom Lock		Project Nur	mber: 072230	16.00
Client Site I.D.	: Bristol		Purchase C	Order: 07-SO0	4485
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	unds by GCMS		Preparation Method:	No Prep VOC Air	
23E0499-08	400 mL / 400 mL	EPA TO-15	BGE0427	SGE0558	AE30194
23E0499-09	400 mL / 400 mL	EPA TO-15	BGE0427	SGE0558	AE30194

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

					/ that y th					
		eporting		Spike	Source		%REC		RPD	_
nalyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
atch BGE0427 - No Prep VO	C Air									
Blank (BGE0427-BLK1)					Prep	ared & /	Analyzed	: 05/10/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene Surr)	4.76		ppbv	5.00		95.2	80-120			
LCS (BGE0427-BS1)					Prep	ared & A	Analyzed	: 05/10/2	023	
1,1,1-Trichloroethane	5.15	0.5	ppbv	5.00		103	70-130			
1,1,2,2-Tetrachloroethane	5.26	0.5	ppbv	5.00		105	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha	4.78	0.5	ppbv	5.00		95.6	70-130			
ne 1,1,2-Trichloroethane	5.22	0.5	ppbv	5.00		104	70-130			
1,1-Dichloroethane	4.55	0.5	ppbv	5.00		91.0	70-130			
I,1-Dichloroethylene	4.91	0.5	ppbv	5.00		98.2	70-130			
,2,4-Trimethylbenzene	5.48	0.5	ppbv	5.00		110	70-130			
,2-Dibromoethane (EDB)	5.21	0.5	ppbv	5.00		104	70-130			
,2-Dichlorobenzene	5.32	0.5	ppbv	5.00		106	70-130			
,2-Dichloroethane	5.18	0.5	ppbv	5.00		104	70-130			
l,2-Dichloropropane	5.30	0.5	ppbv	5.00		106	70-130			
1,2-Dichlorotetrafluoroethane	5.01	0.5	ppbv	5.00		100	70-130			
1,3,5-Trimethylbenzene	5.27	0.5	ppbv	5.00		105	70-130			
1,3-Butadiene	4.77	0.5	ppbv	5.00		95.4	70-130			
1,3-Dichlorobenzene	5.20	0.5	ppbv	5.00		104	70-130			
1,4-Dichlorobenzene	5.25	0.5	ppbv	5.00		105	70-130			
I,4-Dioxane	5.57	0.5	ppbv	5.00		111	70-130			
2-Butanone (MEK)	4.64	0.5	ppbv	5.00		92.8	70-130			
I-Methyl-2-pentanone (MIBK)	5.61	0.5	ppbv	5.00		112	70-130			
Allyl chloride	4.72	0.5	ppbv	5.00		94.4	70-130			
enzene	5.17	0.5	ppbv	5.00		103	70-130			
Benzyl Chloride	4.25	0.5	ppbv	5.00		85.0	70-130			
Bromodichloromethane	4.67	0.5	ppbv	5.00		93.4	70-130			
Bromoform	0.51	0.5	ppbv	5.00		10.2	70-130			L
Bromomethane	5.45	0.5	ppbv	5.00		109	70-130			
Carbon Disulfide	4.67	0.5	ppbv	5.00		93.4	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
Harrisburg, PA 17111		
Tom Lock	Project Number:	07223016.00
Bristol	Purchase Order:	07-SO04485
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111 Tom Lock	4330 Lewis Road, Suite 1Date Issued:Harrisburg, PA 17111Tom LockProject Number:

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Enthalpy Analytical										
	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	C Limits	RPD	Limit	Qual
Batch BGE0427 - No Prep V	OC Air									
LCS (BGE0427-BS1)					Prep	ared & A	Analyzed	: 05/10/2	023	
Carbon Tetrachloride	5.04	0.5	ppbv	5.00		101	70-130			
Chlorobenzene	5.06	0.5	ppbv	5.00		101	70-130			
Chloroethane	4.92	0.5	ppbv	5.00		98.4	70-130			
Chloroform	4.72	0.5	ppbv	5.00		94.4	70-130			
Chloromethane	5.19	0.5	ppbv	5.00		104	70-130			
cis-1,2-Dichloroethylene	4.77	0.5	ppbv	5.00		95.4	70-130			
cis-1,3-Dichloropropene	5.44	0.5	ppbv	5.00		109	70-130			
Cyclohexane	5.34	0.5	ppbv	5.00		107	70-130			
Dichlorodifluoromethane	4.73	0.5	ppbv	5.00		94.6	70-130			
Ethyl acetate	4.81	0.5	ppbv	5.00		96.2	70-130			
Ethylbenzene	5.32	0.5	ppbv	5.00		106	70-130			
Heptane	5.50	0.5	ppbv	5.00		110	70-130			
Hexane	5.06	0.5	ppbv	5.00		101	70-130			
m+p-Xylenes	10.4	1	ppbv	10.0		104	70-130			
Methylene chloride	4.96	1	ppbv	5.00		99.2	70-130			
Methyl-t-butyl ether (MTBE)	4.87	0.5	ppbv	5.00		97.4	70-130			
Naphthalene	4.31	0.5	ppbv	5.00		86.2	60-140			
o-Xylene	5.23	0.5	ppbv	5.00		105	70-130			
Propylene	4.95	1	ppbv	5.00		99.0	70-130			
Styrene	5.33	0.5	ppbv	5.00		107	70-130			
Tetrachloroethylene (PCE)	4.95	0.5	ppbv	5.00		99.0	70-130			
Tetrahydrofuran	5.60	0.5	ppbv	5.00		112	70-130			
Toluene	5.36	0.5	ppbv	5.00		107	70-130			
trans-1,2-Dichloroethylene	4.07	0.5	ppbv	5.00		81.4	70-130			
trans-1,3-Dichloropropene	4.88	0.5	ppbv	5.00		97.6	70-130			
Trichloroethylene	5.20	0.5	ppbv	5.00		104	70-130			
Trichlorofluoromethane	5.17	0.5	ppbv	5.00		103	70-130			
Vinyl acetate	4.85	0.5	ppbv	5.00		97.0	70-130			
Vinyl bromide	4.93	0.5	ppbv	5.00		98.6	70-130			
Vinyl chloride	5.04	0.5	ppbv	5.00		101	70-130			
Surr: 4-Bromofluorobenzene (Surr)	4.98		ppbv	5.00		99.6	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34		
	Harrisburg, PA 17111				
Submitted To:	Tom Lock	Project Number:	07223016.00		
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485		

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical											
	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGE0427 - No Prep VO	C Air										
LCS Dup (BGE0427-BSD1)					Prep	bared &	Analyzed	: 05/10/20	023		
1,1,1-Trichloroethane	5.12	0.5	ppbv	5.00		102	70-130	0.584	25		
1,1,2,2-Tetrachloroethane	5.28	0.5	ppbv	5.00		106	70-130	0.380	25		
1,1,2-Trichloro-1,2,2-trifluoroetha ne	4.86	0.5	ppbv	5.00		97.2	70-130	1.66	25		
1,1,2-Trichloroethane	5.23	0.5	ppbv	5.00		105	70-130	0.191	25		
1,1-Dichloroethane	4.62	0.5	ppbv	5.00		92.4	70-130	1.53	25		
1,1-Dichloroethylene	5.26	0.5	ppbv	5.00		105	70-130	6.88	25		
1,2,4-Trimethylbenzene	5.49	0.5	ppbv	5.00		110	70-130	0.182	25		
1,2-Dibromoethane (EDB)	5.21	0.5	ppbv	5.00		104	70-130	0.00	25		
1,2-Dichlorobenzene	5.32	0.5	ppbv	5.00		106	70-130	0.00	25		
1,2-Dichloroethane	5.17	0.5	ppbv	5.00		103	70-130	0.193	25		
1,2-Dichloropropane	5.26	0.5	ppbv	5.00		105	70-130	0.758	25		
1,2-Dichlorotetrafluoroethane	4.98	0.5	ppbv	5.00		99.6	70-130	0.601	25		
1,3,5-Trimethylbenzene	5.28	0.5	ppbv	5.00		106	70-130	0.190	25		
1,3-Butadiene	4.86	0.5	ppbv	5.00		97.2	70-130	1.87	25		
1,3-Dichlorobenzene	5.21	0.5	ppbv	5.00		104	70-130	0.192	25		
1,4-Dichlorobenzene	5.20	0.5	ppbv	5.00		104	70-130	0.957	25		
1,4-Dioxane	5.52	0.5	ppbv	5.00		110	70-130	0.902	25		
2-Butanone (MEK)	4.72	0.5	ppbv	5.00		94.4	70-130	1.71	25		
4-Methyl-2-pentanone (MIBK)	5.64	0.5	ppbv	5.00		113	70-130	0.533	25		
Allyl chloride	4.86	0.5	ppbv	5.00		97.2	70-130	2.92	25		
Benzene	5.18	0.5	ppbv	5.00		104	70-130	0.193	25		
Benzyl Chloride	4.28	0.5	ppbv	5.00		85.6	70-130	0.703	25		
Bromodichloromethane	4.67	0.5	ppbv	5.00		93.4	70-130	0.00	25		
Bromoform	0.51	0.5	ppbv	5.00		10.2	70-130	0.00	25	L	
Bromomethane	5.41	0.5	ppbv	5.00		108	70-130	0.737	25		
Carbon Disulfide	4.78	0.5	ppbv	5.00		95.6	70-130	2.33	25		
Carbon Tetrachloride	4.98	0.5	ppbv	5.00		99.6	70-130	1.20	25		
Chlorobenzene	5.06	0.5	ppbv	5.00		101	70-130	0.00	25		
Chloroethane	4.88	0.5	ppbv	5.00		97.6	70-130	0.816	25		
Chloroform	4.71	0.5	ppbv	5.00		94.2	70-130	0.212	25		
Chloromethane	5.20	0.5	ppbv	5.00		104	70-130	0.192	25		
cis-1,2-Dichloroethylene	4.79	0.5	ppbv	5.00		95.8	70-130	0.418	25		
cis-1,3-Dichloropropene	5.45	0.5	ppbv	5.00		109	70-130	0.184	25		
			••								

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

			En	ithalpy	Analyti	cal				
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGE0427 - No Prep VC	OC Air									
LCS Dup (BGE0427-BSD1)					Prep	bared &	Analyzed	: 05/10/20	023	
Cyclohexane	5.24	0.5	ppbv	5.00		105	70-130	1.89	25	
Dichlorodifluoromethane	4.81	0.5	ppbv	5.00		96.2	70-130	1.68	25	
Ethyl acetate	4.63	0.5	ppbv	5.00		92.6	70-130	3.81	25	
Ethylbenzene	5.32	0.5	ppbv	5.00		106	70-130	0.00	25	
Heptane	5.43	0.5	ppbv	5.00		109	70-130	1.28	25	
Hexane	5.13	0.5	ppbv	5.00		103	70-130	1.37	25	
n+p-Xylenes	10.4	1	ppbv	10.0		104	70-130	0.384	25	
Methylene chloride	5.28	1	ppbv	5.00		106	70-130	6.25	25	
/lethyl-t-butyl ether (MTBE)	4.90	0.5	ppbv	5.00		98.0	70-130	0.614	25	
laphthalene	4.30	0.5	ppbv	5.00		86.0	60-140	0.232	25	
-Xylene	5.25	0.5	ppbv	5.00		105	70-130	0.382	25	
Propylene	5.03	1	ppbv	5.00		101	70-130	1.60	25	
Styrene	5.35	0.5	ppbv	5.00		107	70-130	0.375	25	
etrachloroethylene (PCE)	4.91	0.5	ppbv	5.00		98.2	70-130	0.811	25	
Fetrahydrofuran	5.57	0.5	ppbv	5.00		111	70-130	0.537	25	
Toluene	5.36	0.5	ppbv	5.00		107	70-130	0.00	25	
rans-1,2-Dichloroethylene	4.15	0.5	ppbv	5.00		83.0	70-130	1.95	25	
rans-1,3-Dichloropropene	4.88	0.5	ppbv	5.00		97.6	70-130	0.00	25	
Trichloroethylene	5.15	0.5	ppbv	5.00		103	70-130	0.966	25	
Frichlorofluoromethane	5.20	0.5	ppbv	5.00		104	70-130	0.579	25	
/inyl acetate	4.96	0.5	ppbv	5.00		99.2	70-130	2.24	25	
/inyl bromide	4.94	0.5	ppbv	5.00		98.8	70-130	0.203	25	
/inyl chloride	5.03	0.5	ppbv	5.00		101	70-130	0.199	25	
Surr: 4-Bromofluorobenzene	4.98		ppbv	5.00		99.6	70-130			

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	I	Reporting		Spike	Source	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

Batch BGE0409 - No Prep VOC GC Air

Blank (BGE0409-BLK1)					Prepared &	Analyzed: 08	5/09/202	23	
Methane	<	0.05	Vol%						
Carbon dioxide	<	0.05	Vol%						
Oxygen (O2)	<	0.05	Vol%						
Nitrogen (N2)	<	1.00	Vol%						
Hydrogen (H2)	<	0.02	Vol%						
Carbon Monoxide	<	10.0	ppmv						
Carbon Monoxide	<	0.001	Vol%						
LCS (BGE0409-BS1)					Prepared &	Analyzed: 05	5/09/202	23	
Methane	4650	500	ppmv	5000	93.0	0-200			
Methane	4650	0.05	ppmv	5000	93.0	80-120			
Carbon dioxide	5750	500	ppmv	5000	115	0-200			
Carbon dioxide	5750	0.05	ppmv	5000	115	80-120			
Oxygen (O2)	5100	500	ppmv	5000	102	0-200			
Oxygen (O2)	5100	0.05	ppmv	5000	102	80-120			
Nitrogen (N2)	5390	2000	ppmv	5000	108	0-200			
Hydrogen (H2)	5870	200	ppmv	5100	115	0-200			
lydrogen (H2)	5870	0.02	ppmv	5100	115	80-120			
litrogen (N2)	5390	1	ppmv	5000	108	80-120			
Carbon Monoxide	4850	10	ppmv	5000	97.0	0-200			
Carbon Monoxide	4850	0.001	ppmv	5000	97.0	80-120			
Duplicate (BGE0409-DUP1)		So	urce: 23E	0463-01	Prepared &	Analyzed: 0	5/09/202	23	
Methane	430000	4500	ppmv		432000	C	0.500	25	
Methane	43.0	0.45	Vol%		43.2	C	0.500	5	
Carbon dioxide	424000	4500	ppmv		427000	C).619	25	
Carbon dioxide	42.4	0.45	Vol%		42.7	C).619	5	
Oxygen (O2)	5980	4500	ppmv		5980	0	.0316	25	
Oxygen (O2)	0.60	0.45	Vol%		0.60	0	.0316	5	
Hydrogen (H2)	113000	1800	ppmv		113000	C).243	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00		NA	5	
Nitrogen (N2)	<	18000	ppmv		<18000		NA	25	
Carbon Monoxide	103	90.0	ppmv		105		2.08	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01		2.08	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Of	ganic Comp		•		Analyti			a basis	- Quanty	Control
	F	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGE0409 - No Prep VC	DC GC Air									
Duplicate (BGE0409-DUP2)		So	urce: 23E04	63-02	Prep	ared & /	Analyzed	: 05/09/20)23	
Methane	40.9	0.45	Vol%		41.1			0.426	5	
Methane	409000	4500	ppmv		41100	0		0.426	25	
Carbon dioxide	35.6	0.45	Vol%		35.6			0.196	5	
Carbon dioxide	356000	4500	ppmv		35600	00		0.196	25	
Oxygen (O2)	1.65	0.45	Vol%		1.66			0.258	5	
Oxygen (O2)	16500	4500	ppmv		1660	0		0.258	25	
Nitrogen (N2)	12.0	9.00	Vol%		12.1			0.604	5	
Hydrogen (H2)	0.75	0.18	Vol%		0.73			2.20	5	
Nitrogen (N2)	120000	18000	ppmv		12100	00		0.604	25	
Hydrogen (H2)	7460	1800	ppmv		7300)		2.20	25	
Carbon Monoxide	<	90.0	ppmv		<90.	C		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Duplicate (BGE0409-DUP3)		So	urce: 23E04	99-01	Prep	ared & /	Analyzed	: 05/12/20)23	
Methane	176000	4500	ppmv		17700	00		0.366	25	
Methane	17.6	0.45	Vol%		17.7			0.366	5	
Carbon dioxide	553000	4500	ppmv		55400	00		0.169	25	
Carbon dioxide	55.3	0.45	Vol%		55.4			0.169	5	
Oxygen (O2)	4910	4500	ppmv		4960)		0.950	25	
Oxygen (O2)	0.49	0.45	Vol%		0.50			0.950	5	
Hydrogen (H2)	128000	1800	ppmv		12800	00		0.442	25	
Nitrogen (N2)	101000	18000	ppmv		10200	00		0.595	25	
Nitrogen (N2)	10.1	9.00	Vol%		10.2			0.595	5	
Carbon Monoxide	0.05	0.009	Vol%		0.05			0.285	5	
Carbon Monoxide	537	90.0	ppmv		536			0.285	25	
Duplicate (BGE0409-DUP4)		So	urce: 23E04	99-02	Prep	ared & /	Analyzed	: 05/12/20)23	
Methane	39.3	0.45	Vol%		39.4			0.209	5	
Methane	393000	4500	ppmv		39400	00		0.209	25	
Carbon dioxide	469000	4500	ppmv		47000	00		0.274	25	
Carbon dioxide	46.9	0.45	Vol%		47.0			0.274	5	
Oxygen (O2)	5430	4500	ppmv		5470)		0.614	25	
									_	

0.55

34800

31900

Oxygen (O2)

Nitrogen (N2)

Hydrogen (H2)

0.54

34600

31900

Vol%

ppmv

ppmv

0.45

18000

1800

5

25

25

0.614

0.585

0.0914

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical											
	F	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGE0409 - No Prep VO	C GC Air										
Duplicate (BGE0409-DUP4)		So	urce: 23E04	499-02	Prep	ared & /	Analyzed	: 05/12/20)23		
Nitrogen (N2)	<	9.00	Vol%		<9.0	D		NA	5		
Hydrogen (H2)	3.19	0.18	Vol%		3.19)		0.0914	5		
Carbon Monoxide	165	90.0	ppmv		162			1.98	25		
Carbon Monoxide	0.02	0.009	Vol%		0.02	1		1.98	5		
Duplicate (BGE0409-DUP5)		So	urce: 23E04	499-03	Prep	ared & /	Analyzed	: 05/12/20)23		
Methane	36.6	0.45	Vol%		36.5	i		0.171	5		
Methane	366000	4500	ppmv		36500	00		0.171	25		
Carbon dioxide	507000	4500	ppmv		50900	00		0.380	25		
Carbon dioxide	50.7	0.45	Vol%		50.9)		0.380	5		
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5		
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25		
Hydrogen (H2)	26000	1800	ppmv		2530	0		2.60	25		
Nitrogen (N2)	<	9.00	Vol%		<9.0	D		NA	5		
Nitrogen (N2)	29000	18000	ppmv		2880	0		0.524	25		
Hydrogen (H2)	2.60	0.18	Vol%		2.53			2.60	5		
Carbon Monoxide	132	90.0	ppmv		129			2.83	25		
Carbon Monoxide	0.01	0.009	Vol%		0.01			2.83	5		
Duplicate (BGE0409-DUP6)		So	urce: 23E04	499-04	Prep	ared & /	Analyzed	: 05/12/20)23		
Methane	413000	4500	ppmv		41600	00		0.784	25		
Methane	41.3	0.45	Vol%		41.6	;		0.784	5		

Methane	413000	4500	ppmv	416000	0.784	25
Methane	41.3	0.45	Vol%	41.6	0.784	5
Carbon dioxide	459000	4500	ppmv	459000	0.00846	25
Carbon dioxide	45.9	0.45	Vol%	45.9	0.00845	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Hydrogen (H2)	54200	1800	ppmv	54700	0.828	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Or	rganic Comp	ounds l	by GC/T	CD - U	nadjust	ed, as	receive	d basis	- Quality	Control	
			En	thalpy	Analyti	cal					
	F	Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGE0409 - No Prep VC	DC GC Air										
Duplicate (BGE0409-DUP7)		So	urce: 23E	0499-05	Prep	pared & /	Analyzed	I: 05/12/20)23		
Methane	13100	4500	ppmv		1320	0		0.657	25		
Methane	1.31	0.45	Vol%		1.32	2		0.657	5		
Carbon dioxide	657000	4500	ppmv		65900	00		0.216	25		
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5		
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25		
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5		
Hydrogen (H2)	360000	1800	ppmv		36000	00		0.0838	25		
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25		
Carbon Monoxide	0.09	0.009	Vol%		0.09)		0.584	5		
Carbon Monoxide	897	90.0	ppmv		891			0.584	25		
Duplicate (BGE0409-DUP8)		So	urce: 23E	0499-06	Prep	bared & /	Analyzed	1: 05/12/20)23		
Methane	151000	4500	ppmv		15000	00		0.0903	25		
Methane	15.1	0.45	Vol%		15.0)		0.0903	5		
Carbon dioxide	302000	4500	ppmv		30400	00		0.683	25		
Carbon dioxide	30.2	0.45	Vol%		30.4	Ļ		0.683	5		
Oxygen (O2)	59400	4500	ppmv		5930	0		0.0705	25		
Oxygen (O2)	5.94	0.45	Vol%		5.93	3		0.0705	5		
Nitrogen (N2)	38.3	9.00	Vol%		38.3	5		0.0663	5		
Nitrogen (N2)	383000	18000	ppmv		38300	00		0.0663	25		
Hydrogen (H2)	47900	1800	ppmv		4780	0		0.210	25		
Carbon Monoxide	178	90.0	ppmv		182			2.20	25		
Carbon Monoxide	0.02	0.009	Vol%		0.02	2		2.20	5		
Duplicate (BGE0409-DUP9)		So	urce: 23E	0499-07	Prep	bared & /	Analyzed	I: 05/12/20)23		
Methane	374000	4500	ppmv		37800	00		0.947	25		
Methane	37.4	0.45	Vol%		37.8	3		0.947	5		
Carbon dioxide	458000	4500	ppmv		46300	00		1.07	25		
Carbon dioxide	45.8	0.45	Vol%		46.3	3		1.07	5		
Oxygen (O2)	10300	4500	ppmv		1040	0		0.928	25		
Oxygen (O2)	1.03	0.45	Vol%		1.04	Ļ		0.928	5		

35200

62800

<9.00

3.52

1.94

0.939

NA

1.94

25

25

5

5

Hydrogen (H2)

Nitrogen (N2)

Nitrogen (N2)

Hydrogen (H2)

34600

62200

<

3.46

1800

18000

9.00

0.18

ppmv

ppmv

Vol%

Vol%

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGE0409 - No Prep VOC	GC Air										

Duplicate (BGE0409-DUP9)		So	urce: 23E0499-07	Prepared & Ar	nalyzed: 05/12/202	23
Carbon Monoxide	204	90.0	ppmv	203	0.221	25
Carbon Monoxide	0.02	0.009	Vol%	0.02	0.221	5
Duplicate (BGE0409-DUPA)		Sou	urce: 23E0499-08	Prepared & Ar	nalyzed: 05/12/202	23
Methane 17	77000	4500	ppmv	178000	0.247	25
Methane	17.7	0.45	Vol%	17.8	0.247	5
Carbon dioxide 57	77000	4500	ppmv	579000	0.245	25
Carbon dioxide	57.7	0.45	Vol%	57.9	0.245	5
Oxygen (O2) 2	20800	4500	ppmv	20800	0.0857	25
Oxygen (O2)	2.08	0.45	Vol%	2.08	0.0857	5
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Hydrogen (H2) 13	31000	1800	ppmv	131000	0.209	25
Nitrogen (N2) 7	75300	18000	ppmv	75600	0.400	25
Carbon Monoxide	590	90.0	ppmv	593	0.441	25
Carbon Monoxide	0.06	0.009	Vol%	0.06	0.441	5
Duplicate (BGE0409-DUPB)		Sou	urce: 23E0499-09	Prepared & Ar	nalyzed: 05/12/202	23
Methane	11.5	0.45	Vol%	11.5	0.191	5
Methane 11	15000	4500	ppmv	115000	0.191	25
Carbon dioxide 27	70000	4500	ppmv	266000	1.14	25
Carbon dioxide	27.0	0.45	Vol%	26.6	1.14	5
Oxygen (O2) 6	67600	4500	ppmv	67600	0.105	25
Oxygen (O2)	6.76	0.45	Vol%	6.76	0.105	5
Hydrogen (H2) 2	29400	1800	ppmv	29700	0.824	25
Nitrogen (N2) 44	47000	18000	ppmv	448000	0.135	25
Hydrogen (H2)	2.94	0.18	Vol%	2.97	0.824	5
Carbon Monoxide	184	90.0	ppmv	182	1.28	25
Carbon Monoxide	0.02	0.009	Vol%	0.02	1.28	5

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental	93016	06/14/2023
VELAP	NELAP-Virginia Certificate #12333	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

L L	CS recovery is	outside of	established	acceptance limits
-----	----------------	------------	-------------	-------------------

- RPD Relative Percent Difference
- Qual Qualifers
- -RE Denotes sample was re-analyzed
- PF Preparation Factor
- MDL Method Detection Limit
- LOQ Limit of Quantitation
- ppbv parts per billion by volume
- TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

ENTHALPY ANALYTICAL

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

AIR ANALYSIS

TO	rmeriy Air, v	ater & s	OTLO	Dorator	les			CHAIN	OF CUS	TODY	E	quipm	ent due	e 6/1/202	:3		P	age	1 of 3
СО	MPANY NAME	SCS Fiel	d Servi	ces - Harri	isbu	rg INV	VOICE TO	: Same				PROJ	ECT NAM	1E/Quote #	#: Bristo	I			
со	NTACT:					INV	VOICE CO	NTACT:			-	SITE N	NAME: 🖪	RESTOL	a.				
AD	DRESS:					INV	VOICE AD	DRESS:				PROJ	ECT NUN	IBER: o	1223016	0,00			
PH	ONE #:					INV	VOICE PH	ONE #:				P.O. #	:						
FAX	X #:			EN	AIL							Pretre	atment P	rogram:					
ls s	ample for comp	liance rep	orting?	YESNO)	Regulate	ory State:	VA Is	sample fro	m a chlorii	nated sup	ply?	YES 🕻	NO PV	VS I.D. #:				
SA	MPLER NAME	(PRINT):	LOCAT	- Cult	AN	د SA	MPLER S	IGNATUR	E:			Turn /		ime: Circ		5 Days) (or	Day(s)
Matr	ix Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV=Lan	dfill/\	/ent Gas OT	=Other		0				063	3-23D-002	3				
		Regulator	Info	Canister Ir	forn	nation			Sampling	Start Inform	ation			Stop Inform			Codes)	ANAL	YSIS
	CLIENT SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	LAB Outgoing Canister Vacuum (in ^{Hg)}	LAB Receiving Canister Vacuum (in ^{Hg)}	Barometric Start Date	Start Time (24hr clock)	g): Initial Canister Vacuum (ir ^{Hg)}	Starting Sample	Barometri Stop Date	c Pres. (in H Stop Time (24hr clock)	Final Canister	Ending Sample Temp °F	See	Alt 145 CO 3C	TO-15 Benzene only
1)	84			10092	1.4	230426-01	30	5.4	515	9:47	30	185	515	9:51	10	185.	LG	x x	x
2)	86			10224	1.4	230421-01	30	4.8	515	9:58	30	41/91	515	10:01	10	161.3	LG	xx	x
3)	90			11083	1.4	230421-01	30	4.4	615	10:07	30	160.3	515	10:12	10	160.4	LG	x x	x
4)	100			12063	1.4	230426-01	30	4.4	515	10:18	30	158.6	515	10:20	10	158.6	LG	x x	x
REL		~ '	515	TE / TIME	REC	CEIVED: FCU CEIVED:	ikh	DAT	TE / TIME TE / TIME	QC Data P Level I Level II Level III		ristol	eld Ser		23E049			1	310 20.3°C Woice NUSea
	4	dy f	515	245	REC	FLU		DAT				ristol			23E049 05/15/202 v1303250	.3			1

Page 24 of 27

ENTHALPY ANALYTICAL 1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

formerly AI	r, water & S	on La	Doratori	ies			CHAIN	OF CUS	TODY	E	quipm	ent due	6/1/202	3		Pa	age	2 of 3
COMPANY NA	ME: SCS Field	d Servio	ces - Harri	sbu	rg IN\	OICE TO:	Same				PROJI	ECT NAM	IE/Quote #	t: Bristo	1			
CONTACT:	7				IN	OICE CO	NTACT:				SITE N	NAME: 🔥	RI STOL					
DDRESS:					IN	OICE AD	DRESS:				PROJ	ECT NUM	IBER: 07	223016	00.00			
HONE #:					IN	OICE PH	ONE #:				P.O. #	:						
-AX #:			EN	1AIL							Pretrea	atment Pr	ogram:					
s sample for co	ompliance rep	orting?	YES NO	0	Regulato	ory State:	VA Is	sample fro	m a chlorii	nated sup	oply?	YES 🔿	D PV	VS I.D. #:				
SAMPLER NAI	ME (PRINT):	Locar	s curta	hre	SA	MPLER SI	GNATUR	:E:	p		Turn A	Around T	ime: Circ	cle: 10	5 Days	c	or	Day(s)
latrix Codes: AA=I	ndoor/Ambient Air	SG=Soil	Gas LV=Land	dfill/V	ent Gas OT	=Other		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				063	3-23D-002	3				
	Regulator	Info	Canister In	form	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	nation		Codes)	NAL	YSIS
CLIENT						LAB	LAB	Barometric	Pres. (in Ho			Barometri	c Pres. (in H			(See Co	3	
SAMPLE I.I	D. Flow Controller ID	Cal Flow (mU/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in ^{Hg)}	Receiving Canister Vacuum (in ^{Hg})	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (^{Hg)}	in Sample	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in ^{Hg)}	Ending Sample Temp °F	Matrix (s	Alt 145 U 3C	TO-15 Benzene only
1) 89			12409	1.4	230421-01	30	4.8	515	10:28	30	1.0.51	515	10:32	10	151	LG	x x	x
2) 61			12471	1.4	230421-01	30	4.4	515	10:38	30	151.6	515	10:12	10	151.5	LG	x x	x
3) 49			12659	1.4	230421-01	30	5.2	515	10:48	30	E.PH1	515	10:51	10	149.3	LG	x x	x
4) 6	1		13378	1.4	230421-01	30	4.0	515	10:57	30	Lihsi	515	11:02	10	155.5	LG	x x	x
RELINQUISHED:				REC	EIVED:		DA	TE / TIME	QC Data P	Package L	AB USE	ONLY	•					310
ELINQUISHED:	h	515			eived: Adlx	(G		te / Time	Level I Level II		Bristol	ield Sei		23E049				20.3°C NOSC NUSE
RELINQUISHED: F	eark h	DAT	E / TIME	REC		aam	1946	1120	Level III Level IV		Recd: 0	5/08/202	3 Due:	05/15/202 v130325				
					Ang = 1120			1.20%							Г	Pa	ge 2	5 of 27

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

Tormerly Air, Water & Son Lu	boratories	CHAI	N OF CUS	TODY	Ec	quipme	ent due	6/1/202	3		Pag	ge 3	of 3	
COMPANY NAME: SCS Field Servi	ces - Harrisburg	INVOICE TO: Sar	ne			PROJE	CT NAM	E/Quote #	E Bristol					
CONTACT:		INVOICE CONTACT	:			SITE N	AME:	ESTOL						
ADDRESS:		INVOICE ADDRESS	IVOICE ADDRESS: PROJECT NUMBER: 0722306,00											
PHONE #:		INVOICE PHONE #:				P.O. #:								
FAX #:	EMAIL:					Pretrea	tment Pro	ogram:						
Is sample for compliance reporting?	YES NO Reg	ulatory State: VA	Is sample fro	om a chlorir	nated supp	ply?	YES Ň	O PV	VS I.D. #:					
SAMPLER NAME (PRINT): LOGAT		SAMPLER SIGNAT	JRE:			Turn A		me: Circ	-	Days) or		Day(s)	
Matrix Codes: AA=Indoor/Ambient Air SG=Soil	Gas LV=Landfill/Vent Ga	OT=Other					063	-23D-002	3					
Regulator Info	Canister Information	1 	Sampling	Start Informa	ation			Stop Inform			AN (ge ge g	VALY	'SIS	
CLIENT SAMPLE I.D. Flow Cal Controller Flow ID (mL/min)	Canister ID S Bate		ng er ⁽ⁱⁿ Start Date	(24hr clock)	Initial Canister Vacuum (in ^{Hg)}	Starting Sample		Pres. (in H Stop Time (24hr clock)	Final Canister Vacuum (in s		Alt 145 CO	3C	TO-15 Benzene only	
1) 37	13963 1.4 2304	21-01 30 5.2	515	11:08	30	L.941	515	[]';//	10	6.941	.G x	x	x	
2) pot condition	15037 1.4 2304	21-01 30								Ľ	.G x	x	x	
3)														
4)														
RELINQUISHED:	RECEIVED):	DATE / TIME	QC Data P	ackage LA	AB USE	ONLY					0.5	310 20.300	
515		exis	DATE / TIME	Level II		CS Fie ristol	eld Ser	vices	23E0499				Nosec	
FEDERG	lat	than any ste		Level IV		ecd: 05	/08/2023	B Due:	05/15/2023 v130325002					

Certificate of Analysis

Final Report

Laboratory Order ID 23E0499

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 8, 2023 11:20 May 15, 2023 16:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

SCS Field Services - Harrisburg, PA	Date Received:	May 11, 2023 11:30
4330 Lewis Road, Suite 1	Date Issued:	May 18, 2023 16:33
Harrisburg, PA 17111	Project Number:	07223016.00
Tom Lock	Purchase Order:	07-SO04485
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111	4330 Lewis Road, Suite 1Date Issued:Harrisburg, PA 17111Project Number:

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 05/11/2023 11:30. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOJAS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	May 11, 2023 11:30
	4330 Lewis Road, Suite 1	Date Issued:	May 18, 2023 16:33
	Harrisburg, PA 17111	Project Number:	07222016 00
		Project Number.	07223010.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
84	23E0755-01	Air	05/10/2023 10:00	05/11/2023 11:30
86	23E0755-02	Air	05/10/2023 10:11	05/11/2023 11:30
100	23E0755-03	Air	05/10/2023 10:43	05/11/2023 11:30
90	23E0755-04	Air	05/10/2023 11:12	05/11/2023 11:30
37	23E0755-05	Air	05/10/2023 11:21	05/11/2023 11:30

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESUL	тѕ	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 84	Sub Description/Location:		Final Vacuum(in Hg): 4.8
Sample ID: 23E0755-01	Canister ID: 063-00192::11084		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 5/10/2023 10:00			Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis									
		ppmv		ALT-145			Date/Time		
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst	
Carbon Monoxide, as received	529	90.0	90.0		9	1	5/16/23 11:36	MER	

	Vola	-	c Compour	ds by GC/TCD - Unadjusted, as received EPA 3C	basis			
		Vol%					Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	13.0	0.45	0.45		9	1	5/16/23 11:36	MER
Carbon dioxide, as received	53.1	0.45	0.45		9	1	5/16/23 11:36	MER
Oxygen (O2), as received	0.75	0.45	0.45		9	1	5/16/23 11:36	MER
Hydrogen (H2), as received	12.0	1.08	1.08		54	1	5/16/23 14:52	MER
Nitrogen (N2), as received	16.8	9.00	9.00		9	1	5/16/23 11:36	MER
Carbon Monoxide, as received	0.05	0.009	0.009		9	1	5/16/23 11:36	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	323000	9330	23300		1000000	30000	75000	46700	1	5/17/23 14:01	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			92.0		6	30-120				5/17/23 14:01	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
Harrisburg, PA 17111		
Tom Lock	Project Number:	07223016.00
Bristol	Purchase Order:	07-SO04485
ANALYTICAL RESULTS		
Sample Description/Location:		Initial Vacuum(in Hg): 30
Sub Description/Location:		Final Vacuum(in Hg): 4.4
Canister ID: 063-00109::11305		Receipt Vacuum(in Hg):
Canister Size: 1.4L		Flow Controller Type: Passive
		Flow Controller ID:
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111 Tom Lock Bristol ANALYTICAL RESULTS Sample Description/Location: Sub Description/Location: Canister ID: 063-00109::11305	4330 Lewis Road, Suite 1Date Issued:Harrisburg, PA 17111Tom LockProject Number:BristolPurchase Order:Sample Description/Location: Sub Description/Location: Canister ID: 063-00109::11305

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis										
		ppmv		ALT-145			Date/Time			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst		
Carbon Monoxide, as received	138	90.0	90.0		9	1	5/16/23 13:10	MER		

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as received bas	sis			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	34.5	0.45	0.45		9	1	5/16/23 13:10	MER
Carbon dioxide, as received	48.2	0.45	0.45		9	1	5/16/23 13:10	MER
Oxygen (O2), as received	0.89	0.45	0.45		9	1	5/16/23 13:10	MER
Hydrogen (H2), as received	2.53	0.18	0.18		9	1	5/16/23 13:10	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/16/23 13:10	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	5/16/23 13:10	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	113000	2330	5830		360000	7500	19000	11700	1	5/17/23 12:31	DFH
Surrogate(s)		% Re	covery		% Red	covery Lir	nits				
4-Bromofluorobenzene (Surr)			94.8		8	30-120				5/17/23 12:31	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 100	Sub Description/Location:		Final Vacuum(in Hg): 4.8
Sample ID: 23E0755-03	Canister ID: 063-00096::12401		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 5/10/2023 10:43			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted,	as received basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	ND	90.0	90.0		9	1	5/16/23 14:01	MER

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as received	basis			
		Vol%		EPA 3C			D. (. (7)	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	41.0	0.45	0.45		9	1	5/16/23 14:01	MER
Carbon dioxide, as received	46.0	0.45	0.45		9	1	5/16/23 14:01	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	5/16/23 14:01	MER
Hydrogen (H2), as received	4.51	0.18	0.18		9	1	5/16/23 14:01	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/16/23 14:01	MER
Carbon Monoxide, as received	ND	0.009	0.009		9	1	5/16/23 14:01	MER

			Volatile (Organic Compo EPA TO-1		IS					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	26600	778	1940		85000	2500	6200	3890	1	5/17/23 14:46	DFH
Surrogate(s)		% Re	covery		% Re	covery Lin	nits				
4-Bromofluorobenzene (Surr)			97.8		8	30-120				5/17/23 14:46	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 90	Sub Description/Location:		Final Vacuum(in Hg): 4.8
Sample ID: 23E0755-04	Canister ID: 063-00309::12860		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 5/10/2023 11:12			Flow Controller ID:

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted	l, as received basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	124	90.0	90.0		9	1	5/16/23 15:23	MER

	Vola	atile Organi Vol%	c Compour	ds by GC/TCD - Unadjusted, as received bas EPA 3C	is			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	37.0	0.45	0.45		9	1	5/16/23 15:23	MER
Carbon dioxide, as received	51.7	0.45	0.45		9	1	5/16/23 15:23	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	5/16/23 15:23	MER
Hydrogen (H2), as received	2.54	0.18	0.18		9	1	5/16/23 15:23	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/16/23 15:23	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	5/16/23 15:23	MER

			Volatile C	organic Compo EPA TO-1		S					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	321000	4670	11700		1000000	15000	37000	23300	1	5/17/23 13:16	DFH
Surrogate(s)		% Re	covery		% Red	covery Lir	nits				
4-Bromofluorobenzene (Surr)			95.4		8	30-120				5/17/23 13:16	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 37	Sub Description/Location:		Final Vacuum(in Hg): 5.0
Sample ID: 23E0755-05	Canister ID: 063-00268::13370		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 5/10/2023 11:21			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as receive	ed basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF		Analyst
Carbon Monoxide, as received	160	90.0	90.0		9	1	5/16/23 16:15 N	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basi	s			
		Vol%		EPA 3C			Dete/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	9.34	0.45	0.45		9	1	5/16/23 16:15	MER
Carbon dioxide, as received	23.2	0.45	0.45		9	1	5/16/23 16:15	MER
Oxygen (O2), as received	7.31	0.45	0.45		9	1	5/16/23 16:15	MER
Hydrogen (H2), as received	2.51	0.18	0.18		9	1	5/16/23 16:15	MER
Nitrogen (N2), as received	49.0	18.0	18.0		18	1	5/16/23 17:41	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	5/16/23 16:15	MER

			Volatile (Drganic Compo EPA TO-1		S					
		ppbv				ug/M³		_		Dete/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Date/Time Analyzed	Analyst
Benzene	54000	1560	3890		170000	5000	12000	7780	1	5/17/23 15:30	DFH
Surrogate(s)		% Re	covery		% Re	covery Li	nits				
4-Bromofluorobenzene (Surr)			98.0		8	30-120				5/17/23 15:30	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
Harrisburg, PA 17111		
Tom Lock	Project Number:	07223016.00
Bristol	Purchase Order:	07-SO04485
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111 Tom Lock	4330 Lewis Road, Suite 1Date Issued:Harrisburg, PA 17111Tom LockProject Number:

- Analytical Summary

33E0755-02 1.00 mL / 1.00 mL ALT-145 BGE0656 SGE0618 AG00026 33E0755-03 1.00 mL / 1.00 mL ALT-145 BGE0656 SGE0618 AG00026 33E0755-04 1.00 mL / 1.00 mL ALT-145 BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL ALT-145 BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-01 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-01RE1 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-02 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-03 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-04 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026	Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
33E0755-02 1.00 mL / 1.00 mL ALT-145 BGE0656 SGE0618 AG00026 33E0755-03 1.00 mL / 1.00 mL ALT-145 BGE0656 SGE0618 AG00026 33E0755-04 1.00 mL / 1.00 mL ALT-145 BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL ALT-145 BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-01 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-01RE1 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-02 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-03 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-04 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026	Volatile Organic Con	npounds by GC/TCD - Unadjusted	l, as received basis	Preparation Method:	No Prep VOC GC	Air
33E0755-03 1.00 mL / 1.00 mL ALT-145 BGE0656 SGE0618 AG00026 33E0755-04 1.00 mL / 1.00 mL ALT-145 BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL ALT-145 BGE0656 SGE0618 AG00026 33E0755-01 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-01 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-02 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-03 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-04 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026	23E0755-01	1.00 mL / 1.00 mL	ALT-145	BGE0656	SGE0618	AG00026
33E0755-04 1.00 mL / 1.00 mL ALT-145 BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL ALT-145 BGE0656 SGE0618 AG00026 33E0755-01 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-01 RE1 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-02 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-03 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-04 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0427 SGE0668 AE30194	23E0755-02	1.00 mL / 1.00 mL	ALT-145	BGE0656	SGE0618	AG00026
33E0755-05 1.00 mL / 1.00 mL ALT-145 BGE0656 SGE0618 AG00026 33E0755-01 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-01RE1 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-02 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-02 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-03 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-04 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05RE1 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-01 400 mL / 400 mL EPA 3C BGE0427 SGE0668 AE30194 33E0755-02 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194	23E0755-03	1.00 mL / 1.00 mL	ALT-145	BGE0656	SGE0618	AG00026
33E0755-01 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-01RE1 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-02 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-03 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-04 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-01 Mo mL / 1.00 mL EPA 3C BGE0427 SGE0668 AE30194 <	23E0755-04	1.00 mL / 1.00 mL	ALT-145	BGE0656	SGE0618	AG00026
33E0755-01RE1 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-02 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-03 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-04 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 33E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 Sample ID Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID 32E0755-01 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668	23E0755-05	1.00 mL / 1.00 mL	ALT-145	BGE0656	SGE0618	AG00026
23E0755-02 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 23E0755-03 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 23E0755-04 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 23E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 23E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 23E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 23E0755-05RE1 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 Sample ID Preparation Factors Initial / Final Method BAtch ID Sequence ID Calibration ID Volatile Organic Compounds by GCMS Preparation Method: No Prep VOC Air 23E0755-01 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 23E0755-02 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 23E0755-03 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 <	23E0755-01	1.00 mL / 1.00 mL	EPA 3C	BGE0656	SGE0618	AG00026
Participation Initial / Initia	23E0755-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0656	SGE0618	AG00026
Partner International EPA 3C BGE0656 SGE0618 AG00026 P3E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 P3E0755-05 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 P3E0755-05RE1 1.00 mL / 1.00 mL EPA 3C BGE0656 SGE0618 AG00026 Sample ID Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID Volatile Organic Compounds by GCMS Preparation Method: No Prep VOC Air P3E0755-01 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 P3E0755-02 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 P3E0755-03 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 P3E0755-04 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 P3E0755-04 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 P3E0755-04 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 <td>23E0755-02</td> <td>1.00 mL / 1.00 mL</td> <td>EPA 3C</td> <td>BGE0656</td> <td>SGE0618</td> <td>AG00026</td>	23E0755-02	1.00 mL / 1.00 mL	EPA 3C	BGE0656	SGE0618	AG00026
Preparation Factors EPA 3C BGE0656 SGE0618 AG00026 Sample ID Preparation Factors Method Batch ID Sequence ID Calibration ID Volatile Organic Compounds by GCMS Preparation Method: No Prep VOC Air R3E0755-02 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 R3E0755-03 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 R3E0755-03 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 R3E0755-03 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 R3E0755-03 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 R3E0755-04 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194	23E0755-03	1.00 mL / 1.00 mL	EPA 3C	BGE0656	SGE0618	AG00026
Preparation Factors Initial / FinalMethodBGE0656SGE0618AG00026Sample IDPreparation Factors Initial / FinalMethodBatch IDSequence IDCalibration ID/olatile Organic Compounds by GCMSPreparation Method:No Prep VOC Air23E0755-01400 mL / 400 mLEPA TO-15BGE0427SGE0668AE3019423E0755-02400 mL / 400 mLEPA TO-15BGE0427SGE0668AE3019423E0755-03400 mL / 400 mLEPA TO-15BGE0427SGE0668AE3019423E0755-04400 mL / 400 mLEPA TO-15BGE0427SGE0668AE30194	23E0755-04	1.00 mL / 1.00 mL	EPA 3C	BGE0656	SGE0618	AG00026
Preparation Factors Initial / FinalMethodBatch IDSequence IDCalibration ID/olatile Organic Compounds by GCMSPreparation Method:No Prep VOC Air23E0755-01400 mL / 400 mLEPA TO-15BGE0427SGE0668AE3019423E0755-02400 mL / 400 mLEPA TO-15BGE0427SGE0668AE3019423E0755-03400 mL / 400 mLEPA TO-15BGE0427SGE0668AE3019423E0755-04400 mL / 400 mLEPA TO-15BGE0427SGE0668AE30194	23E0755-05	1.00 mL / 1.00 mL	EPA 3C	BGE0656	SGE0618	AG00026
Sample IDInitial / FinalMethodBatch IDSequence IDCalibration IDVolatile Organic Compounds by GCMSPreparation Method:No Prep VOC Air23E0755-01400 mL / 400 mLEPA TO-15BGE0427SGE0668AE3019423E0755-02400 mL / 400 mLEPA TO-15BGE0427SGE0668AE3019423E0755-03400 mL / 400 mLEPA TO-15BGE0427SGE0668AE3019423E0755-04400 mL / 400 mLEPA TO-15BGE0427SGE0668AE30194	23E0755-05RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0656	SGE0618	AG00026
32E0755-01 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 32E0755-02 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 32E0755-03 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 32E0755-03 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 32E0755-04 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194	Sample ID	•	Method	Batch ID	Sequence ID	Calibration ID
BGE0755-02 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 BGE0755-03 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 BGE0755-04 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 BGE0755-04 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194	Volatile Organic Con	npounds by GCMS		Preparation Method:	No Prep VOC Air	
Algebra Add mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194 Algebra Add mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194	23E0755-01	400 mL / 400 mL	EPA TO-15	BGE0427	SGE0668	AE30194
3E0755-04 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194	23E0755-02	400 mL / 400 mL	EPA TO-15	BGE0427	SGE0668	AE30194
	23E0755-03	400 mL / 400 mL	EPA TO-15	BGE0427	SGE0668	AE30194
3E0755-05 400 mL / 400 mL EPA TO-15 BGE0427 SGE0668 AE30194	23E0755-04	400 mL / 400 mL	EPA TO-15	BGE0427	SGE0668	AE30194
	23E0755-05	400 mL / 400 mL	EPA TO-15	BGE0427	SGE0668	AE30194

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	R	eporting		Spike	Source		%REC		RPD	
nalyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
atch BGE0427 - No Prep VO	C Air									
Blank (BGE0427-BLK1)					Prep	ared & /	Analyzed	: 05/10/2	023	
Benzene	<	0.50	ppbv							
urr: 4-Bromofluorobenzene Surr)	4.76		ppbv	5.00		95.2	80-120			
LCS (BGE0427-BS1)					Prep	ared & A	Analyzed	: 05/10/2	023	
1,1,1-Trichloroethane	5.15	0.5	ppbv	5.00		103	70-130			
1,1,2,2-Tetrachloroethane	5.26	0.5	ppbv	5.00		105	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha	4.78	0.5	ppbv	5.00		95.6	70-130			
	5.00	0.5		5.00		404	70 400			
1,1,2-Trichloroethane	5.22	0.5	ppbv	5.00		104	70-130			
,1-Dichloroethane	4.55	0.5	ppbv	5.00		91.0	70-130			
,1-Dichloroethylene	4.91	0.5	ppbv	5.00		98.2	70-130			
,2,4-Trimethylbenzene	5.48	0.5	ppbv	5.00		110	70-130			
,2-Dibromoethane (EDB)	5.21	0.5	ppbv	5.00		104	70-130			
,2-Dichlorobenzene	5.32	0.5	ppbv	5.00		106	70-130			
,2-Dichloroethane	5.18	0.5	ppbv	5.00		104	70-130			
,2-Dichloropropane	5.30	0.5	ppbv	5.00		106	70-130			
l,2-Dichlorotetrafluoroethane	5.01	0.5	ppbv	5.00		100	70-130			
1,3,5-Trimethylbenzene	5.27	0.5	ppbv	5.00		105	70-130			
I,3-Butadiene	4.77	0.5	ppbv	5.00		95.4	70-130			
1,3-Dichlorobenzene	5.20	0.5	ppbv	5.00		104	70-130			
1,4-Dichlorobenzene	5.25	0.5	ppbv	5.00		105	70-130			
,4-Dioxane	5.57	0.5	ppbv	5.00		111	70-130			
2-Butanone (MEK)	4.64	0.5	ppbv	5.00		92.8	70-130			
-Methyl-2-pentanone (MIBK)	5.61	0.5	ppbv	5.00		112	70-130			
Allyl chloride	4.72	0.5	ppbv	5.00		94.4	70-130			
Senzene	5.17	0.5	ppbv	5.00		103	70-130			
Benzyl Chloride	4.25	0.5	ppbv	5.00		85.0	70-130			
Bromodichloromethane	4.67	0.5	ppbv	5.00		93.4	70-130			
Bromoform	0.51	0.5	ppbv	5.00		10.2	70-130			L
Bromomethane	5.45	0.5	ppbv	5.00		109	70-130			
Carbon Disulfide	4.67	0.5	ppbv	5.00		93.4	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

