March Monthly Compliance Report

Solid Waste Permit #588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-18 | Revised May 25, 2023

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sect	tion			Page		
	Intro	duction		4		
1.0	Gas	Collectio	on	4		
	1.1	Surfac	e and Leachate Collection Emissions	4		
		1.1.1	Surface Emissions	4		
		1.1.2	Leachate Collection Emissions	5		
	1.2	Existin	g Gas Extraction System Performance	6		
	1.3	Remot	te Monitoring System	6		
	1.4	Large-	Diameter Dual-Phase Extraction Wells	6		
	1.5	VDEQ	Concurrence on Wells	8		
2.0	Side	wall Odd	or Mitigation	8		
	2.1	Perime	eter Gas Collection System	8		
	2.2	Sidewa	all Odor Mitigation System	11		
	2.3	Pilot S	ystem Construction	11		
	2.4	Full Sy	stem Construction	14		
3.0	Wast	te Temp	perature Monitoring	15		
	3.1	Temperature Monitoring System Design 15				
	3.2	Tempe	erature Monitoring System Installation	16		
4.0	Lead	hate Ex	traction and Monitoring	25		
	4.1	Existin	g System Optimization	25		
	4.2	Sampl	ing and Analysis			
		4.2.1	Sample Collection			
		4.2.2	Quality Assurance and Quality Control			
		4.2.3	Data Validation	30		
		4.2.4	Laboratory Analytical Results	30		
5.0	Settl	ement N	Nonitoring and Management	32		
	5.1	Settler	ment Monitoring and Management Plan	32		
	5.2	Month	ly Surveys	32		
		5.2.1	Topographic Data Collection	32		
		5.2.2	Settlement Plate Surveys			
6.0	Inter	mediate	e Cover and EVOH Cover System	37		
	6.1	Interm	ediate Cover Installation	37		
	6.2	EVOH	Cover System Design	37		
	6.3	EVOH	Cover System Procurement	38		

Table of Contents

Sect			Page
	6.4	EVOH Cover System Installation	38
		n Water Management	
8.0	Misc	ellaneous	38
	8.1	Cease Waste Acceptance	38
	8.2	Long-Term Plan	39
	8.3	Monthly Compliance Reports	39
	8.4	Community Outreach Program	39

Figures

Figure 1.	Proposed Landfill Gas Collect Well Location Marker	7
Figure 2.	Trailer Landfill Gas Well Drilling Supplies Delivered to the ISWMF	
Figure 3.	Landfill Gas Collection System Piping Delivered to the ISWMF	
Figure 4.	Chlorinated Polyvinyl Chloride Casing for Landfill Gas Extraction Wells	
Figure 5.	Landfill Gas Extraction Well Drilling	
Figure 6.	Vacuum Box at the Base of Drill Rig	
Figure 7.	SOMS Phase I Approximate As-Built	
Figure 8.	Phase 1 Sidewall Odor Mitigation System Construction	
Figure 9.	Phase 2 SOMS Construction	
Figure 10.	Phase 2 Sidewall Odor Mitigation System Progress As-Built	
Figure 11.	Average Temperatures within TP-1 on Select Days in March	
Figure 12.	Average Temperatures within TP-2 on Select Days in March	
Figure 13.	Average Temperatures within TP-3 on Select Days in March	
Figure 14.	Average Temperatures within TP-4 on Select Days in March	
Figure 15.	Average Temperatures within TP-5 on Select Days in March	
Figure 16.	Average Temperatures within TP-6 on Select Days in March	22
Figure 17.	Average Temperatures within TP-7 on Select Days in March	
Figure 18.	Average Temperatures within TP-8 on Select Days in March	
Figure 19.	Average Temperatures within TP-9 on Select Days in March	
Figure 20.	Estimated Volume of Liquids Removed from Landfill Gas Wells	
Figure 21.	1-Month Elevation Change Color Map	33
Figure 22.	3-Month Elevation Change Color Map	35
Figure 23.	Settlement Plate Locations	

Tables

Table 1.	Summary of March Surface Emissions Monitoring	5
Table 2.	Cleanout Pipe Identification	
Table 3.	Sidewall HC Wellhead Gas Quality Measurements	
Table 4.	Summary of Dual Extraction Well Pump Stroke Counter Data	26
Table 5.	Summary of Dual Extraction Well Pump Liquids Removal	26

Table of Contents

Section	Pa	age
Table 6.	Monthly LFG-EW Leachate Monitoring Event Summary	. 30
Table 7.	Settlement Plate Locations	. 37

Appendices

- Appendix A Surface Emissions Monitoring Summary Letters
- Appendix B SCS-FS March Summary Report
- Appendix C Semi-Monthly Temperature Update Memos
- Appendix D Solid Waste Permit 588 Daily Borehole Temperature Averages
- Appendix E Monthly Topography Analysis
- Appendix F Sample Collection Log, Lab Reports, and Historical LFG-EW Leachate Monitoring Results Summary
- Appendix G Monitoring, Maintenance, and Repair Plan Implementation Letter

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report covers the Solid Waste Permit #588 landfill during the month of March.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

1.1.1.1 Quarterly SEM

SCS performed the First Quarter surface emissions monitoring event on March 15, 2023. The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint outside of the active filling area.

No exceedances were detected during this quarterly monitoring event on the serpentine route or at the pipe penetrations. This monitoring event also represented the weekly monitoring event for that week. A quarterly SEM report will be submitted to the VDEQ as part of the Semi-Annual Report. In addition, monitoring results were presented to the VDEQ in a letter dated March 22, 2023.

1.1.1.2 Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, SCS performed additional surface emissions monitoring on March 9, 2023, March 23, 2023, and March 29, 2023. (The quarterly event on March 15, 2023, described in section 1.1.1.1, also represents a weekly SEM event.) These Weekly Surface Emissions Monitoring (SEM) Events were performed in accordance with Section 3.5 of the Plan of Action in Response to the Expert Panel Report, submitted to VDEQ on July 6, 2022.

The monitoring in March generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame lonization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in

accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint.

SCS submitted letters to VDEQ outlining the results of the March monitoring events on March 15, 2023, March 22, 2023, March 29, 2023, and April 5, 2023. Copies of those submittals are included in Appendix A. Table 1 summarizes the results of the four monitoring events in March.

Description	March 9, 2023	March 15, 2023	March 23, 2023	March 29, 2023
Number of Points Sampled	149	149	149	147
Number of Points in Serpentine Route	100	100	100	100
Number of Points at Surface Cover Penetrations	49	49	49	47
Number of Exceedances	0	0	0	1
Number of Serpentine Exceedances	0	0	0	0
Number of Pipe Penetration Exceedances	0	0	0	1

 Table 1.
 Summary of March Surface Emissions Monitoring

Out of the 594 recorded points monitored as part of the four March monitoring events, only one exceedance was found. The exceedance was a pipe penetration exceedance located at gas extraction well (EW) 52. Following the surface emissions monitoring event, the liquids removal pump was repaired and the flexible hose connecting the well to the header piping was replaced. This location will be monitored again during the week of April 3, 2023 to confirm that surface emissions have been reduced at this location.

1.1.2 Leachate Collection Emissions

SCS Field Services (SCS-FS) visited the Bristol Landfill on March 1, 2023, and performed monitoring of the leachate, witness zone, and gradient control clean-outs at the northern and southern ends of the landfill. The results of that monitoring are included in SCS-FS's summary report for the month of March dated April 7, 2023. A copy of this report is included in Appendix B. The monitoring data for the clean-outs at the southern end of the landfill are listed as LCO1 – LC10. The monitoring data for the clean-outs at the northern end of the landfill are listed as NCO1 – NC10. Table 2 presents the cleanout pipe identification labeling convention, which is based on site records and review of correspondence.

N	lorthern Cleanouts	Southern Cleanouts		
ID #	Description	ID #	Description	
NC01	Leachate East	LC01	Gradient West	
NC02	Leachate Center	LC02	Gradient East	
NC03	Leachate West	LC03	Leachate Center	
NC04	Witness East	LC04	Witness East	

Table 2. Cleanout Pipe Identification

N	lorthern Cleanouts	Southern Cleanouts		
ID #	Description	ID #	Description	
NC05	Witness Center	LC05	Leachate West	
NC06	Witness West	LC06	Gradient Center West	
NC07	Gradient East	LC07	Leachate East	
NC08	Gradient Center East	LC08	Gradient Center East	
NC09	Gradient Center West	LC09	Leachate West	
NC10	Gradient West	LC10	Witness Center	

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in SCS-FS's summary report for the month of March.

1.3 REMOTE MONITORING SYSTEM

In the fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas well-heads. The purpose of the sensors is to record and transmit well-head gas temperatures via a cellular connection to a database managed by SCS-RMC. As outlined in previous monthly compliance reports for the SWP #588 Landfill the system is currently undergoing commissioning.

The City is providing average temperatures recorded by the sensors to VDEQ on a daily basis via email. In addition, SCS prepares a semi-monthly report with analysis of this data. The semi-monthly reports for March are included in Appendix C.

1.4 LARGE-DIAMETER DUAL-PHASE EXTRACTION WELLS

SCS completed design work on an expansion of the existing GCCS during the month of December. The proposed expansion includes at least 5 large diameter dual-phase extraction wells. SCS submitted the design to VDEQ prior to December 31, 2022. The City commenced solicitation of contractor's bids for this project by advertising for bids and received one bid for the project from SCS Field Services Construction (SCS-CONS). On January 26, 2023 the City awarded the project to SCS-CONS.

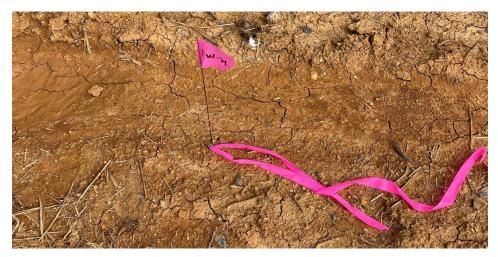


Figure 1. Proposed Landfill Gas Collect Well Location Marker

During the week of March 6, 2023, the proposed locations of the large diameter dual extraction wells and the perimeter LFG wells described in Section 2.1 were surveyed and marked in the field by the City's surveyor. An example of a proposed well location marked in the field is shown in Figure 1. In some cases the proposed well locations were modified to avoid conflicts with existing infrastructure. Proposed well elevations were recorded and reviewed by SCS. The proposed well scheduled was modified based on the surveyed well locations and elevations.

Figure 2. Trailer Landfill Gas Well Drilling Supplies Delivered to the ISWMF

During the week of March 20, 2023 SCS-CONS began the process of mobilizing equipment to the site. Figures 2 and 3 show examples of tools and supplies mobilized to the site.

Figure 3. Landfill Gas Collection System Piping Delivered to the ISWMF

During the week of March 20, 2023 chlorinated polyvinyl chloride (CPVC) casings for the perimeter LFG wells described in Section 2.1 also arrived on site. Due to the longer lead times associated the steel casings required for the large diameter dual extraction wells, those casings were not delivered during the month of March. Drilling of the perimeter LFG wells began during the last week of March and those activities are described in Section 2.1.

1.5 VDEQ CONCURRENCE ON WELLS

As described in previous monthly compliance reports, the City engaged with VDEQ in discussions about the proposed approach for landfill GCCS improvements and expansions. Upon completion of the landfill gas collection system, SCS will submit updated as-built drawings depicting the completed system to VDEQ. The City intends to delay installation of temporary or final cover systems until the City and VDEQ agree that the GCCS is sufficient.

2.0 SIDEWALL ODOR MITIGATION

The City initiated design and construction work to address fugitive emissions emanating from the quarry sidewalls. Specific aspects of the proposed design features are outlined in the following sections.

2.1 PERIMETER GAS COLLECTION SYSTEM

SCS's design of the GCCS expansion outlined in Section 1.4 included perimeter LFG wells. These wells will be placed closer to the sidewall to intercept landfill gas that potentially could migrate to the quarry wall. These wells will supplement the sidewall odor mitigation system described in section 2.2. The City completed bidding and contracting of construction for the perimeter LFG wells as part of the large diameter dual extraction well installation described in Section 1.4.

During the week of March 20, 2023 the CPVC casings for the perimeter LFG wells were delivered to the site along with other equipment and supplies required for construction. The casings delivered to site are shown in Figure 4.

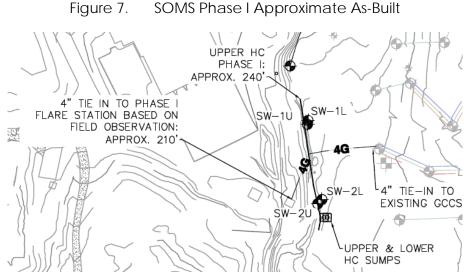
Figure 4. Chlorinated Polyvinyl Chloride Casing for Landfill Gas Extraction Wells

On March 28, 2023 a pre-construction meeting was held with SCS, SCS-CONS, and the City in attendance. Drilling of perimeter LFG wells began on March 29, 2023. Figure 5 shows drilling operations. Drilling of perimeter wells EW-69, EW-70, EW-73, EW-76, and EW-78 was completed in March. Approximately 438 vertical feet of landfill gas extraction wells were drilled during the month of March. This length represents approximately 25 percent of the total vertical length of perimeter LFG wells proposed.

Figure 5. Landfill Gas Extraction Well Drilling

SCS-CONS is utilizing a vacuum box to reduce emissions from partially drilled wells. The vacuum box is placed over partially constructed wells when drilling will not be completed during a single day. The vacuum box covers the open well and is connected to the active GCCS. Landfill gas is conveyed through the vacuum box to the GCCS so it is not emitted. The vacuum box may also be utilized during drilling to reduce emissions during drilling. The vacuum box utilized for this project is shown in Figure 6.

Figure 6. Vacuum Box at the Base of Drill Rig


Drilling of the perimeter LFG wells will continue during the month of April.

2.2 SIDEWALL ODOR MITIGATION SYSTEM

On behalf of the City and in an effort to capture emissions from the quarry sidewall, SCS designed a sidewall odor mitigation system (SOMS) during the month of October. On October 20, 2022 SCS provided an overview of the proposed system to VDEQ staff. The design of this system was prepared and submitted to VDEQ on November 1, 2022. A project manual detailing the specifications of the system was developed concurrently with the design of the system.

2.3 PILOT SYSTEM CONSTRUCTION

SCS-CONS completed substantial construction of Phase 1 of the SOMS during the month of February, and began monitoring Phase 1 connected Horizontal Collector (HC) wellheads during the month of March. Phase 1 is considered the pilot system portion of the SOMS. SCS submitted a design engineer certification to VDEQ on February 10, 2023 that documented the substantial completion of Phase 1 of the SOMS. Figure 7 shows the Phase 1 as-built, which includes the locations of the HC wellheads and HC sumps installed in Phase I, as well as the 4" header connection to the existing LFGCCS.

Phase 1 was initially connected to an auxiliary flare located near the system. HC wellhead measurements of gas quality were taken on a weekly basis during the month of March. A summary of those measurements is shown in Table 3.

Device ID Date/Time		CH₄ (%)	CO2 (%)	O2 (%)
SW1L	3/9/2023 9:50:28 AM	6.4	14.7	15.2
SW1L	3/10/2023 12:10:17 PM	22.4	30.9	7.5
SW1L	3/15/2023 3:16:41 PM	14.2	23.8	11.0
SW1L	3/17/2023 3:30:52 PM	34.9	45.3	0.8

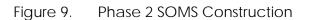
Device ID	Date/Time	CH₄ (%)	CO ₂ (%)	O2 (%)
SW1L	3/20/2023 1:40:23 PM	4.0	12.3	15.4
SW1L	3/23/2023 9:34:25 AM	9.0	22.7	11.3
SW1L	3/28/2023 9:33:52 AM	8.2	30.5	11.3
SW1U	3/9/2023 9:54:02 AM	0.1	1.3	23.0
SW1U	3/10/2023 12:06:59 PM	1.3	4.1	19.1
SW1U	3/17/2023 3:34:03 PM	13.0	26.9	12.2
SW1U	3/23/2023 9:36:43 AM	1.1	3.4	19.5
SW1U	3/28/2023 9:36:22 AM	0.8	11.0	21.7
SW2L	3/9/2023 9:57:28 AM	18.4	28.0	10.4
SW2L	3/10/2023 12:00:09 PM	42.6	50.0	0.8
SW2L	3/15/2023 3:09:57 PM	30.2	43.8	4.8
SW2L	3/17/2023 3:38:53 PM	40.6	56.7	0.0
SW2L	3/20/2023 1:45:05 PM	24.8	42.1	6.3
SW2L	3/23/2023 9:39:47 AM	28.0	46.1	4.4
SW2L	3/28/2023 9:39:12 AM	28.3	54.5	4.5
SW2U	3/9/2023 10:06:59 AM	0.6	2.2	22.8
SW2U	3/10/2023 12:03:14 PM	30.0	55.7	1.7
SW2U	3/15/2023 2:59:18 PM	17.2	35.5	9.3
SW2U	3/17/2023 3:41:57 PM	32.0	63.3	0.2
SW2U	3/20/2023 1:49:35 PM	10.6	25.1	14.2
SW2U	3/23/2023 9:42:07 AM	13.2	31.3	11.5
SW2U	3/28/2023 9:41:32 AM	13.5	45.4	11.1

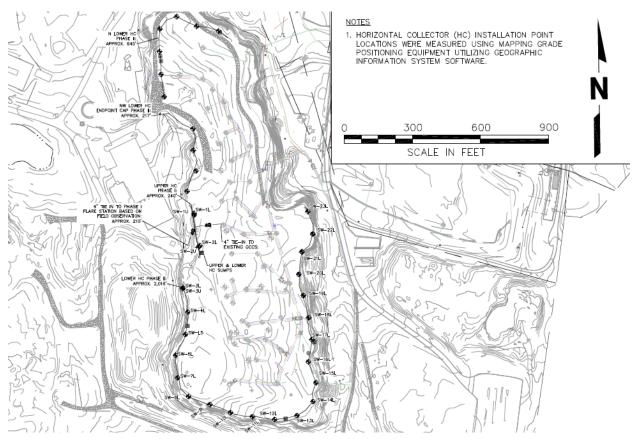
Sidewall wellhead lower collector 1 (SW1L) is connected to the horizontal collector placed in waste inside the landfill liner close to the northern limit of Phase 1. Measurements of gas composition taken at SW1L indicate that methane levels are low, but that landfill gas is being captured by the system. Sidewall wellhead upper collector 1 (SW1U) is connected to the horizontal collector placed outside of the liner and waste. SW1U is close to the northern limit of Phase 1. Measurements of gas composition taken at SW1U indicate that ambient air is being pulled in at this location. This is expected for the proximity of this section of the horizontal collector to the Phase 1 temporary termination.

Sidewall wellhead lower collector 2 (SW2L) is connected to the horizontal collector placed in waste inside the landfill liner close to the center of Phase 1. Measurements of gas composition taken at SW1L indicate that methane levels are lower than typical of landfill gas collection systems, but that landfill gas is being captured by the system. Sidewall wellhead upper collector 2 (SW2U) is connected to the horizontal collector placed outside of the liner and waste. SW2U is close to the center of Phase 1. Measurements of gas composition taken at SW2U indicate that methane levels are low, but that landfill gas is being captured by the system.

The fact that landfill gas is being collected by both the upper and lower collectors is evidence that the system is capturing fugitive emissions. This data supports the construction of Phase 2 utilizing the same general configuration. SCS-FS will continue to monitor Phase 1 of the system during the month of April.

Soil cover was installed on top of Phase 1 of the system during the remainder of March. Figure 8 shows soil placement on Phase 1 of the system. Phase 1 collectors were connected to the existing LFG system via a 4-inch HDPE pipe with isolation valves on February 16, 2023. Wellheads were installed at 4 locations on Phase 1 of the SOMS. Gas collected from the SOMS is currently routed to the primary flare and power generation facility. On March 2, 2023, SCS-CON made repairs to the 4-inch HDPE pipe layout to correct fall for proper condensate drainage.




2.4 FULL SYSTEM CONSTRUCTION

SCS-CONS continued construction of Phase 2 of the SOMS. Lower horizontal collector placement has been completed along the west sidewall south of Phase 1, the south sidewall, the southern portion of the east sidewall, and now further toward the northeastern sidewall. Figure 9 shows Phase 2 construction activities. The crew continued the installation of liquids collection sumps at low elevation points, and wellheads were installed every 100'. Phase 2 lower collector construction progress, including HC wellhead and sump locations, is shown in the approximate as-built depicted as Figure 10.

Some sections of sidewall were found to have discontinuities in the existing liner. Work proceeded along the inconsistent liner conditions based on the procedures proposed as a result of discussions between SCS, the City, and VDEQ.

Figure 10. Phase 2 Sidewall Odor Mitigation System Progress As-Built

Throughout the month of March, SCS-CON continued trenching for Phase 2 installation. During the week of March 13, 2023 SCS-CON began placing the geomembrane on top of the lower collector. This installation process continued during the remainder of the month.

3.0 WASTE TEMPERATURE MONITORING

On behalf of the City, SCS designed a temperature monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

3.1 TEMPERATURE MONITORING SYSTEM DESIGN

The temperature monitoring system consists of 9 boreholes drilled into the waste mass. A steel casing was placed in each borehole and the hole was backfilled around the casing with aggregate. A series of temperature sensors was placed inside the steel casing. At the top of each borehole, an IIoT transmitter collects the data from the sensors and transmits it to a cloud-based RMC system. The City submitted design of the temperature monitoring system to VDEQ on November 30, 2022.

3.2 TEMPERATURE MONITORING SYSTEM INSTALLATION

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP #588 Landfill.

SCS began collecting temperature data on a daily basis on February 15, 2023. The temperature sensors continued to transmit temperature data from all 9 casings during the month of March. Average daily temperatures recorded by the sensors for the Month of March are included in Appendix D. Each week the average temperatures from Wednesday of that week are downloaded and compared to temperatures recorded during the previous week. The average daily temperatures recorded on Wednesdays during the month of March are shown in Figures 9 through 17 on the following pages. For reference average temperatures recorded on February 15, 2023 (the first day that the sensors collected data) are also shown.

Figure 11 shows daily average temperatures in Temperature Probe 1 (TP-1) on February 15, 2023; March 1, 2023; March 8, 2023, March 15, 2023, March 22, 2023; and March 29, 2023. On average, during the month of March the average variation in temperatures along the length of the probe was approximately 2 degrees Fahrenheit. TP-1 was originally drilled to a depth of 180 feet, but the contractor was unable to install the casing beyond a depth of 160 feet. TP-1 is equipped with an ambient temperature sensor above the waste surface, but a software issue prevented that sensor from reporting during the month of February. A software update resolved the ambient temperature reporting issue and ambient temperatures were recorded during the month of March.

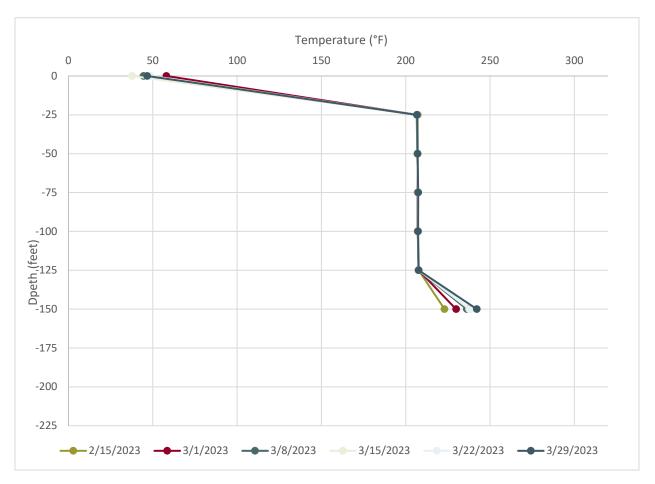
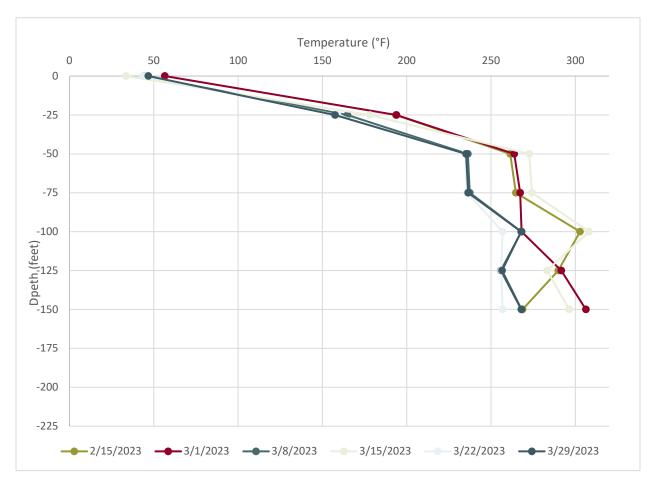



Figure 11. Average Temperatures within TP-1 on Select Days in March

Figure 12 shows daily average temperatures in Temperature Probe 2 (TP-2) on February 15, 2023; March 1, 2023; March 8, 2023, March 15, 2023, March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 42 degrees Fahrenheit. TP-2 was originally drilled to a depth of 160 feet. TP-2 is equipped with an ambient temperature sensor above the waste surface, but a software issue prevented that sensor from reporting during the month of February. A software update resolved the ambient temperature reporting issue and ambient temperatures were recorded during the month of March.

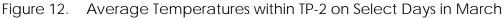
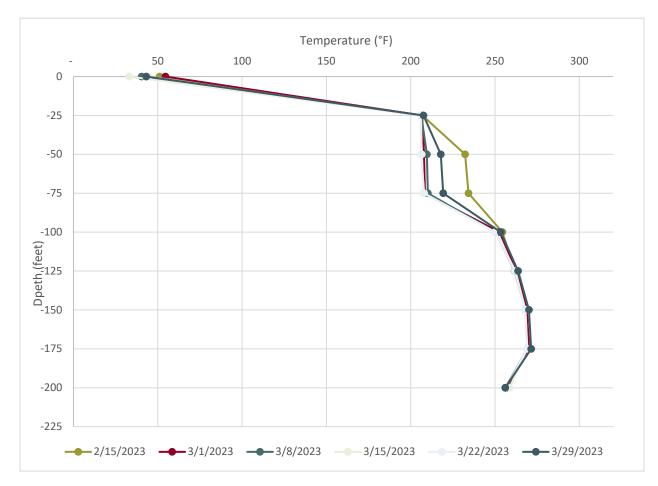



Figure 13 shows daily average temperatures in Temperature Probe 3 (TP-3) on February 15, 2023; March 1, 2023; March 8, 2023, March 15, 2023, March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 5 degrees Fahrenheit.

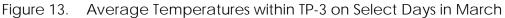
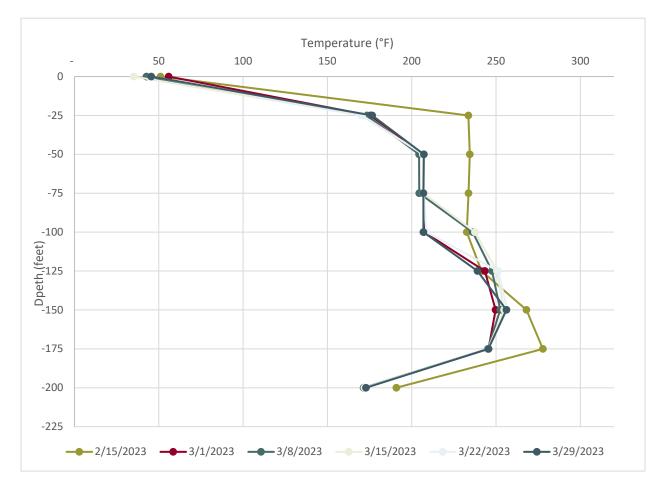



Figure 14 shows daily average temperatures in Temperature Probe 4 (TP-4) on February 15, 2023; March 1, 2023; March 8, 2023, March 15, 2023, March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 8 degrees Fahrenheit.

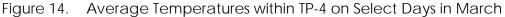
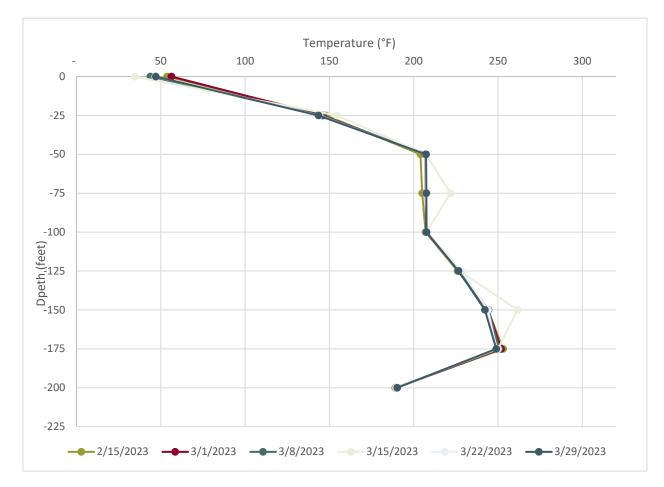



Figure 15 shows daily average temperatures in Temperature Probe 5 (TP-5) on February 15, 2023; March 1, 2023; March 8, 2023, March 15, 2023, March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 6 degrees Fahrenheit.

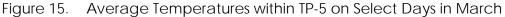
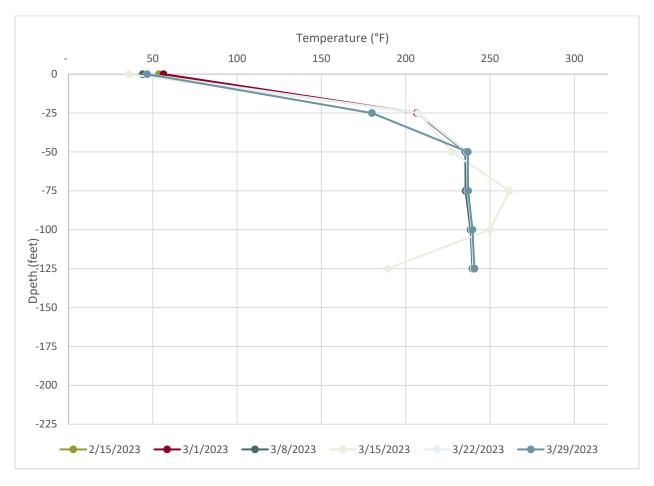



Figure 16 shows daily average temperatures in Temperature Probe 6 (TP-6) on February 15, 2023; March 1, 2023; March 8, 2023, March 15, 2023, March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 25 degrees Fahrenheit. TP-6 was originally drilled to a depth of 208 feet and casing was installed to the full depth. During the installation of the installation of replacement sensors, a blockage within the casing prevented placement of sensors below the 125-foot depth.

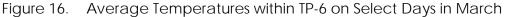
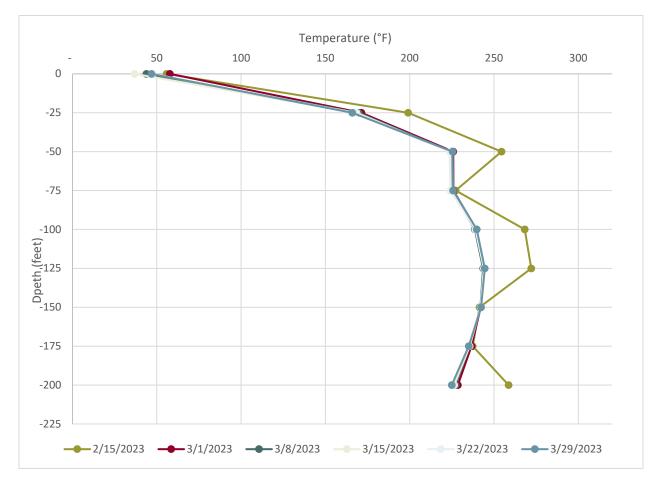



Figure 17 shows daily average temperatures in Temperature Probe 7 (TP-7) on February 15, 2023; March 1, 2023; March 8, 2023, March 15, 2023, March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 2 degrees Fahrenheit.

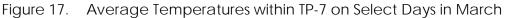
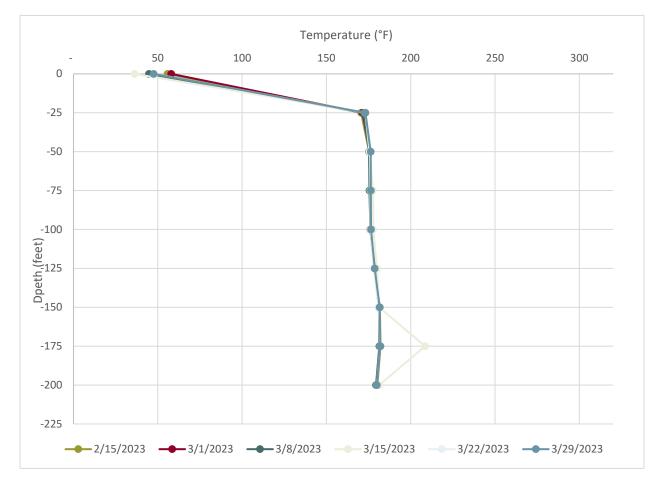



Figure 18 shows daily average temperatures in Temperature Probe 8 (TP-8) on February 15, 2023; March 1, 2023; March 8, 2023, March 15, 2023, March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 5 degrees Fahrenheit.

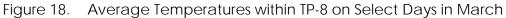
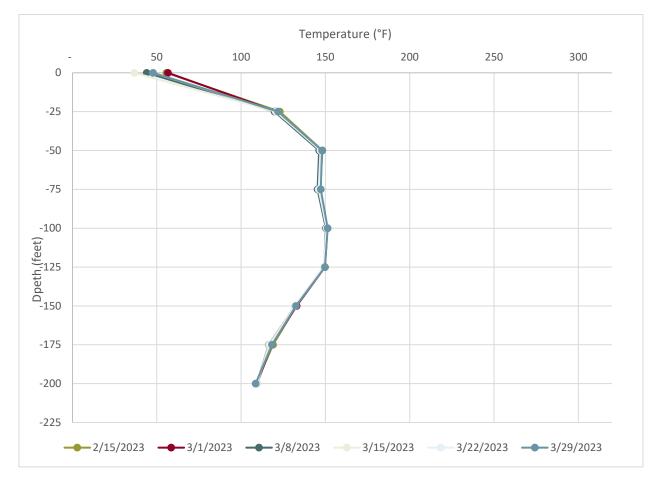
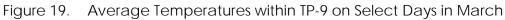




Figure 18 shows daily average temperatures in Temperature Probe 9 (TP-9) on February 15, 2023; March 1, 2023; March 8, 2023, March 15, 2023, March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 1 degree Fahrenheit.

4.0 LEACHATE EXTRACTION AND MONITORING

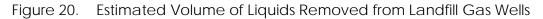
The City has begun taking steps to improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals.

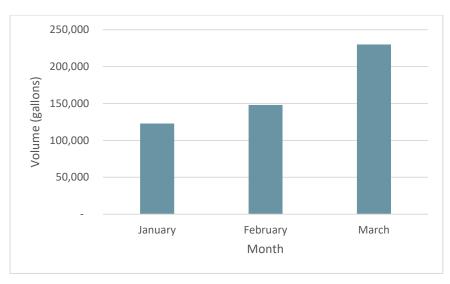
4.1 EXISTING SYSTEM OPTIMIZATION

During mobilizations to conduct surface emissions monitoring outlined in Section 1.1.1, SCS also collected stroke counter data from the pumps installed in the GCCS extraction wells. Stroke counts were collected from 18 wells on March 6, 2023; March 15, 2023; March 23, 2023; and March 29, 2023. The data collected is summarized in Table 4. Cells marked with "*" represent dates when the pump was removed from the well for maintenance.

Well	March 6, 2023	March 15, 2023	March 23, 2023	March 29, 2023
EW64	98033	98033	98081	98083
EW61	212085	212085	212104	212105
EW50	785764	822928	839985	845964
EW49	439650	439671	439674	439674
EW60	*	*	*	*
EW52	*	*	*	*
EW68	1812384	1813237	1821390	1833338
EW51	*	*	240234	281076
EW67	300396	347164	347188	347190
EW54	*	*	*	170975
EW55	*	*	*	*
EW58	1615441	1615455	1615455	1758091
EW59	1103346	1224576	1366734	1371333
EW57	*	190761	224470	248610
EW65	3871	3890	3942	3950
EW63	48067	48071	48072	48073
EW62	113994	113995	114010	114011
EW53	1852600	1852600	1852617	1852618

Table 4.Summary of Dual Extraction Well Pump Stroke Counter Data


Based on this data and stroke counts taken on March 29, 2022, SCS can estimate the number of gallons of liquid pumped from each well. SCS assumed that each stroke correlates to approximately 0.3 gallons of liquid removed from the well. This data will then be used to repair or replace pumps or replace nonfunctional stroke counters. Estimates of the quantities of liquids removed between the reading dates is shown in Table 5.


 Table 5.
 Summary of Dual Extraction Well Pump Liquids Removal

Well	Liquids Removed (gal) February 28, 2023 to March 6, 2023	Liquids Removed (gal) March 6, 2023 to March 15, 2023	Liquids Removed (gal) March 15, 2023 to March 23, 2023	Liquids Removed (gal) March 23, 2023 to March 30, 2023
EW64	0	0	15	1
EW61	0	0	6	1
EW50	2324	8826	5117	1794
EW49	1	1	1	0
EW60	0	0	0	0

Well	Liquids Removed (gal) February 28, 2023 to March 6, 2023	Liquids Removed (gal) March 6, 2023 to March 15, 2023	Liquids Removed (gal) March 15, 2023 to March 23, 2023	Liquids Removed (gal) March 23, 2023 to March 30, 2023
EW52	0	0	0	0
EW68	253	4	2446	3584
EW51	0	0	0	12253
EW67	14028	2	2	1
EW54	0	0	0	19398
EW55	0	0	0	0
EW58	0	4	0	42791
EW59	5305	31064	42647	1380
EW57	0	19697	10113	7242
EW65	0	6	16	3
EW63	1	1	1	1
EW62	0	0	5	1
EW53	10	0	5	1

SCS estimates that approximately 230,000 gallons of liquids were removed from the landfill gas collection and control system during the month of March. This is an increase of approximately 82,000 gallons when compared to the previous month. The change in landfill gas liquids removal over the last three months is depicted in Figure 20.

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations. Pumps require servicing after relatively short intervals.

During the construction of the LFGCCS expansion outlined in Sections 1.4 and 2.1, multiple types of leachate extraction pumps will be installed. After installation, the City and SCS will evaluate the performance of those pumps. Based on that evaluation, the City will select the pump type that is most effective given the landfill conditions.

During February, six pumps were removed and taken back to the manufacturer's facility (Pump One) for cleaning and repair. These pumps were returned to the site in March and reinstalled in their respective extraction wells.

4.2 SAMPLING AND ANALYSIS PLAN

On November 1, 2022, SCS submitted to VDEQ the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan for the Bristol Integrated Solid Waste Management Facility Solid Waste Permit #588 Landfill and the plan was subsequently revised on December 1, 2022. Refer to the November and December Compliance Reports for the SWP #588 Landfill for additional information.

4.3 SAMPLING AND ANALYSIS

4.3.1 Sample Collection

On March 6, 2023, SCS collected leachate samples from two Dual Phase LFG-EWs (EW-58 and EW-59). At the time of sample collection dissolved oxygen, oxidation-reduction potential, pH, specific conductance, temperature, and turbidity were measured and recorded. The sample collection log is included in **Appendix F**.

SCS' field staff was not able to collect samples from the other wells for the following reasons:

- Pumps were not running at the time of sample collection in the following wells: EW-49, EW-50, EW-51, EW-53, EW-61, EW-62, EW-67, and EW-68.
- There was no pump in EW-52, EW-54, EW-56, EW-57, and EW-60 at the time of sample collection.
- The pump was not running and the well was too tall to safely remove well head on well EW-49.
- The pump was not running as there was no air supply connected to the pump for wells EW-55 and EW-63.
- The pump was disconnected for wells EW-64 and EW-65.

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia and Weck Laboratories, Inc (Weck) in City of Industry, California for analysis. The Enthalpy's Virginia Division of Consolidated Laboratory Services (VELAP) certifications are provided on the certificate of analysis (COA) included in **Appendix F**. The samples were analyzed for the parameters utilizing the analytical methods outlined in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan.

4.3.2 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for volatile organic compound (VOC) analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analyses. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A brief summary of each of these is presented below:

- Method Blank The method blank is deionized water subjected to the same reagents and manipulations to which site samples are subjected. Positive results in the method blanks may indicate either contamination of the chemical reagents or the glassware and implements used to store or prepare the sample and resulting solutions.
- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis. MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.
- LCS These samples consist of distilled/deionized water injected with the parameters of interest for single parameter methods and selected parameters for multi-parameter methods according to the appropriate analytical method. LCS samples are prepared and analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are similar to the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

Field and laboratory QA/QC also involves the routine collection and analysis of duplicate field samples. These samples are collected at a rate of one per sample event. A duplicate is a separate sample collected independently in such a manner that it equally represents the medium at a given time and location. Co-located samples provide intra-laboratory precision information for the entire measurement system, including sample collection, homogeneity, handling, shipping, storage, preparation, and analysis.