23 16:33
6.00
485
1

Volatile Organic Compounds by GCMS - Quality Control

					Analyti					
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGE0427 - No Prep V	OC Air									
LCS (BGE0427-BS1)					Prep	pared & A	Analyzed	: 05/10/2	023	
Carbon Tetrachloride	5.04	0.5	ppbv	5.00		101	70-130			
Chlorobenzene	5.06	0.5	ppbv	5.00		101	70-130			
Chloroethane	4.92	0.5	ppbv	5.00		98.4	70-130			
Chloroform	4.72	0.5	ppbv	5.00		94.4	70-130			
Chloromethane	5.19	0.5	ppbv	5.00		104	70-130			
cis-1,2-Dichloroethylene	4.77	0.5	ppbv	5.00		95.4	70-130			
cis-1,3-Dichloropropene	5.44	0.5	ppbv	5.00		109	70-130			
Cyclohexane	5.34	0.5	ppbv	5.00		107	70-130			
Dichlorodifluoromethane	4.73	0.5	ppbv	5.00		94.6	70-130			
Ethyl acetate	4.81	0.5	ppbv	5.00		96.2	70-130			
Ethylbenzene	5.32	0.5	ppbv	5.00		106	70-130			
Heptane	5.50	0.5	ppbv	5.00		110	70-130			
Hexane	5.06	0.5	ppbv	5.00		101	70-130			
m+p-Xylenes	10.4	1	ppbv	10.0		104	70-130			
Methylene chloride	4.96	1	ppbv	5.00		99.2	70-130			
Methyl-t-butyl ether (MTBE)	4.87	0.5	ppbv	5.00		97.4	70-130			
Naphthalene	4.31	0.5	ppbv	5.00		86.2	60-140			
o-Xylene	5.23	0.5	ppbv	5.00		105	70-130			
Propylene	4.95	1	ppbv	5.00		99.0	70-130			
Styrene	5.33	0.5	ppbv	5.00		107	70-130			
Tetrachloroethylene (PCE)	4.95	0.5	ppbv	5.00		99.0	70-130			
Tetrahydrofuran	5.60	0.5	ppbv	5.00		112	70-130			
Toluene	5.36	0.5	ppbv	5.00		107	70-130			
trans-1,2-Dichloroethylene	4.07	0.5	ppbv	5.00		81.4	70-130			
trans-1,3-Dichloropropene	4.88	0.5	ppbv	5.00		97.6	70-130			
Trichloroethylene	5.20	0.5	ppbv	5.00		104	70-130			
Trichlorofluoromethane	5.17	0.5	ppbv	5.00		103	70-130			
Vinyl acetate	4.85	0.5	ppbv	5.00		97.0	70-130			
Vinyl bromide	4.93	0.5	ppbv	5.00		98.6	70-130			
Vinyl chloride	5.04	0.5	ppbv	5.00		101	70-130			
Surr: 4-Bromofluorobenzene (Surr)	4.98		ppbv	5.00		99.6	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	R		Enthalpy Analytical											
Reporting Spike Source %REC RPD Analyte Result Limit Units Level Result %REC Limit Qual														
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual				
Batch BGE0427 - No Prep VO	C Air													
LCS Dup (BGE0427-BSD1)					Prep	pared & /	Analyzed	: 05/10/20)23					
1,1,1-Trichloroethane	5.12	0.5	ppbv	5.00		102	70-130	0.584	25					
1,1,2,2-Tetrachloroethane	5.28	0.5	ppbv	5.00		106	70-130	0.380	25					
1,1,2-Trichloro-1,2,2-trifluoroetha ne	4.86	0.5	ppbv	5.00		97.2	70-130	1.66	25					
1,1,2-Trichloroethane	5.23	0.5	ppbv	5.00		105	70-130	0.191	25					
1,1-Dichloroethane	4.62	0.5	ppbv	5.00		92.4	70-130	1.53	25					
1,1-Dichloroethylene	5.26	0.5	ppbv	5.00		105	70-130	6.88	25					
1,2,4-Trimethylbenzene	5.49	0.5	ppbv	5.00		110	70-130	0.182	25					
1,2-Dibromoethane (EDB)	5.21	0.5	ppbv	5.00		104	70-130	0.00	25					
1,2-Dichlorobenzene	5.32	0.5	ppbv	5.00		106	70-130	0.00	25					
1,2-Dichloroethane	5.17	0.5	ppbv	5.00		103	70-130	0.193	25					
1,2-Dichloropropane	5.26	0.5	ppbv	5.00		105	70-130	0.758	25					
1,2-Dichlorotetrafluoroethane	4.98	0.5	ppbv	5.00		99.6	70-130	0.601	25					
1,3,5-Trimethylbenzene	5.28	0.5	ppbv	5.00		106	70-130	0.190	25					
1,3-Butadiene	4.86	0.5	ppbv	5.00		97.2	70-130	1.87	25					
1,3-Dichlorobenzene	5.21	0.5	ppbv	5.00		104	70-130	0.192	25					
1,4-Dichlorobenzene	5.20	0.5	ppbv	5.00		104	70-130	0.957	25					
1,4-Dioxane	5.52	0.5	ppbv	5.00		110	70-130	0.902	25					
2-Butanone (MEK)	4.72	0.5	ppbv	5.00		94.4	70-130	1.71	25					
4-Methyl-2-pentanone (MIBK)	5.64	0.5	ppbv	5.00		113	70-130	0.533	25					
Allyl chloride	4.86	0.5	ppbv	5.00		97.2	70-130	2.92	25					
Benzene	5.18	0.5	ppbv	5.00		104	70-130	0.193	25					
Benzyl Chloride	4.28	0.5	ppbv	5.00		85.6	70-130	0.703	25					
Bromodichloromethane	4.67	0.5	ppbv	5.00		93.4	70-130	0.00	25					
Bromoform	0.51	0.5	ppbv	5.00		10.2	70-130	0.00	25	L				
Bromomethane	5.41	0.5	ppbv	5.00		108	70-130	0.737	25					
Carbon Disulfide	4.78	0.5	ppbv	5.00		95.6	70-130	2.33	25					
Carbon Tetrachloride	4.98	0.5	ppbv	5.00		99.6	70-130	1.20	25					
Chlorobenzene	5.06	0.5	ppbv	5.00		101	70-130	0.00	25					
Chloroethane	4.88	0.5	ppbv	5.00		97.6	70-130	0.816	25					
Chloroform	4.71	0.5	ppbv	5.00		94.2	70-130	0.212	25					
Chloromethane	5.20	0.5	ppbv	5.00		104	70-130	0.192	25					
cis-1,2-Dichloroethylene	4.79	0.5	ppbv	5.00		95.8	70-130	0.418	25					
cis-1,3-Dichloropropene	5.45	0.5	ppbv	5.00		109	70-130	0.184	25					

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

			En	ithalpy	Analyti	cal				
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGE0427 - No Prep VC	OC Air									
LCS Dup (BGE0427-BSD1)					Prep	bared &	Analyzed	: 05/10/20	023	
Cyclohexane	5.24	0.5	ppbv	5.00		105	70-130	1.89	25	
Dichlorodifluoromethane	4.81	0.5	ppbv	5.00		96.2	70-130	1.68	25	
Ethyl acetate	4.63	0.5	ppbv	5.00		92.6	70-130	3.81	25	
Ethylbenzene	5.32	0.5	ppbv	5.00		106	70-130	0.00	25	
Heptane	5.43	0.5	ppbv	5.00		109	70-130	1.28	25	
Hexane	5.13	0.5	ppbv	5.00		103	70-130	1.37	25	
n+p-Xylenes	10.4	1	ppbv	10.0		104	70-130	0.384	25	
Methylene chloride	5.28	1	ppbv	5.00		106	70-130	6.25	25	
/lethyl-t-butyl ether (MTBE)	4.90	0.5	ppbv	5.00		98.0	70-130	0.614	25	
laphthalene	4.30	0.5	ppbv	5.00		86.0	60-140	0.232	25	
-Xylene	5.25	0.5	ppbv	5.00		105	70-130	0.382	25	
Propylene	5.03	1	ppbv	5.00		101	70-130	1.60	25	
Styrene	5.35	0.5	ppbv	5.00		107	70-130	0.375	25	
etrachloroethylene (PCE)	4.91	0.5	ppbv	5.00		98.2	70-130	0.811	25	
Fetrahydrofuran	5.57	0.5	ppbv	5.00		111	70-130	0.537	25	
Toluene	5.36	0.5	ppbv	5.00		107	70-130	0.00	25	
rans-1,2-Dichloroethylene	4.15	0.5	ppbv	5.00		83.0	70-130	1.95	25	
rans-1,3-Dichloropropene	4.88	0.5	ppbv	5.00		97.6	70-130	0.00	25	
Trichloroethylene	5.15	0.5	ppbv	5.00		103	70-130	0.966	25	
Frichlorofluoromethane	5.20	0.5	ppbv	5.00		104	70-130	0.579	25	
/inyl acetate	4.96	0.5	ppbv	5.00		99.2	70-130	2.24	25	
/inyl bromide	4.94	0.5	ppbv	5.00		98.8	70-130	0.203	25	
/inyl chloride	5.03	0.5	ppbv	5.00		101	70-130	0.199	25	
Surr: 4-Bromofluorobenzene	4.98		ppbv	5.00		99.6	70-130			

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

Batch BGE0656 - No Prep VOC GC Air

Blank (BGE0656-BLK1)					Prepared &	Analyzed: 05	6/16/202	23	
Methane	<	0.05	Vol%						
Carbon dioxide	<	0.05	Vol%						
Oxygen (O2)	<	0.05	Vol%						
Nitrogen (N2)	<	1.00	Vol%						
Hydrogen (H2)	<	0.02	Vol%						
Carbon Monoxide	<	10.0	ppmv						
Carbon Monoxide	<	0.001	Vol%						
LCS (BGE0656-BS1)					Prepared &	Analyzed: 05	5/16/202	23	
Methane	4660	500	ppmv	5000	93.1	0-200			
Methane	4660	0.05	ppmv	5000	93.1	80-120			
Carbon dioxide	4440	500	ppmv	5000	88.8	0-200			
Carbon dioxide	4440	0.05	ppmv	5000	88.8	80-120			
Oxygen (O2)	5120	500	ppmv	5000	102	0-200			
Oxygen (O2)	5120	0.05	ppmv	5000	102	80-120			
Nitrogen (N2)	5410	2000	ppmv	5000	108	0-200			
Hydrogen (H2)	5990	200	ppmv	5100	117	0-200			
Hydrogen (H2)	5990	0.02	ppmv	5100	117	80-120			
Nitrogen (N2)	5410	1	ppmv	5000	108	80-120			
Carbon Monoxide	4870	10	ppmv	5000	97.3	0-200			
Carbon Monoxide	4870	0.001	ppmv	5000	97.3	80-120			
Duplicate (BGE0656-DUP1)		So	urce: 23E	0755-01	Prepared &	Analyzed: 05	6/16/202	23	
Methane	131000	4500	ppmv		130000	0	.186	25	
Methane	13.1	0.45	Vol%		13.0	0	.186	5	
Carbon dioxide	53.3	0.45	Vol%		53.1	0	.249	5	
Carbon dioxide	533000	4500	ppmv		531000	0	.249	25	
Oxygen (O2)	7490	4500	ppmv		7480	C	.111	25	
Oxygen (O2)	0.75	0.45	Vol%		0.75	C	.111	5	
Hydrogen (H2)	122000	1800	ppmv		121000	0	.346	25	
Nitrogen (N2)	168000	18000	ppmv		168000	0.	0802	25	
Nitrogen (N2)	16.8	9.00	Vol%		16.8	0.	0803	5	
Carbon Monoxide	536	90.0	ppmv		529		1.39	25	
Carbon Monoxide	0.05	0.009	Vol%		0.05		1.39	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGE0656 - No Prep VO Duplicate (BGE0656-DUP2)	C GC Air	So	urce: 23E	0755-02	Pren	pared & A	Analyzed	1: 05/16/20	023		
				0700-02			anaryzoo				
Methane	350000	4500	ppmv		34500	00		1.35	25		
Methane	35.0	0.45	Vol%		34.5			1.35	5		

Wethane	330000	4000	ppinv	343000	1.55	20
Methane	35.0	0.45	Vol%	34.5	1.35	5
Carbon dioxide	490000	4500	ppmv	482000	1.73	25
Carbon dioxide	49.0	0.45	Vol%	48.2	1.73	5
Oxygen (O2)	0.89	0.45	Vol%	0.89	0.00704	5
Oxygen (O2)	8950	4500	ppmv	8950	0.00704	25
Nitrogen (N2)	61900	18000	ppmv	61000	1.40	25
Hydrogen (H2)	25500	1800	ppmv	25300	0.488	25
Hydrogen (H2)	2.55	0.18	Vol%	2.53	0.488	5
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Carbon Monoxide	144	90.0	ppmv	138	4.09	25
Carbon Monoxide	0.01	0.009	Vol%	0.01	4.09	5
Duplicate (BGE0656-DUP3)		So	urce: 23E0755-0	3 Prepared & An	alyzed: 05/16/202	23
Methane	40.9	0.45	Vol%	41.0	0.287	5
Methane	409000	4500	ppmv	410000	0.287	25
Carbon dioxide	45.8	0.45	Vol%	46.0	0.441	5
Carbon dioxide	458000	4500	ppmv	460000	0.441	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Hydrogen (H2)	4.49	0.18	Vol%	4.51	0.514	5
Hydrogen (H2)	44900	1800	ppmv	45100	0.514	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Duplicate (BGE0656-DUP4)		So	urce: 23E0755-0	4 Prepared & An	alyzed: 05/16/202	23
Methane	364000	4500	ppmv	370000	1.64	25
Methane	36.4	0.45	Vol%	37.0	1.64	5
Carbon dioxide	505000	4500	ppmv	517000	2.21	25
Carbon dioxide	50.5	0.45	Vol%	51.7	2.21	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Hydrogen (H2)	25100	1800	ppmv	25400	1.12	25

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

			Ent	thalpy	Analyti	cal				
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGE0656 - No Prep VC	OC GC Air									
Duplicate (BGE0656-DUP4)		Sou	urce: 23E0)755-04	Prep	ared & /	Analyzed	: 05/16/20)23	
Nitrogen (N2)	24000	18000	ppmv		2440	0		1.74	25	
Hydrogen (H2)	2.51	0.18	Vol%		2.54			1.12	5	
Nitrogen (N2)	<	9.00	Vol%		<9.0	C		NA	5	
Carbon Monoxide	117	90.0	ppmv		124			5.59	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01			5.59	5	Р
Duplicate (BGE0656-DUP5)		Source: 23E0755-05		Prep	ared & /	Analyzed	: 05/16/20)23		
Vethane	91900	4500	ppmv		9340	0		1.66	25	
Methane	9.19	0.45	Vol%		9.34			1.66	5	
Carbon dioxide	22.9	0.45	Vol%		23.2			1.21	5	
Carbon dioxide	229000	4500	ppmv		23200	00		1.21	25	
Dxygen (O2)	72200	4500	ppmv		7310	0		1.29	25	
Dxygen (O2)	7.22	0.45	Vol%		7.31			1.29	5	
Hydrogen (H2)	2.48	0.18	Vol%		2.51			1.08	5	
Nitrogen (N2)	481000	18000	ppmv		48800	00		1.44	25	
Hydrogen (H2)	24800	1800	ppmv		2510	0		1.08	25	
Carbon Monoxide	0.02	0.009	Vol%		0.02			3.37	5	
Carbon Monoxide	155	90.0	ppmv		160			3.37	25	
Duplicate (BGE0656-DUP6)		Sou	urce: 23E0)742-01	Prep	ared & /	Analyzed	: 05/16/20)23	
Methane	429000	4500	ppmv		42800	00		0.240	25	
Methane	42.9	0.45	Vol%		42.8			0.240	5	
Carbon dioxide	42.2	0.45	Vol%		42.2			0.120	5	
Carbon dioxide	422000	4500	ppmv		42200	00		0.120	25	
Dxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Dxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Hydrogen (H2)	68000	1800	ppmv		6800			0.0352	25	
Jitrogen (N2)	<	9.00	Vol%		<9.0			NA	5	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Carbon Monoxide	<	90.0	ppmv		<90.	D		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	0		NA	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGE0656 - No Prep VOC GC Air											
Duplicate (BGE0656-DUP7)		Sou	rce: 23E	0742-02	Prep	ared & A	Analyzed	1: 05/16/2	023		

,					,	
Methane	443000	4500	ppmv	443000	0.0658	25
Methane	44.3	0.45	Vol%	44.3	0.0658	5
Carbon dioxide	368000	4500	ppmv	369000	0.163	25
Carbon dioxide	36.8	0.45	Vol%	36.9	0.163	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Hydrogen (H2)	<	1800	ppmv	<1800	NA	25
Nitrogen (N2)	93900	18000	ppmv	93900	0.00528	25
Nitrogen (N2)	9.39	9.00	Vol%	9.39	0.00527	5
Hydrogen (H2)	<	0.18	Vol%	<0.18	NA	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5
Duplicate (BGE0656-DUP8)	UP8) Source: 23E0742-03		Prepared & A	nalyzed: 05/17/202	3	
Methane	393000	4500	ppmv	390000	0.679	25
Vethane	39.3	0.45	Vol%	39.0	0.679	5
Carbon dioxide	429000	4500	ppmv	427000	0.519	25
Carbon dioxide	42.9	0.45	Vol%	42.7	0.519	5
Dxygen (O2)	<	4500	ppmv	<4500	NA	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Hydrogen (H2)	96800	1800	ppmv	96900	0.115	25
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5
Duplicate (BGE0656-DUP9)		So	urce: 23E0742-04	Prepared & A	nalyzed: 05/17/202	3
Methane	430000	4500	ppmv	427000	0.697	25
Methane	43.0	0.45	Vol%	42.7	0.697	5
Carbon dioxide	426000	4500	ppmv	422000	0.936	25
Carbon dioxide	42.6	0.45	Vol%	42.2	0.936	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Hydrogen (H2)	23100	1800	ppmv	23000	0.249	25
Nitrogen (N2)	34700	18000		34500		

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	

Batch BGE0656 - No Prep VOC GC Air

Duplicate (BGE0656-DUP9)		So	urce: 23E0742-04	Prepared & Ar	nalyzed: 05/17/20	23
Hydrogen (H2)	2.31	0.18	Vol%	2.30	0.249	5
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5
Duplicate (BGE0656-DUPA)		So	urce: 23E0742-05	Prepared & Ar	nalyzed: 05/17/20	23
Methane	33.1	0.45	Vol%	32.7	1.20	5
Methane	331000	4500	ppmv	327000	1.20	25
Carbon dioxide	430000	4500	ppmv	426000	0.978	25
Carbon dioxide	43.0	0.45	Vol%	42.6	0.978	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Hydrogen (H2)	183000	1800	ppmv	182000	0.776	25
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Service 4330 Lewis Road	es - Harrisburg, PA , Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
	Harrisburg, PA 17	'111		
Submitted To:	Tom Lock		Project Number:	07223016.00
Client Site I.D.:	Bristol		Purchase Order:	07-SO04485
Code		Description	Laboratory ID	Expires
MdDOE		Maryland DE Drinking Water	341	12/31/2023
NC		North Carolina DENR	495	12/31/2023
NCDEQ		North Carolina DEQ	495	12/31/2023
NCDOH		North Carolina Department of Health	51714	07/31/2023
NYDOH		New York DOH Drinking Water	12069	04/01/2024
PADEP		NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC		South Carolina Dept of Health and Environment	ntal 93016	06/14/2023
TXCEQ		Texas Comm on Environmental Quality #T104	704 T104704576	05/31/2024
VELAP		NELAP-Virginia Certificate #12333	460021	06/14/2023
WVDEP		West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

- L LCS recovery is outside of established acceptance limits
- P Duplicate analysis does not meet the acceptance criteria for precision
- RPD Relative Percent Difference
- Qual Qualifers

- -RE Denotes sample was re-analyzed
- PF Preparation Factor
- MDL Method Detection Limit
- LOQ Limit of Quantitation
- ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

formerl	ly Air, V	Vater & S	oil La	borator	ies			CHAIN	OF CUS	TODY	Ed	quipm	ent due	6/8/202	3		P	'ag	e 1	l of 3
COMPANY NAME: SCS Field Services - Harrisburg INVOICE TO: Same									1	PROJECT NAME/Quote #: Bristol										
CONTACT	T:	100 A	1			INV	OICE CC	NTACT:			1	SITE NAME: BRISTOL								
ADDRESS	S:	1				INV	OICE AD	DRESS:	5.42		-	PROJECT NUMBER: 07223016:00								
PHONE #:	: (B		1			INV	OICE PH	ONE #:	1.0			P.O. #:								
FAX #:	610 - P	1.11	123	EN	1AIL	:		S			A CONTRACT	Pretre	atment Pr	ogram:			Ъ			
s sample	for comp	oliance rep	orting?	YES NO		Regulate	ory State:	VA Is	sample fro	m a chlorii	nated supp	oly?	YES (N	NO PW	VS I.D. #:					
SAMPLER	R NAME	(PRINT):	LOGA	n cue	HA	NE SA	MPLER S	IGNATUR	E: 4			Turn /	Around T	ime: Circ	cle: 10	5 Days	>	or .		Day(s)
Matrix Codes:	: AA=Indoo	or/Ambient Air	SG=Soil	Gas LV=Land	dfill/\	/ent Gas OT	=Other		D		*		063	3-23E-000	5	1				- N
	- X.	Regulator	Info	Canister In	forn	nation	1. 2	l al 1	Sampling :	Start Inform	ation		Sampling	Stop Inform	nation		les)	AN/	YSIS	
e	IENT	1					LAB	LAB	Barometric	Pres. (in Ho	g):		Barometri	c Pres. (in H	g):		e Cod	0		
	PLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in ^{Hg)}	Receiving Canister Vacuum (in _{Hg)}	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in ^{Hg)}	Starting Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in ^{Hg)}	Ending Sample Temp °F	Matrix _{(Se}	Alt 145 C	3C	TO-15 Benzene onlv
1) 4	54	NA		11084	1.4	230503-01	30	4:8	5(10	9:56	30	183.4	5/10	10:00	10	1834	LG	x	x	x
2)	6	NA		1 <mark>1</mark> 305	1.4	230503-01	30	4.4	5/10	10:07	30	1221	5/10	10:11	10	1549	LG	x	x	x
3) / D	0	NA		12401	1.4	230503-01	30	4.8	5/10	10:39	30	5.831	5/10	10:43	10	1583	LG	x	x	x
4) G	D	NA		12860	1.4	• 230503-01	30	4.8	5/10	11:09	37	2.451	5/10	11:12	Ø	191.2	LG	x	x	x
RELINQUISHE	ED:				REC	CEIVED:		DAT	E / TIME	QC Data P	ackage LA	BUSE	ONLY	310 20	3° No]	te n	0 50	OR		
RELINQUISHE	11/2	l	511	E / TIME 3:30 E / TIME		CEIVED:	11		e / Time	Level I Level II Level III		SCS Bris		Service	s 23E	0755				
	Fe	ldex G				AA A 11	huns	-1123 11	30	Level IV		Rec	d: 05/11	/2023 D		3/2023				
	7	1. e 										•				[54	age	19	of 22

ENTHALPY ANALYTICAL 1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

foi	rmerly Air, M	vater & S	OTLC	iborator	ies			CHAIN	OF CUS	TODY	E	quipm	ent due	6/8/202	23		Р	' ag	e 2	2 of 3
CO	MPANY NAME	SCS Fiel	d Servi	ices - Harri	sbu	rg IN	VOICE TO	: Same				PROJECT NAME/Quote #: Bristol								
COI	NTACT:					IN	VOICE CC	NTACT:				SITE NAME: BRESTOL								
ADD	DRESS:					IN	VOICE AD	DRESS:				PROJECT NUMBER: 0703016.00								4
PHO	ONE #:					IN	INVOICE PHONE #:						P.O. #:							
FAX	< #:	4	8	EN	1AIL		-						Pretreatment Program:							
Is sample for compliance reporting? YES NO Regulatory State: VA Is sample from a chlorinated supply? YES NO PWS I.D. #:											- <u>2</u>									
SAN	MPLER NAME	(PRINT):	LOG	an ci	NJ	ANCSA	MPLER S	IGNATUR	E: 5			Turn .	Around T	ime: Cire	cle: 10 🏹	5 Days	5	or	—	Day(s)
Matri	x Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV=Land	dfill/V	/ent Gas OT	=Other		0				063	3-23E-000	5					
6	<i></i>	Regulator	Info	Canister In	forn	nation	-		Sampling S	Start Inform	ation		Sampling	Stop Inforn	nation		Codes)	AN.	AL	YSIS
	CLIENT						LAB	LAB	Barometric	Pres. (in He	1		Barometri	c Pres. (in H			ee Coo	ខ		
	SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in ^{Hg)}	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in ^{Hg)}	Starting Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in _{Hg)}	Ending Sample Temp °F	Matrix (see	Alt 145 C	3C	TO-15 Benzene only
1)	37	NA		13370	1.4	230503-01	30	5.0	5710	11:18	30	h'uni	5110	11:2)	D	149,4				x
2)	PLED	NA		13964	1.4	230503-01	30										LG	x	x	х.
3)	SAM	NA		14294	1.4	230503-01	30		~p*								LG	x	x	x
4)	Net	NA		14308	1.4	230503-01	30										LG	x	x	x
					2					7				•						
RELI	NQUISHED:				REC	EIVED:		DAT	E / TIME	107 BL.107		B USE	ONLY	310 20.3	s°C NO	Re	no	Se	21	
	NQUISHED: NQUISHED: Feder G		51	10 3:30		EIVED:		DAT	TE / TIME	Level I Level II Level III		SCS Brist		Services	23 E0	755				
	100006				1	Al	mm+5-11	23 113		Level IV		Recd	: 05/11/2	.023 Du	v13	2023 ⁰³²⁵⁰⁰²	P	age	20) of 22

ENTHALPY ANALYTICAL 1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

Tormeny An, water & Son Euroratories	CHAIN OF	CUSTODY Eq	uipment due 6/8/2023	Page 3 of 3					
COMPANY NAME: SCS Field Services - Harrisburg	INVOICE TO: Same		PROJECT NAME/Quote #: Bristol	2.4					
CONTACT:	INVOICE CONTACT:		SITE NAME: BREEFOL						
ADDRESS:	INVOICE ADDRESS:		PROJECT NUMBER: OTOSOLO	50					
PHONE #:	INVOICE PHONE #:		P.O. #:	• ((()) • •					
FAX #: EMAIL:			Pretreatment Program:	and the second sec					
Is sample for compliance reporting? (E) NO Reg	ulatory State: M Is san	nple from a chlorinated supp	ly? YES NO PWS I.D. #:	- 10 - T.					
SAMPLER NAME (PRINT): LOGAN CULLANSE	SAMPLER SIGNATURE:	4	Turn Around Time: Circle: 10 5 Days	or _ Day(s)					
Matrix Codes: AA=Indoor/Ambient Air SG=Soil Gas LV=Landfill/Vent Ga	oT=Other		063-23E-0005						
Regulator Info Canister Information	Sa	mpling Start Information	Sampling Stop Information	ANALYSIS					
CLIENT		rometric Pres. (in Hg):	Barometric Pres. (in Hg):	O O					
SAMPLE I.D. Flow Cal Controller Flow ID (mL/min) Canister ID 00 Bate		art Date (24hr clock) Hg)	Starting Sample Temp °F Stop Date (24hr clock) Hg) Final Canister Vacuum (in Hg) Temp °F	Matrix (See Codes) Alt 145 CO 3C TO-15 Benzene only					
1) NA 15039 1.4 2305	03-01 30		L	_G x x x					
2) 2 NA 15042 1.4 2305	03-01 30		L	_G x x x					
3)									
4)	-								
RELINQUISHED: RECEIVED	DATE /		BUSE ONLY 316 26,3°C no Ice n	oseal					
RELINQUISHED: DATE / TIME RECEIVED	DATE /	TIME Level III	SCS Field Services 23E0755						
Fidex 6	Ima 5-11-23 1130		Bristol Recd: 05/11/2023 Due: 05/18/2023	Page 21 of 22					

Certificate of Analysis

Final Report

Laboratory Order ID 23E0755

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 11, 2023 11:30 May 18, 2023 16:33
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

SCS ENGINEERS

June 9, 2023 File No. 02218208.04

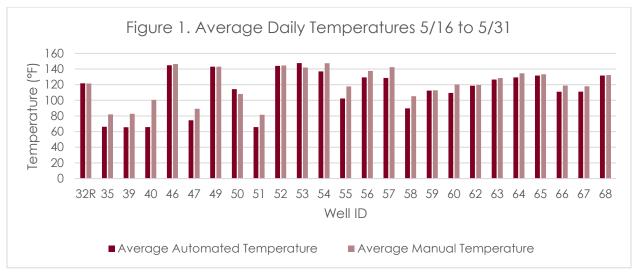
MEMORANDUM

- TO: Kristin Hall, EPA Region III Tracy Blalock, VDEQ-SWRO
- FROM: D. Brandon King, SCS Engineers Quinn Bernier, SCS Engineers
- SUBJECT: Semi-Monthly Status Update May 16th through May 31st, 2023 Bristol Integrated Waste Management Facility, Bristol, Virginia

SCS is submitting this semi-monthly status update to satisfy the conditions of compliance provision #2 of the Environmental Protection Agency (EPA) Region III letter, *Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility*, dated 8/23/21. Accordingly, this memo is a summary of temperature monitoring activities as well as work accomplished during the semi-monthly monitoring period of 5/16/23 through 5/31/23.

TEMPERATURE MONITORING

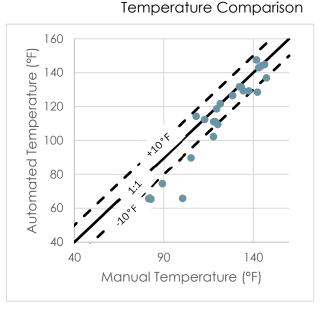
Automated Wellhead Temperature Measurements


Twenty-five (25) individual landfill gas (LFG) wellheads in the Permit #588 Landfill have automated temperature sensors installed. VDEQ and USEPA have been receiving Daily Gas Well Temperature Reports with data from these automated temperature sensors since 12/1/22.

The 25 wellheads have 2-inch automated sensors. SCS believes that the 2-inch sensors measure temperature with more accuracy than the 1-inch sensors that were used in the majority of the 25 wells prior to March 1, 2023, but we are still comparing with manual temperature to assess the validity of this assertion.

SCS reviewed the automated hourly temperature measurements from 5/16/23 to 5/31/23, and identified the following trends:

• Temperatures over 145°F: Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded at seven wells during this monitoring period. Although temperatures fluctuate throughout the wellfield, SCS is continuing to see higher temperatures at certain wells during these monitoring periods. Temperatures greater than 145°F appear to be most consistent at EW-52, 53, 54 and 55. The highest temperatures were measured at EW-53 and EW-67 (greater than 180° at times). SCS believes that the general increase in wellfield temperatures suggests that, with the increase of pneumatic pump operations and increased liquids removal, the collection system is being successfully dewatered. Due to increased perforations available from these efforts, the warmer landfill gases are being collected, thus the elevated average temperature.


• Low temperatures at certain wells: Average temperatures between 50°F and 80°F have been consistent at five wells. This generally correlated with low LFG flow rates measured during monthly wellfield monitoring events. These low temperatures are likely close to ambient because little to no LFG is passing through the wellhead where the sensors are placed.

Manual Daily Temperature Monitoring

Manual temperature measurements are being made daily by field staff with a GEM5000 or equivalent LFG analyzer. The manual measurements are used to verify the automated wellhead temperature sensors and to provide temperature data for the 13 wellheads without automated sensors.

During this monitoring period, the average automated temperatures and the average manual temperatures generally correlated ± 10 °F. As shown in Figure 2, EW-40 is the only clear outlier, with automated temperature measurements trending lower than manual measurements. SCS recommends inspecting the probe at EW-40 for proper function, however the cause may simply be that LFG flow is minimal at this device. During wellfield monitoring events in May, the flow recorded by a GEM5000 was less than 4 scfm.

Manual vs. Automated

Figure 2.

The automated temperature sensor at EW-32R continues

to erroneously record 0°F at select time intervals, which were removed from the dataset used to produce Figure 1 and 2 because the temperatures that are recorded appear to be accurate. SCS is investigating what we suspect is an issue with signal.

MEMORANDUM 6/9/23 Page 3

In general, the continued correlation of manual and automated temperature measurements supports SCS' belief that the 2-inch automated sensors are measuring temperatures accurately. All daily temperatures recorded manually are provided in **Attachment A**.

Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted 5/4/23, with follow-up monitoring on several days after. Additionally, SCS monitors the Permit #588 Landfill on a weekly basis. During this monitoring period, temperature exceedances were resolved at EW-31R, EW-54, EW-86, EW-89, and EW-90. See Table 1 for the statuses of all exceedances recorded during this monitoring period.

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 5/31/23
EW-31R	5/15/23	5/30/23 109.3°F	15 days	Resolved, within 60- day timeline
EW-34	5/30/23	5/30/23 175.4°F	1 day	Ongoing, within 15-day timeline
EW-37	4/4/23	5/26/23 181.9°F	58 days	Ongoing, within 60-day timeline
EW-54	5/22/23	5/30/23 140.4°F	8 days	Resolved, within 15- day timeline
EW-84	4/27/23	5/30/23 175.2°F	34 days	Ongoing, within 60-day timeline
EW-86	4/27/23	5/30/23 149.6°F	34 days	Ongoing, within 60-day timeline
EW-89	5/15/23	5/18/23 146.8°F	3 days	Resolved within 15- day timeline
EW-89	5/30/23	5/30/23 150.5°F	1 day	Ongoing, within 15-day timeline
EW-90	4/27/23	5/30/23 149.8°F	34 days	Ongoing, within 60-day timeline
EW-94	5/26/23	5/30/23 176.0°F	4 days	Ongoing, within 15-day timeline
EW-100	4/27/23	5/30/23 158.9°	33 days	Ongoing, within 60-day timeline

Table 1.May Temperature Exceedance Summary

Work Accomplished During Monitoring Period

LFG Sampling

SCS collected LFG samples from wells with temperature exceedances lasting more than 7 days using 1.5-L Summa canisters on 5/18/23 and 5/23/23 to fulfill the requirement in 40 CFR 63.1961(a)(5). The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen

 (H_2) content. Lab results are summarized in Table 2. Full laboratory analytical data is included in **Attachment B** for further detail.

Sample Da	te	5/18/2023	5/23/23	
31R	CO (ppmv)	209	473	
STK	H2 (Vol. %)	3.77	9.53	
37	CO (ppmv)	330	345	
51	H2 (Vol. %)	5.43	6.47	
E A	CO (ppmv)		218	
54	H2 (Vol. %)		10.6	
84	CO (ppmv)	478	409	
04	H2 (Vol. %)	11.2	9.03	
86	CO (ppmv)	137	137	
80	H2 (Vol. %)	2.50	2.30	
89	CO (ppmv)	906		
09	H2 (Vol. %)	37.0		
90	CO (ppmv)	131	126	
90	H2 (Vol. %)	2.57	2.38	
100	CO (ppmv)	ND	ND	
100	H2 (Vol. %)	4.59	4.15	

Table 2. LFG Wellhead Sampling Summary

The presence of hydrogen in all the samples collected during this monitoring period indicates that combustion reactions are unlikely. The carbon monoxide measurements were greater than 100 ppmv in all but EW-100. The measurement on 5/10/23 makes the fourth carbon monoxide measurement less than 100 ppmv, indicating that CO sampling frequency may be decreased to a monthly basis per 40 CFR 63.1961(a)(5)(viii). Continued weekly sampling is required at the other 8 wells.

Construction Activities

Thirteen of the 304 stainless steel LFG wells have been completed as of 5/31/23. During this monitoring period, EW-81, EW-82, EW-91, EW-96 and EW-36A were drilled. HC-01 was raised to accommodate the changes in topography from construction activities. The stainless-steel wellhead parts arrived and the contractor began assembly for installation and engineer QA review. EW-46 and EW-36 were cut, capped, and abandoned below grade after replacement extraction wells had been installed.

SCS-Field Services (SCS-FS) continued placing soil cover on the southwestern side of the sidewall odor mitigation system (SOMS) during the week of 5/15/23. SCS-FS continued placing soil on southeast side of the SOMS during the week of 5/22/23. The liner subcontractor, Chesapeake Containment, arrived at the end of this monitoring period to begin installation of the upper liner at

MEMORANDUM 6/9/23 Page 5

the northwest portion of the SOMS between the quarry entrance and the SOMS Phase I Pilot Study area.

Weekly SEM

SCS is continuing weekly surface emissions monitoring (SEM) per the Plan of Action Report dated 7/6/22. Two exceedances of the 500-ppmv threshold were recorded during the weekly SEM event held on 5/18/23, and three exceedances were recorded during the weekly event conducted on 5/25/23. All exceedances during this monitoring period were located at pipe penetrations within the landfill.

The ongoing construction of new wells and the sidewall odor mitigation system, in addition to connection of the new LFG collection infrastructure, is likely contributing to the exceedances located at pipe penetrations in May. As SCS' dewatering efforts continue to advance, landfill gas collection will increase, and pipe penetration exceedances should decrease. In addition, SCS is continuing to connect these new wells to permanent vacuum as well as installing well bore skirts and placing additional cover where necessary.

LFG System O&M

The City's O&M contractor conducted additional weekly LFG wellfield monitoring on 5/15/23, 5/22/23 and 5/30/23, including 18 new CPVC wells and the pilot SOMS during this monitoring period. The O&M contractor replaced pumps in EW-52, EW-53, EW-54, EW-57, EW-58, EW-64, EW-68 and EW-94. The pump and wellhead was replaced at EW-49 and its corresponding temperature probe was also reinstalled.

Routine well and pump maintenance continued during this monitoring period. Spare pumps were cleaned and rebuilt on 5/16/23 and 5/25/23.

Please contact SCS or City personnel if you have any questions or require additional information.

cc: Randall Eads, City of Bristol Jon Hayes, City of Bristol Jeff Hurst, VDEQ-SWRO Tom Lock, SCS Field Services David Cochran, City of Bristol Erin Willard, EPA Region III Stacy Bowers, VDEQ-SWRO Robert E. Dick, P.E., SCS Engineers

Attachment A

City of Bristol Daily LFG Well Temperature Readings

Month	May	May	May	May	May	May	May	May	May	May	May	May	May	May	May
Day	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Wednesday
Date	16	17	18	19	20	21	22	23	24	25	26	27	28	29	31
Well Number															
35	69	80	81	85	89	92	84	77	79	83	75	77	84	91	84
39	71	78	79	83	95	97	84	78	81	85	74	80	82	87	87
40	111	172	127	179	92	94	89	79	80	82	78	76	79	79	91
46	148	146	145	146	146	147	Being Repla	ced							•
47	80	89	91	89	101	97	94	85	87	82	86	88	86	93	90
		•	•										•		
29	105	105	107	111	107	104	111	112	112	114	110	111	113	116	117
30R	128	129	127	129	124	121	129	126	128	127	125	128	126	121	123
31R	153	159	174	134	133	135	183	180	181	180	177	179	182	177	176
32	67	80	79	82	94	91	87	88	88	84	85	83	86	90	90
33	123	123	123	123	126	123	122	123	122	123	123	122	122	116	123
34	131	131	135	114	143	145	94	94	96	97	98	96	95	96	98
36		•					Decommis	sioned							
37	152	157	154	149	136	133	174	172	165	164	164	165	170	167	
38	100	106	107	107	91	93	105	101	104	104	100	103	101	96	97
41	72	81	83	85	87	90	99	96	96	98	96	98	97	99	92
42	114	116	114	115	111	108	116	112	114	111	112	113	115	117	116
48	68	82	79	84	76	74	88	90	92	90	91	89	92	97	98
32R	121	121	120	122	122	121	121	122	121	122	121	122	121	123	123
49	143	144	144	143	143	144	141	144	146	142	141	144	143	140	143
50	108	108	112	113	118	117	115	115	115	16	116	115	116	117	120
51	72	84	84	89	90	88	84	80	78	80	73	75	81	81	84
52	141	173	132	155	127	126	129	143	145	136	165	149	152	160	134
53	82	99	96	96	145	142	151	170	167	167	170	168	163	165	146
54	147	170	160	170	136	134	151	133	173	157	130	135	143	147	124
55	111	161	100	121	167	165	99	104	111	99	101	109	104	112	102
56	126	129	128	132	129	228	133	131	133	133	130	132	133	131	135
57	130	136	122	125	139	135	150	144	154	138	145	152	153	149	163
58	115	121	116	120	102	97	120	98	94	96	92	97	111	99	100
59	112	113	111	114	115	114	112	113	111	112	113	115	112	114	111
60	108	133	106	108	130	128	110	122	110	110	131	128	124	128	126
61	121	138	144	145	125	126	128	127	124	120	127	125	127	120	122
62	118	118	118	119	124	123	120	119	119	120	119	118	120	118	120
63	128	129	128	131	125	129	129	129	128	129	128	130	128	127	129
64	138	139	138	138	130	131	138	131	132	132	131	136	138	134	131
65	136	137	136	101	128	135	136	136	136	137	136	135	137	135	138
66	110	112	122	121	116	118	123	113	121	122	119	123	122	120	121
67	117	168	126	145	146	144	104	86	92	91	92	101	95	99	162
68	121	133	129	135	127	125	127	132	139	137	133	140	136	139	131

Attachment B

Laboratory Analytical Reports

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	May 19, 2023 12:20
	4330 Lewis Road, Suite 1	Date Issued:	May 26, 2023 14:31
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 05/19/2023 12:20. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTAS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	May 19, 2023 12:20
	4330 Lewis Road, Suite 1	Date Issued:	May 26, 2023 14:31
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
89	23E1169-01	Air	05/18/2023 09:05	05/19/2023 12:20
37	23E1169-02	Air	05/18/2023 09:21	05/19/2023 12:20
31R	23E1169-03	Air	05/18/2023 09:28	05/19/2023 12:20
84	23E1169-04	Air	05/18/2023 08:33	05/19/2023 12:20
86	23E1169-05	Air	05/18/2023 08:40	05/19/2023 12:20
90	23E1169-06	Air	05/18/2023 08:48	05/19/2023 12:20
100	23E1169-07	Air	05/18/2023 08:56	05/19/2023 12:20

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
Harrisburg, PA 17111		
Tom Lock	Project Number:	07223016.00
Bristol	Purchase Order:	07-SO04485
ANALYTICAL RESULTS		
Sample Description/Location:		Initial Vacuum(in Hg): 30
Sub Description/Location:		Final Vacuum(in Hg): 4.0
Canister ID: 063-00176::10094		Receipt Vacuum(in Hg):
Canister Size: 1.4		Flow Controller Type: Passive
		Flow Controller ID:
1	330 Lewis Road, Suite 1 Harrisburg, PA 17111 Tom Lock Bristol ANALYTICAL RESULTS Sample Description/Location: Sub Description/Location: Canister ID: 063-00176::10094	330 Lewis Road, Suite 1 Date Issued: Harrisburg, PA 17111 Tom Lock Project Number: Bristol Purchase Order: ANALYTICAL RESULTS Sample Description/Location: Sub Description/Location: Canister ID: 063-00176::10094

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, a	is received basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	906	90.0	90.0		9	1	5/24/23 10:52	MER

	Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis							
		Vol%		EPA 3C				Analyst
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	
Methane, as received	0.73	0.45	0.45		9	1	5/24/23 10:52	MER
Carbon dioxide, as received	67.7	0.90	0.90		18	1	5/24/23 11:27	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	5/24/23 10:52	MER
Hydrogen (H2), as received	37.0	2.16	2.16		108	1	5/24/23 11:43	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/24/23 10:52	MER
Carbon Monoxide, as received	0.09	0.009	0.009		9	1	5/24/23 10:52	MER

Volatile Organic Compounds by GCMS EPA TO-15											
	ppbvug/M³				_		Dete/Time				
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Date/Time Analyzed	Analyst
Benzene	472000	7000	17500		1500000	22000	56000	35000	1	5/24/23 15:16	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			94.8		8	30-120				5/24/23 15:16	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 37	Sub Description/Location:		Final Vacuum(in Hg): 4.6
Sample ID: 23E1169-02	Canister ID: 063-00194::11296		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/18/2023 09:21			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as received bas	is			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	330	90.0	90.0		9	1	5/24/23 12:14	MER

	Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis				s			
		Vol%		EPA 3C				Analyst
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	
Methane, as received	8.99	0.45	0.45		9	1	5/24/23 12:14	MER
Carbon dioxide, as received	30.6	0.45	0.45		9	1	5/24/23 12:14	MER
Oxygen (O2), as received	5.91	0.45	0.45		9	1	5/24/23 12:14	MER
Hydrogen (H2), as received	5.43	0.36	0.36		18	1	5/24/23 12:59	MER
Nitrogen (N2), as received	42.9	9.00	9.00		9	1	5/24/23 12:14	MER
Carbon Monoxide, as received	0.03	0.009	0.009		9	1	5/24/23 12:14	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results M	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	123000	1560	3890		390000	5000	12000	7780	1	5/24/23 16:48	DFH
Surrogate(s)		% Re	covery		% Red	covery Lir	nits				
4-Bromofluorobenzene (Surr)			89.4		8	30-120				5/24/23 16:48	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 31R	Sub Description/Location:		Final Vacuum(in Hg): 4.6
Sample ID: 23E1169-03	Canister ID: 063-00121::11317		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/18/2023 09:28			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as received bas	is			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	209	90.0	90.0		9	1	5/24/23 13:30	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basis	;			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	9.33	0.45	0.45		9	1	5/24/23 13:30	MER
Carbon dioxide, as received	45.7	0.45	0.45		9	1	5/24/23 13:30	MER
Oxygen (O2), as received	6.42	0.45	0.45		9	1	5/24/23 13:30	MER
Hydrogen (H2), as received	3.77	0.18	0.18		9	1	5/24/23 13:30	MER
Nitrogen (N2), as received	29.3	9.00	9.00		9	1	5/24/23 13:30	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	5/24/23 13:30	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	333000	9330	23300		1100000	30000	75000	46700	1	5/25/23 11:06	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			92.2		6	30-120				5/25/23 11:06	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 84	Sub Description/Location:		Final Vacuum(in Hg): 4.0
Sample ID: 23E1169-04	Canister ID: 063-00258::12420		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/18/2023 08:33			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as re	eceived basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	478	90.0	90.0		9	1	5/24/23 14:25	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basi	S			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	13.6	0.45	0.45		9	1	5/24/23 14:25	MER
Carbon dioxide, as received	55.8	0.45	0.45		9	1	5/24/23 14:25	MER
Oxygen (O2), as received	0.51	0.45	0.45		9	1	5/24/23 14:25	MER
Hydrogen (H2), as received	11.2	1.08	1.08		54	1	5/24/23 16:01	MER
Nitrogen (N2), as received	17.2	9.00	9.00		9	1	5/24/23 14:25	MER
Carbon Monoxide, as received	0.05	0.009	0.009		9	1	5/24/23 14:25	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		-		Date/Time	
Analyte	Results MDI	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	211000	9330	23300		680000	30000	75000	46700	1	5/25/23 12:38	DFH
Surrogate(s)		% Re	covery		% Re	covery Lin	nits				
4-Bromofluorobenzene (Surr)			93.8			30-120				5/25/23 12:38	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 86	Sub Description/Location:		Final Vacuum(in Hg): 4.2
Sample ID: 23E1169-05	Canister ID: 063-00249::12669		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/18/2023 08:40			Flow Controller ID:

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received b	asis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	137	90.0	90.0		9	1	5/24/23 15:26	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basis	;			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	34.8	0.45	0.45		9	1	5/24/23 15:26	MER
Carbon dioxide, as received	48.9	0.45	0.45		9	1	5/24/23 15:26	MER
Oxygen (O2), as received	0.95	0.45	0.45		9	1	5/24/23 15:26	MER
Hydrogen (H2), as received	2.50	0.18	0.18		9	1	5/24/23 15:26	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/24/23 15:26	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	5/24/23 15:26	MER

			Volatile (Drganic Compo EPA TO-1		S					
		ppbv				ug/M³		-		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	83900	2330	5830		270000	7500	19000	11700	1	5/25/23 14:09	DFH
Surrogate(s)		% Re	covery		% Red	covery Lir	nits				
4-Bromofluorobenzene (Surr)			90.0		8	30-120				5/25/23 14:09	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 90	Sub Description/Location:		Final Vacuum(in Hg): 4.0
Sample ID: 23E1169-06	Canister ID: 063-00270::13369		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/18/2023 08:48			Flow Controller ID:

	Vola	atile Organi	ic Compoui	nds by GC/TCD - Unadjusted, as received	l basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	131	90.0	90.0		9	1	5/24/23 16:52	MER

	VOIa	Vol%	c Compour	nds by GC/TCD - Unadjusted, as received basis EPA 3C	5			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	36.7	0.45	0.45		9	1	5/24/23 16:52	MER
Carbon dioxide, as received	53.3	0.45	0.45		9	1	5/24/23 16:52	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	5/24/23 16:52	MER
Hydrogen (H2), as received	2.57	0.18	0.18		9	1	5/24/23 16:52	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/24/23 16:52	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	5/24/23 16:52	MER

			Volatile C	Organic Compo EPA TO-1		IS					
		ppbv				ug/M³		-		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	192000	4670	11700		610000	15000	37000	23300	1	5/25/23 15:41	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			92.8		ł	30-120				5/25/23 15:41	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RES	BULTS	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 100	Sub Description/Location:		Final Vacuum(in Hg): 3.8
Sample ID: 23E1169-07	Canister ID: 063-00373::13954		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 5/18/2023 08:56			Flow Controller ID:

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received ba	isis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	ND	90.0	90.0		9	1	5/24/23 17:26	MER

	Vola	-	c Compour	nds by GC/TCD - Unadjusted, as received bas EPA 3C	is			
		Vol%		EFA 30			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	41.6	0.45	0.45		9	1	5/24/23 17:26	MER
Carbon dioxide, as received	48.1	0.45	0.45		9	1	5/24/23 17:26	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	5/24/23 17:26	MER
Hydrogen (H2), as received	4.59	0.36	0.36		18	1	5/24/23 18:01	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/24/23 17:26	MER
Carbon Monoxide, as received	ND	0.009	0.009		9	1	5/24/23 17:26	MER

			Volatile (Organic Compo EPA TO-1		IS					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	27000	778	1940		86000	2500	6200	3890	1	5/25/23 17:13	DFH
Surrogate(s)		% Re	covery		% Re	covery Lin	nits				
4-Bromofluorobenzene (Surr)			84.6		8	30-120				5/25/23 17:13	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjusted	l, as received basis	Preparation Method:	No Prep VOC GC	Air
23E1169-01	1.00 mL / 1.00 mL	ALT-145	BGE0963	SGE0920	AG00026
23E1169-02	1.00 mL / 1.00 mL	ALT-145	BGE0963	SGE0920	AG00026
23E1169-03	1.00 mL / 1.00 mL	ALT-145	BGE0963	SGE0920	AG00026
23E1169-04	1.00 mL / 1.00 mL	ALT-145	BGE0963	SGE0920	AG00026
23E1169-05	1.00 mL / 1.00 mL	ALT-145	BGE0963	SGE0920	AG00026
23E1169-06	1.00 mL / 1.00 mL	ALT-145	BGE0963	SGE0920	AG00026
23E1169-07	1.00 mL / 1.00 mL	ALT-145	BGE0963	SGE0920	AG00026
23E1169-01	1.00 mL / 1.00 mL	EPA 3C	BGE0963	SGE0920	AG00026
23E1169-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0963	SGE0920	AG00026
23E1169-01RE2	1.00 mL / 1.00 mL	EPA 3C	BGE0963	SGE0920	AG00026
23E1169-02	1.00 mL / 1.00 mL	EPA 3C	BGE0963	SGE0920	AG00026
23E1169-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0963	SGE0920	AG00026
23E1169-03	1.00 mL / 1.00 mL	EPA 3C	BGE0963	SGE0920	AG00026
23E1169-04	1.00 mL / 1.00 mL	EPA 3C	BGE0963	SGE0920	AG00026
23E1169-04RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0963	SGE0920	AG00026
23E1169-05	1.00 mL / 1.00 mL	EPA 3C	BGE0963	SGE0920	AG00026
23E1169-06	1.00 mL / 1.00 mL	EPA 3C	BGE0963	SGE0920	AG00026
23E1169-07	1.00 mL / 1.00 mL	EPA 3C	BGE0963	SGE0920	AG00026
23E1169-07RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0963	SGE0920	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	No Prep VOC Air	
23E1169-01	400 mL / 400 mL	EPA TO-15	BGE0929	SGE0950	AE30194
23E1169-02	400 mL / 400 mL	EPA TO-15	BGE0929	SGE0950	AE30194
23E1169-03	400 mL / 400 mL	EPA TO-15	BGE0929	SGE0964	AE30194
23E1169-04	400 mL / 400 mL	EPA TO-15	BGE0929	SGE0964	AE30194
23E1169-05	400 mL / 400 mL	EPA TO-15	BGE0929	SGE0964	AE30194
23E1169-06	400 mL / 400 mL	EPA TO-15	BGE0929	SGE0964	AE30194
23E1169-07	400 mL / 400 mL	EPA TO-15	BGE0929	SGE0964	AE30194

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

				inaipy	Analyti	oui				
	Re	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGE0929 - No Prep VO	C Air									
Blank (BGE0929-BLK1)					Prep	ared & /	Analyzed	: 05/23/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene (Surr)	4.74		ppbv	5.00		94.8	80-120			
LCS (BGE0929-BS1)					Prep	ared & A	Analyzed	: 05/23/2	023	
1,1,1-Trichloroethane	4.30	0.5	ppbv	5.00		86.0	70-130			
1,1,2,2-Tetrachloroethane	4.36	0.5	ppbv	5.00		87.2	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha	3.04	0.5	ppbv	5.00		60.8	70-130			L
ne 1,1,2-Trichloroethane	4.42	0.5	ppbv	5.00		88.4	70-130			
1,1-Dichloroethane	4.42 3.94	0.5	ppbv	5.00		00.4 78.8	70-130			
1,1-Dichloroethylene	4.07	0.5	ppbv	5.00		81.4	70-130			
1,2,4-Trimethylbenzene	4.48	0.5	ppbv	5.00		89.6	70-130			
1,2-Dibromoethane (EDB)	4.23	0.5	ppbv	5.00		84.6	70-130			
1,2-Dichlorobenzene	4.40	0.5	ppbv	5.00		88.0	70-130			
1,2-Dichloroethane	4.40	0.5	ppbv	5.00		88.0	70-130			
, 1,2-Dichloropropane	4.50	0.5	ppbv	5.00		90.0	70-130			
1,2-Dichlorotetrafluoroethane	4.31	0.5	ppbv	5.00		86.2	70-130			
1,3,5-Trimethylbenzene	4.30	0.5	ppbv	5.00		86.0	70-130			
1,3-Butadiene	4.23	0.5	ppbv	5.00		84.6	70-130			
1,3-Dichlorobenzene	4.25	0.5	ppbv	5.00		85.0	70-130			
1,4-Dichlorobenzene	4.30	0.5	ppbv	5.00		86.0	70-130			
1,4-Dioxane	4.56	0.5	ppbv	5.00		91.2	70-130			
2-Butanone (MEK)	4.03	0.5	ppbv	5.00		80.6	70-130			
4-Methyl-2-pentanone (MIBK)	4.53	0.5	ppbv	5.00		90.6	70-130			
Allyl chloride	4.05	0.5	ppbv	5.00		81.0	70-130			
Benzene	4.36	0.5	ppbv	5.00		87.2	70-130			
Benzyl Chloride	3.56	0.5	ppbv	5.00		71.2	70-130			
Bromodichloromethane	3.91	0.5	ppbv	5.00		78.2	70-130			
Bromoform	0.39	0.5	ppbv	5.00		7.80	70-130			L
Bromomethane	4.68	0.5	ppbv	5.00		93.6	70-130			
Carbon Disulfide	2.85	0.5	ppbv	5.00		57.0	70-130			L

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

			En	thalpy	Analyti	Enthalpy Analytical										
	R	eporting		Spike	Source		%REC		RPD							
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual						
Batch BGE0929 - No Prep V	OC Air															
LCS (BGE0929-BS1)					Prep	ared & A	Analyzed	: 05/23/2	023							
Carbon Tetrachloride	4.24	0.5	ppbv	5.00		84.8	70-130									
Chlorobenzene	4.17	0.5	ppbv	5.00		83.4	70-130									
Chloroethane	4.28	0.5	ppbv	5.00		85.6	70-130									
Chloroform	4.00	0.5	ppbv	5.00		80.0	70-130									
Chloromethane	4.63	0.5	ppbv	5.00		92.6	70-130									
cis-1,2-Dichloroethylene	3.98	0.5	ppbv	5.00		79.6	70-130									
cis-1,3-Dichloropropene	4.65	0.5	ppbv	5.00		93.0	70-130									
Cyclohexane	4.52	0.5	ppbv	5.00		90.4	70-130									
Dichlorodifluoromethane	4.03	0.5	ppbv	5.00		80.6	70-130									
Ethyl acetate	3.92	0.5	ppbv	5.00		78.4	70-130									
Ethylbenzene	4.37	0.5	ppbv	5.00		87.4	70-130									
Heptane	4.74	0.5	ppbv	5.00		94.8	70-130									
Hexane	4.40	0.5	ppbv	5.00		88.0	70-130									
m+p-Xylenes	8.60	1	ppbv	10.0		86.0	70-130									
Methylene chloride	4.26	1	ppbv	5.00		85.2	70-130									
Methyl-t-butyl ether (MTBE)	4.10	0.5	ppbv	5.00		82.0	70-130									
Naphthalene	3.49	0.5	ppbv	5.00		69.8	60-140									
o-Xylene	4.27	0.5	ppbv	5.00		85.4	70-130									
Propylene	4.40	1	ppbv	5.00		88.0	70-130									
Styrene	4.35	0.5	ppbv	5.00		87.0	70-130									
Tetrachloroethylene (PCE)	4.02	0.5	ppbv	5.00		80.4	70-130									
Tetrahydrofuran	4.84	0.5	ppbv	5.00		96.8	70-130									
Toluene	4.54	0.5	ppbv	5.00		90.8	70-130									
rans-1,2-Dichloroethylene	3.43	0.5	ppbv	5.00		68.6	70-130			L						
trans-1,3-Dichloropropene	4.14	0.5	ppbv	5.00		82.8	70-130									
Trichloroethylene	4.38	0.5	ppbv	5.00		87.6	70-130									
Trichlorofluoromethane	4.45	0.5	ppbv	5.00		89.0	70-130									
/inyl acetate	4.25	0.5	ppbv	5.00		85.0	70-130									
Vinyl bromide	4.25	0.5	ppbv	5.00		85.0	70-130									
Vinyl chloride	4.38	0.5	ppbv	5.00		87.6	70-130									
Surr: 4-Bromofluorobenzene (Surr)	5.00		ppbv	5.00		100	70-130									

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Entholmy Analytical

	Enthalpy Analytical										
	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGE0929 - No Prep VO	C Air										
LCS Dup (BGE0929-BSD1)					Prep	bared &	Analyzed	: 05/23/20	023		
1,1,1-Trichloroethane	4.23	0.5	ppbv	5.00		84.6	70-130	1.64	25		
1,1,2,2-Tetrachloroethane	4.51	0.5	ppbv	5.00		90.2	70-130	3.38	25		
1,1,2-Trichloro-1,2,2-trifluoroetha ne	3.10	0.5	ppbv	5.00		62.0	70-130	1.95	25	L	
1,1,2-Trichloroethane	4.43	0.5	ppbv	5.00		88.6	70-130	0.226	25		
1,1-Dichloroethane	3.94	0.5	ppbv	5.00		78.8	70-130	0.00	25		
1,1-Dichloroethylene	4.51	0.5	ppbv	5.00		90.2	70-130	10.3	25		
1,2,4-Trimethylbenzene	4.58	0.5	ppbv	5.00		91.6	70-130	2.21	25		
1,2-Dibromoethane (EDB)	4.37	0.5	ppbv	5.00		87.4	70-130	3.26	25		
1,2-Dichlorobenzene	4.49	0.5	ppbv	5.00		89.8	70-130	2.02	25		
1,2-Dichloroethane	4.37	0.5	ppbv	5.00		87.4	70-130	0.684	25		
1,2-Dichloropropane	4.50	0.5	ppbv	5.00		90.0	70-130	0.00	25		
1,2-Dichlorotetrafluoroethane	4.27	0.5	ppbv	5.00		85.4	70-130	0.932	25		
1,3,5-Trimethylbenzene	4.47	0.5	ppbv	5.00		89.4	70-130	3.88	25		
1,3-Butadiene	4.28	0.5	ppbv	5.00		85.6	70-130	1.18	25		
1,3-Dichlorobenzene	4.42	0.5	ppbv	5.00		88.4	70-130	3.92	25		
1,4-Dichlorobenzene	4.41	0.5	ppbv	5.00		88.2	70-130	2.53	25		
1,4-Dioxane	4.60	0.5	ppbv	5.00		92.0	70-130	0.873	25		
2-Butanone (MEK)	4.07	0.5	ppbv	5.00		81.4	70-130	0.988	25		
4-Methyl-2-pentanone (MIBK)	4.59	0.5	ppbv	5.00		91.8	70-130	1.32	25		
Allyl chloride	4.31	0.5	ppbv	5.00		86.2	70-130	6.22	25		
Benzene	4.30	0.5	ppbv	5.00		86.0	70-130	1.39	25		
Benzyl Chloride	3.66	0.5	ppbv	5.00		73.2	70-130	2.77	25		
Bromodichloromethane	3.88	0.5	ppbv	5.00		77.6	70-130	0.770	25		
Bromoform	0.39	0.5	ppbv	5.00		7.80	70-130	0.00	25	L	
Bromomethane	4.64	0.5	ppbv	5.00		92.8	70-130	0.858	25		
Carbon Disulfide	2.90	0.5	ppbv	5.00		58.0	70-130	1.74	25	L	
Carbon Tetrachloride	4.16	0.5	ppbv	5.00		83.2	70-130	1.90	25		
Chlorobenzene	4.26	0.5	ppbv	5.00		85.2	70-130	2.14	25		
Chloroethane	4.20	0.5	ppbv	5.00		84.0	70-130	1.89	25		
Chloroform	3.99	0.5	ppbv	5.00		79.8	70-130	0.250	25		
Chloromethane	4.49	0.5	ppbv	5.00		89.8	70-130	3.07	25		
cis-1,2-Dichloroethylene	4.03	0.5	ppbv	5.00		80.6	70-130	1.25	25		
cis-1,3-Dichloropropene	4.59	0.5	ppbv	5.00		91.8	70-130	1.30	25		

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

			Eſ	ithalpy	Analyti	cai					
	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGE0929 - No Prep VC	DC Air										
LCS Dup (BGE0929-BSD1)					Prep	ared &	Analyzed	: 05/23/20	023		
Cyclohexane	4.52	0.5	ppbv	5.00		90.4	70-130	0.00	25		
Dichlorodifluoromethane	4.10	0.5	ppbv	5.00		82.0	70-130	1.72	25		
Ethyl acetate	4.05	0.5	ppbv	5.00		81.0	70-130	3.26	25		
Ethylbenzene	4.50	0.5	ppbv	5.00		90.0	70-130	2.93	25		
Heptane	4.69	0.5	ppbv	5.00		93.8	70-130	1.06	25		
Hexane	4.36	0.5	ppbv	5.00		87.2	70-130	0.913	25		
m+p-Xylenes	8.81	1	ppbv	10.0		88.1	70-130	2.41	25		
Methylene chloride	4.51	1	ppbv	5.00		90.2	70-130	5.70	25		
Methyl-t-butyl ether (MTBE)	4.09	0.5	ppbv	5.00		81.8	70-130	0.244	25		
Naphthalene	3.61	0.5	ppbv	5.00		72.2	60-140	3.38	25		
o-Xylene	4.42	0.5	ppbv	5.00		88.4	70-130	3.45	25		
Propylene	2.21	1	ppbv	5.00		44.2	70-130	66.3	25	L, P	
Styrene	4.51	0.5	ppbv	5.00		90.2	70-130	3.61	25		
Fetrachloroethylene (PCE)	4.10	0.5	ppbv	5.00		82.0	70-130	1.97	25		
Fetrahydrofuran	4.77	0.5	ppbv	5.00		95.4	70-130	1.46	25		
Toluene	4.45	0.5	ppbv	5.00		89.0	70-130	2.00	25		
rans-1,2-Dichloroethylene	3.52	0.5	ppbv	5.00		70.4	70-130	2.59	25		
rans-1,3-Dichloropropene	4.15	0.5	ppbv	5.00		83.0	70-130	0.241	25		
Frichloroethylene	4.34	0.5	ppbv	5.00		86.8	70-130	0.917	25		
Frichlorofluoromethane	4.44	0.5	ppbv	5.00		88.8	70-130	0.225	25		
/inyl acetate	4.30	0.5	ppbv	5.00		86.0	70-130	1.17	25		
/inyl bromide	4.14	0.5	ppbv	5.00		82.8	70-130	2.62	25		
/inyl chloride	4.37	0.5	ppbv	5.00		87.4	70-130	0.229	25		
Surr: 4-Bromofluorobenzene	5.17		ppbv	5.00		103	70-130				

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

Batch BGE0963 - No Prep VOC GC Air

Blank (BGE0963-BLK1)					Prepared &	Analyzed:	05/24/20	23	
Methane	<	0.05	Vol%						
Carbon dioxide	<	0.05	Vol%						
Oxygen (O2)	<	0.05	Vol%						
Nitrogen (N2)	<	1.00	Vol%						
Hydrogen (H2)	<	0.02	Vol%						
Carbon Monoxide	<	10.0	ppmv						
Carbon Monoxide	<	0.001	Vol%						
LCS (BGE0963-BS1)					Prepared &	Analyzed:	05/24/20	23	
Methane	4670	500	ppmv	5000	93.5	0-200			
Methane	4670	0.05	ppmv	5000	93.5	80-120			
Carbon dioxide	4760	500	ppmv	5000	95.2	0-200			
Carbon dioxide	4760	0.05	ppmv	5000	95.2	80-120			
Oxygen (O2)	5160	500	ppmv	5000	103	0-200			
Oxygen (O2)	5160	0.05	ppmv	5000	103	80-120			
Nitrogen (N2)	5460	2000	ppmv	5000	109	0-200			
Hydrogen (H2)	5780	200	ppmv	5100	113	0-200			
Hydrogen (H2)	5780	0.02	ppmv	5100	113	80-120			
Nitrogen (N2)	5460	1	ppmv	5000	109	80-120			
Carbon Monoxide	4890	10	ppmv	5000	97.7	0-200			
Carbon Monoxide	4890	0.001	ppmv	5000	97.7	80-120			
Duplicate (BGE0963-DUP1)		So	urce: 23E	1169-01	Prepared &	Analyzed:	05/24/20	23	
Methane	7270	4500	ppmv		7280		0.208	25	
Methane	0.73	0.45	Vol%		0.73		0.208	5	
Carbon dioxide	659000	4500	ppmv		657000		0.215	25	
Oxygen (O2)	<	4500	ppmv		<4500		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.45		NA	5	
Nitrogen (N2)	<	9.00	Vol%		<9.00		NA	5	
Hydrogen (H2)	377000	1800	ppmv		377000		0.0221	25	
Nitrogen (N2)	<	18000	ppmv		<18000		NA	25	
Carbon Monoxide	906	90.0	ppmv		906		0.0397	25	
Carbon Monoxide	0.09	0.009	Vol%		0.09		0.0397	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

					-					
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGE0963 - No Prep VC	OC GC Air									
Duplicate (BGE0963-DUP2)		So	urce: 23E [,]	1169-02	Prep	ared & /	Analyzed	: 05/24/20	23	
Methane	8.94	0.45	Vol%		8.99			0.560	5	
Methane	89400	4500	ppmv		89900)		0.560	25	
Carbon dioxide	306000	4500	ppmv		30600	0		0.0764	25	
Carbon dioxide	30.6	0.45	Vol%		30.6			0.0764	5	
Oxygen (O2)	59000	4500	ppmv		59100)		0.206	25	
Oxygen (O2)	5.90	0.45	Vol%		5.91			0.206	5	
Hydrogen (H2)	54700	1800	ppmv		54800)		0.187	25	
Nitrogen (N2)	42.8	9.00	Vol%		42.9			0.189	5	
Nitrogen (N2)	428000	18000	ppmv		42900	0		0.189	25	
Carbon Monoxide	328	90.0	ppmv		330			0.465	25	
Carbon Monoxide	0.03	0.009	Vol%		0.03			0.465	5	
Duplicate (BGE0963-DUP3)		So	urce: 23E [,]	1169-03	Prep	ared & /	Analyzed	: 05/24/20	23	
Methane	92500	4500	ppmv		93300)		0.863	25	
Methane	9.25	0.45	Vol%		9.33			0.863	5	
Carbon dioxide	451000	4500	ppmv		45700	0		1.27	25	
Carbon dioxide	45.1	0.45	Vol%		45.7			1.27	5	
Oxygen (O2)	64800	4500	ppmv		64200)		0.904	25	
Oxygen (O2)	6.48	0.45	Vol%		6.42			0.904	5	
Nitrogen (N2)	294000	18000	ppmv		29300	0		0.473	25	
Nitrogen (N2)	29.4	9.00	Vol%		29.3			0.473	5	
Hydrogen (H2)	38200	1800	ppmv		37700)		1.31	25	
Hydrogen (H2)	3.82	0.18	Vol%		3.77			1.31	5	
Carbon Monoxide	207	90.0	ppmv		209			1.08	25	
Carbon Monoxide	0.02	0.009	Vol%		0.02			1.08	5	
Duplicate (BGE0963-DUP4)		So	urce: 23E [,]	1169-04	Prep	ared & /	Analyzed	: 05/24/20	23	
Methane	13.6	0.45	Vol%		13.6			0.284	5	
Methane	136000	4500	ppmv		13600	0		0.284	25	
Carbon dioxide	557000	4500	ppmv		55800			0.0839	25	
Carbon dioxide	55.7	0.45	Vol%		55.8			0.0838	5	
Oxygen (O2)	5100	4500	ppmv		5100			0.0423	25	
Oxygen (O2)	0.51	0.45	Vol%		0.51			0.0423	5	
Nitrogen (N2)	172000	18000	ppmv		17200	0		0.0873	25	
Hydrogen (H2)	112000	1800	ppmv		11100			1.12	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

			En	thalpy	Analyti	cal				
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGE0963 - No Prep VC	C GC Air									
Duplicate (BGE0963-DUP4)		So	urce: 23E	1169-04	Prep	ared & /	Analyzed	: 05/24/20	23	
Nitrogen (N2)	17.2	9.00	Vol%		17.2			0.0873	5	
Carbon Monoxide	477	90.0	ppmv		478			0.151	25	
Carbon Monoxide	0.05	0.009	Vol%		0.05			0.151	5	
Duplicate (BGE0963-DUP5)		Sou	urce: 23E	1169-05	Prep	ared & /	Analyzed	: 05/24/20	23	
Nethane	346000	4500	ppmv		34800	0		0.629	25	
<i>M</i> ethane	34.6	0.45	Vol%		34.8			0.629	5	
Carbon dioxide	489000	4500	ppmv		48900	0		0.0306	25	
Carbon dioxide	48.9	0.45	Vol%		48.9			0.0306	5	
Dxygen (O2)	0.94	0.45	Vol%		0.95			0.652	5	
Dxygen (O2)	9430	4500	ppmv		9500)		0.652	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00)		NA	5	
Hydrogen (H2)	25300	1800	ppmv		2500	D		1.33	25	
Hydrogen (H2)	2.53	0.18	Vol%		2.50			1.33	5	
Nitrogen (N2)	64600	18000	ppmv		6500	0		0.497	25	
Carbon Monoxide	137	90.0	ppmv		137			0.329	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01			0.329	5	
Duplicate (BGE0963-DUP6)		Sou	urce: 23E	1169-06	Prep	ared & /	Analyzed	: 05/24/20	23	
Vethane	36.6	0.45	Vol%		36.7			0.463	5	
Methane	366000	4500	ppmv		36700	0		0.463	25	
Carbon dioxide	526000	4500	ppmv		53300	0		1.17	25	
Carbon dioxide	52.6	0.45	Vol%		53.3			1.17	5	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Dxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00)		NA	5	
Hydrogen (H2)	2.58	0.18	Vol%		2.57			0.411	5	
Hydrogen (H2)	25800	1800	ppmv		2570	0		0.411	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01			4.06	5	
Carbon Monoxide	126	90.0	ppmv		131			4.06	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	

Batch BGE0963 - No Prep VOC GC Air

Duplicate (BGE0963-DUP7)		So	urce: 23E1169-07	Prepared & Ar	nalyzed: 05/24/20	23
Methane	418000	4500	ppmv	416000	0.487	25
Methane	41.8	0.45	Vol%	41.6	0.487	5
Carbon dioxide	483000	4500	ppmv	481000	0.461	25
Carbon dioxide	48.3	0.45	Vol%	48.1	0.461	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Hydrogen (H2)	45700	1800	ppmv	46000	0.640	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Service 4330 Lewis Road	es - Harrisburg, PA , Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17	'111		
Submitted To:	Tom Lock		Project Number:	07223016.00
Client Site I.D.:	Bristol		Purchase Order:	07-SO04485
Code		Description	Laboratory ID	Expires
MdDOE		Maryland DE Drinking Water	341	12/31/2023
NC		North Carolina DENR	495	12/31/2023
NCDEQ		North Carolina DEQ	495	12/31/2023
NCDOH		North Carolina Department of Health	51714	07/31/2023
NYDOH		New York DOH Drinking Water	12069	04/01/2024
PADEP		NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC		South Carolina Dept of Health and Environment	ntal 93016	06/14/2023
TXCEQ		Texas Comm on Environmental Quality #T104	704 T104704576	05/31/2024
VELAP		NELAP-Virginia Certificate #12333	460021	06/14/2023
WVDEP		West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

- L LCS recovery is outside of established acceptance limits
- P Duplicate analysis does not meet the acceptance criteria for precision
- RPD Relative Percent Difference
- Qual Qualifers

- -RE Denotes sample was re-analyzed
- PF Preparation Factor
- MDL Method Detection Limit
- LOQ Limit of Quantitation
- ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

AIR ANALYSIS

10	rmerly Air, W	aleras	on Lu	Doraton	ies			CHAIN	OF CUS	TODY	E	quipm	ent due	6/15/20	23		P	'ag	e 1	l of 3
co	MPANY NAME:	SCS Fiel	d Servi	ces - Harri	sbu	rg INV	OICE TO	Same	5			PROJ	ECT NAM	IE/Quote #	: Bristo	bl				
co	NTACT:		- 1			IN	VOICE CO	NTACT:		SITE NAME: GRISBL										
AD	DRESS:					IN	VOICE AD	DRESS:		PROJ	ECT NUM	IBER: O	72238	516.8	00					
PH	ONE #:					IN	OICE PH	ONE #:				P.O. #			Carlos Carlos	191				
FA	X #:			EN	1AIL	.:						Pretre	atment Pr	ogram:	3	75		Ś.,		
ls s	ample for comp	liance rep	orting?	YES NO		Regulate	ory State:	VA Is	sample fro	m a chlorii	nated sup	oply?	YES 🚺	NO PV	VS I.D. #:					
SA	MPLER NAME ((PRINT):	LOGA	r cuc	HA	SA 30	MPLER S	IGNATUR	E: 4			Turn /	Around T	ime: Circ	cle: 10 (5 Days	>	or	_	Day(s)
Matr	ix Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV=Land	dfill/\	ent Gas OT	=Other						063	3-23E-000	9				3	
		Regulator	Info	Canister In	forn	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	nation		des)	AN	ALY	YSIS
	CLIENT						LAB	LAB	Barometric	Pres. (in Ho	a more to		Barometri	c Pres. (in H	10040 M	r	ee Co	0	14	
	SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in ^{Hg)}	Receiving Canister Vacuum (in _{Hg)}	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (^{Hg)}	Starting n Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in ^{Hg)}	Ending Sample Temp °F	Matrix (See Codes)	Alt 145 CO	3C	TO-15 Benzene only
1)	69			10094	1.4	230504-01	30	4.0	5/14	9:02	30	5941	5/18	9:05	10	8'911	LG	x	x	×
2)	37			11296	1.4	230504-01	30	4.6	5/18	9:18	30	158.9	5/18	9:21	10	158.8	LG	x	x	x
3)	31 F			11317	1.4	230504-01	30	4.6	5/18	9:25	30	165.6	5118	9:28	10	165	LG	x	x	x
4)	NoT Songeo			11322	1.4	230504-01	30		64 T								LG	x	x	x
REL	INQUISHED:				REC	CEIVED:		DAT	E / TIME	QC Data P	Package L	AB USE		20.2.0	no file no seni	1				
	INQUISHED:	- 5/18				CEIVED:	2.	DAT	TE / TIME	Level II Level III			Field So		23E1	169				
	Fidex	6	2004 - Ca B	LAISENEE WINDOWN	1	hpr 1	Jan 3	-19-23	1220	Level IV		Bristo Recd:)23 Due	: 05/26/2	023		d.		of 23

Page 20 of 23

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

063-23E-0009

AIR ANALYSIS

TO	rmeriy Air, w	valer & s	OTILO	Dorator	les			CHAIN	OF CUS	TODY	E	quipm	ent due	e 6/15/20	23		P	Pag	e 2	2 of 3
CO	MPANY NAME	SCS Fiel	d Servi	ces - Harri	sbu	irg IN	VOICE TO	: Same				PROJ	ECT NAM	1E/Quote #	#: Bristo	ol				
CO	NTACT:					IN	INVOICE CONTACT: SITE NAME: GRESTOL													
AD	DRESS:					IN	VOICE AD	DRESS:				PROJ	ECT NUM	IBER: OT	122301	6.00				
PHO	ONE #:					IN	VOICE PH	ONE #:				P.O. #	i.							
FAX	(#:			EN	IAIL			L				Pretre	atment Pr	ogram:		E.			-	
Is s	ample for comp	liance rep	orting?	YES NO	1	Regulat	ory State:	VA Is:	sample fro	m a chlori	nated sup	ply?	YES 🚺	NO PV	VS I.D. #:				Ť.	
SAN	MPLER NAME	(PRINT):	LOGAN	~ cuch	Ar	se sa	MPLER S	IGNATUR	E: 5	<-		Turn	Around T	ime: Circ	cle: 10 (5 Days)	or		Day(s)
Matri	x Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV=Land	dfill/\	Vent Gas OT	=Other						063	3-23E-000	9					
		Regulator	Info	Canister In	forr	nation			Sampling	Start Inform	nation		Sampling	Stop Inform	nation		des)	AN,	ALY	YSIS
	CLIENT						LAB	LAB	Barometric	: Pres. (in Ho		1	Barometrie	c Pres. (in H		1	ee Co	0		man -
	SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in ^{Hg})	Receiving Canister Vacuum (in ^{Hg)}	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (i ^{Hg)}	Starting n Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in ^{Hg)}	Ending Sample Temp °F	Matrix (See Codes)	Alt 145 CO	3C	TO-15 Benzene only
1)	84			12420	1.4	230504-01	30	4.0	5/18	5:30	30	C.671	5/18	\$:33	10	1.Pri	LG	x	x	x
2)	86			12669	1.4	230504-01	30	4.2	5/18	6:38	30	151.2	5/18	6:40	10	151.3	LG	x	x	x
3)	90			13369	1.4	230504-01	30	4.0	5118	8:45	30	L.121	5/18	8:48	10	151.7	LG	x	x	x
4)	100			13954	1.4	230504-01	30	N.8	5/18	8:54	30	1587	5/18	8:56	10	1.5%.7	LG	x	x	x
RELI	NQUISHED:				REC	CEIVED:		DAT	e / Time	2		AB USE	ONLY		AN RO	2	1			
	NQUISHED:	5/19	3	re / TIME		CEIVED:		20000474. [4]	e / Time	Level I Level II		SCS F	ield Se	rvices	^{As} 504 23E11					
RELI	Pedex C	>	DAT	re / Time	REC	CEIVED:	John		E / TIME	Level III Level IV		Bristol			: 05/26/20	023 —				
					1	/ /						Keca:	03/19/20	Lo Duc	v1303	25002	P	ade	21	of 23

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

AIR ANALYSIS

formerly Air, water & Son Laboratories	CHAIN	OF CUSTODY	Equipment due 6/15/2023	Page 3 of 3						
COMPANY NAME: SCS Field Services - Harrisburg	INVOICE TO: Same)	PROJECT NAME/Quote #: Bristol							
CONTACT:	INVOICE CONTACT:		SITE NAME: BEISTIC	SITE NAME: BRISTOL						
ADDRESS:	INVOICE ADDRESS:		PROJECT NUMBER: 07223016.00	>						
PHONE #:	INVOICE PHONE #:		P.O. #:							
FAX #: EMAIL:			Pretreatment Program:							
Is sample for compliance reporting? YES NO Reg	ulatory State: VA Is	sample from a chlorinate	ed supply? YES NO PWS I.D. #:							
SAMPLER NAME (PRINT): LOGAN CULHANE	SAMPLER SIGNATUR	RE: Som	Turn Around Time: Circle: 10 5 Days	or _ Day(s)						
Matrix Codes: AA=Indoor/Ambient Air SG=Soil Gas V=Landfill/Vent Ga	oT=Other		063-23E-0009							
Regulator Info Canister Information	1	Sampling Start Informatio	on Sampling Stop Information							
CLIENT SAMPLE I.D. Flow Controller ID Canister ID		c	Initial Canister Icuum (in Hg) Sample Hg) Stop Date (24hr clock) Hg) Final Stop Time (24hr clock) Hg) Final Canister Hg) Final Hg) Final Hg Hg) Final Hg) Final Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg	Matrix (See Co Alt 145 CO 3C TO-15 Benzene						
1)	04-01 30									
2) 2 15036 1.4 2305	04-01 30			LG x x x						
3)										
4)										
RELINQUISHED:): DA [*]	TE / TIME QC Data Pack	Age LAB USE ONLY 20,2°C NO FOR 310 NO SERI							
RELINQUISHED SING DATE / TIME RECEIVED RELINQUISHED: DATE / TIME RECEIVED FLORE 6		TE / TIME Level II ロ TE / TIME (スペん Level IV ロ	SCS Field Services 23E1169 Bristol							
		··· ·	Recd: 05/19/2023 Due: 05/26/2023	Page 22 of 23						

Certificate of Analysis

Final Report

Laboratory Order ID 23E1169

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 19, 2023 12:20 May 26, 2023 14:31
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Sample Conditions Checklist

Samples Received at:	20.20°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	May 24, 2023 11:15
	4330 Lewis Road, Suite 1	Date Issued:	June 1, 2023 16:58
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 05/24/2023 11:15. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOJAS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

SCS Field Services - Harrisburg, PA	Date Received:	May 24, 2023 11:15
4330 Lewis Road, Suite 1	Date Issued:	June 1, 2023 16:58
Harrisburg, PA 17111	Project Number:	07223016.00
Tom Lock	Purchase Order:	07-SO04485
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111	4330 Lewis Road, Suite 1 Date Issued: Harrisburg, PA 17111 Project Number: Purchase Order:

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
84	23E1343-01	Air	05/23/2023 09:45	05/24/2023 11:15
86	23E1343-02	Air	05/23/2023 09:55	05/24/2023 11:15
90	23E1343-03	Air	05/23/2023 10:00	05/24/2023 11:15
100	23E1343-04	Air	05/23/2023 10:05	05/24/2023 11:15
54	23E1343-05	Air	05/23/2023 10:22	05/24/2023 11:15
31R	23E1343-06	Air	05/23/2023 10:38	05/24/2023 11:15
37	23E1343-07	Air	05/23/2023 10:43	05/24/2023 11:15

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL R	ESULTS	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 84	Sub Description/Location:		Final Vacuum(in Hg): 5.0
Sample ID: 23E1343-01	Canister ID: 063-00113::289		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 5/23/2023 09:45			Flow Controller ID:

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjust	ed, as received basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	409	90.0	90.0		9	1	5/26/23 10:13	MER

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as received b	oasis			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	12.7	0.45	0.45		9	1	5/26/23 10:13	MER
Carbon dioxide, as received	50.0	0.45	0.45		9	1	5/26/23 10:13	MER
Oxygen (O2), as received	1.28	0.45	0.45		9	1	5/26/23 10:13	MER
Hydrogen (H2), as received	9.03	0.54	0.54		27	1	5/26/23 11:24	MER
Nitrogen (N2), as received	20.9	9.00	9.00		9	1	5/26/23 10:13	MER
Carbon Monoxide, as received	0.04	0.009	0.009		9	1	5/26/23 10:13	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	198000	10500	26200		630000	34000	84000	52500	1	5/30/23 11:29	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			92.0		8	30-120				5/30/23 11:29	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS	5	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 86	Sub Description/Location:		Final Vacuum(in Hg): 5.4
Sample ID: 23E1343-02	Canister ID: 063-00248::00307		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 5/23/2023 09:55			Flow Controller ID:

	Vola	atile Organi	c Compour	ids by GC/TCD - Unadjusted,	as received basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	137	90.0	90.0		9	1	5/26/23 10:46	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received b	asis			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	32.9	0.45	0.45		9	1	5/26/23 10:46	MER
Carbon dioxide, as received	46.0	0.45	0.45		9	1	5/26/23 10:46	MER
Oxygen (O2), as received	1.76	0.45	0.45		9	1	5/26/23 10:46	MER
Hydrogen (H2), as received	2.30	0.18	0.18		9	1	5/26/23 10:46	MER
Nitrogen (N2), as received	9.59	9.00	9.00		9	1	5/26/23 10:46	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	5/26/23 10:46	MER

			Volatile (Organic Compo EPA TO-1		S					
		ppbv				ug/M³				Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	88500	2330	5830		280000	7500	19000	11700	1	5/30/23 13:01	DFH
Surrogate(s)		% Re	covery		% Red	covery Lir	nits				
4-Bromofluorobenzene (Surr)			90.8		8	30-120				5/30/23 13:01	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 90	Sub Description/Location:		Final Vacuum(in Hg): 4.6
Sample ID: 23E1343-03	Canister ID: 063-00120::10048		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 5/23/2023 10:00			Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis								
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	126	90.0	90.0		9	1	5/26/23 11:56	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basi EPA 3C	s			
		Vol%		EFA 3C			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	36.5	0.45	0.45		9	1	5/26/23 11:56	MER
Carbon dioxide, as received	51.5	0.45	0.45		9	1	5/26/23 11:56	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	5/26/23 11:56	MER
Hydrogen (H2), as received	2.38	0.18	0.18		9	1	5/26/23 11:56	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/26/23 11:56	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	5/26/23 11:56	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		-		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	197000	4670	11700		630000	15000	37000	23300	1	5/30/23 14:33	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			87.6		8	30-120				5/30/23 14:33	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULT	5	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 100	Sub Description/Location:		Final Vacuum(in Hg): 5.2
Sample ID: 23E1343-04	Canister ID: 063-00180::11076		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 5/23/2023 10:05			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as	received basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	ND	90.0	90.0		9	1	5/26/23 12:51	MER

	Vola	-	c Compour	ids by GC/TCD - Unadjusted, as received bas EPA 3C	sis			
		Vol%					Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	39.2	0.45	0.45		9	1	5/26/23 12:51	MER
Carbon dioxide, as received	45.4	0.45	0.45		9	1	5/26/23 12:51	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	5/26/23 12:51	MER
Hydrogen (H2), as received	4.15	0.18	0.18		9	1	5/26/23 12:51	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/26/23 12:51	MER
Carbon Monoxide, as received	ND	0.009	0.009		9	1	5/26/23 12:51	MER

			Volatile (Drganic Compo EPA TO-1		IS					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	30100	778	1940		96000	2500	6200	3890	1	5/30/23 16:04	DFH
Surrogate(s)		% Re	covery		% Re	covery Lin	nits				
4-Bromofluorobenzene (Surr)			96.0		8	30-120				5/30/23 16:04	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESU	LTS	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 54	Sub Description/Location:		Final Vacuum(in Hg): 5.0
Sample ID: 23E1343-05	Canister ID: 063-00052::11299		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 5/23/2023 10:22			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as rece	ived basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	218	90.0	90.0		9	1	5/26/23 13:42	MER

	Vola	-	c Compour	ds by GC/TCD - Unadjusted, as received EPA 3C	l basis			
		Vol%		EFA 30			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	22.8	0.45	0.45		9	1	5/26/23 13:42	MER
Carbon dioxide, as received	56.7	0.45	0.45		9	1	5/26/23 13:42	MER
Oxygen (O2), as received	0.75	0.45	0.45		9	1	5/26/23 13:42	MER
Hydrogen (H2), as received	10.6	0.72	0.72		36	1	5/26/23 14:17	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/26/23 13:42	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	5/26/23 13:42	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	168000	14000	35000		540000	45000	110000	70000	1	5/30/23 17:35	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			89.4		ł	30-120				5/30/23 17:35	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESUL	LTS	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 31R	Sub Description/Location:		Final Vacuum(in Hg): 5.8
Sample ID: 23E1343-06	Canister ID: 063-00090::11303		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 5/23/2023 10:38			Flow Controller ID:

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as receiv ALT-145	ved basis			
	ppmv						Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF		Analyst
Carbon Monoxide, as received	473	90.0	90.0		9	1	5/26/23 14:49 N	MER

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as received bas	Date/Time Dilution PF Analyzed Analy			
Analyte	Vol%			EPA 3C				
	Result	MDL	LOQ	Flag/Qual	Dilution	PF		Analyst
Methane, as received	7.69	0.45	0.45		9	1	5/26/23 14:49	MER
Carbon dioxide, as received	51.6	0.45	0.45		9	1	5/26/23 14:49	MER
Oxygen (O2), as received	4.94	0.45	0.45		9	1	5/26/23 14:49	MER
Hydrogen (H2), as received	9.53	0.54	0.54		27	1	5/26/23 15:24	MER
Nitrogen (N2), as received	17.8	9.00	9.00		9	1	5/26/23 14:49	MER
Carbon Monoxide, as received	0.05	0.009	0.009		9	1	5/26/23 14:49	MER

Volatile Organic Compounds by GCMS EPA TO-15											
	ppbv				ug/M³		_		Date/Time		
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	463000	10500	26200		1500000	34000	84000	52500	1	5/30/23 19:07	DFH
Surrogate(s)		% Recovery			% Recovery Limits						
4-Bromofluorobenzene (Surr)	95.0			80-120				5/30/23 19:07			

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 37	Sub Description/Location:		Final Vacuum(in Hg): 5.6
Sample ID: 23E1343-07	Canister ID: 063-00003::12662		Receipt Vacuum(in Hg):
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 5/23/2023 10:43			Flow Controller ID:

Sample Type: LV

	Vola	atile Organi	ic Compour		sted, as received basis			
		ррту		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	345	90.0	90.0		9	1	5/26/23 16:46	MER

	Vola	atile Organi	c Compour	basis				
		Vol%		EPA 3C		PF		Analyst
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution		Date/Time Analyzed	
Methane, as received	11.3	0.45	0.45		9	1	5/26/23 16:46	MER
Carbon dioxide, as received	39.6	0.45	0.45		9	1	5/26/23 16:46	MER
Oxygen (O2), as received	2.68	0.45	0.45		9	1	5/26/23 16:46	MER
Hydrogen (H2), as received	6.47	0.36	0.36		18	1	5/26/23 17:28	MER
Nitrogen (N2), as received	30.1	9.00	9.00		9	1	5/26/23 16:46	MER
Carbon Monoxide, as received	0.03	0.009	0.009		9	1	5/26/23 16:46	MER

Volatile Organic Compounds by GCMS EPA TO-15											
	ppbv ug/M³		_		Date/Time						
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	207000	4670	11700		660000	15000	37000	23300	1	5/31/23 11:17	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			89.8		8	30-120				5/31/23 11:17	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
Harrisburg, PA 17111		
Tom Lock	Project Number:	07223016.00
Bristol	Purchase Order:	07-SO04485
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111 Tom Lock	4330 Lewis Road, Suite 1Date Issued:Harrisburg, PA 17111Tom LockProject Number:

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GC/TCD - Unadjusted	d, as received basis	Preparation Method:	No Prep VOC GC	Air
23E1343-01	1.00 mL / 1.00 mL	ALT-145	BGE1066	SGE1021	AG00026
23E1343-02	1.00 mL / 1.00 mL	ALT-145	BGE1066	SGE1021	AG00026
23E1343-03	1.00 mL / 1.00 mL	ALT-145	BGE1066	SGE1021	AG00026
23E1343-04	1.00 mL / 1.00 mL	ALT-145	BGE1066	SGE1021	AG00026
23E1343-05	1.00 mL / 1.00 mL	ALT-145	BGE1066	SGE1021	AG00026
23E1343-06	1.00 mL / 1.00 mL	ALT-145	BGE1066	SGE1021	AG00026
23E1343-07	1.00 mL / 1.00 mL	ALT-145	BGE1066	SGE1021	AG00026
23E1343-01	1.00 mL / 1.00 mL	EPA 3C	BGE1066	SGE1021	AG00026
23E1343-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGE1066	SGE1021	AG00026
23E1343-02	1.00 mL / 1.00 mL	EPA 3C	BGE1066	SGE1021	AG00026
23E1343-03	1.00 mL / 1.00 mL	EPA 3C	BGE1066	SGE1021	AG00026
23E1343-04	1.00 mL / 1.00 mL	EPA 3C	BGE1066	SGE1021	AG00026
23E1343-05	1.00 mL / 1.00 mL	EPA 3C	BGE1066	SGE1021	AG00026
23E1343-05RE1	1.00 mL / 1.00 mL	EPA 3C	BGE1066	SGE1021	AG00026
23E1343-06	1.00 mL / 1.00 mL	EPA 3C	BGE1066	SGE1021	AG00026
23E1343-06RE1	1.00 mL / 1.00 mL	EPA 3C	BGE1066	SGE1021	AG00026
23E1343-07	1.00 mL / 1.00 mL	EPA 3C	BGE1066	SGE1021	AG00026
23E1343-07RE1	1.00 mL / 1.00 mL	EPA 3C	BGE1066	SGE1021	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	No Prep VOC Air	
23E1343-01	400 mL / 400 mL	EPA TO-15	BGE0929	SGE1081	AE30194
23E1343-02	400 mL / 400 mL	EPA TO-15	BGE0929	SGE1081	AE30194
23E1343-03	400 mL / 400 mL	EPA TO-15	BGE0929	SGE1081	AE30194
23E1343-04	400 mL / 400 mL	EPA TO-15	BGE0929	SGE1081	AE30194
23E1343-05	400 mL / 400 mL	EPA TO-15	BGE0929	SGE1081	AE30194
23E1343-06	400 mL / 400 mL	EPA TO-15	BGE0929	SGE1081	AE30194
23E1343-07	400 mL / 400 mL	EPA TO-15	BGE0929	SGE1137	AE30194

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

				i i i aipy	Analyti	oui				
	Re	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGE0929 - No Prep VO	C Air									
Blank (BGE0929-BLK1)					Prep	pared &	Analyzed	: 05/23/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene (Surr)	4.74		ppbv	5.00		94.8	80-120			
LCS (BGE0929-BS1)					Prep	bared &	Analyzed	: 05/23/2	023	
1,1,1-Trichloroethane	4.30	0.5	ppbv	5.00		86.0	70-130			
1,1,2,2-Tetrachloroethane	4.36	0.5	ppbv	5.00		87.2	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha	3.04	0.5	ppbv	5.00		60.8	70-130			L
ne 1.1.2 Trichlereethene	4.40	0.5	nnhu	E 00		88.4	70-130			
1,1,2-Trichloroethane 1,1-Dichloroethane	4.42	0.5	ppbv	5.00 5.00		88.4 78.8	70-130			
1,1-Dichloroethylene	3.94 4.07	0.5 0.5	ppbv ppbv	5.00 5.00		70.0 81.4	70-130			
1,2,4-Trimethylbenzene	4.07	0.5	ppbv	5.00 5.00		89.6	70-130			
1,2-Dibromoethane (EDB)	4.48	0.5	ppbv	5.00 5.00		84.6	70-130			
1,2-Dichlorobenzene	4.40	0.5	ppbv	5.00		88.0	70-130			
1,2-Dichloroethane	4.40	0.5	ppbv	5.00		88.0	70-130			
1,2-Dichloropropane	4.50	0.5	ppbv	5.00		90.0	70-130			
1,2-Dichlorotetrafluoroethane	4.31	0.5	ppbv	5.00		86.2	70-130			
, 1,3,5-Trimethylbenzene	4.30	0.5	ppbv	5.00		86.0	70-130			
1,3-Butadiene	4.23	0.5	ppbv	5.00		84.6	70-130			
1,3-Dichlorobenzene	4.25	0.5	ppbv	5.00		85.0	70-130			
1,4-Dichlorobenzene	4.30	0.5	ppbv	5.00		86.0	70-130			
1,4-Dioxane	4.56	0.5	ppbv	5.00		91.2	70-130			
2-Butanone (MEK)	4.03	0.5	ppbv	5.00		80.6	70-130			
4-Methyl-2-pentanone (MIBK)	4.53	0.5	ppbv	5.00		90.6	70-130			
Allyl chloride	4.05	0.5	ppbv	5.00		81.0	70-130			
Benzene	4.36	0.5	ppbv	5.00		87.2	70-130			
Benzyl Chloride	3.56	0.5	ppbv	5.00		71.2	70-130			
Bromodichloromethane	3.91	0.5	ppbv	5.00		78.2	70-130			
Bromoform	0.39	0.5	ppbv	5.00		7.80	70-130			L
Bromomethane	4.68	0.5	ppbv	5.00		93.6	70-130			
Carbon Disulfide	2.85	0.5	ppbv	5.00		57.0	70-130			L

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

			En	thalpy	Analyti	cal					
	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGE0929 - No Prep V	OC Air										
LCS (BGE0929-BS1)					Prep	ared & A	Analyzed	: 05/23/2	023		
Carbon Tetrachloride	4.24	0.5	ppbv	5.00		84.8	70-130				
Chlorobenzene	4.17	0.5	ppbv	5.00		83.4	70-130				
Chloroethane	4.28	0.5	ppbv	5.00		85.6	70-130				
Chloroform	4.00	0.5	ppbv	5.00		80.0	70-130				
Chloromethane	4.63	0.5	ppbv	5.00		92.6	70-130				
cis-1,2-Dichloroethylene	3.98	0.5	ppbv	5.00		79.6	70-130				
cis-1,3-Dichloropropene	4.65	0.5	ppbv	5.00		93.0	70-130				
Cyclohexane	4.52	0.5	ppbv	5.00		90.4	70-130				
Dichlorodifluoromethane	4.03	0.5	ppbv	5.00		80.6	70-130				
Ethyl acetate	3.92	0.5	ppbv	5.00		78.4	70-130				
Ethylbenzene	4.37	0.5	ppbv	5.00		87.4	70-130				
Heptane	4.74	0.5	ppbv	5.00		94.8	70-130				
Hexane	4.40	0.5	ppbv	5.00		88.0	70-130				
m+p-Xylenes	8.60	1	ppbv	10.0		86.0	70-130				
Methylene chloride	4.26	1	ppbv	5.00		85.2	70-130				
Methyl-t-butyl ether (MTBE)	4.10	0.5	ppbv	5.00		82.0	70-130				
Naphthalene	3.49	0.5	ppbv	5.00		69.8	60-140				
o-Xylene	4.27	0.5	ppbv	5.00		85.4	70-130				
Propylene	4.40	1	ppbv	5.00		88.0	70-130				
Styrene	4.35	0.5	ppbv	5.00		87.0	70-130				
Tetrachloroethylene (PCE)	4.02	0.5	ppbv	5.00		80.4	70-130				
Tetrahydrofuran	4.84	0.5	ppbv	5.00		96.8	70-130				
Toluene	4.54	0.5	ppbv	5.00		90.8	70-130				
trans-1,2-Dichloroethylene	3.43	0.5	ppbv	5.00		68.6	70-130			L	
rans-1,3-Dichloropropene	4.14	0.5	ppbv	5.00		82.8	70-130				
Trichloroethylene	4.38	0.5	ppbv	5.00		87.6	70-130				
Trichlorofluoromethane	4.45	0.5	ppbv	5.00		89.0	70-130				
√inyl acetate	4.25	0.5	ppbv	5.00		85.0	70-130				
Vinyl bromide	4.25	0.5	ppbv	5.00		85.0	70-130				
Vinyl chloride	4.38	0.5	ppbv	5.00		87.6	70-130				
Surr: 4-Bromofluorobenzene (Surr)	5.00		ppbv	5.00		100	70-130				