No trip blank detects were identified for the March 2023 monitoring event. A biological oxygen demand (BOD) concentration of 0.4 milligrams per liter was detected in the March 2023 method blank. The laboratory analysis report for the February 2023 monitoring event trip blank is included in

Appendix F. The March 2023 monitoring event laboratory QA/QC reports, including the method blank results, are included in the COAs in **Appendix F**.

4.3.3 Data Validation

To identify analytical data that may not represent valid results, data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection Agency (EPA) guidance¹. Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with parameter detections less than five times that of the trip blank, field blank, and/or method blank detection but greater than the laboratory contaminant parameter detections less than 10 times that of the trip blank, field blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not validated as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis. No leachate results were flagged with a "B" qualifier for the March 2023 monitoring event as no constituents were detected in the March 2023 trip blank and BOD was detected in the leachate samples as concentrations greater than five times the concentration detected in the March 2023 method blank.

4.3.4 Laboratory Analytical Results

Chemical characteristics of leachate samples collected from extraction wells EW-58 and EW-59 are summarized in **Table 6**. The associated COA is included in **Appendix F**. Parameter results from the March 2023 and previous monitoring events (November 2022 – February 2023) are presented on a table in **Appendix F**.

Well ID	EW-58	EW-59		100
Parameter	March 2023 Concentration		LOD	100
Ammonia as N (mg/L)	667	1480	73.1	100
Biological Oxygen Demand (mg/L)	1570	9190	0.2	2
Chemical Owgan Demand (mg/l)	1690		500	500
Chemical Oxygen Demand (mg/L)		10600	2000	2000
Nitrate as N (mg/L)	ND	ND	1.04	5.1
Nitrite as N (mg/L)	ND	ND	1	5
Total Kjeldahl Nitrogen (mg/L)	879	1920	33.6	100
Total Recoverable Phenolics (mg/L)	0.4		0.03	0.05

Table 6.	Monthly LFG-EW Leachate Monitoring Event Summary
Table 0.	Monthly El O-EW Ecachate Montolling Event Summary

¹ United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. January 2017.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. January 2017.

Well ID	EW-58	EW-59	LOD	100
Parameter	March 2023 C	March 2023 Concentration		LOQ
		13.9	0.3	0.5
SEMI-VOLATILE ORGANIC COMPOL	JND (ug/L)			
Anthropono		ND	51	102
Anthracene	ND		117	234
TOTAL METALS (mg/L)				
Arsenic	1.07	1	0.01	0.02
Barium	0.406	0.683	0.005	0.01
Cadmium	ND	ND	0.002	0.004
Chromium	0.213	0.188	0.008	0.01
Copper	ND	ND	0.008	0.01
Lead	ND	ND	0.006	0.01
	ND		0.0002	0.0002
Mercury		ND	0.0004	0.0004
Nickel	0.1254	0.1033	0.007	0.01
Selenium	ND	ND	0.04	0.05
TOTAL METALS (mg/L)				
Silver	ND	ND	0.005	0.01
Zinc	0.0689	0.0538	0.01	0.01
VOLATILE FATTY ACIDS (mg/L)				
Acetic Acid	ND	640		500
Butyric Acid	ND	ND		500
Propionic Acid	ND	ND		500
VOLATILE ORGANIC COMPOUNDS	(ug/L)			
2-Butanone	257	2770	30	100
Acatana	375		70	100
Acetone		6810	700	1000
Benzene	1540	727	4	10
Ethylbenzene	131	71.5	4	10
Tetrahydrofuran	353	464	100	100
Toluene	182	98.1	5	10
Xylenes, Total	240	111	10	30

Monthly LFG-EW Leachate Monitoring Event Summary Table 6.

--- = not available

LOD = laboratory's Limit of Detection LOQ = laboratory's Limit of Quantitation mg/L = milligrams per liter ND = Not Detected

- ug/L = micrograms per liter

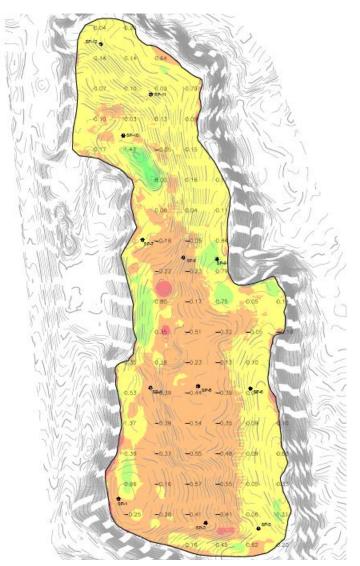
5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

On behalf of the City, SCS submitted a settlement monitoring and management plan to VDEQ on November 15, 2022. Refer to the November Monthly Compliance Report for the SWP #588 Landfill for additional information.

5.2 MONTHLY SURVEYS


5.2.1 Topographic Data Collection

The City, through SCS, collected topographic data of the Solid Waste Permit #588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone). On March 8, 2023 the flight was completed and the topographic data collected. The topographic data collected is shown on Sheet 1 in Appendix E.

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on February 7, 2023. A drawing depicting the February 7, 2023 topography is included as Sheet 2 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 3,800 cubic yards. During that same time period approximately 6,300 cubic yards of construction related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume increase of approximately 2,500 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 21. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 3 in Appendix E.

Figure 21. 1-Month Elevation Change Color Map

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 0.5 feet or more in some areas. Settlement in the northern portion of the landfill was generally less substantial. The eastern side of the landfill exhibited an increase in elevation, likely due to sediment deposition during storm events and waste relocation associated with construction of the Sidewall Odor Mitigation System. Increases in elevation along the western edge of the landfill are most likely due to installation of the Sidewall Odor Mitigation System. Soil stockpile locations associated with the Sidewall Odor Mitigation System showed a negative elevation change due to material removal from the stockpiles.

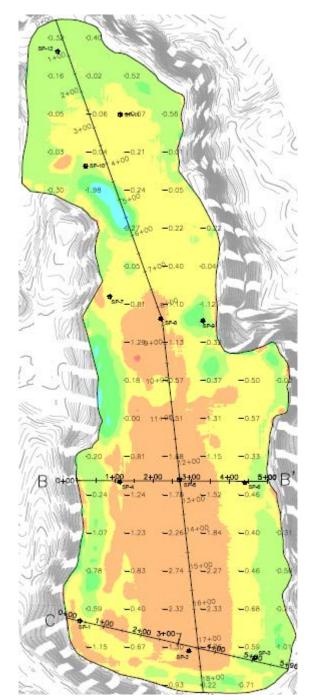
SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation change within the waste was less than 0.1 feet.

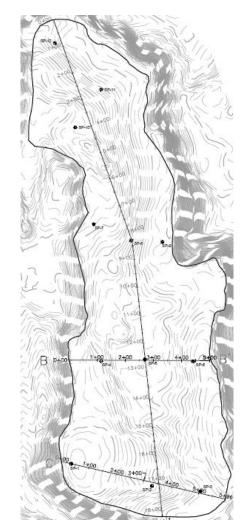
SCS also compared the topographic data collect in March to the topographic data collected on December 2, 2022. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 18,700 cubic

yards. During that same time period approximately 6,200 cubic yards of construction related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 12,500 cubic yards.

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 2 feet or more in some areas. Settlement in the northern portion of the landfill was generally less substantial. The eastern side of the landfill exhibited an increase in elevation, likely due to sediment deposition during storm events and waste relocation associated with construction of the Sidewall Odor Mitigation System. Increases in elevation along the western edge of the landfill are most likely due to installation of the Sidewall Odor Mitigation System. There were some large variations in elevation associated with soil stockpiling.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 22. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 4 in Appendix E.




Figure 22. 3-Month Elevation Change Color Map

SCS will collect topographic data covering the landfill surface again in April using photogrammetric methods via UAV. This data will be compared to the data collected in February.

5.2.2 Settlement Plate Surveys

On November 7, 2022 SCS field services installed 12 settlement plates on the Solid Waste Permit #588 landfill. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan. The tops of the PVC pipes were spray painted orange to improve visibility.

The locations of the settlement plates were surveyed by the City's surveyor on November 14, 2022. The settlement plates were surveyed again on December 13, 2022; January 3, 2023; February 6, 2023; and March 8, 2023. The settlement plate locations are depicted in Figure 23 on Sheet 1 in Appendix E. The surveyed coordinates² and elevation changes of the settlement plates are shown in Table 7.

² Settlement plate locations and coordinates are based on a local coordinate system.

Settlement Plate	Northing	Easting	Elevation on March 8, 2023	Elevation Change Since February 6, 2023	Elevation Change Since Installation
SP-1	3,397,886.2	10,412,078.1	1,833.0	-0.4	-1.5
SP-2	3,397,806.5	10,412,364.3	1,807.8	-0.5	-2.8
SP-3	3,397,787.3	10,412,536.7	1,783.4	-0.1	-0.3
SP-43	3,398,250.2	10,412,185.2	1,814.3	-0.8	-3.2
SP-5	3,398,256.3	10,412,338.7	1,798.5	-0.3	-2.2
SP-6	3,398,249.4	10,412,510.8	1,777.0	-0.1	-0.7
SP-74	3,398,737.4	10,412,157.3	1,826.8	-1.4	-1.8
SP-8	3,398,679.2	10,412,290.7	1,805.6	-0.4	-1.7
SP-9	3,398,673.1	10,412,400.6	1,785.2	-0.2	-0.7
SP-10	3,399,080.4	10,412,092.2	1,839.6	-0.1	-0.6
SP-11	3,399,216.1	10,412,183.7	1,816.1	0.0	-0.3
SP-12	3,399,382.0	10,412,019.6	1,810.4	0.0	-0.3

Table 7.Settlement Plate Locations

The settlement plates will be surveyed again during the month of April. The elevations surveyed will be compared to the elevations surveyed the previous months.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City is taking steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below outline the steps taken by the City.

6.1 INTERMEDIATE COVER INSTALLATION

The City completed hauling and placement of a 12-inch thick intermediate cover across the entire landfill prior to October 10, 2022. The cover was placed in accordance with 9VAC20-81-140(B)(1)(d). SCS coordinated with the City to dig a series of test holes to verify cover thickness in select locations. Details of these verifications were discussed in the October Monthly Compliance Report for the SWP #588 Landfill.

6.2 EVOH COVER SYSTEM DESIGN

SCS submitted responses, including revised documents, on March 20, 2023 to comments received from VDEQ concerning the Interim EVOH Cover System Preliminary Design Plans. The submitted

³ Based on field observations SP-4 appears to have been disturbed during grading on an adjacent roadway.

⁴ Based on field observations SP-7 appears to have been disturbed during grading on an adjacent stockpile.

documents included a revised operations manual and settlement calculations for the proposed stormwater basin.

SCS is preparing construction drawings for the EVOH Cover System, including revisions discussed in the response to comments letter. The construction drawings build upon the preliminary design plans. Additions to the construction drawings include additional design cross sections, pre and post stormwater management plans, landfill gas management plans and details, access road design, and other items.

SCS is also drafting specifications and contract documents for the construction of the EVOH Cover System.

6.3 EVOH COVER SYSTEM PROCUREMENT

Drawings used for the purposes of bidding, procurement and construction of the EVOH cover system will generally conform to the layout and details in the drawings described in section 6.2. SCS also prepared and submitted to VDEQ a specification for the EVOH geomembrane on January 30, 2023 based upon industry standards and discussions with material manufacturers. This specification and drawing set represent the first steps in the procurement process. SCS and the City have coordinated with potential suppliers to specify a product that is not currently anticipated to have long lead times.

6.4 EVOH COVER SYSTEM INSTALLATION

Installation of the EVOH cover system will begin after the installation of other infrastructure is complete.

7.0 STORMWATER MANAGEMENT

The stormwater volume calculations, assumptions, design, and control measures will be addressed by the stormwater management plan, which is currently in progress. The stormwater management plan will be submitted to VDEQ on or before April 30, 2023.

SCS is designing a stormwater pumping system to convey stormwater collected atop the EVOH cover system to an adequate discharge point in compliance with VPDES permit VAR050053. The proposed system includes the construction of a collection basin in the southeast corner of the quarry and the installation of a nearby long-term stormwater pump. The stormwater will be conveyed by pipe up and out of the quarry via the northern access point.

SCS is evaluating perimeter run-on control measures, including stormwater diversion berms and drainage swales. However, run-on control measures may be significantly limited by the quarry sidewall topography and the natural slope of top areas adjacent to the sidewalls.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit #588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

SCS submitted the Monitoring, Maintenance, and Repair Plan to VDEQ for the SWP #588 landfill on December 30, 2022. Refer to the December Monthly Compliance Report for the SWP #588 Landfill for additional information. The City has taken steps to implement the plan including the following actions:

- Performing quarterly inspections
- Performing surface emission monitoring
- Maintaining the existing intermediate cover
- Monitoring and repairing landfill gas liquids extraction pumps
- Monitoring and repairing components of the landfill gas collection system

These steps were summarized in a letter submitted to VDEQ on March 31, 2023. A copy of that letter is included in Appendix G.

8.3 MONTHLY COMPLIANCE REPORTS

As outlined in the introduction this report is intended to provide comprehensive updates regarding progress towards completion of each item outlined in Appendix A of the Consent Decree between the City and VDEQ,

8.4 COMMUNITY OUTREACH PROGRAM

The City's consultant leading community outreach, McGuireWoods Consulting, outlined the actions taken as part of their community outreach efforts. For the month of March, those actions include:

- March ongoing basis: Seven posts on the BristalVALandfill.org site and the existing City of Bristol Landfill Notifications and Information page covering several important updates including:
 - Progress updates during construction of the Sidewall Odor Mitigation System (SOMS).
 - Provided information about the gas well expansion project to ensure residents were aware of when the projects would begin and what they should expect once drilling for the wells began. An update was provided several days prior to the start of drilling as well as again the day drilling was scheduled to begin.
 - City published statement related to remediation costs and potential funding sources following the City's budget briefing on March 28th
 - Provided links to news articles chronicling construction updates and information related to how Bristol, VA is funding current and future work at the landfill.
- E-mail communication sent to the list of members of the public signed up through the Bristol, VA website, the BristolVALandfill.org website, or at the November 1 Open House to receive information via e-mail
 - E-mails sent that included weekly remediation progress update and links to website updates and latest news articles on the following days:
 - Friday, March 3rd

- Monday, March 20th
- Monday, March 27th
- Wednesday, March 29th
- Friday, March 31st
- All e-mails sent in March had over a 50 percent open rate

Appendix A

Surface Emissions Monitoring Summary Letters

March 15, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject:Weekly Surface Emissions Monitoring Event - March 9, 2023Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on March 9, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the newly installed temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Mr. Jonathan Chapman March 15, 2023 Page 2

Table 1.Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	149
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	49
Number of Exceedances ¹	0
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	0

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	3/9/23 Event	3/9/23 Event Result	Comments			
No Ongoing Exceedances							

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

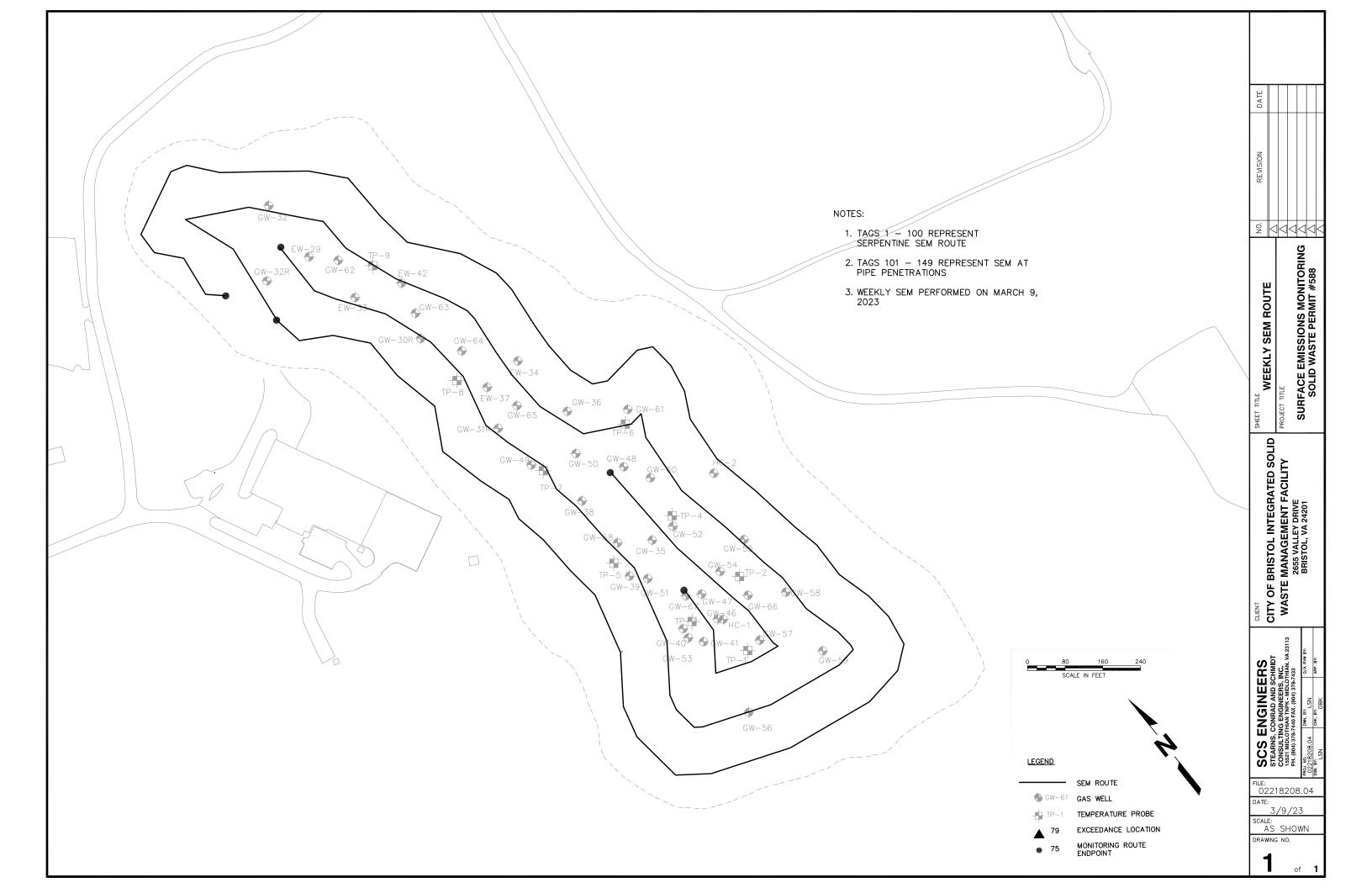
Will Fabrie Associate Staff Professional SCS Engineers

LSN/WJF/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman

Lucas S. Nachman Project Professional SCS Engineers


	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
				-	
1	13.7 PPM	OK			Start Serpentine
2	4.2 PPM	OK			Route
3	11.9 PPM	OK			
4	25 PPM	OK			
5	62.8 PPM	OK			
6	11.5 PPM	OK			
7	103 PPM	OK			
8	141 PPM	OK			
9	2.1 PPM	OK			
10	2.3 PPM	OK			
11	1.7 PPM	OK			
12	20.8 PPM	OK			
13	8.1 PPM	OK			
14	49.2 PPM	OK			
15	5.7 PPM	OK			
16	40.1 PPM	OK			
17	8.1 PPM	OK			
18	17.6 PPM	OK			
19	7.9 PPM	OK			
20	6.4 PPM	OK			
21	34.9 PPM	OK			
22	54.8 PPM	OK			
23	65.8 PPM	OK			
24	30 PPM	OK			
25	6.8 PPM	OK			
26	8 PPM	OK			
27	18.1 PPM	OK			
28	63.8 PPM	OK			
29	8.4 PPM	OK			
30	7.7 PPM	OK			
31	18.2 PPM	OK			
32	21.1 PPM	OK			
33	6.4 PPM	OK			
34	11 PPM	OK			
35	6.3 PPM	OK			
36	4.6 PPM	OK			
37	8 PPM	OK			
38	9.8 PPM	OK			
39	28.8 PPM	OK			
40	25.9 PPM	OK			
41	8.3 PPM	OK			
42	13.3 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
				-	
43	7.1 PPM	OK			
44	5.3 PPM	OK			
45	33.2 PPM	OK			
46	29.9 PPM	OK			
47	11.7 PPM	OK			
48	0.7 PPM	OK			
49	0.4 PPM	OK			
50	2.8 PPM	OK			
51	1.1 PPM	OK			
52	11.6 PPM	OK			
53	22.4 PPM	OK			
54	25.9 PPM	OK			
55	10.7 PPM	OK			
56	1.9 PPM	OK			
57	2.7 PPM	OK			
58	1.3 PPM	OK			
59	6.3 PPM	OK			
60	5.4 PPM	OK			
61	5.5 PPM	OK			
62	0.6 PPM	OK			
63	4.2 PPM	OK			
64	4.1 PPM	OK			
65	5.1 PPM	OK			
66	2.8 PPM	OK			
67	1.6 PPM	OK			
68	1.4 PPM	OK			
69	1.4 PPM	OK			
70	2 PPM	OK			
71	2.5 PPM	OK			
72	6.6 PPM	OK			
73	211 PPM	OK			
74	35.5 PPM	OK			
75	6.1 PPM	OK			
76	107 PPM	OK			
77	22.5 PPM	OK			
78	10.3 PPM	OK			
79	13.5 PPM	OK			
80	99.6 PPM	OK			
81	48.7 PPM	OK			
82	54.5 PPM	OK			
83	124 PPM	OK			
84	154 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
85	37.3 PPM	ОК			
86	0.7 PPM	OK			
87	6.3 PPM	OK			
88	2.3 PPM	OK			
89	1.1 PPM	OK			
90	3.3 PPM	OK			
91	1 PPM	OK			
92	22.1 PPM	OK			
93	82.8 PPM	OK			
94	133 PPM	OK			
95	230 PPM	OK			
96	3.2 PPM	OK			
97	69.9 PPM	OK			
98	6.4 PPM	OK			
99	1.7 PPM	OK			
100	PPM	OK			End Serpentine
	95.2				Route
101	40.4 PPM	OK			E₩-35
102	127 PPM	OK			EW-52
103	17.2 PPM	OK			TP-4
104	43.8 PPM	OK			EW-60
105	278 PPM	OK			EW-48
106	1.4 PPM	OK			TP-6
107	4.1 PPM	OK			EW-61
108	5.5 PPM	OK			EW-36
109	82.1 PPM	OK			EW-34
110	106 PPM	OK			E₩-50
111	167 PPM	OK			EW-67
112	18.3 PPM	OK			EW-47
113	461 PPM	OK			EW-54
114	23.7 PPM	OK			EW-55
115	5.1 PPM	OK			TP-2
116	7.3 PPM	OK			EW-46
117	6.5 PPM	OK			EW-66
118	276 PPM	OK			EW-58
119	115 PPM	OK			EW-57
120	23.8 PPM	OK			TP-1
121	184 PPM	OK			EW-59
122	482 PPM	OK			EW-56
123	163 PPM	OK			EW-41
124	74.4 PPM	OK			EW-53
125	11.6 PPM	OK			EW-40

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
126	7.3 PPM	OK			TP-3
127	208 PPM	OK			EW-51
128	57.3 PPM	OK			EW-39
129	40.1 PPM	OK			TP-5
130	6.7 PPM	OK			EW-68
131	75 PPM	OK			EW-38
132	7.6 PPM	OK			TP-7
133	11.8 PPM	OK			EW-49
134	13 PPM	OK			EW-31R
135	3.6 PPM	OK			EW-65
136	5.2 PPM	OK			EW-37
137	6.8 PPM	OK			TP-8
138	2.3 PPM	OK			EW-64
139	0.5 PPM	OK			EW-30R
140	0.2 PPM	OK			EW-63
141	0.7 PPM	OK			EW-42
142	2.4 PPM	OK			TP-9
143	0 PPM	OK			EW-33R
144	0.1 PPM	OK			EW-62
145	O PPM	OK			EW-29R
146	1.2 PPM	OK			EW-25
147	2.2 PPM	OK			EW-24
148	0.6 PPM	OK			EW-32
149	2 PPM	OK			EW-32R
·				1	
	Number of locations	sampled:	149		
	Number of exceedance	locations:	0		

	Me	thane		GPS Co	oordinates	
ID #	Conce	entration	Compliance	Lat.	Long.	Comment
NOTES:						
Points 1 through	n 100 repre	sent serpentin	e SEM route.			
•	•	•	t Pipe Penetratio	ns		
Weather Cond	•		•			
Sampling Calib	ration: Metl	nane - 500 pp	om, Zero Air - 0.0	ppm		
3/9/2023	10:49	ZERO	0.1 F	PM		
3/9/2023	10:51	SPAN	500.0 F	PM		
Background Re	ading:					
3/9/2023	10:53	Upwind	2.9 F	PM		
3/9/2023	10:56	Downwind		PM		

March 22, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – March 15, 2023 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on March 15, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the newly installed temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Mr. Jonathan Chapman March 22, 2023 Page 2

Description	Quantity
Number of Points Sampled	149
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	49
Number of Exceedances ¹	0

0

0

Number of Serpentine Exceedances

Number of Pipe Penetration Exceedances

Table 1.Summary of Surface Emissions Monitoring

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	3/15/23 Event	3/15/23 Event Result	Comments			
No Ongoing Exceedances							

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Jun Derner

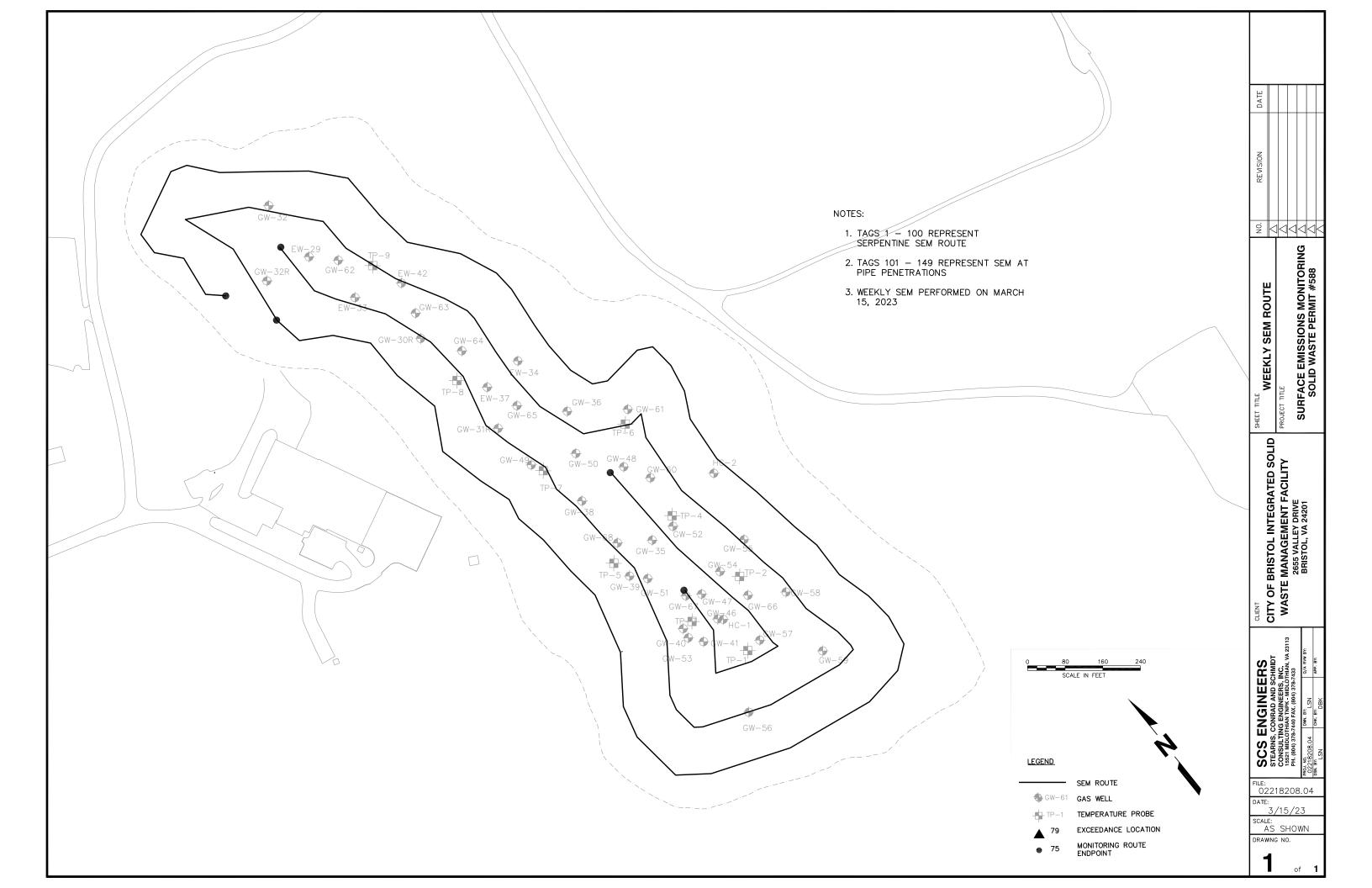
Quinn F. Bernier, PE Project Professional SCS Engineers

LSN/QFB/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman

Lucas S. Nachman Project Professional SCS Engineers


	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	146 PPM	ОК			Start Serpentine
2	16.4 PPM	OK			Route
2	8 PPM	OK			
4	18.6 PPM	OK			
5	47.4 PPM	OK			
6	4.7 PPM	OK			
7	3 PPM	OK			
8	2.8 PPM	OK			
9	2.6 PPM	OK			
10	5.2 PPM	OK			
11	7.8 PPM	OK			
12	39.7 PPM	OK			
13	30.3 PPM	OK			
14	3.7 PPM	OK			
15	12.4 PPM	OK			
16	2.8 PPM	OK			
17	42.7 PPM	OK			
18	37 PPM	OK			
19	4.5 PPM	OK			
20	39 PPM	OK			
21	5.7 PPM	OK			
22	29.7 PPM	OK			
23	101 PPM	OK			
24	41.8 PPM	OK			
25	66.6 PPM	OK			
26	5.8 PPM	OK			
27	109 PPM	OK			
28	113 PPM	OK			
29	116 PPM	OK			
30	24.4 PPM	OK			
31	9.4 PPM	OK			
32	3.4 PPM	OK			
33	10.6 PPM	OK			
34	5.9 PPM	OK			
35	44.1 PPM	OK			
36	24.4 PPM	OK			
37	6.6 PPM	OK			
38	41.8 PPM	OK			
39	11.1 PPM	OK			
40	9 PPM	OK			
41	3.5 PPM	OK			
42	53.6 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
43	30.6 PPM	ОК			
44	9.3 PPM	OK			
45	4.6 PPM	OK			
46	4.1 PPM	OK			
47	1.5 PPM	OK			
48	1.5 PPM	OK			
49	2.1 PPM	OK			
50	1.6 PPM	OK			
51	3.9 PPM	OK			
52	16.8 PPM	OK			
53	9 PPM	OK			
54	11.1 PPM	OK			
55	3.8 PPM	OK			
56	7.9 PPM	OK			
57	8.7 PPM	OK			
58	9.3 PPM	OK			
59	6.1 PPM	OK			
60	2.6 PPM	OK			
61	17.4 PPM	OK			
62	8.6 PPM	OK			
63	4.9 PPM	OK			
64	2.7 PPM	OK			
65	2.7 PPM	OK			
66	5 PPM	OK			
67	1.6 PPM	OK			
68	10.4 PPM	OK			
69	9.2 PPM	OK			
70	11 PPM	OK			
71	5.6 PPM	OK			
72	5.1 PPM	OK			
73	4.1 PPM	OK			
74	2.1 PPM	OK			
75	6.8 PPM	OK			
76	5.5 PPM	OK			
77	12.5 PPM	OK			
78	2.7 PPM	OK			
79	171 PPM	OK			
80	1.8 PPM	OK			
81	3 PPM	OK			
82	84.2 PPM	OK			
83	8.8 PPM	OK			
84	5.2 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
85	16.8 PPM	ОК			
86	5.9 PPM	OK			
87	53.2 PPM	OK			
88	5.7 PPM	OK			
89	22.2 PPM	OK			
90	1.5 PPM	OK			
91	1.3 PPM	OK			
92	73.2 PPM	OK			
93	9.2 PPM	OK			
94	6.9 PPM	OK			
95	31.7 PPM	OK			
96	88 PPM	OK			
97	41.2 PPM	OK			
98	10.1 PPM	OK			
99	7.5 PPM	OK			
100	147 PPM	OK			End Serpentine
					Route
101	272 PPM	OK			EW-35
102	153 PPM	OK			EW-52
103	10.9 PPM	OK			TP-4
104	251 PPM	OK			EW-60
105	212 PPM	OK			EW-48
106	3.1 PPM	OK			TP-6
107	1.5 PPM	OK			EW-61
108	1.5 PPM	OK			EW-36
109	83.5 PPM	OK			EW-34
110	56.5 PPM	OK			EW-50
111	82.7 PPM	OK			EW-67
112	4.4 PPM	OK			EW-47
113	133 PPM	OK			EW-54
114	4 PPM	OK			EW-55
115	14.6 PPM	OK			TP-2
116	3.2 PPM	OK			EW-46
117	139 PPM	OK			EW-66
118	6.4 PPM	OK			EW-58
119	290 PPM	OK			EW-57
120	5 PPM	OK			TP-1
121	356 PPM	OK			EW-59
122	427 PPM	OK			EW-56
123	6.4 PPM	OK			EW-41
124	125 PPM	OK			EW-53
125	43.9 PPM	ОК			EW-40

ID # 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149	Concentration			ordinates	
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148		Compliance	Lat.	Long.	Comments
128 129 130 131 132 133 134 135 136 137 138 137 138 139 140 141 142 143 144 145 146 147 148	4.6 PPM	ОК			TP-3
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148	469 PPM	OK			EW-51
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148	18.7 PPM	OK			EW-39
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148	102 PPM	OK			TP-5
132 133 134 135 136 137 138 139 140 141 142 143 144 145 144 145 146 147 148	3.4 PPM	OK			EW-68
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148	50.3 PPM	OK			EW-38
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148	22.3 PPM	OK			TP-7
135 136 137 138 139 140 141 142 143 144 145 146 147 148	2.3 PPM	OK			EW-49
136 137 138 139 140 141 142 143 144 145 146 147 148	1.2 PPM	OK			EW-31R
137 138 139 140 141 142 143 144 145 146 147 148	3.1 PPM	OK			EW-65
138 139 140 141 142 143 144 145 146 147 148	0.2 PPM	OK			EW-37
139 140 141 142 143 144 145 146 147 148	0.3 PPM	OK			TP-8
140 141 142 143 144 145 146 147 148	0.6 PPM	OK			EW-64
141 142 143 144 145 146 147 148	1.5 PPM	OK			EW-30R
142 143 144 145 146 147 148	1.5 PPM	OK			EW-63
143 144 145 146 147 148	22.1 PPM	OK			EW-42
144 145 146 147 148	9.1 PPM	OK			TP-9
145 146 147 148	2.2 PPM	OK			EW-33R
146 147 148	1.5 PPM	OK			EW-62
1 <i>47</i> 148	0.3 PPM	OK			EW-29R
148	29.6 PPM	OK			EW-25
	31.5 PPM	OK			EW-24
	4.2 PPM	OK			EW-32
	2.8 PPM	OK			EW-32R
	29.6 P 31.5 P 4.2 P	PM PM PM	РМ ОК РМ ОК РМ ОК	РМ ОК РМ ОК РМ ОК	РМ ОК РМ ОК РМ ОК
	2.0 117				
N		sampled:	149		
Nun	umber of locations	e locations:	0		

	Me	ethane		GPS C	Coordinates	
ID #	Conce	entration	Compliance	Lat.	Long.	Commen
NOTES:						
Points 1 through	100 repre	esent serpentin	e SEM route.			
Points 101 throu				ons		
Weather Condi	tions: Sunny	, 30°F Wind:	s - 5 MPH			
Sampling Calib	ration: Met	hane - 500 pp	om, Zero Air - 0.	<u>0 ppm</u>		
3/15/2023	8:46	ZERO		PPM		
3/15/2023	8:48	SPAN	500.0	PPM		
Background Rea	ading:					
3/15/2023	8:50	Upwind	2.4	PPM		
0/10/2020						

March 29, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject:Weekly Surface Emissions Monitoring Event – March 23, 2023Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on March 23, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the newly installed temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Mr. Jonathan Chapman March 29, 2023 Page 2

Description	Quantity
Number of Points Sampled	149
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	49
Number of Exceedances ¹	0
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	0

Table 1.Summary of Surface Emissions Monitoring

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	3/23/23 Event	3/23/23 Event Result	Comments				
	No Ongoing Exceedances							

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

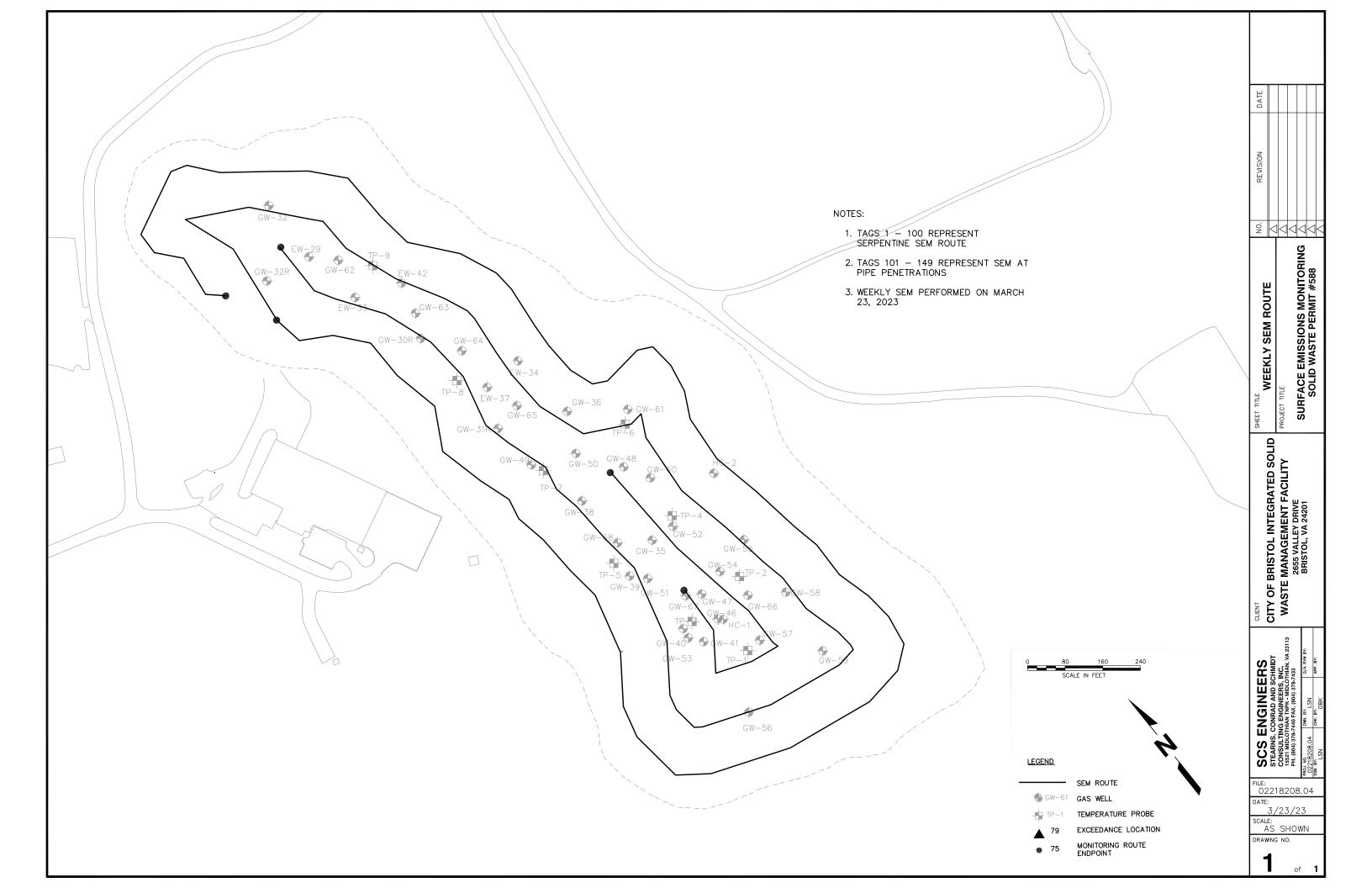
Nicholas Gathings Associate Staff Professional SCS Engineers