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical											
	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGE0929 - No Prep VO	C Air										
LCS Dup (BGE0929-BSD1)					Prep	bared &	Analyzed	: 05/23/20	023		
1,1,1-Trichloroethane	4.23	0.5	ppbv	5.00		84.6	70-130	1.64	25		
1,1,2,2-Tetrachloroethane	4.51	0.5	ppbv	5.00		90.2	70-130	3.38	25		
1,1,2-Trichloro-1,2,2-trifluoroetha ne	3.10	0.5	ppbv	5.00		62.0	70-130	1.95	25	L	
1,1,2-Trichloroethane	4.43	0.5	ppbv	5.00		88.6	70-130	0.226	25		
1,1-Dichloroethane	3.94	0.5	ppbv	5.00		78.8	70-130	0.00	25		
1,1-Dichloroethylene	4.51	0.5	ppbv	5.00		90.2	70-130	10.3	25		
1,2,4-Trimethylbenzene	4.58	0.5	ppbv	5.00		91.6	70-130	2.21	25		
1,2-Dibromoethane (EDB)	4.37	0.5	ppbv	5.00		87.4	70-130	3.26	25		
1,2-Dichlorobenzene	4.49	0.5	ppbv	5.00		89.8	70-130	2.02	25		
1,2-Dichloroethane	4.37	0.5	ppbv	5.00		87.4	70-130	0.684	25		
1,2-Dichloropropane	4.50	0.5	ppbv	5.00		90.0	70-130	0.00	25		
1,2-Dichlorotetrafluoroethane	4.27	0.5	ppbv	5.00		85.4	70-130	0.932	25		
1,3,5-Trimethylbenzene	4.47	0.5	ppbv	5.00		89.4	70-130	3.88	25		
1,3-Butadiene	4.28	0.5	ppbv	5.00		85.6	70-130	1.18	25		
1,3-Dichlorobenzene	4.42	0.5	ppbv	5.00		88.4	70-130	3.92	25		
1,4-Dichlorobenzene	4.41	0.5	ppbv	5.00		88.2	70-130	2.53	25		
1,4-Dioxane	4.60	0.5	ppbv	5.00		92.0	70-130	0.873	25		
2-Butanone (MEK)	4.07	0.5	ppbv	5.00		81.4	70-130	0.988	25		
4-Methyl-2-pentanone (MIBK)	4.59	0.5	ppbv	5.00		91.8	70-130	1.32	25		
Allyl chloride	4.31	0.5	ppbv	5.00		86.2	70-130	6.22	25		
Benzene	4.30	0.5	ppbv	5.00		86.0	70-130	1.39	25		
Benzyl Chloride	3.66	0.5	ppbv	5.00		73.2	70-130	2.77	25		
Bromodichloromethane	3.88	0.5	ppbv	5.00		77.6	70-130	0.770	25		
Bromoform	0.39	0.5	ppbv	5.00		7.80	70-130	0.00	25	L	
Bromomethane	4.64	0.5	ppbv	5.00		92.8	70-130	0.858	25		
Carbon Disulfide	2.90	0.5	ppbv	5.00		58.0	70-130	1.74	25	L	
Carbon Tetrachloride	4.16	0.5	ppbv	5.00		83.2	70-130	1.90	25		
Chlorobenzene	4.26	0.5	ppbv	5.00		85.2	70-130	2.14	25		
Chloroethane	4.20	0.5	ppbv	5.00		84.0	70-130	1.89	25		
Chloroform	3.99	0.5	ppbv	5.00		79.8	70-130	0.250	25		
Chloromethane	4.49	0.5	ppbv	5.00		89.8	70-130	3.07	25		
cis-1,2-Dichloroethylene	4.03	0.5	ppbv	5.00		80.6	70-130	1.25	25		
cis-1,3-Dichloropropene	4.59	0.5	ppbv	5.00		91.8	70-130	1.30	25		

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

			Eſ	ithalpy	Analyti	cai					
	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGE0929 - No Prep VC	DC Air										
LCS Dup (BGE0929-BSD1)					Prep	ared &	Analyzed	: 05/23/20	023		
Cyclohexane	4.52	0.5	ppbv	5.00		90.4	70-130	0.00	25		
Dichlorodifluoromethane	4.10	0.5	ppbv	5.00		82.0	70-130	1.72	25		
Ethyl acetate	4.05	0.5	ppbv	5.00		81.0	70-130	3.26	25		
Ethylbenzene	4.50	0.5	ppbv	5.00		90.0	70-130	2.93	25		
Heptane	4.69	0.5	ppbv	5.00		93.8	70-130	1.06	25		
Hexane	4.36	0.5	ppbv	5.00		87.2	70-130	0.913	25		
m+p-Xylenes	8.81	1	ppbv	10.0		88.1	70-130	2.41	25		
Methylene chloride	4.51	1	ppbv	5.00		90.2	70-130	5.70	25		
Methyl-t-butyl ether (MTBE)	4.09	0.5	ppbv	5.00		81.8	70-130	0.244	25		
Naphthalene	3.61	0.5	ppbv	5.00		72.2	60-140	3.38	25		
o-Xylene	4.42	0.5	ppbv	5.00		88.4	70-130	3.45	25		
Propylene	2.21	1	ppbv	5.00		44.2	70-130	66.3	25	L, P	
Styrene	4.51	0.5	ppbv	5.00		90.2	70-130	3.61	25		
Fetrachloroethylene (PCE)	4.10	0.5	ppbv	5.00		82.0	70-130	1.97	25		
Fetrahydrofuran	4.77	0.5	ppbv	5.00		95.4	70-130	1.46	25		
Toluene	4.45	0.5	ppbv	5.00		89.0	70-130	2.00	25		
rans-1,2-Dichloroethylene	3.52	0.5	ppbv	5.00		70.4	70-130	2.59	25		
rans-1,3-Dichloropropene	4.15	0.5	ppbv	5.00		83.0	70-130	0.241	25		
Frichloroethylene	4.34	0.5	ppbv	5.00		86.8	70-130	0.917	25		
Frichlorofluoromethane	4.44	0.5	ppbv	5.00		88.8	70-130	0.225	25		
/inyl acetate	4.30	0.5	ppbv	5.00		86.0	70-130	1.17	25		
/inyl bromide	4.14	0.5	ppbv	5.00		82.8	70-130	2.62	25		
/inyl chloride	4.37	0.5	ppbv	5.00		87.4	70-130	0.229	25		
Surr: 4-Bromofluorobenzene	5.17		ppbv	5.00		103	70-130				

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source	%REC	,	RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

Batch BGE1066 - No Prep VOC GC Air

Blank (BGE1066-BLK1)					Prepared &	Analyzed: 05/2	6/2023		
Methane	<	0.05	Vol%						
Carbon dioxide	<	0.05	Vol%						
Oxygen (O2)	<	0.05	Vol%						
Nitrogen (N2)	<	1.00	Vol%						
Hydrogen (H2)	<	0.02	Vol%						
Carbon Monoxide	<	10.0	ppmv						
Carbon Monoxide	<	0.001	Vol%						
LCS (BGE1066-BS1)					Prepared &	Analyzed: 05/2	6/2023		
Methane	4160	500	ppmv	5000	83.3	0-200			
Methane	4160	0.05	ppmv	5000	83.3	80-120			
Carbon dioxide	4520	500	ppmv	5000	90.4	0-200			
Carbon dioxide	4520	0.05	ppmv	5000	90.4	80-120			
Oxygen (O2)	5170	500	ppmv	5000	103	0-200			
Oxygen (O2)	5170	0.05	ppmv	5000	103	80-120			
Hydrogen (H2)	5940	200	ppmv	5100	116	0-200			
Hydrogen (H2)	5940	0.02	ppmv	5100	116	80-120			
Nitrogen (N2)	5480	2000	ppmv	5000	110	0-200			
Nitrogen (N2)	5480	1	ppmv	5000	110	80-120			
Carbon Monoxide	4890	10	ppmv	5000	97.9	0-200			
Carbon Monoxide	4890	0.001	ppmv	5000	97.9	80-120			
Duplicate (BGE1066-DUP1)		So	urce: 23E	1000-01	Prepared &	Analyzed: 05/2	6/2023		
Methane	41.1	0.45	Vol%		41.4	0.85	56	5	
Methane	411000	4500	ppmv		414000	0.85	56 2	25	
Carbon dioxide	400000	4500	ppmv		402000	0.40)9 2	25	
Carbon dioxide	40.0	0.45	Vol%		40.2	0.40)9	5	
Oxygen (O2)	<	0.45	Vol%		<0.45	NA	4	5	
Oxygen (O2)	<	4500	ppmv		<4500	NA	A 2	25	
Nitrogen (N2)	<	18000	ppmv		<18000	NA	A 2	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00	NA	4	5	
Hydrogen (H2)	102000	1800	ppmv		102000	0.06	68 2	25	
Carbon Monoxide	<	0.009	Vol%		<0.009	NA	A Contraction	5	
Carbon Monoxide	<	90.0	ppmv		<90.0	NA	A 2	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Or	rganic Comp	ounds l	-		nadjuste Analyti		receive	ed basis	- Quality	Control	
	R	Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC		RPD	Limit	Qual	
Batch BGE1066 - No Prep VC	DC GC Air										
Duplicate (BGE1066-DUP2)		So	urce: 23E	1343-01	Prep	ared &	Analyzed	: 05/26/20)23		
Methane	12.5	0.45	Vol%		12.7			1.71	5		
Carbon dioxide	49.2	0.45	Vol%		50.0			1.61	5		
Oxygen (O2)	1.26	0.45	Vol%		1.28			1.40	5		
Nitrogen (N2)	20.6	9.00	Vol%		20.9			1.39	5		
Carbon Monoxide	0.04	0.009	Vol%		0.04			2.09	5		
Carbon Monoxide	400	90.0	ppmv		409			2.09	25		
Duplicate (BGE1066-DUP3)		So	urce: 23E	1343-02	Prep	ared &	Analyzed	: 05/26/20)23		
Vethane	331000	4500	ppmv		32900	00		0.699	25		
Vethane	33.1	0.45	Vol%		32.9			0.699	5		
Carbon dioxide	463000	4500	ppmv		46000	00		0.690	25		
Carbon dioxide	46.3	0.45	Vol%		46.0			0.690	5		
Dxygen (O2)	17800	4500	ppmv		1760	0		1.13	25		
Oxygen (O2)	1.78	0.45	Vol%		1.76			1.13	5		
Hydrogen (H2)	23100	1800	ppmv		2300	0		0.155	25		
Nitrogen (N2)	96700	18000	ppmv		9590	0		0.873	25		
Nitrogen (N2)	9.67	9.00	Vol%		9.59			0.873	5		
Hydrogen (H2)	2.31	0.18	Vol%		2.30			0.155	5		
Carbon Monoxide	0.01	0.009	Vol%		0.01			4.42	5		
Carbon Monoxide	131	90.0	ppmv		137			4.42	25		
Duplicate (BGE1066-DUP4)		So	urce: 23E	1343-03	Prep	ared &	Analyzed	: 05/26/20)23		
Vethane	364000	4500	ppmv		36500	00		0.329	25		
Methane	36.4	0.45	Vol%		36.5			0.329	5		
Carbon dioxide	515000	4500	ppmv		51500	00		0.0797	25		
Carbon dioxide	51.5	0.45	Vol%		51.5			0.0797	5		
Dxygen (O2)	<	4500	ppmv		<450	0		NA	25		
Dxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5		
Hydrogen (H2)	23800	1800	ppmv		2380	0		0.110	25		
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25		
Nitrogen (N2)	<	9.00	Vol%		<9.0	C		NA	5		
Hydrogen (H2)	2.38	0.18	Vol%		2.38			0.110	5		
Carbon Monoxide	124	90.0	ppmv		126			1.51	25		
a									_		

0.01

Carbon Monoxide

0.01

0.009

Vol%

5

1.51

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGE1066 - No Prep VO	C GC Air										

Duplicate (BGE1066-DUP5)		So	urce: 23E1343-04	Prepared & A	nalyzed: 05/26/202	3
Methane	398000	4500	ppmv	392000	1.46	25
Methane	39.8	0.45	Vol%	39.2	1.46	5
Carbon dioxide	458000	4500	ppmv	454000	1.03	25
Carbon dioxide	45.8	0.45	Vol%	45.4	1.03	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Hydrogen (H2)	42100	1800	ppmv	41500	1.30	25
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Hydrogen (H2)	4.21	0.18	Vol%	4.15	1.30	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5
Duplicate (BGE1066-DUP6)		So	urce: 23E1343-05	Prepared & A	nalyzed: 05/26/202	3
Methane	228000	4500	ppmv	228000	0.0785	25
Methane	22.8	0.45	Vol%	22.8	0.0785	5
Carbon dioxide	571000	4500	ppmv	567000	0.741	25
Carbon dioxide	57.1	0.45	Vol%	56.7	0.741	5
Oxygen (O2)	7460	4500	ppmv	7490	0.519	25
Oxygen (O2)	0.75	0.45	Vol%	0.75	0.519	5
Nitrogen (N2)	23400	18000	ppmv	23500	0.201	25
Hydrogen (H2)	107000	1800	ppmv	106000	0.608	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Carbon Monoxide	0.02	0.009	Vol%	0.02	1.23	5
Carbon Monoxide	221	90.0	ppmv	218	1.23	25
Duplicate (BGE1066-DUP7)		So	urce: 23E1343-06	Prepared & A	nalyzed: 05/26/202	3
Methane	7.52	0.45	Vol%	7.69	2.30	5
Methane	75200	4500	ppmv	76900	2.30	25
Carbon dioxide	51.0	0.45	Vol%	51.6	1.15	5
Carbon dioxide	510000	4500	ppmv	516000	1.15	25
Oxygen (O2)	4.89	0.45	Vol%	4.94	0.935	5
Oxygen (O2)	48900	4500	ppmv	49400	0.935	25
Nitrogen (N2)	17.6	9.00	Vol%	17.8	1.23	5
Hydrogen (H2)	98600	1800	ppmv	98900	0.217	25

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Applyto Devide Unite Unite Local	
Analyte Result Limit Units Level	el Result %REC Limits RPD Limit Qual

Batch BGE1066 - No Prep VOC GC Air

Duplicate (BGE1066-DUP7)		So	urce: 23E1343-06	Prepared & Ar	nalyzed: 05/26/20	23
Nitrogen (N2)	176000	18000	ppmv	178000	1.23	25
Carbon Monoxide	0.05	0.009	Vol%	0.05	0.784	5
Carbon Monoxide	469	90.0	ppmv	473	0.784	25
Duplicate (BGE1066-DUP8)		So	urce: 23E1343-07	Prepared & Ar	nalyzed: 05/26/20	23
Methane	11.1	0.45	Vol%	11.3	1.64	5
Methane	111000	4500	ppmv	113000	1.64	25
Carbon dioxide	39.2	0.45	Vol%	39.6	0.878	5
Carbon dioxide	392000	4500	ppmv	396000	0.878	25
Oxygen (O2)	2.65	0.45	Vol%	2.68	1.10	5
Oxygen (O2)	26500	4500	ppmv	26800	1.10	25
Hydrogen (H2)	65600	1800	ppmv	66300	1.05	25
Nitrogen (N2)	29.9	9.00	Vol%	30.1	0.877	5
Nitrogen (N2)	299000	18000	ppmv	301000	0.877	25
Carbon Monoxide	0.03	0.009	Vol%	0.03	2.96	5
Carbon Monoxide	335	90.0	ppmv	345	2.96	25

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Service 4330 Lewis Road	es - Harrisburg, PA , Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17	'111		
Submitted To:	Tom Lock		Project Number:	07223016.00
Client Site I.D.:	Bristol		Purchase Order:	07-SO04485
Code		Description	Laboratory ID	Expires
MdDOE		Maryland DE Drinking Water	341	12/31/2023
NC		North Carolina DENR	495	12/31/2023
NCDEQ		North Carolina DEQ	495	12/31/2023
NCDOH		North Carolina Department of Health	51714	07/31/2023
NYDOH		New York DOH Drinking Water	12069	04/01/2024
PADEP		NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC		South Carolina Dept of Health and Environme	ntal 93016	06/14/2023
TXCEQ		Texas Comm on Environmental Quality #T104	704 T104704576	05/31/2024
VELAP		NELAP-Virginia Certificate #12333	460021	06/14/2023
WVDEP		West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

- L LCS recovery is outside of established acceptance limits
- P Duplicate analysis does not meet the acceptance criteria for precision
- RPD Relative Percent Difference
- Qual Qualifers

- -RE Denotes sample was re-analyzed
- PF Preparation Factor
- MDL Method Detection Limit
- LOQ Limit of Quantitation
- ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

AIR ANALYSIS

1011	neny An, g	valer a s	ONLO	10010101	ies			CHAIN	OF CUS	TODY	E	quipm	ent due	e 6/22/20)23		Р	ag	э 1	of 3
COM	PANY NAME	: SCS Fiel	d Serv	ices - Harı	risbu	irg INVOI	CE TO:	Same			1	PROJ	ECT NAM	1E/Quote #	#: Bristo	ol				
CON	TACT:		e.	181		INVOI	CE CONT.	ACT:			4	SITE		RISTOL	4					
ADD	RESS:					INVOI	CE ADDR	ESS:		19		PROJ	ECT NUM	IBER: 👩	722301	6.00				
PHO	NE #:			3		INVOI	CE PHON	E #:				P.O. #								
FAX	#:			EN	AIL							Pretre	atment Pi	rogram:						
ls sar	mple for comp	oliance rep	orting?	ES NO)	Regulatory	State: γ	A Is	sample fro	m a chlori	nated sup	ply?	YES 🤇	NO PV	VS I.D. #:					
SAM	PLER NAME	(PRINT): (LOCA	- Cuch	LAN	SAMP	LER SIGN	IATURE:	St		-	Turn /		ime: Circ	1	5 Days)	or _	_ C	Day(s)
Matrix	Codes: AA=Indoo	or/Ambient Air	SG=Soi	I Gas LV=Lar	ndfill/	Vent Gas OT=Ot	ner					S	063	3-23E-001	7					
		Regulator	Info	Canister Ir	nform	nation			Sampling	Start Inform	nation		Sampling	Stop Inforn	nation		Codes)	ANA	ALY	SIS
	CLIENT						LAB	LAB	Barometric	: Pres. (in H	1	-	Barometri	c Pres. (in H				8		
	SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in ^{Hg)}	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (ir _{Hg)}	Starting Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in ^{Hg)}	Ending Sample Temp °F	Matrix (s	Alt 145 C	30	TO-15 Benzene onlv
1)	84	-		289	1.4	BC230515-01	30	5.0	5/23	G :43	30	5.11	5123	9:45	10	H.LLI		x		x
2)	86			307	1.4	BC230515-01	30	5.4	5173	9:52	30	6.941	5/23	9:55	10	149.6	LG	x	x	x
3)	90			10048	1.4	BC230515-01	30	4.6	5123	9:57	30	1.521	5123	10:00	D	0.531	LG	x	x	x
4)	100			11076	1.4	BC230515-01	30	5.2	5173	10:03	30	158.8	5123	10:05	10	L-851	LG	x	x	x
RELING	QUISHED:			1	REC	EIVED:	- 41 ⁻¹¹ -11	DAT	E / TIME	QC Data P	ackage LA			e, 310, 1	no jec	, no s	ec)			
			23 DAT	E / TIME 3:30 TE / TIME	REC	EIVED:	er G	DAT	TE / TIME	Level I Level II Level III			SCS Brist	1 697 NEWSTREES	Services	s 23	3E 1	134	3	
	Fe	Jex G			1	CerBul	<u> 5/24</u>	1/23 1	115	Level IV			Recd	: 05/24/2	2023 Di	1e: 06/		202		

ENTHALPY ANALYTICAL formerly Air, Water & Soil Laboratories

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

063-23E-0017

AIR ANALYSIS

form	ieny Air, y	valeras	ONLO	10010101	ies			CHAIN	OF CUS	TODY	Ed	quipm	ent due	6/22/20)23		F	'ag	e 2	2 of 3
COMP	ANY NAME	: SCS Field	d Servi	ces - Harri	sbu	rg INVO	CE TO:	Same			2	PROJ	ECT NAM	IE/Quote #	#: Bristo	ol				
CONT	ACT:		-			INVO	ICE CONT	ACT:				SITE		RISTOL						
ADDRE	ESS:					INVO	ICE ADDR	ESS:				PROJ	ECT NUN	IBER: o	122301	6.00				
PHON	E #:				24	INVO	ICE PHON	IE #:				P.O. #	ŧ:							
FAX #:				EM	1AIL							Pretre	atment Pr	ogram:						
ls sam	ple for comp	oliance rep	orting?	YES NO		Regulatory	State: 🗤	4 ls	sample fro	m a chlori	nated supp	oly?	YES 🚺	D PV	VS I.D. #:		8			
SAMPI	LER NAME	(PRINT): (CCA	r Cuci	Har	C SAMF	PLER SIG	NATURE:	Ge		-	Turn	Around T	ime: Cir	cle: 10 (5 Days	2	or		Day(s)
Matrix Co	odes: AA=Indoo	or/Ambient Air	SG=Soi	Gas LV=Lan	dfill/\	/ent Gas OT=Ot	her						063	3-23E-001	7					
		Regulator	Info	Canister In	form	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	nation		Codes)	AN,	ALY	YSIS
	CLIENT						LAB	LAB	Barometric	Pres. (in Ho	T	T	Barometric	c Pres. (in H	1	1	ee Co	0		-
s	SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in ^{Hg)}	Receiving Canister Vacuum (in ^{Hg)}	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in ^{Hg)}	Starting Sample Temp *F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in ^{Hg)}	Ending Sample Temp °F	Matrix (s	Alt 145 C	зс	TO-15 Benzene only
1)	54			11299	1.4	BC230515-01	30	5.0	5/23	10:19	S	153.2	5/23	10:22	10	2:251		x		x
2)	SIR			11303	1.4	BC230515-01	30	5.8	5123	10:34	30	183.9	5173	10:38	P	183.5	LG	x	x	x
3)	37			12662	1.4	BC230515-01	30	5.6	5123	10:41	30	9.8L1	513	10:43	10	9.811	LG	x	x	x
4)	20 Servers			13382	1.4	BC230515-01	30										LG	x	x	x
			1					1				S. U.S.		20.30	- 310 .v	ng ice	C, 1	NO.	Sec.	1
RELINQU	JISHED: JISHED:	- 5 m elex G	3 DA	TE / TIME	REC	EIVED: EIVED: Fedex EIVED: Current	G- - 5/24	DA1 DA1	TE / TIME TE / TIME TE / TIME (1 S	QC Data F Level I Level II Level III Level IV	Package L	SCS Brist	EONLY Field S ol : 05/24/2	ervices	23E	1343	_		2	
																ł	F	2age	e 21	1 of 23

ENTHALPY ANALYTICAL 1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

AIR ANALYSIS

formerly Alt,	water a s	ONLO	10010101	ies				CHAIN	OF CUS	TODY	Ec	quipm	ient due	6/22/20	23		F	'ag	e 3	of 3
COMPANY NAME	E: SCS Field	d Servi	ces - Harri	sbu	rg IN	VOICE TO	D:	Same				PROJ	ECT NAM	E/Quote #	#: Bristo)				
CONTACT:					IN	VOICE C	ONT	ACT:			4	SITE	NAME: 🔥	RISTOL	-					
ADDRESS:					IN	VOICE AI	DDR	ESS:				PROJ	ECT NUM	IBER: o	722301	6.00				
PHONE #:					IN	VOICE PI	HON	E #:				P.O. #	ŧ:							
FAX #:			EN	1AIL								Pretre	atment Pr	ogram:						
Is sample for com	pliance rep	orting?	YES NO	1	Regulat	ory State	V	A Is :	sample fro	m a chlorii	nated supp	oly?	YES 🚺	IO PV	VS I.D. #:					
SAMPLER NAME	(PRINT):	LOGA	the Cul	1+	Are SA	AMPLER	SIGN	NATURE:	4	<u></u>		Turn	Around T	ime: Circ	:le: 10 🤇	5 Days	\sum	or .	_ 1	Day(s)
Matrix Codes: AA=Indo	or/Ambient Air	SG=Soi	Gas LV=Lan	dfill/	Vent Gas O	T=Other			0				063	3-23E-001	7					
	Regulator	Info	Canister In	nforn	nation	r			Sampling S	Start Inform	ation		Sampling	Stop Inform	ation		des)	AN/	ALY	'SIS
CLIENT						LA		LAB	Barometric	Pres. (in Hg			Barometric	Pres. (in H	Ĩ		ee Co	0		
SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Bat	Outgo Canis Vacuu Ich ID Hg	ster m (in	Receiving Canister Vacuum (in ^{Hg})	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in ^{Hg)}	Starting Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in ^{Hg)}	Ending Sample Temp *F	Matrix (See Codes)	Alt 145 CO	3C	TO-15 Benzene only
1) 1)			13960	1.4	BC230515	5-01 3(D										LG	x	x	x
2) 2 5			14292	1.4	BC230515	5-01 3(D										LG	x	x	x
3)																				
4)					à															
													26).30e,3	10, 10	ice, v	16 5	ec.	1	
RELINQUISHED:				REC	CEIVED:			DAT	E / TIME	QC Data P		BUSE	ONLY							
RELINQUISHED:	sng oder G	5	TE / TIME 3:30 TE / TIME	2012/07/07		Feder But s	G		те / тіме те / тіме	Level I Level II Level III Level IV		Bris	tol	Service		1343				
1.6	ver b				in	w- 5	61	167 111		Leventy		Rec	d: 05/24/	2023 D	ue: 06/01					
															v	130325002) and	22	2 of 23

063-23E-0017

Certificate of Analysis

Final Report

Laboratory Order ID 23E1343

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	May 24, 2023 11:15 June 1, 2023 16:58
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

Solid Waste Permit 588 Daily Borehole Temperature Averages

May 2023

02218208.05 | June 8, 2023

15521 Midlothian Turnpike Midlothian, VA 23113 804-378-7440

			Depth fro	om Surface		
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft
1-May	205.6	206.0	206.0	206.0	208.8	251.0
2-May	205.9	206.5	206.6	206.5	209.4	251.0
3-May	206.0	206.4	206.4	206.4	209.3	250.4
4-May	206.7	207.1	207.1	207.1	210.1	250.8
5-May	207.0	207.7	207.8	207.7	210.7	250.8
6-May	207.2	208.0	208.0	207.9	210.7	250.9
7-May	206.8	207.5	207.5	207.5	210.4	250.9
8-May	206.8	207.5	207.5	207.5	210.4	251.2
9-May	207.0	207.5	207.7	207.6	210.7	251.3
10-May	207.2	207.8	208.0	208.0	211.6	251.2
11-May	207.3	208.0	208.0	208.0	211.5	251.1
12-May	207.3	208.0	208.3	208.2	211.6	250.6
13-May	207.3	208.1	208.1	208.1	211.3	250.4
14-May	207.5	208.4	208.4	208.4	211.6	250.4
15-May	207.3	208.0	208.1	208.1	211.1	250.0
16-May	206.8	207.5	207.7	207.8	210.5	249.3
17-May	206.6	207.4	207.5	207.5	210.0	249.4
18-May	206.8	207.5	207.8	207.7	210.3	249.4
19-May	207.0	207.8	208.1	207.9	211.9	249.7
20-May	206.5	207.5	207.6	207.6	212.5	249.3
21-May	206.6	207.6	207.8	207.7	213.1	249.5
22-May	206.8	207.8	208.0	207.9	213.9	249.1
23-May	206.7	207.6	207.8	207.8	214.2	248.8
24-May	206.6	207.5	207.7	207.7	215.0	248.9
25-May	206.6	207.5	207.6	207.7	215.3	248.5
26-May	206.7	207.8	208.0	208.1	216.0	247.5
27-May	206.3	207.4	207.5	207.5	216.4	247.3
28-May	206.0	207.0	207.0	207.0	216.4	247.1
29-May	206.1	207.2	207.3	207.3	217.8	248.1
30-May	205.6	207.6	207.7	207.8	218.8	248.8
31-May	205.2	207.6	207.9	208.0	219.3	249.4
Average	206.6	207.5	207.6	207.6	212.6	249.7

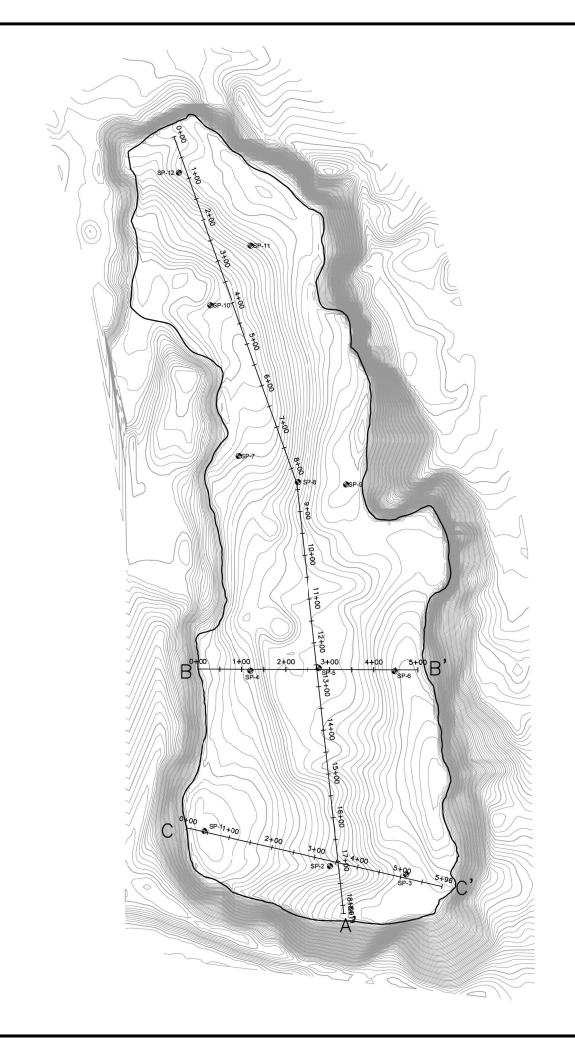
			Depth fro	m Surface		
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft
1-May	155.5	239.7	240.2	267.6	255.7	268.4
2-May	155.7	239.5	240.0	267.5	255.6	268.5
3-May	155.8	239.8	240.3	267.7	255.8	268.5
4-May	155.8	240.0	240.3	268.0	256.1	268.8
5-May	155.7	240.1	240.7	267.9	256.3	268.8
6-May	155.6	240.2	240.6	268.1	256.3	268.9
7-May	155.5	239.7	240.2	267.7	255.7	268.6
8-May	155.6	239.6	240.2	267.8	256.0	268.7
9-May	155.5	239.5	240.0	268.1	256.3	269.0
10-May	155.7	240.0	240.2	268.2	256.6	268.9
11-May	156.1	240.0	240.2	268.5	256.8	269.2
12-May	156.0	239.7	240.3	268.3	256.4	269.0
13-May	156.3	239.6	239.9	268.3	256.3	269.0
14-May	156.6	240.0	240.3	268.4	256.4	269.2
15-May	156.2	239.4	239.7	268.0	256.1	268.8
16-May	156.3	239.0	239.5	268.1	256.2	268.9
17-May	156.7	239.2	239.7	268.2	256.4	268.9
18-May	157.0	239.4	239.7	268.1	256.3	268.7
19-May	157.1	239.4	239.9	268.2	256.4	268.7
20-May	157.0	239.0	239.4	267.9	256.1	268.5
21-May	157.3	239.4	239.9	268.1	256.4	268.6
22-May	157.1	238.9	239.5	268.3	256.3	268.7
23-May	157.3	239.3	239.8	268.0	256.1	268.6
24-May	157.0	238.8	239.0	267.9	256.0	268.7
25-May	157.3	239.0	239.5	268.0	256.0	268.7
26-May	157.4	239.1	239.5	268.3	256.3	268.5
27-May	157.3	238.7	239.1	267.6	255.8	268.2
28-May	157.1	238.5	239.0	267.3	255.9	268.0
29-May	158.2	239.0	239.6	268.1	256.2	268.3
30-May	158.6	239.3	239.5	268.2	256.4	268.6
31-May	158.2	239.2	239.8	268.3	256.5	268.5
Average	156.6	239.4	239.9	268.0	256.2	268.7

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-May	205.7	205.9	206.5	252.2	263.5	269.3	270.4	253.2
2-May	206.1	206.3	206.8	252.5	264.0	269.8	270.8	253.3
3-May	206.5	206.5	207.0	252.8	264.1	269.9	270.9	252.5
4-May	206.8	206.8	207.6	252.5	263.8	269.8	270.7	249.8
5-May	206.9	206.9	208.1	248.5	264.1	269.8	270.6	248.5
6-May	207.0	207.1	208.5	247.8	264.1	269.8	270.8	249.0
7-May	206.7	206.8	208.2	251.8	263.8	269.4	270.4	248.8
8-May	206.4	206.6	208.1	252.3	263.7	269.4	270.3	249.0
9-May	207.1	207.3	208.2	249.5	264.3	270.0	271.1	249.3
10-May	207.4	207.8	208.2	253.0	264.7	270.3	271.4	249.5
11-May	207.7	208.0	208.7	253.6	264.8	270.5	271.6	249.7
12-May	207.7	207.9	208.5	253.7	264.8	270.7	271.6	249.5
13-May	208.1	208.6	208.4	254.2	265.0	271.3	271.9	249.0
14-May	207.9	208.3	208.4	253.8	264.9	270.8	271.7	249.0
15-May	207.5	207.7	208.3	253.1	264.3	270.1	271.2	249.0
16-May	207.2	207.3	208.0	248.9	264.5	270.3	271.2	248.6
17-May	207.3	208.8	208.9	248.0	264.6	270.5	271.7	248.7
18-May	207.8	218.5	217.8	253.9	264.8	270.8	271.7	248.8
19-May	208.0	208.3	208.3	254.1	265.0	271.2	272.0	248.8
20-May	207.9	208.0	207.9	254.0	264.7	271.0	271.7	248.8
21-May	207.8	208.0	208.0	254.0	264.8	271.1	271.8	249.4
22-May	207.7	208.0	208.3	253.7	264.9	271.0	271.6	250.0
23-May	208.0	233.3	232.8	254.2	265.0	271.2	271.9	251.1
24-May	207.6	234.5	233.0	254.0	264.8	271.0	271.8	251.9
25-May	207.7	208.7	230.2	253.9	264.8	271.0	271.8	252.7
26-May	208.1	208.4	222.0	253.7	264.6	270.9	271.6	253.1
27-May	207.5	208.0	207.9	253.4	264.4	270.4	271.4	252.8
28-May	206.9	207.3	207.1	242.1	264.0	270.0	271.1	253.0
29-May	207.5	207.4	207.5	218.6	264.3	270.4	271.4	253.3
30-May	207.6	207.6	207.9	237.3	264.3	270.7	271.4	253.5
31-May	207.5	207.5	208.3	250.8	264.1	270.2	271.2	253.8
Average	207.3	209.6	211.1	250.5	264.4	270.4	271.3	250.6

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-May	206.0	206.0	206.0	206.3	206.4	206.6	236.7	173.6
2-May	206.5	206.3	206.3	206.5	206.9	206.8	244.4	173.8
3-May	206.5	206.4	206.5	206.5	207.0	207.2	242.9	173.9
4-May	207.0	206.9	207.0	207.0	207.5	207.5	225.2	174.2
5-May	207.5	207.3	207.5	207.5	208.3	208.0	242.5	174.6
6-May	207.9	207.7	207.7	207.7	209.3	208.3	245.0	175.0
7-May	207.6	207.4	207.4	207.5	209.6	207.8	244.8	174.8
8-May	207.5	207.4	207.5	207.4	209.0	207.9	245.3	174.8
9-May	207.6	207.4	207.3	207.5	208.5	208.4	245.2	175.0
10-May	207.7	207.5	207.6	207.6	208.4	209.2	245.0	175.1
11-May	208.0	207.8	207.9	207.6	209.5	209.3	245.4	176.2
12-May	208.2	207.8	207.6	207.4	209.7	208.8	245.4	178.8
13-May	208.1	207.7	207.9	207.5	208.6	208.8	245.5	178.4
14-May	208.3	208.0	208.2	207.8	209.6	207.8	241.4	178.0
15-May	208.0	207.8	207.7	207.4	209.1	207.8	220.9	178.2
16-May	207.5	207.3	207.3	206.9	209.3	208.0	212.8	179.0
17-May	207.5	207.3	207.4	207.3	209.0	206.7	208.4	178.5
18-May	207.6	207.4	207.5	207.6	208.2	206.8	208.5	178.6
19-May	207.7	207.5	207.6	208.6	208.3	206.5	208.8	178.6
20-May	207.5	207.3	207.4	207.2	208.0	206.0	208.5	179.7
21-May	207.5	207.5	207.6	207.2	208.4	205.9	208.7	180.2
22-May	207.7	207.6	207.7	207.1	209.1	206.2	218.3	180.2
23-May	207.6	207.5	207.7	207.3	208.3	206.6	240.3	179.9
24-May	207.5	207.4	207.6	207.0	208.1	206.7	242.1	180.0
25-May	207.5	207.5	207.5	208.0	207.9	206.2	242.9	178.8
26-May	207.7	207.5	207.5	208.8	208.0	206.0	235.0	179.0
27-May	207.5	207.4	207.4	207.6	207.9	206.0	242.8	180.4
28-May	207.0	207.0	207.0	205.2	207.8	206.3	209.5	182.3
29-May	207.3	207.3	207.3	206.4	208.1	206.5	219.4	180.6
30-May	207.6	207.5	207.6	207.3	208.3	212.1	239.7	181.3
31-May	207.6	207.6	207.6	207.1	214.8	228.9	241.8	181.8
Average	207.5	207.3	207.4	207.3	208.6	208.1	232.4	177.8

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-May	141.0	206.0	206.0	206.4	224.7	239.5	247.3	190.8
2-May	141.0	206.4	206.5	206.8	225.1	239.7	247.5	191.0
3-May	141.1	206.5	206.7	206.9	225.4	239.9	247.5	191.1
4-May	140.9	207.0	207.1	207.6	225.7	240.1	247.7	191.0
5-May	141.3	207.5	207.6	207.8	226.0	240.6	247.8	191.5
6-May	141.3	207.7	207.8	208.0	226.0	240.6	247.8	191.5
7-May	141.0	207.5	207.5	207.8	226.1	240.5	247.6	191.4
8-May	141.1	207.5	207.5	207.8	226.5	240.7	247.6	191.4
9-May	141.1	207.4	207.4	207.9	226.5	241.0	248.0	191.5
10-May	141.0	207.6	207.6	207.9	226.7	241.1	247.9	191.5
11-May	141.3	207.7	207.8	208.2	226.9	241.4	248.0	191.6
12-May	141.3	207.6	207.9	208.3	226.2	240.4	247.8	191.6
13-May	141.0	207.7	207.9	208.2	226.3	240.3	247.8	191.5
14-May	141.1	207.8	208.1	208.2	226.5	240.3	247.7	191.7
15-May	141.0	207.8	208.0	208.1	226.2	240.1	247.4	191.4
16-May	140.9	207.3	207.3	207.8	226.2	240.1	247.5	191.6
17-May	140.7	207.3	207.3	207.5	225.8	239.8	247.5	191.6
18-May	140.3	207.5	207.5	207.8	225.8	239.5	247.3	191.5
19-May	139.2	207.6	207.7	208.1	226.0	239.6	247.3	191.6
20-May	139.0	207.3	207.4	207.9	226.0	239.8	247.1	191.5
21-May	139.7	207.5	207.6	207.9	226.3	240.0	247.3	191.6
22-May	140.6	207.5	207.7	208.1	226.4	240.1	247.3	191.7
23-May	141.4	207.6	207.7	208.1	226.3	240.2	247.3	191.6
24-May	142.9	207.5	207.5	207.8	226.5	240.3	247.4	191.8
25-May	144.5	207.5	207.6	207.8	226.4	240.3	247.3	191.8
26-May	146.2	207.5	207.8	208.2	226.6	240.3	247.2	191.8
27-May	147.7	207.4	207.5	208.0	226.3	240.0	247.0	191.4
28-May	148.8	207.0	207.0	207.4	226.8	240.2	247.0	191.0
29-May	149.9	207.3	207.2	207.5	227.4	241.3	247.2	191.5
30-May	151.0	207.5	207.5	207.9	227.8	241.8	247.4	191.8
31-May	151.5	207.5	207.6	208.1	228.2	241.9	247.3	191.8
Average	142.6	207.4	207.5	207.8	226.3	240.4	247.5	191.5

		Dept	th from Su	rface	
Date	25 ft	50 ft	75 ft	100 ft	125 ft
1-May	207.0	235.0	235.0	237.2	238.3
2-May	207.4	235.4	235.4	237.4	238.4
3-May	207.5	235.3	235.3	237.3	238.5
4-May	207.9	235.3	235.4	237.4	238.5
5-May	208.5	235.5	235.5	237.3	238.5
6-May	208.8	235.5	235.5	237.5	238.5
7-May	208.6	235.2	235.3	237.2	238.1
8-May	208.6	235.3	235.4	237.3	238.1
9-May	208.7	235.4	235.4	237.4	238.3
10-May	208.5	235.4	235.4	237.4	238.5
11-May	208.5	235.4	235.5	237.4	238.5
12-May	208.3	235.3	235.3	237.3	238.4
13-May	208.3	235.2	235.2	237.0	238.1
14-May	208.4	235.3	235.3	236.9	238.2
15-May	208.0	235.0	235.0	236.5	238.0
16-May	208.2	235.0	235.0	236.4	238.0
17-May	201.3	234.7	235.0	236.5	237.8
18-May	183.5	234.8	235.0	236.5	237.8
19-May	179.4	234.8	235.2	236.5	237.9
20-May	177.6	234.8	235.0	236.3	237.7
21-May	177.6	234.5	234.7	236.5	237.6
22-May	177.0	234.5	234.8	236.5	237.7
23-May	175.8	234.5	234.7	236.4	237.5
24-May	175.7	234.6	234.8	236.5	237.6
25-May	175.9	234.5	234.8	236.4	237.6
26-May	176.2	234.6	234.9	236.4	237.5
27-May	175.6	234.3	234.4	236.0	237.3
28-May	188.6	234.0	234.0	236.0	237.0
29-May	207.2	234.3	234.3	236.0	237.0
30-May	207.4	234.4	234.4	236.2	237.0
31-May	207.7	234.6	234.7	236.1	237.0
Average	197.3	234.9	235.0	236.8	237.9

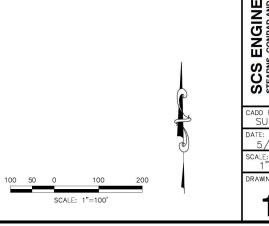

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-May	162.7	209.5	209.5	240.1	244.7	241.2	232.7	219.4
2-May	163.0	220.4	220.5	240.3	244.9	241.5	233.1	220.0
3-May	163.3	219.9	220.3	240.3	244.7	241.6	233.3	220.5
4-May	163.0	223.4	223.9	240.3	244.8	241.9	233.6	220.6
5-May	162.8	219.3	219.7	240.5	245.0	241.9	233.7	220.8
6-May	162.8	214.3	214.6	240.8	245.2	241.8	233.8	220.3
7-May	162.8	223.1	223.7	240.5	244.9	241.7	233.4	220.2
8-May	163.0	224.5	224.6	240.7	245.2	242.0	233.6	220.2
9-May	163.0	225.3	225.5	241.1	245.3	242.0	233.4	220.3
10-May	162.6	225.7	225.9	240.7	245.1	242.0	233.7	220.2
11-May	162.8	226.0	226.2	240.8	245.2	242.1	233.9	220.3
12-May	162.6	225.3	225.7	240.7	245.2	242.3	233.9	220.3
13-May	162.4	224.5	225.0	240.6	245.2	242.3	234.5	220.6
14-May	162.5	224.1	224.5	240.5	245.3	242.4	234.5	220.8
15-May	162.3	224.1	224.3	240.3	245.0	242.1	234.2	220.4
16-May	162.3	224.1	224.2	240.3	245.0	242.3	234.2	220.5
17-May	162.1	223.8	223.8	240.3	244.9	242.2	234.3	220.3
18-May	162.0	223.1	223.3	240.0	244.9	241.9	234.0	219.8
19-May	162.5	220.0	220.4	239.9	245.1	241.8	233.5	218.8
20-May	162.3	217.3	217.8	240.3	244.5	241.5	233.2	218.2
21-May	162.8	222.3	222.9	240.4	244.6	241.7	233.5	218.5
22-May	162.4	223.1	223.4	240.3	244.5	241.6	233.5	218.5
23-May	162.5	223.2	223.5	240.4	244.5	241.6	233.4	218.4
24-May	162.4	221.5	221.7	239.8	244.5	241.7	233.2	218.2
25-May	162.4	218.6	219.2	239.9	244.4	241.5	232.8	217.5
26-May	162.0	220.0	220.5	240.2	244.3	241.3	232.7	217.3
27-May	161.6	213.0	213.3	239.8	243.9	240.8	232.0	216.5
28-May	160.8	206.0	206.5	236.8	243.7	241.0	232.1	217.0
29-May	160.7	211.1	211.3	236.9	243.7	241.3	232.5	217.9
30-May	161.0	211.5	212.0	237.4	244.1	241.3	232.3	217.1
31-May	161.8	210.1	210.3	237.6	244.0	240.9	231.6	216.3
Average	162.4	219.9	220.3	240.0	244.7	241.7	233.4	219.2

[Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-May	174.0	177.0	177.0	177.0	178.8	182.0	182.1	177.3
2-May	174.6	177.1	177.2	177.1	178.8	182.0	182.3	177.6
3-May	174.6	177.2	177.3	177.3	178.9	182.2	182.3	177.5
4-May	174.8	177.4	177.5	177.3	178.9	182.3	182.5	177.9
5-May	175.2	177.6	177.7	177.4	179.5	182.6	182.6	177.8
6-May	175.4	177.9	177.9	177.8	179.7	182.7	182.8	178.1
7-May	175.0	177.8	177.9	177.8	179.3	182.5	182.6	178.1
8-May	175.0	177.9	178.0	177.9	179.5	182.6	182.6	178.4
9-May	174.5	178.1	178.2	178.0	179.6	182.7	183.0	178.9
10-May	175.1	177.9	178.0	177.9	179.8	182.8	182.8	178.6
11-May	175.4	178.3	178.2	178.2	180.1	183.0	182.9	178.9
12-May	175.1	178.5	178.5	178.7	180.6	183.3	183.3	179.1
13-May	175.8	178.8	178.7	179.1	181.2	183.6	183.3	179.5
14-May	176.3	179.0	179.0	179.2	181.4	184.0	183.5	180.0
15-May	176.3	179.0	179.0	179.6	181.8	184.0	183.7	180.3
16-May	176.3	179.3	179.3	180.3	182.3	184.7	184.1	180.4
17-May	176.4	179.4	179.4	180.5	183.0	185.1	184.3	180.5
18-May	176.4	179.5	179.5	180.8	183.8	185.5	184.3	180.6
19-May	176.2	179.8	179.7	181.2	183.9	185.7	184.4	180.8
20-May	176.3	180.0	180.0	181.3	184.2	186.0	184.7	180.8
21-May	176.1	180.3	180.2	181.6	184.7	186.3	184.8	180.7
22-May	176.5	180.5	180.4	181.7	184.9	186.5	185.0	180.9
23-May	176.8	180.6	180.5	182.3	185.5	186.8	185.4	181.1
24-May	176.8	180.5	180.5	182.4	185.5	186.9	185.3	181.1
25-May	177.2	180.8	180.8	182.8	185.8	187.4	185.6	181.3
26-May	176.6	181.2	181.0	183.3	186.3	187.4	185.5	181.2
27-May	176.1	181.1	180.9	183.4	186.4	187.4	185.4	181.1
28-May	176.0	181.0	181.0	183.1	186.0	187.5	185.5	181.0
29-May	176.6	181.2	181.1	183.6	186.5	188.0	186.0	181.1
30-May	177.1	181.5	181.4	184.1	187.2	188.3	186.2	181.4
31-May	177.0	181.6	181.6	184.2	187.5	188.4	186.1	181.4
Average	175.9	179.3	179.3	180.2	182.6	184.8	184.0	179.8

				Depth fro	om Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-May	123.3	150.2	149.5	152.0	149.0	132.0	118.7	107.3
2-May	123.8	150.7	149.8	152.5	149.2	132.3	118.8	107.7
3-May	123.6	150.5	149.9	152.5	149.3	132.3	118.9	107.7
4-May	124.0	151.1	150.3	152.7	149.2	132.3	119.0	107.8
5-May	124.3	151.5	151.0	153.0	149.4	132.6	119.3	108.0
6-May	124.3	151.8	151.0	153.1	149.6	132.7	119.5	108.2
7-May	124.2	151.4	150.7	152.8	149.4	132.3	119.2	107.9
8-May	124.4	151.5	150.7	153.2	149.6	132.5	119.4	108.2
9-May	124.5	151.6	151.1	153.4	149.6	132.7	119.6	108.4
10-May	124.7	152.0	151.3	153.3	149.8	132.8	119.8	108.3
11-May	124.9	152.1	151.3	153.7	150.0	133.1	119.9	108.5
12-May	124.5	152.1	151.4	153.3	149.7	132.7	119.6	108.3
13-May	124.5	152.3	151.4	153.4	149.8	132.8	119.6	108.4
14-May	124.6	152.4	151.5	153.5	149.7	133.0	119.6	108.5
15-May	124.3	152.1	151.4	153.4	149.4	132.5	119.4	108.2
16-May	124.3	152.0	151.1	153.3	149.5	132.6	119.4	108.2
17-May	124.2	151.6	151.0	153.3	149.6	132.6	119.6	108.1
18-May	124.1	152.0	151.2	153.2	149.6	132.7	119.6	107.7
19-May	124.4	152.5	151.8	153.6	149.6	132.8	119.6	107.8
20-May	123.9	152.1	151.5	153.2	149.2	132.4	119.2	107.6
21-May	124.2	152.3	151.6	153.4	149.4	132.7	119.6	107.9
22-May	124.2	152.5	151.8	153.5	149.5	132.7	119.7	108.2
23-May	124.0	152.5	151.6	153.5	149.5	132.7	119.5	108.0
24-May	124.0	152.4	151.6	153.5	149.4	132.7	119.7	107.9
25-May	124.2	152.2	151.5	153.4	149.4	132.7	119.6	108.1
26-May	124.2	152.5	151.7	153.5	149.6	132.7	119.7	107.9
27-May	123.6	151.8	151.3	153.0	149.3	132.4	119.3	107.5
28-May	123.0	151.3	151.0	152.9	148.9	132.0	119.0	107.0
29-May	123.5	151.7	151.2	153.3	149.4	132.3	119.3	107.6
30-May	124.0	152.4	151.7	153.5	149.6	132.7	119.6	108.0
31-May	124.0	152.5	151.8	153.5	149.6	132.8	119.5	108.0
Average	124.1	151.9	151.2	153.2	149.5	132.6	119.4	108.0

Appendix E

Monthly Topography Analysis

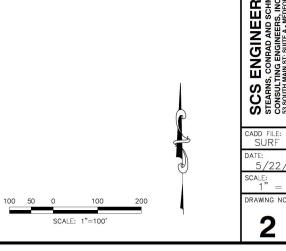

NOTES:

MAJOR CONTOURS (EVERY 10')

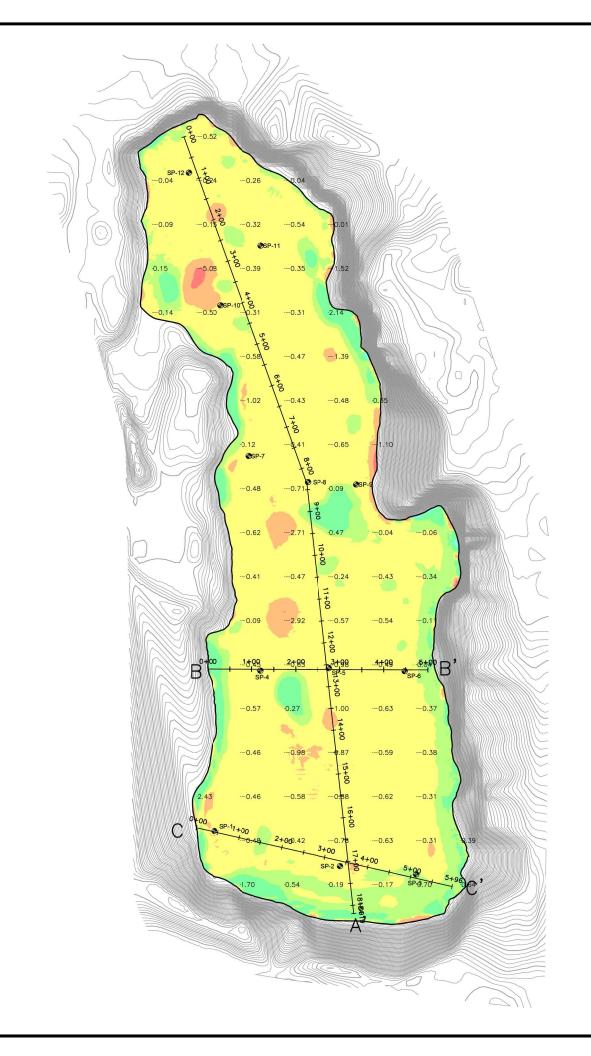
MINOR CONTOURS (EVERY 2')

APPROXIMATE SIDEWALL LOCATION

GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENTS THE TOPOGRAPHY CAPTURED ON APRIL 11, 2023 BY SCS ENGINEERS.
 ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
 THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
 THE VERTICAL DATUM IS BASED UPON NAVD-88.