LSN/NG/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman

Lucas S. Nachman Project Professional SCS Engineers


	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
				-	
1	44.7 PPM	OK			Start Serpentine
2	29.9 PPM	OK			Route
3	34.2 PPM	OK			
4	14.2 PPM	OK			
5	74 PPM	OK			
6	6.2 PPM	OK			
7	8.1 PPM	OK			
8	9.6 PPM	OK			
9	5.8 PPM	OK			
10	12.8 PPM	OK			
11	23.9 PPM	OK			
12	49.8 PPM	OK			
13	29.7 PPM	OK			
14	6.4 PPM	OK			
15	6.9 PPM	OK			
16	9.2 PPM	OK			
17	6.5 PPM	OK			
18	17.4 PPM	OK			
19	12.5 PPM	OK			
20	5.3 PPM	OK			
21	5.1 PPM	OK			
22	3.1 PPM	OK			
23	2.6 PPM	OK			
24	2.2 PPM	OK			
25	23.5 PPM	OK			
26	19.2 PPM	OK			
27	4.9 PPM	OK			
28	4.1 PPM	OK			
29	1.4 PPM	OK			
30	1 PPM	OK			
31	25.3 PPM	OK			
32	27.3 PPM	OK			
33	53.6 PPM	OK			
34	161 PPM	OK			
35	7.5 PPM	OK			
36	10.3 PPM	OK			
37	6.7 PPM	OK			
38	15.5 PPM	OK			
39	6.9 PPM	OK			
40	65 PPM	OK			
41	5.1 PPM	OK			
42	7.3 PPM	OK			

	Met	hane		GPS Coo	ordinates	
ID #	Conce	ntration	Compliance	Lat.	Long.	Comments
			01			
43		PPM	OK			
44		PPM	OK			
45		PPM	OK			
46		PPM	OK			
47		PPM	OK			
48		PPM	OK			
49		PPM	OK			
50		PPM	OK			
51		PPM	OK			
52		PPM	OK			
53		PPM	OK			
54		PPM	OK			
55		PPM	OK			
56		PPM	OK			
57		PPM	OK			
58		PPM	OK			
59		PPM	OK			
60		PPM	OK			
61		PPM	OK			
62		PPM	OK			
63		PPM	OK			
64		PPM	OK			
65		PPM	OK			
66		PPM	OK			
67		PPM	OK			
68		PPM	OK			
69		PPM	OK			
70		PPM	OK			
71		PPM	OK			
72		PPM	OK			
73		PPM	OK			
74	4.4	PPM	OK			
75		PPM	OK			
76		PPM	OK			
77		PPM	OK			
78		PPM	OK			
79		PPM	OK			
80		PPM	OK			
81		PPM	OK			
82		PPM	OK			
83		PPM	OK			
84	12	PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
85	37.6 PPM	OK			
86	20.4 PPM	OK			
87	25.5 PPM	OK			
88	109 PPM	OK			
89	289 PPM	OK			
90	15.5 PPM	OK			
91	127 PPM	OK			
92	10 PPM	OK			
93	60.1 PPM	OK			
94	9.8 PPM	OK			
95	21.2 PPM	OK			
96	6.9 PPM	OK			
97	12.2 PPM	OK			
98	101 PPM	OK			
99	9.8 PPM	OK			
100	70.5 PPM	OK			End Serpentine
					Route
101	120 PPM	OK			EW-35
102	299 PPM	OK			EW-52
103	21.2 PPM	OK			TP-4
104	480 PPM	OK			EW-60
105	137 PPM	OK			EW-48
106	3.6 PPM	OK			TP-6
107	6.3 PPM	OK			EW-61
108	8 PPM	OK			EW-36
109	39.6 PPM	OK			EW-34
110	17.5 PPM	OK			EW-50
111	311 PPM	OK			EW-67
112	31.5 PPM	OK			EW-47
113	359 PPM	OK			EW-54
114	246 PPM	OK			EW-55
115	5.5 PPM	OK			TP-2
116	7 PPM	OK			EW-46
117	22.6 PPM	OK			EW-66
118	6.7 PPM	OK			EW-58
119	182 PPM	OK			EW-57
120	10.2 PPM	OK			TP-1
121	263 PPM	OK			EW-59
122	410 PPM	OK			EW-56
123	41.4 PPM	OK			EW-41
124	252 PPM	OK			EW-53
125	13.4 PPM	OK			EW-40

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
126	6.5 PPM	OK			TP-3
127	11 PPM	OK			EW-51
128	16.2 PPM	OK			EW-39
129	23.4 PPM	OK			TP-5
130	22.8 PPM	OK			EW-68
131	104 PPM	OK			EW-38
132	32.1 PPM	OK			TP-7
133	13.9 PPM	OK			EW-49
134	4.8 PPM	OK			EW-31R
135	4.4 PPM	OK			EW-65
136	5 PPM	OK			EW-37
137	8.2 PPM	OK			TP-8
138	7.1 PPM	OK			EW-64
139	7.1 PPM	OK			EW-30R
140	15.9 PPM	OK			EW-63
141	7.9 PPM	OK			EW-42
142	22.7 PPM	OK			TP-9
143	2.7 PPM	OK			EW-33R
144	13.5 PPM	OK			EW-62
145	7.1 PPM	OK			EW-29R
146	96.9 PPM	OK			EW-25
147	104 PPM	OK			EW-24
148	11.5 PPM	OK			EW-32
149	34.9 PPM	OK			EW-32R
				1	
	Number of locations	sampled:	149		
	Number of exceedance	locations:	0		
				J	

	Met	hane		GPS C	oordinates	
ID #	Conce	ntration	Compliance	Lat.	Long.	Comme
NOTES:						
Points 1 through	100 repres	ent serpentine	e SEM route.			
Points 101 throu	ugh 149 rep	resent SEM at	t Pipe Penetrati	ons		
Weather Condi	ions: Cloudy	, 55°F Wind:	W - 5 MPH			
Sampling Calib	ration: Meth	ane - 500 pp	m, Zero Air - 0.	0 ppm		
	9:15	ZERO		PPM		
3/23/2023						
3/23/2023 3/23/2023	9:17	SPAN	502.0	PPM		
		SPAN	502.0	PPM		
3/23/2023		SPAN Upwind		PPM		

April 5, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – March 29, 2023 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on March 29, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the newly installed temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Description	Quantity
Number of Points Sampled	147
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	47
Number of Exceedances ¹	1

0

1

Number of Serpentine Exceedances

Number of Pipe Penetration Exceedances

Table 1.Summary of Surface Emissions Monitoring

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	3/29/23 Event	3/29/23 Event Result	Comments				
	No Ongoing Exceedances							

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

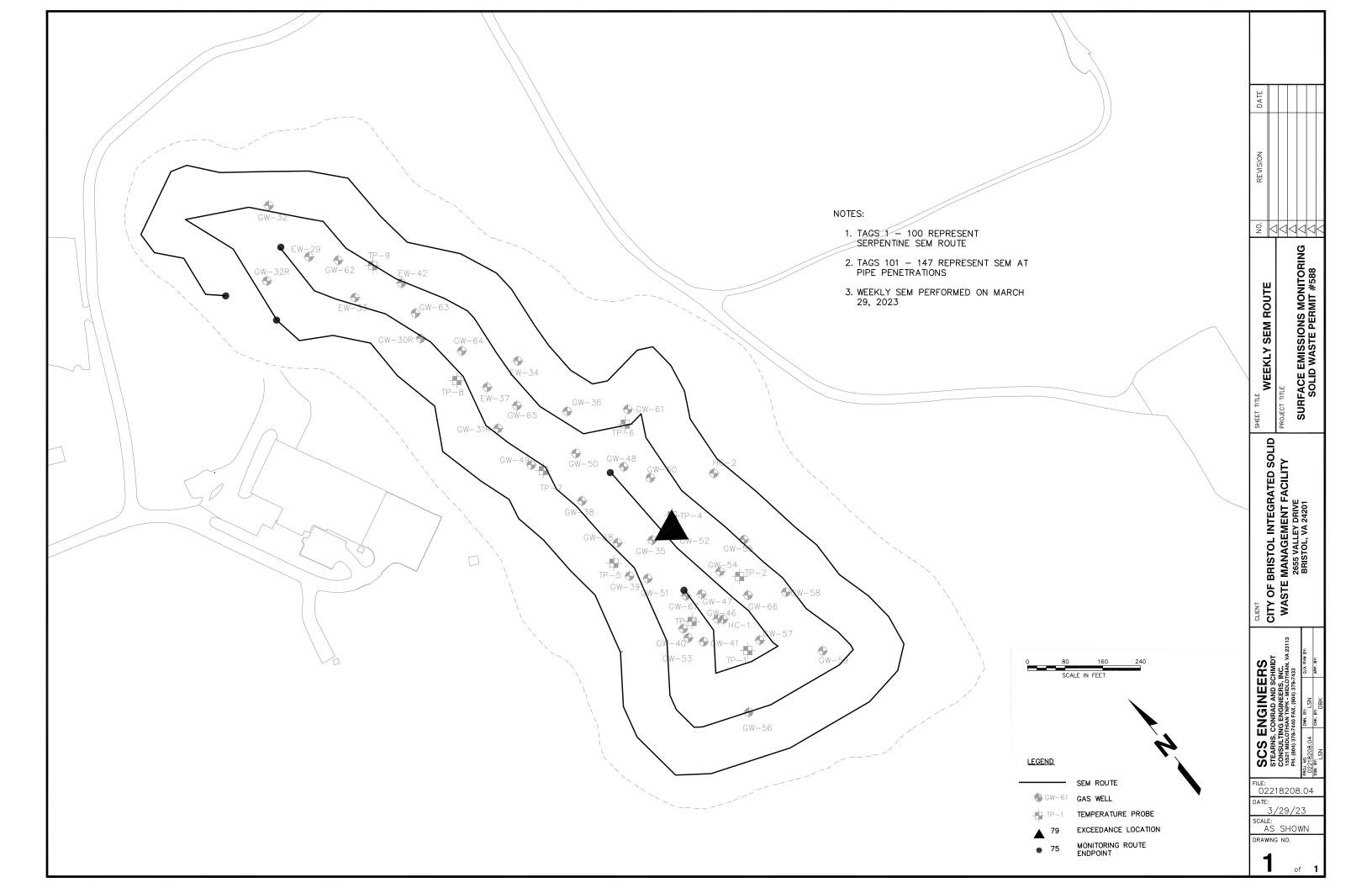
Nick Gathings Associate Staff Professional SCS Engineers

LSN/NG/cjw

- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

Lucus D. Nachman

Lucas S. Nachman Project Professional SCS Engineers


	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	13.8 PPM	OK			Start Serpentine
2	308 PPM	OK			Route
3	14 PPM	OK			
4	14.6 PPM	OK			
5	6.8 PPM	OK			
6	2.7 PPM	OK			
7	5 PPM	OK			
8	4 PPM	OK			
9	9.4 PPM	OK			
10	4 PPM	OK			
11	11.1 PPM	OK			
12	11.6 PPM	OK			
13	4.8 PPM	OK			
14	64.3 PPM	OK			
15	14.8 PPM	OK			
16	13.9 PPM	OK			
17	8.8 PPM	OK			
18	3.9 PPM	OK			
19	19.1 PPM	OK			
20	36.5 PPM	OK			
21	402 PPM	OK			
22	81.9 PPM	OK			
23	143 PPM	OK			
24	9.3 PPM	OK			
25	335 PPM	OK			
26	96.4 PPM	OK			
27	4.8 PPM	OK			
28	6.3 PPM	OK			
29	15.9 PPM	OK			
30	0.7 PPM	OK			
31	0.5 PPM	OK			
32	3.8 PPM	OK			
33	135 PPM	OK			
34	59.1 PPM	OK			
35	1.6 PPM	OK			
36	1.4 PPM	OK			
37	2.3 PPM	OK			
38	7.2 PPM	OK			
39	376 PPM	OK			
40	5.5 PPM	OK			
41	2.3 PPM	OK			
42	1.4 PPM	OK			

	Methane		GPS Co	ordinates		
ID #	Concentration	Compliance	Lat.	Long.	Comments	
43	2 PPM	OK				
44	9 PPM	OK				
45	74.4 PPM	OK				
46	2.9 PPM	OK				
47	6.4 PPM	OK				
48	113 PPM	OK				
49	3.9 PPM	OK				
50	3.8 PPM	OK				
51	18.3 PPM	OK				
52	9.6 PPM	OK				
53	3 PPM	OK				
54	5.6 PPM	OK				
55	11 PPM	OK				
56	2.4 PPM	OK				
57	1.4 PPM	OK				
58	2.2 PPM	OK				
59	2.6 PPM	OK				
60	6.6 PPM	OK				
61	2.3 PPM	OK				
62	0.9 PPM	OK				
63	0.6 PPM	OK				
64	1.6 PPM	OK				
65	1.9 PPM	OK				
66	5 PPM	OK				
67	1.7 PPM	OK				
68	1.9 PPM	OK				
69	36.1 PPM	OK				
70	2.3 PPM	OK				
71	117 PPM	OK				
72	4.1 PPM	OK				
73	19.3 PPM	OK				
74	46.1 PPM	OK				
75	2.6 PPM	OK				
76	2.1 PPM	OK				
77	175 PPM	OK				
78	57 PPM	OK				
79	5.5 PPM	OK				
80	1.5 PPM	OK				
81	20.5 PPM	OK				
82	119 PPM	OK				
83	224 PPM	OK				
84	4.3 PPM	OK				

	Methane		GPS Cod	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
	0.4.0.5514	<u> </u>			
85	84.9 PPM	OK			
86	24.8 PPM	OK			
87	11.5 PPM	OK			
88	8.3 PPM	OK			
89	2.9 PPM	OK			
90	1 PPM	OK			
91	0.3 PPM	OK			
92	0.4 PPM	OK			
93	0.9 PPM	OK			
94	61.6 PPM	OK			
95	14.8 PPM	OK			
96	7.2 PPM	OK			
97	0.8 PPM	OK			
98	1.7 PPM	OK			
99	6.2 PPM	OK			
100	2.1 PPM	OK			End Serpentine
					Route
101	175 PPM	OK			EW-35
102	801 PPM	HIGH_ALRM	36.59900	-82.14749	EW-52
103	17.3 PPM	OK			TP-4
104	82.9 PPM	OK			EW-60
105	29.3 PPM	OK			EW-48
106	6.4 PPM	OK			TP-6
107	4.1 PPM	OK			EW-61
108	2.6 PPM	OK			EW-36
109	51.4 PPM	OK			EW-34
110	94.7 PPM	OK			EW-50
111	77.6 PPM	OK			EW-67
112	0.9 PPM	OK			EW-47
113	87.4 PPM	OK			EW-54
114	56.4 PPM	OK			EW-55
115	2.7 PPM	ОК			TP-2
116	5.9 PPM	ОК			EW-46
117	24.7 PPM	ОК			EW-66
118	6.9 PPM	ОК			EW-58
119	154 PPM	ОК			EW-57
120	38.5 PPM	OK			TP-1
121	152 PPM	OK			EW-59
122	230 PPM	OK			EW-56
123	47.5 PPM	OK			EW-41
124	7.2 PPM	OK			EW-53
125	1.2 PPM	OK			EW-40

	Methane		GPS Coo	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Commen
126	1.8 PPM	ОК			TP-3
127	7.2 PPM	OK			EW-51
128	60.3 PPM	OK			EW-39
129	15 PPM	OK			TP-5
130	5.3 PPM	OK			EW-68
131	13.2 PPM	OK			EW-38
132	2 PPM	OK			TP-7
133	0.8 PPM	OK			EW-49
134	1.4 PPM	OK			EW-31
135	1.5 PPM	OK			EW-65
136	0.2 PPM	OK			EW-37
137	0.5 PPM	OK			TP-8
138	0.4 PPM	OK			EW-64
139	0.3 PPM	OK			EW-30
140	0.2 PPM	OK			EW-63
141	1.5 PPM	OK			EW-42
142	0.4 PPM	OK			TP-9
143	0.3 PPM	OK			EW-33
144	0.2 PPM	OK			EW-62
145	0.1 PPM	OK			EW-29
146	23.4 PPM	OK			EW-32
	2.4 PPM	OK			EW-32

	Meth	ane		GPS Coordinates					
ID #	Concent	tration	Compliance	Lat.	Long.	Comment			
NOTES:									
Points 1 through	n 100 represe	nt serpentine	SEM route.						
Points 101 throu	-	-		IS					
Weather Condi	tions: Sunny, 4	45°F Wind: E -							
Weather Condi	tions: Sunny, 4	45°F Wind: E -							
Weather Condi			5 MPH						
			5 MPH	<u>ppm</u>					
Sampling Calib	ration: Metha	<u>ne - 500 ppm</u>	. 5 MPH . Zero Air - 0.0	<u>ppm</u> PM					
<u>Sampling Calib</u> 3/29/2023 3/29/2023	ration: Methan 8:14 8:17	<u>ne - 500 ppm</u> ZERO	. 5 MPH . <u>Zero Air - 0.0</u> 0.0 P	<u>ppm</u> PM					
<u>Sampling Calib</u> 3/29/2023	ration: Methan 8:14 8:17	<u>ne - 500 ppm</u> ZERO	. 5 MPH . <u>Zero Air - 0.0</u> 0.0 P	<u>ppm</u> PM PM					

Appendix B

SCS-FS March Summary Report

SCS FIELD SERVICES

April 7, 2023 Job No. 07223016.00

Mr. Michael Martin City of Bristol 2125 Shakesville Road Bristol, VA 24201

Subject: Summary of Operation, Monitoring, and Maintenance (OM&M) Services Permit Area 588 Gas Collection Control System (GCCS) City of Bristol Integrated Solid Waste Management Facility, Bristol, Virginia March 2023

Dear Mr. Martin:

SCS Field Services (SCS-FS) performed routine and non-routine monitoring and maintenance on the Solid Waste Permit (SWP) #588 Landfill gas collection and control system (GCCS) for the City of Bristol at the Bristol Integrated Solid Waste Management Facility (ISWMF) during the month of March, 2023. This report summarizes the work performed and presents the data collected. The monitoring data is presented in the following attachments:

Attachment 1. SWP #588 Wellfield Monitoring Data
Attachment 2. Exceedance Detail Report
Attachment 3. Enhanced Monitoring Record Form and Analytical Results
Attachment 4. Daily Logs

The tables in Attachment 1 include the March blower/flare station (BFS) monitoring data and the last three months of monitoring data for the wellheads and the leachate cleanouts.

GCCS SITE ACTIVITES

SCS-FS monitored the extraction wells (EW) each week throughout the month. Adjustments were made and wellheads were re-monitored as needed to maintain regulatory compliance and the target gas concentrations and flow rates. The blower/flare station operation was monitored each working day.

On March 2, SCS-FS conducted non-routine enhanced monitoring and carbon monoxide (CO) sampling (enhanced monitoring) for compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAP) at EW-37. Samples for CO and fixed gases analysis were collected and submitted to Enthalpy Analytical for analysis. Analytical results as available from the laboratory for the enhanced monitoring sampling events are included in Attachment 3.

On March 7, SCS-FS fused a 2-inch cap on an open J-trap below the north side clean-outs.

On March 8, SCS-FS found that a 4-inch valve near EW-61 was closed. With this valve closed, 12 extraction wells had lost vacuum. SCS-FS reopened the valve and restored vacuum to those wells.

On March 9, SCS-FS conducted enhanced monitoring and CO sample collection at EW-37.

On March 16, SCS-FS conducted enhanced monitoring and CO sample collection at EW-37 and -57.

On March 20, SCS-FS replaced the orifice plates in side wall wells 1L, 2L, and 2U from 1.75-inch to 1.25-inch. SCS-FS unclogged an ice blockage in the air line to restore air pressure to the pumps in SWP #588.

On March 21, SCS-FS made wellhead repairs to EW-38 and -48 and wellhead and pump repairs to EW-66. SCS-FS bumped tested and verified that pumps were operating in EW-50, -58, -65, and -68.

On March 23, SCS-FS conducted enhanced monitoring at EW-37 and -51. Samples for CO analysis were collected at EW-51. No sample was collected at EW-37, as it was below the regulatory limit of 145 degrees Fahrenheit. SCS-FS also performed pump maintenance at EW-57 and -58.

On March 24, SCS-FS installed a pump and set it at 69 feet in EW-54. The stroke counter was at 106317. SCS-FS also measured depth to liquid at 27.7 feet. SCS-FS also added new flex hose and clamps to the wellhead.

On March 27, SCS-FS installed a pump and set it at 88 feet in EW-51. The stroke counter was at 244985.

On March 28, SCS-FS noted that EW-24 and-25 have been removed and abandoned in SWP #588 by the construction. SCS-FS preformed pump inspection and bump tested pumps at EW-50, -51, -54, - 57, -59, -61, and -68, and got them operating. Pumps at EW-49 and -65 were shut off pending repairs due to liquid/foam in the exhaust line.

On March 29, SCS-FS conducted enhanced monitoring and CO sample collection at EW-37, -51, and -57. SCS-FS installed a pump at EW-60. The stroke counter was at 163945. SCS-FS noticed that some of the bolts on the flex coupling at the BFS had come off, so new bolts and washers were installed.

On March 30, SCS-FS installed a pump and replaced the flex hose at EW-52, and replaced the pump at EW-62.

Please contact either of the undersigned if you have any questions or need additional information regarding this report.

Very truly yours,

mit lit

Mike Gibbons Project Manager SCS FIELD SERVICES

Attachments

cc: Bob Dick, SCS Engineers

Thomas M. Lock Vice President / Northeast Region Manager SCS FIELD SERVICES

Attachments

- 1. Wellfield Monitoring Data
- 2. Exceedance Detail Report
- 3. Enhanced Monitoring Record Forms and Analytical Results
- 4. Daily Logs

Attachment 1

SWP #588 Wellfield Monitoring Data

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
30R	1/12/2023 12:22	49.0	37.1	0.5	13.4	127.2	127.3	-7.0	-6.7	-5.8	
30R	2/3/2023 09:48	18.7	20.3	8.1	52.9	128.1	128.2	-0.6	-0.5	-6.3	
30R	2/7/2023 14:32	21.7	21.0	6.1	51.2	129.2	129.8	-0.6	-0.5	-6.2	
30R	2/8/2023 08:36	20.0	20.7	6.5	52.8	128.8	129.0	-0.6	-0.5	-6.1	No Change
30R	2/14/2023 13:01	21.4	21.9	5.8	50.9	129.9	129.9	-0.6	-0.6	-0.6	No Change
30R	2/22/2023 14:46	22.4	21.1	6.4	50.1	129.7	129.8	-0.5	-0.5	-5.4	No Change
30R	3/1/2023 13:38	23.5	23.0	4.9	48.6	130.2	130.2	-0.3	-0.3	-4.7	No Change
30R	3/7/2023 11:17	19.7	21.0	6.3	53.0	128.1	128.2	-0.8	-0.8	-5.6	Decresased Flow/vacuum
30R	3/15/2023 09:28	20.8	22.2	6.2	50.8	123.2	124.5	-0.4	-0.4	-4.9	
30R	3/23/2023 10:21	24.4	51.6	1.6	22.4	132.7	132.7	-16.0	-14.7	-15.6	
30R	3/28/2023 11:52	18.3	40.2	5.8	35.7	129.0	60.8	-0.6	-0.6	-3.6	
31R	1/5/2023 13:43	21.0	38.2	2.8	38.0	138.2	138.3	-21.0	-21.0	-21.4	
31R	2/1/2023 13:30	24.7	48.5	0.6	26.2	127.5	127.6	-21.5	-20.9	-16.8	
31R	3/2/2023 09:28	17.7	35.3	8.7	38.3	103.1	103.0	-16.0	-17.6	-17.5	No Change
31R	3/15/2023 10:40	34.2	51.5	2.1	12.2	124.2	124.3	-18.6	-17.8	-19.0	No Change
31R	3/23/2023 09:56	20.4	21.9	5.7	52.0	127.8	127.7	-0.4	-0.4	-4.3	No Change
31R	3/28/2023 11:36	22.5	67.4	1.3	8.8	137.9	137.9	-15.5	-15.3	-15.9	Valve Adjustment:No Change
32R	1/5/2023 12:42	48.8	39.5	0.0	11.7	128.6	128.6	-2.4	-2.4	-6.2	
32R	2/3/2023 10:32	52.0	39.8	0.0	8.2	118.9	118.1	-1.3	-1.2	-3.2	Increased Flow/Vacuum
32R	2/8/2023 08:15	52.4	39.2	0.9	7.5	120.2	120.3	-1.0	-1.0	-3.3	Increased Flow/Vacuum
32R	2/14/2023 13:23	51.2	40.4	0.0	8.4	122.8	122.8	-0.9	-0.9	-3.4	No Change
32R	2/22/2023 15:08	49.2	36.7	2.1	12.0	120.3	120.4	-0.8	-0.8	-1.4	No Change
32R	3/1/2023 13:16	55.2	40.1	0.0	4.7	120.1	120.1	-0.6	-0.6	-1.1	No Change
32R	3/7/2023 10:38	56.0	40.2	0.3	3.5	114.6	114.6	-0.6	-0.6	-1.1	No Change
32R	3/15/2023 10:05	52.4	47.6	0.0	0.0	82.2	82.7	-0.1	0.0	0.1	No Change
32R	3/29/2023 11:45	52.6	45.8	0.0	1.6	134.4	134.4	-4.6	-4.8	-7.2	
24	1/5/2023 12:51	3.9	6.1	18.0	72.0	60.8	61.1	-0.8	-0.4	-22.8	
24	2/3/2023 11:12	0.6	1.8	21.7	75.9	44.9	44.6	-0.5	-0.4	-22.5	
24	2/8/2023 08:44	0.4	1.0	22.1	76.5	67.0	66.3	-0.5	-0.5	-22.6	No Change
24	2/22/2023 15:13	8.6	6.3	17.2	67.9	93.1	93.2	-0.3	-0.3	-21.7	No Change
24	3/1/2023 13:06	20.8	15.0	9.0	55.2	84.9	84.6	-0.2	-0.2	-21.3	No Change
24	3/7/2023 10:57	0.4	1.9	21.8	75.9	67.3	66.9	-1.2	-1.1	-22.4	No Change
24	3/15/2023 09:50	0.3	2.1	22.7	74.9	34.2	33.9	-1.9	-1.9	-21.8	
25	1/5/2023 13:02	0.4	0.7	21.0	77.9	68.1	68.1	-0.4	-0.4	-22.7	
25	2/3/2023 11:20	0.2	1.6	22.7	75.5	45.3	44.2	-6.1	-6.2	-6.2	
25	2/8/2023 08:41	0.2	0.6	22.2	77.0	64.2	63.7	-2.4	-2.4	-22.3	

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
25	2/22/2023 15:16	0.4	1.0	21.7	76.9	94.3	94.1	-0.2	-0.2	-21.9	No Change
25	3/1/2023 13:08	0.3	10.1	18.1	71.5	81.3	81.5	-0.9	-0.9	-21.3	No Change
25	3/7/2023 11:00	0.0	0.7	22.5	76.8	61.6	61.5	-1.2	-1.2	-22.6	No Change
25	3/15/2023 09:53	0.1	11.0	21.0	67.9	35.8	35.5	-1.6	-1.6	-21.8	
29	1/5/2023 12:45	56.0	38.5	1.0	4.5	100.0	100.0	-4.7	-4.4	-4.4	
29	2/3/2023 10:24	53.0	36.5	2.4	8.1	46.2	46.0	-2.1	-2.0	-2.0	
29	2/8/2023 08:21	58.0	39.7	0.9	1.4	59.9	59.8	-1.7	-1.7	-1.7	No Change
29	2/14/2023 13:17	57.1	40.1	0.5	2.3	92.7	92.8	-1.4	-1.4	-1.3	No Change
29	2/22/2023 15:05	58.6	41.0	0.4	0.0	98.3	98.3	-0.9	-0.9	-0.9	No Change
29	3/1/2023 13:19	57.7	40.2	0.3	1.8	95.7	95.7	-0.5	-0.5	-0.4	Can Not Sample due to Access/Safety
29	3/7/2023 10:47	57.8	40.1	0.8	1.3	84.6	84.3	-0.4	-0.4	-0.8	Increased Flow/Vacuum
29	3/15/2023 09:47	57.2	42.8	0.0	0.0	52.7	52.6	0.2	0.2	0.2	Can Not Sample due to Access/Safety
29	3/16/2023 13:16	58.9	39.2	0.2	1.7	66.9	66.4	-0.2	-0.3	-0.9	
29	3/29/2023 11:42	55.0	42.5	0.8	1.7	103.8	101.9	-7.2	-7.2	-8.9	Valve Adjustment:No Change
32	1/5/2023 12:47	57.1	42.9	0.0	0.0	72.0	72.3	-3.9	-3.9	-10.7	
32	2/3/2023 10:27	50.6	40.4	9.1		60.5	62.8	-2.8	-3.0	-6.6	Increased Flow/Vacuum
32	2/8/2023 08:47	57.5	42.1	0.4	0.0	75.8	77.3	-7.0	-8.1	-9.4	Increased Flow/Vacuum
32	2/14/2023 13:20	56.3	43.7	0.0	0.0	87.6	87.0	-14.5	-14.3	-15.3	Increased Flow/Vacuum
32	2/22/2023 15:21	55.7	44.3	0.0	0.0	89.6	89.6	-15.9	-16.2	-14.9	Increased Flow/Vacuum
32	3/1/2023 13:11	57.5	42.3	0.1	0.1	89.2	89.2	-15.2	-15.2	-16.8	Increased Flow/Vacuum
32	3/7/2023 10:52	56.6	43.1	0.4		88.9	88.6	-15.4	-16.1	-16.8	Increased Flow/Vacuum
32	3/15/2023 10:00	55.7	44.3	0.0	0.0	83.2	83.2	-13.0	-13.0	-13.0	Increased Flow/Vacuum
33	1/5/2023 13:11	37.0	29.5	4.2	29.3	129.4	129.5	-2.0	-2.0	-1.5	
33	2/3/2023 11:56	38.6	26.1	9.3	26.0	116.2	118.4	-1.2	-1.2	-7.0	
33	2/14/2023 13:26	36.9	30.1	3.3	29.7	118.7	118.8	-1.2	-1.2	-6.2	No Change
33	2/22/2023 15:00	36.6	28.4	4.0	31.0	115.9	116.1	-1.4	-1.3	-6.5	No Change
33	3/1/2023 13:26	37.2	27.6	3.6	31.6	119.8	119.8	-1.2	-1.1	-5.7	No Change
33	3/7/2023 11:22	31.9	24.2	5.6	38.3	116.1	116.1	-1.0	-1.0	-5.4	Decresased Flow/vacuum
33	3/15/2023 09:43	34.0	25.4	5.5	35.1	116.6	117.1	-0.9	-0.8	-5.0	
33	3/23/2023 09:43	38.3	29.6	3.1	29.0	121.2	121.4	-0.7	-0.6	-4.0	No Change
34	1/5/2023 13:37	2.8	72.8	0.1	24.3	138.0	138.0	-8.9	-8.9	-8.8	
34	2/3/2023 09:54	12.5	16.1	15.0	56.4	127.2	128.1	-2.2	-2.2	-1.4	
34	2/7/2023 14:20	2.1	67.8	0.5	29.6	128.0	128.3	-6.2	-6.2	-8.1	No Change
34	2/14/2023 12:51	1.3	74.2	0.0	24.5	136.8	136.8	-4.4	-4.4	-6.2	
34	2/22/2023 14:40	1.0	39.4	10.1	49.5	114.7	114.9	-3.2	-3.2	-5.1	No Change
34	3/1/2023 13:50	1.5	71.8	0.0	26.7	118.3	102.3	-0.1	-5.1	-5.2	Increased Flow/Vacuum

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
34	3/15/2023 09:16	0.7	72.1	0.0	27.2	45.3	44.8	-5.7	-5.6	-5.5	No Change
34	3/23/2023 10:15	1.0	71.2	0.1	27.7	124.8	125.2	-4.5	-4.5	-2.2	
34	3/28/2023 11:45	1.6	91.7	0.0	6.8	126.8	126.9	-4.5	-3.6	1.9	
35	1/5/2023 14:15	32.6	23.4	9.9	34.1	66.9	66.9	-7.1	-7.1	-20.1	
35	2/1/2023 12:39	21.7	17.2	14.2	46.9	48.0	47.7	-12.2	-11.7	-18.3	
35	2/7/2023 11:23	19.4	15.1	13.5	52.0	68.1	67.7	-13.7	-12.3	-20.9	Increased Flow/Vacuum
35	2/14/2023 12:10	3.1	7.5	19.4	70.0	77.8	76.8	-5.6	-5.6	-20.5	
35	2/22/2023 11:43	2.2	2.0	20.7	75.1	86.5	85.7	-6.8	-6.9	-17.1	No Change
35	3/1/2023 14:19	2.9	2.1	20.0	75.0	81.4	81.1	-18.7	-18.7	-19.0	No Change
35	3/15/2023 14:25	2.5	2.1	20.8	74.6	56.8	56.6	-18.2	-18.2	-19.2	
35	3/23/2023 10:46	4.3	4.4	19.5	71.9	56.0	55.8	-13.1	-13.1	-16.4	
36	1/5/2023 13:51	15.1	10.1	16.4	58.4	65.7	65.8	-22.6	-22.2	-22.1	
36	2/3/2023 09:34	11.3	9.0	18.5	61.2	48.8	48.8	-22.3	-22.3	-22.2	Can Not Sample due to Access/Safety
36	2/7/2023 14:12	21.2	14.9	14.0	49.9	76.0	75.7	-21.9	-21.9	-21.9	No Change
36	3/2/2023 09:33	21.6	15.7	14.0	48.7	85.1	84.7	-19.4	-19.3	-19.0	No Change
36	3/23/2023 10:31	18.3	13.2	14.6	53.9	77.2	76.2	-18.6	-18.3	-18.3	
36	3/28/2023 11:32	22.7	48.1	14.7	14.6	58.2	58.4	-41.6	-17.3	-36.4	
37	1/5/2023 13:34	15.5	27.4	6.3	50.8	151.9	151.8	-2.3	-2.2	-9.0	
37	1/6/2023 07:24	16.1	26.9	6.7	50.3	149.2	149.2	-2.0	-2.0	-9.1	
37	1/12/2023 12:18	15.0	24.3	6.2	54.5	149.7	149.7	-8.5	-8.5	-8.1	High Temp
37	1/18/2023 12:33	14.0	26.2	6.8	53.0	149.0	149.0	-1.8	-1.8	-8.1	High Temp
37	1/25/2023 11:53	14.2	28.4	6.1	51.3	149.7	149.8	-1.8	-1.8	-7.8	High Temp
37	2/1/2023 13:33	18.2	30.2	6.3	45.3	150.9	150.9	-1.9	-1.9	-7.4	
37	2/3/2023 10:18	14.9	27.2	7.8	50.1	148.6	149.0	-1.8	-1.6	-7.3	High Temp
37	2/7/2023 14:26	17.0	28.3	6.6	48.1	150.4	150.5	-6.2	-6.5	-6.8	No Change
37	2/8/2023 09:35	16.7	29.2	6.3	47.8	149.1	149.1	-1.5	-1.5	-6.7	No Change,High Temp
37	2/14/2023 12:54	16.2	31.5	5.9	46.4	149.6	149.6	-1.5	-1.5	-6.4	High O2
37	2/15/2023 10:32	17.1	29.3	6.5	47.1	148.6	148.6	-1.4	-1.4	-6.3	High O2
37	2/22/2023 14:36	17.5	30.9	6.1	45.5	149.1	149.5	-1.5	-1.5	-6.7	High Temp,No Change
37	2/23/2023 09:25	16.1	30.3	6.0	47.6	149.0	148.9	-1.4	-1.4	-6.0	
37	3/1/2023 13:44	16.4	31.1	5.6	46.9	149.6	149.7	-1.3	-1.3	-5.5	No Change
37	3/2/2023 08:46	16.2	31.4	6.2	46.2	148.6	148.6	-1.5	-1.5	-6.0	No Change
37	3/7/2023 11:27	17.1	31.0	6.5	45.4	149.1	149.1	-1.5	-1.4	-5.9	Decresased Flow/vacuum
37	3/9/2023 11:24	19.4	32.5	6.4	41.7	149.0	149.0	-1.3	-1.3	-5.6	High O2
37	3/15/2023 09:21	16.1	33.0	6.2	44.7	147.7	147.7	-1.3	-1.3	-5.7	Increased Flow/Vacuum
37	3/16/2023 09:53	13.1	25.8	9.9	51.2	148.6	148.6	-1.3	-1.3	-5.4	

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
37	3/23/2023 10:12	15.6	32.8	5.8	45.8	149.3	149.3	-1.2	-1.2	-4.6	High Temp
37	3/23/2023 13:01	16.4	33.9	5.5	44.2	144.9	144.4	-1.1	-1.1	-4.3	
37	3/28/2023 11:42	15.2	43.3	6.1	35.4	151.0	151.0	-1.1	-1.1	-4.0	
37	3/29/2023 11:52	15.1	35.4	6.4	43.2	150.6	150.6	-3.1	-3.1	-13.9	Valve Adjustment:No Change
38	1/5/2023 14:06	34.6	23.0	9.5	32.9	104.2	104.1	-13.3	-13.3	-13.3	
38	2/1/2023 13:20	15.9	12.6	16.8	54.7	47.7	47.8	-23.0	-22.9	-22.9	
38	2/7/2023 11:54	28.1	19.0	11.3	41.6	105.7	105.7	-11.9	-11.9	-11.9	No Change
38	2/14/2023 12:31	2.6	3.2	20.7	73.5	101.1	101.3	-8.5	-8.5	-7.7	
38	2/22/2023 12:01	0.5	0.7	21.7	77.1	99.7	100.0	-7.5	-7.7	-7.1	
38	3/1/2023 14:00	0.3	1.0	20.7	78.0	99.6	99.6	-12.3	-12.4	-10.3	No Change
38	3/15/2023 14:45	33.7	22.2	9.8	34.3	93.6	93.6	-11.0	-11.0	-11.0	
38	3/23/2023 10:40	0.0	0.5	21.3	78.2	96.7	97.3	-7.2	-7.9	-6.8	No Change
38	3/28/2023 11:20	34.3	24.6	9.5	31.6	100.8	100.9	-10.0	-10.0	0.5	
39	1/5/2023 14:21	29.4	20.0	11.0	39.6	60.2	60.3	-18.1	-18.4	-17.7	
39	2/1/2023 12:48	0.9	1.8	22.2	75.1	40.9	40.9	-16.5	-17.1	-16.7	
39	2/7/2023 11:32	0.7	1.5	21.1	76.7	63.9	64.2	-21.5	-21.5	-21.4	
39	2/14/2023 12:16	1.2	10.0	19.0	69.8	69.6	67.8	-15.3	-15.5	-15.6	Increased Flow/Vacuum
39	2/22/2023 11:49	1.9	3.4	20.5	74.2	78.0	78.0	-12.3	-13.1	-13.0	No Change
39	3/1/2023 14:25	3.8	3.8	19.4	73.0	84.6	87.3	-12.5	-12.9	-13.5	Increased Flow/Vacuum
39	3/15/2023 14:18	2.2	3.1	20.7	74.0	56.6	55.4	-12.6	-12.3	-12.6	Decresased Flow/vacuum
39	3/23/2023 10:49	1.7	3.7	20.0	74.6	58.8	58.5	-12.0	-11.4	-10.6	
39	3/28/2023 11:05	1.3	8.2	22.2	68.4	55.4	55.4	-10.0	-9.8	-10.1	Valve Adjustment:Closed valve 1/2 to 1 turn
40	1/5/2023 15:04	45.5	54.2	0.3	0.0	138.5	139.3	-17.7	-17.7	-18.7	
40	2/1/2023 12:17	46.1	53.4	0.5	0.0	124.2	124.0	-4.7	-4.7	-9.1	
40	2/1/2023 13:25	2.7	72.9	0.2	24.2	123.6	123.8	-7.0	-7.0	-7.0	
40	2/7/2023 10:59	49.0	50.6	0.4	0.0	127.7	128.4	-10.3	-12.7	-12.8	Increased Flow/Vacuum
40	2/14/2023 11:54	48.9	50.3	0.1	0.7	129.8	129.7	-13.0	-13.8	-15.4	Increased Flow/Vacuum
40	2/22/2023 11:09	45.2	47.0	3.6	4.2	124.1	124.0	-10.2	-11.0	-12.5	Increased Flow/Vacuum
40	3/1/2023 15:06	49.4	49.8	0.2	0.6	118.7	118.9	-7.0	-7.0	-6.2	Increased Flow/Vacuum
40	3/9/2023 10:45	32.0	63.0	0.0	5.0	139.1	139.2	-8.3	-8.1	-8.8	No Change
40	3/15/2023 13:40	31.6	63.6	0.0	4.8	141.8	142.0	-8.4	-8.8	-9.0	Increased Flow/Vacuum
40	3/23/2023 10:26	4.7	78.7	0.0	16.6	74.9	74.8	6.7	6.8	6.7	
40	3/23/2023 13:21	4.4	75.4	0.9	19.4	71.7	71.9	-7.0	-6.1	-7.3	
40	3/28/2023 10:37	5.4	94.6	0.0	0.0	71.9	73.9	-1.3	-1.3	-0.9	Valve Adjustment:Opened Valve 1/2 to 1 turn
41	1/5/2023 15:06	50.6	49.3	0.2		128.3	128.4	-6.7	-6.7	-16.6	
41	2/1/2023 12:06	55.7	42.5	1.3	0.5	46.3	46.3	-19.8	-19.8	-19.6	