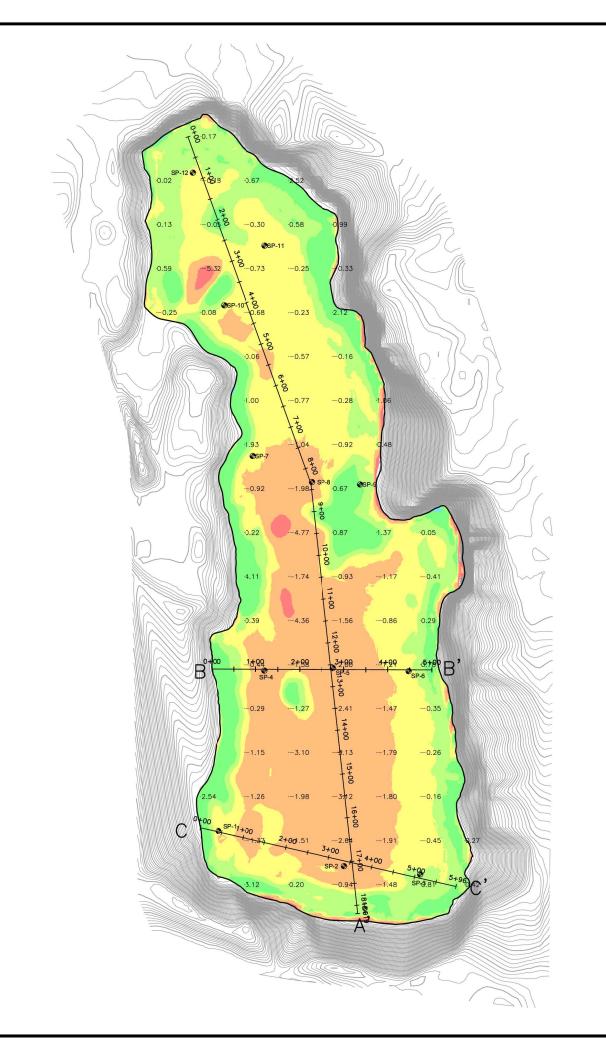

<u>LEGEND</u> MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2') APPROXIMATE SIDEWALL LOCATION


SP-9

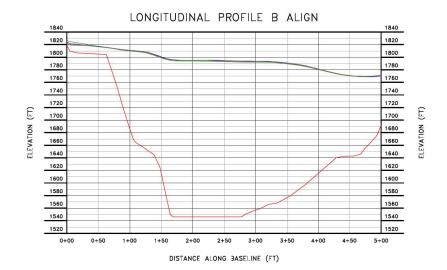

NOTES:

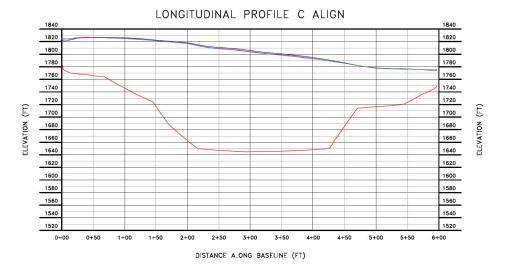
SETTLEMENT PLATE

GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENTS THE TOPOGRAPHY CAPTURED ON MAY 11, 2023 BY SCS ENGINEERS.
 ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
 THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
 THE VERTICAL DATUM IS BASED UPON NAVD-88.



	LEGEND			
	MAJOR CONTOURS (EVERY 10')			
	MINOR CONTOURS (EVERY 2')			1 1
	APPROXIMATE SIDEWALL LOCATION	DATE		
SP-9	SETTLEMENT PLATE			
-0.39	SPOT ELEVATION ON 100' GRID	NO		
	surface TOPO - APRIL 11, 2023 parison Surface TOPO - MAY 11, 2023	REVISION		
	Volume 13218.59 Cu. Yd. /olume 4948.99 Cu. Yd. Cut 8269.60 Cu. Yd.	NO.		
Eleva imum Elevation -10.000 -5.000 0.000 1.000 5.000	Color -5.000 I -1.000 I 0.000 I 1.000 I 5.000 I 10.000 I 10.000 I	SHEET TITLE MAY VOLUME CHANGE APRIL 2023 TO MAY 2023	PROJECT TITLE MONTHLY TOPOGRAPHY ANALYSIS	SOLID WASTE PERMIT #588
CAPTURED C (+) INDICATE (SETTLEMENT ANY DETERM IMPROVEMEN AND SHALL IMPROVEMEN THE HORIZON	DN CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA N APRIL, 11 2023 AND MAY 11, 2023 BY SCS ENGINEERS. POSITIVE VALUES AREAS OF FILL AND NEGATIVE VALUES (-) NDICATE AREAS OF CUT). VALUES ARE ROUNDED TO THE NEAREST FOOT INATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION. ITAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011) L DATUM IS BASED UPON NAVD-88.	CLIENT CITY OF BRISTOL INTEGRATED SOLID .	WASTE MANAGEMENT FACILITY	
			CONSULTING ENGINEERS, INC 53 SOUTH MAIN ST; SUITE A - MEDFOR PH. (609) 654-4000 SCSENGINEERS.C	DOL NOL NOL NOL BY: 02218208.05 UWL BY: DBN BY: DSN BY: SRB CJW APP. BY: CJW CJW
		CADD FI SUR DATE:	RF CON	
		5/2 scale: 1"	<u>22/202</u> = 100	
	100 50 0 100 200	DRAWING		
	SCALE: 1"=100'	3	of	5


		LEGEND MAJOR CON	tours (ever	Y 10')				
		MINOR CON	IOURS (EVER)	Y 2')				
		APPROXIMA	TE SIDEWALL	LOCATION			DATE	
	🕑 SP-9	SETTLEMENT	PLATE					
	-0.39	SPOT ELEVA	TION ON 100	' GRID			z	
	Volume						REVISION	
	Base		TOPO - ace TOPO -					
		Volume Glume Cut	4948.99	9 Cu. Yd. 9 Cu. Yd. 9 Cu. Yd.			N N	SIS DO
		000	0200.00				IGE 2023	MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588
Number		ons Table Maximum Elevation	Color				MAY VOLUME CHANGE APRIL 2023 TO MAY 2023	Y Ar IT #
Number 1	-10.000	-5.000					A C V	RAPHY / PERMIT
2	-5.000	-1.000					123 T	PE
3	-1.000	0.000					2 2	THLY TOPOGI SOLID WASTE
4	0.000	1.000					PRIL	0P(
	1.000	5.000						μų
-	CAPTURED ON (+) INDICATE (SETTLEMENT) 2. ANY DETERMIN IMPROVEMENT AND SHALL N IMPROVEMENT 3. THE HORIZON	APRIL, 11 2023 A AREAS OF FILL AN . VALUES ARE ROU NATION OF TOPOGR S, PROPERTY LINES OT BE USED FOR I S TO REAL PROPER	ID NEGATIVE VALUES INDED TO THE NEAR APHY OR CONTOURS (; OR BOUNDARIES I DESIGN, MODIFICATIO RTY OR FOR FLOOD TE PLANE VIRGINIA	BY SCS ENGINEER 5 (-) NDICATE A 12EST FDOT 5, OR ANY DEPIC 5 FOR GENERAL N, OR CONSTRUC PLAIN DETERMINA	S. POSITIVE VALUES REAS OF CUT TION OF PHYSICAL NFORMATION ONLY TION OF TION.			WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201
							CADD FILE SURF DATE: 5/22 SCALE:	Image: Constraint of the
				100 50 0 SCALE:	100 200 1"=100'	Ą	DRAWING	



	LEGEND				
	MAJOR CONTOURS (EVERY 10')			
	MINOR CONTOURS (8	EVERY 2')			
	APPROXIMATE SIDEW	ALL LOCATION		DATE	
SP-9	SETTLEMENT PLATE				
.39	SPOT ELEVATION ON	100' GRID		N	
	e Surface TOF nparison Surface TOF			REVISION	
Fill	Volume 25222.4 Volume 10518.5 Cut 14703.9	5 Cu. Yd.		3E NO. - 2023	MEET TITLE MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588
	Elevat	tions Table		CHANC	Y AN IIT #5
iber	Minimum Elevation	Maximum Elevation	Color	MAY VOLUME CHANGE JANUARY 2023 TO APRIL 2023	™E THLY TOPOGRAPHY / SOLID WASTE PERMIT
	-10.000	-5.000		VY VOL	POGF
)	-5.000	-1.000		MANU	Y TO
5	-1.000	0.000		E	
	0.000	1.000		SHEET TITLE	PROJECT TITLE MONTH SO
)	1.000	5.000			
5	5.000	10.000			
CAP VALI CUT 2. ANY IMPF AND IMPF 3. THE	TURED ON JANUARY 10, 2023 AN JES (+) INDICATE AREAS OF FILL (SETTLEMENT). VALUES ARE ROU DETERMINATION OF TOPOGRAPHY ROVEMENTS, PROPERTY LINES, OR SHALL NOT BE USED FOR DESIGI ROVEMENTS TO REAL PROPERTY O	OR CONTOURS, OR ANY DEPICTION BOUNDARIES IS FOR GENERAL INF N, MODIFICATION, OR CONSTRUCTIO R FOR FLOOD PLAIN DETERMINATIO ANE VIRGINIA SOUTH ZONE NAD-8	RS. POSITIVE ATE AREAS OF N OF PHYSICAL DRMATION ONLY N OF N.	CLENT CITY OF BDISTOL INTEGDATE	WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201
		100 50 0 SCALE: 1"	100 200	CADD F SUI DATE: 5/ SCALE: 1 DRAWN	^{₹80} RF COMP 22/2023 = 100'

REVISION DATE			EVERY 2') Vall location	LEGEND MAJOR CONTOURS (MINOR CONTOURS (APPROXIMATE SIDEW SETTLEMENT PLATE SPOT ELEVATION ON	 SP-9 -0.39 Volume
			PO – MAY 11, 2023 6 Cu. Yd. 5 Cu. Yd.	se Surface TOF nparison Surface TOF Volume 25222.4 Volume 10518.55 Cut 14703.9	Cor Cut Fill
EF TITLE MAY VOLUME CHANGE JANUARY 2023 TO APRIL 2023 MECT TITLE MONTHI Y TODOGRADHY ANALYSIS			tions Table	Eleva	
		Color	Maximum Elevation	Minimum Elevation	Number
			-5.000	-10.000	1
			-1.000	-5.000	2
REET TITLE			0.000	-1.000	3
SHEET TITLE PROJECT TIT			1.000	0.000	4
	_		5.000	1.000	5
CITY OF BRISTOL INTEGRATED SOLID WASTE MANAGEMENT FACILITY		S. POSITIVE TE AREAS OF OF PHYSICAL IRMATION ONLY I OF N.	OR CONTOURS, OR ANY DEPICTION BOUNDARIES IS FOR GENERAL INFC N, MODIFICATION, OR CONSTRUCTION R FOR FLOOD PLAIN DETERMINATION ANE VIRGINIA SOUTH ZONE NAD-83	TURED ON JANUARY 10, 2023 AN UES (+) INDICATE AREAS OF FILL (SETTLEMENT), VALUES ARE ROU DETERMINATION OF TOPOGRAPHY ROVEMENTS, PROPERTY LINES, OR D SHALL NOT BE USED FOR DESIG ROVEMENTS TO REAL PROPERTY C	CAP VAL CUT 2. ANY IMPF AND IMPF 3. THE
SCS ENGINEERS SCS ENGINEERS SCS ENGINEERS, CONRAD AND SCHMIDT STEARNS, CONRAD AND SCHMIDT STATE STATE SCONE THAN ST; SUTE A. MED-ORD, NU 00055 PH, (609) 654-000 SCSENGINEERS, COM					

LEGEND	
BOTTOM LINER ELEVATION	0
 JANUARY 2023 TOPO	C
APRIL 2023 TOPO	\$
 MAY 2023 TOPO	C

Appendix F

Sample Collection Log Lab Report Historical LFG-EW Leachate Monitoring Results Summary

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (°C)	рН (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-49									
EW-50	050423	0735	45.1	7,39	23.46	0,28	-206,1	71100	dar bouwn leolor
EW-51									
EW-52									
EW-53									
EW-54									4
EW-55									
EW-56									
EW-57									
EW-58	050423	610	44,4	6,94	25,65	0,12	-2901	71100	der ublach partie
EW-59	050423	400	56.0	6.14	33.6		-2981 -223.4	71100	black prexilian need
EW-60									
EW-61				14		á.			
EW-62				2. 2. Y					
EW-63					*				
EW-64	050423								
EW-65									
EW-67	050423								
EW-68									

4

Certificate of Analysis

Final Report

Laboratory Order ID 23E0399

Client Name: SCS Engineers-Winchester 296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Date Received:May 4, 2023 17:10Date Issued:June 5, 2023 16:26Project Number:02218208.15 Task 1Purchase Order:

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Enclosed are the results of analyses for samples received by the laboratory on 05/04/2023 17:10. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTATS

Ted Soyars Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

Enthalpy Analytical 1941 Reymet Road Richmond, VA 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

			Analysis Detec	<u>ts Report</u>					
Client Name:	SCS Engineers-Wi	nchester			Date Issued:	6/5/	/2023 4:2	6:49PM	
Client Site ID:	2023 City of Bristol	Landfill Leachate							
-	Jennifer Robb								
Submitted To:	Jenniler Robb								
Laboratory Sample ID	: 23E0399-01	Client Sa	mple ID: EW-58						
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Arsenic		01RE1	SW6020B	300		2.5	5.0	5	ug/L
Barium		01RE1	SW6020B	1200		10.0	50.0	10	ug/L
Chromium		01RE1	SW6020B	281		2.00	5.00	5	ug/L
Copper		01RE1	SW6020B	2.67	J	1.50	5.00	5	ug/L
Nickel		01RE1	SW6020B	97.26		5.000	5.000	5	ug/L
Zinc		01RE1	SW6020B	63.5		12.5	25.0	5	ug/L
2-Butanone (MEK)		01	SW8260D	5970		150	500	50	ug/L
Acetone		01	SW8260D	11700		350	500	50	ug/L
Benzene		01	SW8260D	4890		20.0	50.0	50	ug/L
Ethylbenzene		01	SW8260D	276		20.0	50.0	50	ug/L
Tetrahydrofuran		01	SW8260D	2740		500	500	50	ug/L
Toluene		01	SW8260D	371		25.0	50.0	50	ug/L
Xylenes, Total		01	SW8260D	441		50.0	150	50	ug/L
Ammonia as N		01RE1	EPA350.1 R2.0	1860		146	200	2000	mg/L
BOD		01	SM5210B-2011	11900		0.2	2.0	1	mg/L
COD		01	SM5220D-2011	18700		2000	2000	200	mg/L
Nitrate+Nitrite as N		01RE2	SM4500-NO3F-2011	2.25		0.20	0.20	1	mg/L
TKN as N		01	EPA351.2 R2.0	1950		40.0	100	200	mg/L
Total Recoverable Phenol	lics	01	SW9065	20.0		1.50	2.50	50	mg/L

			Analysis Detec	<u>ts Report</u>					
Client Name:	SCS Engineers-Wi	nchester			Date Issued:	6/5	/2023 4:2	6:49PM	
Client Site ID:	2023 City of Bristol	Landfill Leachate							
Submitted To:	Jennifer Robb								
oublinited to:									
Laboratory Sample ID:	23E0399-02	Client Sa	mple ID: EW-59						
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Arsenic		02RE1	SW6020B	270		2.5	5.0	5	ug/L
Barium		02RE1	SW6020B	1830		10.0	50.0	10	ug/L
Chromium		02RE1	SW6020B	237		2.00	5.00	5	ug/L
Nickel		02RE1	SW6020B	56.57		5.000	5.000	5	ug/L
Selenium		02RE1	SW6020B	5.69		4.25	5.00	5	ug/L
Zinc		02RE1	SW6020B	51.9		12.5	25.0	5	ug/L
2-Butanone (MEK)		02RE1	SW8260D	13600		750	2500	250	ug/L
Acetone		02RE1	SW8260D	29600		1750	2500	250	ug/L
Benzene		02	SW8260D	3370		20.0	50.0	50	ug/L
Ethylbenzene		02	SW8260D	144		20.0	50.0	50	ug/L
Tetrahydrofuran		02	SW8260D	2380		500	500	50	ug/L
Toluene		02	SW8260D	239		25.0	50.0	50	ug/L
Xylenes, Total		02	SW8260D	230		50.0	150	50	ug/L
Ammonia as N		02RE1	EPA350.1 R2.0	2380		146	200	2000	mg/L
BOD		02	SM5210B-2011	35300		0.2	2.0	1	mg/L
COD		02	SM5220D-2011	44700		4000	4000	200	mg/L
Nitrate+Nitrite as N		02RE2	SM4500-NO3F-2011	2.56		0.20	0.20	1	mg/L
TKN as N		02	EPA351.2 R2.0	2910		40.0	100	200	mg/L
Total Recoverable Phenol	ics	02	SW9065	50.0		1.50	2.50	50	mg/L

			Analysis Detec	<u>ts Report</u>					
Client Name:	SCS Engineers-Wir	nchester			Date Issued:	6/5/	2023 4:2	6:49PM	
Client Site ID:	2023 City of Bristol	Landfill Leachate							
	•								
Submitted To:	Jennifer Robb								
Laboratory Sample ID:	23E0399-03	Client Sa	mple ID: EW-50					Dil.	
Parameter		Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Factor	Units
Arsenic		03RE1	SW6020B	260		2.5	5.0	5	ug/L
Barium		03RE1	SW6020B	636		5.00	25.0	5	ug/L
Chromium		03RE1	SW6020B	422		2.00	5.00	5	ug/L
Nickel		03RE1	SW6020B	113.0		5.000	5.000	5	ug/L
Zinc		03RE1	SW6020B	79.0		12.5	25.0	5	ug/L
2-Butanone (MEK)		03	SW8260D	5360		150	500	50	ug/L
Acetone		03	SW8260D	10700		350	500	50	ug/L
Benzene		03	SW8260D	814		20.0	50.0	50	ug/L
Ethylbenzene		03	SW8260D	124		20.0	50.0	50	ug/L
Toluene		03	SW8260D	258		25.0	50.0	50	ug/L
Xylenes, Total		03	SW8260D	274		50.0	150	50	ug/L
Ammonia as N		03	EPA350.1 R2.0	1390		146	200	2000	mg/L
BOD		03	SM5210B-2011	7350		0.2	2.0	1	mg/L
COD		03	SM5220D-2011	7590		2000	2000	200	mg/L
Nitrate+Nitrite as N		03RE1	SM4500-NO3F-2011	1.41		0.10	0.10	1	mg/L
TKN as N		03	EPA351.2 R2.0	1590		40.0	100	200	mg/L
Total Recoverable Phenol	ics	03	SW9065	18.6		1.50	2.50	50	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

6/5/2023 4:26:49PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-58	23E0399-01	Ground Water	05/04/2023 08:16	05/04/2023 17:10
EW-59	23E0399-02	Ground Water	05/04/2023 08:00	05/04/2023 17:10
EW-50	23E0399-03	Ground Water	05/04/2023 07:35	05/04/2023 17:10
Trip Blank	23E0399-04	Ground Water	03/01/2023 11:15	05/04/2023 17:10

				<u>(</u>	<u>Certificate c</u>	of Analysis							
Client Name:	SCS Engineer	rs-Winch	ester				Da	te Issue	d:	6/5/202	3 4:2	6:49PM	
Client Site I.D.:	2023 City of E	Bristol La	ndfill Lead	chate									
Submitted To:	Jennifer Robb												
	EW-58					Laboratory	Sample ID:	23E0	399-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
Metals (Total) by EPA 600	00/7000 Series Me	thods											
Silver	(01RE1	7440-22-4	SW6020B	05/09/2023 13:00	05/10/2023 15:13	BLOD		0.300	5.00	5	ug/L	AB
Arsenic	(01RE1	7440-38-2	SW6020B	05/09/2023 13:00	05/10/2023 15:13	300		2.5	5.0	5	ug/L	AB
Barium		01RE1	7440-39-3	SW6020B	05/09/2023 13:00	05/10/2023 15:24	1200		10.0	50.0	10	ug/L	AB
Cadmium	(01RE1	7440-43-9	SW6020B	05/09/2023 13:00	05/10/2023 15:13	BLOD		0.500	5.00	5	ug/L	AB
Chromium	(01RE1	7440-47-3	SW6020B	05/09/2023 13:00	05/10/2023 15:13	281		2.00	5.00	5	ug/L	AB
Copper	(01RE1	7440-50-8	SW6020B	05/09/2023 13:00	05/10/2023 15:13	2.67	J	1.50	5.00	5	ug/L	AB
Mercury	(01	7439-97-6	SW7470A	05/08/2023 10:45	05/09/2023 13:50	BLOD		0.00020	0.00020	1	mg/L	SGT
Nickel	(01RE1	7440-02-0	SW6020B	05/09/2023 13:00	05/10/2023 15:13	97.26		5.000	5.000	5	ug/L	AB
Lead	(01RE1	7439-92-1	SW6020B	05/09/2023 13:00	05/10/2023 15:13	BLOD		5.0	5.0	5	ug/L	AB
Selenium	(01RE1	7782-49-2	SW6020B	05/09/2023 13:00	05/10/2023 15:13	BLOD		4.25	5.00	5	ug/L	AB
Zinc	(01RE1	7440-66-6	SW6020B	05/09/2023 13:00	05/10/2023 15:13	63.5		12.5	25.0	5	ug/L	AB
Volatile Organic Compou	inds by GCMS												
2-Butanone (MEK)	(01	78-93-3	SW8260D	05/05/2023 17:59	05/05/2023 17:59	5970		150	500	50	ug/L	RJB
Acetone	(01	67-64-1	SW8260D	05/05/2023 17:59	05/05/2023 17:59	11700		350	500	50	ug/L	RJB
Benzene	(01	71-43-2	SW8260D	05/05/2023 17:59	05/05/2023 17:59	4890		20.0	50.0	50	ug/L	RJB
Ethylbenzene	(01	100-41-4	SW8260D	05/05/2023 17:59	05/05/2023 17:59	276		20.0	50.0	50	ug/L	RJB
Toluene	(01	108-88-3	SW8260D	05/05/2023 17:59	05/05/2023 17:59	371		25.0	50.0	50	ug/L	RJB
Xylenes, Total	(01	1330-20-7	SW8260D	05/05/2023 17:59	05/05/2023 17:59	441		50.0	150	50	ug/L	RJB
Tetrahydrofuran	(01	109-99-9	SW8260D	05/05/2023 17:59	05/05/2023 17:59	2740		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroethane-	d4 (Surr) (01	104	% 70-120	05/05/2023 1	7:59 05/05/2023 17:5	9						
Surr: 4-Bromofluorobenze	ene (Surr) (01	100		05/05/2023 1		9						
Surr: Dibromofluorometha	()	01	97.1		05/05/2023 1								
Surr: Toluene-d8 (Surr)	(01	101	% 70-130	05/05/2023 1	7:59 05/05/2023 17:5	9						

				<u>(</u>	<u>Certificate c</u>	of Analysis							
Client Name:	SCS Engi	neers-Winch	nester				Da	te Issued	:	6/5/202	3 4:2	6:49PM	
Client Site I.D.:	2023 City	of Bristol La	andfill Lead	chate									
Submitted To:	Jennifer R												
Client Sample ID:	EW-58					Laboratory	/ Sample ID:	23E03	99-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
Semivolatile Organic	Compounds by	GCMS											
Anthracene		01	120-12-7	SW8270E	05/08/2023 10:00	05/09/2023 14:21	BLOD		467	935	50	ug/L	BMS
Surr: 2,4,6-Tribromopl	henol (Surr)	01		% 5-136	05/08/2023 1	0:00 05/09/2023 14:	21						DS
Surr: 2-Fluorobipheny	l (Surr)	01	16.0	9-117	05/08/2023 1	0:00 05/09/2023 14:	21						DS
Surr: 2-Fluorophenol ((Surr)	01	5.00	0% 5-60	05/08/2023 1	0:00 05/09/2023 14:	21						DS
Surr: Nitrobenzene-d5	5 (Surr)	01	22.0	0% 5-151	05/08/2023 1	0:00 05/09/2023 14:	21						DS
Surr: Phenol-d5 (Surr))	01	11.0	0 % 5-60	05/08/2023 1	0:00 05/09/2023 14:	21						DS
Surr: p-Terphenyl-d14	(Surr)	01	8.00)% 5-141	05/08/2023 1	0:00 05/09/2023 14:	21						DS
Wet Chemistry Analys	sis												
Ammonia as N		01RE1	7664-41-7	EPA350.1 R2.0	05/10/2023 14:54	05/10/2023 14:54	1860		146	200	2000	mg/L	MKS
BOD		01	E1640606	SM5210B-20 11	05/05/2023 11:38	05/05/2023 11:38	11900		0.2	2.0	1	mg/L	NBT
COD		01	NA	SM5220D-20 11	05/09/2023 09:40	05/09/2023 09:40	18700		2000	2000	200	mg/L	MJRL
Nitrate as N		01	14797-55-8	Calc.	05/12/2023 15:32	05/12/2023 15:32	BLOD		1.20	5.20	100	mg/L	MKS
Nitrate+Nitrite as N		01RE2	E701177	SM4500-NO 3F-2011	05/12/2023 15:32	05/12/2023 15:32	2.25		0.20	0.20	1	mg/L	MKS
Nitrite as N		01	14797-65-0	SM4500-NO 2B-2011	05/05/2023 14:00	05/05/2023 14:00	BLOD		1.00	5.00	100	mg/L	MGC
Total Recoverable Ph	enolics	01	NA	SW9065	05/18/2023 16:35	05/18/2023 16:35	20.0		1.50	2.50	50	mg/L	MAH
TKN as N		01	E17148461	EPA351.2 R2.0	05/12/2023 16:32	05/12/2023 16:32	1950		40.0	100	200	mg/L	MJRL

					Certificate o	of Analysis							
Client Name:	SCS Engir	neers-Winch	ester				Dat	te Issue	d:	6/5/2023	3 4:2	26:49PM	
Client Site I.D.:	2023 City	of Bristol La	Indfill Lead	chate									
Submitted To:	Jennifer R	lobb											
Client Sample ID:	EW-59					Laborator	y Sample ID:	23E0	399-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
Metals (Total) by EPA	6000/7000 Serie	es Methods											
Metals (Total) by EPA Silver	6000/7000 Serie	es Methods 02RE1	7440-22-4	SW6020B	05/09/2023 13:00	05/10/2023 15:16	BLOD		0.300	5.00	5	ug/L	AB
Silver	6000/7000 Serie		7440-22-4 7440-38-2	SW6020B SW6020B	05/09/2023 13:00 05/09/2023 13:00	05/10/2023 15:16 05/10/2023 15:16	BLOD 270		0.300 2.5	5.00 5.0	5 5	ug/L ug/L	AB AB
Silver Arsenic	6000/7000 Serie	02RE1										-	
Silver Arsenic Barium	6000/7000 Serie	02RE1 02RE1	7440-38-2	SW6020B	05/09/2023 13:00	05/10/2023 15:16	270		2.5	5.0	5	ug/L	AB
Silver Arsenic Barium Cadmium	6000/7000 Serie	02RE1 02RE1 02RE1	7440-38-2 7440-39-3	SW6020B SW6020B	05/09/2023 13:00 05/09/2023 13:00	05/10/2023 15:16 05/10/2023 15:27	270 1830		2.5 10.0	5.0 50.0	5 10	ug/L ug/L	AB AB
	6000/7000 Serie	02RE1 02RE1 02RE1 02RE1	7440-38-2 7440-39-3 7440-43-9	SW6020B SW6020B SW6020B	05/09/2023 13:00 05/09/2023 13:00 05/09/2023 13:00	05/10/2023 15:16 05/10/2023 15:27 05/10/2023 15:16	270 1830 BLOD		2.5 10.0 0.500	5.0 50.0 5.00	5 10 5	ug/L ug/L ug/L	AB AB AB
Silver Arsenic Barium Cadmium Chromium Copper	6000/7000 Serie	02RE1 02RE1 02RE1 02RE1 02RE1	7440-38-2 7440-39-3 7440-43-9 7440-47-3	SW6020B SW6020B SW6020B SW6020B	05/09/2023 13:00 05/09/2023 13:00 05/09/2023 13:00 05/09/2023 13:00	05/10/2023 15:16 05/10/2023 15:27 05/10/2023 15:16 05/10/2023 15:16	270 1830 BLOD 237		2.5 10.0 0.500 2.00	5.0 50.0 5.00 5.00	5 10 5 5	ug/L ug/L ug/L ug/L	AB AB AB AB
Silver Arsenic Barium Cadmium Chromium Copper Mercury	6000/7000 Serie	02RE1 02RE1 02RE1 02RE1 02RE1 02RE1	7440-38-2 7440-39-3 7440-43-9 7440-47-3 7440-50-8	SW6020B SW6020B SW6020B SW6020B SW6020B	05/09/2023 13:00 05/09/2023 13:00 05/09/2023 13:00 05/09/2023 13:00 05/09/2023 13:00	05/10/2023 15:16 05/10/2023 15:27 05/10/2023 15:16 05/10/2023 15:16 05/10/2023 15:16	270 1830 BLOD 237 BLOD		2.5 10.0 0.500 2.00 1.50	5.0 50.0 5.00 5.00 5.00	5 10 5 5 5	ug/L ug/L ug/L ug/L ug/L	AB AB AB AB
Silver Arsenic Barium Cadmium Chromium	6000/7000 Serie	02RE1 02RE1 02RE1 02RE1 02RE1 02RE1 02RE1	7440-38-2 7440-39-3 7440-43-9 7440-47-3 7440-50-8 7439-97-6	SW6020B SW6020B SW6020B SW6020B SW6020B SW7470A	05/09/2023 13:00 05/09/2023 13:00 05/09/2023 13:00 05/09/2023 13:00 05/09/2023 13:00 05/09/2023 10:45	05/10/2023 15:16 05/10/2023 15:27 05/10/2023 15:16 05/10/2023 15:16 05/10/2023 15:16 05/09/2023 13:53	270 1830 BLOD 237 BLOD BLOD		2.5 10.0 0.500 2.00 1.50 0.00020	5.0 50.0 5.00 5.00 5.00 0.00020	5 10 5 5 5 1	ug/L ug/L ug/L ug/L ug/L mg/L	AB AB AB AB SGT
Silver Arsenic Barium Cadmium Chromium Copper Mercury Nickel	6000/7000 Serie	02RE1 02RE1 02RE1 02RE1 02RE1 02RE1 02 02RE1	7440-38-2 7440-39-3 7440-43-9 7440-47-3 7440-50-8 7439-97-6 7440-02-0	SW6020B SW6020B SW6020B SW6020B SW6020B SW7470A SW6020B	05/09/2023 13:00 05/09/2023 13:00 05/09/2023 13:00 05/09/2023 13:00 05/09/2023 13:00 05/08/2023 10:45 05/09/2023 13:00	05/10/2023 15:16 05/10/2023 15:27 05/10/2023 15:16 05/10/2023 15:16 05/10/2023 15:16 05/09/2023 13:53 05/10/2023 15:16	270 1830 BLOD 237 BLOD BLOD 56.57		2.5 10.0 0.500 2.00 1.50 0.00020 5.000	5.0 50.0 5.00 5.00 5.00 0.00020 5.000	5 10 5 5 5 1 5	ug/L ug/L ug/L ug/L ug/L ug/L	AB AB AB AB SGT AB

				<u>(</u>	Certificate of	<u>Analysis</u>							
Client Name:	SCS Engin	eers-Winch	ester				Dat	te Issued	d:	6/5/202	3 4:2	6:49PM	
Client Site I.D.:	2023 City	of Bristol La	Indfill Leac	hate									
Submitted To:	Jennifer Ro	ddc											
Client Sample ID:	EW-59					Laboratory	Sample ID:	23E03	399-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analy
Volatile Organic Com	pounds by GCM	S											
2-Butanone (MEK)		02RE1	78-93-3	SW8260D	05/08/2023 18:21	05/08/2023 18:21	13600		750	2500	250	ug/L	KCS
Acetone		02RE1	67-64-1	SW8260D	05/08/2023 18:21	05/08/2023 18:21	29600		1750	2500	250	ug/L	KCS
Benzene		02	71-43-2	SW8260D	05/05/2023 18:25	05/05/2023 18:25	3370		20.0	50.0	50	ug/L	RJB
Ethylbenzene		02	100-41-4	SW8260D	05/05/2023 18:25	05/05/2023 18:25	144		20.0	50.0	50	ug/L	RJB
Toluene		02	108-88-3	SW8260D	05/05/2023 18:25	05/05/2023 18:25	239		25.0	50.0	50	ug/L	RJB
Xylenes, Total		02	1330-20-7	SW8260D	05/05/2023 18:25	05/05/2023 18:25	230		50.0	150	50	ug/L	RJB
Tetrahydrofuran		02	109-99-9	SW8260D	05/05/2023 18:25	05/05/2023 18:25	2380		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroetha	ne-d4 (Surr)	02	102	% 70-120	05/05/2023 18:	25 05/05/2023 18:2	5						
Surr: 4-Bromofluorobe		02	100	% 75-120	05/05/2023 18:	25 05/05/2023 18:2	5						
Surr: Dibromofluorome	ethane (Surr)	02	94.5	% 70-130	05/05/2023 18:	25 05/05/2023 18:2	5						
Surr: Toluene-d8 (Surr)	02	101	% 70-130	05/05/2023 18:	25 05/05/2023 18:2	5						
Surr: 1,2-Dichloroetha	. ,	02RE1	120	% 70-120	05/08/2023 18:	21 05/08/2023 18:2	1						
Surr: 4-Bromofluorobe	, ,	02RE1	96.3		05/08/2023 18:	21 05/08/2023 18:2	1						
Surr: Dibromofluorome	. ,	02RE1	98.5		05/08/2023 18:								
Surr: Toluene-d8 (Surr)	02RE1	102	% 70-130	05/08/2023 18:	21 05/08/2023 18:2	1						
Semivolatile Organic	Compounds by	GCMS											
Anthracene		02	120-12-7	SW8270E	05/08/2023 10:00	05/09/2023 14:56	BLOD		93.5	187	20	ug/L	BMS
Surr: 2,4,6-Tribromoph	nenol (Surr)	02		% 5-136	05/08/2023 10:	00 05/09/2023 14:5	6						DS
Surr: 2-Fluorobiphenyl	. ,	02	15.2	% 9-117	05/08/2023 10:	00 05/09/2023 14:5	6						
Surr: 2-Fluorophenol (,	02	0.400		05/08/2023 10:								DS
Surr: Nitrobenzene-d5	. ,	02		% 5-151	05/08/2023 10:								DS
Surr: Phenol-d5 (Surr)		02	0.600		05/08/2023 10:								DS
Surr: p-Terphenyl-d14	(Surr)	02	12.0	% 5-141	05/08/2023 10:	00 05/09/2023 14:5	6						
Wet Chemistry Analys	sis												

					Certificate o	of Analysis							
Client Name:	SCS Engir	neers-Winch	lester	_			Da	te Issue	d:	6/5/202	3 4:2	6:49PM	
Client Site I.D.:	2023 City	of Bristol La	andfill Lead	chate									
Submitted To:	Jennifer R	obb											
Client Sample ID:	EW-59					Laborator	ry Sample ID:	23E0	399-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analys	sis												
Ammonia as N		02RE1	7664-41-7	EPA350.1 R2.0	05/10/2023 14:54	05/10/2023 14:54	2380		146	200	2000	mg/L	MKS
BOD		02	E1640606	SM5210B-20 11	05/05/2023 11:41	05/05/2023 11:41	35300		0.2	2.0	1	mg/L	NBT
COD		02	NA	SM5220D-20 11	05/09/2023 09:40	05/09/2023 09:40	44700		4000	4000	200	mg/L	MJRL
Nitrate as N		02	14797-55-8	Calc.	05/12/2023 15:32	05/12/2023 15:32	BLOD		1.20	5.20	100	mg/L	MKS
Nitrate+Nitrite as N		02RE2	E701177	SM4500-NO 3F-2011	05/12/2023 15:32	05/12/2023 15:32	2.56		0.20	0.20	1	mg/L	MKS
Nitrite as N		02	14797-65-0	SM4500-NO 2B-2011	05/05/2023 14:00	05/05/2023 14:00	BLOD		1.00	5.00	100	mg/L	MGC
Total Recoverable Phe	enolics	02	NA	SW9065	05/18/2023 16:35	05/18/2023 16:35	50.0		1.50	2.50	50	mg/L	MAH
TKN as N		02	E17148461	EPA351.2 R2.0	05/12/2023 16:32	05/12/2023 16:32	2910		40.0	100	200	mg/L	MJRL

				<u>(</u>	<u>Certificate o</u>	<u>f Analysis</u>							
Client Name:	SCS Engineer	rs-Winch	ester				Da	te Issue	d:	6/5/202	3 4:2	6:49PM	
Client Site I.D.:	2023 City of E	Bristol La	andfill Lead	chate									
Submitted To:	Jennifer Robb												
Client Sample ID:	EW-50					Laboratory	Sample ID:	23E0	399-03				
				Reference	Sample Prep	Analyzed	Sample						
Parameter		Samp ID	CAS	Method	Date/Time	Date/Time	Results	Qual	LOD	LOQ	DF	Units	Analys
Metals (Total) by EPA 6	6000/7000 Series Me	ethods											
Silver		03RE1	7440-22-4	SW6020B	05/09/2023 13:00	05/10/2023 15:21	BLOD		0.300	5.00	5	ug/L	AB
Arsenic		03RE1	7440-38-2	SW6020B	05/09/2023 13:00	05/10/2023 15:21	260		2.5	5.0	5	ug/L	AB
Barium		03RE1	7440-39-3	SW6020B	05/09/2023 13:00	05/10/2023 15:21	636		5.00	25.0	5	ug/L	AB
Cadmium		03RE1	7440-43-9	SW6020B	05/09/2023 13:00	05/10/2023 15:21	BLOD		0.500	5.00	5	ug/L	AB
Chromium		03RE1	7440-47-3	SW6020B	05/09/2023 13:00	05/10/2023 15:21	422		2.00	5.00	5	ug/L	AB
Copper		03RE1	7440-50-8	SW6020B	05/09/2023 13:00	05/10/2023 15:21	BLOD		1.50	5.00	5	ug/L	AB
Mercury		03	7439-97-6	SW7470A	05/08/2023 10:45	05/09/2023 13:54	BLOD		0.00020	0.00020	1	mg/L	SGT
Nickel		03RE1	7440-02-0	SW6020B	05/09/2023 13:00	05/10/2023 15:21	113.0		5.000	5.000	5	ug/L	AB
Lead		03RE1	7439-92-1	SW6020B	05/09/2023 13:00	05/10/2023 15:21	BLOD		5.0	5.0	5	ug/L	AB
Selenium		03RE1	7782-49-2	SW6020B	05/09/2023 13:00	05/10/2023 15:21	BLOD		4.25	5.00	5	ug/L	AB
Zinc		03RE1	7440-66-6	SW6020B	05/09/2023 13:00	05/10/2023 15:21	79.0		12.5	25.0	5	ug/L	AB
Volatile Organic Comp	ounds by GCMS												
2-Butanone (MEK)		03	78-93-3	SW8260D	05/05/2023 18:50	05/05/2023 18:50	5360		150	500	50	ug/L	RJB
Acetone		03	67-64-1	SW8260D	05/05/2023 18:50	05/05/2023 18:50	10700		350	500	50	ug/L	RJB
Benzene		03	71-43-2	SW8260D	05/05/2023 18:50	05/05/2023 18:50	814		20.0	50.0	50	ug/L	RJB
Ethylbenzene		03	100-41-4	SW8260D	05/05/2023 18:50	05/05/2023 18:50	124		20.0	50.0	50	ug/L	RJB
Toluene		03	108-88-3	SW8260D	05/05/2023 18:50	05/05/2023 18:50	258		25.0	50.0	50	ug/L	RJB
Xylenes, Total		03	1330-20-7	SW8260D	05/05/2023 18:50	05/05/2023 18:50	274		50.0	150	50	ug/L	RJB
Tetrahydrofuran		03	109-99-9	SW8260D	05/05/2023 18:50	05/05/2023 18:50	BLOD		500	500	50	ug/L	RJB
Surr: 1,2-Dichloroethan	ne-d4 (Surr)	03	103	8% 70-120	05/05/2023 18	3:50 05/05/2023 18:50	0						
Surr: 4-Bromofluoroben	. ,	03	96.5	5% 75-120	05/05/2023 18	8:50 05/05/2023 18:50	0						
Surr: Dibromofluoromet		03	93.1		05/05/2023 18								
Surr: Toluene-d8 (Surr))	03	101	% 70-130	05/05/2023 18	3:50 05/05/2023 18:50	0						

				<u>(</u>	Certificate of	<u>Analysis</u>							
Client Name:	SCS Engi	ineers-Winch	ester	_			Da	te Issue	d:	6/5/202	3 4:2	26:49PM	
Client Site I.D.:	2023 City	y of Bristol La	ndfill Leac	hate									
Submitted To:	Jennifer F	Robb											
Client Sample ID:	EW-50					Laborator	y Sample ID:	23E0	399-03				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Semivolatile Organic C	compounds by	y GCMS											
Anthracene		03	120-12-7	SW8270E	05/08/2023 10:00	05/09/2023 15:30	BLOD		93.5	187	20	ug/L	BMS
Surr: 2,4,6-Tribromophe	enol (Surr)	03	116	% 5-136	05/08/2023 10:	00 05/09/2023 15	:30						
Surr: 2-Fluorobiphenyl ((Surr)	03	37.6	% 9-117	05/08/2023 10:	00 05/09/2023 15	:30						
Surr: 2-Fluorophenol (S	Surr)	03	21.2	% 5-60	05/08/2023 10:	00 05/09/2023 15	:30						
Surr: Nitrobenzene-d5 ((Surr)	03	70.8	% 5-151	05/08/2023 10:	00 05/09/2023 15	:30						
Surr: Phenol-d5 (Surr)		03	19.6	% 5-60	05/08/2023 10:	00 05/09/2023 15	:30						
Surr: p-Terphenyl-d14 ('Surr)	03	9.60	% 5-141	05/08/2023 10:	00 05/09/2023 15	:30						

					Certificate o	of Analysis							
Client Name:	SCS Engir	neers-Winch	lester	_			Da	te Issue	d:	6/5/202	23 4:2	6:49PM	
Client Site I.D.:	2023 City	of Bristol La	andfill Lead	chate									
Submitted To:	Jennifer R	obb											
Client Sample ID:	EW-50					Laborator	ry Sample ID:	23E0	399-03				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analys	sis												
Ammonia as N		03	7664-41-7	EPA350.1 R2.0	05/10/2023 14:54	05/10/2023 14:54	1390		146	200	2000	mg/L	MKS
BOD		03	E1640606	SM5210B-20 11	05/05/2023 11:44	05/05/2023 11:44	7350		0.2	2.0	1	mg/L	NBT
COD		03	NA	SM5220D-20 11	05/09/2023 09:40	05/09/2023 09:40	7590		2000	2000	200	mg/L	MJRL
Nitrate as N		03	14797-55-8	Calc.	05/12/2023 15:32	05/12/2023 15:32	BLOD		1.10	5.10	100	mg/L	MKS
Nitrate+Nitrite as N		03RE1	E701177	SM4500-NO 3F-2011	05/12/2023 15:32	05/12/2023 15:32	1.41		0.10	0.10	1	mg/L	MKS
Nitrite as N		03	14797-65-0	SM4500-NO 2B-2011	05/05/2023 14:00	05/05/2023 14:00	BLOD		1.00	5.00	100	mg/L	MGC
Total Recoverable Pho	enolics	03	NA	SW9065	05/18/2023 16:35	05/18/2023 16:35	18.6		1.50	2.50	50	mg/L	MAH
TKN as N		03	E17148461	EPA351.2 R2.0	05/12/2023 16:32	05/12/2023 16:32	1590		40.0	100	200	mg/L	MJRL

				<u>(</u>	Certificate o	of Analysis							
Client Name:	SCS Engine	eers-Winch	ester				Da	te Issue	d:	6/5/202	3 4:2	6:49PM	
Client Site I.D.:	2023 City o	of Bristol La	andfill Leac	hate									
Submitted To:	Jennifer Ro	bb											
Client Sample ID:	Trip Blank					Laborator	ry Sample ID:	23E0	399-04				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
Volatile Organic Comp	ounds by GCMS												
2-Butanone (MEK)		04	78-93-3	SW8260D	05/05/2023 15:52	05/05/2023 15:52	BLOD		3.00	10.0	1	ug/L	RJB
Acetone		04	67-64-1	SW8260D	05/05/2023 15:52	05/05/2023 15:52	BLOD		7.00	10.0	1	ug/L	RJB
Benzene		04	71-43-2	SW8260D	05/05/2023 15:52	05/05/2023 15:52	BLOD		0.40	1.00	1	ug/L	RJB
Ethylbenzene		04	100-41-4	SW8260D	05/05/2023 15:52	05/05/2023 15:52	BLOD		0.40	1.00	1	ug/L	RJB
Toluene		04	108-88-3	SW8260D	05/05/2023 15:52	05/05/2023 15:52	BLOD		0.50	1.00	1	ug/L	RJB
Xylenes, Total		04	1330-20-7	SW8260D	05/05/2023 15:52	05/05/2023 15:52	BLOD		1.00	3.00	1	ug/L	RJB
Tetrahydrofuran		04	109-99-9	SW8260D	05/05/2023 15:52	05/05/2023 15:52	BLOD		10.0	10.0	1	ug/L	RJB
Surr: 1,2-Dichloroethan	e-d4 (Surr)	04	95.8	% 70-120	05/05/2023 15	5:52 05/05/2023 15	5:52						
Surr: 4-Bromofluoroben	zene (Surr)	04	100	% 75-120	05/05/2023 15	5:52 05/05/2023 15	5:52						
Surr: Dibromofluoromet Surr: Toluene-d8 (Surr)	hane (Surr)	04 04	95.9 101		05/05/2023 15 05/05/2023 15								

				<u>Ce</u>	ertificate of	<u>f Analys</u>	<u>is</u>				
Client Name:	SCS Engineers-W	'inchester						Date Issued	:	6/5/2023	4:26:49PM
Client Site I.D.:	2023 City of Bristo	ol Landfill I	eachate								
	-										
Submitted To:	Jennifer Robb										
			Metals	s (Total) by	EPA 6000/7000 Se	ries Methods -	Quality Control				
					Enthalpy Ana	alytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGE0	300 - SW747	'0A								
Blank (BGE0300-BLK1)				Prepared: 05/08/2	023 Analyzed: (05/09/2023				
Mercury	·	ND	0.00020	mg/L	•						
LCS (BGE0300-BS1)					Prepared: 05/08/2	023 Analyzed: (05/09/2023				
Mercury		0.00256	0.00020	mg/L	0.00250		103	80-120			
Matrix Spike (BGE030	0-MS1)	Sourc	e: 23E0396-0	1	Prepared: 05/08/2	023 Analyzed: (05/09/2023				
Mercury		0.00268	0.00020	mg/L	0.00250	BLOD	107	80-120			
Matrix Spike (BGE030	0-MS2)	Sourc	e: 23E0396-0	9	Prepared: 05/08/2	023 Analyzed: (05/09/2023				
Mercury		0.00271	0.00020	mg/L	0.00250	BLOD	109	80-120			
Matrix Spike Dup (BGB	E0300-MSD1)	Sourc	e: 23E0396-0	1	Prepared: 05/08/2	023 Analyzed: (05/09/2023				
Mercury		0.00270	0.00020	mg/L	0.00250	BLOD	108	80-120	0.997	20	
Matrix Spike Dup (BGB	E0300-MSD2)	Sourc	e: 23E0396-0	9	Prepared: 05/08/2	023 Analyzed: (05/09/2023				
Mercury		0.00269	0.00020	mg/L	0.00250	BLOD	108	80-120	0.706	20	
	Batch BGE0	372 - EPA20	0.8 R5.4								
Blank (BGE0372-BLK1)				Prepared: 05/09/2	023 Analyzed: (05/10/2023				
Arsenic		ND	1.0	ug/L							
Barium		ND	5.00	ug/L							
Cadmium		ND	1.00	ug/L							
Chromium		ND	1.00	ug/L							
Copper		ND	1.00	ug/L							
Lead		ND	1.0	ug/L							
Nickel		ND	1.000	ug/L							
Selenium		ND	1.00	ug/L							
Silver		ND	1.00	ug/L							