-9-CL

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
41	2/7/2023 10:53	50.0	38.4	2.6	9.0	108.2	109.1	-19.0	-19.3	-1.6	Positive Static Press., Increased Flow/Vacuum
41	2/14/2023 11:48	50.3	39.8	1.8	8.1	96.9	97.3	-17.1	-16.7	-1.2	
41	2/22/2023 10:48	52.6	40.2	1.7	5.5	94.3	93.9	-15.3	-15.2	-3.5	
41	3/1/2023 14:59	48.1	34.0	7.9	10.0	94.1	94.3	-13.9	-13.9	-2.3	No Change
41	3/9/2023 10:50	33.3	66.6	0.1	0.0	83.4	83.4	-4.2	-4.2	-3.4	No Change
41	3/15/2023 13:52	34.9	64.8	0.3	0.0	85.0	85.5	-4.0	-4.2	-4.9	Increased Flow/Vacuum
41	3/23/2023 10:20	23.4	20.4	11.0	45.2	69.3	69.2	-7.5	-7.7	-7.7	Valve Adjustment:Opened Valve 1/2 to 1 turn
41	3/28/2023 10:30	21.8	27.4	12.0	38.9	75.5	75.6	-9.0	-8.9	-9.2	
42	1/5/2023 13:13	36.4	27.4	7.5	28.7	120.0	119.9	-1.5	-0.9	-0.9	
42	2/3/2023 09:59	57.8	42.2	0.0	0.0	105.5	107.7	-0.9	-0.8	-0.8	Decresased Flow/vacuum
42	2/8/2023 08:30	0.3	0.7	21.9	77.1	111.1	111.3	-0.1	-0.1	-0.1	No Change
42	2/14/2023 13:10	57.5	41.0	0.5	1.0	111.5	111.4	-0.4	-0.4	-0.3	No Change
42	2/22/2023 14:56	56.4	43.6	0.0	0.0	115.2	115.6	-0.4	-0.4	-0.4	No Change
42	3/1/2023 13:31	56.7	41.3	0.1	1.9	90.7	98.4	-0.9	-1.4	-5.1	Increased Flow/Vacuum
42	3/7/2023 11:10	50.7	39.1	0.2	10.0	121.4	121.7	-3.8	-4.2	-5.5	Increased Flow/Vacuum
42	3/15/2023 09:36	46.8	37.4	0.4	15.4	119.1	119.3	-7.4	-7.4	-5.9	
42	3/23/2023 09:46	50.2	38.9	0.0	10.9	119.4	119.3	-4.4	-4.4	-4.8	
42	3/28/2023 14:00	50.5	41.5	0.0	7.9	119.2	120.0	-3.8	-3.8	-4.4	Valve Adjustment:No Change
46	1/5/2023 14:51	54.0	46.0	0.0	0.0	143.9	143.9	-1.3	-1.2	-20.4	
46	2/1/2023 12:01	53.6	46.4	0.0	0.0	145.5	144.8	-1.3	-0.7	-20.2	
46	2/7/2023 10:48	53.0	45.0	1.0	1.0	143.4	144.0	-1.0	-1.2	-20.2	Increased Flow/Vacuum,High Temp
46	2/14/2023 11:42	51.5	43.5	0.1	4.9	143.9	143.8	-6.1	-6.2	-20.6	Increased Flow/Vacuum
46	2/22/2023 10:30	44.2	38.1	1.4	16.3	139.2	140.0	-6.9	-5.3	-19.4	Opened Valve 1/2 Turn or Less
46	3/1/2023 14:57	43.1	37.1	1.2	18.6	144.6	144.9	-7.5	-7.5	-17.1	Increased Flow/Vacuum
46	3/9/2023 10:33	44.0	38.1	1.5	16.4	145.2	144.8	-6.0	-7.1	-15.5	Increased Flow/Vacuum
46	3/15/2023 13:30	40.5	35.0	1.8	22.7	144.6	144.5	-7.2	-7.2	-16.7	No Change
46	3/23/2023 10:12	38.8	37.6	1.9	21.7	145.4	145.4	-4.8	-4.9	-14.3	
46	3/23/2023 13:24	39.8	38.7	1.8	19.7	145.4	145.8	-4.9	-4.9	-14.4	
46	3/28/2023 10:21	34.5	50.9	2.0	12.7	148.5	148.5	-4.4	-4.4	-14.3	
47	1/5/2023 15:11	54.0	36.5	3.1	6.4	63.0	62.6	-21.4	-21.3	-21.2	
47	2/1/2023 12:26	56.8	41.0	1.4	0.8	89.1	89.0	-22.3	-22.3	-21.9	
47	2/7/2023 11:07	55.3	40.3	1.1	3.3	72.9	73.4	-19.5	-19.5	-19.6	Increased Flow/Vacuum
47	2/14/2023 12:00	36.4	28.0	7.6	28.0	97.6	97.9	-20.8	-20.8	-20.7	
47	2/22/2023 11:22	55.8	40.0	1.0	3.2	98.5	98.6	-19.9	-19.9	-19.7	No Change
47	3/1/2023 14:36	56.4	40.4	0.4	2.8	102.2	102.2	-19.1	-19.1	-19.1	No Change
47	3/9/2023 10:56	56.8	36.4	1.4	5.4	91.8	91.9	-18.1	-18.1	-18.0	

-9-C

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
47	3/15/2023 14:01	53.7	39.2	1.0	6.1	86.8	86.9	-19.4	-19.4	-19.3	
47	3/23/2023 10:34	53.0	41.5	1.5	4.0	86.9	86.0	-16.8	-16.6	-16.8	Valve Comment:Broken valve
47	3/28/2023 10:43	43.5	56.1	0.5	0.0	93.6	93.4	-16.5	-16.5	-16.7	Valve Adjustment:Opened Valve 1/2 to 1 turn
48	1/5/2023 14:01	3.2	2.9	20.0	73.9	65.2	65.5	-21.8	-21.8	-21.8	
48	2/1/2023 13:01	6.1	5.2	20.0	68.7	40.1	40.1	-23.1	-22.3	-22.3	
48	2/7/2023 11:57	0.6	1.3	21.2	76.9	69.2	68.7	-21.5	-21.5	-21.4	No Change
48	2/14/2023 12:26	1.7	9.2	19.1	70.0	62.6	62.5	-20.0	-20.0	-20.5	
48	2/22/2023 11:58	1.3	1.5	21.2	76.0	72.7	72.4	-19.1	-19.1	-19.4	No Change
48	3/1/2023 14:05	3.0	1.9	20.1	75.0	79.1	79.2	-0.1	-19.0	-18.9	No Change
48	3/15/2023 14:40	0.3	0.8	21.5	77.4	50.4	48.6	-16.8	-16.7	-17.0	Decresased Flow/vacuum
48	3/23/2023 10:37	0.0	1.3	20.9	77.8	59.2	59.1	-15.0	-15.2	-16.8	No Change
48	3/28/2023 11:17	3.1	16.6	21.1	59.1	56.2	56.2	-4.5	-15.7	-10.3	
49	1/5/2023 13:45	28.9	31.9	5.1	34.1	136.1	136.2	-9.0	-9.0	-9.0	
49	2/3/2023 09:40	40.9	37.1	3.1	18.9	133.0	133.2	-3.9	-3.9	-3.9	Can Not Sample due to Access/Safety
49	2/7/2023 12:18	35.1	32.6	3.6	28.7	135.0	135.6	-3.9	-3.9	-3.9	No Change
49	2/14/2023 12:35	39.0	35.6	2.4	23.0	135.4	135.4	-4.4	-4.4	-4.4	
49	2/22/2023 12:12	47.1	41.0	0.9	11.0	95.8	95.6	-1.6	-1.5	-1.5	Can Not Sample due to Access/Safety
49	3/1/2023 13:54	49.0	42.4	0.5	8.1	132.1	132.2	-1.4	-1.3	-1.3	No Change
49	3/10/2023 08:38	55.0	44.8	0.2	0.0	78.6	78.7	-0.3	-0.3	-0.2	No Change
49	3/15/2023 14:56	57.5	42.0	0.5	0.0	126.6	127.6	-1.1	-1.1	-1.1	No Change
49	3/23/2023 10:25	54.2	43.2	0.3	2.3	130.9	131.0	-1.5	-1.5	-1.5	
49	3/29/2023 12:30	43.2	55.4	0.5	1.0	133.3	133.3	-1.3	-1.3	0.7	
50	1/5/2023 13:48	44.4	32.3	2.6	20.7	124.4	124.3	-2.7	-2.6	-2.4	
50	2/1/2023 13:11	50.0	35.1	1.4	13.5	123.9	124.0	-2.5	-2.5	-21.6	
50	2/7/2023 12:16	49.5	34.4	0.9	15.2	125.0	125.2	-2.1	-4.5	-0.1	Increased Flow/Vacuum
50	2/14/2023 12:38	34.8	30.2	1.4	33.6	122.7	122.7	-5.5	-5.5	-5.5	
50	2/22/2023 12:09	40.0	29.5	1.3	29.2	121.8	122.0	-5.1	-5.1	-5.1	No Change
50	3/1/2023 13:57	39.9	31.1	0.8	28.2	120.9	121.0	-4.8	-4.8	-17.3	No Change
50	3/10/2023 08:40	53.6	39.1	0.0	7.3	118.0	118.3	-1.9	-1.9	-3.0	
50	3/15/2023 14:54	51.4	36.0	0.8	11.8	124.8	124.8	-6.0	-6.0	-5.9	No Change
50	3/23/2023 10:28	23.7	20.8	7.2	48.3	118.0	118.1	-6.8	-6.8	-6.8	
50	3/28/2023 11:23	32.5	33.1	1.7	32.7	119.7	119.7	-5.9	-5.9	-13.3	Valve Comment:0839985
51	1/5/2023 14:24	39.2	53.9	0.7	6.2	130.6	130.5	-12.2	-11.5	-11.4	
51	2/1/2023 12:43	39.7	48.2	3.1	9.0	68.5	68.4	-9.1	-9.4	-8.3	
51	2/7/2023 11:27	41.1	37.0	4.7	17.2	80.4	80.8	-21.5	-21.5	-21.2	Increased Flow/Vacuum
51	2/14/2023 12:13	34.8	47.0	3.2	15.0	96.3	97.1	-9.4	-7.4	-11.0	

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
51	2/22/2023 11:45	6.3	66.1	2.8	24.8	91.2	91.1	-5.8	-6.3	-6.1	No Change
51	3/1/2023 14:29	13.2	61.0	2.3	23.5	84.3	81.5	-7.7	-7.7	-8.4	No Change
51	3/15/2023 14:13	25.2	56.9	2.5	15.4	78.9	78.7	-5.5	-5.3	-6.0	Decresased Flow/vacuum
51	3/23/2023 10:48	1.3	30.1	17.1	51.5	169.2	177.8	-3.8	-6.4	-8.1	Valve Comment:0229820
51	3/23/2023 13:13	13.7	45.6	5.0	35.7	166.4	167.3	-5.5	-4.6	-6.7	Valve Comment:0243375
51	3/29/2023 12:25	5.7	75.9	1.5	16.9	169.8	169.2	-1.6	-1.5	-0.9	Valve Comment:0281076
52	1/5/2023 14:12	42.2	56.8	0.2	0.8	144.0	144.0	-18.0	-17.5	-16.9	
52	2/1/2023 12:36	47.4	51.2	1.0	0.4	130.7	130.8	-18.2	-18.2	-18.5	
52	2/7/2023 11:19	43.0	49.8	1.0	6.2	135.1	135.8	-21.4	-21.3	-21.2	Increased Flow/Vacuum
52	2/14/2023 12:08	36.1	42.2	3.7	18.0	118.8	119.1	-19.6	-19.6	-19.5	
52	2/22/2023 11:39	35.5	38.1	6.0	20.4	115.6	117.9	-19.7	-19.7	-18.8	
52	3/1/2023 14:16	43.6	43.3	2.4	10.7	104.3	104.4	-19.0	-19.0	-19.0	No Change
52	3/15/2023 14:32	28.3	26.9	9.8	35.0	84.4	84.2	-19.0	-19.1	-19.0	Decresased Flow/vacuum
52	3/23/2023 10:43	45.4	41.9	3.3	9.5	89.9	90.6	-15.4	-15.8	-15.5	Valve Adjustment:Opened Valve 1/2 to 1 turn
52	3/28/2023 10:53	30.2	46.9	7.8	15.2	94.1	94.2	-16.4	-16.4	-16.4	
53	1/5/2023 15:02	48.6	38.7	3.9	8.8	120.0	120.9	-17.8	-17.8	-1.7	Positive Static Press
53	2/1/2023 12:13	39.7	59.7	0.6	0.0	144.6	144.5	-14.1	-13.5	-15.8	
53	2/7/2023 10:57	4.2	46.0	7.0	42.8	141.5	142.4	-14.1	-14.1	-15.7	
53	2/14/2023 11:51	23.3	49.0	4.0	23.7	144.7	144.2	-13.9	-13.2	-16.2	
53	2/22/2023 10:52	23.4	47.6	4.7	24.3	151.7	152.4	-11.4	-10.9	-14.4	High Temp,Increased Flow/Vacuum
53	2/23/2023 09:28	23.0	46.9	5.0	25.1	145.3	145.6	-12.7	-12.1	-14.0	High Temp
53	3/1/2023 15:03	29.9	59.4	0.9	9.8	141.1	141.2	-10.6	-10.6	-10.6	No Change
53	3/9/2023 10:41	29.2	26.6	8.4	35.8	73.4	73.3	-9.0	-8.9	-9.4	Can Not Sample due to Access/Safety
53	3/15/2023 13:34	23.2	19.5	10.7	46.6	68.6	68.4	-9.8	-9.9	-9.9	Decresased Flow/vacuum
53	3/23/2023 10:23	31.7	65.0	0.2	3.1	111.6	114.1	-7.1	-7.2	-7.8	Valve Comment:1852617
53	3/28/2023 10:33	28.6	71.4	0.0	0.0	143.9	144.6	-8.6	-8.5	-9.1	Valve Adjustment:Opened Valve 1/2 to 1 turn
53	3/28/2023 10:58	18.0	26.0	15.4	40.7	58.4	58.7	-13.4	-13.4	-15.4	
54	1/5/2023 15:14	35.3	64.7	0.0	0.0	61.7	62.0	-21.1	-21.1	-21.2	
54	2/1/2023 12:29	29.0	63.6	1.3	6.1	122.9	122.9	-22.0	-22.0	-21.2	
54	2/7/2023 11:12	28.1	62.0	5.9	4.0	131.2	133.8	-21.3	-21.3	-21.1	No Change
54	2/14/2023 12:02	18.5	36.5	8.5	36.5	78.1	77.6	-20.8	-20.8	-20.8	
54	2/22/2023 11:33	25.9	66.0	0.0	8.1	142.0	141.8	-19.5	-19.5	-19.8	
54	3/1/2023 14:38	24.5	66.0	0.0	9.5	132.4	132.5	-19.2	-19.1	-18.9	No Change
54	3/9/2023 10:59	24.0	65.8	0.1	10.1	112.1	112.2	-18.1	-18.0	-17.9	No Change
54	3/15/2023 14:04	21.2	65.9	0.0	12.9	97.3	97.6	-19.4	-19.4	-19.6	No Change
54	3/23/2023 10:37	20.2	66.3	0.1	13.4	94.9	94.8	-16.3	-16.4	-16.5	Valve Adjustment:Opened Valve 1/2 to 1 turn

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
54	3/28/2023 10:47	16.5	46.1	9.7	27.7	140.3	140.4	-16.5	-16.3	-16.8	Valve Comment:0152697;Valve Adjustment:Closed valve 1/2 to 1 turn
55	1/5/2023 15:16	42.2	34.0	4.2	19.6	60.8	60.5	-21.0	-20.9	-20.9	
55	2/3/2023 09:26	37.0	32.9	4.4	25.7	37.0	36.9	-21.4	-21.4	-21.4	
55	2/7/2023 10:41	40.7	34.5	3.2	21.6	74.4	74.9	-22.1	-22.1	-22.0	
55	2/7/2023 11:15	40.0	33.0	3.8	23.2	84.8	85.3	-21.5	-21.5	-21.4	No Change
55	2/14/2023 12:04	39.5	35.7	3.4	21.4	74.9	75.0	-20.9	-20.8	-20.9	
55	2/22/2023 11:29	46.4	36.6	1.8	15.2	83.5	83.3	-20.0	-20.0	-20.0	
55	3/1/2023 14:41	45.2	38.9	1.6	14.3	86.0	85.6	-19.1	-19.1	-19.3	No Change
55	3/9/2023 11:02	28.2	23.2	11.0	37.6	70.4	69.7	-18.1	-18.1	-18.0	No Change
55	3/15/2023 14:09	30.1	27.1	8.1	34.7	55.0	54.9	-19.4	-19.4	-19.4	
55	3/23/2023 10:40	46.8	45.9	1.1	6.2	57.1	57.1	-16.5	-16.6	-12.1	
55	3/28/2023 10:50	38.4	57.5	1.7	2.4	59.7	59.7	-16.7	-16.5	-14.5	
56	1/5/2023 14:38	44.3	40.0	3.6	12.1	130.4	130.4	-18.3	-18.3	-20.1	
56	2/1/2023 11:18	42.1	39.9	4.3	13.7	131.9	132.1	-19.1	-19.1	-21.2	
56	2/7/2023 10:08	42.3	38.0	4.4	15.3	130.9	130.8	-18.2	-18.1	-20.4	Increased Flow/Vacuum
56	2/14/2023 11:19	42.0	37.0	4.3	16.7	127.6	131.1	-20.0	-20.0	-20.0	
56	2/22/2023 10:11	43.2	38.7	4.1	14.0	133.4	133.4	-17.5	-17.5	-18.4	Opened Valve 1/2 Turn or Less
56	3/1/2023 15:18	42.2	39.7	3.5	14.6	134.6	134.2	-16.1	-16.2	-16.4	No Change
56	3/9/2023 10:10	47.1	44.0	2.3	6.6	134.0	134.1	-16.6	-16.6	-17.1	Increased Flow/Vacuum
56	3/15/2023 10:58	44.9	43.5	2.5	9.1	130.4	130.8	-18.2	-18.1	-18.4	No Change
56	3/23/2023 09:48	42.5	42.9	2.7	12.0	105.6	105.8	-16.1	-16.1	-16.8	
56	3/28/2023 09:47	40.4	54.7	3.4	1.5	129.8	130.2	-12.5	-12.4	-13.0	Valve Adjustment:No Change
57	1/5/2023 14:43	41.4	49.1	9.4	0.1	143.4	145.6	-20.6	-20.5	-20.4	
57	1/6/2023 07:40	48.1	51.8	0.1	0.0	148.1	148.4	-21.1	-21.0	-20.8	
57	1/12/2023 12:36	38.0	45.7	1.4	14.9	176.1	176.9	-12.8	-8.1	-12.0	High Temp
57	1/18/2023 11:59	6.4	10.5	16.9	66.2	172.4	172.4	0.0	0.0	0.1	High Temp
57	1/25/2023 12:05	31.7	59.3	0.6	8.4	170.0	170.3	-20.2	-20.2	-20.0	Opened for Sample
57	2/1/2023 11:27	43.8	55.7	0.5	0.0	155.3	155.3	-21.2	-20.9	-20.5	
57	2/3/2023 10:41	40.2	55.2	0.1	4.5	150.8	150.9	-20.3	-20.3	-18.6	High O2
57	2/7/2023 10:28	41.5	54.2	0.3	4.0	153.2	153.0	-21.0	-21.0	-20.9	Increased Flow/Vacuum,High Temp
57	2/8/2023 09:43	42.0	55.4	0.3	2.3	152.5	152.4	-20.8	-20.8	-20.5	High Temp
57	2/14/2023 11:27	34.4	56.0	0.6	9.0	147.4	147.7	-20.7	-20.8	-20.8	High Temp
57	2/15/2023 12:23	40.1	56.7	0.5	2.7	149.6	149.7	-20.4	-20.5	-20.5	High Temp
57	2/22/2023 10:19	40.3	58.2	0.0	1.5	149.7	149.7	-18.6	-18.7	-18.7	No Change
57	2/23/2023 09:38	38.9	57.8	0.4	2.9	144.3	144.5	-17.6	-16.7	-17.2	No Change
57	3/1/2023 15:10	38.5	58.9	0.0	2.6	145.3	144.5	-18.1	-0.2	-17.9	No Change

-9's

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
57	3/9/2023 10:18	33.5	62.5	0.0	4.0	143.2	143.3	-17.2	-17.1	-16.9	No Change
57	3/15/2023 11:03	1.0	74.9	0.0	24.1	170.5	170.5	-18.1	-18.3	-18.4	
57	3/16/2023 10:06	23.2	54.6	3.2	19.0	146.4	147.1	-16.4	-16.4	-16.1	High O2
57	3/23/2023 09:59	29.1	58.3	1.1	11.5	133.5	137.2	-15.3	-15.3	-15.5	
57	3/28/2023 10:14	29.6	70.4	0.0	0.0	144.1	147.2	-14.1	-14.0	-14.2	Valve Comment:0224544
57	3/29/2023 12:10	21.4	57.8	2.7	18.1	162.1	157.7	-12.2	-12.1	-12.5	Valve Adjustment:No Change;Well Comment:0248610
58	1/5/2023 14:48	26.7	36.1	2.2	35.0	119.7	120.2	-6.0	-6.0	-6.0	
58	2/1/2023 11:40	31.1	45.2	0.7	23.0	124.2	124.2	-3.0	-2.9	-0.5	
58	2/7/2023 10:37	36.3	42.3	1.6	19.8	115.8	116.4	-11.2	-11.1	-11.1	
58	2/14/2023 11:31	49.9	50.0	0.0	0.1	94.9	95.1	-20.7	-20.7	-20.6	
58	2/22/2023 10:22	2.1	2.4	19.9	75.6	71.7	70.6	-18.4	-18.4	-18.4	No Change
58	3/1/2023 14:48	1.0	1.1	20.4	77.5	79.5	79.5	-17.6	-17.6	-17.5	No Change
58	3/9/2023 10:22	9.6	8.8	19.4	62.2	68.7	68.5	-16.5	-16.5	-16.2	No Change
58	3/15/2023 11:06	37.2	54.1	0.0	8.7	112.8	112.8	-4.1	-4.0	-4.0	No Change
58	3/23/2023 10:03	38.6	57.0	0.2	4.2	90.2	89.0	-7.4	-7.5	-14.9	
58	3/28/2023 10:09	39.2	60.8	0.0	0.0	117.2	117.7	-3.7	-5.0	-14.7	Valve Comment:1753310;Valve Adjustment:Opened Valve 1/2 to 1 turn
59	1/5/2023 14:40	31.5	30.6	5.9	32.0	114.2	114.3	-1.6	-1.6	-22.3	
59	2/1/2023 11:22	30.0	31.8	6.2	32.0	115.3	115.3	-3.1	-1.9	-22.8	
59	2/7/2023 10:22	29.8	30.0	6.2	34.0	112.6	112.8	-1.8	-1.2	-21.9	
59	2/14/2023 11:22	38.6	37.3	3.3	20.8	114.0	113.9	-1.4	-1.4	-21.7	
59	2/22/2023 10:14	45.3	43.7	2.0	9.0	114.1	114.1	-3.0	-3.1	-21.2	Opened Valve 1/2 to 1 Turn
59	3/1/2023 15:14	34.3	36.5	3.7	25.5	112.5	112.5	-3.3	-3.3	-20.0	No Change
59	3/9/2023 10:14	35.9	40.6	3.7	19.8	115.6	115.3	-2.4	-2.4	-2.4	
59	3/9/2023 10:15	34.3	39.3	3.8	22.6	115.0	115.2	-2.4	-0.1	-18.7	Increased Flow/Vacuum
59	3/15/2023 10:55	28.2	34.7	4.9	32.2	112.3	112.3	-2.7	-2.7	-20.3	
59	3/23/2023 09:56	33.2	40.9	2.5	23.4	111.2	111.0	-2.8	-2.7	-17.7	Valve Comment:1366734;Valve Adjustment:Closed valve 1/2 to 1 turn
59	3/28/2023 10:05	37.5	55.3	0.0	7.2	160.7	160.3	-7.3	-7.6	-15.6	Valve Comment:1366950;Valve Adjustment:Opened Valve 1/2 to 1 turn
59	3/29/2023 12:19	31.2	49.8	2.2	16.9	119.3	119.4	-2.5	-2.5	-14.2	Valve Adjustment:No Change;Well Comment:1371333
60	1/5/2023 14:09	52.0	48.0	0.0	0.0	138.5	138.7	-5.2	-5.2	-21.5	
60	2/1/2023 12:56	56.3	43.6	0.1	0.0	112.4	112.6	-6.7	-7.4	-21.9	
60	2/7/2023 11:51	56.4	40.0	0.6	3.0	115.1	115.6	-17.2	-17.3	-21.1	Increased Flow/Vacuum
60	2/14/2023 12:23	37.1	34.3	1.8	26.8	117.1	117.2	-19.3	-19.3	-21.0	Increased Flow/Vacuum
60	2/22/2023 11:55	22.2	16.2	12.6	49.0	116.5	116.5	-16.5	-17.9	-19.9	No Change

-9-CL

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
60	3/1/2023 14:12	47.1	36.1	0.0	16.8	114.8	115.0	-18.0	-18.0	-19.0	Increased Flow/Vacuum
60	3/15/2023 14:37	48.6	37.1	0.0	14.3	111.1	110.9	-18.2	-18.2	-17.9	Increased Flow/Vacuum
60	3/23/2023 10:44	45.2	35.0	0.2	19.6	109.6	110.0	-16.2	-16.2	-17.0	No Change
60	3/28/2023 11:13	41.9	45.6	0.0	12.6	112.2	112.1	-15.5	-15.5	-16.5	Valve Adjustment:Opened Valve 1/2 to 1 turn
61	1/5/2023 13:54	36.2	49.9	1.9	12.0	127.3	127.3	-0.9	-0.9	-20.7	
61	2/1/2023 13:15	29.0	68.9	0.1	2.0	114.8	114.7	-1.3	-0.6	-21.8	
61	2/7/2023 12:13	39.5	56.5	0.0	4.0	120.7	120.8	-0.3	-0.2	-21.8	No Change
61	2/14/2023 12:43	35.0	60.3	0.0	4.7	120.4	123.2	-1.8	-1.8	-21.2	
61	2/22/2023 12:06	34.4	28.8	6.4	30.4	110.5	110.8	-1.4	-1.4	-19.9	No Change
61	3/2/2023 09:15	38.3	34.3	4.7	22.7	96.3	96.0	-1.6	-1.6	-17.8	No Change
61	3/15/2023 14:49	40.8	35.0	3.8	20.4	82.3	82.6	-1.4	-1.3	-17.9	No Change
61	3/23/2023 10:34	34.7	32.8	7.7	24.8	107.5	108.5	-1.2	-1.2	-17.3	No Change
61	3/28/2023 11:27	34.5	51.4	2.4	11.7	130.2	130.0	-0.7	-0.7	-16.8	Valve Adjustment:No Change
62	1/5/2023 13:06	54.2	45.8	0.0	0.0	62.5	62.6	-0.1	-0.1	-9.2	
62	2/3/2023 10:05	54.3	45.7	0.0	0.0	45.3	49.9	0.3	-0.3	-6.1	
62	2/3/2023 11:22	12.2	12.7	14.8	60.3	57.2	67.7	-1.7	-1.7	-6.6	
62	2/8/2023 08:24	33.0	33.0	2.5	31.5	116.9	117.0	-0.5	-0.4	-6.3	No Change
62	2/14/2023 13:14	38.6	35.0	1.7	24.7	117.4	117.5	-0.1	-0.2	-5.7	No Change
62	2/22/2023 15:02	47.0	38.8	1.1	13.1	117.1	117.4	-1.2	-1.2	-5.4	Increased Flow/Vacuum
62	3/1/2023 13:22	21.7	20.0	7.5	50.8	116.9	116.8	-1.3	-1.3	-5.8	No Change
62	3/7/2023 11:05	20.0	18.3	9.1	52.6	111.1	111.1	-1.6	-1.5	-5.0	Decresased Flow/vacuum
62	3/15/2023 09:40	20.4	17.1	7.1	55.4	107.8	108.3	-1.6	-1.5	-5.4	No Change
62	3/23/2023 09:40	26.4	23.0	6.9	43.7	113.4	113.4	-1.3	-1.3	-4.6	No Change
62	3/28/2023 13:57	40.7	37.5	6.4	15.4	116.2	116.2	-1.2	-1.2	-4.8	Valve Comment:0114010;Valve Adjustment:No Change
63	1/5/2023 13:16	19.3	19.4	8.7	52.6	130.2	130.1	-0.8	-0.3	-8.9	
63	2/1/2023 13:39	19.0	21.9	9.2	49.9	134.1	133.6	-1.5	-1.4	-7.3	
63	2/1/2023 13:43	21.9	21.0	8.9	48.2	121.8	121.9	-1.0	-0.6	-6.7	
63	2/8/2023 08:33	18.9	19.5	9.1	52.5	120.4	120.4	-0.4	-0.4	-6.4	
63	2/14/2023 13:06	22.6	21.9	7.4	48.1	123.0	122.8	-0.2	-0.2	-6.4	
63	2/22/2023 14:50	25.7	23.0	7.0	44.3	123.2	123.1	-0.4	-0.4	-6.4	No Change
63	3/1/2023 13:35	30.4	27.8	4.8	37.0	124.9	124.9	-0.3	-0.3	-5.3	No Change
63	3/7/2023 11:13	14.8	16.2	9.9	59.1	117.1	117.2	-0.5	-0.4	-5.6	Decresased Flow/vacuum
63	3/15/2023 09:32	10.9	11.6	13.9	63.6	88.1	88.3	-0.3	-0.3	0.2	
63	3/23/2023 09:49	16.7	19.0	7.8	56.5	113.8	113.9	-0.3	-0.3	-4.8	No Change
63	3/28/2023 14:03	19.7	27.0	7.8	45.6	112.6	110.4	-0.2	-0.1	-4.5	Valve Comment:0048073;Valve Adjustment:Closed valve 1/2 to 1 turn

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
64	1/5/2023 13:28	21.4	26.3	5.9	46.4	147.4	147.3	-0.9	-0.9	-0.9	
64	1/6/2023 07:34	20.9	25.8	6.5	46.8	145.0	145.2	-1.1	-1.0	-1.0	
64	1/12/2023 12:26	22.5	27.2	5.5	44.8	144.7	144.8	-1.0	-1.0	-1.0	
64	2/1/2023 13:47	18.2	20.0	9.8	52.0	133.9	134.1	-1.6	-1.6	-7.5	
64	2/7/2023 14:29	17.6	19.1	10.0	53.3	131.2	132.1	-1.2	-1.1	-6.6	No Change
64	2/14/2023 12:58	18.0	21.2	9.2	51.6	126.8	126.8	-0.9	-0.9	-6.2	No Change
64	2/22/2023 14:43	19.7	19.4	9.7	51.2	132.3	132.7	-1.2	-1.1	-6.6	No Change
64	3/1/2023 13:41	20.0	21.3	8.6	50.1	133.0	132.9	-0.9	-0.9	-5.4	No Change
64	3/15/2023 09:25	16.8	16.7	11.0	55.5	123.5	123.1	-0.7	-0.7	-5.8	
64	3/23/2023 10:08	21.7	26.3	5.7	46.3	137.5	138.2	-1.0	-1.0	-4.6	
64	3/28/2023 11:49	10.5	66.8	5.1	17.7	137.0	137.0	-0.8	-0.7	-3.7	Valve Comment:0099087
65	1/5/2023 13:39	8.7	14.3	10.9	66.1	135.6	135.7	-1.8	-1.2	-1.2	
65	2/3/2023 09:37	8.5	13.2	12.9	65.4	131.0	131.3	-1.2	-1.2	-1.2	Can Not Sample due to Access/Safety
65	2/7/2023 14:23	8.3	14.5	11.2	66.0	132.7	132.9	-1.3	-1.3	-1.2	Can Not Sample due to Access/Safety
65	2/14/2023 12:48	7.4	16.0	11.2	65.4	132.8	132.9	-1.2	-1.2	-1.1	No Change
65	2/22/2023 14:33	10.1	12.8	11.0	66.1	133.0	133.3	-1.2	-1.2	-1.2	No Change
65	3/1/2023 13:47	10.0	13.5	10.4	66.1	132.4	132.6	-1.3	-1.2	-1.2	No Change
65	3/15/2023 09:12	10.4	14.8	9.9	64.9	129.2	129.8	-1.2	-1.1	-1.1	
65	3/23/2023 10:18	9.5	16.0	10.2	64.3	130.2	130.5	-1.1	-1.1	-1.0	No Change
65	3/28/2023 11:39	8.8	34.9	10.4	45.9	133.6	133.6	-0.9	-0.9	-16.4	Valve Adjustment:No Change
66	1/12/2023 12:32	45.0	50.8	0.0	4.2	122.1	124.8	-6.2	-6.2	-6.2	
66	2/1/2023 11:50	44.2	55.8	0.0	0.0	116.2	116.9	-17.9	-17.8	-20.4	
66	2/7/2023 10:35	45.0	54.9	0.0	0.1	114.6	115.0	-20.5	-20.5	-20.5	
66	2/14/2023 11:33	35.5	63.5	0.0	1.0	86.1	86.4	-20.5	-20.5	-20.5	
66	2/22/2023 10:25	36.6	60.4	1.0	2.0	87.6	88.0	-17.6	-17.6	-17.7	
66	3/1/2023 14:07	35.5	35.7	4.3	24.5	124.9	125.0	-1.2	-1.2	-18.7	No Change
66	3/1/2023 14:51	24.7	42.3	7.0	26.0	79.1	77.6	-16.9	-16.6	-16.7	No Change
66	3/9/2023 10:25	19.6	35.2	10.4	34.8	58.5	58.4	-15.5	-15.4	-15.8	No Change
66	3/15/2023 11:10	14.1	24.9	13.7	47.3	40.1	40.1	-16.1	-16.0	-16.0	Can Not Sample due to Access/Safety
66	3/23/2023 10:08	34.4	65.1	0.5	0.0	55.2	55.2	-13.6	-13.5	-13.9	
66	3/28/2023 10:18	26.1	73.9	0.0	0.0	70.2	70.2	-13.1	-13.0	-13.2	
67	1/5/2023 15:09	38.0	61.6	0.1	0.3	68.6	68.5	-21.0	-21.0	-21.0	
67	2/1/2023 12:21	31.7	64.0	0.5	3.8	124.5	124.7	-21.9	-21.8	-21.8	
67	2/7/2023 11:05	29.7	63.0	0.0	7.3	85.8	85.9	-21.7	-21.6	-21.2	
67	3/1/2023 14:33	25.6	63.5	0.3	10.6	150.1	149.8	-19.0	-19.0	-19.0	High Temp
67	3/2/2023 09:38	28.1	63.3	0.1	8.5	143.9	144.2	-17.4	-17.4	-17.3	No Change

-9E

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
67	3/9/2023 10:53	21.0	60.0	1.7	17.3	143.2	143.0	-18.1	-18.0	-18.0	Increased Flow/Vacuum
67	3/15/2023 13:58	20.4	53.3	3.5	22.8	123.1	122.8	-19.3	-19.3	-19.3	Decresased Flow/vacuum
67	3/23/2023 10:30	17.6	56.6	3.9	21.9	109.2	109.8	-16.5	-16.6	-16.6	Valve Comment:0347188
67	3/28/2023 10:40	10.2	73.1	5.3	11.4	137.3	137.0	-16.6	-16.5	-16.7	Valve Comment:0347188
68	1/5/2023 14:17	58.6	41.4	0.0	0.0	129.1	129.0	-15.5	-15.1	-20.5	
68	2/1/2023 12:52	57.1	42.8	0.0	0.1	125.2	125.2	-17.3	-16.7	-20.5	
68	2/7/2023 11:41	52.5	42.5	1.1	3.9	129.3	129.8	-18.1	-18.0	-21.2	Increased Flow/Vacuum
68	2/14/2023 12:19	58.5	41.5	0.0	0.0	125.7	125.6	-18.0	-18.1	-19.1	Increased Flow/Vacuum
68	2/22/2023 11:52	57.7	42.3	0.0	0.0	125.8	125.8	-18.5	-18.5	-17.5	Increased Flow/Vacuum
68	3/1/2023 14:21	58.6	41.4	0.0	0.0	125.3	125.3	-17.1	-17.1	-17.6	Increased Flow/Vacuum
68	3/15/2023 14:20	57.5	42.5	0.0	0.0	123.4	121.6	-18.4	-18.7	-18.8	Increased Flow/Vacuum
68	3/23/2023 10:46	58.8	40.6	0.6	0.0	123.2	123.4	-15.3	-15.3	-15.7	No Change
68	3/28/2023 11:09	55.9	44.1	0.0	0.0	125.0	125.2	-14.7	-14.6	-15.1	Valve Comment:1831585
HC01	1/5/2023 14:54	26.5	20.2	12.3	41.0	62.1	61.9	-19.7	-20.2		
HC01	2/1/2023 11:55	25.6	23.2	11.3	39.9	41.4	41.3	-20.6	-20.6		
HC01	2/7/2023 10:46	16.8	15.2	14.8	53.2	64.8	64.9	-20.7	-20.7		
HC01	2/14/2023 11:37	12.5	5.0	17.5	65.0	66.7	66.7	-20.1	-20.2		
HC01	2/22/2023 10:27	0.0	0.1	21.2	78.7	79.5	79.4	-11.6	-10.4		No Change
HC01	3/1/2023 14:54	11.1	8.7	16.3	63.9	79.9	79.8	-15.6	-15.6		No Change
HC01	3/9/2023 10:30	15.5	15.1	15.8	53.6	63.9	64.0	-15.4	-15.5		No Change
HC01	3/15/2023 11:12	22.0	20.1	10.9	47.0	48.5	48.5	-16.0	-16.0		No Change
HC01	3/23/2023 10:15	20.5	18.7	11.2	49.7	55.2	55.2	-7.6	-7.6	-13.6	
HC01	3/28/2023 10:26	26.6	36.4	9.0	28.0	55.3	55.3	-12.0	-11.9	-13.2	Valve Adjustment:No Change
SW1L	3/9/2023 09:50	6.4	14.7	15.2	63.7	93.7	93.8	-0.5	-0.5	-3.8	
SW1L	3/10/2023 12:10	22.4	30.9	7.5	39.2	82.5	82.5	-0.2	-0.1	-0.7	
SW1L	3/15/2023 15:16	14.2	23.8	11.0	51.0	92.9	93.0	-0.2	-0.2	-2.5	
SW1L	3/17/2023 15:30	34.9	45.3	0.8	19.0	86.0	86.2	-0.2	-0.2	-1.6	Valve Adjustment:Closed valve 1/2 to 1 turn
SW1L	3/20/2023 13:40	4.0	12.3	15.4	68.3	96.3	96.3	-0.1	-0.1	-1.8	
SW1L	3/23/2023 09:34	9.0	22.7	11.3	56.9	100.3	100.5	-0.1	-0.1	-3.2	Valve Adjustment:Closed valve 1/2 to 1 turn
SW1L	3/28/2023 09:33	8.2	30.5	11.3	50.0	103.0	103.0	-0.1	-0.1	-3.2	Valve Adjustment:No Change
SW1U	3/9/2023 09:54	0.1	1.3	23.0	75.6	78.7	78.7	-0.2	-0.2	-4.4	
SW1U	3/10/2023 12:06	1.3	4.1	19.1	75.5	70.8	70.7	0.0	0.0	-0.6	
SW1U	3/17/2023 15:34	13.0	26.9	12.2	47.9	77.2	77.2	-0.1	-0.1	-1.4	
SW1U	3/23/2023 09:36	1.1	3.4	19.5	76.0	82.2	82.4	-0.1	-0.1	-3.2	
SW1U	3/28/2023 09:36	0.8	11.0	21.7	66.5	82.7	82.8	-0.1	-0.1	-3.1	Valve Adjustment:No Change
SW2L	3/9/2023 09:57	18.4	28.0	10.4	43.2	106.1	106.1	-0.6	-0.6	-3.3	

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
SW2L	3/10/2023 12:00	42.6	50.0	0.8	6.6	99.7	99.7	-0.1	-0.1	-0.3	
SW2L	3/15/2023 15:09	30.2	43.8	4.8	21.2	107.4	107.4	-0.4	-0.4	-3.4	
SW2L	3/17/2023 15:38	40.6	56.7	0.0	2.7	107.2	107.3	-0.3	-0.3	-1.4	
SW2L	3/20/2023 13:45	24.8	42.1	6.3	26.9	110.8	110.8	-0.2	-0.2	-2.7	
SW2L	3/23/2023 09:39	28.0	46.1	4.4	21.5	109.2	109.1	-0.2	-0.2	-3.2	
SW2L	3/28/2023 09:39	28.3	54.5	4.5	12.6	109.8	109.8	-0.2	-0.2	-3.3	Valve Adjustment:No Change
SW2U	3/9/2023 10:06	0.6	2.2	22.8	74.4	59.4	59.3	-0.2	-0.1	0.0	
SW2U	3/10/2023 12:03	30.0	55.7	1.7	12.6	105.1	105.2	0.0	0.0	-0.4	
SW2U	3/15/2023 14:59	17.2	35.5	9.3	38.0	108.9	108.9	-0.2	-0.2	-1.2	
SW2U	3/17/2023 15:41	32.0	63.3	0.2	4.5	107.8	107.8	-0.2	-0.2	-0.7	
SW2U	3/20/2023 13:49	10.6	25.1	14.2	50.1	105.6	105.6	-0.1	-0.1	-2.0	Valve Adjustment:No Change
SW2U	3/23/2023 09:42	13.2	31.3	11.5	44.1	106.3	106.3	-0.1	-0.1	-2.5	
SW2U	3/28/2023 09:41	13.5	45.4	11.1	30.1	108.5	108.5	-0.1	-0.1	-1.7	Valve Adjustment:No Change

Bristol Virginia Landfill - North South Clean-Outs Data - 01/01/2023 to 03/31/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	lnit Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	Comments
LC01	1/5/2023 13:49	0.9	1.1	19.7	78.3	69.8	69.4	-20.2	-20.1	
LC01	1/6/2023 07:51	50.2	48.0	1.8	0.0	52.9	52.9	-21.2	-21.2	
LC01	1/6/2023 09:42	38.8	43.5	17.8		59.1	57.6	-20.6	-20.6	
LC01	2/8/2023 09:57	54.9	44.4	0.7	0.0	57.8	57.7	-18.5	-18.5	Increased Flow/Vacuum
LC01	3/1/2023 10:51	56.7	42.0	0.0	1.3	60.7	60.6	-18.2	-18.2	Increased Flow/Vacuum
LC02	1/5/2023 13:52	45.5	47.1	1.1	6.3	57.8	57.7	-20.8	-20.8	
LC02	1/6/2023 07:53	47.3	47.7	0.1	4.9	53.3	53.3	-21.2	-21.3	
LC02	2/8/2023 09:58	47.2	48.8	4.0	0.0	55.5	56.2	-19.3	-19.4	Increased Flow/Vacuum
LC02	3/1/2023 10:53	34.3	40.5	0.0	25.2	60.5	60.5	-19.6	-19.6	No Change
LC03	1/6/2023 07:54	9.5	5.5	18.5	66.5	52.6	52.6	-22.6	-22.6	
LC03	2/8/2023 10:00	7.0	4.3	19.5	69.2	52.1	52.1	-21.9	-21.8	Decreased Flow/Vacuum
LC03	3/1/2023 10:56	8.8	4.4	18.4	68.4	73.3	73.2	-20.9	-20.8	Increased Flow/Vacuum
LC04	1/6/2023 07:56	14.4	7.1	15.3	63.2	53.1	53.5	-22.8	-22.7	
LC04	2/8/2023 10:02	16.4	9.0	14.5	60.1	52.8	52.9	-22.0	-21.9	No Change
LC04	3/1/2023 10:58	11.1	4.7	15.2	69.0	74.9	75.0	-20.9	-20.9	Increased Flow/Vacuum
LC05	1/6/2023 07:59	52.2	46.0	0.0	1.8	54.5	54.5	-21.3	-21.2	
LC05	2/8/2023 10:10	53.3	43.0	0.1	3.6	58.4	58.4	-19.8	-19.7	No Change
LC05	2/8/2023 10:10	53.3	43.0	0.1	3.6	58.4	58.4	-19.8	-19.7	No Change
LC05	3/1/2023 11:00	49.2	38.5	0.0	12.3	62.1	62.0	-18.7	-18.7	No Change
LC06	1/6/2023 08:01	27.3	21.3	11.7	39.7	53.7	53.7	-22.7	-22.6	
LC06	2/8/2023 10:08	34.0	20.4	10.0	35.6	53.4	53.5	-22.0	-21.9	No Change
LC06	3/1/2023 11:02	25.2	14.2	12.4	48.2	71.8	72.1	-20.9	-20.9	No Change
LC08	1/6/2023 07:57	47.8	46.9	0.2	5.1	54.3	54.3	-20.9	-20.9	
LC08	2/8/2023 10:04	50.9	46.0	0.3	2.8	55.8	55.9	-19.0	-19.0	Increased Flow/Vacuum
LC08	3/1/2023 11:05	39.0	39.8	0.0	21.2	59.5	59.5	-18.8	-18.7	No Change
LC09	1/6/2023 08:03	43.5	26.5	6.2	23.8	54.0	54.1	-22.7	-22.7	
LC09	2/8/2023 10:07	8.2	16.0	15.3	60.5	53.3	53.4	-21.8	-21.8	No Change
LC09	3/1/2023 11:08	41.5	28.0	5.7	24.8	75.9	76.2	-21.0	-20.9	No Change
LC10	1/6/2023 08:04	33.4	22.6	9.8	34.2	56.6	56.7	-22.6	-22.6	
LC10	2/8/2023 10:05	31.0	47.2	6.3	15.5	53.3	53.3	-21.9	-21.9	No Change
LC10	3/1/2023 11:10	36.9	23.5	7.6	32.0	78.8	79.1	-20.9	-20.9	Increased Flow/Vacuum
NC01	1/6/2023 08:21	0.2	0.3	22.1	77.4	38.2	38.1	-20.1	-20.1	
NC01	2/8/2023 10:15	0.7	2.1	20.3	76.9	67.2	67.2	-17.9	-17.9	

19

Bristol Virginia Landfill - North South Clean-Outs Data - 01/01/2023 to 03/31/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	Comments
NC01	3/1/2023 11:17	0.2	0.7	20.4	78.7	86.7	86.9	-17.8	-17.8	No Change
NC02	1/6/2023 08:23	3.4	3.4	19.6	73.6	37.3	37.2	-1.3	-1.3	
NC02	2/8/2023 10:16	3.0	3.1	20.4	73.5	67.6	67.7	-6.4	-6.4	
NC02	3/1/2023 11:21	0.2	0.4	20.5	78.9	87.7	87.9	-5.7	-5.6	No Change
NC03	1/6/2023 08:26	0.7	1.0	21.8	76.5	37.3	37.3	-20.1	-20.1	
NC03	2/8/2023 10:17	0.6	1.1	21.1	77.2	69.3	69.6	-18.1	-18.2	No Change
NC03	3/1/2023 11:23	0.1	0.3	20.6	79.0	89.1	89.2	-17.9	-17.9	No Change
NC04	1/6/2023 08:27	0.1	0.2	22.3	77.4	37.1	37.0	-18.8	-18.8	
NC04	2/8/2023 10:18	0.2	0.6	21.9	77.3	71.2	71.3	-15.5	-15.5	
NC04	3/1/2023 11:26	0.1	0.2	20.6	79.1	89.5	89.7	-15.7	-15.6	No Change
NC05	1/6/2023 08:28	0.1	0.2	22.4	77.3	37.1	37.1	-18.9	-18.9	
NC05	2/8/2023 10:19	0.2	0.7	21.8	77.3	71.9	72.0	-15.3	-15.2	No Change
NC05	3/1/2023 11:28	0.1	0.2	20.6	79.1	90.7	90.8	-15.6	-15.6	No Change
NC06	1/6/2023 08:29	0.1	0.2	22.4	77.3	37.2	37.2	-18.8	-18.8	
NC06	2/8/2023 10:20	0.2	0.8	21.8	77.2	72.8	72.9	-15.3	-15.2	No Change
NC06	3/1/2023 11:30	0.1	0.2	20.6	79.1	90.3	90.0	-15.6	-15.6	No Change
NC07	1/6/2023 08:31	6.0	5.7	16.9	71.4	37.4	37.4	-20.1	-20.1	
NC07	2/8/2023 10:21	0.2	0.7	21.8	77.3	74.5	74.5	-19.5	-19.5	No Change
NC07	3/1/2023 11:33	0.1	0.1	20.5	79.3	90.1	90.1	-18.0	-18.1	No Change
NC08	1/6/2023 08:33	7.3	6.6	13.4	72.7	37.6	37.6	-20.1	-20.1	
NC08	3/1/2023 11:35	0.1	0.1	20.6	79.2	87.3	87.4	-18.0	-18.1	No Change
NC09	1/6/2023 08:34	15.5	14.3	5.5	64.7	42.4	43.0	-20.1	-20.1	
NC09	3/1/2023 11:37	0.0	0.1	20.6	79.3	87.1	87.2	-18.2	-18.2	No Change
NC10	1/6/2023 08:36	0.2	0.3	22.3	77.2	48.3	48.5	-15.4	-15.4	
NC10	3/1/2023 11:39	0.0	0.1	20.7	79.2	87.3	87.4	-14.9	-14.9	No Change

19

Bristol Virginia Landfill - Blower/Flare Data - 03/01/2023 to 03/31/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Temp (F)	Static Pressure ("H2O)	Flow (scfm)	Comments
Blower Inlet	3/1/2023 08:30	30.8	32.0	5.0	32.2	64.4	-24.4	325	
Blower Inlet	3/2/2023 08:17	33.3	33.3	4.6	28.8	58.3	-24.5	336	
Blower Inlet	3/3/2023 08:39	36.2	35.6	3.3	24.9	58.9	-24.6	325	
Blower Inlet	3/6/2023 15:02	36.2	33.6	4.2	26.0	76.7	-24.5	315	
Blower Inlet	3/7/2023 08:20	35.9	34.0	4.1	26.0	59.0	-24.6	270	
Blower Inlet	3/9/2023 08:26	30.0	30.0	6.6	33.4	59.8	-24.5	335	
Blower Inlet	3/9/2023 15:21	31.9	29.8	6.5	31.8	65.0	-24.4	762	
Blower Inlet	3/9/2023 15:23	31.6	30.1	6.4	31.9	64.0	-24.4	779	
Blower Inlet	3/10/2023 08:23	36.7	34.0	4.0	25.3	56.0	-24.6	625	
Blower Inlet	3/10/2023 12:18	34.2	33.9	4.5	27.4	68.2	-24.6	325	
Blower Inlet	3/13/2023 07:41	33.5	33.5	4.7	28.3	66.7	-24.5	695	
Blower Inlet	3/13/2023 12:02	34.5	35.0	4.2	26.3	68.4	-24.6	325	
Blower Inlet	3/14/2023 07:36	30.0	35.7	4.3	30.0	31.1	-24.6	325	
Blower Inlet	3/15/2023 08:18	32.4	33.6	4.3	29.7	42.6	-24.4	318	
Blower Inlet	3/16/2023 08:21	6.0	6.0	19.5	68.5	41.3	-24.5	403	
Blower Inlet	3/16/2023 08:31	18.5	20.1	12.3	49.1	51.6	-24.5	400	
Blower Inlet	3/16/2023 08:35	26.1	28.2	8.2	37.5	56.4	-24.6	400	
Blower Inlet	3/16/2023 12:57	30.9	30.0	6.7	32.4	72.7	-24.5	818	
Blower Inlet	3/16/2023 14:42	31.1	30.3	6.6	32.0	90.1	-24.4	820	
Blower Inlet	3/17/2023 10:38	30.4	31.3	6.2	32.1	61.5	-24.9	800	
Blower Inlet	3/17/2023 13:05	36.1	34.7	4.1	25.1	67.0	-24.7	625	
Blower Inlet	3/17/2023 14:45	35.7	34.7	3.9	25.7	68.3	-24.7	680	
Blower Inlet	3/17/2023 15:49	33.0	39.6	4.0	23.5	55.4	-24.6	795	
Blower Inlet	3/20/2023 10:06	26.6	29.3	7.1	37.0	42.6	-24.4	608	
Blower Inlet	3/20/2023 13:58	28.2	33.4	6.3	32.0	55.5	-24.4	670	
Blower Inlet	3/20/2023 15:28	29.6	33.0	5.9	31.4	55.5	-24.5	715	
Blower Inlet	3/21/2023 09:21	28.1	34.7	6.4	30.9	53.2	-24.6	770	
Blower Inlet	3/23/2023 08:38	30.3	32.8	5.4	31.4	53.3	-24.6	328	
Blower Inlet	3/23/2023 12:42	26.1	29.1	7.5	37.3	54.0	-24.6	760	
Blower Inlet	3/24/2023 09:28	31.0	31.3	5.5	32.2	60.1	-24.7	700	
Blower Inlet	3/27/2023 09:00	30.1	26.7	7.1	36.1	59.8	-24.6	220	

Bristol Virginia Landfill - Blower/Flare Data - 03/01/2023 to 03/31/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Temp (F)	Static Pressure ("H2O)	Flow (scfm)	Comments
Blower Inlet	3/27/2023 09:13	29.3	27.6	7.1	36.0	59.8	-24.6	230	
Blower Inlet	3/27/2023 15:05	30.0	29.4	6.4	34.2	70.0	-24.9	700	
Blower Inlet	3/28/2023 08:51	28.4	37.5	6.9	27.2	64.9	-24.7	700	
Blower Inlet	3/28/2023 14:13	29.5	39.3	6.1	25.1	69.0	-25.1	740	
Blower Inlet	3/29/2023 09:29	27.6	35.8	6.4	30.2	63.0	-24.5	330	Valve Adjustment:No Change
Blower Inlet	3/29/2023 14:41	30.1	32.1	4.8	33.0	71.5	-24.9	860	
Blower Inlet	3/30/2023 08:49	26.3	28.9	6.9	37.9	58.0	-24.6	420	
Blower Inlet	3/30/2023 14:49	28.0	30.9	6.0	35.2	75.0	-24.6	850	
Blower Inlet	3/31/2023 09:02	25.4	28.9	7.0	38.7	58.0	-24.7	440	
Blower Inlet	3/31/2023 14:42	29.4	29.6	5.9	35.1	61.8	-25.6	340	

Bristol Virginia Landfill - Calibration Record Data - 01/01/2023 to 03/31/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Comments
BRTL0000	1/5/2023 09:17	49.6	35.2	0.0	15.2	
BRTL0000	1/5/2023 11:44	0.0	0.1	20.9	79.0	
BRTL0000	1/5/2023 11:46	50.0	34.9	0.0	15.1	
BRTL0000	1/5/2023 14:16	49.9	35.0	0.0	15.1	
BRTL0000	1/6/2023 07:03	0.0	0.2	20.9	78.9	
BRTL0000	1/6/2023 07:06	50.0	35.0	0.0	15.0	
BRTL0000	1/12/2023 11:55	0.0	0.2	20.9	78.9	
BRTL0000	1/12/2023 11:57	50.0	35.0	0.0	15.0	
BRTL0000	1/18/2023 11:30	0.2	0.1	20.9	78.8	
BRTL0000	1/18/2023 11:32	49.9	34.9	0.0	15.2	
BRTL0000	1/25/2023 11:17	0.1	0.1	20.9	78.9	
BRTL0000	1/25/2023 11:18	49.9	35.0	0.0	15.1	
BRTL0000	2/1/2023 10:51	50.0	35.1	0.0	14.9	
BRTL0000	2/1/2023 11:55	0.2	0.1	20.9	78.8	
BRTL0000	2/1/2023 11:56	49.9	35.0	0.0	15.1	
BRTL0000	2/3/2023 08:57	50.0	35.2	0.0	14.8	
BRTL0000	2/3/2023 09:02	0.0	0.2	21.0	78.8	
BRTL0000	2/6/2023 10:58	0.0	0.1	20.9	79.0	
BRTL0000	2/6/2023 11:01	50.0	34.9	0.0	15.1	
BRTL0000	2/7/2023 09:03	0.0	0.1	20.9	79.0	
BRTL0000	2/7/2023 09:05	50.0	34.9	0.0	15.1	
BRTL0000	2/8/2023 07:50	0.1	0.2	20.9	78.8	
BRTL0000	2/8/2023 07:54	50.0	35.0	0.0	15.0	
BRTL0000	2/14/2023 09:20	0.0	0.1	20.9	79.0	
BRTL0000	2/14/2023 09:24	50.0	34.9	0.0	15.1	
BRTL0000	2/15/2023 09:20	0.0	0.1	20.9	79.0	
BRTL0000	2/15/2023 09:22	50.0	35.0	0.0	15.0	
BRTL0000	2/16/2023 08:21	0.0	0.2	20.9	78.9	
BRTL0000	2/16/2023 08:24	50.0	35.0	0.0	15.0	
BRTL0000	2/17/2023 08:30	0.0	0.2	20.9	78.9	
BRTL0000	2/17/2023 08:32	49.9	35.0	0.0	15.1	

Bristol Virginia Landfill - Calibration Record Data - 01/01/2023 to 03/31/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Comments
BRTL0000	2/20/2023 13:24	0.0	0.2	20.9	78.9	
BRTL0000	2/20/2023 13:27	50.0	35.0	0.0	15.0	
BRTL0000	2/21/2023 08:11	0.0	0.2	20.9	78.9	
BRTL0000	2/21/2023 08:13	50.0	35.0	0.0	15.0	
BRTL0000	2/22/2023 08:15	0.0	0.2	20.9	78.9	
BRTL0000	2/22/2023 08:18	50.0	35.1	0.0	14.9	
BRTL0000	2/22/2023 14:26	0.0	0.0	20.9	79.1	
BRTL0000	2/22/2023 14:27	50.0	35.0	0.0	15.0	
BRTL0000	2/23/2023 08:42	0.0	0.1	20.9	79.0	
BRTL0000	2/23/2023 08:47	50.0	34.9	0.0	15.1	
BRTL0000	2/24/2023 07:47	0.0	0.1	20.9	79.0	
BRTL0000	2/24/2023 07:58	50.0	35.0	0.0	15.0	
BRTL0000	2/27/2023 14:02	0.1	0.2	20.9	78.8	
BRTL0000	2/27/2023 14:04	50.0	34.9	0.0	15.1	
BRTL0000	2/28/2023 07:45	0.0	0.2	20.9	78.9	
BRTL0000	2/28/2023 07:47	50.0	35.0	0.0	15.0	
BRTL0000	3/2/2023 08:09	0.0	0.1	20.9	79.0	
BRTL0000	3/2/2023 08:13	49.8	34.8	0.0	15.4	
BRTL0000	3/3/2023 08:18	0.0	0.2	20.9	78.9	
BRTL0000	3/3/2023 08:21	49.9	35.3	0.0	14.8	
BRTL0000	3/6/2023 07:40	49.8	35.2	0.0	15.0	
BRTL0000	3/7/2023 08:05	0.0	0.2	20.9	78.9	
BRTL0000	3/7/2023 08:11	50.0	35.0	0.0	15.0	
BRTL0000	3/7/2023 08:13	0.0	0.2	11.0	88.8	
BRTL0000	3/9/2023 08:11	0.0	0.3	20.9	78.8	
BRTL0000	3/9/2023 08:14	49.9	35.0	0.0	15.1	
BRTL0000	3/9/2023 08:17	0.0	0.2	11.0	88.8	
BRTL0000	3/10/2023 08:04	0.0	0.1	20.9	79.0	
BRTL0000	3/10/2023 08:06	50.0	35.1	0.0	14.9	
BRTL0000	3/13/2023 07:23	0.0	0.1	21.1	78.8	
BRTL0000	3/13/2023 07:27	50.2	35.1	0.0	14.7	

Bristol Virginia Landfill - Calibration Record Data - 01/01/2023 to 03/31/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Comments
BRTL0000	3/14/2023 07:31	0.0	0.2	20.9	78.9	
BRTL0000	3/14/2023 07:33	50.0	34.9	0.0	15.1	
BRTL0000	3/15/2023 08:07	0.0	0.2	20.9	78.9	
BRTL0000	3/15/2023 08:10	50.1	35.0	0.0	14.9	
BRTL0000	3/16/2023 08:06	0.0	0.1	20.9	79.0	
BRTL0000	3/16/2023 08:09	50.0	35.0	0.0	15.0	
BRTL0000	3/16/2023 08:12	0.0	0.1	11.0	88.9	
BRTL0000	3/16/2023 12:43	50.1	34.9	0.0	15.0	
BRTL0000	3/23/2023 09:01	0.0	0.1	20.9	79.0	
BRTL0000	3/23/2023 09:04	0.0	0.0	11.0	89.0	
BRTL0000	3/23/2023 09:06	49.9	35.0	0.0	15.1	

Attachment 2

Exceedance Detail Report

Exceedance Detail Report Date Range: 03/01/2023 to 03/31/2023

Report Date: 04/06/2023 Site Name: Bristol Virginia Landfill

Point ID	Point Name	Record Date		Point Status	s Effective Date	% by V	olume	Temperat	ture (°F)	Static I	Pressure			Total Days Open	Corrective Action Comments			
			Days Between Readings			CH4	02	Initial Temp	Adjusted Temp	Initial Static Pressure (H2O)	Adjusted Static Pressure (H2O)	Operation Comments	CO Req			Corrective Action Due Dates		
RTLGW29				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	29	3/15/2023 9:47:31 AM	0	1		57.2	0	52.7	52.6	0.18	0.20	Sample due to	N		good reading on 03/16/2023	3/19/2023	3/29/2023	7/12/2023
	29	3/16/2023 1:16:27 PM	1		_	58.9	0.2	66.9	66.4	-0.22	-0.28	Comments:,,,,,,	Ν		2			
RTLGW37				Active	-			>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	37	3/30/2022 12:20:33 PM	0			13.8	6.4	150	150	-1.24	-1.75	check,,,,,,	Ν			4/3/2022	4/13/2022	7/27/202
	37	4/6/2022 12:14:16 PM	7	,		14.2	7.3	149	149	-1.98	-1.95	Change,,,,,,	Ν					
	37	4/13/2022 1:45:11 PM	7	,		16.5	7	159	159	-1.70	-1.70	Comments:,,,,,,	Ν					
	37	4/13/2022 1:47:58 PM	0	1		16	7	159	159	-2.10	-2.14	Comments:,,,,,,	Ν					
	37	4/21/2022 7:24:55 AM	8			13.1	8.3	159	159	-2.35	-2.27	Comments:,,,,,,	Ν					
	37	5/4/2022 12:21:07 PM	13	1		13	7.3	149	149	-2.57	-2.42	Open,No Change,,,,,,	Ν					
	37	5/16/2022 10:51:43 AM	12			11.6	9.8	150	150	-2.21	-2.39	Comments:Adjustment,,,,,,	Ν					
	37	5/16/2022 2:09:00 PM	0	1		14.9	9.8	159	159			Comments:,,,,,,	Ν					
	37	5/24/2022 10:23:52 AM	8			17	7.8	150	150			Comments:,,,,,,	Ν					
	37	5/24/2022 10:26:15 AM		1		17.3	7.9	150	150			Comments:,,,,,,	Ν					
	37	6/1/2022 12:43:16 PM	8			22		150	150			Comments:,,,,,,	Ν					
	37	6/8/2022 11:34:45 AM	7	,		6.5	14.8	155.8	155.9			Comments:,,,,,,	N					
	37	6/16/2022 1:35:06 PM	8			21.6		153.9	153.8			Comments:,,,,,,	N					
	37	7/6/2022 12:59:43 PM	20			19.2		154.2	153.8			Comments:,,,,,,	N					
	37	7/11/2022 1:31:12 PM	5			19.8	6.7	155.5	155.5			Comments:,,,,,	N					
	37	7/11/2022 1:36:48 PM	0			19.6	6.5		155.8			Comments:,,,,,	N					
	37	8/3/2022 12:31:49 PM	23			20	7.3	155.5	155.5			Comments:,,,,,	N					
	37	8/3/2022 12:35:39 PM	23			20.2	7.3	155.4	155.4			Comments:,,,,,,	N					
	37		0										N					
	37	8/3/2022 2:29:58 PM				19.5		152.2	152.9 152.8			Comments:,,,,,,	N N					
		8/24/2022 11:44:07 AM	21			19.2		152.7				Open,,,,,,						
	37	9/1/2022 11:37:46 AM	8			20.8	7.6	155	154.7			Comments:,,,,,,	N					
	37	9/1/2022 12:28:35 PM	0			18.9	7.9	152.7	152.7			Comments:,,,,,,	N					
	37	AM	41			20.5	7.6	152	151.5			Comments:,,,,,,	N					
	37	10/12/2022 2:36:59 PM	0			28.3		151	151			Comments:,,,,,,	N					
	37	AM	7			20			149.1			Comments:,,,,,,	N					
	37	AM	22			18.2			147.7			Comments:Fully Open,,,,,,,	Ν					
	37	AM	7			18.4	7.3		147.3			Comments:Fully Open,,,,,,,	N					
	37	12/8/2022 12:32:15 PM	21			18.7	6.3	151.2	150.8			Comments:,,,,,,	Ν					
	37	12/9/2022 9:19:24 AM	1			19		148.5	148.5			Comments:High Temp,,,,,,	N					
	37	12/14/2022 8:37:04 AM	5			17.4	6.2	148.6	148.6	-1.56		Comments:,,,,,,	Ν					
	37	AM	6			14.7	6.6	148.6	148.6			Comments:Fully Open,,,,,,	Ν					
	37	1/5/2023 1:34:21 PM	16	i		15.5	6.3	151.9	151.8		-2.23	Comments:,,,,,,	Ν					
	37	1/6/2023 7:24:18 AM	1			16.1	6.7	149.2	149.2	-1.97	-1.95	Comments:,,,,,,	Ν					
	37	1/12/2023 12:18:14 PM	6			15	6.2	149.7	149.7	-8.51		Comments:High Temp,,,,,,	Ν					
	37	1/18/2023 12:33:18 PM	6	i		14	6.8	149	149	-1.84	-1.82	Comments:High Temp,,,,,,	Ν					
	37	1/25/2023 11:53:12 AM	7	,		14.2	6.1	149.7	149.8	-1.82	-1.79	Comments:High Temp,,,,,,	Ν					
	37	2/1/2023 1:33:56 PM	7	,		18.2	6.3	150.9	150.9	-1.89	-1.86	Comments:,,,,,,	Ν					
	37	2/3/2023 10:18:21 AM	2			14.9	7.8	148.6	149	-1.75	-1.64	Comments:High Temp,,,,,,	Ν					
	37	2/7/2023 2:26:19 PM	4			17	6.6	150.4	150.5	-6.15	-6.47	Change,,,,,,	Ν					
	37	2/8/2023 9:35:19 AM	1			16.7	6.3	149.1	149.1	-1.49	-1.50	Change,High Temp,,,,,	Ν					
	37	2/14/2023 12:54:47 PM	6	i		16.2	5.9	149.6	149.6	-1.50	-1.49	Comments:High O2,,,,,,	Ν					

Exceedance Detail Report Date Range: 03/01/2023 to 03/31/2023

Report Date: 04/06/2023 Site Name: Bristol Virginia Landfill

	Point Name	Record Date	Days Between Readings	Point Status	Effective Date	% by Volume		Temperature (°F)		Static Pressure								
Point ID						CH4	02	Initial Temp	Adjusted Temp	Initial Static Pressure (H2O)	Adjusted Static Pressure (H2O)	Operation Comments	CO Req	Total Days Open	Corrective Action Comments	Corre	ctive Action Due	e Dates
	37	2/15/2023 10:32:47 AM	1			17.1	6.5	148.6	148.6	-1.42		Comments:High O2,,,,,,,	Ν					
	37	2/22/2023 2:36:29 PM	7			17.5	6.1	149.1	149.5	-1.51	-1.53	Change,,,,,	Ν					
	37	2/23/2023 9:25:10 AM	1			16.1	6	149	148.9	-1.41	-1.42	Comments:,,,,,,	Ν					
	37	3/1/2023 1:44:44 PM	6			16.4	5.6	149.6	149.7	-1.33	-1.33	Change,,,,,,	Ν					
	37	3/2/2023 8:46:55 AM	1			16.2	6.2	148.6	148.6	-1.48	-1.45	Change,,,,,,	Ν					
	37	3/7/2023 11:27:10 AM	5			17.1	6.5	149.1	149.1	-1.50	-1.41	55	Ν					
	37	3/9/2023 11:24:19 AM	2			19.4	6.4	149	149	-1.28	-1.27	Comments:High O2,,,,,,	Ν					
	37	3/15/2023 9:21:07 AM	6			16.1	6.2	147.7	147.7	-1.25	-1.26	Flow/Vacuum,,,,,,	Ν					
	37	3/16/2023 9:53:43 AM	1			13.1	9.9	148.6	148.6	-1.34		Comments:,,,,,,	Ν					
	37	3/23/2023 10:12:30 AM	7			15.6	5.8	149.3	149.3	-1.16	-1.16	Comments:High Temp,,,,,,	Ν					
	37	3/23/2023 1:01:44 PM	0			16.36	5.54	144.9	144.4	-1.11	-1.11		Ν					
	37	3/28/2023 11:42:28 AM	5			15.16	6.12	151	151	-1.12	-1.12	,	Ν					
	37	3/29/2023 11:52:12 AM	1			15.08	6.37	150.6	150.6	-3.10	-3.11	Change	Ν	367				
RTLGW40				Active	9/7/2017			>= 210	>= 210	>= 0	>= 0				NSPS AAAA HOV 210	5 Day	15 Day	120 Da
	40	3/23/2023 10:26:53 AM	0			4.7	0	74.9	74.8	6.71	6.75		Ν		good reading on 03/23/2023	3/27/2023	4/6/2023	7/20/202
	40	3/23/2023 1:21:43 PM	0		_	4.35	0.88	71.7	71.9	-6.98	-6.06		Ν	1				
RTLGW51				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Da
	51	3/23/2023 10:48:48 AM	0			1.28	17.07	169.2	177.8	-3.83	-6.41	Valve Comment:0229820	N		good reading on 04/05/2023	3/27/2023	4/6/2023	7/20/20
	51	3/23/2023 1:13:23 PM	0			13.7	5.04	166.4	167.3	-5.51	-4.58	Valve Comment:0243375	Ν		good reading on 04/05/2023			
	51	3/29/2023 12:25:40 PM	6			5.67	1.54	169.8	169.2	-1.64	-1.49	Valve Comment:0281076	Ν	9	good reading on 04/05/2023			
RTLGW53				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Da
										F = 0	~= 0							
	53	3/1/2023 3:03:29 PM	0			29.9	0.9	141.1	141.2			Change,,,,,,	N	1			i o Duy	
RTLGW57	53	3/1/2023 3:03:29 PM	0	Active		29.9	0.9					Change,,,,,,	N	1	NESHAP AAAA HOV 145	5 Day	15 Day	120 Da
RTLGW57	53	3/1/2023 3:03:29 PM 1/5/2023 2:43:59 PM	0	Active		29.9	0.9	141.1	141.2	-10.63 >= 0	-10.62 >= 0	Change,,,,,,	N	1	NESHAP AAAA HOV 145			120 Da 5/4/202
TLGW57				Active				141.1 >= 145	141.2 >= 145	-10.63 >= 0 -20.55	-10.62 >= 0 -20.54			1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57	1/5/2023 2:43:59 PM	0	Active		41.4	9.4	141.1 >= 145 143.4	141.2 >= 145 145.6	-10.63	-10.62 >= 0 -20.54 -21.04	Comments:,,,,,,	N	1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM	0 1 6	Active		41.4 48.1	9.4 0.1	141.1 >= 145 143.4 148.1 176.1	141.2 >= 145 145.6 148.4 176.9	-10.63	-10.62 >= 0 -20.54 -21.04 -8.09	Comments:,,,,,, Comments:,,,,,, Comments:High Temp,,,,,,	N N N	1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM	0 1 6 6	Active		41.4 48.1 38	9.4 0.1 1.4	141.1 >= 145 143.4 148.1	141.2 >= 145 145.6 148.4	-10.63 >= 0 -20.55 -21.06 -12.83 0.04	-10.62 >= 0 -20.54 -21.04 -8.09 0.04	Comments:,,,,,, Comments:,,,,,,	N N N	1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57 57 57	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM 1/18/2023 11:59:14 AM	0 1 6 6 7	Active		41.4 48.1 38 6.4	9.4 0.1 1.4 16.9	141.1 >= 145 143.4 148.1 176.1 172.4	141.2 >= 145 145.6 148.4 176.9 172.4	-10.63 >= 0 -20.55 -21.06 -12.83 0.04 -20.15	-10.62 >= 0 -20.54 -21.04 -8.09 0.04 -20.16	Comments:,,,,,, Comments:,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Sample,,,,,,	N N N	1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57 57 57 57	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM 1/18/2023 11:59:14 AM 1/25/2023 12:05:49 PM	0 1 6 6 7	Active	• • • • • • • • • • • • • • • • • • •	41.4 48.1 38 6.4 31.7	9.4 0.1 1.4 16.9 0.6	141.1 >= 145 143.4 148.1 176.1 172.4 170	141.2 >= 145 145.6 148.4 176.9 172.4 170.3	-10.63 >= 0 -20.55 -21.06 -12.83 0.04 -20.15 -20.15	-10.62 >= 0 -20.54 -21.04 -8.09 0.04 -20.16 -20.16	Comments:,,,,,, Comments:,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,,	N N N N	1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57 57 57 57 57	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM 1/18/2023 11:59:14 AM 1/25/2023 12:05:49 PM 1/25/2023 12:05:49 PM	0 1 6 6 7 0	Active		41.4 48.1 38 6.4 31.7 31.7	9.4 0.1 1.4 16.9 0.6 0.6	141.1 >= 145 143.4 148.1 176.1 172.4 170 170	141.2 >= 145 145.6 148.4 176.9 172.4 170.3 170.3	-10.63 >= 0 -20.55 -21.06 -12.83 0.04 -20.15 -20.15 -21.19	-10.62 >= 0 -20.54 -21.04 -8.09 0.04 -20.16 -20.16 -20.85	Comments:,,,,,, Comments:,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Sample,,,,,,	N N N N N	1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57 57 57 57 57 57	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM 1/18/2023 11:59:14 AM 1/25/2023 12:05:49 PM 1/25/2023 12:05:49 PM 2/1/2023 11:27:35 AM	0 1 6 7 0 7	Active		41.4 48.1 38 6.4 31.7 31.7 43.8	9.4 0.1 1.4 16.9 0.6 0.6 0.5	141.1 >= 145 143.4 148.1 176.1 172.4 170 170 155.3	141.2 >= 145 145.6 148.4 176.9 172.4 170.3 170.3 155.3	-10.63 >= 0 -20.55 -21.06 -12.83 0.04 -20.15 -20.15 -21.19 -20.28	-10.62 >= 0 -20.54 -21.04 -8.09 0.04 -20.16 -20.16 -20.85 -20.29	Comments:,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Sample,,,,,, Sample,,,,,, Comments:,,,,,	N N N N N N N N	1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57 57 57 57 57 57 57	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM 1/18/2023 11:59:14 AM 1/25/2023 12:05:49 PM 1/25/2023 12:05:49 PM 2/1/2023 11:27:35 AM 2/3/2023 10:41:30 AM	0 1 6 7 0 7 2	Active	•	41.4 48.1 38 6.4 31.7 31.7 43.8 40.2	9.4 0.1 1.4 16.9 0.6 0.6 0.5 0.5	141.1 >= 145 143.4 148.1 176.1 172.4 170 170 155.3 155.3	141.2 >= 145 145.6 148.4 176.9 172.4 170.3 170.3 175.3 155.3 150.9	-10.63 >= 0 -20.55 -21.06 -12.83 0.04 -20.15 -20.15 -20.15 -21.19 -20.28 -21.00	-10.62 >= 0 -20.54 -21.04 -8.09 0.04 -20.16 -20.16 -20.85 -20.29 -20.99	Comments:,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Sample,,,,,, Sample,,,,,, Comments:,,,,,, Comments:High O2,,,,,,	N N N N N N N N N N N N N N N N N N N	1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57 57 57 57 57 57 57 57 57	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM 1/18/2023 11:59:14 AM 1/25/2023 12:05:49 PM 1/25/2023 12:05:49 PM 2/1/2023 11:27:35 AM 2/3/2023 10:41:30 AM 2/7/2023 10:28:03 AM	0 1 6 7 0 7 7 2 4 1	Active	• •	41.4 48.1 38 6.4 31.7 31.7 43.8 40.2 41.5	9.4 0.1 1.4 16.9 0.6 0.6 0.5 0.1 0.3	141.1 >= 145 143.4 148.1 176.1 172.4 170 170 155.3 150.8 153.2	141.2 >= 145 145.6 148.4 176.9 172.4 170.3 170.3 170.3 155.3 150.9 153	-10.63 >= 0 -20.55 -21.06 -12.83 0.04 -20.15 -20.15 -21.19 -20.28 -21.00 -20.81	-10.62 >= 0 -20.54 -21.04 -8.09 0.04 -20.16 -20.16 -20.85 -20.29 -20.99 -20.78	Comments:,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Sample,,,,,, Sample,,,,,, Comments:,,,,, Flow/Vacuum,High	N N N N N N N N N N N N N N N N N N N	1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57 57 57 57 57 57 57 57 57 57	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM 1/18/2023 11:59:14 AM 1/25/2023 12:05:49 PM 1/25/2023 12:05:49 PM 2/1/2023 11:27:35 AM 2/3/2023 10:41:30 AM 2/7/2023 10:28:03 AM 2/8/2023 9:43:21 AM	0 1 6 7 0 7 2 4 1 1	Active		41.4 48.1 38 6.4 31.7 31.7 43.8 40.2 41.5 42	9.4 0.1 1.4 16.9 0.6 0.6 0.5 0.1 0.3 0.3	141.1 >= 145 143.4 148.1 176.1 172.4 170 170 155.3 150.8 153.2 152.5	141.2 >= 145 145.6 148.4 176.9 172.4 170.3 170.3 155.3 150.9 153 152.4	-10.63 >= 0 -20.55 -21.06 -12.83 0.04 -20.15 -20.15 -21.19 -20.28 -21.00 -20.81 -20.74	-10.62 >= 0 -20.54 -21.04 -8.09 0.04 -20.16 -20.16 -20.85 -20.29 -20.99 -20.78 -20.78	Comments:,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Sample,,,,, Sample,,,,,, Comments:High O2,,,,,, Flow/Vacuum,High Comments:High Temp,,,,,		1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57 57 57 57 57 57 57 57 57 57 57	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM 1/18/2023 11:59:14 AM 1/25/2023 12:05:49 PM 1/25/2023 12:05:49 PM 2/1/2023 11:27:35 AM 2/3/2023 10:41:30 AM 2/7/2023 10:28:03 AM 2/8/2023 9:43:21 AM 2/14/2023 11:27:21 AM	0 1 6 7 0 7 2 4 1 1 6	Active		41.4 48.1 38 6.4 31.7 43.8 40.2 41.5 42 34.4	9.4 0.1 1.4 16.9 0.6 0.5 0.1 0.3 0.3 0.3 0.3	141.1 >= 145 143.4 148.1 176.1 172.4 170 170 155.3 150.8 153.2 152.5 147.4	141.2 >= 145 145.6 148.4 176.9 172.4 170.3 170.3 155.3 150.9 153 152.4 147.7	-10.63 >= 0 -20.55 -21.06 -12.83 0.04 -20.15 -20.15 -21.19 -20.28 -21.00 -20.81 -20.74 -20.74 -20.44	-10.62 >= 0 -20.54 -21.04 -8.09 0.04 -20.16 -20.16 -20.85 -20.29 -20.99 -20.78 -20.78 -20.78 -20.78	Comments:, Comments:High Temp,, Comments:High Temp,, Comments:High Temp,, Sample,, Sample,, Comments:High O2,, Flow/Vacuum,High Comments:High Temp,, Comments:High Temp,,	N N N N N N N N N N N N N N N N N N N	1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57 57 57 57 57 57 57 57 57 57 57 5	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM 1/18/2023 11:59:14 AM 1/25/2023 12:05:49 PM 2/1/2023 11:27:35 AM 2/3/2023 10:41:30 AM 2/7/2023 10:28:03 AM 2/8/2023 9:43:21 AM 2/14/2023 11:27:21 AM 2/15/2023 12:23:29 PM	0 1 6 7 0 7 2 4 1 1 6	Active		41.4 48.1 38 6.4 31.7 31.7 43.8 40.2 41.5 42 34.4 40.1	9.4 0.1 1.4 16.9 0.6 0.5 0.1 0.3 0.3 0.3 0.6 0.5	141.1 >= 145 143.4 148.1 176.1 172.4 170 170 155.3 150.8 153.2 152.5 147.4 149.6	141.2 >= 145 145.6 148.4 176.9 172.4 170.3 170.3 155.3 150.9 153 152.4 147.7 149.7	-10.63 >= 0 -20.55 -21.06 -12.83 0.04 -20.15 -20.15 -20.15 -21.19 -20.28 -21.00 -20.81 -20.74 -20.74 -20.44 -18.57	-10.62 >= 0 -20.54 -21.04 -8.09 0.04 -20.16 -20.85 -20.29 -20.99 -20.78 -20.78 -20.78 -20.78 -20.78 -20.78 -20.46 -18.65	Comments:,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Sample,,,,,, Sample,,,,,, Comments:High O2,,,,, Flow/Vacuum,High Comments:High Temp,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,,		1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57 57 57 57 57 57 57 57 57 57 57 5	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM 1/18/2023 11:59:14 AM 1/25/2023 12:05:49 PM 2/1/2023 12:05:49 PM 2/1/2023 10:25:49 PM 2/3/2023 10:28:03 AM 2/8/2023 9:43:21 AM 2/14/2023 11:27:21 AM 2/15/2023 12:23:29 PM 2/12/2023 10:19:10 AM	0 1 6 7 0 7 2 4 1 1 6 1 7	Active	• • • • • • • • • • • • • • • • • • •	41.4 48.1 38 6.4 31.7 31.7 43.8 40.2 41.5 42 34.4 40.1 40.3	9.4 0.1 1.4 16.9 0.6 0.5 0.1 0.3 0.3 0.3 0.3 0.6 0.5	141.1 >= 145 143.4 148.1 176.1 172.4 170 170 155.3 150.8 153.2 152.5 147.4 149.6 149.7 144.3	141.2 >= 145 145.6 148.4 176.9 172.4 170.3 170.3 155.3 150.9 153 152.4 149.7 149.7	-10.63 >= 0 -20.55 -21.06 -12.83 0.04 -20.15 -20.15 -21.19 -20.28 -21.00 -20.81 -20.74 -20.74 -20.44 -18.57 -17.61	-10.62 >= 0 -20.54 -21.04 -8.09 0.04 -20.16 -20.85 -20.29 -20.99 -20.78 -20.78 -20.78 -20.78 -20.78 -20.78 -20.46 -18.65 -16.66	Comments:,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Sample,,,,, Sample,,,,, Comments:High Temp,,,,, Flow/Vacuum,High Comments:High Temp,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,,		1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57 57 57 57 57 57 57 57 57 57 57 5	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM 1/18/2023 11:59:14 AM 1/25/2023 12:05:49 PM 1/25/2023 12:05:49 PM 2/1/2023 11:27:35 AM 2/3/2023 10:41:30 AM 2/7/2023 10:28:03 AM 2/8/2023 9:43:21 AM 2/14/2023 11:27:21 AM 2/15/2023 12:23:29 PM 2/22/2023 10:19:10 AM 2/23/2023 9:38:29 AM	0 1 6 7 0 7 2 4 1 6 1 7 7	Active		41.4 48.1 38 6.4 31.7 31.7 43.8 40.2 41.5 42 34.4 40.1 40.3 38.9	9.4 0.1 1.4 16.9 0.6 0.5 0.1 0.3 0.3 0.3 0.3 0.5 0 0 0.5 0 0 0.4	141.1 >= 145 143.4 148.1 176.1 172.4 170 170 155.3 150.8 153.2 152.5 147.4 149.6 149.7 144.3	141.2 >= 145 145.6 148.4 176.9 172.4 170.3 170.3 155.3 150.9 153 152.4 147.7 149.7 149.7 144.5	-10.63 >= 0 -20.55 -21.06 -12.83 0.04 -20.15 -20.15 -21.19 -20.28 -21.00 -20.81 -20.81 -20.74 -20.44 -18.57 -17.61 -18.05	-10.62 >= 0 -20.54 -21.04 -8.09 0.04 -20.16 -20.16 -20.85 -20.29 -20.99 -20.99 -20.78 -20.78 -20.78 -20.78 -20.46 -18.65 -16.66 -0.17	Comments:,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Sample,,,,,, Sample,,,,,, Comments:High O2,,,,,, Flow/Vacuum,High Comments:High Temp,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Change,,,,,,		1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57 57 57 57 57 57 57 57 57 57 57 5	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM 1/18/2023 11:59:14 AM 1/25/2023 12:05:49 PM 2/1/2023 12:05:49 PM 2/1/2023 11:27:35 AM 2/3/2023 10:41:30 AM 2/7/2023 10:28:03 AM 2/8/2023 9:43:21 AM 2/14/2023 11:27:21 AM 2/14/2023 11:27:21 AM 2/15/2023 12:23:29 PM 2/22/2023 10:19:10 AM 2/23/2023 9:38:29 AM 3/1/2023 3:10:13 PM	0 1 6 7 0 7 2 4 1 6 1 7 7 1 6 8	Active	· · · · · · · · · · · · · · · · · · ·	41.4 48.1 38 6.4 31.7 43.8 40.2 41.5 42 34.4 40.1 40.3 38.9 38.5	9.4 0.1 1.4 16.9 0.6 0.5 0.1 0.3 0.3 0.3 0.6 0.5 0 0.4 0.4 0	141.1 >= 145 143.4 148.1 176.1 172.4 170 170 155.3 150.8 153.2 152.5 147.4 149.6 149.7 144.3 145.3	141.2 >= 145 145.6 148.4 176.9 172.4 170.3 170.3 155.3 150.9 153 152.4 147.7 149.7 149.7 144.5 144.5	-10.63 >= 0 -20.55 -21.06 -12.83 0.04 -20.15 -20.15 -21.19 -20.28 -21.00 -20.81 -20.74 -20.74 -20.44 -18.57 -17.61 -18.05 -17.15	-10.62 >= 0 -20.54 -21.04 -8.09 0.04 -20.16 -20.16 -20.85 -20.29 -20.99 -20.78 -20.78 -20.78 -20.78 -20.78 -20.46 -18.65 -16.66 -0.17 -17.14	Comments:,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Sample,,,,,, Sample,,,,,, Comments:High Temp,,,,, Comments:High O2,,,,,, Flow/Vacuum,High Comments:High Temp,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Change,,,,,, Change,,,,,,,		1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57 57 57 57 57 57 57 57 57 57 57 5	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM 1/18/2023 11:59:14 AM 1/25/2023 12:05:49 PM 2/1/2023 11:27:35 AM 2/3/2023 10:41:30 AM 2/7/2023 10:28:03 AM 2/8/2023 9:43:21 AM 2/14/2023 11:27:21 AM 2/15/2023 12:23:29 PM 2/22/2023 10:19:10 AM 2/23/2023 9:38:29 AM 3/1/2023 3:10:13 PM 3/9/2023 10:18:59 AM	0 1 6 7 0 7 2 4 1 6 1 7 1 6 8 8 8	Active	· · · · · · · · · · · · · · · · · · ·	41.4 48.1 38 6.4 31.7 31.7 43.8 40.2 41.5 42 34.4 40.1 40.3 38.9 38.5 33.5	9.4 0.1 1.4 16.9 0.6 0.5 0.1 0.3 0.6 0.5 0.3 0.6 0.5 0 0.4 0.4	141.1 >= 145 143.4 148.1 176.1 172.4 170 155.3 150.8 153.2 152.5 147.4 149.6 149.7 144.3 145.3 143.2	141.2 >= 145 145.6 148.4 176.9 172.4 170.3 170.3 155.3 150.9 153 152.4 147.7 149.7 149.7 144.5 144.5 143.3	-10.63 >= 0 -20.55 -21.06 -12.83 0.04 -20.15 -20.15 -20.15 -21.19 -20.28 -21.00 -20.81 -20.74 -20.44 -18.57 -17.61 -18.05 -17.15 -18.12	-10.62 >= 0 -20.54 -21.04 -8.09 0.04 -20.16 -20.29 -20.29 -20.29 -20.29 -20.78 -20.78 -20.78 -20.78 -20.46 -18.65 -16.66 -0.17 -17.14 -18.26	Comments:,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Sample,,,,,, Sample,,,,,, Comments:High Temp,,,,, Comments:High O2,,,,,, Flow/Vacuum,High Comments:High Temp,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Change,,,,,, Change,,,,,, Change,,,,,,,		1	NESHAP AAAA HOV 145	5 Day	15 Day	
RTLGW57	57 57 57 57 57 57 57 57 57 57 57 57 57 5	1/5/2023 2:43:59 PM 1/6/2023 7:40:46 AM 1/12/2023 12:36:07 PM 1/18/2023 11:59:14 AM 1/25/2023 12:05:49 PM 2/1/2023 12:05:49 PM 2/1/2023 10:25:49 PM 2/3/2023 10:41:30 AM 2/3/2023 10:28:03 AM 2/8/2023 9:43:21 AM 2/14/2023 11:27:21 AM 2/15/2023 12:23:29 PM 2/22/2023 10:19:10 AM 2/23/2023 9:38:29 AM 3/1/2023 3:10:13 PM 3/9/2023 10:18:59 AM 3/15/2023 11:03:49 AM	0 1 6 7 0 7 2 4 1 6 1 7 1 6 8 8 8	Active		41.4 48.1 38 6.4 31.7 31.7 43.8 40.2 41.5 42 34.4 40.1 40.3 38.9 38.5 33.5 1	9.4 0.1 1.4 16.9 0.6 0.5 0.1 0.3 0.3 0.3 0.6 0.5 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	141.1 >= 145 143.4 148.1 176.1 172.4 170 155.3 150.8 153.2 152.5 147.4 149.6 149.7 144.3 145.3 145.3	141.2 >= 145 145.6 148.4 176.9 172.4 170.3 170.3 155.3 150.9 153 152.4 147.7 149.7 149.7 149.7 149.7 149.5	-10.63 >= 0 -20.55 -21.06 -12.83 0.04 -20.15 -20.15 -21.19 -20.28 -21.00 -20.81 -20.74 -20.74 -20.44 -18.57 -17.61 -18.05 -17.15 -18.12 -16.39	-10.62 >= 0 -20.54 -21.04 -8.09 0.04 -20.16 -20.29 -20.29 -20.29 -20.29 -20.78 -20.78 -20.78 -20.78 -20.46 -18.65 -16.66 -0.17 -17.14 -18.26	Comments:,,,,,, Comments:High Temp,,,,,, Comments:High Temp,,,,,, Sample,,,,,, Sample,,,,,, Comments:High Temp,,,,, Comments:High O2,,,,,, Flow/Vacuum,High Comments:High Temp,,,,, Comments:High Temp,,,,,, Change,,,,,, Change,,,,,, Change,,,,,, Change,,,,,, Comments:High O2,,,,,,,		1	NESHAP AAAA HOV 145	5 Day	15 Day	