			<u>C</u>	ertificate o	of Analys	is				
Client Name:	SCS Engineers-Winchester						Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.:	2023 City of Bristol Landfill I	_eachate								
Submitted To:	Jennifer Robb									
Submitted 10.		Madala	· (T -4-1) h ·							
		Metals	s (Total) by	EPA 6000/7000 S	eries Methods - (Quality Control				
				Enthalpy A	nalytical					
	5 1			Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGE0372 - EPA20	0.8 R5.4								
Blank (BGE0372-BLK1)				Prepared: 05/09	/2023 Analyzed: (05/10/2023				
Zinc	ND	5.00	ug/L							
.CS (BGE0372-BS1)				Prepared: 05/09	/2023 Analyzed: (05/10/2023				
Arsenic	52	1.0	ug/L	50.0		104	80-120			
Barium	53.7	5.00	ug/L	50.0		107	80-120			
Cadmium	51.6	1.00	ug/L	50.0		103	80-120			
Chromium	51.8	1.00	ug/L	50.0		104	80-120			
Copper	52.6	1.00	ug/L	50.0		105	80-120			
Lead	52	1.0	ug/L	50.0		104	80-120			
Nickel	51.75	1.000	ug/L	50.0		103	80-120			
Selenium	51.9	1.00	ug/L	50.0		104	80-120			
Silver	10.3	1.00	ug/L	10.0		103	80-120			E
Zinc	52.4	5.00	ug/L	50.0		105	80-120			
/atrix Spike (BGE0372-I	MS1) Source	e: 23E0274-0	2	Prepared: 05/09	/2023 Analyzed: (05/10/2023				
Arsenic	51	1.0	ug/L	50.0	BLOD	103	75-125			
Barium	99.4	5.00	ug/L	50.0	47.3	104	75-125			
Cadmium	51.0	1.00	ug/L	50.0	BLOD	102	75-125			
Chromium	50.5	1.00	ug/L	50.0	BLOD	101	75-125			
Copper	50.3	1.00	ug/L	50.0	BLOD	101	75-125			
Lead	51	1.0	ug/L	50.0	BLOD	101	75-125			
Nickel	50.78	1.000	ug/L	50.0	BLOD	102	75-125			
Selenium	49.2	1.00	ug/L	50.0	BLOD	98.5	75-125			
Silver	10.1	1.00	ug/L	10.0	BLOD	101	75-125			E
Zinc	50.5	5.00	ug/L	50.0	BLOD	101	75-125			
Aatrix Spike (BGE0372-I	MS2) Source	e: 23E0274-0	3	Prepared: 05/09	/2023 Analyzed: (05/10/2023				

223

ug/L

50.0

168

5.00

Zinc

Zinc

Barium

Enthalpy Analytical 1941 Reymet Road Richmond, Virginia 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 6/5/2023 4:26:49PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Metals (Total) by EPA 6000/7000 Series Methods - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGE0372 - EPA200.8 R5.4 Matrix Spike (BGE0372-MS2) Prepared: 05/09/2023 Analyzed: 05/10/2023 Source: 23E0274-03 51 Arsenic 1.0 ug/L 50.0 0.52 101 75-125 Barium 217 5.00 ug/L 50.0 168 97.6 75-125 Е BLOD Cadmium 50.0 1.00 ug/L 50.0 100 75-125 Chromium 50.3 50.0 BLOD 101 75-125 1.00 ug/L Copper 47.7 1.00 ug/L 50.0 BI OD 95.5 75-125 49 BLOD 75-125 Lead 1.0 ug/L 50.0 98.6 Nickel 51.93 1.000 ug/L 50.0 4 103 95.7 75-125 47.3 ug/L 75-125 Selenium 1.00 50.0 BLOD 94.6 Е Silver 9.98 1.00 ug/L 10.0 BLOD 99.8 75-125 47.9 5.00 50.0 BLOD 95.8 75-125 ug/L Matrix Spike Dup (BGE0372-MSD1) Source: 23E0274-02 Prepared: 05/09/2023 Analyzed: 05/10/2023 Arsenic 53 1.0 ug/L 50.0 BI OD 106 75-125 3.12 20 102 50.0 47.3 75-125 2.94 Barium 5.00 ug/L 110 20 Cadmium 51.7 1.00 ug/L 50.0 BI OD 103 75-125 1.39 20 52.1 50.0 BLOD 75-125 3.12 20 Chromium 1.00 ug/L 104 51.5 50.0 BLOD 103 75-125 2.33 20 Copper 1.00 ug/L Lead 51 1.0 ug/L 50.0 BLOD 102 75-125 1.10 20 Nickel 51.93 1.000 50.0 BLOD 104 75-125 2.24 20 ug/L BLOD 75-125 Selenium 50.8 1.00 ug/L 50.0 102 3.06 20 Silver 10.2 10.0 BLOD 102 75-125 1.67 20 Е 1.00 ug/L 51.5 5.00 ug/L 50.0 BLOD 103 75-125 1.89 20 Matrix Spike Dup (BGE0372-MSD2) Source: 23E0274-03 Prepared: 05/09/2023 Analyzed: 05/10/2023 52 1.0 50.0 0.52 103 75-125 1.74 20 Arsenic ug/L

75-125

110

Е

20

2.75

6/5/2023 4:26:49PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BGE0372 - EPA20	0.8 R5.4								
Matrix Spike Dup (BGE0372-MSD2)	Source	ce: 23E0274-0	3	Prepared: 05/09/	2023 Analyzed: ()5/10/2023				
Cadmium	50.9	1.00	ug/L	50.0	BLOD	102	75-125	1.71	20	
Chromium	50.9	1.00	ug/L	50.0	BLOD	102	75-125	1.13	20	
Copper	48.3	1.00	ug/L	50.0	BLOD	96.6	75-125	1.16	20	
Lead	50	1.0	ug/L	50.0	BLOD	100	75-125	1.61	20	
Nickel	53.13	1.000	ug/L	50.0	4.103	98.0	75-125	2.27	20	
Selenium	47.7	1.00	ug/L	50.0	BLOD	95.4	75-125	0.899	20	
Silver	10.1	1.00	ug/L	10.0	BLOD	101	75-125	1.22	20	E
Zinc	48.5	5.00	ug/L	50.0	BLOD	97.0	75-125	1.27	20	

			<u>Cer</u>	tificate o	of Analysi	is				
Client Name: SCS	Engineers-Winchester						Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.: 2023	3 City of Bristol Landfill L	eachate								
	ifer Robb									
		,	International Action	ia Compoundo I		hy Control				
		,	volatile Organ		by GCMS - Qualit	ly Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
, and y to			Onito	20001	rtooun	, in LEO	Linito		Linit	Quui
	Batch BGE0279 - SW503	00-1019	r	Proporad O Arel	wzod: 05/05/2022					
Blank (BGE0279-BLK1) 2-Butanone (MEK)	ND	10.0	ug/L	repareo & Anal	yzed: 05/05/2023					
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 ((Surr) 45.2		ug/L	50.0		90.3	70-120			
Surr: 4-Bromofluorobenzene			ug/L	50.0		102	75-120			
Surr: Dibromofluoromethane	(Surr) 47.5		ug/L	50.0		95.0	70-130			
Surr: Toluene-d8 (Surr)	50.7		ug/L	50.0		101	70-130			
LCS (BGE0279-BS1)			F	Prepared & Anal	yzed: 05/05/2023	i i				
1,1,1,2-Tetrachloroethane	48.8	0.4	ug/L	50.0	-	97.5	80-130			
1,1,1-Trichloroethane	50.4	1	ug/L	50.0		101	65-130			
1,1,2,2-Tetrachloroethane	46.8	0.4	ug/L	50.0		93.5	65-130			
1,1,2-Trichloroethane	52.7	1	ug/L	50.0		105	75-125			
1,1-Dichloroethane	50.8	1	ug/L	50.0		102	70-135			
1,1-Dichloroethylene	42.1	1	ug/L	50.0		84.1	70-130			
1,1-Dichloropropene	53.8	1	ug/L	50.0		108	75-135			
1,2,3-Trichlorobenzene	41.9	1	ug/L	50.0		83.8	55-140			
1,2,3-Trichloropropane	48.5	1	ug/L	50.0		97.0	75-125			
1,2,4-Trichlorobenzene	46.4	1	ug/L	50.0		92.7	65-135			
1,2,4-Trimethylbenzene	51.1	1	ug/L	50.0		102	75-130			
1,2-Dibromo-3-chloropropane	e (DBCP) 49.0	1	ug/L	50.0		98.0	50-130			
1,2-Dibromoethane (EDB)	47.3	1	ug/L	50.0		94.6	80-120			

			<u>Cer</u>	tificate o	of Analysi	is				
Client Name: S	CS Engineers-Winchester				-		Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.:	2023 City of Bristol Landfill Le	achate								
	ennifer Robb									
Submitted to. J										
		,	Volatile Organ	ic Compounds I	oy GCMS - Quali	ty Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGE0279 - SW5030I	B-MS								
LCS (BGE0279-BS1)		•	P	Prepared & Anal	yzed: 05/05/2023	8				
1,2-Dichlorobenzene	47.3	0.5	ug/L	50.0	,	94.6	70-120			
1,2-Dichloroethane	45.0	1	ug/L	50.0		90.0	70-130			
1,2-Dichloropropane	49.9	0.5	ug/L	50.0		99.8	75-125			
1,3,5-Trimethylbenzene		1	ug/L	50.0		99.7	75-125			
1,3-Dichlorobenzene	47.2	1	ug/L	50.0		94.3	75-125			
1,3-Dichloropropane	51.4	1	ug/L	50.0		103	75-125			
1,4-Dichlorobenzene	47.2	1	ug/L	50.0		94.4	75-125			
2,2-Dichloropropane	50.6	1	ug/L	50.0		101	70-135			
2-Butanone (MEK)	46.2	10	ug/L	50.0		92.5	30-150			
2-Chlorotoluene	48.8	1	ug/L	50.0		97.6	75-125			
2-Hexanone (MBK)	40.1	5	ug/L	50.0		80.1	55-130			
4-Chlorotoluene	47.9	1	ug/L	50.0		95.8	75-130			
4-Isopropyltoluene	50.6	1	ug/L	50.0		101	75-130			
4-Methyl-2-pentanone (MIBK) 46.5	5	ug/L	50.0		93.0	60-135			
Acetone	45.5	10	ug/L	50.0		90.9	40-140			
Benzene	57.4	1	ug/L	50.0		115	80-120			
Bromobenzene	48.0	1	ug/L	50.0		96.1	75-125			
Bromochloromethane	45.2	1	ug/L	50.0		90.5	65-130			
Bromodichloromethane	48.5	0.5	ug/L	50.0		97.1	75-120			
Bromoform	46.8	1	ug/L	50.0		93.6	70-130			
Bromomethane	57.0	1	ug/L	50.0		114	30-145			
Carbon disulfide	50.5	10	ug/L	50.0		101	35-160			
Carbon tetrachloride	52.4	1	ug/L	50.0		105	65-140			
Chlorobenzene	48.9	1	ug/L	50.0		97.7	80-120			
Chloroethane	50.4	1	ug/L	50.0		101	60-135			

				Cer	tificate o	of Analysi	is				
Client Name:	SCS Engine	ers-Winchester				-		Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.:	2023 Citv of	Bristol Landfill L	eachate								
Submitted To:	Jennifer Rob										
Submitted to.	Jennier Kon	U									
			١	/olatile Orgar	nic Compounds	by GCMS - Qualit	ty Control				
					Enthalpy A	nalytical					
		D "	1.00		Spike	Source	% D E0	%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch	BGE0279 - SW503	0B-MS								
LCS (BGE0279-BS1)				F	Prepared & Anal	yzed: 05/05/2023					
Chloroform		39.0	0.5	ug/L	50.0		77.9	65-135			
Chloromethane		80.8	1	ug/L	50.0		162	40-125			L
cis-1,2-Dichloroethy	lene	51.3	1	ug/L	50.0		103	70-125			
cis-1,3-Dichloroprop	bene	42.0	1	ug/L	50.0		84.0	70-130			
Dibromochlorometha	ane	52.0	0.5	ug/L	50.0		104	60-135			
Dibromomethane		55.0	1	ug/L	50.0		110	75-125			
Dichlorodifluorometh	hane	67.9	1	ug/L	50.0		136	30-155			
Ethylbenzene		53.9	1	ug/L	50.0		108	75-125			
Hexachlorobutadien	e	44.8	0.8	ug/L	50.0		89.7	50-140			
lsopropylbenzene		48.0	1	ug/L	50.0		96.0	75-125			
m+p-Xylenes		104	2	ug/L	100		104	75-130			
Methylene chloride		44.1	4	ug/L	50.0		88.2	55-140			
Methyl-t-butyl ether	(MTBE)	49.6	1	ug/L	50.0		99.2	65-125			
Naphthalene		47.8	1	ug/L	50.0		95.5	55-140			
n-Butylbenzene		54.4	1	ug/L	50.0		109	70-135			
n-Propylbenzene		51.8	1	ug/L	50.0		104	70-130			
o-Xylene		51.8	1	ug/L	50.0		104	80-120			
sec-Butylbenzene		54.0	1	ug/L	50.0		108	70-125			
Styrene		39.1	1	ug/L	50.0		78.1	65-135			
tert-Butylbenzene		50.5	1	ug/L	50.0		101	70-130			
Tetrachloroethylene	(PCE)	51.7	1	ug/L	50.0		103	45-150			
Toluene		54.3	1	ug/L	50.0		109	75-120			
trans-1,2-Dichloroet	hylene	45.4	1	ug/L	50.0		90.7	60-140			
trans-1,3-Dichloropr	-	45.6	1	ug/L	50.0		91.2	55-140			
Trichloroethylene		50.4	1	ug/L	50.0		101	70-125			

			<u>Ce</u>	ertificate o	of Analysi	is				
Client Name: SCS	Engineers-Winchester						Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.: 202	3 City of Bristol Landfill Le	eachate								
	nifer Robb									
		,								
		V	olatile Org	anic Compounds	by GCMS - Quali	ty Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGE0279 - SW5030		00							
LCS (BGE0279-BS1)				Prepared & Anal	yzed: 05/05/2023	8				
Trichlorofluoromethane	60.7	1	ug/L	50.0	<u>, </u>	121	60-145			
Vinyl chloride	56.7	0.5	ug/L	50.0		113	50-145			
Surr: 1,2-Dichloroethane-d4	(Surr) 50.5		ug/L	50.0		101	70-120			
Surr: 4-Bromofluorobenzene	. ,		ug/L	50.0		105	75-120			
Surr: Dibromofluoromethane	. ,		ug/L	50.0		86.2	70-130			
Surr: Toluene-d8 (Surr)	51.5		ug/L	50.0		103	70-130			
Matrix Spike (BGE0279-MS1)	Source	: 23E0301-0	1	Prepared & Anal	yzed: 05/05/2023	3				
1,1,1,2-Tetrachloroethane	47.7	0.4	ug/L	50.0	BLOD	95.4	80-130			
1,1,1-Trichloroethane	53.5	1	ug/L	50.0	BLOD	107	65-130			
1,1,2,2-Tetrachloroethane	46.6	0.4	ug/L	50.0	BLOD	93.2	65-130			
1,1,2-Trichloroethane	52.0	1	ug/L	50.0	BLOD	104	75-125			
1,1-Dichloroethane	49.4	1	ug/L	50.0	BLOD	98.7	70-135			
1,1-Dichloroethylene	44.9	1	ug/L	50.0	BLOD	89.9	50-145			
1,1-Dichloropropene	59.2	1	ug/L	50.0	BLOD	118	75-135			
1,2,3-Trichlorobenzene	53.1	1	ug/L	50.0	BLOD	106	55-140			
1,2,3-Trichloropropane	48.4	1	ug/L	50.0	BLOD	96.9	75-125			
1,2,4-Trichlorobenzene	51.6	1	ug/L	50.0	BLOD	103	65-135			
1,2,4-Trimethylbenzene	52.7	1	ug/L	50.0	BLOD	105	75-130			
1,2-Dibromo-3-chloropropan		1	ug/L	50.0	BLOD	112	50-130			
1,2-Dibromoethane (EDB)	47.5	1	ug/L	50.0	BLOD	95.0	80-120			
1,2-Dichlorobenzene	48.9	0.5	ug/L	50.0	BLOD	97.8	70-120			
1,2-Dichloroethane	44.7	1	ug/L	50.0	BLOD	89.4	70-130			
1,2-Dichloropropane	54.2	0.5	ug/L	50.0	BLOD	108	75-125			
1,3,5-Trimethylbenzene	51.0	1	ug/L	50.0	BLOD	102	75-124			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 6/5/2023 4:26:49PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGE0279 - SW5030B-MS Matrix Spike (BGE0279-MS1) Prepared & Analyzed: 05/05/2023 Source: 23E0301-01 47.8 1.3-Dichlorobenzene 1 ug/L 50.0 BLOD 95.6 75-125 1,3-Dichloropropane 51.4 1 ug/L 50.0 BLOD 103 75-125 BLOD 75-125 1,4-Dichlorobenzene 47.5 1 ug/L 50.0 95.0 50.5 1 50.0 BLOD 101 70-135 2.2-Dichloropropane ug/L 2-Butanone (MEK) 50.0 10 ug/L 50.0 BI OD 100 30-150 1 BI OD 75-125 2-Chlorotoluene 49.0 ug/L 50.0 98.1 2-Hexanone (MBK) 43.5 5 ug/L 50.0 BI OD 87.1 55-130 1 BLOD 98.5 75-130 4-Chlorotoluene 49.3 ug/L 50.0 BLOD 4-Isopropyltoluene 52.1 1 ug/L 50.0 104 75-130 48.0 5 50.0 BLOD 96.1 60-135 4-Methyl-2-pentanone (MIBK) ua/L 43.8 10 50.0 BLOD 87.6 40-140 Acetone ug/L Benzene 58.0 1 ug/L 50.0 BLOD 116 80-120 47.9 1 50.0 BLOD 95.9 75-125 Bromobenzene ug/L 46.9 1 BLOD 65-130 Bromochloromethane ug/L 50.0 93.7 Bromodichloromethane 52.8 0.5 50.0 BI OD 106 75-136 ug/L Bromoform 46.4 BLOD 92.7 70-130 1 ug/L 50.0 Bromomethane 46.0 1 ug/L 50.0 BLOD 91.9 30-145 54.2 50.0 35-160 Carbon disulfide 10 ug/L 13.4 81.6 Carbon tetrachloride 53.6 1 50.0 BLOD 107 65-140 ug/L Chlorobenzene 47.6 1 ug/L 50.0 BLOD 95.2 80-120 Chloroethane 49.4 1 50.0 BLOD 98.9 60-135 ug/L Chloroform 43.2 0.5 ug/L 50.0 BI OD 86.3 65-135 Chloromethane 1 BLOD 156 77.8 ug/L 50.0 40-125 Μ cis-1,2-Dichloroethylene 48.9 1 ug/L 50.0 18.4 60.9 70-125 Μ 1 ug/L cis-1,3-Dichloropropene 40.7 50.0 BLOD 81.5 47-136

			C	ertificate o	of Analysi	<u>s</u>				
Client Name: S	CS Engineers-Winchester				-		Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.: 2	023 City of Bristol Landfill I	eachate								
	ennifer Robb									
Submitted ID. Je										
		\	Volatile Org	anic Compounds I	oy GCMS - Quality	y Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGE0279 - SW503	0B-MS								
Matrix Spike (BGE0279-MS		e: 23E0301-0	01	Prepared & Anal	yzed: 05/05/2023					
Dibromochloromethane	51.0	0.5	ug/L	50.0	BLOD	102	60-135			
Dibromomethane	52.8	1	ug/L	50.0	BLOD	106	75-125			
Dichlorodifluoromethane		1	ug/L	50.0	BLOD	135	30-155			
Ethylbenzene	53.1	1	ug/L	50.0	BLOD	106	75-125			
Hexachlorobutadiene	49.1	0.8	ug/L	50.0	BLOD	98.1	50-140			
Isopropylbenzene	46.5	1	ug/L	50.0	BLOD	92.9	75-125			
m+p-Xylenes	104	2	ug/L	100	BLOD	104	75-130			
Methylene chloride	42.8	4	ug/L	50.0	BLOD	85.5	55-140			
Methyl-t-butyl ether (MTE	BE) 48.7	1	ug/L	50.0	BLOD	97.4	65-125			
Naphthalene	60.9	1	ug/L	50.0	BLOD	122	55-140			
n-Butylbenzene	55.6	1	ug/L	50.0	BLOD	111	70-135			
n-Propylbenzene	52.6	1	ug/L	50.0	BLOD	105	70-130			
o-Xylene	50.8	1	ug/L	50.0	BLOD	102	80-120			
sec-Butylbenzene	54.1	1	ug/L	50.0	BLOD	108	70-125			
Styrene	37.8	1	ug/L	50.0	BLOD	75.6	65-135			
tert-Butylbenzene	51.5	1	ug/L	50.0	BLOD	103	70-130			
Tetrachloroethylene (PC	E) 51.3	1	ug/L	50.0	BLOD	103	51-231			
Toluene	53.2	1	ug/L	50.0	BLOD	106	75-120			
trans-1,2-Dichloroethyler		1	ug/L	50.0	BLOD	100	60-140			
trans-1,3-Dichloroproper	ne 43.3	1	ug/L	50.0	BLOD	86.6	55-140			
Trichloroethylene	52.4	1	ug/L	50.0	9.40	86.0	70-125			
Trichlorofluoromethane	58.5	1	ug/L	50.0	BLOD	117	60-145			
Vinyl chloride	59.1	0.5	ug/L	50.0	BLOD	118	50-145			
Surr: 1,2-Dichloroethane	-d4 (Surr) 49.2		ug/L	50.0		98.4	70-120			
Surr: 4-Bromofluorobenz	ene (Surr) 51.6		ug/L	50.0		103	75-120			

				<u>Ce</u>	ertificate o	of Analysis	<u>s</u>				
Client Name:	SCS Engineers	-Winchester						Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.:	2023 City of Br	ristol Landfill Le	achate								
Submitted To:	Jennifer Robb										
oublinition to.			,	lalatila Ora	ania Compoundo I		Control				
			۰ ۱	olatile Org	anic Compounds I		Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BG	GE0279 - SW5030	B-MS								
Matrix Spike (BGE0279)-MS1)	Source	23E0301-0	1	Prepared & Anal	yzed: 05/05/2023					
Surr: Dibromofluoron	nethane (Surr)	45.3		ug/L	50.0		90.6	70-130			
Surr: Toluene-d8 (Su	ırr)	50.7		ug/L	50.0		101	70-130			
Matrix Spike Dup (BGE	0279-MSD1)	Source	23E0301-0	1	Prepared & Anal	yzed: 05/05/2023					
1,1,1,2-Tetrachloroet	hane	46.4	0.4	ug/L	50.0	BLOD	92.8	80-130	2.74	30	
1,1,1-Trichloroethane	e	50.9	1	ug/L	50.0	BLOD	102	65-130	4.96	30	
1,1,2,2-Tetrachloroet	hane	46.3	0.4	ug/L	50.0	BLOD	92.7	65-130	0.602	30	
1,1,2-Trichloroethane	e	48.2	1	ug/L	50.0	BLOD	96.3	75-125	7.59	30	
1,1-Dichloroethane		47.3	1	ug/L	50.0	BLOD	94.7	70-135	4.20	30	
1,1-Dichloroethylene		39.9	1	ug/L	50.0	BLOD	79.8	50-145	11.9	30	
1,1-Dichloropropene		56.6	1	ug/L	50.0	BLOD	113	75-135	4.54	30	
1,2,3-Trichlorobenze	ne	53.0	1	ug/L	50.0	BLOD	106	55-140	0.264	30	
1,2,3-Trichloropropa	ne	47.1	1	ug/L	50.0	BLOD	94.1	75-125	2.87	30	
1,2,4-Trichlorobenze	ne	49.5	1	ug/L	50.0	BLOD	98.9	65-135	4.33	30	
1,2,4-Trimethylbenze	ene	50.4	1	ug/L	50.0	BLOD	101	75-130	4.39	30	
1,2-Dibromo-3-chloro	opropane (DBCP)	55.9	1	ug/L	50.0	BLOD	112	50-130	0.107	30	
1,2-Dibromoethane (EDB)	46.3	1	ug/L	50.0	BLOD	92.6	80-120	2.54	30	
1,2-Dichlorobenzene	•	47.4	0.5	ug/L	50.0	BLOD	94.7	70-120	3.16	30	
1,2-Dichloroethane		42.9	1	ug/L	50.0	BLOD	85.7	70-130	4.25	30	
1,2-Dichloropropane		50.3	0.5	ug/L	50.0	BLOD	101	75-125	7.52	30	
1,3,5-Trimethylbenze	ene	48.6	1	ug/L	50.0	BLOD	97.3	75-124	4.68	30	
1,3-Dichlorobenzene		46.6	1	ug/L	50.0	BLOD	93.1	75-125	2.63	30	
1,3-Dichloropropane		47.6	1	ug/L	50.0	BLOD	95.2	75-125	7.63	30	
1,4-Dichlorobenzene		45.8	1	ug/L	50.0	BLOD	91.7	75-125	3.58	30	
2,2-Dichloropropane		47.1	1	ug/L	50.0	BLOD	94.3	70-135	6.86	30	

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 6/5/2023 4:26:49PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGE0279 - SW5030B-MS Matrix Spike Dup (BGE0279-MSD1) Source: 23E0301-01 Prepared & Analyzed: 05/05/2023 2-Butanone (MEK) 46.8 10 ug/L 50.0 BLOD 93.6 30-150 30 2-Chlorotoluene 46.9 1 ug/L 50.0 BLOD 93.7 75-125 4.53 30 5 BLOD 2-Hexanone (MBK) 41.9 ug/L 50.0 83.9 55-130 30 4-Chlorotoluene 47.8 1 50.0 BLOD 95.5 75-130 30 ug/L 3.11 4-Isopropyltoluene 50.6 1 ug/L 50.0 BI OD 101 75-130 3.06 30 5 BI OD 4-Methyl-2-pentanone (MIBK) 47.3 ug/L 50.0 94.6 60-135 1.55 30 Acetone 44.1 10 ug/L 50.0 BI OD 88.2 40-140 30 1 ug/L BLOD 109 Benzene 54.6 50.0 80-120 6.11 30 Bromobenzene 45.5 1 ug/L 50.0 BLOD 91.0 75-125 5.22 30 44.3 1 50.0 BLOD 88.6 65-130 5.66 30 Bromochloromethane ua/L Bromodichloromethane 48.7 0.5 50.0 BLOD 97.4 75-136 8.00 30 ug/L Bromoform 45.1 1 ug/L 50.0 BLOD 90.3 70-130 2.67 30 Bromomethane 44.0 1 50.0 BLOD 88.0 30-145 4.36 30 ug/L Carbon disulfide 53.7 10 ug/L 50.0 13.4 80.7 35-160 30 Carbon tetrachloride 47.3 1 50.0 BI OD 65-140 30 ug/L 94.7 12.4 45.3 1 Chlorobenzene ug/L 50.0 BLOD 90.7 80-120 4.88 30 Chloroethane 46.2 1 ug/L 50.0 BLOD 92.3 60-135 6.84 30 0.5 BLOD 82.9 65-135 30 Chloroform 41.4 ug/L 50.0 4.11 Chloromethane 71.9 1 50.0 BLOD 144 40-125 7.89 30 ug/L Μ cis-1,2-Dichloroethylene 47.8 1 ug/L 50.0 18.4 58.8 70-125 2.17 30 Μ 38.0 1 50.0 BLOD 47-136 6.96 30 cis-1,3-Dichloropropene ug/L 76.0 Dibromochloromethane 47.0 0.5 ug/L 50.0 BI OD 94.1 60-135 8.18 30 Dibromomethane 1 BI OD 50.7 ug/L 50.0 101 75-125 4.08 30 Dichlorodifluoromethane 63.6 1 ug/L 50.0 BI OD 127 30-155 6 24 30 1 Ethylbenzene 51.5 ug/L 50.0 BLOD 103 75-125 3.08 30

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 6/5/2023 4:26:49PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGE0279 - SW5030B-MS Matrix Spike Dup (BGE0279-MSD1) Source: 23E0301-01 Prepared & Analyzed: 05/05/2023 47.8 95.5 2.68 Hexachlorobutadiene 0.8 ug/L 50.0 BLOD 50-140 30 Isopropylbenzene 44.9 1 ug/L 50.0 BLOD 89.7 75-125 3.50 30 99.2 2 BLOD 99.2 m+p-Xylenes ug/L 100 75-130 4.31 30 Methylene chloride 4 50.0 BLOD 87.4 55-140 30 43.7 ug/L Methyl-t-butyl ether (MTBE) 47.3 1 ug/L 50.0 BI OD 94.6 65-125 2.94 30 Naphthalene 60.6 1 BI OD 55-140 0.412 ug/L 50.0 121 30 n-Butylbenzene 52.6 1 ug/L 50.0 BI OD 105 70-135 5 51 30 n-Propylbenzene 1 BLOD 99.8 70-130 5.13 49.9 ug/L 50.0 30 BLOD o-Xylene 48.7 1 ug/L 50.0 97.4 80-120 4.32 30 53.1 1 50.0 BLOD 106 70-125 1.90 30 sec-Butylbenzene ua/L Styrene 36.5 1 50.0 BLOD 72.9 65-135 3.56 30 ug/L tert-Butylbenzene 49.2 1 ug/L 50.0 BLOD 98.4 70-130 4.57 30 Tetrachloroethylene (PCE) 49.0 1 50.0 BLOD 97.9 51-231 4.71 30 ug/L 50.2 BLOD 5.94 Toluene 1 ug/L 50.0 100 75-120 30 trans-1,2-Dichloroethylene 48 4 1 50.0 BI OD 96.7 60-140 3.51 30 ug/L trans-1,3-Dichloropropene 39.9 1 BLOD 79.7 55-140 8.20 ug/L 50.0 30 Trichloroethylene 47.6 1 ug/L 50.0 9.40 76.3 70-125 9.70 30 53.8 1 50.0 BLOD 108 60-145 8.37 30 Trichlorofluoromethane ug/L Vinyl chloride 51.5 0.5 50.0 BLOD 103 50-145 13.9 30 ug/L Surr: 1,2-Dichloroethane-d4 (Surr) 49.0 ug/L 50.0 98.0 70-120 Surr: 4-Bromofluorobenzene (Surr) 51.4 50.0 103 75-120 ug/L 70-130 Surr: Dibromofluoromethane (Surr) 45.2 ug/L 50.0 90.4 Surr: Toluene-d8 (Surr) 50.6 ug/L 50.0 101 70-130 Batch BGE0314 - SW5030B-MS

Page 27 of 78

			<u>Cer</u>	tificate o	of Analysi	s				
Client Name: SCS I	Engineers-Winchester				_		Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.: 2023	City of Bristol Landfill L	eachate								
	fer Robb									
		,	International Action	ia Compoundo I		u Control				
		,	volatile Organ		oy GCMS - Qualit	y Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
			Units	Level	Result	JUNEO	Linito		Linint	Quai
	Batch BGE0314 - SW503	NR-INI2								
Blank (BGE0314-BLK1) 2-Butanone (MEK)	ND	10.0	ug/L	repared & Anal	yzed: 05/08/2023					
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr) 54.6		ug/L	50.0		109	70-120			
Surr: 4-Bromofluorobenzene (ug/L	50.0		97.1	75-120			
Surr: Dibromofluoromethane ((Surr) 49.5		ug/L	50.0		99.1	70-130			
Surr: Toluene-d8 (Surr)	50.4		ug/L	50.0		101	70-130			
LCS (BGE0314-BS1)			F	Prepared & Anal	yzed: 05/08/2023					
1,1,1,2-Tetrachloroethane	51.0	0.4	ug/L	50.0		102	80-130			
1,1,1-Trichloroethane	53.4	1	ug/L	50.0		107	65-130			
1,1,2,2-Tetrachloroethane	48.9	0.4	ug/L	50.0		97.7	65-130			
1,1,2-Trichloroethane	49.7	1	ug/L	50.0		99.3	75-125			
1,1-Dichloroethane	51.5	1	ug/L	50.0		103	70-135			
1,1-Dichloroethylene	44.3	1	ug/L	50.0		88.6	70-130			
1,1-Dichloropropene	55.7	1	ug/L	50.0		111	75-135			
1,2,3-Trichlorobenzene	43.7	1	ug/L	50.0		87.4	55-140			
1,2,3-Trichloropropane	49.7	1	ug/L	50.0		99.4	75-125			
1,2,4-Trichlorobenzene	49.6	1	ug/L	50.0		99.2	65-135			
1,2,4-Trimethylbenzene	58.3	1	ug/L	50.0		117	75-130			
1,2-Dibromo-3-chloropropane	(DBCP) 55.2	1	ug/L	50.0		110	50-130			
1,2-Dibromoethane (EDB)	49.2	1	ug/L	50.0		98.4	80-120			

			Ce	ertificate o	of Analysi	is				
Client Name:	SCS Engineers-Wind	hester			-		Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.:	2023 City of Bristol L	andfill Leachate	1							
-	Jennifer Robb									
Submitted To:										
			Volatile Org	anic Compounds	by GCMS - Quali	ty Control				
				Enthalpy A	nalytical					
Analyte	Re	esult LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGE0314									
LCS (BGE0314-BS1)	Balcii DGEU314	- 3443030D-1413		Propored & Apo	lyzed: 05/08/2023					
1,2-Dichlorobenzene	2	55.0 0.5	ug/L	50.0	iyzeu. 05/06/2023	110	70-120			
1,2-Dichloroethane		47.8 1	ug/L ug/L	50.0		95.5	70-120			
1,2-Dichloropropane		54.0 0.5	ug/L	50.0		108	75-125			
1,3,5-Trimethylbenz		56.3 1	ug/L	50.0		113	75-125			
1,3-Dichlorobenzene		53.4 1	ug/L	50.0		107	75-125			
1,3-Dichloropropane		49.6 1	ug/L	50.0		99.1	75-125			
1,4-Dichlorobenzene		52.7 1	ug/L	50.0		105	75-125			
2,2-Dichloropropane		52.7 1	ug/L	50.0		105	70-135			
2-Butanone (MEK)		41.6 10	ug/L	50.0		83.1	30-150			
2-Chlorotoluene		54.2 1	ug/L	50.0		108	75-125			
2-Hexanone (MBK)		42.7 5	ug/L	50.0		85.4	55-130			
4-Chlorotoluene		53.2 1	ug/L	50.0		106	75-130			
4-Isopropyltoluene		58.1 1	ug/L	50.0		116	75-130			
4-Methyl-2-pentanor	ne (MIBK)	44.0 5	ug/L	50.0		88.1	60-135			
Acetone		45.7 10	ug/L	50.0		91.4	40-140			
Benzene		54.3 1	ug/L	50.0		109	80-120			
Bromobenzene		51.0 1	ug/L	50.0		102	75-125			
Bromochloromethan	ie .	48.1 1	ug/L	50.0		96.2	65-130			
Bromodichlorometha	ane	52.1 0.5	ug/L	50.0		104	75-120			
Bromoform		49.8 1	ug/L	50.0		99.6	70-130			
Bromomethane		57.0 1	ug/L	50.0		114	30-145			
Carbon disulfide		44.9 10	ug/L	50.0		89.9	35-160			
Carbon tetrachloride	9	48.5 1	ug/L	50.0		97.0	65-140			
Chlorobenzene		49.8 1	ug/L	50.0		99.6	80-120			
Chloroethane		51.8 1	ug/L	50.0		104	60-135			

				Cei	rtificate o	of Analysi	S				
Client Name:	SCS Engineers	s-Winchester				-		Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.:	2023 City of B	ristol Landfill L	eachate								
Submitted To:	Jennifer Robb										
Submitted 10.							.				
			1	/olatile Orgar	nic Compounds	by GCMS - Qualit	y Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch B	GE0314 - SW503	0B-MS								
LCS (BGE0314-BS1)				I	Prepared & Anal	yzed: 05/08/2023					
Chloroform		41.0	0.5	ug/L	50.0		82.0	65-135			
Chloromethane		80.5	1	ug/L	50.0		161	40-125			L
cis-1,2-Dichloroethyl	lene	47.7	1	ug/L	50.0		95.5	70-125			
cis-1,3-Dichloroprop	ene	40.8	1	ug/L	50.0		81.7	70-130			
Dibromochlorometha	ane	48.8	0.5	ug/L	50.0		97.6	60-135			
Dibromomethane		51.5	1	ug/L	50.0		103	75-125			
Dichlorodifluorometh	nane	66.6	1	ug/L	50.0		133	30-155			
Ethylbenzene		56.7	1	ug/L	50.0		113	75-125			
Hexachlorobutadiene	e	49.1	0.8	ug/L	50.0		98.2	50-140			
lsopropylbenzene		50.3	1	ug/L	50.0		101	75-125			
m+p-Xylenes		110	2	ug/L	100		110	75-130			
Methylene chloride		45.1	4	ug/L	50.0		90.1	55-140			
Methyl-t-butyl ether ((MTBE)	51.6	1	ug/L	50.0		103	65-125			
Naphthalene		49.5	1	ug/L	50.0		99.1	55-140			
n-Butylbenzene		61.9	1	ug/L	50.0		124	70-135			
n-Propylbenzene		57.9	1	ug/L	50.0		116	70-130			
o-Xylene		53.6	1	ug/L	50.0		107	80-120			
sec-Butylbenzene		61.2	1	ug/L	50.0		122	70-125			
Styrene		40.2	1	ug/L	50.0		80.4	65-135			
tert-Butylbenzene		56.8	1	ug/L	50.0		114	70-130			
Tetrachloroethylene	(PCE)	53.3	1	ug/L	50.0		107	45-150			
Toluene		51.4	1	ug/L	50.0		103	75-120			
trans-1,2-Dichloroeth	hylene	46.8	1	ug/L	50.0		93.7	60-140			
trans-1,3-Dichloropro	•	42.3	1	ug/L	50.0		84.6	55-140			
Trichloroethylene		48.8	1	ug/L	50.0		97.6	70-125			

			<u>Ce</u>	ertificate o	of Analysi	is				
Client Name: S	CS Engineers-Winch	ester					Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.: 2	2023 City of Bristol La	ndfill Leachate								
	ennifer Robb									
Submitted TO. 0		,				h . O trad				
		N N	/olatile Org	anic Compounds	by GCMS - Quali	ty Control				
				Enthalpy A	nalytical					
	Dec		1.1	Spike	Source	% D E0	%REC		RPD	Qual
Analyte	Resi	ult LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGE0314 -	SW5030B-MS								
LCS (BGE0314-BS1)				•	lyzed: 05/08/2023					
Trichlorofluoromethane	63		ug/L	50.0		127	60-145			
Vinyl chloride	56	6.7 0.5	ug/L	50.0		113	50-145			
Surr: 1,2-Dichloroethane	e-d4 (Surr) 56	6.4	ug/L	50.0		113	70-120			
Surr: 4-Bromofluoroben:	zene (Surr) 49	9.9	ug/L	50.0		99.8	75-120			
Surr: Dibromofluoromet	hane (Surr) 45	5.6	ug/L	50.0		91.2	70-130			
Surr: Toluene-d8 (Surr)	50).8	ug/L	50.0		102	70-130			
Matrix Spike (BGE0314-M	S1)	Source: 23E0452-0)4	Prepared & Ana	lyzed: 05/08/2023	1				
1,1,1,2-Tetrachloroethar	ne 49	0.2 0.4	ug/L	50.0	BLOD	98.5	80-130			
1,1,1-Trichloroethane	49	.9 1	ug/L	50.0	BLOD	99.7	65-130			
1,1,2,2-Tetrachloroethar	ne 46	0.4	ug/L	50.0	BLOD	92.4	65-130			
1,1,2-Trichloroethane	47	.0 1	ug/L	50.0	BLOD	94.0	75-125			
1,1-Dichloroethane	46	6.7 1	ug/L	50.0	BLOD	93.4	70-135			
1,1-Dichloroethylene	41	.7 1	ug/L	50.0	BLOD	83.4	50-145			
1,1-Dichloropropene	54	.2 1	ug/L	50.0	BLOD	108	75-135			
1,2,3-Trichlorobenzene	47	.5 1	ug/L	50.0	BLOD	95.1	55-140			
1,2,3-Trichloropropane	46	6.5 1	ug/L	50.0	BLOD	93.0	75-125			
1,2,4-Trichlorobenzene	47	.5 1	ug/L	50.0	BLOD	95.1	65-135			
1,2,4-Trimethylbenzene			ug/L	50.0	BLOD	117	75-130			
1,2-Dibromo-3-chloropro	opane (DBCP) 52	.4 1	ug/L	50.0	BLOD	105	50-130			
1,2-Dibromoethane (ED	B) 46	6.9 1	ug/L	50.0	BLOD	93.8	80-120			
1,2-Dichlorobenzene	51	.7 0.5	ug/L	50.0	BLOD	103	70-120			
1,2-Dichloroethane	41	.0 1	ug/L	50.0	BLOD	82.1	70-130			
1,2-Dichloropropane	50	0.0 0.5	ug/L	50.0	BLOD	99.9	75-125			
1,3,5-Trimethylbenzene	53	6.9 1	ug/L	50.0	BLOD	108	75-124			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 6/5/2023 4:26:49PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGE0314 - SW5030B-MS Matrix Spike (BGE0314-MS1) Prepared & Analyzed: 05/08/2023 Source: 23E0452-04 1.3-Dichlorobenzene 50.6 1 ug/L 50.0 BLOD 101 75-125 1,3-Dichloropropane 46.8 1 ug/L 50.0 BLOD 93.6 75-125 BLOD 75-125 1,4-Dichlorobenzene 50.6 1 ug/L 50.0 101 41.8 1 50.0 BLOD 83.5 70-135 2.2-Dichloropropane ug/L 2-Butanone (MEK) 39.8 10 ug/L 50.0 BI OD 79.7 30-150 52.3 1 BI OD 75-125 2-Chlorotoluene ug/L 50.0 105 2-Hexanone (MBK) 40.5 5 ug/L 50.0 BI OD 80.9 55-130 1 BLOD 106 75-130 4-Chlorotoluene 53.1 ug/L 50.0 BLOD 4-Isopropyltoluene 52.8 1 ug/L 50.0 106 75-130 42.2 5 50.0 BLOD 84.4 60-135 4-Methyl-2-pentanone (MIBK) ua/L 40.1 10 50.0 7.46 65.3 40-140 Acetone ug/L Benzene 56.0 1 ug/L 50.0 BLOD 112 80-120 47.8 1 50.0 BLOD 95.6 75-125 Bromobenzene ug/L 1 BLOD 65-130 Bromochloromethane 44.6 ug/L 50.0 89.1 Bromodichloromethane 48.3 0.5 50.0 BI OD 96.6 75-136 ug/L Bromoform 46.0 BLOD 92.0 70-130 1 ug/L 50.0 Bromomethane 40.6 1 ug/L 50.0 BLOD 81.3 30-145 45.1 50.0 BLOD 90.3 35-160 Carbon disulfide 10 ug/L Carbon tetrachloride 48.4 1 50.0 BLOD 96.7 65-140 ug/L Chlorobenzene 49.0 1 ug/L 50.0 BLOD 98.0 80-120 Chloroethane 48.5 1 50.0 BLOD 97.0 60-135 ug/L Chloroform 39.7 0.5 ug/L 50.0 BI OD 79.5 65-135 Chloromethane 1 BLOD 68.8 ug/L 50.0 138 40-125 Μ cis-1,2-Dichloroethylene 45.4 1 ug/L 50.0 0.49 89.8 70-125 37.4 1 ug/L cis-1,3-Dichloropropene 50.0 BLOD 74.8 47-136

			C	ertificate o	of Analysi	<u>s</u>				
Client Name: SO	CS Engineers-Winchester						Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.: 2	Your of the second of t									
	•									
Submitted to: Je										
		١	/olatile Org	janic Compounds I	by GCMS - Quality	/ Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	•		%REC		RPD		Qual
	Batch BGE0314 - SW503	30B-MS								
Matrix Spike (BGE0314-MS)4	Prepared & Anal	vzed: 05/08/2023					
Dibromochloromethane				-	-	91.4	60-135			
Dibromomethane			-				75-125			
Dichlorodifluoromethane	55.5	1	-	50.0						
Ethylbenzene	55.8	1	-	50.0	BLOD	112	75-125			
Hexachlorobutadiene	33.3	0.8	ug/L	50.0	BLOD	66.6	50-140			
Isopropylbenzene	53.8	1	ug/L	50.0	7.71	92.3	75-125			
m+p-Xylenes	105	2	ug/L	100	BLOD	105	75-130			
Methylene chloride	42.6	4	ug/L	50.0	BLOD	85.2	55-140			
Methyl-t-butyl ether (MTB	BE) 44.7	1	ug/L	50.0	BLOD	89.5	65-125			
Naphthalene	76.8	1	ug/L	50.0	BLOD	154	55-140			Μ
n-Butylbenzene	57.4	1	ug/L	50.0	5.24	104	70-135			
n-Propylbenzene	62.6	1	ug/L	50.0	5.86	113	70-130			
o-Xylene	51.6	1	ug/L	50.0		103	80-120			
sec-Butylbenzene	65.8	1	ug/L	50.0	13.4	105				
Styrene	38.7	1	ug/L	50.0	BLOD	77.4	65-135			
tert-Butylbenzene	54.8	1	ug/L	50.0	1.36	107	70-130			
Tetrachloroethylene (PCE	52.1	1	ug/L	50.0		104				
Toluene		1	ug/L	50.0	BLOD	99.4	75-120			
trans-1,2-Dichloroethylen		1	ug/L			91.1	60-140			
trans-1,3-Dichloropropen	e 38.3	1	ug/L	50.0	BLOD	76.6	55-140			
Trichloroethylene	46.0	1	ug/L	50.0		92.0	70-125			
Trichlorofluoromethane	52.4	1	ug/L	50.0	BLOD	105	60-145			
Vinyl chloride	47.0	0.5	ug/L	50.0	BLOD	94.1	50-145			
Surr: 1,2-Dichloroethane-	-d4 (Surr) 52.5		ug/L	50.0		105	70-120			
Surr: 4-Bromofluorobenze	ene (Surr) 48.6		ug/L	50.0		97.2	75-120			

				<u>Ce</u>	ertificate o	of Analysis	<u>s</u>				
Client Name:	ne: SCS Engineers-Winchester				Date				6/5/2023	4:26:49PM	
Client Site I.D.: 2023 City of Bristol Landfill Leachate											
	Jennifer Robb										
Submitted 10.			,				0 1 1				
			\ \	olatile Org	anic Compounds b	by GCMS - Quality	Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BG	6E0314 - SW5030	3-MS								
Matrix Spike (BGE0314-	MS1)	Source:	23E0452-0	4	Prepared & Anal	yzed: 05/08/2023					
Surr: Dibromofluorom	ethane (Surr)	45.9		ug/L	50.0		91.8	70-130			
Surr: Toluene-d8 (Sur	r)	50.4		ug/L	50.0		101	70-130			
Matrix Spike Dup (BGE0)314-MSD1)	Source:	23E0452-0	4	Prepared & Anal	yzed: 05/08/2023					
1,1,1,2-Tetrachloroeth	nane	48.5	0.4	ug/L	50.0	BLOD	97.0	80-130	1.51	30	
1,1,1-Trichloroethane		47.8	1	ug/L	50.0	BLOD	95.6	65-130	4.24	30	
1,1,2,2-Tetrachloroethane		48.0	0.4	ug/L	50.0	BLOD	96.0	65-130	3.84	30	
1,1,2-Trichloroethane		48.7	1	ug/L	50.0	BLOD	97.4	75-125	3.57	30	
1,1-Dichloroethane		46.5	1	ug/L	50.0	BLOD	93.0	70-135	0.429	30	
1,1-Dichloroethylene		43.6	1	ug/L	50.0	BLOD	87.3	50-145	4.48	30	
1,1-Dichloropropene		53.0	1	ug/L	50.0	BLOD	106	75-135	2.18	30	
1,2,3-Trichlorobenzen	e	55.6	1	ug/L	50.0	BLOD	111	55-140	15.6	30	
1,2,3-Trichloropropan	e	49.2	1	ug/L	50.0	BLOD	98.4	75-125	5.66	30	
1,2,4-Trichlorobenzen	e	53.2	1	ug/L	50.0	BLOD	106	65-135	11.2	30	
1,2,4-Trimethylbenzer	ne	58.0	1	ug/L	50.0	BLOD	116	75-130	0.756	30	
1,2-Dibromo-3-chloro	propane (DBCP)	57.8	1	ug/L	50.0	BLOD	116	50-130	9.76	30	
1,2-Dibromoethane (E	EDB)	48.5	1	ug/L	50.0	BLOD	96.9	80-120	3.31	30	
1,2-Dichlorobenzene		53.5	0.5	ug/L	50.0	BLOD	107	70-120	3.42	30	
1,2-Dichloroethane		39.8	1	ug/L	50.0	BLOD	79.7	70-130	2.92	30	
1,2-Dichloropropane		51.8	0.5	ug/L	50.0	BLOD	104	75-125	3.66	30	
1,3,5-Trimethylbenzer	ne	55.5	1	ug/L	50.0	BLOD	111	75-124	3.00	30	
1,3-Dichlorobenzene		53.4	1	ug/L	50.0	BLOD	107	75-125	5.25	30	
1,3-Dichloropropane		48.3	1	ug/L	50.0	BLOD	96.5	75-125	3.14	30	
1,4-Dichlorobenzene		52.3	1	ug/L	50.0	BLOD	105	75-125	3.32	30	
2,2-Dichloropropane		41.5	1	ug/L	50.0	BLOD	83.0	70-135	0.601	30	

Certificate of Analysis SCS Engineers-Winchester Date Issued: 6/5/2023 4:26:49PM Client Name: 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGE0314 - SW5030B-MS Matrix Spike Dup (BGE0314-MSD1) Source: 23E0452-04 Prepared & Analyzed: 05/08/2023 2-Butanone (MEK) 36.0 10 ug/L 50.0 BLOD 71.9 30-150 10.2 30 2-Chlorotoluene 55.0 1 ug/L 50.0 BLOD 110 75-125 5.05 30 5 BLOD 2.92 2-Hexanone (MBK) 41.7 ug/L 50.0 83.3 55-130 30 4-Chlorotoluene 53.8 1 50.0 BLOD 108 75-130 1.33 30 ug/L 4-Isopropyltoluene 54 6 1 ug/L 50.0 BI OD 109 75-130 3.24 30 5 BLOD 7.30 4-Methyl-2-pentanone (MIBK) 45.4 ug/L 50.0 90.8 60-135 30 Acetone 44 7 10 ug/L 50.0 7 46 74.5 40-140 10.9 30 55.5 1 ug/L BLOD Benzene 50.0 111 80-120 0.843 30 Bromobenzene 49.5 1 ug/L 50.0 BLOD 99.1 75-125 3.62 30 45.6 1 50.0 BLOD 91.1 65-130 2.22 30 Bromochloromethane ua/L Bromodichloromethane 49.0 0.5 50.0 BLOD 98.0 75-136 1.50 30 ug/L Bromoform 48.0 1 ug/L 50.0 BLOD 95.9 70-130 4.13 30 Bromomethane 41.3 1 50.0 BLOD 82.7 30-145 1.68 30 ug/L Carbon disulfide BLOD 6.59 42.3 10 ug/L 50.0 84.5 35-160 30 Carbon tetrachloride 48.5 1 50.0 BI OD 97.1 65-140 0.330 30 ug/L 50.0 1 2.04 Chlorobenzene ug/L 50.0 BLOD 100 80-120 30 Chloroethane 44.8 1 ug/L 50.0 BLOD 89.6 60-135 7.96 30 40.2 0.5 BLOD 80.5 65-135 30 Chloroform ug/L 50.0 1.28 Chloromethane 67.2 1 50.0 BLOD 134 40-125 2.49 30 Μ ug/L cis-1,2-Dichloroethylene 46.2 1 ug/L 50.0 0.49 91.5 70-125 1.83 30 38.7 1 50.0 BLOD 77.5 47-136 3.55 30 cis-1,3-Dichloropropene ug/L Dibromochloromethane 48.0 0.5 ug/L 50.0 BI OD 96.0 60-135 4.85 30 Dibromomethane 1 BI OD 49.8 ug/L 50.0 99.6 75-125 2.77 30 Dichlorodifluoromethane 58.0 1 ug/L 50.0 BI OD 116 30-155 4 4 9 30 1 Ethylbenzene 56.0 50.0 BLOD 112 75-125 0.394 30 ug/L