-9-24

Exceedance Detail Report Date Range: 03/01/2023 to 03/31/2023

Report Date: 04/06/2023 Site Name: Bristol Virginia Landfill

						% by Volume		Temperat	ure (°F) Static I		Pressure								
Point ID	Point Name	Record Date	Days Between Readings	Point Status	Effective Date	CH4	02	Initial Temp	Adjusted Temp	Initial Static Pressure (H2O)	Adjusted Static Pressure (H2O)	Operation Comments	CO Req	Total Days Open	Corrective Action Comments	Correc	ctive Action Due	e Dates	
	57	3/29/2023 12:10:28 PM	1		-	21.38	2.69	162.1	157.7	-12.15	-12.10	Change;Well	Ν	86					
BRTLGW59				Active	-			>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day	
	59	3/28/2023 10:05:58 AM	0			37.48	0.04	160.7	160.3	-7.28	-7.58	Comment:1366950;Valve	Ν	9	good reading on 03/29/2023	4/1/2023	4/11/2023	7/25/2023	
	59	3/29/2023 12:19:23 PM	1			31.17	2.15	119.3	119.4	-2.54	-2.54	Change;Well	Ν	2					
BRTLGW67				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day	
	67	3/1/2023 2:33:06 PM	0			25.6	0.3	150.1	149.8	-18.97	-18.97	Comments:High Temp,,,,,,	N	9	good reading on 03/02/2023	3/5/2023	3/15/2023	6/28/2023	
	67	3/2/2023 9:38:43 AM	1			28.1	0.1	143.9	144.2	-17.39	-17.36	Change,,,,,,	Ν	2					
Points with Exceedances 8								Parameter e	exceeds rul	le (Exceedar	nce)								

Open Exceedances

Closed Exceedances

Parameter in compliance (Exceedance cleared)

5

3

Attachment 3

Enhanced Monitoring Record Forms and Analytical Results

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS

- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS

- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)

- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

Landfill Name: Bristol Technician: Ryan Seymo												
		GE	M Read	ling			If Temp >145	F		lf Temp ≥165F	lf Temp ≥170F	
Well ID	Date & Time	CH4 (%)	O2 (%)	Well Temp (°F)	Gas Sample Collected	Pickup Scheduled?	smoke)?	Smoldering Ash Observed?	Damage to Well?	Downhole Temp Monitoring Performed?	Contacted Engineers for Notification?	Comments
					Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	
37	2023-03-02 08:46:00	16.2	6.2	148.6	yes	yes	no	no	no	no	no	N/A

SCS ENGINEERS

PAGE___OF____

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS

- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS

- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)

- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

Landfil	l Name: Brist	ol			Technician: Ryan Seymour								
		GE	M Read	ling			If Temp >145	F		lf Temp ≥165F			
Well ID	Date & Time	CH4 (%)	O2 (%)	Well Temp (°F)	Gas Sample Collected Y/N	Pickup Scheduled? Y/N	Visible Emissions (e.g. smoke)? Y/N	Smoldering Ash Observed? Y/N	Damage to Well? Y/N	Downhole Temp Monitoring Performed? Y/N	Contacted Engineers for Notification? Y/N	Comments	
37	2023-03-09 11:35:00	19.4	6.4	149.0	yes	yes	no	no	no	no	no	No comment	

SCS ENGINEERS

PAGE___OF____

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS

- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS

- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)

- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

Landfil	l Name: Brist	ol					Technician: Logan Culhane					
		GE	M Read	ling			If Temp >145	F		lf Temp ≥165F	lf Temp ≥170F	
Well ID	Date & Time	CH4 (%)	O2 (%)	Well Temp (°F)	Gas Sample Collected Y/N	Pickup Scheduled? Y/N	Visible Emissions (e.g. smoke)? Y/N	Smoldering Ash Observed? Y/N	Damage to Well? Y/N	Downhole Temp Monitoring Performed? Y/N	Contacted Engineers for Notification? Y/N	Comments
37	2023-03-16 09:50:00	13.1	9.9	148.6	yes	yes	no	no	no	no	no	N/A
57	2023-03-16 10:05:00	23.2	3.2	146.4	yes	yes	no	no	no	no	no	N/A

SCS ENGINEERS

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS

- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS

- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)

- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

Landfil	Landfill Name: Bristol									Technician: Logan Culhane				
		GE	M Read	ling			If Temp >145	F	-	lf Temp ≥165F	lf Temp ≥170F			
Well ID	Date & Time	CH4 (%)	O2 (%)	Well Temp (°F)	Gas Sample Collected Y/N	Pickup Scheduled? Y/N	Visible Emissions (e.g. smoke)? Y/N	Smoldering Ash Observed? Y/N	Damage to Well? Y/N	Downhole Temp Monitoring Performed? Y/N	Contacted Engineers for Notification? Y/N	Comments		
37	2023-03-23 13:00:00	16.4	5.5	144.4	no	no	no	no	no	no	no	Second read under temp		
51	2023-03-23 13:13:00	13.7	5	167.3	yes	yes	no	no	no	no	no	N/A		

SCS ENGINEERS

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS

- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS

- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)

- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

Landfil	l Name: Brist	ol			Technician: Logan Culhane									
		GE	M Read	ling			If Temp >145	F		lf Temp ≥165F	lf Temp ≥170F			
Well ID	Date & Time	CH4 (%)	O2 (%)	Well Temp (°F)	Gas Sample Collected	Pickup Scheduled?	Visible Emissions (e.g. smoke)?	Smoldering Ash Observed?	Damage to Well?	Downhole Temp Monitoring Performed?	Contacted Engineers for Notification?	Comments		
					Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N			
37	2023-03-29 11:52:00	15.08	6.37	150.6	yes	yes	no	no	no	no	no	N/A		
57	2023-03-29 12:10:00	21.38	2.69	157.7	yes	yes	no	no	no	no	no	N/A		
51	2023-03-29 12:25:00	5.67	1.54	169.2	yes	yes	no	no	no	no	no	N/A		
	ļ			<u> </u>										
				<u> </u>										

SCS ENGINEERS

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 3, 2023 11:20
	4330 Lewis Road, Suite 1	Date Issued:	March 10, 2023 16:26
	Harrisburg, PA 17111	Project Number:	7223016
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/03/2023 11:20. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTATS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 3, 2023 11:20
	4330 Lewis Road, Suite 1	Date Issued:	March 10, 2023 16:26
	Harrisburg, PA 17111	Project Number:	7223016
Submitted To:	Tom Lock	Purchase Order:	07-SO04485
Client Site I.D.:	Bristol		

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23C0229-01	Air	03/02/2023 08:48	03/03/2023 11:20

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 3, 2023 11:20 March 10, 2023 16:26
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	7223016
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESU	JLTS	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 26
Field Sample #: 37	Sub Description/Location:		Final Vacuum(in Hg): 3.4
Sample ID: 23C0229-01	Canister ID: 063-00184::11073		Receipt Vacuum(in Hg): 3.4
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 3/2/2023 08:48			Flow Controller ID:

Sample Type: LFG

	Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis											
		ppmv		ALT-145			Date/Time					
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst				
Carbon Monoxide, as received	152	90.0	90.0		9	1	3/7/23 12:56	MER				

	Vola	atile Organi Vol%	c Compour	nds by GC/TCD - Unadjusted, as received basis EPA 3C	6			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	11.9	0.45	0.45		9	1	3/7/23 12:56	MER
Carbon dioxide, as received	27.5	0.45	0.45		9	1	3/7/23 12:56	MER
Oxygen (O2), as received	6.58	0.45	0.45		9	1	3/7/23 12:56	MER
Hydrogen (H2), as received	2.78	0.18	0.18		9	1	3/7/23 12:56	MER
Nitrogen (N2), as received	42.5	9.00	9.00		9	1	3/7/23 12:56	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Clier	it Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 3, 2023 11:20 March 10, 2023 16:26		
		Harrisburg, PA 17111				
Subm	itted To:	Tom Lock	Project Number:	7223016		
Clien	Site I.D.:	Bristol	Purchase Order:	07-SO04485		

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Co	mpounds by GC/TCD - Unadjust	ed, as received basis	Preparation Method:	No Prep VOC GC Air	
23C0229-01	1.00 mL / 1.00 mL	ALT-145	BGC0223	SGC0222	AG00026
23C0229-01	1.00 mL / 1.00 mL	EPA 3C	BGC0223	SGC0222	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 3, 2023 11:20 March 10, 2023 16:26
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	7223016
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control Enthalpy Analytical

			C U	itnaipy	Analyt	icai				
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0223 - No Prep VO	DC GC Air									
Blank (BGC0223-BLK1)					Prep	bared &	Analyzed	: 03/07/2	023	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Carbon Monoxide	<	10.0	ppmv							
LCS (BGC0223-BS1)					Prep	bared &	Analyzed	: 03/07/2	023	
Methane	4020	0.05	ppmv	5000		80.3	80-120			
Methane	4020	500	ppmv	5000		80.3	0-200			
Carbon dioxide	4380	500	ppmv	5000		87.5	0-200			
Carbon dioxide	4380	0.05	ppmv	5000		87.5	80-120			
Oxygen (O2)	5120	500	ppmv	5000		102	0-200			
Oxygen (O2)	5120	0.05	ppmv	5000		102	80-120			
Hydrogen (H2)	5990	200	ppmv	5100		117	0-200			
Nitrogen (N2)	5370	2000	ppmv	5000		107	0-200			
Nitrogen (N2)	5370	1	ppmv	5000		107	80-120			
Hydrogen (H2)	5990	0.02	ppmv	5100		117	80-120			
Carbon Monoxide	4900	10	ppmv	5000		98.1	0-200			
Carbon Monoxide	4900	0.001	ppmv	5000		98.1	80-120			
Duplicate (BGC0223-DUP1)		So	urce: 23C	0229-01	Prep	pared &	Analyzed	: 03/07/2	023	
Methane	121000	4500	ppmv		11900	00		1.21	25	
Methane	12.1	0.45	Vol%		11.9)		1.21	5	
Carbon dioxide	279000	4500	ppmv		2750	00		1.57	25	
Carbon dioxide	27.9	0.45	Vol%		27.5	5		1.57	5	
Oxygen (O2)	6.64	0.45	Vol%		6.58	3		0.826	5	
Oxygen (O2)	66400	4500	ppmv		6580	0		0.826	25	
Nitrogen (N2)	430000	18000	ppmv		4250	00		1.04	25	
Nitrogen (N2)	43.0	9.00	Vol%		42.5	5		1.04	5	
Hydrogen (H2)	28100	1800	ppmv		2780	0		0.923	25	
Hydrogen (H2)	2.81	0.18	Vol%		2.78	3		0.923	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 3, 2023 11:20 March 10, 2023 16:26				
	Harrisburg, PA 17111						
Submitted To:	Tom Lock	Project Number:	7223016				
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485				

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC0223 - No Prep VOC GC Air											

Duplicate (BGC0223-DUP1)		So	urce: 23C0229-01	Prepared & A	nalyzed: 03/07/202	23
Carbon Monoxide	156	90.0	ppmv	152	2.74	25
Carbon Monoxide	0.02	0.009	Vol%	0.02	2.74	5
Duplicate (BGC0223-DUP2)		So	urce: 23C0258-01	Prepared & A	nalyzed: 03/07/202	23
Methane	41.1	0.45	Vol%	41.0	0.266	5
Methane	411000	4500	ppmv	410000	0.266	25
Carbon dioxide	40.2	0.45	Vol%	40.1	0.335	5
Carbon dioxide	402000	4500	ppmv	401000	0.335	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Hydrogen (H2)	97600	1800	ppmv	96900	0.705	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Duplicate (BGC0223-DUP3)		So	urce: 23C0258-02	Prepared & A	nalyzed: 03/07/202	23
Methane	41.8	0.45	Vol%	42.2	0.919	5
Methane	418000	4500	ppmv	422000	0.919	25
Carbon dioxide	453000	4500	ppmv	454000	0.353	25
Carbon dioxide	45.3	0.45	Vol%	45.4	0.353	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Hydrogen (H2)	28000	1800	ppmv	28100	0.437	25
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Hydrogen (H2)	2.80	0.18	Vol%	2.81	0.437	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 3, 2023 11:20 March 10, 2023 16:26			
Harrisburg, PA 17111					
Tom Lock	Project Number:	7223016			
Bristol	Purchase Order:	07-SO04485			
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111 Tom Lock	4330 Lewis Road, Suite 1Date Issued:Harrisburg, PA 17111Tom LockProject Number:			

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

RPD	Relative Percent Difference
Qual	Qualifers
-RE	Denotes sample was re-analyzed
PF	Preparation Factor
MDL	Method Detection Limit
LOQ	Limit of Quantitation
ppbv	parts per billion by volume
	Toutotically I doubtified Commenced and an according to the t

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

		ENI			V	Air Chain of Custody Record		Turi	n Around Ti	me (ru	e (rush by advanced notice only)								
				ALI		Lab No:				Standard:		5 Day:		X	3	Day:			
3						Page:	1	of	1	2 Day:		1 Day:			C	Custom	TAT		
	Enthal	py Analytical	- Richmor	nd		CUSTOMER INFORMATION				PROJECT INFORMATION									
L	1941 Re	ymet Road, Richm	nond, VA 2323	7		Company:	SCS Fie	d Services			Name:		Bristol Landfill						
L		Phone 804-358-	8295	· · ·		Report To:	Tom Lo	ock / Mike Gi	bbons	·	Number:				7	22301	5		
•••	pecial Instructions: PA 3C for Methane, Carbon	Dioxide, Oxvgen, I	Nitrogen, and	Hydrogen		Email:	<u>tlock(</u>	Øscsengin	eers.com	<u> </u>	P.O. #:								
со) via EPA ALT-145.					Address:	mgibt	oons@scse	ngineers	.com	Address:								
Re	eturned empty canisters ma	rked (No Sample).				Phone:	703-25	4-4664			Global ID:								
						Fax:					Sampled By:								
	A. A				621	07/23	– Mek								Analy	/sis Re	quest	∋d	
	Mar De	yman					COUNTR	#1107%,1	+11078	=>110	72								
		/		- (ANIX	12 007 60	UL VACL	m= 2104	Paira		73 m= 3.4 "	He	õ	N2,H2)					
			Туре	Equipme	ent Infor	mation			Sampling Ir	nformation		<u> </u>	ALT-145 (CO)	3C (CH4,CO2,O2,N2,H2)					
	Sample ID		(I) Indoor		Size	Flow	Sample	Sample	Vacuum	Sample	Sample	Vacuum	11	С Н Н					
	Sample 10		(A) Ambient (SV) Soil Vapor		(1L, 3L,	Controller	Start Data	Start	Start ("Hg)	End	End	End ("Hg)		3C (C					
			(S) Source		6L, 15L)	ID	Date	Time	(''6/	Date	Time	1 1/8/	EPA	EPA				\perp	
· · · · ·	37		LFG	11078	1L	063-00491	3/2/2023	8:45AM	26	3/2/2023	8:48	9	х	x					
		····		279				 											
3									<u> </u>	·							⊢	\perp	
4																	┝╍╍┠		
5														_					
6 −℃	SCS Field Se	rvices 23	C0229						 										
6 23 20 24 5 5 10	5 Bristol						<u></u>		┣ ┃		20,3°C			_			\rightarrow		
6.9	Recd: 03/03/202	23 Due: 03/					****				310						\downarrow		
5	r	1	v130325002								no ice				\perp				
10						Durint t		 			10 sect								
1			ignature			Print N			C	ompany /		_				/ Tin			
¹ Relinquished By: Ryan Seymour			Ryan Se	ymour			field tec	n			3/2	/23	11:0	MAC					
-	eceived By:		<u>dex E</u>				· · · · ·												
_	elinquished By:		¥E									<u> </u>	1.1			<u> </u>			
	eceived By:	Cub	ul-									<u> </u>	[3]	23	11	20			
	elinquished By:																		
×e	eceived By:															[F	age {	8 of 9

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 3, 2023 11:20 March 10, 2023 16:26
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	7223016
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 10, 2023 11:15
	4330 Lewis Road, Suite 1	Date Issued:	March 17, 2023 15:45
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/10/2023 11:15. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTATS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 10, 2023 11:15
	4330 Lewis Road, Suite 1	Date Issued:	March 17, 2023 15:45
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485
Client Site I.D.:	Bristol		

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23C0611-01	Air	03/09/2023 11:28	03/10/2023 11:15

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 21.6
Field Sample #: 37	Sub Description/Location:		Final Vacuum(in Hg): 2.4
Sample ID: 23C0611-01	Canister ID: 063-00461::14300		Receipt Vacuum(in Hg): 2.4
•	Canister Size: 1.4L		Flow Controller Type: Passive
Sample Matrix: Air Sampled: 3/9/2023 11:28			Flow Controller ID:

Sample Type: LV

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as received bas	is			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	129	90.0	90.0		9	1	3/14/23 11:43	MER

	Vol	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as received b	asis			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	11.1	0.45	0.45		9	1	3/14/23 11:43	MER
Carbon dioxide, as received	23.5	0.45	0.45		9	1	3/14/23 11:43	MER
Oxygen (O2), as received	9.36	0.45	0.45		9	1	3/14/23 11:43	MER
Hydrogen (H2), as received	2.35	0.18	0.18		9	1	3/14/23 11:43	MER
Nitrogen (N2), as received	47.8	18.0	18.0		18	1	3/14/23 13:46	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	3/14/23 11:43	MER

			Volatile (Drganic Compo EPA TO-1		S					
		ppbv				ug/M³		_		Dete/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Date/Time Analyzed	Analyst
Benzene	52800	1560	3890		170000	5000	12000	7780	1	3/15/23 13:59	DFH
Surrogate(s)		% Re	covery		% Re	covery Li	nits				
4-Bromofluorobenzene (Surr)			101		6	30-120				3/15/23 13:59	

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
Harrisburg, PA 17111		
Tom Lock	Project Number:	07223016.00
Bristol	Purchase Order:	07-SO04485
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111 Tom Lock	4330 Lewis Road, Suite 1Date Issued:Harrisburg, PA 17111Tom LockProject Number:

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjusted	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23C0611-01	1.00 mL / 1.00 mL	ALT-145	BGC0500	SGC0482	AG00026
23C0611-01	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0482	AG00026
23C0611-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0482	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	No Prep VOC Air	
23C0611-01	400 mL / 400 mL	EPA TO-15	BGC0346	SGC0540	AC30128
23C0611-01RE1	400 mL / 400 mL	EPA TO-15	BGC0346	SGC0540	AC30128

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

		eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
atch BGC0346 - No Prep VO	C Air										
Blank (BGC0346-BLK1)					Prep	ared & A	Analyzed	: 03/09/2	023		
Benzene	<	0.50	ppbv								
Surr: 4-Bromofluorobenzene Surr)	4.90		ppbv	5.00		98.0	80-120				
_CS (BGC0346-BS1)					Prep	ared & A	Analyzed	: 03/09/2	023		
I,1,1-Trichloroethane	5.38	0.5	ppbv	5.00		108	70-130				
,1,2,2-Tetrachloroethane	5.67	0.5	ppbv	5.00		113	70-130				
,1,2-Trichloro-1,2,2-trifluoroetha	5.16	0.5	ppbv	5.00		103	70-130				
e ,1,2-Trichloroethane	5.32	0.5	ppbv	5.00		106	70-130				
,1-Dichloroethane	4.99	0.5	ppbv	5.00		99.8	70-130				
,1-Dichloroethylene	4.33 5.17	0.5	ppbv	5.00		103	70-130				
,2,4-Trimethylbenzene	5.64	0.5	ppbv	5.00		113	70-130				
,2-Dibromoethane (EDB)	5.63	0.5	ppbv	5.00		113	70-130				
,2-Dichlorobenzene	5.91	0.5	ppbv	5.00		118	70-130				
,2-Dichloroethane	5.32	0.5	ppbv	5.00		106	70-130				
,2-Dichloropropane	5.25	0.5	ppbv	5.00		105	70-130				
I,2-Dichlorotetrafluoroethane	5.44	0.5	ppbv	5.00		109	70-130				
, 1,3,5-Trimethylbenzene	5.61	0.5	ppbv	5.00		112	70-130				
I,3-Butadiene	4.79	0.5	ppbv	5.00		95.8	70-130				
,3-Dichlorobenzene	5.86	0.5	ppbv	5.00		117	70-130				
,4-Dichlorobenzene	5.90	0.5	ppbv	5.00		118	70-130				
,4-Dioxane	5.41	0.5	ppbv	5.00		108	70-130				
2-Butanone (MEK)	4.57	0.5	ppbv	5.00		91.4	70-130				
I-Methyl-2-pentanone (MIBK)	5.35	0.5	ppbv	5.00		107	70-130				
Allyl chloride	4.84	0.5	ppbv	5.00		96.8	70-130				
Benzene	5.21	0.5	ppbv	5.00		104	70-130				
Benzyl Chloride	5.49	0.5	ppbv	5.00		110	70-130				
Bromodichloromethane	5.02	0.5	ppbv	5.00		100	70-130				
Bromoform	1.34	0.5	ppbv	5.00		26.8	70-130			L	
Bromomethane	5.71	0.5	ppbv	5.00		114	70-130				
Carbon Disulfide	5.16	0.5	ppbv	5.00		103	70-130				

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45	
	Harrisburg, PA 17111			
Submitted To:	Tom Lock	Project Number:	07223016.00	
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485	

Volatile Organic Compounds by GCMS - Quality Control

Entholmy Analytical

Enthalpy Analytical										
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0346 - No Prep V	OC Air									
LCS (BGC0346-BS1)					Prep	oared & /	Analyzed	: 03/09/2	023	
Carbon Tetrachloride	5.36	0.5	ppbv	5.00		107	70-130			
Chlorobenzene	5.59	0.5	ppbv	5.00		112	70-130			
Chloroethane	5.32	0.5	ppbv	5.00		106	70-130			
Chloroform	5.07	0.5	ppbv	5.00		101	70-130			
Chloromethane	5.06	0.5	ppbv	5.00		101	70-130			
cis-1,2-Dichloroethylene	5.11	0.5	ppbv	5.00		102	70-130			
cis-1,3-Dichloropropene	5.47	0.5	ppbv	5.00		109	70-130			
Cyclohexane	5.24	0.5	ppbv	5.00		105	70-130			
Dichlorodifluoromethane	5.16	0.5	ppbv	5.00		103	70-130			
Ethyl acetate	5.38	0.5	ppbv	5.00		108	70-130			
Ethylbenzene	5.53	0.5	ppbv	5.00		111	70-130			
Heptane	5.03	0.5	ppbv	5.00		101	70-130			
Hexane	5.06	0.5	ppbv	5.00		101	70-130			
m+p-Xylenes	11.2	1	ppbv	10.0		112	70-130			
Methylene chloride	4.67	1	ppbv	5.00		93.4	70-130			
Methyl-t-butyl ether (MTBE)	5.17	0.5	ppbv	5.00		103	70-130			
Naphthalene	5.24	0.5	ppbv	5.00		105	60-140			
o-Xylene	5.55	0.5	ppbv	5.00		111	70-130			
Propylene	5.02	1	ppbv	5.00		100	70-130			
Styrene	5.59	0.5	ppbv	5.00		112	70-130			
Tetrachloroethylene (PCE)	5.61	0.5	ppbv	5.00		112	70-130			
Tetrahydrofuran	5.16	0.5	ppbv	5.00		103	70-130			
Toluene	5.36	0.5	ppbv	5.00		107	70-130			
trans-1,2-Dichloroethylene	5.13	0.5	ppbv	5.00		103	70-130			
trans-1,3-Dichloropropene	5.55	0.5	ppbv	5.00		111	70-130			
Trichloroethylene	5.40	0.5	ppbv	5.00		108	70-130			
Trichlorofluoromethane	5.27	0.5	ppbv	5.00		105	70-130			
Vinyl acetate	4.77	0.5	ppbv	5.00		95.4	70-130			
Vinyl bromide	4.79	0.5	ppbv	5.00		95.8	70-130			
Vinyl chloride	5.21	0.5	ppbv	5.00		104	70-130			
Surr: 4-Bromofluorobenzene (Surr)	5.14		ppbv	5.00		103	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	Enthalpy Analytical										
	Re	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC0346 - No Prep VO	C Air										
LCS Dup (BGC0346-BSD1)					Prep	pared &	Analyzed	: 03/09/20	023		
1,1,1-Trichloroethane	5.38	0.5	ppbv	5.00		108	70-130	0.00	25		
1,1,2,2-Tetrachloroethane	5.70	0.5	ppbv	5.00		114	70-130	0.528	25		
1,1,2-Trichloro-1,2,2-trifluoroetha ne	5.17	0.5	ppbv	5.00		103	70-130	0.194	25		
1,1,2-Trichloroethane	5.35	0.5	ppbv	5.00		107	70-130	0.562	25		
1,1-Dichloroethane	4.97	0.5	ppbv	5.00		99.4	70-130	0.402	25		
1,1-Dichloroethylene	5.19	0.5	ppbv	5.00		104	70-130	0.386	25		
1,2,4-Trimethylbenzene	5.63	0.5	ppbv	5.00		113	70-130	0.177	25		
1,2-Dibromoethane (EDB)	5.60	0.5	ppbv	5.00		112	70-130	0.534	25		
1,2-Dichlorobenzene	5.85	0.5	ppbv	5.00		117	70-130	1.02	25		
1,2-Dichloroethane	5.31	0.5	ppbv	5.00		106	70-130	0.188	25		
1,2-Dichloropropane	5.22	0.5	ppbv	5.00		104	70-130	0.573	25		
1,2-Dichlorotetrafluoroethane	5.53	0.5	ppbv	5.00		111	70-130	1.64	25		
1,3,5-Trimethylbenzene	5.60	0.5	ppbv	5.00		112	70-130	0.178	25		
1,3-Butadiene	4.62	0.5	ppbv	5.00		92.4	70-130	3.61	25		
1,3-Dichlorobenzene	5.88	0.5	ppbv	5.00		118	70-130	0.341	25		
1,4-Dichlorobenzene	5.88	0.5	ppbv	5.00		118	70-130	0.340	25		
1,4-Dioxane	5.43	0.5	ppbv	5.00		109	70-130	0.369	25		
2-Butanone (MEK)	4.58	0.5	ppbv	5.00		91.6	70-130	0.219	25		
4-Methyl-2-pentanone (MIBK)	5.42	0.5	ppbv	5.00		108	70-130	1.30	25		
Allyl chloride	4.93	0.5	ppbv	5.00		98.6	70-130	1.84	25		
Benzene	5.26	0.5	ppbv	5.00		105	70-130	0.955	25		
Benzyl Chloride	5.39	0.5	ppbv	5.00		108	70-130	1.84	25		
Bromodichloromethane	5.04	0.5	ppbv	5.00		101	70-130	0.398	25		
Bromoform	1.35	0.5	ppbv	5.00		27.0	70-130	0.743	25	L	
Bromomethane	5.66	0.5	ppbv	5.00		113	70-130	0.880	25		
Carbon Disulfide	5.17	0.5	ppbv	5.00		103	70-130	0.194	25		
Carbon Tetrachloride	5.35	0.5	ppbv	5.00		107	70-130	0.187	25		
Chlorobenzene	5.59	0.5	ppbv	5.00		112	70-130	0.00	25		
Chloroethane	5.28	0.5	ppbv	5.00		106	70-130	0.755	25		
Chloroform	5.08	0.5	ppbv	5.00		102	70-130	0.197	25		
Chloromethane	5.05	0.5	ppbv	5.00		101	70-130	0.198	25		
cis-1,2-Dichloroethylene	5.11	0.5	ppbv	5.00		102	70-130	0.00	25		
cis-1,3-Dichloropropene	5.42	0.5	ppbv	5.00		108	70-130	0.918	25		

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45	
	Harrisburg, PA 17111			
Submitted To:	Tom Lock	Project Number:	07223016.00	
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485	

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Enthalpy Analytical											
Reporting Spike Source %REC RPD											
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC0346 - No Prep VC	DC Air										
LCS Dup (BGC0346-BSD1)					Prep	bared &	Analyzed	: 03/09/20)23		
Cyclohexane	5.28	0.5	ppbv	5.00		106	70-130	0.760	25		
Dichlorodifluoromethane	5.15	0.5	ppbv	5.00		103	70-130	0.194	25		
Ethyl acetate	5.36	0.5	ppbv	5.00		107	70-130	0.372	25		
Ethylbenzene	5.53	0.5	ppbv	5.00		111	70-130	0.00	25		
Heptane	5.05	0.5	ppbv	5.00		101	70-130	0.397	25		
Hexane	5.05	0.5	ppbv	5.00		101	70-130	0.198	25		
n+p-Xylenes	11.2	1	ppbv	10.0		112	70-130	0.626	25		
lethylene chloride	4.71	1	ppbv	5.00		94.2	70-130	0.853	25		
/lethyl-t-butyl ether (MTBE)	5.17	0.5	ppbv	5.00		103	70-130	0.00	25		
laphthalene	5.18	0.5	ppbv	5.00		104	60-140	1.15	25		
-Xylene	5.51	0.5	ppbv	5.00		110	70-130	0.723	25		
Propylene	5.01	1	ppbv	5.00		100	70-130	0.199	25		
Styrene	5.63	0.5	ppbv	5.00		113	70-130	0.713	25		
Fetrachloroethylene (PCE)	5.62	0.5	ppbv	5.00		112	70-130	0.178	25		
Fetrahydrofuran	5.17	0.5	ppbv	5.00		103	70-130	0.194	25		
Toluene	5.34	0.5	ppbv	5.00		107	70-130	0.374	25		
rans-1,2-Dichloroethylene	5.13	0.5	ppbv	5.00		103	70-130	0.00	25		
rans-1,3-Dichloropropene	5.58	0.5	ppbv	5.00		112	70-130	0.539	25		
Trichloroethylene	5.42	0.5	ppbv	5.00		108	70-130	0.370	25		
Frichlorofluoromethane	5.12	0.5	ppbv	5.00		102	70-130	2.89	25		
/inyl acetate	4.80	0.5	ppbv	5.00		96.0	70-130	0.627	25		
/inyl bromide	4.81	0.5	ppbv	5.00		96.2	70-130	0.417	25		
/inyl chloride	5.23	0.5	ppbv	5.00		105	70-130	0.383	25		
Surr: 4-Bromofluorobenzene	5.12		ppbv	5.00		102	70-130				

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	l	Reporting		Spike	Source	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

Batch BGC0500 - No Prep VOC GC Air

Blank (BGC0500-BLK1)					Prepared &	Analyzed: 03/14/2	023	
Methane	<	0.05	Vol%					
Carbon dioxide	<	0.05	Vol%					
Oxygen (O2)	<	0.05	Vol%					
Nitrogen (N2)	<	1.00	Vol%					
Hydrogen (H2)	<	0.02	Vol%					
Carbon Monoxide	<	10.0	ppmv					
Carbon Monoxide	<	0.001	Vol%					
LCS (BGC0500-BS1)					Prepared &	Analyzed: 03/14/2	023	
Methane	4690	500	ppmv	5000	93.9	0-200		
Methane	4690	0.05	ppmv	5000	93.9	80-120		
Carbon dioxide	5230	500	ppmv	5000	105	0-200		
Carbon dioxide	5230	0.05	ppmv	5000	105	80-120		
Oxygen (O2)	5110	500	ppmv	5000	102	0-200		
Oxygen (O2)	5110	0.05	ppmv	5000	102	80-120		
Nitrogen (N2)	5370	2000	ppmv	5000	107	0-200		
Hydrogen (H2)	5910	200	ppmv	5100	116	0-200		
Hydrogen (H2)	5910	0.02	ppmv	5100	116	80-120		
Nitrogen (N2)	5370	1	ppmv	5000	107	80-120		
Carbon Monoxide	4880	10	ppmv	5000	97.7	0-200		
Carbon Monoxide	4880	0.001	ppmv	5000	97.7	80-120		
Duplicate (BGC0500-DUP1)		So	urce: 23C	0611-01	Prepared &	Analyzed: 03/14/2	023	
Methane	11.0	0.45	Vol%		11.1	0.199	5	
Methane	110000	4500	ppmv		111000	0.199	25	
Carbon dioxide	23.7	0.45	Vol%		23.5	1.06	5	
Carbon dioxide	237000	4500	ppmv		235000	1.06	25	
Oxygen (O2)	9.38	0.45	Vol%		9.36	0.200	5	
Oxygen (O2)	93800	4500	ppmv		93600	0.200	25	
Hydrogen (H2)	2.34	0.18	Vol%		2.35	0.278	5	
Nitrogen (N2)	469000	18000	ppmv		469000	0.0733	25	
Hydrogen (H2)	23400	1800	ppmv		23500	0.278	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01	1.39	5	
Carbon Monoxide	131	90.0	ppmv		129	1.39	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

L	LCS recovery is outside of established acceptance limits
RPD	Relative Percent Difference
Qual	Qualifers
-RE	Denotes sample was re-analyzed
PF	Preparation Factor
MDL	Method Detection Limit
LOQ	Limit of Quantitation
ppbv	parts per billion by volume
TIC	Tentatively Identified Compounds are compounds that are

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

AIR ANALYSIS

		/V// 20	0010101	163			CHAIN	OF CUS	TODY	E	quipm	nent due	e 3/30/20)23					
COMPANY NAME	: SCS Fiel	d Servi	ces - Harri	isbu	ırg IN	VOICE TO): Same				PROJ	ECT NAM	E/Quote	#: Bristo					·
CONTACT:					IN	VOICE CC	ONTACT:				SITE NAME: Bristo/								
ADDRESS:					IN	VOICE AD	DRESS:				PROJECT NUMBER: 07225016.00								
PHONE #:					IN	INVOICE PHONE #:					P.O. #								
FAX #:			EN	IAIL		<u> </u>					Pretre	atment Pr	ogram:						
Is sample for comp	liance rep	orting?	YES NO)	Regulat	tory State:	VA Is:	sample fro	m a chlori	nated sup	oly?	YES 🖌	D PV	NS I.D. #:					
SAMPLER NAME	(PRINT):	Kya/	Eyn	NU	si si	AMPLER S	IGNATUR	E: Ryan	v.S.	umor	Turn	Around T	ime: Cir	cle: 10 🤇	5 Days	>	or _	_ D	ay(s)
Matrix Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV=Land	dfill/V	/ent Gas O	T=Other				0		063	-23B-001	4					
	Regulator	Info	Canister In	nform	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	nation		ŝ	٩NA	LYS	SIS
CLIENT						LAB	LAB	Barometric	Pres. (in Ho	g):		Barometric	: Pres. (in H	lg):		Codes)		2	5
SAMPLE I.D.	Flow Controller ID	Cal Flow (mUmin)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in ^{Hg)}	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in ^{Hg)}		Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in ^{Hg)}	Ending Sample Temp *F	Matrix (See Coo	Alt 145 C(Ranzana	TO-15
" 37	063-004	,	14300	1.4	, 230126-02	21.6	2.4	3/9/23	11:24 Am	e 28	Mg	3/1/23	11:28 Am	1	149				x
2)			14308	1.4	230126-02	21.6										LG	x	(x
3)														:					
4)	V												· · ·						
RELINQUISHED:				REC	EIVED:		DAT	E / TIME	QC Data P	ackage LA	BUSE		310	20.3	40	Ser	(''	L J	J.
RELINQUISHED: Grand & G RELINQUISHED:				l	F.CM & EIVED: M SM EIVED:	Ex G ~ 3	10/23	(> E / TIME	Level I Level II Level III	□ SCS	Field	l Servic		C0611					
				<u> </u>					Level IV	- Recd	1: 03/1	0/2023	Due: 03/	v130325002		Pag	e 11		12

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 17, 2023 11:14
	4330 Lewis Road, Suite 1	Date Issued:	March 23, 2023 17:20
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485
Submitted To:		2	

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/17/2023 11:14. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTAS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 17, 2023 11:14
	4330 Lewis Road, Suite 1	Date Issued:	March 23, 2023 17:20
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485
Client Site I.D.:	Bristol		

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23C1038-01	Air	03/16/2023 10:00	03/17/2023 11:14
57	23C1038-02	Air	03/16/2023 10:10	03/17/2023 11:14

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 21.6
Field Sample #: 37	Sub Description/Location:		Final Vacuum(in Hg): 3.8
Sample ID: 23C1038-01	Canister ID: 063-00306::11293		Receipt Vacuum(in Hg): 3.8
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 3/16/2023 10:00			Flow Controller ID:

Sample Type: LV

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis										
		ppmv		ALT-145			Date/Time			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst		
Carbon Monoxide, as received	168	90.0	90.0		9	1	3/17/23 16:02	MER		

	Vola	atile Organi Vol%	c Compour	ids by GC/TCD - Unadjusted, as received basi EPA 3C	S			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	13.4	0.45	0.45		9	1	3/17/23 16:02	MER
Carbon dioxide, as received	31.0	0.45	0.45		9	1	3/17/23 16:02	MER
Oxygen (O2), as received	6.22	0.45	0.45		9	1	3/17/23 16:02	MER
Hydrogen (H2), as received	3.08	0.18	0.18		9	1	3/17/23 16:02	MER
Nitrogen (N2), as received	41.1	9.00	9.00		9	1	3/17/23 16:02	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	3/17/23 16:02	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	62500	1560	3890		200000	5000	12000	7780	1	3/21/23 14:41	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			94.6		6	30-120				3/21/23 14:41	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20	
	Harrisburg, PA 17111			
Submitted To:	Tom Lock	Project Number:	07223016.00	
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485	
	ANALYTICAL RESULTS			
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 21.6	
Field Sample #: 57	Sub Description/Location:		Final Vacuum(in Hg): 3.4	
Sample ID: 23C1038-02	Canister ID: 063-00322::12383	Receipt Vacuum(in Hg): 3.		
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive	
Sampled: 3/16/2023 10:10			Flow Controller ID:	

Sample Type: LV

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis											
		ppmv		ALT-145			Date/Time				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst			
Carbon Monoxide, as received	855	90.0	90.0		9	1	3/17/23 16:56	MER			

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as received ba	isis			
		Vol%		EPA 3C			D. () (T)	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	20.1	0.45	0.45		9	1	3/17/23 16:56	MER
Carbon dioxide, as received	55.1	0.45	0.45		9	1	3/17/23 16:56	MER
Oxygen (O2), as received	1.27	0.45	0.45		9	1	3/17/23 16:56	MER
Hydrogen (H2), as received	13.5	1.08	1.08		54	1	3/20/23 15:24	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	3/17/23 16:56	MER
Carbon Monoxide, as received	0.09	0.009	0.009		9	1	3/17/23 16:56	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv		ug/M³			Data (Times				
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Date/Time Analyzed	Analyst
Benzene	208000	2330	5830		670000	7500	19000	11700	1	3/21/23 16:14	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			95.8		6	30-120				3/21/23 16:14	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
Harrisburg, PA 17111		
Tom Lock	Project Number:	07223016.00
Bristol	Purchase Order:	07-SO04485
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111 Tom Lock	4330 Lewis Road, Suite 1Date Issued:Harrisburg, PA 17111Tom LockProject Number:

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23C1038-01	1.00 mL / 1.00 mL	ALT-145	BGC0500	SGC0658	AG00026
23C1038-02	1.00 mL / 1.00 mL	ALT-145	BGC0500	SGC0658	AG00026
23C1038-01	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0658	AG00026
23C1038-02	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0658	AG00026
23C1038-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGC0718	SGC0713	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	No Prep VOC Air	
23C1038-01	400 mL / 400 mL	EPA TO-15	BGC0743	SGC0734	AC30195
23C1038-02	400 mL / 400 mL	EPA TO-15	BGC0743	SGC0734	AC30195

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD				
nalyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual			
atch BGC0743 - No Prep VO	C Air												
Blank (BGC0743-BLK1)					Prep	pared & /	Analyzed	: 03/21/2	023				
Benzene	<	0.50	ppbv										
Surr: 4-Bromofluorobenzene Surr)	4.90		ppbv	5.00		98.0	80-120						
LCS (BGC0743-BS1)					Prep	bared & /	Analyzed	: 03/21/2	023				
1,1,1-Trichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130						
1,1,2,2-Tetrachloroethane	5.19	0.5	ppbv	5.00		104	70-130						
1,1,2-Trichloro-1,2,2-trifluoroetha	4.64	0.5	ppbv	5.00		92.8	70-130						
ne 1,1,2-Trichloroethane	4.93	0.5	ppbv	5.00		98.6	70-130						
1,1-Dichloroethane	4.93	0.5	ppbv	5.00		90.0 91.8	70-130						
1,1-Dichloroethylene	4.59	0.5	ppbv	5.00		93.2	70-130						
, 2,4-Trimethylbenzene	5.23	0.5	ppbv	5.00		105	70-130						
1,2-Dibromoethane (EDB)	5.12	0.5	ppbv	5.00		103	70-130						
,2-Dichlorobenzene	5.48	0.5	ppbv	5.00		1102	70-130						
1,2-Dichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130						
1,2-Dichloropropane	4.90	0.5	ppbv	5.00		98.0	70-130						
1,2-Dichlorotetrafluoroethane	4.70	0.5	ppbv	5.00		94.0	70-130						
1,3,5-Trimethylbenzene	5.20	0.5	ppbv	5.00		104	70-130						
1,3-Butadiene	4.57	0.5	ppbv	5.00		91.4	70-130						
1.3-Dichlorobenzene	5.35	0.5	ppbv	5.00		107	70-130						
1,4-Dichlorobenzene	5.37	0.5	ppbv	5.00		107	70-130						
, 1,4-Dioxane	5.47	0.5	ppbv	5.00		109	70-130						
2-Butanone (MEK)	4.55	0.5	ppbv	5.00		91.0	70-130						
4-Methyl-2-pentanone (MIBK)	5.13	0.5	ppbv	5.00		103	70-130						
Allyl chloride	4.49	0.5	ppbv	5.00		89.8	70-130						
Benzene	4.93	0.5	ppbv	5.00		98.6	70-130						
Benzyl Chloride	4.84	0.5	ppbv	5.00		96.8	70-130						
Bromodichloromethane	4.62	0.5	ppbv	5.00		92.4	70-130						
Bromoform	0.98	0.5	ppbv	5.00		19.6	70-130			L			
Bromomethane	4.81	0.5	ppbv	5.00		96.2	70-130						
Carbon Disulfide	4.50	0.5	ppbv	5.00		90.0	70-130						

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	D	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0743 - No Prep V	/OC Air									
LCS (BGC0743-BS1)					Prep	pared & A	Analyzed	: 03/21/2	023	
Carbon Tetrachloride	4.91	0.5	ppbv	5.00		98.2	70-130			
Chlorobenzene	5.05	0.5	ppbv	5.00		101	70-130			
Chloroethane	4.62	0.5	ppbv	5.00		92.4	70-130			
Chloroform	4.66	0.5	ppbv	5.00		93.2	70-130			
Chloromethane	4.61	0.5	ppbv	5.00		92.2	70-130			
cis-1,2-Dichloroethylene	4.69	0.5	ppbv	5.00		93.8	70-130			
cis-1,3-Dichloropropene	5.12	0.5	ppbv	5.00		102	70-130			
Cyclohexane	4.95	0.5	ppbv	5.00		99.0	70-130			
Dichlorodifluoromethane	4.66	0.5	ppbv	5.00		93.2	70-130			
Ethyl acetate	4.90	0.5	ppbv	5.00		98.0	70-130			
Ethylbenzene	5.17	0.5	ppbv	5.00		103	70-130			
Heptane	4.82	0.5	ppbv	5.00		96.4	70-130			
Hexane	4.82	0.5	ppbv	5.00		96.4	70-130			
m+p-Xylenes	10.3	1	ppbv	10.0		103	70-130			
Methylene chloride	4.91	1	ppbv	5.00		98.2	70-130			
Methyl-t-butyl ether (MTBE)	4.81	0.5	ppbv	5.00		96.2	70-130			
Naphthalene	4.58	0.5	ppbv	5.00		91.6	60-140			
o-Xylene	5.10	0.5	ppbv	5.00		102	70-130			
Propylene	4.57	1	ppbv	5.00		91.4	70-130			
Styrene	5.18	0.5	ppbv	5.00		104	70-130			
Tetrachloroethylene (PCE)	5.05	0.5	ppbv	5.00		101	70-130			
Tetrahydrofuran	4.93	0.5	ppbv	5.00		98.6	70-130			
Toluene	4.97	0.5	ppbv	5.00		99.4	70-130			
trans-1,2-Dichloroethylene	4.72	0.5	ppbv	5.00		94.4	70-130			
trans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00		105	70-130			
Trichloroethylene	4.95	0.5	ppbv	5.00		99.0	70-130			
Trichlorofluoromethane	4.68	0.5	ppbv	5.00		93.6	70-130			
Vinyl acetate	4.76	0.5	ppbv	5.00		95.2	70-130			
Vinyl bromide	4.66	0.5	ppbv	5.00		93.2	70-130			
Vinyl chloride	4.65	0.5	ppbv	5.00		93.0	70-130			
Surr: 4-Bromofluorobenzene (Surr)	5.10		ppbv	5.00		102	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	Enthalpy Analytical										
	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC0743 - No Prep VO	C Air										
LCS Dup (BGC0743-BSD1)					Prep	bared &	Analyzed	: 03/21/20	023		
1,1,1-Trichloroethane	5.00	0.5	ppbv	5.00		100	70-130	0.803	25		
1,1,2,2-Tetrachloroethane	5.12	0.5	ppbv	5.00		102	70-130	1.36	25		
1,1,2-Trichloro-1,2,2-trifluoroetha ne	4.68	0.5	ppbv	5.00		93.6	70-130	0.858	25		
1,1,2-Trichloroethane	5.02	0.5	ppbv	5.00		100	70-130	1.81	25		
1,1-Dichloroethane	4.62	0.5	ppbv	5.00		92.4	70-130	0.651	25		
1,1-Dichloroethylene	4.68	0.5	ppbv	5.00		93.6	70-130	0.428	25		
1,2,4-Trimethylbenzene	5.18	0.5	ppbv	5.00		104	70-130	0.961	25		
1,2-Dibromoethane (EDB)	5.08	0.5	ppbv	5.00		102	70-130	0.784	25		
1,2-Dichlorobenzene	5.42	0.5	ppbv	5.00		108	70-130	1.10	25		
1,2-Dichloroethane	4.98	0.5	ppbv	5.00		99.6	70-130	0.402	25		
1,2-Dichloropropane	4.90	0.5	ppbv	5.00		98.0	70-130	0.00	25		
1,2-Dichlorotetrafluoroethane	4.84	0.5	ppbv	5.00		96.8	70-130	2.94	25		
1,3,5-Trimethylbenzene	5.11	0.5	ppbv	5.00		102	70-130	1.75	25		
1,3-Butadiene	4.48	0.5	ppbv	5.00		89.6	70-130	1.99	25		
1,3-Dichlorobenzene	5.35	0.5	ppbv	5.00		107	70-130	0.00	25		
1,4-Dichlorobenzene	5.32	0.5	ppbv	5.00		106	70-130	0.935	25		
1,4-Dioxane	5.57	0.5	ppbv	5.00		111	70-130	1.81	25		
2-Butanone (MEK)	4.55	0.5	ppbv	5.00		91.0	70-130	0.00	25		
4-Methyl-2-pentanone (MIBK)	5.25	0.5	ppbv	5.00		105	70-130	2.31	25		
Allyl chloride	4.41	0.5	ppbv	5.00		88.2	70-130	1.80	25		
Benzene	4.96	0.5	ppbv	5.00		99.2	70-130	0.607	25		
Benzyl Chloride	4.77	0.5	ppbv	5.00		95.4	70-130	1.46	25		
Bromodichloromethane	4.66	0.5	ppbv	5.00		93.2	70-130	0.862	25		
Bromoform	0.97	0.5	ppbv	5.00		19.4	70-130	1.03	25	L	
Bromomethane	4.96	0.5	ppbv	5.00		99.2	70-130	3.07	25		
Carbon Disulfide	4.51	0.5	ppbv	5.00		90.2	70-130	0.222	25		
Carbon Tetrachloride	4.95	0.5	ppbv	5.00		99.0	70-130	0.811	25		
Chlorobenzene	5.03	0.5	ppbv	5.00		101	70-130	0.397	25		
Chloroethane	4.70	0.5	ppbv	5.00		94.0	70-130	1.72	25		
Chloroform	4.67	0.5	ppbv	5.00		93.4	70-130	0.214	25		
Chloromethane	4.58	0.5	ppbv	5.00		91.6	70-130	0.653	25		
cis-1,2-Dichloroethylene	4.76	0.5	ppbv	5.00		95.2	70-130	1.48	25		
cis-1,3-Dichloropropene	5.14	0.5	ppbv	5.00		103	70-130	0.390	25		
			••								

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

			En	itnaipy	Analyt	cal					
	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC0743 - No Prep VC	DC Air										
LCS Dup (BGC0743-BSD1)					Prep	bared &	Analyzed	: 03/21/20)23		
Cyclohexane	4.96	0.5	ppbv	5.00		99.2	70-130	0.202	25		
Dichlorodifluoromethane	4.65	0.5	ppbv	5.00		93.0	70-130	0.215	25		
Ethyl acetate	4.88	0.5	ppbv	5.00		97.6	70-130	0.409	25		
Ethylbenzene	5.14	0.5	ppbv	5.00		103	70-130	0.582	25		
leptane	4.83	0.5	ppbv	5.00		96.6	70-130	0.207	25		
lexane	4.78	0.5	ppbv	5.00		95.6	70-130	0.833	25		
n+p-Xylenes	10.3	1	ppbv	10.0		103	70-130	0.777	25		
lethylene chloride	4.88	1	ppbv	5.00		97.6	70-130	0.613	25		
lethyl-t-butyl ether (MTBE)	4.79	0.5	ppbv	5.00		95.8	70-130	0.417	25		
laphthalene	4.32	0.5	ppbv	5.00		86.4	60-140	5.84	25		
-Xylene	5.06	0.5	ppbv	5.00		101	70-130	0.787	25		
ropylene	4.75	1	ppbv	5.00		95.0	70-130	3.86	25		
Styrene	5.15	0.5	ppbv	5.00		103	70-130	0.581	25		
etrachloroethylene (PCE)	5.02	0.5	ppbv	5.00		100	70-130	0.596	25		
ētrahydrofuran	4.96	0.5	ppbv	5.00		99.2	70-130	0.607	25		
oluene	5.05	0.5	ppbv	5.00		101	70-130	1.60	25		
rans-1,2-Dichloroethylene	4.71	0.5	ppbv	5.00		94.2	70-130	0.212	25		
rans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00		105	70-130	0.00	25		
richloroethylene	5.03	0.5	ppbv	5.00		101	70-130	1.60	25		
richlorofluoromethane	4.72	0.5	ppbv	5.00		94.4	70-130	0.851	25		
/inyl acetate	4.69	0.5	ppbv	5.00		93.8	70-130	1.48	25		
/inyl bromide	4.70	0.5	ppbv	5.00		94.0	70-130	0.855	25		
'inyl chloride	4.73	0.5	ppbv	5.00		94.6	70-130	1.71	25		
Surr: 4-Bromofluorobenzene	5.07		ppbv	5.00		101	70-130				

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

Batch BGC0500 - No Prep VOC GC Air

Blank (BGC0500-BLK1)	Prepared & Analyzed: 03/14/2023								
Methane	<	0.05	Vol%						
Carbon dioxide	<	0.05	Vol%						
Oxygen (O2)	<	0.05	Vol%						
Nitrogen (N2)	<	1.00	Vol%						
Hydrogen (H2)	<	0.02	Vol%						
Carbon Monoxide	<	10.0	ppmv						
Carbon Monoxide	<	0.001	Vol%						
LCS (BGC0500-BS1)	Prepared & Analyzed: 03/14/2023								
Methane	4690	500	ppmv	5000	93.9	0-200			
Methane	4690	0.05	ppmv	5000	93.9	80-120			
Carbon dioxide	5230	500	ppmv	5000	105	0-200			
Carbon dioxide	5230	0.05	ppmv	5000	105	80-120			
Oxygen (O2)	5110	500	ppmv	5000	102	0-200			
Oxygen (O2)	5110	0.05	ppmv	5000	102	80-120			
Hydrogen (H2)	5910	200	ppmv	5100	116	0-200			
Nitrogen (N2)	5370	2000	ppmv	5000	107	0-200			
Nitrogen (N2)	5370	1	ppmv	5000	107	80-120			
Hydrogen (H2)	5910	0.02	ppmv	5100	116	80-120			
Carbon Monoxide	4880	10	ppmv	5000	97.7	0-200			
Carbon Monoxide	4880	0.001	ppmv	5000	97.7	80-120			
Duplicate (BGC0500-DUP1)		So	urce: 23C	0611-01	Prepared &	Analyzed: 03/14	/2023		
Methane	11.0	0.45	Vol%		11.1	0.199	9 5		
Methane	110000	4500	ppmv		111000	0.199	25		
Carbon dioxide	237000	4500	ppmv		235000	1.06	25		
Carbon dioxide	23.7	0.45	Vol%		23.5	1.06	5		
Oxygen (O2)	93800	4500	ppmv		93600	0.200	25		
Oxygen (O2)	9.38	0.45	Vol%		9.36	0.200) 5		
Hydrogen (H2)	2.34	0.18	Vol%		2.35	0.278	5 5		
Nitrogen (N2)	469000	18000	ppmv		469000	0.073	3 25		
Hydrogen (H2)	23400	1800	ppmv		23500	0.278	3 25		
Carbon Monoxide	0.01	0.009	Vol%		0.01	1.39	5		
Carbon Monoxide	131	90.0	ppmv		129	1.39	25		

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	

Batch BGC0500 - No Prep VOC GC Air

Duplicate (BGC0500-DUP2)		Sou	urce: 23C1038-0	1 Prepared & Ana	alyzed: 03/17/202	23
Methane	134000	4500	ppmv	134000	0.654	25
Methane	13.4	0.45	Vol%	13.4	0.654	5
Carbon dioxide	30.7	0.45	Vol%	31.0	0.911	5
Carbon dioxide	307000	4500	ppmv	310000	0.911	25
Oxygen (O2)	6.21	0.45	Vol%	6.22	0.209	5
Oxygen (O2)	62100	4500	ppmv	62200	0.209	25
Hydrogen (H2)	3.00	0.18	Vol%	3.08	2.63	5
Nitrogen (N2)	40.9	9.00	Vol%	41.1	0.473	5
Hydrogen (H2)	30000	1800	ppmv	30800	2.63	25
Nitrogen (N2)	409000	18000	ppmv	411000	0.473	25
Carbon Monoxide	0.02	0.009	Vol%	0.02	0.428	5
Carbon Monoxide	169	90.0	ppmv	168	0.428	25
Duplicate (BGC0500-DUP3)		Sou	urce: 23C1038-0	2 Prepared & Ana	alyzed: 03/17/202	23
Methane	204000	4500	ppmv	201000	1.59	25
Methane	20.4	0.45	Vol%	20.1	1.59	5
Carbon dioxide	55.9	0.45	Vol%	55.1	1.40	5
Carbon dioxide	559000	4500	ppmv	551000	1.40	25
Oxygen (O2)	1.28	0.45	Vol%	1.27	0.951	5
Oxygen (O2)	12800	4500	ppmv	12700	0.951	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Hydrogen (H2)	138000	1800	ppmv	136000	1.74	25
Nitrogen (N2)	43900	18000	ppmv	43400	1.19	25
Carbon Monoxide	874	90.0	ppmv	855	2.27	25
Carbon Monoxide	0.09	0.009	Vol%	0.09	2.27	5

Batch BGC0718 - No Prep VOC GC Air

Blank (BGC0718-BLK1)				Prepared & Analyzed: 03/20/2023
Methane	<	0.05	Vol%	
Carbon dioxide	<	0.05	Vol%	
Oxygen (O2)	<	0.05	Vol%	
Hydrogen (H2)	<	0.02	Vol%	
Nitrogen (N2)	<	1.00	Vol%	
Carbon Monoxide	<	0.001	Vol%	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

			En	itnaipy	Analyti	cai				
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0718 - No Prep VC	C GC Air									
LCS (BGC0718-BS1)					Prep	ared &	Analyzed	: 03/20/20)23	
Methane	4760	0.05	ppmv	5000		95.2	80-120			
Carbon dioxide	5840	0.05	ppmv	5000		117	80-120			
Oxygen (O2)	5190	0.05	ppmv	5000		104	80-120			
Nitrogen (N2)	5430	1	ppmv	5000		109	80-120			
Hydrogen (H2)	5830	0.02	ppmv	5100		114	80-120			
Carbon Monoxide	4950	0.001	ppmv	5000		99.0	80-120			
Duplicate (BGC0718-DUP1)		So	urce: 23C	1051-01	Prep	ared &	Analyzed	: 03/20/20)23	
Methane	38.3	0.45	Vol%		38.5			0.499	5	
Carbon dioxide	42.1	0.45	Vol%		42.3			0.546	5	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	11.4	9.00	Vol%		11.5			0.554	5	
Hydrogen (H2)	2.39	0.18	Vol%		2.40			0.567	5	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Duplicate (BGC0718-DUP2)		So	urce: 23C	1051-02	Prep	ared &	Analyzed	: 03/20/20)23	
Methane	38.3	0.45	Vol%		38.4			0.171	5	
Carbon dioxide	38.6	0.45	Vol%		38.6			0.0315	5	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	<	9.00	Vol%		<9.00	C		NA	5	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Duplicate (BGC0718-DUP3)		So	urce: 23C	1051-03	Prep	ared &	Analyzed	: 03/21/20)23	
Methane	36.9	0.45	Vol%		37.2			0.658	5	
Carbon dioxide	38.2	0.45	Vol%		38.4			0.498	5	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	14.1	9.00	Vol%		14.2			0.849	5	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

Batch BGC0718 - No Prep VOC GC Air

Duplicate (BGC0718-DUP4)		Sou	urce: 23C1051-04	Prepared & Ai	nalyzed: 03/21/202	23
Methane	37.3	0.45	Vol%	37.7	0.902	5
Carbon dioxide	45.2	0.45	Vol%	45.6	0.771	5
Oxygen (O2)	0.53	0.45	Vol%	0.55	2.83	5
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Hydrogen (H2)	4.46	0.18	Vol%	4.51	1.11	5
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Qualifiers and Definitions

- L LCS recovery is outside of established acceptance limits
- RPD Relative Percent Difference
- Qual Qualifers
- -RE Denotes sample was re-analyzed
- PF Preparation Factor
- MDL Method Detection Limit
- LOQ Limit of Quantitation
- ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

ENTHALPY A N A L Y T I C A L formerly Air, Water & Soil Laboratories

AIR ANALYSIS

10

		011 20	oorator	103			CHAIN	OF CUS	TODY	Ec	quipm	nent due	e 3/30/20	23					
COMPANY NAME	: SCS Fiel	d Servi	ces - Harri	sbu	rg IN	VOICE TO	: Same	1			PROJ	ECT NAM	IE/Quote #	E Bristo	bl				
CONTACT:					IN	VOICE CC	NTACT:	1		-	SITE	NAME:	bristal						
ADDRESS:					IN	VOICE AD	DRESS:				PROJ	ECT NUN	IBER: (17223	2014	. 0	Ð		
PHONE #:					IN	VOICE PH	ONE #:				P.O. #	ŧ:							
FAX #:			EN	1AIL	.:			1		1	Pretre	atment Pi	ogram:						
Is sample for comp	oliance rep	orting?	YES NO		Regulat	ory State:	VA Is:	sample fro	m a chlori	nated supp	oly?	YES O	10 PV	VS I.D. #:					
SAMPLER NAME	(PRINT):	yew	Seyn	Nor	Jr SA	MPLER S	IGNATUR	E: Pyc	in A	upro	Turn	Around T	ime: Circ	cle: 10 (5 Days	>	or		Day(s)
Matrix Codes: AA=Indoo	or/Ambient Air	SG=Soil				=Other	V			0		063	3-23B-001	4					
	Regulator	Info	Canister In	forn	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	nation		ies)	AN	AL١	/SIS
CLIENT						LAB	LAB	Barometric	Pres. (in Ho	1): 30.0	4	Barometri	c Pres. (in H	g): 30.	04	e Cod	0		by
SAMPLE I.D.	Flow Controller ID	Cal Flow (mUmin)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in ^{Hg)}	Receiving Canister Vacuum (in ^{Hg)}	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in ^{Hg)}	Starting Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in _{Hg)}	Ending Sample Temp °F	Matrix (se	Alt 145 CO	EPA 3C	Benzene I TO-15
1) 37			11293	1.4	230202-02	21.6	3.8	3/16/23	9:58 AM	28	148	10:00 19m	100	10	148	LG			x
2) 57			12383	1.4	230202-02	21.6	3.4	3/14/23	10:08 Am	28	146	10:10	3/16/23	10	147	LG	x	x	x
3)			12418	1.4	230202-02	21.6										LG	x	x	x
4)	z		14294	1.4	230126-02	21.6			×.							LG	x	x	x
RELINQUISHED:		-	3/11/29	REC	EIVED:		DAT	E / TIME	QC Data P	ackage LA	<u>310</u> в use	NOTE	Nosca						
	nu -		E / TIME 5:25		EIVED: Add	ExG		E / TIME	Level I Level II Level III				CS Field ristol	d Servic	ces	230	C1(038	3
	dexG				lleu	UMur	3/17/2	3[114	Level IV			R	ecd: 03/1	7/2023	Due:	03/2		2 02	
Extra	Box	NO	So	w	rple'	Col	Hected	. 01	d Be	x fo	und	-			[P	age	15	of 16

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 24, 2023 10:00
	4330 Lewis Road, Suite 1	Date Issued:	March 29, 2023 16:48
	Harrisburg, PA 17111	Project Number:	[none]
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/24/2023 10:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTAS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 24, 2023 10:00
	4330 Lewis Road, Suite 1	Date Issued:	March 29, 2023 16:48
	Harrisburg, PA 17111	Project Number:	[none]
Submitted To:	Tom Lock	Purchase Order:	07-SO04485
Client Site I.D.: Br	istol		

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
51	23C1352-02	Air	03/23/2023 13:33	03/24/2023 10:00

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS	3	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 21.6
Field Sample #: 51	Sub Description/Location:		Final Vacuum(in Hg): 12
Sample ID: 23C1352-02	Canister ID: 063-00084::12418		Receipt Vacuum(in Hg): 6.4
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 3/23/2023 13:33			Flow Controller ID:

Sample Type: LV

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as recei	ved basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	554	90.0	90.0		9	1	3/27/23 12:20	MER

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as receive EPA 3C	d basis			
		Vol%		EFA 30			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	12.6	0.45	0.45		9	1	3/27/23 12:20	MER
Carbon dioxide, as received	44.3	0.45	0.45		9	1	3/27/23 12:20	MER
Oxygen (O2), as received	5.35	0.45	0.45		9	1	3/27/23 12:20	MER
Hydrogen (H2), as received	8.90	0.54	0.54		27	1	3/27/23 15:04	MER
Nitrogen (N2), as received	19.2	9.00	9.00		9	1	3/27/23 12:20	MER
Carbon Monoxide, as received	0.06	0.009	0.009		9	1	3/27/23 12:20	MER

	Volatile Organic Compounds by GCMS EPA TO-15										
		ppbv				ug/M³		_		Date/Time	
Analyte	Results MDL LOQ		Flag/Qual	Results	MDL LOQ		Dilution	PF	Analyzed	Analyst	
Benzene	162000	2330	5830		520000	7500	19000	11700	1	3/28/23 10:50	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			101		6	30-120				3/28/23 10:50	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

- Analytical Summary

Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
pounds by GC/TCD - Unadjusted	d, as received basis	Preparation Method:	No Prep VOC GC Air	
1.00 mL / 1.00 mL	ALT-145	BGC0954	SGC0940	AG00026
1.00 mL / 1.00 mL	EPA 3C	BGC0954	SGC0940	AG00026
1.00 mL / 1.00 mL	EPA 3C	BGC0954	SGC0940	AG00026
Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
pounds by GCMS		Preparation Method:	No Prep VOC Air	
400 mL / 400 mL	EPA TO-15	BGC0743	SGC0974	AC30195
	Initial / Final pounds by GC/TCD - Unadjuster 1.00 mL / 1.00 mL 1.00 mL / 1.00 mL 1.00 mL / 1.00 mL Preparation Factors Initial / Final pounds by GCMS	Initial / Final Method pounds by GC/TCD - Unadjusted, as received basis 1.00 mL / 1.00 mL ALT-145 1.00 mL / 1.00 mL EPA 3C 1.00 mL / 1.00 mL EPA 3C Preparation Factors Initial / Final	Initial / FinalMethodBatch IDpounds by GC/TCD - Unadjusted, as received basisPreparation Method:1.00 mL / 1.00 mLALT-145BGC09541.00 mL / 1.00 mLEPA 3CBGC09541.00 mL / 1.00 mLEPA 3CBGC09541.00 mL / 1.00 mLMethodBatch IDPreparation Factors Initial / Finalpounds by GCMSPreparation Method:	Initial / FinalMethodBatch IDSequence IDpounds by GC/TCD - Unadjusted, as received basisPreparation Method:No Prep VOC GC Air1.00 mL / 1.00 mLALT-145BGC0954SGC09401.00 mL / 1.00 mLEPA 3CBGC0954SGC09401.00 mL / 1.00 mLEPA 3CBGC0954SGC09401.00 mL / 1.00 mLMethodBatch IDSequence IDPreparation Factors Initial / Finalpounds by GCMSPreparation Method:No Prep VOC Air

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0743 - No Prep VO	C Air									
Blank (BGC0743-BLK1)					Prep	ared & A	Analyzed	: 03/21/2	023	
Benzene	<	0.50	ppbv							
urr: 4-Bromofluorobenzene Surr)	4.90		ppbv	5.00		98.0	80-120			
_CS (BGC0743-BS1)					Prep	ared & A	Analyzed	: 03/21/2	023	
,1,1-Trichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130			
,1,2,2-Tetrachloroethane	5.19	0.5	ppbv	5.00		104	70-130			
,1,2-Trichloro-1,2,2-trifluoroetha	4.64	0.5	ppbv	5.00		92.8	70-130			
1.2 Trichloroothono	4.02	0.5	nnh (F 00		09.6	70-130			
1,1,2-Trichloroethane	4.93	0.5	ppbv	5.00		98.6				
,1-Dichloroethane	4.59	0.5	ppbv	5.00		91.8 02.2	70-130 70-130			
,1-Dichloroethylene	4.66	0.5	ppbv	5.00		93.2				
,2,4-Trimethylbenzene	5.23	0.5	ppbv	5.00		105	70-130			
,2-Dibromoethane (EDB)	5.12	0.5	ppbv	5.00		102	70-130 70-130			
,2-Dichlorobenzene	5.48	0.5	ppbv	5.00		110				
,2-Dichloroethane	4.96	0.5	ppbv	5.00		99.2 08.0	70-130			
,2-Dichloropropane	4.90	0.5	ppbv	5.00		98.0 04.0	70-130 70-130			
,2-Dichlorotetrafluoroethane	4.70	0.5	ppbv	5.00		94.0				
,3,5-Trimethylbenzene	5.20	0.5	ppbv	5.00 5.00		104	70-130 70-130			
,3-Butadiene ,3-Dichlorobenzene	4.57 5.35	0.5 0.5	ppbv ppbv	5.00 5.00		91.4 107	70-130			
, 3-Dichlorobenzene	5.35	0.5	ppbv	5.00		107	70-130			
I,4-Dioxane	5.37	0.5	ppbv	5.00 5.00		107	70-130			
2-Butanone (MEK)	4.55	0.5	ppbv	5.00		91.0	70-130			
I-Methyl-2-pentanone (MIBK)	4.55 5.13	0.5	ppbv	5.00		103	70-130			
Allyl chloride	4.49	0.5	ppbv	5.00		89.8	70-130			
Benzene	4.49	0.5	ppbv	5.00		98.6	70-130			
Benzyl Chloride	4.93	0.5	ppbv	5.00		96.8	70-130			
Bromodichloromethane	4.64	0.5	ppbv	5.00		90.8 92.4	70-130			
Bromoform	4.02 0.98	0.5	ppbv	5.00		92.4 19.6	70-130			L
Bromomethane	4.81	0.5	ppbv	5.00		96.2	70-130			L
Carbon Disulfide	4.61	0.5	ppbv	5.00		90.2 90.0	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

					Analyti					
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0743 - No Prep V	/OC Air									
LCS (BGC0743-BS1)					Prep	ared & A	Analyzed	: 03/21/2	023	
Carbon Tetrachloride	4.91	0.5	ppbv	5.00		98.2	70-130			
Chlorobenzene	5.05	0.5	ppbv	5.00		101	70-130			
Chloroethane	4.62	0.5	ppbv	5.00		92.4	70-130			
Chloroform	4.66	0.5	ppbv	5.00		93.2	70-130			
Chloromethane	4.61	0.5	ppbv	5.00		92.2	70-130			
cis-1,2-Dichloroethylene	4.69	0.5	ppbv	5.00		93.8	70-130			
cis-1,3-Dichloropropene	5.12	0.5	ppbv	5.00		102	70-130			
Cyclohexane	4.95	0.5	ppbv	5.00		99.0	70-130			
Dichlorodifluoromethane	4.66	0.5	ppbv	5.00		93.2	70-130			
Ethyl acetate	4.90	0.5	ppbv	5.00		98.0	70-130			
Ethylbenzene	5.17	0.5	ppbv	5.00		103	70-130			
Heptane	4.82	0.5	ppbv	5.00		96.4	70-130			
Hexane	4.82	0.5	ppbv	5.00		96.4	70-130			
m+p-Xylenes	10.3	1	ppbv	10.0		103	70-130			
Methylene chloride	4.91	1	ppbv	5.00		98.2	70-130			
Methyl-t-butyl ether (MTBE)	4.81	0.5	ppbv	5.00		96.2	70-130			
Naphthalene	4.58	0.5	ppbv	5.00		91.6	60-140			
o-Xylene	5.10	0.5	ppbv	5.00		102	70-130			
Propylene	4.57	1	ppbv	5.00		91.4	70-130			
Styrene	5.18	0.5	ppbv	5.00		104	70-130			
Tetrachloroethylene (PCE)	5.05	0.5	ppbv	5.00		101	70-130			
Tetrahydrofuran	4.93	0.5	ppbv	5.00		98.6	70-130			
Toluene	4.97	0.5	ppbv	5.00		99.4	70-130			
trans-1,2-Dichloroethylene	4.72	0.5	ppbv	5.00		94.4	70-130			
trans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00		105	70-130			
Trichloroethylene	4.95	0.5	ppbv	5.00		99.0	70-130			
Trichlorofluoromethane	4.68	0.5	ppbv	5.00		93.6	70-130			
√inyl acetate	4.76	0.5	ppbv	5.00		95.2	70-130			
Vinyl bromide	4.66	0.5	ppbv	5.00		93.2	70-130			
Vinyl chloride	4.65	0.5	ppbv	5.00		93.0	70-130			
Surr: 4-Bromofluorobenzene (Surr)	5.10		ppbv	5.00		102	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical											
	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC0743 - No Prep VO	C Air										
LCS Dup (BGC0743-BSD1)					Prep	bared &	Analyzed	: 03/21/20	023		
1,1,1-Trichloroethane	5.00	0.5	ppbv	5.00		100	70-130	0.803	25		
1,1,2,2-Tetrachloroethane	5.12	0.5	ppbv	5.00		102	70-130	1.36	25		
1,1,2-Trichloro-1,2,2-trifluoroetha ne	4.68	0.5	ppbv	5.00		93.6	70-130	0.858	25		
1,1,2-Trichloroethane	5.02	0.5	ppbv	5.00		100	70-130	1.81	25		
1,1-Dichloroethane	4.62	0.5	ppbv	5.00		92.4	70-130	0.651	25		
1,1-Dichloroethylene	4.68	0.5	ppbv	5.00		93.6	70-130	0.428	25		
1,2,4-Trimethylbenzene	5.18	0.5	ppbv	5.00		104	70-130	0.961	25		
1,2-Dibromoethane (EDB)	5.08	0.5	ppbv	5.00		102	70-130	0.784	25		
1,2-Dichlorobenzene	5.42	0.5	ppbv	5.00		108	70-130	1.10	25		
1,2-Dichloroethane	4.98	0.5	ppbv	5.00		99.6	70-130	0.402	25		
1,2-Dichloropropane	4.90	0.5	ppbv	5.00		98.0	70-130	0.00	25		
1,2-Dichlorotetrafluoroethane	4.84	0.5	ppbv	5.00		96.8	70-130	2.94	25		
1,3,5-Trimethylbenzene	5.11	0.5	ppbv	5.00		102	70-130	1.75	25		
1,3-Butadiene	4.48	0.5	ppbv	5.00		89.6	70-130	1.99	25		
1,3-Dichlorobenzene	5.35	0.5	ppbv	5.00		107	70-130	0.00	25		
1,4-Dichlorobenzene	5.32	0.5	ppbv	5.00		106	70-130	0.935	25		
1,4-Dioxane	5.57	0.5	ppbv	5.00		111	70-130	1.81	25		
2-Butanone (MEK)	4.55	0.5	ppbv	5.00		91.0	70-130	0.00	25		
4-Methyl-2-pentanone (MIBK)	5.25	0.5	ppbv	5.00		105	70-130	2.31	25		
Allyl chloride	4.41	0.5	ppbv	5.00		88.2	70-130	1.80	25		
Benzene	4.96	0.5	ppbv	5.00		99.2	70-130	0.607	25		
Benzyl Chloride	4.77	0.5	ppbv	5.00		95.4	70-130	1.46	25		
Bromodichloromethane	4.66	0.5	ppbv	5.00		93.2	70-130	0.862	25		
Bromoform	0.97	0.5	ppbv	5.00		19.4	70-130	1.03	25	L	
Bromomethane	4.96	0.5	ppbv	5.00		99.2	70-130	3.07	25		
Carbon Disulfide	4.51	0.5	ppbv	5.00		90.2	70-130	0.222	25		
Carbon Tetrachloride	4.95	0.5	ppbv	5.00		99.0	70-130	0.811	25		
Chlorobenzene	5.03	0.5	ppbv	5.00		101	70-130	0.397	25		
Chloroethane	4.70	0.5	ppbv	5.00		94.0	70-130	1.72	25		
Chloroform	4.67	0.5	ppbv	5.00		93.4	70-130	0.214	25		
Chloromethane	4.58	0.5	ppbv	5.00		91.6	70-130	0.653	25		
cis-1,2-Dichloroethylene	4.76	0.5	ppbv	5.00		95.2	70-130	1.48	25		
cis-1,3-Dichloropropene	5.14	0.5	ppbv	5.00		103	70-130	0.390	25		
			••								