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 6/5/2023 4:26:49PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGE0314 - SW5030B-MS Matrix Spike Dup (BGE0314-MSD1) Prepared & Analyzed: 05/08/2023 Source: 23E0452-04 40.8 Hexachlorobutadiene 0.8 ug/L 50.0 BLOD 81.6 50-140 20.2 30 Isopropylbenzene 55.5 1 ug/L 50.0 7.71 95.5 75-125 2.98 30 2 BLOD 75-130 0.482 m+p-Xylenes 106 ug/L 100 106 30 Methylene chloride 44.0 4 50.0 BLOD 87.9 55-140 3.14 30 ug/L Methyl-t-butyl ether (MTBE) 45.7 1 ug/L 50.0 BI OD 91.5 65-125 2 21 30 Naphthalene 73.8 1 BLOD 55-140 4.02 ug/L 50.0 148 30 Μ n-Butylbenzene 58.9 1 ug/L 50.0 524 107 70-135 2 56 30 n-Propylbenzene 1 5.86 70-130 2.76 64.3 ug/L 50.0 117 30 2.83 o-Xylene 53.1 1 ug/L 50.0 BLOD 106 80-120 30 69.3 1 50.0 13.4 112 70-125 5.20 30 sec-Butylbenzene ua/L Styrene 39.5 1 50.0 BLOD 79.0 65-135 2.12 30 ug/L tert-Butylbenzene 56.0 1 ug/L 50.0 1.36 109 70-130 2.27 30 Tetrachloroethylene (PCE) 52.8 1 50.0 BI OD 106 51-231 1.28 30 ug/L BLOD 2.91 Toluene 51.2 1 ug/L 50.0 102 75-120 30 trans-1,2-Dichloroethylene 48.6 1 50.0 BI OD 97.1 60-140 6 4 4 30 ug/L trans-1,3-Dichloropropene 40.0 1 BLOD 79.9 55-140 4.22 30 ug/L 50.0 Trichloroethylene 47.6 1 ug/L 50.0 BLOD 95.2 70-125 3.48 30 51.7 1 50.0 BLOD 103 60-145 30 Trichlorofluoromethane ug/L 1.31 Vinyl chloride 48.4 0.5 50.0 BLOD 96.7 50-145 2.77 30 ug/L Surr: 1,2-Dichloroethane-d4 (Surr) 50.5 ug/L 50.0 101 70-120 Surr: 4-Bromofluorobenzene (Surr) 47.5 50.0 95.0 75-120 ug/L 70-130 Surr: Dibromofluoromethane (Surr) 44.9 ug/L 50.0 89.7 Surr: Toluene-d8 (Surr) 49.6 ug/L 50.0 99.3 70-130

				Ce	rtificate o	of Analysi	s				
Client Name:	SCS Enginee	rs-Winchester						Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.:	2023 City of	Bristol Landfill L	eachate								
Submitted To:	Jennifer Robb)									
oublinition to.			Sou	mivolatila Or	ania Compound	ls by GCMS - Qu	ality Control				
			Sei			-	anty Control				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch I	BGE0310 - SW351	0C/EPA600	-MS							
Blank (BGE0310-BLK	1)				Prepared & Anal	yzed: 05/08/2023					
Anthracene		ND	10.0	ug/L							
Surr: 2,4,6-Tribrom	ophenol (Surr)	29.0		ug/L	100		29.0	5-136			
Surr: 2-Fluorobiphe	nyl (Surr)	17.6		ug/L	50.0		35.1	9-117			
Surr: 2-Fluorophend	ol (Surr)	25.5		ug/L	100		25.5	5-60			
Surr: Nitrobenzene-d5 (Surr) 19.7			ug/L	50.0		39.4	5-151				
Surr: Phenol-d5 (Surr) 15.0			ug/L	100		15.0	5-60				
Surr: p-Terphenyl-d	14 (Surr)	39.4		ug/L	50.0		78.9	5-141			
LCS (BGE0310-BS1)					Prepared & Anal	yzed: 05/08/2023					
1,2,4-Trichlorobenz	ene	27.8	10.0	ug/L	50.0		55.6	57-130			L
1,2-Dichlorobenzen	e	24.8	10.0	ug/L	50.0		49.6	22-115			
1,3-Dichlorobenzen	e	25.6	10.0	ug/L	50.0		51.2	22-112			
1,4-Dichlorobenzen	e	27.5	10.0	ug/L	50.0		55.0	13-112			
2,4,6-Trichlorophen	ol	37.4	10.0	ug/L	50.0		74.7	52-129			
2,4-Dichlorophenol		33.1	10.0	ug/L	50.0		66.3	53-122			
2,4-Dimethylphenol		35.6	5.00	ug/L	50.0		71.3	42-120			
2,4-Dinitrophenol		33.1	50.0	ug/L	50.0		66.2	48-127			
2,4-Dinitrotoluene		39.0	10.0	ug/L	50.0		78.0	10-173			
2,6-Dinitrotoluene		34.3	10.0	ug/L	50.0		68.6	68-137			
2-Chloronaphthalen	ie	37.4	10.0	ug/L	50.0		74.8	65-120			
2-Chlorophenol		39.3	10.0	ug/L	50.0		78.6	36-120			
2-Nitrophenol		35.8	10.0	ug/L	50.0		71.6	45-167			
3,3'-Dichlorobenzidi	ine	18.1	10.0	ug/L	50.0		36.2	10-213			
4,6-Dinitro-2-methy	Iphenol	41.9	50.0	ug/L	50.0		83.8	53-130			
4-Bromophenyl phe		31.9	10.0	ug/L	50.0		63.8	65-120			L

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 6/5/2023 4:26:49PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGE0310 - SW3510C/EPA600-MS LCS (BGE0310-BS1) Prepared & Analyzed: 05/08/2023 71.5 4-Chlorophenyl phenyl ether 35.8 10.0 ug/L 50.0 38-145 4-Nitrophenol 21.4 50.0 ug/L 50.0 42.7 13-129 39.6 50.0 79.2 60-132 Acenaphthene 10.0 ug/L Acenaphthylene 41.0 50.0 81.9 54-126 10.0 ug/L Acetophenone 37.8 20.0 ug/L 50.0 75.5 0-200 Anthracene 39.7 794 43-120 10.0 ug/L 50.0 Benzo (a) anthracene 43.5 10.0 ug/L 50.0 87.1 42-133 104 32-148 Benzo (a) pyrene 51.8 10.0 ua/L 50.0 Benzo (b) fluoranthene 60.3 10.0 ug/L 50.0 121 42-140 36.2 50.0 72.4 10-195 Benzo (g,h,i) perylene 10.0 ua/L Benzo (k) fluoranthene 58.7 10.0 ug/L 50.0 117 25-146 bis (2-Chloroethoxy) methane 40.3 10.0 ug/L 50.0 80.7 49-165 bis (2-Chloroethyl) ether 38.0 10.0 50.0 76.1 43-126 ug/L 35.9 50.0 63-139 2,2'-Oxybis (1-chloropropane) 10.0 ug/L 71.8 bis (2-Ethylhexyl) phthalate 58.4 50.0 117 29-137 10.0 ug/L 59.6 50.0 10-140 Butyl benzyl phthalate 10.0 ug/L 119 Chrysene 48.3 10.0 ug/L 50.0 96.6 44-140 29.8 50.0 59.7 10-200 Dibenz (a,h) anthracene 10.0 ug/L Diethyl phthalate 44.9 10.0 50.0 89.7 10-120 ug/L Dimethyl phthalate 40.9 10.0 ug/L 50.0 81.8 10-120 Di-n-butyl phthalate 48.9 50.0 97.8 10-120 10.0 ug/L Di-n-octyl phthalate 111 10.0 ug/L 50.0 223 19-132 L Fluoranthene 89.4 43-121 44.7 10.0 ug/L 50.0 Fluorene 41.5 10.0 ug/L 50.0 83.0 70-120 32.1 64.2 10-142 Hexachlorobenzene 1.00 ug/L 50.0

			<u>C</u>	ertificate o	of Analysi	<u>s</u>				
Client Name: SO	CS Engineers-Winche	ester			-		Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.: 20	023 City of Bristol La	ndfill Leachate								
Submitted To: Je	nnifer Robb									
		0				lite O antra l				
		Sei	nivolatile (Organic Compound	IS DY GUMS - Qua	ality Control				
				Enthalpy A	nalytical					
Analyte	Resu	lt LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGE0310 - S	SW3510C/EPA600	-MS							
LCS (BGE0310-BS1)				Prepared & Anal	yzed: 05/08/2023					
Hexachlorobutadiene	24.	6 10.0	ug/L	50.0		49.2	38-120			
Hexachlorocyclopentadie	ne 10.	5 10.0	ug/L	50.0		21.0	10-76			
Hexachloroethane	23.	8 10.0	ug/L	50.0		47.7	55-120			L
Indeno (1,2,3-cd) pyrene	31.	1 10.0	ug/L	50.0		62.2	10-151			
Isophorone	21.	1 10.0	ug/L	50.0		42.2	47-180			L
Naphthalene	37.	2 5.00	ug/L	50.0		74.4	36-120			
Nitrobenzene	41.	4 10.0	ug/L	50.0		82.8	54-158			
n-Nitrosodimethylamine	22.	1 10.0	ug/L	50.0		44.1	10-85			
n-Nitrosodi-n-propylamine	e 44.	1 10.0	ug/L	50.0		88.2	14-198			
n-Nitrosodiphenylamine	32.	6 10.0	ug/L	50.0		65.2	12-97			
p-Chloro-m-cresol	32.	9 10.0	ug/L	50.0		65.8	10-142			
Pentachlorophenol	42.	4 20.0	ug/L	50.0		84.7	38-152			
Phenanthrene	46.	8 10.0	ug/L	50.0		93.7	65-120			
Phenol	14.	5 10.0	ug/L	50.5		28.7	17-120			
Pyrene	60.	4 10.0	ug/L	50.0		121	70-120			L
Pyridine	32.	1 10.0	ug/L	50.0		64.2	10-103			
Surr: 2,4,6-Tribromophen	ol (Surr) 84.	0	ug/L	100		84.0	5-136			
Surr: 2-Fluorobiphenyl (S	. ,	0	ug/L	50.0		84.0	9-117			
Surr: 2-Fluorophenol (Su		5	ug/L	100		45.5	5-60			
Surr: Nitrobenzene-d5 (S	urr) 43.	3	ug/L	50.0		86.6	5-151			
Surr: Phenol-d5 (Surr)	30.	1	ug/L	100		30.1	5-60			
Surr: p-Terphenyl-d14 (S	urr) 62.	6	ug/L	50.0		125	5-141			
Matrix Spike (BGE0310-MS	1)	Source: 23E0403-()5	Prepared & Anal	yzed: 05/08/2023					
1,2,4-Trichlorobenzene	24	3 100	ug/L	500	BLOD	48.6	44-142			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 6/5/2023 4:26:49PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGE0310 - SW3510C/EPA600-MS Prepared & Analyzed: 05/08/2023 Matrix Spike (BGE0310-MS1) Source: 23E0403-05 208 41.5 1.2-Dichlorobenzene 100 ug/L 500 BLOD 22-115 1.3-Dichlorobenzene 217 100 ug/L 500 BLOD 43.4 22-112 233 500 BLOD 46.5 1.4-Dichlorobenzene 100 ug/L 13-112 2.4.6-Trichlorophenol 321 100 500 BLOD 64.2 37-144 ug/L 2,4-Dichlorophenol 274 100 ug/L 500 BI OD 54.8 39-135 BI OD 61.2 32-120 2,4-Dimethylphenol 306 50.0 ua/L 500 2,4-Dinitrophenol 306 500 ug/L 500 BI OD 61.3 39-139 BLOD 69.1 10-191 2.4-Dinitrotoluene 346 100 ua/L 500 2.6-Dinitrotoluene BLOD 292 100 ug/L 500 58.4 50-158 340 500 BLOD 67.9 60-120 2-Chloronaphthalene 100 ua/L 2-Chlorophenol 321 100 ug/L 500 BLOD 64.1 23-134 2-Nitrophenol 307 100 ug/L 500 BLOD 61.4 29-182 3,3'-Dichlorobenzidine 156 100 500 BLOD 31.1 10-262 ug/L BLOD 4,6-Dinitro-2-methylphenol 396 500 ug/L 500 79.2 10-181 4-Bromophenyl phenyl ether 281 500 40.1 48 2 53-127 М 100 ug/L BLOD 63.7 25-158 4-Chlorophenyl phenyl ether 319 100 ug/L 500 4-Nitrophenol 204 500 ug/L 500 BLOD 40.8 10-132 500 BLOD 70.0 47-145 Acenaphthene 350 100 ug/L Acenaphthylene 350 100 500 BLOD 70.1 33-145 ug/L BLOD 0-200 Acetophenone 305 200 ug/L 500 61.1 345 100 500 BLOD 69.0 27-133 Anthracene ua/L Benzo (a) anthracene 379 100 ug/L 500 BI OD 75.8 33-143 BI OD 17-163 Benzo (a) pyrene 455 100 ug/L 500 91.1 Benzo (b) fluoranthene 485 100 ug/L 500 BI OD 97.0 24-159 500 48.0 Benzo (g,h,i) perylene 240 100 ug/L BLOD 10-219

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 6/5/2023 4:26:49PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGE0310 - SW3510C/EPA600-MS Matrix Spike (BGE0310-MS1) Source: 23E0403-05 Prepared & Analyzed: 05/08/2023 Benzo (k) fluoranthene 511 100 ug/L 500 BLOD 102 11-162 bis (2-Chloroethoxy) methane 316 100 ug/L 500 BLOD 63.2 33-184 294 500 BLOD bis (2-Chloroethyl) ether 100 ug/L 58.9 12-158 2,2'-Oxybis (1-chloropropane) 286 500 BLOD 57.3 36-166 100 ug/L bis (2-Ethylhexyl) phthalate 454 100 ug/L 500 BI OD 90.8 10-158 BI OD 95.9 10-152 Butyl benzyl phthalate 479 100 ua/L 500 Chrysene 416 100 ug/L 500 BI OD 83.2 17-169 BLOD 46.2 10-227 Dibenz (a,h) anthracene 231 100 ua/L 500 Diethyl phthalate 378 100 ug/L 500 BLOD 75.5 10-120 354 500 BLOD 70.8 10-120 Dimethyl phthalate 100 ua/L Di-n-butyl phthalate 424 100 500 BLOD 84.8 10-120 ug/L Di-n-octyl phthalate 1010 100 ug/L 500 BLOD 201 10-146 Μ Fluoranthene 407 500 BLOD 81.3 26-137 100 ug/L BLOD Fluorene 371 100 ug/L 500 74.2 59-121 Hexachlorobenzene 280 500 BI OD 56.0 10-152 10.0 ug/L BLOD 46.4 24-120 Hexachlorobutadiene 232 100 ug/L 500 Hexachlorocyclopentadiene 110 100 ug/L 500 BLOD 22.1 10-90 235 500 BLOD 47.0 Hexachloroethane 100 ug/L 40-120 Indeno (1,2,3-cd) pyrene 232 100 500 BLOD 46.4 10-171 ug/L Isophorone 165 100 ug/L 500 BLOD 33.0 21-196 50.0 500 1080 19.7 21-133 М Naphthalene 1180 ua/L Nitrobenzene 333 100 ug/L 500 BI OD 66.6 35-180 BLOD 40.0 10-85 n-Nitrosodimethylamine 200 100 ug/L 500 n-Nitrosodi-n-propylamine 343 100 ug/L 500 BI OD 68.6 10-230 57.3 n-Nitrosodiphenylamine 287 100 ug/L 500 BLOD 12-111

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 6/5/2023 4:26:49PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGE0310 - SW3510C/EPA600-MS Matrix Spike (BGE0310-MS1) Prepared & Analyzed: 05/08/2023 Source: 23E0403-05 280 56.0 p-Chloro-m-cresol 100 ug/L 500 BLOD 10-127 Pentachlorophenol 363 200 ug/L 500 BLOD 72.6 14-176 500 BLOD 54-120 Phenanthrene 407 100 ug/L 81.3 Phenol 100 505 BLOD 22.8 10-120 115 ug/L Pyrene 475 100 ug/L 500 BLOD 95.0 52-120 Pyridine 284 500 BLOD 10-110 100 ug/L 56.8 Surr: 2,4,6-Tribromophenol (Surr) 714 ug/L 1000 71.4 5-136 Surr: 2-Fluorobiphenyl (Surr) 349 ug/L 500 69.7 9-117 ug/L Surr: 2-Fluorophenol (Surr) 481 1000 48 1 5-60 Surr: Nitrobenzene-d5 (Surr) 500 68.9 345 ug/L 5-151 234 1000 234 Surr: Phenol-d5 (Surr) ug/L 5-60 492 ug/L 500 98.4 5-141 Surr: p-Terphenyl-d14 (Surr) Matrix Spike (BGE0310-MS2) Source: 23E0452-04 Prepared & Analyzed: 05/09/2023 22.3 44-142 1.2.4-Trichlorobenzene 10.0 ug/L 50.0 BLOD 44.7 1.2-Dichlorobenzene 18.3 50.0 BLOD 36.6 22-115 10.0 ug/L BI OD 1.3-Dichlorobenzene 17.7 10.0 ug/L 50.0 35.3 22-112 20.9 BLOD 41.8 13-112 1.4-Dichlorobenzene 10.0 ug/L 50.0 2,4,6-Trichlorophenol 24.9 10.0 ug/L 50.0 BI OD 49.8 37-144 23.1 BLOD 46.3 39-135 2,4-Dichlorophenol 10.0 ua/L 50.0 2,4-Dimethylphenol 26.4 50.0 BLOD 52.9 32-120 5.00 ug/L 10.5 BLOD 21.0 39-139 Μ 2.4-Dinitrophenol 50.0 ua/L 50.0 2.4-Dinitrotoluene 26.5 10.0 50.0 BLOD 52.9 10-191 ug/L 2.6-Dinitrotoluene 26.7 10.0 ug/L 50.0 BLOD 53.3 50-158 22.8 10.0 50.0 BLOD 45.7 60-120 Μ 2-Chloronaphthalene ug/L

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 6/5/2023 4:26:49PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGE0310 - SW3510C/EPA600-MS Matrix Spike (BGE0310-MS2) Source: 23E0452-04 Prepared & Analyzed: 05/09/2023 20.4 40.9 2-Chlorophenol 10.0 ug/L 50.0 BLOD 23-134 2-Nitrophenol 27.6 10.0 ug/L 50.0 BLOD 55.1 29-182 9.35 50.0 BLOD 10-262 3,3'-Dichlorobenzidine 10.0 ug/L 18.7 4,6-Dinitro-2-methylphenol 27.0 50.0 50.0 BLOD 54.1 10-181 ug/L 4-Bromophenyl phenyl ether 25.2 10.0 ug/L 50.0 BI OD 50.5 53-127 Μ 27.0 BLOD 25-158 4-Chlorophenyl phenyl ether 10.0 ug/L 50.0 54.0 4-Nitrophenol ND 50.0 ug/L 50.0 BI OD 10-132 Μ 26.4 BLOD 52.8 47-145 Acenaphthene 10.0 ua/L 50.0 25.2 BLOD 50.3 Acenaphthylene 10.0 ug/L 50.0 33-145 22.2 20.0 50.0 BLOD 44.5 0-200 Acetophenone ua/L Anthracene 25.0 10.0 50.0 BLOD 49.9 27-133 ug/L Benzidine ND 50.0 ug/L 50.0 BLOD 12-309 Μ 29.2 10.0 50.0 BLOD 58.5 33-143 Benzo (a) anthracene ug/L 36.8 BLOD 17-163 Benzo (a) pyrene 10.0 ug/L 50.0 73.5 34.9 50.0 BI OD 69.9 24-159 Benzo (b) fluoranthene 10.0 ug/L 32.2 BLOD 64.4 10-219 Benzo (g,h,i) perylene 10.0 ug/L 50.0 Benzo (k) fluoranthene 35.6 10.0 ug/L 50.0 BLOD 71.2 11-162 26.3 50.0 BLOD 52.5 33-184 bis (2-Chloroethoxy) methane 10.0 ug/L bis (2-Chloroethyl) ether 20.6 50.0 BLOD 41.2 12-158 10.0 ug/L 2,2'-Oxybis (1-chloropropane) 20.4 10.0 ug/L 50.0 BLOD 40.9 36-166 bis (2-Ethylhexyl) phthalate 36.5 50.0 BLOD 73.0 10-158 10.0 ug/L Butyl benzyl phthalate 35.3 10.0 ug/L 50.0 BI OD 70.5 10-152 26.9 BLOD Chrvsene 10.0 ug/L 50.0 53.9 17-169 Dibenz (a,h) anthracene 38.1 10.0 ug/L 50.0 BI OD 76.2 10-227 58.3 Diethyl phthalate 29.1 10.0 ug/L 50.0 BLOD 10-120

Page 43 of 78

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 6/5/2023 4:26:49PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGE0310 - SW3510C/EPA600-MS Matrix Spike (BGE0310-MS2) Source: 23E0452-04 Prepared & Analyzed: 05/09/2023 22.8 45.5 Dimethyl phthalate 10.0 ug/L 50.0 BLOD 10-120 Di-n-butyl phthalate 33.6 10.0 ug/L 50.0 BLOD 67.1 10-120 50.0 BLOD Di-n-octyl phthalate 43.3 10.0 ug/L 86.6 10-146 Fluoranthene 29.1 50.0 BLOD 58.1 26-137 10.0 ug/L Fluorene 27.7 10.0 ug/L 50.0 BI OD 55.4 59-121 Μ BI OD 10-152 Hexachlorobenzene 36.8 1.00 ug/L 50.0 73.7 Hexachlorobutadiene 27.7 10.0 ug/L 50.0 BI OD 55.4 24-120 BLOD 20.5 10-90 Hexachlorocvclopentadiene 10.3 10.0 ua/L 50.0 22.5 BLOD Hexachloroethane 10.0 ug/L 50.0 45.1 40-120 36.8 50.0 BLOD 73.6 10-171 Indeno (1,2,3-cd) pyrene 10.0 ua/L ND 10.0 50.0 BLOD 21-196 М Isophorone ug/L Naphthalene 27.8 5.00 ug/L 50.0 BLOD 55.5 21-133 Nitrobenzene 31.1 50.0 BLOD 62.1 35-180 10.0 ug/L BLOD 10-85 n-Nitrosodimethylamine 17.1 10.0 ug/L 50.0 34.3 n-Nitrosodi-n-propylamine 27.6 50.0 BI OD 55.3 10-230 10.0 ug/L 22.3 BLOD 44.5 12-111 n-Nitrosodiphenylamine 10.0 ug/L 50.0 p-Chloro-m-cresol 25.2 10.0 ug/L 50.0 BLOD 50.3 10-127 50.0 BLOD 28.0 14-176 Pentachlorophenol 14.0 20.0 ug/L Phenanthrene 31.2 10.0 50.0 BLOD 62.5 54-120 ug/L Phenol 9.98 10.0 ug/L 50.5 BLOD 19.8 10-120 27.6 50.0 BLOD 52-120 Pyrene 10.0 ug/L 55.3 Pyridine 22.0 10.0 ug/L 50.0 BI OD 44.0 10-110 Surr: 2,4,6-Tribromophenol (Surr) 93.9 100 93.9 5-136 ug/L 50.0 Surr: 2-Fluorobiphenyl (Surr) 26.1 ug/L 52.1 9-117 25.2 100 25.2 5-60 Surr: 2-Fluorophenol (Surr) ug/L

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 6/5/2023 4:26:49PM 2023 City of Bristol Landfill Leachate Client Site I.D.: Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGE0310 - SW3510C/EPA600-MS Matrix Spike (BGE0310-MS2) Source: 23E0452-04 Prepared & Analyzed: 05/09/2023 Surr: Nitrobenzene-d5 (Surr) 28.2 ug/L 50.0 56.4 5-151 18 2 ug/L 100 18 2 5-60 Surr: Phenol-d5 (Surr) Surr: p-Terphenyl-d14 (Surr) 32.2 ug/L 50.0 64.5 5-141 Matrix Spike Dup (BGE0310-MSD1) Source: 23E0403-05 Prepared & Analyzed: 05/08/2023 1.2.4-Trichlorobenzene 167 ug/L 500 BLOD 33.4 44-142 37.2 20 M, P 100 500 BLOD 29.0 22-115 35.6 20 Р 1.2-Dichlorobenzene 145 100 ug/L 1,3-Dichlorobenzene 152 500 BLOD 30.3 22-112 35.5 20 Р 100 ug/L 1.4-Dichlorobenzene 167 100 ug/L 500 BLOD 33.4 13-112 32.9 20 Ρ 2,4,6-Trichlorophenol BI OD 52.3 37-144 20.5 20 Р 261 100 ug/L 500 29.3 20 Р 2,4-Dichlorophenol 204 100 ug/L 500 BLOD 40.8 39-135 222 50.0 500 BLOD 44.4 32-120 31.9 20 Р 2,4-Dimethylphenol ug/L BLOD 53.6 20 2,4-Dinitrophenol 268 500 ug/L 500 39-139 13.4 2.4-Dinitrotoluene 311 100 ua/L 500 BLOD 62.2 10-191 10.5 20 2.6-Dinitrotoluene 247 100 ug/L 500 BLOD 49.5 50-158 16.6 20 Μ 2-Chloronaphthalene 245 500 BLOD 49.0 60-120 32.4 20 M. P 100 ua/L 2-Chlorophenol 230 100 ug/L 500 BI OD 46.0 23-134 33.0 20 Ρ BI OD 29.9 Р 2-Nitrophenol 227 100 ug/L 500 45.4 29-182 20 3.3'-Dichlorobenzidine 147 100 ug/L 500 BI OD 29.4 10-262 5 55 20 BLOD 70.6 4,6-Dinitro-2-methylphenol 353 500 ua/L 500 10-181 11.4 20 250 500 40.1 41.9 53-127 11.8 20 4-Bromophenyl phenyl ether 100 ug/L Μ BLOD 52.0 25-158 20.3 20 Р 4-Chlorophenyl phenyl ether 260 100 ua/L 500 4-Nitrophenol 193 500 500 BLOD 38.5 10-132 5.70 20 ug/L Acenaphthene 266 100 ug/L 500 BLOD 53.2 47-145 27.2 20 Ρ 272 500 BLOD 54.3 33-145 25.3 20 Р Acenaphthylene 100 ug/L

6/5/2023 4:26:49PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGE0310 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BGE0310-MSD1)	Sourc	e: 23E0403-0	5	Prepared & Anal	yzed: 05/08/2023					
Acetophenone	226	200	ug/L	500	BLOD	45.3	0-200	29.6	20	Р
Anthracene	316	100	ug/L	500	BLOD	63.2	27-133	8.75	20	
Benzo (a) anthracene	365	100	ug/L	500	BLOD	73.0	33-143	3.77	20	
Benzo (a) pyrene	414	100	ug/L	500	BLOD	82.8	17-163	9.50	20	
Benzo (b) fluoranthene	473	100	ug/L	500	BLOD	94.6	24-159	2.50	20	
Benzo (g,h,i) perylene	285	100	ug/L	500	BLOD	57.1	10-219	17.2	20	
Benzo (k) fluoranthene	465	100	ug/L	500	BLOD	93.0	11-162	9.43	20	
bis (2-Chloroethoxy) methane	221	100	ug/L	500	BLOD	44.2	33-184	35.2	20	Р
bis (2-Chloroethyl) ether	210	100	ug/L	500	BLOD	42.1	12-158	33.2	20	Р
2,2'-Oxybis (1-chloropropane)	209	100	ug/L	500	BLOD	41.8	36-166	31.2	20	Р
bis (2-Ethylhexyl) phthalate	470	100	ug/L	500	BLOD	93.9	10-158	3.38	20	
Butyl benzyl phthalate	497	100	ug/L	500	BLOD	99.4	10-152	3.56	20	
Chrysene	400	100	ug/L	500	BLOD	79.9	17-169	3.97	20	
Dibenz (a,h) anthracene	249	100	ug/L	500	BLOD	49.8	10-227	7.58	20	
Diethyl phthalate	327	100	ug/L	500	BLOD	65.4	10-120	14.4	20	
Dimethyl phthalate	296	100	ug/L	500	BLOD	59.1	10-120	17.9	20	
Di-n-butyl phthalate	392	100	ug/L	500	BLOD	78.4	10-120	7.89	20	
Di-n-octyl phthalate	863	100	ug/L	500	BLOD	173	10-146	15.2	20	М
Fluoranthene	354	100	ug/L	500	BLOD	70.8	26-137	13.8	20	
Fluorene	307	100	ug/L	500	BLOD	61.4	59-121	18.8	20	
Hexachlorobenzene	260	10.0	ug/L	500	BLOD	52.0	10-152	7.33	20	
Hexachlorobutadiene	160	100	ug/L	500	BLOD	31.9	24-120	37.1	20	Р
Hexachlorocyclopentadiene	96.3	100	ug/L	500	BLOD	19.3	10-90	13.6	20	
Hexachloroethane	160	100	ug/L	500	BLOD	31.9	40-120	38.1	20	M, P
Indeno (1,2,3-cd) pyrene	248	100	ug/L	500	BLOD	49.7	10-171	6.82	20	

6/5/2023 4:26:49PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	BGE0310 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BGE0310-MSD1)	Sourc	e: 23E0403-0	5	Prepared & Anal	yzed: 05/08/2023					
Isophorone	117	100	ug/L	500	BLOD	23.4	21-196	34.1	20	Р
Naphthalene	935	50.0	ug/L	500	1080	-28.4	21-133	22.8	20	M, P
Nitrobenzene	237	100	ug/L	500	BLOD	47.4	35-180	33.7	20	Р
n-Nitrosodimethylamine	141	100	ug/L	500	BLOD	28.3	10-85	34.3	20	Р
n-Nitrosodi-n-propylamine	246	100	ug/L	500	BLOD	49.3	10-230	32.7	20	Р
n-Nitrosodiphenylamine	250	100	ug/L	500	BLOD	49.9	12-111	13.8	20	
p-Chloro-m-cresol	238	100	ug/L	500	BLOD	47.5	10-127	16.4	20	
Pentachlorophenol	330	200	ug/L	500	BLOD	66.1	14-176	9.35	20	
Phenanthrene	364	100	ug/L	500	BLOD	72.7	54-120	11.2	20	
Phenol	107	100	ug/L	505	BLOD	21.3	10-120	6.83	20	
Pyrene	526	100	ug/L	500	BLOD	105	52-120	10.3	20	
Pyridine	217	100	ug/L	500	BLOD	43.4	10-110	26.7	20	Р
Surr: 2,4,6-Tribromophenol (Surr)	620		ug/L	1000		62.0	5-136			
Surr: 2-Fluorobiphenyl (Surr)	251		ug/L	500		50.2	9-117			
Surr: 2-Fluorophenol (Surr)	268		ug/L	1000		26.8	5-60			
Surr: Nitrobenzene-d5 (Surr)	248		ug/L	500		49.7	5-151			
Surr: Phenol-d5 (Surr)	189		ug/L	1000		18.9	5-60			
Surr: p-Terphenyl-d14 (Surr)	547		ug/L	500		109	5-141			
Aatrix Spike Dup (BGE0310-MSD2)	Sourc	e: 23E0452-0	4	Prepared & Anal	yzed: 05/09/2023					
1,2,4-Trichlorobenzene	27.6	10.0	ug/L	50.0	BLOD	55.2	44-142	21.1	20	Р
1,2-Dichlorobenzene	24.9	10.0	ug/L	50.0	BLOD	49.8	22-115	30.6	20	Р
1,3-Dichlorobenzene	23.4	10.0	ug/L	50.0	BLOD	46.8	22-112	27.9	20	Р
1,4-Dichlorobenzene	29.6	10.0	ug/L	50.0	BLOD	59.1	13-112	34.2	20	Р
2,4,6-Trichlorophenol	33.1	10.0	ug/L	50.0	BLOD	66.1	37-144	28.2	20	Р

6/5/2023 4:26:49PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGE0310 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BGE0310-MSD2)	Sourc	e: 23E0452-0	4	Prepared & Anal	yzed: 05/09/2023					
2,4-Dichlorophenol	28.0	10.0	ug/L	50.0	BLOD	56.1	39-135	19.2	20	
2,4-Dimethylphenol	31.7	5.00	ug/L	50.0	BLOD	63.4	32-120	18.1	20	
2,4-Dinitrophenol	20.5	50.0	ug/L	50.0	BLOD	41.0	39-139	64.6	20	Р
2,4-Dinitrotoluene	37.2	10.0	ug/L	50.0	BLOD	74.4	10-191	33.8	20	Р
2,6-Dinitrotoluene	39.4	10.0	ug/L	50.0	BLOD	78.8	50-158	38.5	20	Р
2-Chloronaphthalene	29.8	10.0	ug/L	50.0	BLOD	59.5	60-120	26.2	20	M, P
2-Chlorophenol	27.3	10.0	ug/L	50.0	BLOD	54.6	23-134	28.7	20	Р
2-Nitrophenol	36.7	10.0	ug/L	50.0	BLOD	73.4	29-182	28.5	20	Р
3,3'-Dichlorobenzidine	10.5	10.0	ug/L	50.0	BLOD	21.0	10-262	11.6	20	
4,6-Dinitro-2-methylphenol	39.1	50.0	ug/L	50.0	BLOD	78.2	10-181	36.4	20	Р
4-Bromophenyl phenyl ether	34.9	10.0	ug/L	50.0	BLOD	69.9	53-127	32.3	20	Р
4-Chlorophenyl phenyl ether	37.6	10.0	ug/L	50.0	BLOD	75.1	25-158	32.8	20	Р
4-Nitrophenol	ND	50.0	ug/L	50.0	BLOD		10-132		20	М
Acenaphthene	36.2	10.0	ug/L	50.0	BLOD	72.3	47-145	31.2	20	Р
Acenaphthylene	33.4	10.0	ug/L	50.0	BLOD	66.7	33-145	28.0	20	Р
Acetophenone	29.4	20.0	ug/L	50.0	BLOD	58.8	0-200	27.6	20	Р
Anthracene	33.8	10.0	ug/L	50.0	BLOD	67.7	27-133	30.2	20	Р
Benzidine	ND	50.0	ug/L	50.0	BLOD		12-309		20	М
Benzo (a) anthracene	33.1	10.0	ug/L	50.0	BLOD	66.3	33-143	12.5	20	
Benzo (a) pyrene	42.2	10.0	ug/L	50.0	BLOD	84.5	17-163	13.9	20	
Benzo (b) fluoranthene	45.3	10.0	ug/L	50.0	BLOD	90.7	24-159	25.9	20	Р
Benzo (g,h,i) perylene	31.8	10.0	ug/L	50.0	BLOD	63.5	10-219	1.41	20	
Benzo (k) fluoranthene	36.3	10.0	ug/L	50.0	BLOD	72.7	11-162	2.06	20	
bis (2-Chloroethoxy) methane	33.7	10.0	ug/L	50.0	BLOD	67.5	33-184	24.9	20	Р
bis (2-Chloroethyl) ether	26.8	10.0	ug/L	50.0	BLOD	53.7	12-158	26.3	20	Р

6/5/2023 4:26:49PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGE0310 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BGE0310-MSD2)	Sourc	e: 23E0452-0	4	Prepared & Anal	yzed: 05/09/2023					
2,2'-Oxybis (1-chloropropane)	27.2	10.0	ug/L	50.0	BLOD	54.3	36-166	28.2	20	Р
bis (2-Ethylhexyl) phthalate	38.4	10.0	ug/L	50.0	BLOD	76.7	10-158	4.94	20	
Butyl benzyl phthalate	33.4	10.0	ug/L	50.0	BLOD	66.7	10-152	5.51	20	
Chrysene	30.1	10.0	ug/L	50.0	BLOD	60.2	17-169	11.0	20	
Dibenz (a,h) anthracene	41.1	10.0	ug/L	50.0	BLOD	82.2	10-227	7.58	20	
Diethyl phthalate	38.0	10.0	ug/L	50.0	BLOD	76.0	10-120	26.4	20	Р
Dimethyl phthalate	32.6	10.0	ug/L	50.0	BLOD	65.3	10-120	35.6	20	Р
Di-n-butyl phthalate	39.9	10.0	ug/L	50.0	BLOD	79.9	10-120	17.3	20	
Di-n-octyl phthalate	46.0	10.0	ug/L	50.0	BLOD	92.0	10-146	6.02	20	
Fluoranthene	35.8	10.0	ug/L	50.0	BLOD	71.7	26-137	20.9	20	Р
Fluorene	38.3	10.0	ug/L	50.0	BLOD	76.5	59-121	31.9	20	Р
Hexachlorobenzene	45.9	1.00	ug/L	50.0	BLOD	91.8	10-152	21.9	20	Р
Hexachlorobutadiene	34.2	10.0	ug/L	50.0	BLOD	68.3	24-120	21.0	20	Р
Hexachlorocyclopentadiene	15.2	10.0	ug/L	50.0	BLOD	30.5	10-90	39.0	20	Р
Hexachloroethane	30.2	10.0	ug/L	50.0	BLOD	60.5	40-120	29.2	20	Р
Indeno (1,2,3-cd) pyrene	39.1	10.0	ug/L	50.0	BLOD	78.2	10-171	5.98	20	
Isophorone	ND	10.0	ug/L	50.0	BLOD		21-196		20	М
Naphthalene	35.0	5.00	ug/L	50.0	BLOD	70.0	21-133	23.1	20	Р
Nitrobenzene	37.6	10.0	ug/L	50.0	BLOD	75.1	35-180	18.9	20	
n-Nitrosodimethylamine	23.0	10.0	ug/L	50.0	BLOD	46.0	10-85	29.2	20	Р
n-Nitrosodi-n-propylamine	34.7	10.0	ug/L	50.0	BLOD	69.4	10-230	22.7	20	Р
n-Nitrosodiphenylamine	31.6	10.0	ug/L	50.0	BLOD	63.3	12-111	34.7	20	Р
p-Chloro-m-cresol	31.1	10.0	ug/L	50.0	BLOD	62.2	10-127	21.0	20	Р
Pentachlorophenol	19.9	20.0	ug/L	50.0	BLOD	39.9	14-176	34.9	20	Р
Phenanthrene	41.6	10.0	ug/L	50.0	BLOD	83.3	54-120	28.5	20	Р

6/5/2023 4:26:49PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	BGE0310 - SW351	0C/EPA600-I	MS							
Matrix Spike Dup (BGE0310-MSD2)	Sourc	e: 23E0452-04	Ļ	Prepared & Anal	yzed: 05/09/2023					
Phenol	13.8	10.0	ug/L	50.5	BLOD	27.2	10-120	31.8	20	Р
Pyrene	26.2	10.0	ug/L	50.0	BLOD	52.4	52-120	5.31	20	
Pyridine	28.5	10.0	ug/L	50.0	BLOD	57.1	10-110	25.8	20	Р
Surr: 2,4,6-Tribromophenol (Surr)	121		ug/L	100		121	5-136			
Surr: 2-Fluorobiphenyl (Surr)	34.8		ug/L	50.0		69.7	9-117			
Surr: 2-Fluorophenol (Surr)	35.5		ug/L	100		35.5	5-60			
Surr: Nitrobenzene-d5 (Surr)	35.2		ug/L	50.0		70.5	5-151			
Surr: Phenol-d5 (Surr)	24.6		ug/L	100		24.6	5-60			
Surr: p-Terphenyl-d14 (Surr)	30.1		ug/L	50.0		60.2	5-141			

			C	ertificate of A	Analysis	;				
Client Name:	SCS Engineers-Winchester					-	Date Issue	d:	6/5/2023	4:26:49PM
Client Site I.D.:	2023 City of Bristol Landfill Le	eachate								
Submitted To:	Jennifer Robb									
			We	t Chemistry Analysis - C	Quality Control					
				Enthalpy Analyti	-					
				Enthalpy Analyti	oai					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGE0236 - No Prep	Wet Chen	n							
Blank (BGE0236-BLK	1)			Prepared & Analyzed	: 05/05/2023					
BOD	ND	2.0	mg/L							
LCS (BGE0236-BS1)				Prepared & Analyzed	: 05/05/2023					
BOD	202	2	mg/L	198		102	84.6-115.4			
Duplicate (BGE0236-D	OUP1) Source	23E0307-0	4	Prepared & Analyzed	: 05/05/2023					
BOD	9.9	2.0	mg/L		13.2			28.4	20	Р
	Batch BGE0276 - No Prep	Wet Chen	n							
Blank (BGE0276-BLK	1)			Prepared & Analyzed	: 05/05/2023					
Nitrite as N	ND	0.05	mg/L							
LCS (BGE0276-BS1)				Prepared & Analyzed	: 05/05/2023					
Nitrite as N	0.09	0.05	mg/L	0.100		91.0	80-120			
Matrix Spike (BGE027	6-MS1) Source	23E0399-0)1	Prepared & Analyzed	: 05/05/2023					
Nitrite as N	8.10	5.00	mg/L	10.0	BLOD	81.0	80-120			
Matrix Spike Dup (BG	E0276-MSD1) Source	23E0399-0)1	Prepared & Analyzed	: 05/05/2023					
Nitrite as N	8.30	5.00	mg/L	10.0	BLOD	83.0	80-120	2.44	20	
	Batch BGE0377 - No Prep	Wet Chen	n							
Blank (BGE0377-BLK	1)			Prepared & Analyzed	: 05/09/2023					
COD	ND	10.0	mg/L							

				C	ertificate o	of Analysis	<u>6</u>				
Client Name:	SCS Engineers-\	Winchester						Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.:	2023 City of Bris	stol Landfill Le	eachate								
Submitted To:	Jennifer Robb										
				We	t Chemistry Analysi	is - Quality Control					
					Enthalpy Ar	nalytical					
						,					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGE	0377 - No Prep	Wet Chem								
LCS (BGE0377-BS1)	Datch DOL		Wet Onen	1	Prepared & Analy	(zod: 05/00/2023					
COD		49.6	10.0	mg/L	50.0	yzed. 05/09/2023	99.1	88-119			
Matrix Spike (BGE037	7-MS1)		: 23E0391-0	-	Prepared & Analy	/zed: 05/09/2023					
COD		82.9	10.0	mg/L	50.0	33.4	99.1	72.4-130			
Matrix Spike Dup (BG	E0377-MSD1)	Source	: 23E0391-0	1	Prepared & Analy	/zed: 05/09/2023					
COD		85.0	10.0	mg/L	50.0	33.4	103	72.4-130	2.55	20	
	Batch BGE	0440 - No Prep	Wet Chem	1							
Blank (BGE0440-BLK1	1)				Prepared & Analy	/zed: 05/10/2023					
Ammonia as N		ND	0.10	mg/L							
LCS (BGE0440-BS1)					Prepared & Analy	/zed: 05/10/2023					
Ammonia as N		1.02	0.1	mg/L	1.00		102	90-110			
Matrix Spike (BGE044	0-MS1)	Source	: 23E0467-0	1	Prepared & Analy	/zed: 05/10/2023					
Ammonia as N		1.09	0.10	mg/L	1.00	0.09	99.8	89.3-131			
Matrix Spike (BGE044	0-MS2)	Source	: 23E0489-0	1	Prepared & Analy	/zed: 05/10/2023					
Ammonia as N		1.15	0.10	mg/L	1.00	0.14	100	89.3-131			
Matrix Spike Dup (BG	E0440-MSD1)		: 23E0467-0	1	Prepared & Analy						
Ammonia as N		1.08	0.10	mg/L	1.00	0.09	98.4	89.3-131	1.29	20	
Matrix Spike Dup (BG	E0440-MSD2)	Source	: 23E0489-0	1	Prepared & Analy	/zed: 05/10/2023					
Ammonia as N		1.12	0.10	mg/L	1.00	0.14	98.3	89.3-131	1.94	20	

				Ce	ertificate o	f Analysis	3				
Client Name:	SCS Engineers-Wind	chester						Date Issue	ed:	6/5/2023	4:26:49PM
Client Site I.D.:	2023 City of Bristol I	Landfill Lea	chate								
Submitted To:	Jennifer Robb										
				We	t Chemistry Analysis	s - Quality Control					
					Enthalpy An	alvtical					
r					17	,					
Analyte	Re	esult	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGE0570) - No Prep W	let Chem								
Blank (BGE0570-BLK1)				Prepared & Analy	zed: 05/12/2023					
Nitrate+Nitrite as N		ND	0.10	mg/L							
LCS (BGE0570-BS1)					Prepared & Analy	zed: 05/12/2023					
Nitrate+Nitrite as N		2.63	0.1	mg/L	2.50		105	90-110			
Matrix Spike (BGE0570	D-MS1)	Source: 23	3E0689-01		Prepared & Analy	zed: 05/12/2023					
Nitrate+Nitrite as N		2.91	0.10	mg/L	2.50	0.04	115	90-110			М
Matrix Spike Dup (BGE		Source: 23			Prepared & Analy						
Nitrate+Nitrite as N		2.91	0.10	mg/L	2.50	0.04	115	90-110	0.172	20	Μ
	Batch BGE0582	2 - No Prep W	let Chem								
Blank (BGE0582-BLK1)				Prepared & Analy	zed: 05/12/2023					
TKN as N		ND	0.50	mg/L							
LCS (BGE0582-BS1)					Prepared & Analy	zed: 05/12/2023					
TKN as N		10.3	0.50	mg/L	10.0		103	90-110			
Matrix Spike (BGE0582	,	Source: 2			Prepared & Analy						
TKN as N		11.5	0.50	mg/L	10.0	1.35	102	90-110			
Matrix Spike (BGE0582		Source: 23			Prepared & Analy						
TKN as N		10.1	0.50	mg/L	10.0	BLOD	101	90-110			
Matrix Spike Dup (BGE		Source: 23			Prepared & Analy						
TKN as N		11.5	0.50	mg/L	10.0	1.35	102	90-110	0.278	20	

				Ce	ertificate o	of Analysis	<u>s</u>				
Client Name:	SCS Engineers-V	Vinchester						Date Issu	ed:	6/5/2023	4:26:49PM
Client Site I.D.:	2023 City of Bris	tol Landfill	Leachate								
Submitted To:	Jennifer Robb										
				Wet	Chemistry Analys	is - Quality Contro	I				
					Enthalpy A	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGE	0582 - No Pro	ep Wet Chen	า							
Matrix Spike Dup (BGE	0582-MSD2)	Sour	ce: 23E0689-0	1	Prepared & Anal	yzed: 05/12/2023					
TKN as N		10.1	0.50	mg/L	10.0	BLOD	101	90-110	0.504	20	
	Batch BGE	0795 - No Pre	ep Wet Chen	า							
Blank (BGE0795-BLK1))				Prepared & Anal	yzed: 05/18/2023					
Total Recoverable Pr	nenolics	ND	0.050	mg/L							
LCS (BGE0795-BS1)					Prepared & Anal	yzed: 05/18/2023					
Total Recoverable Pr	nenolics	0.52	0.050	mg/L	0.500		104	80-120			
Matrix Spike (BGE0795	-MS1)	Sour	ce: 23E0995-0	4	Prepared & Anal	yzed: 05/18/2023					
Total Recoverable Pr	nenolics	0.48	0.050	mg/L	0.500	0.03	89.2	70-130			
Matrix Spike Dup (BGE	0795-MSD1)	Sour	ce: 23E0995-0	4	Prepared & Anal	yzed: 05/18/2023					
Total Recoverable Pr	nenolics	0.52	0.050	mg/L	0.500	0.03	97.6	70-130	8.45	20	

			Certificate of	of Analysis			
Client Name:	SCS Engineers-Winch	nester			Date Issued:	6/5/2023	4
Client Site I.D.:	2023 City of Bristol La	andfill Leachate					
Submitted To:	Jennifer Robb						
Submitted 10.							
	Analytical Summary						
23E0399-01		Subcontract					
23E0399-02		Subcontract					
23E0399-03		Subcontract					
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID		
Metals (Total) by EPA 6	6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4			
23E0399-01	50.0 mL / 50.0 mL	SW6020B	BGE0372	SGE0402	AE30228		
23E0399-01RE1	50.0 mL / 50.0 mL	SW6020B	BGE0372	SGE0402	AE30228		
23E0399-02	50.0 mL / 50.0 mL	SW6020B	BGE0372	SGE0402	AE30228		
23E0399-02RE1	50.0 mL / 50.0 mL	SW6020B	BGE0372	SGE0402	AE30228		
23E0399-03	50.0 mL / 50.0 mL	SW6020B	BGE0372	SGE0402	AE30228		
23E0399-03RE1	50.0 mL / 50.0 mL	SW6020B	BGE0372	SGE0402	AE30228		
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID		
Wet Chemistry Analysi	is		Preparation Method:	No Prep Wet Chem	1		
23E0399-01	300 mL / 300 mL	SM5210B-2011	BGE0236	SGE0418			
23E0399-02	300 mL / 300 mL	SM5210B-2011	BGE0236	SGE0418			
23E0399-03	300 mL / 300 mL	SM5210B-2011	BGE0236	SGE0418			
23E0399-01	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGE0276	SGE0280	AD30177		
23E0399-02	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGE0276	SGE0280	AD30177		
23E0399-03	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGE0276	SGE0280	AD30177		
23E0399-01	2.00 mL / 2.00 mL	SM5220D-2011	BGE0377	SGE0364	AD30264		
23E0399-02	1.00 mL / 2.00 mL	SM5220D-2011	BGE0377	SGE0364	AD30264		
23E0399-03	2.00 mL / 2.00 mL	SM5220D-2011	BGE0377	SGE0364	AD30264		
23E0399-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGE0440	SGE0422	AE30229		
23E0399-01RE1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGE0440	SGE0422	AE30229		
23E0399-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGE0440	SGE0422	AE30229		
23E0399-02RE1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGE0440	SGE0422	AE30229		

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	ysis		Preparation Method:	No Prep Wet Chem	1
23E0399-03	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGE0440	SGE0422	AE30229
23E0399-01	1.00 mL / 5.00 mL	SM4500-NO3F-2011	BGE0570	SGE0537	AE30244
23E0399-01RE1	5.00 mL / 5.00 mL	SM4500-NO3F-2011	BGE0570	SGE0537	AE30244
23E0399-01RE2	2.50 mL / 5.00 mL	SM4500-NO3F-2011	BGE0570	SGE0537	AE30244
23E0399-02	1.00 mL / 5.00 mL	SM4500-NO3F-2011	BGE0570	SGE0537	AE30244
23E0399-02RE1	5.00 mL / 5.00 mL	SM4500-NO3F-2011	BGE0570	SGE0537	AE30244
23E0399-02RE2	2.50 mL / 5.00 mL	SM4500-NO3F-2011	BGE0570	SGE0537	AE30244
23E0399-03	1.00 mL / 5.00 mL	SM4500-NO3F-2011	BGE0570	SGE0537	AE30244
23E0399-03RE1	5.00 mL / 5.00 mL	SM4500-NO3F-2011	BGE0570	SGE0537	AE30244
23E0399-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGE0582	SGE0550	AE30245
23E0399-02	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGE0582	SGE0550	AE30245
23E0399-03	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGE0582	SGE0550	AE30245
23E0399-01	5.00 mL / 10.0 mL	SW9065	BGE0795	SGE0749	AL20103
23E0399-02	5.00 mL / 10.0 mL	SW9065	BGE0795	SGE0749	AL20103
23E0399-03	5.00 mL / 10.0 mL	SW9065	BGE0795	SGE0749	AL20103
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-	MS
23E0399-01	1070 mL / 2.00 mL	SW8270E	BGE0310	SGE0407	AL20040
23E0399-02	1070 mL / 1.00 mL	SW8270E	BGE0310	SGE0407	AL20040
23E0399-03	1070 mL / 1.00 mL	SW8270E	BGE0310	SGE0407	AL20040
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
23E0399-01	5.00 mL / 5.00 mL	SW8260D	BGE0279	SGE0274	AD30301
23E0399-02	5.00 mL / 5.00 mL	SW8260D	BGE0279	SGE0274	AD30301
23E0399-03	5.00 mL / 5.00 mL	SW8260D	BGE0279	SGE0274	AD30301

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method Batch ID S		Sequence ID	Calibration ID			
Volatile Organic Com	pounds by GCMS		Preparation Method:	SW5030B-MS				
23E0399-04	5.00 mL / 5.00 mL	SW8260D	BGE0279	SGE0274	AD30301			
23E0399-02RE1	5.00 mL / 5.00 mL	SW8260D	BGE0314	SGE0317	AD30301			
Comula ID	Preparation Factors							
Sample ID	Initial / Final	Method	Batch ID	Sequence ID	Calibration ID			
· ·	Initial / Final 6000/7000 Series Methods	Method	Batch ID Preparation Method:	Sequence ID SW7470A	Calibration ID			
Metals (Total) by EPA		Method SW7470A		•	AE30220			
Sample ID Metals (Total) by EPA 23E0399-01 23E0399-02	6000/7000 Series Methods		Preparation Method:	SW7470A				

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

QC Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4		
BGE0372-BLK1	50.0 mL / 50.0 mL	SW6020B	BGE0372	SGE0402	AE30228	
BGE0372-BS1	50.0 mL / 50.0 mL	SW6020B	BGE0372	SGE0402	AE30228	
BGE0372-MS1	50.0 mL / 50.0 mL	SW6020B	BGE0372	SGE0402	AE30228	
BGE0372-MS2	50.0 mL / 50.0 mL	SW6020B	BGE0372	SGE0402	AE30228	
BGE0372-MS3	50.0 mL / 50.0 mL	SW6020B	BGE0372	SGE0402	AE30228	
BGE0372-MSD1	50.0 mL / 50.0 mL	SW6020B	BGE0372	SGE0402	AE30228	
BGE0372-MSD2	50.0 mL / 50.0 mL	SW6020B	BGE0372	SGE0402	AE30228	
BGE0372-MSD3	50.0 mL / 50.0 mL	SW6020B	BGE0372	SGE0402	AE30228	
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Wet Chemistry Analy	vsis		Preparation Method:	No Prep Wet Chem		
BGE0236-BLK1	300 mL / 300 mL	SM5210B-2011	BGE0236	SGE0418		
BGE0236-BS1	300 mL / 300 mL	SM5210B-2011	BGE0236	SGE0418		
BGE0236-DUP1	300 mL / 300 mL	SM5210B-2011	BGE0236	SGE0418		
BGE0276-BLK1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGE0276	SGE0280	AD30177	
BGE0276-BS1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGE0276	SGE0280	AD30177	
BGE0276-MRL1	25.0 mL / 25.0 mL	SM4500-NO2B-2011	BGE0276	SGE0280	AD30177	
BGE0276-MS1	0.250 mL / 25.0 mL	SM4500-NO2B-2011	BGE0276	SGE0280	AD30177	
BGE0276-MSD1	0.250 mL / 25.0 mL	SM4500-NO2B-2011	BGE0276	SGE0280	AD30177	
BGE0377-BLK1	2.00 mL / 2.00 mL	SM5220D-2011	BGE0377	SGE0364	AD30264	
DOE0077 DO4				0050001	4 0 2 0 0 0 4	
BGE0377-BS1	2.00 mL / 2.00 mL	SM5220D-2011	BGE0377	SGE0364	AD30264	
BGE0377-BS1 BGE0377-MRL1	2.00 mL / 2.00 mL 2.00 mL / 2.00 mL	SM5220D-2011 SM5220D-2011	BGE0377 BGE0377	SGE0364 SGE0364	AD30264 AD30264	

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	. Mothod Batch ID		Sequence ID	Calibration ID
Wet Chemistry Analy	rsis		Preparation Method:	No Prep Wet Chem	
BGE0377-MSD1	2.00 mL / 2.00 mL	SM5220D-2011	BGE0377	SGE0364	AD30264
BGE0440-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGE0440	SGE0422	AE30229
BGE0440-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGE0440	SGE0422	AE30229
BGE0440-MRL1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGE0440	SGE0422	AE30229
BGE0440-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGE0440	SGE0422	AE30229
BGE0440-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGE0440	SGE0422	AE30229
BGE0440-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGE0440	SGE0422	AE30229
BGE0440-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGE0440	SGE0422	AE30229
BGE0570-BLK1	5.00 mL / 5.00 mL	SM4500-NO3F-2011	BGE0570	SGE0537	AE30244
BGE0570-BS1	5.00 mL / 5.00 mL	SM4500-NO3F-2011	BGE0570	SGE0537	AE30244
BGE0570-MS1	50.0 mL / 50.0 mL	SM4500-NO3F-2011	BGE0570	SGE0537	AE30244
BGE0570-MSD1	50.0 mL / 50.0 mL	SM4500-NO3F-2011	BGE0570	SGE0537	AE30244
BGE0582-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGE0582	SGE0550	AE30245
BGE0582-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGE0582	SGE0550	AE30245
BGE0582-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGE0582	SGE0550	AE30245
BGE0582-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGE0582	SGE0550	AE30245
BGE0582-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGE0582	SGE0550	AE30245
BGE0582-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGE0582	SGE0550	AE30245
BGE0795-BLK1	5.00 mL / 10.0 mL	SW9065	BGE0795	SGE0749	AL20103
BGE0795-BS1	5.00 mL / 10.0 mL	SW9065	BGE0795	SGE0749	AL20103
BGE0795-MS1	5.00 mL / 10.0 mL	SW9065	BGE0795	SGE0749	AL20103
BGE0795-MSD1	5.00 mL / 10.0 mL	SW9065	BGE0795	SGE0749	AL20103
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-M	6
BGE0310-BLK1	1000 mL / 1.00 mL	SW8270E	BGE0310	SGE0365	AD30296
BGE0310-BS1	1000 mL / 1.00 mL	SW8270E	BGE0310	SGE0365	AD30296
BGE0310-MRL1		SW8270E	BGE0310		

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Sample ID Preparation Factors Initial / Final		Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	c Compounds by GCMS		Preparation Method:	SW3510C/EPA600-MS	
BGE0310-MS1	100 mL / 1.00 mL	SW8270E	BGE0310	SGE0365	AD30296
BGE0310-MS2	1000 mL / 1.00 mL	SW8270E	BGE0310	SGE0407	AL20040
BGE0310-MSD1	100 mL / 1.00 mL	SW8270E	BGE0310	SGE0365	AD30296
BGE0310-MSD2	1000 mL / 1.00 mL	SW8270E	BGE0310	SGE0407	AL20040
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	

Volatile Organic Com	pounds by GCMS		Preparation Method:	SW5030B-MS		
BGE0279-BLK1	5.00 mL / 5.00 mL	SW8260D	BGE0279	SGE0274	AD30301	
BGE0279-BLK2	5.00 mL / 5.00 mL	SW8260D	BGE0279	SGE0274	AD30301	
BGE0279-BS1	5.00 mL / 5.00 mL	SW8260D	BGE0279	SGE0274	AD30301	
BGE0279-BS2	5.00 mL / 5.00 mL	SW8260D	BGE0279	SGE0274	AD30301	
BGE0279-MS1	5.00 mL / 5.00 mL	SW8260D	BGE0279	SGE0274	AD30301	
BGE0279-MSD1	5.00 mL / 5.00 mL	SW8260D	BGE0279	SGE0274	AD30301	
BGE0314-BLK1	5.00 mL / 5.00 mL	SW8260D	BGE0314	SGE0317	AD30301	
BGE0314-BS1	5.00 mL / 5.00 mL	SW8260D	BGE0314	SGE0317	AD30301	
BGE0314-MS1	5.00 mL / 5.00 mL	SW8260D	BGE0314	SGE0317	AD30301	
BGE0314-MSD1	5.00 mL / 5.00 mL	SW8260D	BGE0314	SGE0317	AD30301	

Sample ID	Preparation Factors Method		Batch ID	Sequence ID	Calibration ID		
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	SW7470A			
BGE0300-BLK1	20.0 mL / 20.0 mL	SW7470A	BGE0300	SGE0361	AE30220		
BGE0300-BS1	20.0 mL / 20.0 mL	SW7470A	BGE0300	SGE0361	AE30220		
BGE0300-MS1	20.0 mL / 20.0 mL	SW7470A	BGE0300	SGE0361	AE30220		
BGE0300-MS2	20.0 mL / 20.0 mL	SW7470A	BGE0300	SGE0361	AE30220		
BGE0300-MSD1	20.0 mL / 20.0 mL	SW7470A	BGE0300	SGE0361	AE30220		
BGE0300-MSD2	20.0 mL / 20.0 mL	SW7470A	BGE0300	SGE0361	AE30220		

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Date Issued:

		<u>Certificate of Analysis</u>			
Client Name:	SCS Engineers-Winchester		Date Issued:	6/5/2023 4:26:49PN	Л
Client Site I.D.:	2023 City of Bristol Landfill Leachate				
Submitted To:	Jennifer Robb				
Certified Analys	ses included in this Report				
Analyte		Certifications			
-	Non-Potable Water				
Ammonia as N		VELAP,NCDEQ,PADEP,WVDEP			
EPA351.2 R2.0 in l	Non-Potable Water				
TKN as N		VELAP,NCDEQ,WVDEP			
SM4500-NO2B-201	11 in Non-Potable Water				
Nitrite as N		VELAP,WVDEP,NCDEQ			
SM4500-NO3F-201	1 in Non-Potable Water	, , ,			
Nitrate+Nitrite as N		VELAP,WVDEP			
	Non-Potable Water	,			
BOD		VELAP,NCDEQ,WVDEP			
	Non-Potable Water				
COD		VELAP,NCDEQ,PADEP,WVDEP			
SW6020B in Non-H	Potable Water				
Arsenic		VELAP,WVDEP			
Barium		VELAP,WVDEP			
Cadmium		VELAP,WVDEP			
Chromium		VELAP,WVDEP			
Copper		VELAP,WVDEP			
Lead		VELAP,WVDEP			
Nickel		VELAP,WVDEP			
Selenium		VELAP,WVDEP			
Silver		VELAP,WVDEP			
Zinc		VELAP,WVDEP			
SW7470A in Non-F	Potable Water				
Mercury		VELAP,NCDEQ,WVDEP			

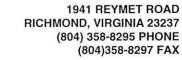
		Certificate of Analysis		
Client Name:	SCS Engineers-Winchester		Date Issued:	6/5/2023 4:26:49PM
Client Site I.D.:	2023 City of Bristol Landfill Leachate			
Submitted To:	Jennifer Robb			
Certified Analys	ses included in this Report			
Analyte		Certifications		
SW8260D in Non-F	Potable Water			
2-Butanone (MEK)		VELAP,NCDEQ,PADEP,WVDEP		
Acetone		VELAP,NCDEQ,PADEP,WVDEP		
Benzene		VELAP,NCDEQ,PADEP,WVDEP		
Ethylbenzene		VELAP,NCDEQ,PADEP,WVDEP		
Toluene		VELAP,NCDEQ,PADEP,WVDEP		
Xylenes, Total		VELAP,NCDEQ,PADEP,WVDEP		
Tetrahydrofuran		VELAP, PADEP		
SW8270E in Non-F	Potable Water			
Anthracene		VELAP,PADEP,NCDEQ,WVDEP		
SW9065 in Non-Po	table Water			
Total Recoverable F	Phenolics	VELAP,WVDEP		

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb


Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/14/2023
TXCEQ	Texas Comm on Environmental Quality #T104704576-23-1	T104704576	05/31/2024
VELAP	NELAP-Virginia Certificate #12333	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Date Issued:

		Certificate of Analysis			
Client Name:		SCS Engineers-Winchester	Date Issued:	6/5/2023	4:26:49PM
Client Sit	e I.D.:	2023 City of Bristol Landfill Leachate			
Submitte	d To:	Jennifer Robb			
		Qualifiers and Definitions			
DS	Surrogate of	concentration reflects a dilution factor.			
Е	Estimated	concentration, outside calibration range			
J	The reporte	ed result is an estimated value.			
L	LCS recove	ery is outside of established acceptance limits			
М	Matrix spik	e recovery is outside established acceptance limits			
Ρ	Duplicate a	analysis does not meet the acceptance criteria for precision			
RPD	Relative Per	rcent Difference			
Qual	Qualifers				
-RE	Denotes sar	nple was re-analyzed			
LOD	Limit of Dete	ection			
BLOD	Below Limit	of Detection			
LOQ	Limit of Qua	ntitation			
DF	Dilution Fact	tor			
TIC	library. A TIC	dentified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral C spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are and are calculated using an internal standard response factor of 1.			
PCBs, Tota	I Total PC	Bs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.			

CHAIN OF CUSTODY

PAGE 1 OF 1

COMPANY NAME: SCS En	gine	ers			IN۱	OICE TO	:		S	AM	E			PROJ	EC	T NA	ME/	Quo	te #:			TAGETOTT
CONTACT: Jennifer Robb	{				IN۱	OICE CO	NTAC	Г:	1					SITE	NAM	ИE:	2	023	City	of Br	isto	I Landfill Leachate
ADDRESS: 11260 Roger Bace	on D	rive	э,		IN	OICE AD	DRESS	S:	19					PROJ	PROJECT NUMBER: 02218208.15					8.15	Task 1	
Ste. 300, Reston VA	1 20	190			IN۱	OICE PH	ONE #	:						P.O. #	ŧ:							
PHONE #: 703-471-6150			I	EMAIL: j	robb@	scsengin	eers.co	m	10					Pretre	atm	nent F	Prog	ram				
Is sample for compliance reporti	ng?		YES	NO Reg	ulator	y State:	V A	ls sam	ple fro	m a	chlo	orinat	ed supp	oly?	YE	S	NO	2-12	PW	SI.D.	. #:	
SAMPLER NAME (PRINT):		Α.	Min	nick, L. Ne	Ison	SA	MPLE	R SIGN	IATUR	E	2	2	2	Æ	21	N	le	T	irn Ar	ound	l Tin	ne: 10 Day(s)
Matrix Codes: WW=Waste Water/Storm Wa	ter G	iW=G	iround	Water DW=D	rinking	Water S=Soi	/Solids (OR=Orga	nic A=Air	WP:	=Wipe	e OT=	Other		10		C C C C C C C C C C C C C C C C C C C		Į.			COMMENTS
CLIENT SAMPLE I.D. 1) $E = 58$ 2) $E = 59$	XX X Grab	oosite	ed (Dissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	G A Grab Time or Composite Stop	Time Preserved	S S Matrix (See Codes)	Number of Containers	Ammonia - EPA 350.1	BOD - SM22 5210B-2021	s SM22 450-NO3F-2011 BV	Nitrite SM22 450-NO3F- 5	VOC (Anthracene) 8270			urv - 7470	coverable	V. Fatty Acids (See List) 8015	VOCs (See List) 8260	Preservative Codes: N=Nitric Acid C=Hydrochloric Acid S=Sulfuric Acid H=Sodium Hydroxide A=Ascorbic Acid 2=Zinc Acetate T=Sodium Thiosulfate M=Methanol Note VOC 8260 no HCI PLEASE NOTE PRESERVATIVE(S), INTERFERENCE CHECKS or PUMP RATE (L/min)
3) Ew-50	1	-				058423	785		GW	X	7	7-	TX	X	X	X	- /	1	X	-	47	1
4)		–	\vdash						GW GW		-				-		-	-				
5) 6)	-	\vdash							GW			+			-		+	-			+	277
7)		\vdash	$\left \right $						GW									1		+	+	2.7°C
8)									GW						\square					1		onice
9)						_			GW													Seculd
10) TripBlank						030123	115		DI			12		•							3	
RELINQUISHED: 1	DAT PU4		TIME	RECEIVED	ing 1	APALIA	A SI	DATE /	11ME	QC	Data	a Pack	cage LA	B USE C stody Seal	SNL)	d and	herm intact	ID: _ ?(Y/	N)	(:00	LER TEMP°C Received on ice? (Y/N)
RELINQUISHED:		TE /		RECEIVED):	fer	1001	DATE /		Leve	110	SA 102	SCS-	W					23E			
RELINQUISHED:	DA	TE /	TIME	RECEIVED):			DATE /	TIME	Leve	IV		2023	City o	f B	risto	ol L	and	fill I	leac	h:	
										i. C			Recd:	05/04	/20)23	Du	ie: (3/202		Page 66 of 78

Bottle Kit Example

Parameter	Analytical Method	Bottle	Preservative	
Biological Oxygen Demand	SM22 5210B-2021	1 L Plastic	Cool <6C	
Ammonia	EPA 350.1 R2.0			
Chemical Oxygen Demand	SM22 5220D-2011			
Nitrite	SM22 4500-NO3F-2011	1 500 mL Plastic	H2SO4	
Nitrate	SM22 4500-NO3F-2011			
Total Kjeldahl Nitrogen	EPA 351.2 R2.0			
Nitrate	SM22 4500-NO3F-2011	1 250 mL Plastic	Cool <6C	
Semi-Volatile Organic Compound: Anthracene	SW-846 Method 8270	1 L Amber	Cool <6C	
Total Metals: Arsenic, Barium, Cadmium, Chromium, Copper, Lead, Nickel, Selenium, Silver, and Zinc	SW-846 Method 6010	1 500 mL Plastic	HNO3	
Total Metal: Mercury	SW-846 Method 7470			
Total Recoverable Phenolics	SW-846 Method 9065	1 250 mL glass Amber	H2SO4	
Volatile Fatty Acids: Acetic Acid, Butyric Acid, Lactic Acid, Propionic Acid, and Pyruvic Acid	SW-846 Method 8015	3 40 mL VOA Clear	Cool <6C	
Volatile Organic Compounds: Acetone, Benzene, Ethyl benzene Methyl ethyl ketone, Tetrahydrofuran, Toluene, and Total Xylenes		3 40 mL VOA Clear	Cool <6C	

Sample Preservation Log Form #: F1301 Rev # 12.0 Effective: Feb 17, 2022 Page 1 of 1

Sample Preservation Log

Order II	2_2	3E	03	99			-2							Date	Perfe	orme	ed: _	5	151	23	5							Ana	alyst	Perfo	rming C	heck:	_(<u>Çsí</u>	3/	Rć	5	_			
			/letal	ls	Cyar	nide		Sulfic	de	Am	imor	nia		TKN	I	Pl	hos, T	Гot	N	D3+N	102		DRC	b	(80		cide 8/508) / only	(52	SVO		CrVI	* **	1	Pest/ (508 VOC		2000 C	٥D		Ph	enoli	ies
Sample ID	Container ID	Rec	l as eived	Inal	pH as Received	Inal	Re	oH as ceived	Final pH	pH a Recei	ived	Final pH	Rece	as eived	Final pH	Rec	H as ceived	Final pH	Rec	l as eived	Final pH	Re	H as ceived	Inal		ceived es. Cl	final + or	Re	s. Cl	final + or -	Received pH	Final pH	Re	Othe		PH Rec 42	l as eived	Final pH	Reco	as eived Other	Final pH
01	A	<2	Other 7	62	> 12 Oth	er	>9	Other		<2 0	ther	17793	< 2 (Other		<2	Other		<2	Other		<2	Other		+		+	†•	-				<2	Othe	r	<u> </u>	Othe	-		Other	(tended
01	B	- 10	/	- 2		-			10.0	-	7	42		7	42					7	42			1	1			\vdash	\vdash	1.57	- 50 TE	ter e	1 .	1	-	-	7	42	100		
-	Ē	\vdash		-		-	+	-			-	-6		1	- 2					/	-6	\vdash			┢	-	\vdash	┢	\vdash	-			+		+	\vdash	/	~ <		7	٤2
01	F	$\left \right $				-	+			$\left \right $	_											┢					+		_				\vdash	-		-		1		/	-
01	1	\vdash					+				-	2	\vdash	7						7	17	\vdash	-	-			-			-		-	┢		+		7				
01	M	\square						-				42			42						42	\vdash			\vdash	-	+	+-	-				┢	-	+	-	1	4Z			
01	N					_	_					42	\square		42					7	22	\vdash	-	-	-		-	-	-				\vdash	-	+	-	7	42	<u> </u>		
61	Ó					_	_				7	62		7	-2					7	62			<u> </u>		-	1	_		<u> </u>					+		7	62			
02	À		7	42																						-															
02	B										5	42		5	42					5	42																5	42			
02	E																																							7	۲z
02	F																												-												
02	M										7	-2		7	42					7	٥Z	8															7	42			
02	N											42		5	42					5	42																5	42			
02	D										-	42			62					7	42								\square				Γ				7	42			
03	A		7	42						\square																															
NaOH ID: HNO3 ID: _3003613					CrVI												Analyst Initials:																								
H2SO4 ID: 3301580 Na2S2O3 ID:								* pH n Buffe		10.0				9.3 - 9.	.7																										
HCL ID										D:							1N N			12.00									5N	NaOł	H:										

Metals were received with pH = 7. HNO3 was added at 1215 on 05 May 2023 by RCJ in the Log-In room to bring pH= <2.

Sample Preservation Log Form #: F1301 Rev # 12.0 Effective: Feb 17, 2022 Page 1 of 1

Sample Preservation Log

Order ID 23E0399

Analyst Performing Check: __________ Date Performed: 5/5/23 Pesticide Pest/PCB SVOC CrVI * ** Phos, Tot NO3+NO2 DRO Pheno lics Sulfide Ammonia TKN (8081/608/508) (508) / Metals Cyanide COD (525/8270/625) PCB DW only SVOC(525) Sample ID Container ID pH as pH as pH as Received Received pH as Received pH Final pH Final pH Final pH Final pH Final pH Final pH H Final pH Hd H H H Received Received Received Received Received Received Received Res. Cl Res. Cl Received Received Received Received final final Final p Final Final Final Final 12 -2 + or + or -< 2 Other > 12 Other >9 Other < 2 Other + < 2 Other Other Other 7 B 7 42 7 22 42 03 7 42 Ē 7 42 03 F 03 03 7 42 62 7 M 7 -2 7 42 7 42 7 7 42 03 7 62 42 N 7 42 7 47 7 7 62 62 03 D HNO3 ID: 3003613 NaOH ID: _____ CrVI preserved date/time: Analyst Initials: * pH must be adjusted between 9.3 - 9.7 H2SO4 ID: 31301580 Na2S2O3 ID: Buffer Sol'n ID: _____ HCL ID: 1N NaOH ID: _____ Na2SO3 ID: 5N NaOH:

Metals were received with pH = 7. HNO3 was added at 1215 on 05 May 2023 by RCJ in the Log-In room to bring pH = <2.

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Date Issued:

Certificate of Analysis											
Client Name:	SCS Engineers-Winchester	Date Issued:	6/5/2023 4:26:49PM								
Client Site I.D.:	2023 City of Bristol Landfill Leachate										
Submitted To:	Jennifer Robb										
	Laboratory Order ID: 23E0399										
	Sample Conditions Checklist										
	Samples Received at:		2.70°C								
	How were samples received?		Logistics Courier								
	Were Custody Seals used? If so, were they received intact?		Yes								
	Are the custody papers filled out completely and correctly?		Yes								
	Do all bottle labels agree with custody papers?		Yes								
	Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?		Yes								
	Are all samples within holding time for requested laboratory tests?		Yes								
	Is a sufficient amount of sample provided to perform the tests included?		Yes								
	Are all samples in appropriate containers for the analyses requested?		Yes								
	Were volatile organic containers received?		Yes								
	Are all volatile organic and TOX containers free of headspace?		Yes								
	Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624 EPA8015 GRO, EPA8021, EPA524, and RSK-175.	1,	Yes								
	Are all samples received appropriately preserved? Note that metals containers do not require field preservation but preservation may delay analysis.	lab	No								
	Work Order Comments										
	*Metals logged for analysis by 6020 per project history, which differs from (6010). *H2SO4-preserved bottles received with pH >2; H2SO4 added to bring pH										

*H2SO4-preserved bottles received with pH >2; H2SO4 added to bring pH to <2. Jennifer Robb notified via email. MRS 05/05/23 1406

Certificate of Analysis

FINAL REPORT

Work Orders:	3E09070	Report Date:	6/05/2023
		Received Date:	5/9/2023
Project.	23E0399	Turnaround Time:	Normal
i lojeet.		Phones:	(804) 358-8295
		Fax:	
Attn:	JP Verheul	P.O. #:	045338
Client:	Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237	Billing Code:	

DoD-ELAP ANAB #ADE-2882 • DoD-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • ISO17025 ANAB #L2457.01 • LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear JP Verheul,

Enclosed are the results of analyses for samples received 5/09/23 with the Chain-of-Custody document. The samples were received in good condition, at 3.8 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

James

Alejandra D. Gomez Project Manager

3E09070

Certificate of Analysis

FINAL REPORT

Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237

Project Number: 23E0399

Project Manager: JP Verheul

Reported: 06/05/2023 10:46

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
23E099-01: EW-58	Client	3E09070-01	Water	05/04/23 08:16	
23E099-02: EW-59	Client	3E09070-02	Water	05/04/23 08:00	
23E099-03: EW-50	Client	3E09070-03	Water	05/04/23 07:35	

Page 2 of 7

Certificate of Analysis

FINAL REPORT

Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237

Project Number: 23E0399

Project Manager: JP Verheul

Reported: 06/05/2023 10:46

Sampled: 05/04/23 8:00 by Client

Sa	ample Results						
Sample:	23E099-01: EW-58				Sa	ampled: 05/04/23	8:16 by Client
	3E09070-01RE1 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Alcohols by G	iC/FID						
Method: EP/	A 8015M		Instr: GC09				
Batch ID:	W3E2265	Preparation: _NONE (SVOC)	Prepared: 05/2	25/23 11:26			Analyst: ecs
Acetic ac	id	1800	500	mg/l	50	05/25/23	M-05
Butyric ac	id	ND	500	mg/l	50	05/25/23	M-05
Heptanoic	acid	ND	500	mg/l	50	05/25/23	M-05
Hexanoic	acid	ND	500	mg/l	50	05/25/23	M-05
Isobutyric	acid	ND	500	mg/l	50	05/25/23	M-05
Isocaproio	cacid	ND	500	mg/l	50	05/25/23	M-05
Isovaleric	acid	ND	500	mg/l	50	05/25/23	M-05
Propionic	acid	800	500	mg/l	50	05/25/23	M-05
Valeric ac	id	ND	500	mg/l	50	05/25/23	M-05
	omple Deculte			Ū			

Sample Results

Sample:

23E099-02: EW-59

3E09070-02RE1 (Water)						
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Alcohols by GC/FID						
Method: EPA 8015M		Instr: GC09				
Batch ID: W3E2265	Preparation: _NONE (SVOC)	Prepared: 05/2	5/23 11:26			Analyst: ecs
Acetic acid		500	mg/l	50	05/25/23	M-05
Butyric acid	1200	500	mg/l	50	05/25/23	M-05
Heptanoic acid		500	mg/l	50	05/25/23	M-05
Hexanoic acid		500	mg/l	50	05/25/23	M-05
Isobutyric acid		500	mg/l	50	05/25/23	M-05
Isocaproic acid		500	mg/l	50	05/25/23	M-05
Isovaleric acid	500	500	mg/l	50	05/25/23	M-05
Propionic acid	1400	500	mg/l	50	05/25/23	M-05
Valeric acid	ND	500	mg/l	50	05/25/23	M-05

WECK LABORATORIES, INC.

Certificate of Analysis

FINAL REPORT

Enthalpy Ana 1941 Reyme Richmond, V		Project Number: 23E03				06/	Reported: 05/2023 10:46
	ample Results	Floject Manager. JF Ven	leui				(Continued)
Sample:	23E099-03: EW-50 3E09070-03RE1 (Water)				Sa	ampled: 05/04/23	7:35 by Client
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Alcohols by G	C/FID						
Method: EPA	A 8015M		Instr: GC09				
Batch ID: \	W3E2265	Preparation: _NONE (SVOC)	Prepared: 05/2	25/23 11:26			Analyst: ecs
Acetic aci	d	990	500	mg/l	50	05/25/23	M-05
Butyric aci	id	ND	500	mg/l	50	05/25/23	M-05
Heptanoic	acid	ND	500	mg/l	50	05/25/23	M-05
Hexanoic	acid	ND	500	mg/l	50	05/25/23	M-05
Isobutyric	acid		500	mg/l	50	05/25/23	M-05
Isocaproic	acid		500	mg/l	50	05/25/23	M-05
Isovaleric	acid		500	mg/l	50	05/25/23	M-05
Propionic	acid	520	500	mg/l	50	05/25/23	M-05
Valeric aci	d		500	mg/l	50	05/25/23	M-05

Certificate of Analysis

FINAL REPORT

Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237

Project Number: 23E0399

Reported: 06/05/2023 10:46

Project Manager: JP Verheul

Quality Control Results

Alcohols by GC/FID

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W3E2265 - EPA 8015M										
Blank (W3E2265-BLK1) Acetic acid	ND	10	mg/l	Prepared & A	nalyzed: 05/2	25/23				
Butyric acid		10	mg/l							
Heptanoic acid		10	mg/l							
Hexanoic acid		10	mg/l							
Isobutyric acid		10	mg/l							
Isocaproic acid		10	mg/l							
Isovaleric acid		10	mg/l							
Propionic acid		10	mg/l							
Valeric acid		10	mg/l							
		10	nigh							
LCS (W3E2265-BS1) Acetic acid	43.3	10	mg/l	Prepared & Au 50.0	nalyzed: 05/2	2 5/23 87	50-150			
Butyric acid		10	-	50.0		91	50-150			
Heptanoic acid	10.0	10	mg/l	50.0 50.0		91 98	50-150			
Hexanoic acid		10	mg/l mg/l	50.0 50.0		90 108	50-150			
Isobutyric acid	00.0	10	-	50.0		100	50-150			
Isocaproic acid	•	10	mg/l	50.0		112	50-150			
Isovaleric acid	00.1	10	mg/l	50.0		90	50-150			
Propionic acid	10.0	10	mg/l	50.0		90 90	50-150			
Valeric acid	- 53.2	10	mg/l	50.0		90 106	50-150			
	00.2	10	mg/l	50.0		100	50-150			
Matrix Spike (W3E2265-MS1)	Source: 3E24056-01	10		Prepared & A	-		50.450			
Acetic acid	- 73.4	10	mg/l	50.0	24.4	98	50-150			
Butyric acid	00.0	10	mg/l	50.0	ND	101	50-150			
Heptanoic acid	0110	10	mg/l	50.0	ND	109	50-150			
Hexanoic acid	58.7	10	mg/l	50.0	ND	117	50-150			
Isobutyric acid		10	mg/l	50.0	4.07	105	50-150			
	61.7	10	mg/l	50.0	10.3	103	50-150			
Isovaleric acid	10.0	10	mg/l	50.0	4.73	88	50-150			
Propionic acid	- 51.6	10	mg/l	50.0	9.68	84	50-150			
Valeric acid	57.8	10	mg/l	50.0	6.31	103	50-150			
Matrix Spike Dup (W3E2265-MSD1)	Source: 3E24056-01			Prepared & A	-					
Acetic acid	75.0	10	mg/l	50.0	24.4	101	50-150	2	25	
Butyric acid		10	mg/l	50.0	ND	101	50-150	0.2	25	
Heptanoic acid		10	mg/l	50.0	ND	111	50-150	2	25	
Hexanoic acid		10	mg/l	50.0	ND	118	50-150	0.8	25	
Isobutyric acid		10	mg/l	50.0	4.07	104	50-150	0.3	25	
Isocaproic acid		10	mg/l	50.0	10.3	106	50-150	2	25	
Isovaleric acid		10	mg/l	50.0	4.73	89	50-150	0.5	25	
Propionic acid		10	mg/l	50.0	9.68	84	50-150	0.1	25	
Valeric acid	58.1	10	mg/l	50.0	6.31	104	50-150	0.5	25	
3E09070										Page 5 of 7

Certificate of Analysis

FINAL REPORT

Enthalpy Analytical - Richmond VA 1941 Reymet Road	Pro	oject Number:	23E0399						06/05/	Reported: 2023 10:46
Richmond, VA 23237	Pro	ject Manager:	JP Verheul						00/00/	2020 10.40
Quality Control Results									(Co	ontinued)
Alcohols by GC/FID (Continued)										
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W3E2265 - EPA 8015M (Continued)										
Matrix Spike Dup (W3E2265-MSD1)	Source: 3E24056	-01	F	Prepared & A	nalyzed: 05/	25/23				

Certificate of Analysis

FINAL REPORT

Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237

Project Number: 23E0399

Reported: 06/05/2023 10:46

Project Manager: JP Verheul

Notes and Definitions

tem	Definition
M-05	Due to the nature of matrix interferences, sample was diluted prior to analysis. The MDL and MRL were raised due to the dilution.
%REC	Percent Recovery
Dil	Dilution
/IRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference
Source	Sample that was matrix spiked or duplicated.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

Page 7 of 7

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event		-			Conce	ntration	-	-	-		LOD	LUQ
	November-2022					1560		1400	1380			50	50
	December-2022	1700	2280	2110		1410	1310			1150	1780	100	100
		1520			1500				1330			50	50
	January-2023					2440						100	100
Ammonia as N (mg/L)	February-2023										1490	100	100
	March-2023				667	1480						73.1	100
	April-2023				1410		1220					73.1	100
	May-2023	1390			1860	2380						146	200
	November-2022					15700		5860	5140			0.2	2
	December-2022	6440	12500	11400		9240	3330			8360	6770	0.2	2
Biological Oxygen Demand	January-2023	9920			999	28100			7060			0.2	2
	February-2023										7230	0.2	2
(mg/L)	March-2023				1570	9190						0.2	2
	April-2023				8430		2860					0.2	2
	May-2023	7350			11900	35300						0.2	2
	November-2022							9790	10800			1000	1000
						23500						2000	2000
		7440										1000	1000
	December-2022					13200	8000			20300	14100	2000	2000
	December-2022			22400								5000	5000
			86800									10000	10000
					3630							500	500
Chemical Oxygen Demand	January-2023	14900							8430			2000	2000
(mg/L)						47600						5000	5000
	February-2023										9210	1000	1000
					1690							500	500
	March-2023					10600						2000	2000
	April-2023						7370					1000	1000
	Aprii-2023				16800							2000	2000
	May-2023	7590			18700							2000	2000
						44700						4000	4000
Nitrate+Nitrite as N (mg/L)	November-2022					2.91		0.16	0.33			0.1	0.1

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conce	ntration	-	-			LOD	LUQ
										ND		0.2	0.2
							ND					0.2	0.6
	December-2022	ND	ND	ND		ND						1.1	5.1
											ND	1.5	5.5
					ND							0.35	1.35
									ND			1.1	1.1
Nitrate as N (mg/L)	January-2023	3.9										2.1	2.1
						ND						2.2	2.2
	February-2023										ND	0.35	1.35
	March-2023				ND	ND						1.04	5.1
	April-2023				ND		ND					0.6	2.6
	May-2023	ND										1.1	5.1
	MQy-2023				ND	ND						1.2	5.2
December-202	December-2022						0.12 J					0.1	0.5
	December-2022	ND	ND	ND		ND				ND	ND	1	5
					ND							0.25	1.25
	January-2023								ND			1	1
Nitrite as N (mg/L)		ND				ND						2	2
	February-2023										0.48 J	0.25	1.25
	March-2023				ND	ND						1	5
	April-2023				ND		ND					0.5	2.5
	May-2023	ND			ND	ND						1	5
	November-2022							1290	1470			20	50
	NOVernber-2022					2110						50	125
	December-2022	1510	3570	1790		1830	1490			1340	1940	200	500
Total Kioldahl Nitrogon		1840			881				1410			20	50
fotal Kjeldahl Nitrogen /mg/L)	January-2023					2970						40	100
	February-2023										1870	16.8	50
	March-2023				879	1920						33.6	100
	April-2023				1820		1510					16.8	50
	May-2023	1590			1950	2910						40	100

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event		-			Conce	ntration					LOD	LOQ
	November-2022							5.68	3			0.3	0.5
	NOVERIDEI-2022					28.8						0.75	1.25
	December 2022						8.94					0.3	0.5
	December-2022	24.9	54.6	28.3		32				20.2	36	1.5	2.5
Total Recoverable Phenolics	January-2023	27.2			1.3				20.2			0.75	1.25
(mg/L)	January-2023					56.5						1.5	2.5
(((((((((((((((((((((((((((((((((((((((February-2023										22.4	1.5	2.5
	March-2023				0.4							0.03	0.05
	March-2025					13.9						0.3	0.5
	April-2023				18.7		5.1					0.3	0.5
	May-2023	18.6			20	50						1.5	2.5
SEMI-VOLATILE ORGANIC COM	APOUND (ug/L)												
	November-2022							ND	ND			46.7	93.5
						ND						93.5	187
	_					ND	ND				ND	9.35	9.35
	December-2022			ND						ND		11.7	11.7
			ND									23.4	23.4
		ND										485	971
					ND							243	485
	January-2023								ND			253	505
Anthracene	Junioury-2025	ND										490	980
						ND						500	1000
	February-2023										ND	187	374
	March-2023					ND						51	102
					ND							117	234
	April-2023				ND							37.4	74.8
	7 (pril 2020						ND					38.8	77.7
	May-2023	ND				ND						93.5	187
	May-202				ND							467	935

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68		100
Parameter	Monitoring Event					Conce	entration					LOD	LOQ
TOTAL METALS (mg/L)													
	November-2022					0.863		0.464	1.3			0.02	0.04
	December-2022	1.02	0.406	0.174		1.69	0.49			0.159	0.574	0.02	0.04
	January-2023	0.285			0.596	0.225			0.846			0.01	0.02
Arsenic	February-2023										0.29	0.005	0.01
	March-2023				1.07	1						0.01	0.02
	April-2023						0.11					0.0005	0.001
	Aprii-2023				0.36							0.005	0.01
	May-2023	0.26			0.3	0.27						0.0025	0.005
	November-2022					0.871		0.485	0.36			0.01	0.02
	December-2022	0.566	0.803	0.978		0.438	0.214			0.856	0.793	0.01	0.02
	January-2023	0.643			0.683	1.92			0.554			0.005	0.01
Barium	February-2023										1.04	0.01	0.05
Banom	March-2023				0.406	0.683						0.005	0.01
	April-2023				1.21		0.326					0.01	0.05
	May-2023	0.636										0.005	0.025
	1010y-2023				1.2	1.83						0.01	0.05
	November-2022					ND		ND	ND			0.004	0.008
	December-2022	ND	0.0104	ND		ND	ND			ND	ND	0.004	0.008
	January-2023	ND			ND	ND			ND			0.002	0.004
Cadmium	February-2023										0.000297 J	0.0001	0.001
	March-2023				ND	ND						0.002	0.004
	April-2023				0.000158 J		0.000333 J					0.0001	0.001
	May-2023	ND			ND	ND						0.0005	0.005
	November-2022					0.208		0.112	0.354			0.016	0.02
	December-2022	0.503	1.08	1.76		0.274	0.319			0.499	0.822	0.016	0.02
	January-2023	0.31			0.488	0.178			0.155			0.008	0.01
Chromium	February-2023										0.277	0.004	0.01
	March-2023				0.213	0.188						0.008	0.01
	April-2023						0.142					0.0004	0.001
	April-2025				0.306							0.004	0.01
	May-2023	0.422			0.281	0.237						0.002	0.005

Well ID)	EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68		100
Parameter	Monitoring Event					Conce	ntration	:				LOD	LOQ
TOTAL METALS (mg/L)												1	
	November-2022					ND		ND	ND			0.016	0.02
	December-2022	ND	ND	ND		ND	ND			ND	ND	0.016	0.02
	January-2023	ND			0.0127	0.0256			ND			0.008	0.01
Copper	February-2023										0.00365	0.0003	0.001
	March-2023				ND	ND						0.008	0.01
	April-2023				0.00664		0.00767					0.0003	0.001
	May-2023	ND			ND	ND						0.0015	0.005
	November-2022					ND		ND	0.017 J			0.012	0.02
	December-2022	ND	0.0381	ND		ND	ND			ND	ND	0.012	0.02
	January-2023	ND			ND	ND			ND			0.006	0.01
Lead	February-2023										0.006	0.001	0.001
	March-2023				ND	ND						0.006	0.01
	April-2023				0.0022		0.0067					0.001	0.001
	May-2023	ND			ND	ND						0.005	0.005
	November-2022							0.00169	0.00053			0.0004	0.0004
						ND						0.0008	0.0008
		0.00051										0.0004	0.0004
	December-2022			0.00118		ND	0.00588			0.0048	ND	0.0008	0.0008
			ND									0.004	0.004
		ND			ND				ND			0.0004	0.0004
Mercury	January-2023					ND						0.004	0.004
	February-2023										ND	0.0004	0.0004
					ND							0.0002	0.0002
	March-2023					ND						0.0004	0.0004
							0.00128					0.0002	0.0002
	April-2023				ND							0.0004	0.0004
	May-2023	ND			ND	ND						0.0002	0.0002
	November-2022					0.0866		0.1344	0.173			0.014	0.02
	December-2022	0.1722	0.5025	0.2989		0.1299	0.287			0.1853	0.346	0.014	0.02
	January-2023	0.1074			0.1442	0.0407			0.0769			0.007	0.01
Nickel	February-2023										0.1726	0.001	0.001
	March-2023				0.1254	0.1033						0.007	0.01
	April-2023				0.1143		0.1732					0.001	0.001
	May-2023	0.113			0.09726	0.05657						0.005	0.005

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conce	entration					LOD	LOQ
TOTAL METALS (mg/L)													
	November-2022					ND		ND	ND			0.08	0.1
	December-2022	ND	ND	ND		ND	ND			ND	ND	0.08	0.1
	January-2023	ND			ND	ND			ND			0.04	0.05
Selenium	February-2023										0.00199	0.00085	0.001
	March-2023				ND	ND						0.04	0.05
	April-2023				0.00189		0.00185					0.00085	0.001
	May-2023	ND			ND	0.00569						0.00425	0.005
	November-2022					ND		ND	ND			0.01	0.02
	December-2022	ND	0.0187 J	ND		ND	ND			ND	ND	0.01	0.02
	January-2023	ND			ND	ND			ND			0.005	0.01
Silver	February-2023										ND	0.00006	0.001
	March-2023				ND	ND						0.005	0.01
	April-2023				ND		0.00011 J					0.00006	0.001
	May-2023	ND			ND	ND						0.0003	0.005
	November-2022					ND		0.032	0.694			0.02	0.02
	December-2022	0.208	29.7	0.162		0.0686	0.75			0.364	0.286	0.02	0.02
	January-2023	0.133			0.15	0.074			0.0752			0.01	0.01
Zinc	February-2023										0.0851	0.0025	0.005
	March-2023				0.0689	0.0538						0.01	0.01
	April-2023				0.0539							0.0025	0.005
							0.414					0.025	0.05
	May-2023	0.079			0.0635	0.0519						0.0125	0.025

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conce	ntration					LOD	LOQ
VOLATILE FATTY ACIDS mg/L													
	November-2022							1600				25	100
	NOVEITIDEI-2022					3500			150 J			62	250
	December-2022	1800										62	250
Acetic Acid	January-2023	ND			ND	4400			ND				500
	February-2023										ND		500
	March-2023				ND	640							500
	April-2023				1200		520					370	500
	May-2023	990			1800	3000						370	500
	November-2022							430				12	100
	NOVEITIDEI-2022					830			ND			29	250
	December-2022	ND										29	250
Butyric Acid	January-2023	ND			ND	1800			ND				500
	February-2023										ND		500
	March-2023				ND	ND							500
	April-2023				ND		ND					330	500
	May-2023	ND			ND	1200						330	500
	November-2022							ND				11	100
Lactic Acid	NOVEITIDEI-2022					ND			ND			27	250
	December-2022	90 J										27	250
	Neversber 2000							620				11	100
	November-2022					1600			73 J			27	250
	December-2022	640										27	250
Propiopio Acid	January-2023	ND			ND	2000			ND				500
Propionic Acid	February-2023										ND		500
	March-2023				ND	ND							500
	April-2023				600		ND					340	500
	May-2023	520			800	1400						340	500
	November-2022							46 J				12	100
Pyruvic Acid						98 J			ND			30	250
	December-2022	ND										30	250

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conce	ntration	-				LOD	LOQ
VOLATILE ORGANIC COMPOU	NDS (ug/L)												
						3510			1140			30	100
	November-2022							15600				300	1000
		3140					3390					30	100
	December-2022		26800	27700		5670				21700	7150	300	1000
		3480			632							30	100
2-Butanone (MEK)	January-2023					7840			5470			300	1000
	February-2023										14400	600	2000
	March-2023				257	2770						30	100
	April-2023				3420		5530					750	2500
	May-2023	5360			5970							150	500
	141Gy 2020					13600						750	2500
	November-2022								4420			70	100
						16100		38300				700	1000
						15600	5170				9800	700	1000
	December-2022	8500										1750	2500
			53100	49900						45600		3500	5000
					1530							70	100
Acetone	January-2023					22200			14000			700	1000
		8130										1750	2500
	February-2023										23900	1400	2000
	March 0002				375							70	100
	March-2023					6810						700	1000
	April-2023				8290		7560					1750	2500
	May-2023	10700			11700							350	500
						29600						1750	2500
	November-2022					7.4 J		2860	50.4			4	10
	December-2022	301	2960			6.3 J	622			1750	179	4	10
Benzene				6550								40	100
	January-2023	240			28.7	1620			167			4	10
	February-2023										1370	4	10
	March-2023				1540	727						4	10
	April-2023				3740		320					4	10
	May-2023	814			4890	3370						20	50

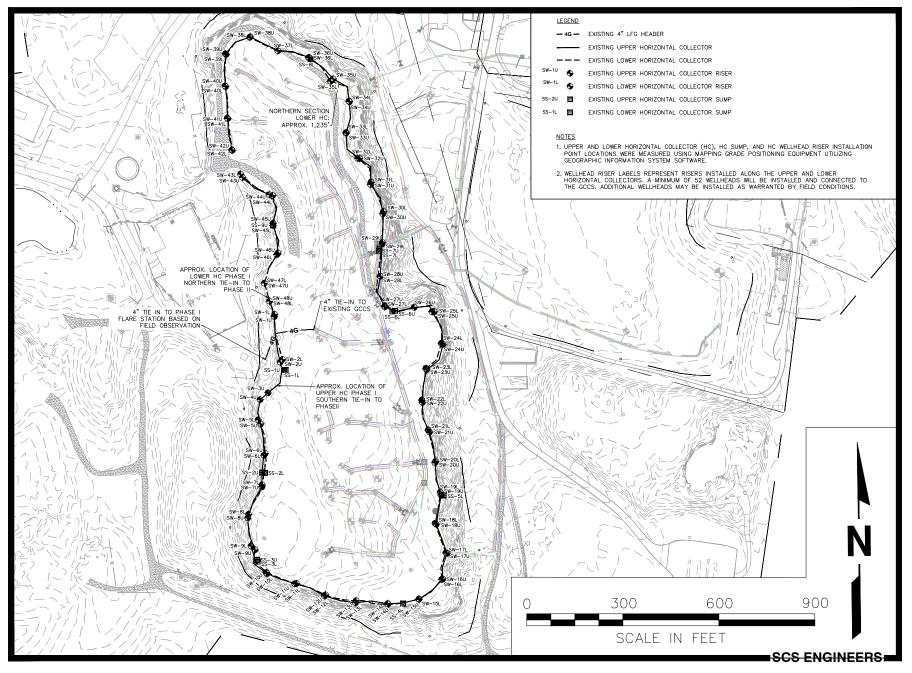
Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event	Concentration										LOD	LUQ
VOLATILE ORGANIC COMPOUNDS (ug/L)													
Ethylbenzene	December-2022	67.3	172	287		ND	48.5			108	27.4	4	10
	November-2022					ND		194	16.2			4	10
	January-2023	65.1			ND	93.9			20.8			4	10
	February-2023										151	4	10
	March-2023				131	71.5						4	10
	April-2023				186		43.4					4	10
	May-2023	124			276	144						20	50
Tetrahydrofuran	November-2022					309			176			100	100
								8530				1000	1000
	December-2022	151				170	1120				663	100	100
			5210	19800						6130		1000	1000
	January-2023	183			566	1810			352			100	100
	February-2023										3760	2000	2000
	March-2023				353	464						100	100
	April-2023				2410		4790					100	100
	May-2023	ND			2740	2380						500	500
Toluene	November-2022					ND		214	32.8			5	10
	December-2022	122	175	195		ND	113			113	48.3	5	10
	January-2023	122			8 J	139			35.3			5	10
	February-2023										224	5	10
	March-2023				182	98.1						5	10
	April-2023				303		94.4					5	10
	May-2023	258			371	239						25	50
Xylenes, Total	November-2022					ND		185	37.8			10	30
	December-2022	161	222	186		ND	112			197	59.9	10	30
	January-2023	138			ND	134			38.1			10	30
	February-2023										240	10	30
	March-2023				240	111						10	30
	April-2023				329		97.4					10	30
	May-2023	274			441	230						50	150

--- = not applicable/available

J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter


ND = Not Detected

LOD = laboratory's Limit of Detection

ug/L = micrograms per liter

Appendix G

Sidewall Odor Mitigation System Progress Drawings

SIDEWALL ODOR MITIGATION SYSTEM APPROXIMATE AS-BUILT LOCATIONS