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

			En	itnaipy	Analyt	cal				
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0743 - No Prep VC	DC Air									
LCS Dup (BGC0743-BSD1)					Prep	bared &	Analyzed	: 03/21/20	023	
Cyclohexane	4.96	0.5	ppbv	5.00		99.2	70-130	0.202	25	
Dichlorodifluoromethane	4.65	0.5	ppbv	5.00		93.0	70-130	0.215	25	
Ethyl acetate	4.88	0.5	ppbv	5.00		97.6	70-130	0.409	25	
Ethylbenzene	5.14	0.5	ppbv	5.00		103	70-130	0.582	25	
leptane	4.83	0.5	ppbv	5.00		96.6	70-130	0.207	25	
Hexane	4.78	0.5	ppbv	5.00		95.6	70-130	0.833	25	
n+p-Xylenes	10.3	1	ppbv	10.0		103	70-130	0.777	25	
lethylene chloride	4.88	1	ppbv	5.00		97.6	70-130	0.613	25	
/lethyl-t-butyl ether (MTBE)	4.79	0.5	ppbv	5.00		95.8	70-130	0.417	25	
laphthalene	4.32	0.5	ppbv	5.00		86.4	60-140	5.84	25	
-Xylene	5.06	0.5	ppbv	5.00		101	70-130	0.787	25	
Propylene	4.75	1	ppbv	5.00		95.0	70-130	3.86	25	
Styrene	5.15	0.5	ppbv	5.00		103	70-130	0.581	25	
Fetrachloroethylene (PCE)	5.02	0.5	ppbv	5.00		100	70-130	0.596	25	
Fetrahydrofuran	4.96	0.5	ppbv	5.00		99.2	70-130	0.607	25	
Toluene	5.05	0.5	ppbv	5.00		101	70-130	1.60	25	
rans-1,2-Dichloroethylene	4.71	0.5	ppbv	5.00		94.2	70-130	0.212	25	
rans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00		105	70-130	0.00	25	
Frichloroethylene	5.03	0.5	ppbv	5.00		101	70-130	1.60	25	
Frichlorofluoromethane	4.72	0.5	ppbv	5.00		94.4	70-130	0.851	25	
/inyl acetate	4.69	0.5	ppbv	5.00		93.8	70-130	1.48	25	
/inyl bromide	4.70	0.5	ppbv	5.00		94.0	70-130	0.855	25	
/inyl chloride	4.73	0.5	ppbv	5.00		94.6	70-130	1.71	25	
Surr: 4-Bromofluorobenzene	5.07		ppbv	5.00		101	70-130			

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

Batch BGC0954 - No Prep VOC GC Air

Blank (BGC0954-BLK1)					Prepared &	Analyzed: 03/27/2	023		
Methane	<	0.05	Vol%						
Carbon dioxide	<	0.05	Vol%						
Oxygen (O2)	<	0.05	Vol%						
Nitrogen (N2)	<	1.00	Vol%						
Hydrogen (H2)	<	0.02	Vol%						
Carbon Monoxide	<	10.0	ppmv						
Carbon Monoxide	<	0.001	Vol%						
LCS (BGC0954-BS1)		Prepared & Analyzed: 03/27/2023							
Methane	4640	500	ppmv	5000	92.8	0-200			
Methane	4640	0.05	ppmv	5000	92.8	80-120			
Carbon dioxide	5400	500	ppmv	5000	108	0-200			
Carbon dioxide	5400	0.05	ppmv	5000	108	80-120			
Oxygen (O2)	5060	500	ppmv	5000	101	0-200			
Oxygen (O2)	5060	0.05	ppmv	5000	101	80-120			
Nitrogen (N2)	5300	2000	ppmv	5000	106	0-200			
Hydrogen (H2)	5910	200	ppmv	5100	116	0-200			
Hydrogen (H2)	5910	0.02	ppmv	5100	116	80-120			
Nitrogen (N2)	5300	1	ppmv	5000	106	80-120			
Carbon Monoxide	4840	10	ppmv	5000	96.8	0-200			
Carbon Monoxide	4840	0.001	ppmv	5000	96.8	80-120			
Duplicate (BGC0954-DUP1)		So	urce: 23C	1352-02	Prepared &	Analyzed: 03/27/2	023		
Methane	125000	4500	ppmv		126000	1.28	25		
Methane	12.5	0.45	Vol%		12.6	1.28	5		
Carbon dioxide	43.3	0.45	Vol%		44.3	2.29	5		
Carbon dioxide	433000	4500	ppmv		443000	2.29	25		
Oxygen (O2)	53000	4500	ppmv		53500	0.925	25		
Oxygen (O2)	5.30	0.45	Vol%		5.35	0.925	5		
Hydrogen (H2)	91700	1800	ppmv		91800	0.0737	25		
Nitrogen (N2)	190000	18000	ppmv		192000	0.971	25		
Nitrogen (N2)	19.0	9.00	Vol%		19.2	0.971	5		
Carbon Monoxide	552	90.0	ppmv		554	0.407	25		
Carbon Monoxide	0.06	0.009	Vol%		0.06	0.407	5		

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	Reporting		Spike	Source		%REC		RPD	
Analyte Resul	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch BGC0954 - No Prep VOC GC Air

Duplicate (BGC0954-DUP2)		So	urce: 23C1480-01	Prepared & A	Analyzed: 03/28/202	23
Methane	183000	4500	ppmv	180000	1.38	25
Methane	18.3	0.45	Vol%	18.0	1.38	5
Carbon dioxide	208000	4500	ppmv	207000	0.499	25
Carbon dioxide	20.8	0.45	Vol%	20.7	0.499	5
Oxygen (O2)	52500	4500	ppmv	52000	0.938	25
Oxygen (O2)	5.25	0.45	Vol%	5.20	0.938	5
Hydrogen (H2)	<	1800	ppmv	<1800	NA	25
Nitrogen (N2)	516000	18000	ppmv	509000	1.41	25
Hydrogen (H2)	<	0.18	Vol%	<0.18	NA	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5
Duplicate (BGC0954-DUP3)		So	urce: 23C1480-02	Prepared & A	Analyzed: 03/28/202	23
Methane	325000	4500	ppmv	328000	0.944	25
Methane	32.5	0.45	Vol%	32.8	0.944	5
Carbon dioxide	348000	4500	ppmv	352000	1.05	25
Carbon dioxide	34.8	0.45	Vol%	35.2	1.05	5
0	0000	4500		6040	0.0403	25
Oxygen (O2)	6030	4500	ppmv	6040	0.0100	20
Oxygen (O2) Oxygen (O2)	0.60	4500 0.45	ppmv Vol%	0.60	0.0403	5
Oxygen (O2)	0.60	0.45	Vol%	0.60	0.0403	5
Oxygen (O2) Hydrogen (H2)	0.60 76600	0.45 1800	Vol% ppmv	0.60 77500	0.0403 1.19	5 25
Oxygen (O2) Hydrogen (H2) Nitrogen (N2)	0.60 76600 156000	0.45 1800 18000	Vol% ppmv ppmv	0.60 77500 157000	0.0403 1.19 1.04	5 25 25

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

L	LCS recovery is outside of established acceptance limits
RPD	Relative Percent Difference
Qual	Qualifers
-RE	Denotes sample was re-analyzed
PF	Preparation Factor
MDL	Method Detection Limit
LOQ	Limit of Quantitation

ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

E. μ đ **AIR ANALYSIS** Page 12 formerly Air, Water & Soil Laboratories CHAIN OF CUSTODY Equipment due 3/30/2023 INVOICE TO: COMPANY NAME: SCS Field Services - Harrisburg Same PROJECT NAME/Quote #: Bristol CONTACT: INVOICE CONTACT: SITE NAME: INVOICE ADDRESS: PROJECT NUMBER: ADDRESS: INVOICE PHONE #: P.O. #: PHONE #: FAX #: EMAIL: Pretreatment Program: Is sample from a chlorinated supply? Is sample for compliance reporting? YES PWS I.D. #: YES NO Regulatory State: \/ 4-NO SAMPLER SIGNATURE: Turn Around Time: Circle: 10 5 Days or _ Day(s) SAMPLER NAME (PRINT): 063-23B-0014 Matrix Codes: AA=Indoor/Amblent Air SG=Soil Gas LV=Landfill/Vent Gas OT=Other_ ANALYSIS **Canister Information** Sampling Start Information Sampling Stop Information Regulator Info Codes) Barometric Pres. (in Hg): **Barometric Pres. (in Hg):** à LAB LAB 8 CLIENT (See Benzene I TO-15 Outgoing Receiving Initial Final SAMPLE I.D. Alt 145 (EPA 3C Matrix Flow Cal E Canister Canister Canister Canister Starting Ending Controller Size Start Time Stop Time Flow Vacuum (in Vacuum (in Vacuum (in Vacuum (in Sample Sample Cleaning (mUmin) Canister ID Start Date (24hr clock) Stop Date Temp *F **ID** Batch ID Hg) Hg) Ha) Temp *F (24hr clock) Hg) >79/w LGX 11293 1.4 230202-02 21.6 Х Х 1) 1 No Sand 14308 23012601 DIÝ 23 Ì N 12383 21.6 143 -230202-0Z NOT 2) 1.4 Х 23 123 SAMRI 1651LG X Å 12418 1.4 230202-02 21.6 3) х 23 6.4" 2Bim 9. 1453 LG x x 14294 230126-02 21.6 1.4 Х 123 AQRENVED FOR THIS TEMP. DIRAGE + DISPOSE. THANKS 310 ¥555 CANCE 15 RECEIVED: DATE / TIME LAB USE ONLY RELINQUISHED: **QC Data Package** Ē Feder Fed ex E 9 Lo. Level I DATE / TIME RELINQUISHED: DATE / TIME RECEIVED: **SCS Field Services** in ohnen Level II Fedar E 3/24/23 1000 NO SENI 23C1352 Bristol RELINQUISHED: DATE / TIME RECEIVED DATE / TIME Level III Recd: 03/24/2023 Due: 03/31/2023 Level IV

v130325002

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Sample Conditions Checklist

Samples Received at:	20.90°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Analysis for sample -03: 46 not required per Tom Lock via email. MRS 03/24/213 1332

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 30, 2023 16:03
	4330 Lewis Road, Suite 1	Date Issued:	April 6, 2023 17:34
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/30/2023 16:03. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTAS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 30, 2023 16:03
	4330 Lewis Road, Suite 1	Date Issued:	April 6, 2023 17:34
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
51	23C1681-01	Air	03/29/2023 12:25	03/30/2023 16:03
57	23C1681-02	Air	03/29/2023 12:14	03/30/2023 16:03
37	23C1681-03	Air	03/29/2023 11:59	03/30/2023 16:03

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESUL	тѕ	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 27
Field Sample #: 51	Sub Description/Location:		Final Vacuum(in Hg): 2.2
Sample ID: 23C1681-01	Canister ID: 063-00475::15039		Receipt Vacuum(in Hg): 2.2
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 3/29/2023 12:25			Flow Controller ID:

Sample Type: LG

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as	s received basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	1430	90.0	90.0		9	1	4/3/23 11:17	MER

	Vola	atile Organi	c Compou	nds by GC/TCD - Unadjusted, as received basis	5			
		Vol%		EPA 3C			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	4.48	0.45	0.45		9	1	4/3/23 11:17	MER
Carbon dioxide, as received	62.3	0.45	0.45		9	1	4/3/23 11:17	MER
Oxygen (O2), as received	1.84	0.45	0.45	С	9	1	4/3/23 11:17	MER
Hydrogen (H2), as received	25.8	1.62	1.62		81	1	4/3/23 14:25	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	4/3/23 11:17	MER
Carbon Monoxide, as received	0.14	0.009	0.009		9	1	4/3/23 11:17	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 27
Field Sample #: 57	Sub Description/Location:		Final Vacuum(in Hg): 4.6
Sample ID: 23C1681-02	Canister ID: 063-00473::15043		Receipt Vacuum(in Hg): 4.6
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 3/29/2023 12:14			Flow Controller ID:

Sample Type: LG

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received bas	sis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	884	90.0	90.0		9	1	4/3/23 12:08	MER

	Vola	atile Organi Vol%	c Compour	ids by GC/TCD - Unadjusted, as received bas EPA 3C	sis			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	18.5	0.45	0.45		9	1	4/3/23 12:08	MER
Carbon dioxide, as received	48.2	0.45	0.45		9	1	4/3/23 12:08	MER
Oxygen (O2), as received	3.57	0.45	0.45	С	9	1	4/3/23 12:08	MER
Hydrogen (H2), as received	11.1	1.08	1.08		54	1	4/3/23 14:10	MER
Nitrogen (N2), as received	16.9	9.00	9.00		9	1	4/3/23 12:08	MER
Carbon Monoxide, as received	0.09	0.009	0.009		9	1	4/3/23 12:08	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS	3	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 28
Field Sample #: 37	Sub Description/Location:		Final Vacuum(in Hg): 3.0
Sample ID: 23C1681-03	Canister ID: 063-00268::13370		Receipt Vacuum(in Hg): 3.0
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 3/29/2023 11:59			Flow Controller ID:

Sample Type: LG

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as rece	eived basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	167	90.0	90.0		9	1	4/3/23 13:00	MER

	Vola	atile Organi	c Compou	nds by GC/TCD - Unadjusted, as received basis	S			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	12.3	0.45	0.45		9	1	4/3/23 13:00	MER
Carbon dioxide, as received	28.6	0.45	0.45		9	1	4/3/23 13:00	MER
Oxygen (O2), as received	6.13	0.45	0.45	С	9	1	4/3/23 13:00	MER
Hydrogen (H2), as received	3.07	0.18	0.18		9	1	4/3/23 13:00	MER
Nitrogen (N2), as received	43.1	9.00	9.00		9	1	4/3/23 13:00	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	4/3/23 13:00	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23C1681-01	1.00 mL / 1.00 mL	ALT-145	BGC1179	SGD0023	AG00026
23C1681-02	1.00 mL / 1.00 mL	ALT-145	BGC1179	SGD0023	AG00026
23C1681-03	1.00 mL / 1.00 mL	ALT-145	BGC1179	SGD0023	AG00026
23C1681-01	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-02	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-03	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical												
	R	Reporting		Spike	Source		%REC		RPD			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual		
Batch BGC1179 - No Prep V	OC GC Air											
Blank (BGC1179-BLK1)					Prep	pared &	Analyzed	: 03/31/20	023			
Methane	<	0.05	Vol%									
Carbon dioxide	<	0.05	Vol%									
Oxygen (O2)	<	0.05	Vol%									
Hydrogen (H2)	<	0.02	Vol%									
Nitrogen (N2)	<	1.00	Vol%									
Carbon Monoxide	<	10.0	ppmv									
Carbon Monoxide	<	0.001	Vol%									
LCS (BGC1179-BS1)					Prep	bared &	Analyzed	: 03/31/20	023			
Methane	4740	500	ppmv	5000		94.9	0-200					
Methane	4740	0.05	ppmv	5000		94.9	80-120					
Carbon dioxide	4400	500	ppmv	5000		88.0	0-200					
Carbon dioxide	4400	0.05	ppmv	5000		88.0	80-120					
Oxygen (O2)	5150	500	ppmv	5000		103	0-200					
Oxygen (O2)	5150	0.05	ppmv	5000		103	80-120					
Hydrogen (H2)	5880	200	ppmv	5100		115	0-200					
Nitrogen (N2)	5450	2000	ppmv	5000		109	0-200					
Nitrogen (N2)	5450	1	ppmv	5000		109	80-120					
Hydrogen (H2)	5880	0.02	ppmv	5100		115	80-120					
Carbon Monoxide	4940	10	ppmv	5000		98.8	0-200					
Carbon Monoxide	4940	0.001	ppmv	5000		98.8	80-120					
Duplicate (BGC1179-DUP1)		So	urce: 23C	1537-01	Prep	bared &	Analyzed	: 03/31/20	023			
Methane	325000	4500	ppmv		32800	00		0.935	25			
Methane	32.5	0.45	Vol%		32.8	3		0.934	5			
Carbon dioxide	372000	4500	ppmv		37600	00		1.15	25			
Carbon dioxide	37.2	0.45	Vol%		37.6	6		1.15	5			
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25			
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5			
Hydrogen (H2)	151000	1800	ppmv		15200	00		0.704	25			
Nitrogen (N2)	10.9	9.00	Vol%		11.0)		0.809	5			
Nitrogen (N2)	109000	18000	ppmv		11000	00		0.809	25			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	Reporting			Spike	Source %REC					
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch BGC1179 - No Prep VOC GC Air

Duplicate (BGC1179-DUP1) Source: 23C1537-01 Prepared & Analyzed: 03/31/202	Prepared & Analyzed: 03/31/2023					
Carbon Monoxide 182 90.0 ppmv 180 1.19	25					
Carbon Monoxide 0.02 0.009 Vol% 0.02 1.19	5					
Duplicate (BGC1179-DUP2) Source: 23C1537-02 Prepared & Analyzed: 03/31/202	23					
Methane 354000 4500 ppmv 356000 0.576	25					
Methane 35.4 0.45 Vol% 35.6 0.576	5					
Carbon dioxide 368000 4500 ppmv 367000 0.218	25					
Carbon dioxide 36.8 0.45 Vol% 36.7 0.218	5					
Oxygen (O2) 4500 4500 ppmv 4500 0.0320	25					
Oxygen (O2) 0.45 0.45 Vol% 0.45 0.0320	5					
Hydrogen (H2) 103000 1800 ppmv 104000 0.362	25					
Nitrogen (N2) 98700 18000 ppmv 99200 0.445	25					
Nitrogen (N2) 9.87 9.00 Vol% 9.92 0.445	5					
Carbon Monoxide 0.01 0.009 Vol% 0.01 3.98	5					
Carbon Monoxide 113 90.0 ppmv 118 3.98	25					
Duplicate (BGC1179-DUP3) Source: 23C1537-03 Prepared & Analyzed: 03/31/202	23					
Methane 51100 4500 ppmv 49600 2.91	25					
Methane 5.11 0.45 Vol% 4.96 2.91	5					
Carbon dioxide 365000 4500 ppmv 366000 0.168	25					
Carbon dioxide 36.5 0.45 Vol% 36.6 0.168	5					
Oxygen (O2) < 4500 ppmv <4500 NA	25					
Oxygen (O2) < 0.45 Vol% <0.45 NA	5					
Nitrogen (N2) < 18000 ppmv <18000 NA	25					
Hydrogen (H2) 656000 1800 ppmv 654000 0.289	25					
Nitrogen (N2) < 9.00 Vol% <9.00 NA	5					
Carbon Monoxide 545 90.0 ppmv 545 0.0825	25					
Carbon Monoxide 0.05 0.009 Vol% 0.05 0.0825	5					

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	Reporting			Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC1179 - No Prep VO											

Duplicate (BGC1179-DUP4)		So	urce: 23C1537-04	Prepared & A	nalyzed: 03/31/202	23
Methane	495000	4500	ppmv	494000	0.197	25
Methane	49.5	0.45	Vol%	49.4	0.197	5
Carbon dioxide	358000	4500	ppmv	358000	0.0120	25
Carbon dioxide	35.8	0.45	Vol%	35.8	0.0119	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Hydrogen (H2)	51000	1800	ppmv	50400	1.03	25
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Carbon Monoxide	100	90.0	ppmv	103	2.13	25
Carbon Monoxide	0.01	0.009	Vol%	0.01	2.13	5
Duplicate (BGC1179-DUP5)		So	urce: 23C1681-01	Prepared & A	nalyzed: 04/03/202	23
Methane	44500	4500	ppmv	44800	0.529	25
Methane	4.45	0.45	Vol%	4.48	0.529	5
Carbon dioxide	61.7	0.45	Vol%	62.3	0.827	5
Carbon dioxide	617000	4500	ppmv	623000	0.827	25
Oxygen (O2)	1.82	0.45	Vol%	1.84	0.913	5
Oxygen (O2)	18200	4500	ppmv	18400	0.913	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Nitrogen (N2)	62700	18000	ppmv	63500	1.24	25
Hydrogen (H2)	261000	1800	ppmv	264000	0.954	25
Carbon Monoxide	1420	90.0	ppmv	1430	0.785	25
Carbon Monoxide	0.14	0.009	Vol%	0.14	0.785	5
Duplicate (BGC1179-DUP6)		So	urce: 23C1681-02	Prepared & A	nalyzed: 04/03/202	23
Methane	185000	4500	ppmv	185000	0.0304	25
Methane	18.5	0.45	Vol%	18.5	0.0304	5
Carbon dioxide	484000	4500	ppmv	482000	0.269	25
Carbon dioxide	48.4	0.45	Vol%	48.2	0.269	5
Oxygen (O2)	35800	4500	ppmv	35700	0.0408	25
Oxygen (O2)	3.58	0.45	Vol%	3.57	0.0408	5
Hydrogen (H2)	119000	1800	ppmv	119000	0.0497	25
Nitrogen (N2)	168000	18000	ppmv	169000	0.0671	25
Nitrogen (N2)	16.8	9.00	Vol%	16.9	0.0671	5

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch BGC1179 - No Prep VOC GC Air

Duplicate (BGC1179-DUP6)		So	urce: 23C1681-02	Prepared & Analyzed: 04/03/2023				
Carbon Monoxide	890	90.0	ppmv	884	0.629	25		
Carbon Monoxide	0.09	0.009	Vol%	0.09	0.629	5		
Duplicate (BGC1179-DUP7)		So	urce: 23C1681-03	Prepared & A	nalyzed: 04/03/202	23		
Methane	12.3	0.45	Vol%	12.3	0.00188	5		
Methane	123000	4500	ppmv	123000	0.00187	25		
Carbon dioxide	284000	4500	ppmv	286000	0.721	25		
Carbon dioxide	28.4	0.45	Vol%	28.6	0.721	5		
Oxygen (O2)	60900	4500	ppmv	61300	0.625	25		
Oxygen (O2)	6.09	0.45	Vol%	6.13	0.625	5		
lydrogen (H2)	30700	1800	ppmv	30700	0.201	25		
Nitrogen (N2)	429000	18000	ppmv	431000	0.466	25		
Nitrogen (N2)	42.9	9.00	Vol%	43.1	0.466	5		
Hydrogen (H2)	3.07	0.18	Vol%	3.07	0.201	5		
Carbon Monoxide	166	90.0	ppmv	167	0.216	25		
Carbon Monoxide	0.02	0.009	Vol%	0.02	0.216	5		

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Service 4330 Lewis Road	es - Harrisburg, PA , Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34		
	Harrisburg, PA 17	'111				
Submitted To:	Tom Lock		Project Number:	07223016.00		
Client Site I.D.:	Bristol		Purchase Order:	07-SO04485		
Code		Description	Laboratory ID	Expires		
MdDOE		Maryland DE Drinking Water	341	12/31/2023		
NC		North Carolina DENR	495	12/31/2023		
NCDEQ		North Carolina DEQ	495	12/31/2023		
NCDOH		North Carolina Department of Health	51714	07/31/2023		
NYDOH		New York DOH Drinking Water	12069	04/01/2024		
PADEP		NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023		
SCDHEC		South Carolina Dept of Health and Environment	ntal 93016	06/14/2023		
VELAP		NELAP-Virginia Certificate #12333	460021	06/14/2023		
WVDEP		West Virginia DEP	350	11/30/2023		

Qualifiers and Definitions

C Continuing calibration verification response for this analyte is outside specifications.

- RPD Relative Percent Difference
- Qual Qualifers

- -RE Denotes sample was re-analyzed
- PF Preparation Factor
- MDL Method Detection Limit
- LOQ Limit of Quantitation
- ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

.

AIR ANALYSIS

10	CHAIN OF CUST										E	Equipment due 4/11/2023 Page 2					? of 2			
CO	MPANY NAME:	SCS Field	d Servio	ces - Harri	sbu	rg IN	VOICE TO	: Same				PROJ	ECT NAM	E/Quote #	: Bristo					
CO	NTACT:					IN	VOICE CO	NTACT:				SITE NAME:								
ADI	DRESS:					IN	VOICE AD	DRESS:				PROJECT NUMBER: 0723616,00								
PH	ONE #:					IN	VOICE PH	ONE #:				P.O. #:								
FA)	(#:			EN	1AIL					_		Pretre	atment Pr	ogram:						
Is sample for compliance reporting? (ES) NO Regulatory State: VA Is sample from a chlorinated s												ply?	YES (N	IO) PV	VS I.D. #:	_				
SAMPLER NAME (PRINT): Logan Culhane SAMPLER SIGNATURE: Turn Around Time: Circle: 10													5 Days)	or	—	Day(s)			
Matri	x Codes: AA=Indooi	r/Ambient Air	SG=Soil	Gas LV=Land	IfillA	/ent Gas OT	=Other						063	-23C-000	4	_				
		Regulator	Info	Canister In	forn	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	nation		Codes)	AN		/SIS
	CLIENT						LAB	LAB	Barometric	Pres. (in Ho		1	Barometric	: Pres. (in H			ပိ ခ	<u></u>		ξeν
	SAMPLE I.D.	Flow	Cal		E		Outgoing Canister	Receiving Canister			Initial Canister	Starting			Final Canister	Ending	rix (s	45 0		H Y MAREN
		Controller ID	Flow	Canister ID	2	Cleaning Batch ID	Vacuum (in Hg)	Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Vacuum (ir Hg)	Sample	Stop Date	Stop Time (24hr clock)	Vacuum (in Hg)	Sample Temp *F	Matrix (see co	Alt 1	ပ္က	μY
1)	51			15039		230307-01	20	2.2	3/29/23	12:23 pm	27	169.3	3/29/13	12:25 pm	9	169.8				X
2)	57			15043	1.4	230307-01	20	4.6	3/29	12:12 em @1	27	162	3/27/ 23	12:14 PM	9	151.7	LG	x	x	χ
3)	.37			13370	1.4	230307-01	20	3.0 0		11:54	28	150.6	³ / _{27/} /23	11:59	10	, Sr	LG	x	x	×
4)																				
	/										310	noice	nos	cal 2	1.0%					
REL		ex		4:159 E / TIME E / TIME	n REC	CEIVED:	DATE / TIME QC Data Package LA Level I \Box Main $\frac{3/30/23}{0/23}$ Level II \Box Level II \Box Level II \Box Level II \Box E					LAB USE ONLY SCS Field Services 23C1681 Bristol Recd: 03/30/2023 Due: 04/06/2023 v130325002								
																Ľ	Pa	age	12	of 13

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34	
	Harrisburg, PA 17111			
Submitted To:	Tom Lock	Project Number:	07223016.00	
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485	

Sample Conditions Checklist

Samples Received at:	21.00°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Attachment 4

Daily Logs

SCS FIELD SERVICES

DAILY LOG

JOB NO. 072	23016.00	TASK N	О.	00001		DATE	3.2.		PROJ NAME		TOL		
TEMP 60		WEATHER		R overcast		B.P. 29.84		34 V	WIND 7mph NE				
SCS-FS L	ABOR	HOURS		OT						HOURS	OT		
Ryan Seymou	-	9											
Logan Culhan	e	9											
								DAILY TOTAL	. 1	8			
EQUIP, SVCS	S, , MLG	QTY	ι	JNITS						QTY	UNITS		
GEM 50	000	2		Day			MX4			4	Day		
Trucl	(2		Day		G	enerat	or		1	Day		
INSTRUME	INSTRUMENT CALIBRATION (CAL. GAS)		S)	CH	14	СН	4	02 LOW CALE		CO2			
MOD	EL	S/N		(%-V		(%-LI		%-VOL)		(%-VOL)	H2S (PPM)		
500	0	500399		50)			20.9		35			
SUMMARY	Secure	n site for month	ly mo	nitoring or	d blowor	floro oboc							
SUMMART		ed my gem. I bur	·				л.						
			•				•••						
Blower reading				02:4		BAL: 28		VAC: -2					
221 reading: C	H4: 28.5%	CO2: 20.3	5%	O2: 9	9.9%	BAL: 41.	3%	VAC: -24.5	52	FLOW: 336 S	SCFM		
Today we mor	itored the res	st of the quarry.	The		edance v	was 37 at 1	140 dor						
								they were unde	r 145				
Shipped off sa			pone	inn a bann			100000						
Also shipped c													
	•												

Prepared by: Ryan Seymour ACCEPTED BY:

I understand that when performing a one person job assignment, I am acting as my own supervisor.

SCS FIELD SERVICES

DAILY LOG

JOB NO. 0722	23016.00	TASK N	О.	00001		DATE	3/7/2		ROJECT AME	BRIST	OL	
TEMP 55		WEATH	ER	Clear		B.P.	30.0	4 W	ND	11 SS	SE	
SCS-FS LA	BOR	HOURS		OT					HOL	JRS	OT	
Ryan Seymour		8										
Billy Bellew												
Logan Culhane	1	8										
Zack Barton								DAILY TOTAL	16			
EQUIP, SVCS	, , MLG	QTY	ι	JNITS					Q	ΓY	UNITS	
GEM 50	00	2		Day			MX4		4	1	Day	
Truck		2		Day		G	enerator		,	1	Day	
INSTRUMEN	T CALIBRA	TION (CAL. GA	S)	CH	14	CH	4	02 LOW CALE	С	72		
MODI	EL	S/N		(%-VOL)		(%-LE		%-VOL)	(%-\	-	H2S (PPM)	
5000)	500399		50)			20.9	3	5		
	Blower/fla	re check. Tune (221 w	ellfield St	art 588 w	ellfield tun	ina W	eld 2" cap on ope	n .I tran he	low north	hside cleanouts	
SUMMARY		vn and clean usa					-					
Blower reading	: CH4: 35.9%	% CO2: 34%	, 0	O2: 4	l.1%	BAL: 2	6%	VAC: 24.58	FLOW	V: 270 SC	CFM	
221 reading:	CH4: 25.59		9%	02: 1	0.6%	BAL: 4	5%	VAC: 24.43	FLOW	V: 270 SC	CFM	

Prepared by:

ACCEPTED BY:

I understand that when performing a one person job assignment, I am acting as my own supervisor.

SCS FIELD SERVICES

DAILY LOG

JOB NO.	07223016.00	TASK NO.	00001		DATE 3.8		DJECT Me Bris	BRISTOL			
TEMP	37	WEATHER	clear		B.P. 30.0)7 WIN	ID 5 mp	h SW			
SCS-	FS LABOR	HOURS	OT				HOURS	OT			
Ryan Sey	mour	8									
Logan Ca	Ihane	8									
						DAILY TOTAL	16				
EQUIP,	SVCS, , MLG	QTY	UNITS				QTY	UNITS			
GE	EM 5000	2	Day		MX4		4	Day			
	Truck	2	Day		Genera	-	1	Day			
INSTRU	JMENT CALIBRA	TION (CAL. GAS)	CF	-14	CH4	02 LOW CALE	CO2				
	MODEL	S/N	(%-\		(%-LEL)	%-VOL)	(%-VOL)	H2S (PPM)			
	5000	500399	5	0		20.9	35				
SUMMA	RY Scs was	on site for monthly n	nonitoring ar	nd blower	flare check.						
		ed my gem. I bump	-								
Blower re	ading: CH4: 34.5	% CO2: 31.7%	02:4	4.3%	BAL: 29.5%	VAC: -24.4	14 FLC	DW: 0 SCFM			
	ading: CH4: 34.5 ng: CH4: 24.3%	% CO2: 31.7% CO2: 19.0%		4.3% 10.7%	BAL: 29.5% BAL: 46.0%	VAC: -24.4 VAC: -24.35					
221 readi	ng: CH4: 24.3%		02: 1	10.7%	BAL: 46.0%	VAC: -24.35	FLOW: 0 S				
221 readi We are in	ng: CH4: 24.3% westigating why t	CO2: 19.0%	O2: 1 e flare. We h	10.7%	BAL: 46.0%	VAC: -24.35	FLOW: 0 S				
221 readi We are in Billy and 2	ng: CH4: 24.3% westigating why t Zack are looking	CO2: 19.0% he flow is zero at the	O2: 1 e flare. We h e quarry.	10.7% nave a ver	BAL: 46.0% y small flame co	VAC: -24.35	FLOW: 0 S				
221 reading We are in Billy and 2 While more	ng: CH4: 24.3% vestigating why t Zack are looking nitoring the 588 v	CO2: 19.0% he flow is zero at the into the sumps in the	O2: 1 e flare. We h e quarry. t wells in the	10.7% nave a ver e south sid	BAL: 46.0% y small flame cc	VAC: -24.35 ming out of the flare	FLOW: 0 S				
221 readii We are in Billy and 2 While more After we c	ng: CH4: 24.3% westigating why t Zack are looking nitoring the 588 v opened a 4 inch b	CO2: 19.0% he flow is zero at the into the sumps in the ve lost vacuum to 12	O2: 1 e flare. We h e quarry. ? wells in the / 61 it restor	10.7% nave a ver e south sid red vacuur	BAL: 46.0% y small flame co le. m. Restored flow	VAC: -24.35 ming out of the flare to 450 SCFM at th	FLOW: 0 S e. e blower.				
221 readin We are in Billy and 2 While mon After we of We suspe	ng: CH4: 24.3% westigating why t Zack are looking nitoring the 588 v opened a 4 inch b ect the reason for	CO2: 19.0% he flow is zero at the into the sumps in the ve lost vacuum to 12 putterfly valve by GV	O2: 1 e flare. We h e quarry. ? wells in the / 61 it restor o flow this m	10.7% nave a ver e south sid red vacuur	BAL: 46.0% y small flame co le. m. Restored flow	VAC: -24.35 ming out of the flare to 450 SCFM at th	FLOW: 0 S e. e blower.				
221 readin We are in Billy and 2 While mon After we of We suspe 31R need	ng: CH4: 24.3% westigating why t Zack are looking nitoring the 588 v opened a 4 inch b ect the reason for Is a new impact to	CO2: 19.0% he flow is zero at the into the sumps in the ve lost vacuum to 12 outterfly valve by GV the flare having zer	O2: 1 e flare. We h e quarry. ? wells in the / 61 it restor o flow this m ed yet)	10.7% have a ver e south sid red vacuur horning is	BAL: 46.0% y small flame co le. n. Restored flow because of that	VAC: -24.35 ming out of the flare to 450 SCFM at th	FLOW: 0 S e. e blower.				
221 readin We are in Billy and 2 While mod After we of We suspe 31R need We did no	ng: CH4: 24.3% westigating why t Zack are looking nitoring the 588 v opened a 4 inch b ect the reason for Is a new impact to	CO2: 19.0% he flow is zero at the into the sumps in the ve lost vacuum to 12 outterfly valve by GV the flare having zer est port. (not replace g the 588 because v	O2: 1 e flare. We h e quarry. ? wells in the / 61 it restor o flow this m ed yet)	10.7% have a ver e south sid red vacuur horning is	BAL: 46.0% y small flame co le. n. Restored flow because of that	VAC: -24.35 ming out of the flare to 450 SCFM at th	FLOW: 0 S e. e blower.				
221 readii We are in Billy and 2 While mon After we of We suspe 31R need We did no 49 too tall 54 and 55	ng: CH4: 24.3% vestigating why t Zack are looking nitoring the 588 v opened a 4 inch b ect the reason for ls a new impact to ot finish monitorin to make adjustm 5 need new tempo	CO2: 19.0% he flow is zero at the into the sumps in the ve lost vacuum to 12 putterfly valve by GV the flare having zer est port. (not replace g the 588 because v hent. erature test port. 55	O2: 1 e flare. We h e quarry. 2 wells in the / 61 it restor o flow this m ed yet) ve had to in needs a new	10.7% have a ver e south sid red vacuur horning is vestigate p w well hea	BAL: 46.0% y small flame co le. m. Restored flow because of that pressure.	VAC: -24.35 ming out of the flare to 450 SCFM at th valve being closed	FLOW: 0 S e. e blower. by GW 61.	SCFM			
221 readii We are in Billy and 2 While mon After we of We suspe 31R need We did no 49 too tall 54 and 55	ng: CH4: 24.3% vestigating why t Zack are looking nitoring the 588 v opened a 4 inch b ect the reason for ls a new impact to ot finish monitorin I to make adjustm	CO2: 19.0% he flow is zero at the into the sumps in the ve lost vacuum to 12 putterfly valve by GV the flare having zer est port. (not replace g the 588 because v hent. erature test port. 55	O2: 1 e flare. We h e quarry. wells in the / 61 it restor o flow this m ed yet) ve had to in	10.7% have a ver south sid red vacuur horning is vestigate p	BAL: 46.0% y small flame co le. m. Restored flow because of that pressure.	VAC: -24.35 ming out of the flare to 450 SCFM at th valve being closed	FLOW: 0 S e. e blower. by GW 61.				

I understand that when performing a one person job assignment, I am acting as my own supervisor.

DAILY LOG

JOB NO. 0722	23016.00	TASK N	0.	00001		DATE	3.9.2		PROJ NAME		RISTOL		
TEMP 57		WEATH	ER	clear		B.P.	30.2	.7	WIND) 3 r	nph SV	V	
SCS-FS LA	BOR	HOURS		OT					ł	HOURS		OT	
Ryan Seymour		8											
Logan Culhane		8											
								DAILY TOTA	L 1	16			
EQUIP, SVCS	, , MLG	QTY	ι	JNITS						QTY		UNITS	
GEM 50	00	2		Day			MX4			4		Day	
Truck		2		Day		G	enerat	or		1		Day	
INSTRUMEN	T CALIBRA	TION (CAL. GA	S)	CH	14	СН	Л	02 LOW CALE		CO2			
MODI	EL	S/N		(%-V		(%-Ll	-	%-VOL)	-	(%-VOL)		H2S (PPM)	
5000)	500399		50)			20.9		35			
			-			<i>.</i> .							
SUMMARY		on site for month ed my gem. I bur		•	id blower	flare chec	:К.						
Blower readin		,,,	<u> </u>		2: 6.6%	BVI	: 33.4%	. VA	C: -24	52		V: 335 SCFM	
221 reading: C		CO2: 18.			11.1%	BAL: 4		VAC: -2				5 SCFM	
We monitored t			0 /0	02.	11.1/0	DAL. 4	4.J /0	¥A0	24.42	16			
		dance at 149 de	grees	3									
		5 but I made an			brought	the tempe	rature o	down to 144.8 d	degree	es			
GW 56 needs r													
GW 40 needs a													
GW 53 needs ι	ipdated sam	ple port (fixed)											
We investigated	a leak som	newhere on the t	588. \	Ne isolated	d the valu	e by GW	61 and	that seemed to	o solve	the O2 pro	blem.		
		tors and 4 wells											
We will reconve	ene tomorro	w to pin point the	e leak	ζ.									

Prepared by: Ryan Seymour ACCEPTED BY:

DAILY LOG

JOB NO. 0722	3016.00	TASK N	O .	00001		DATE _ 3/16		OJECT Me Brist	rol .	
ТЕМР		WEATH	ER			B.P.	WI	ND		
SCS-FS LA	BOR	HOURS		OT				HOURS	ОТ	
Logan Culhane		8								
Billy Bellew										
Ryan Seymour										
Zack Barton							DAILY TOTAL			
EQUIP, SVCS	, , MLG	QTY	U	INITS				QTY	UNITS	
GEM 50	00	2		Day		MX4		4	Day	
Truck		2		Day		Generat	or	1	Day	
INSTRUMEN	T CALIBRA	TION (CAL. GA	S)	CH	4	CH4	02 LOW CALE	CO2		
MODE	EL	S/N		(%-\	'OL)	(%-LEL)	%-VOL)	(%-VOL)	H2S (PPM)	
5000)	500399		50)		20.9	35		
SUMMARY	Blower/fla	are check. Gas s	amolii	na on GW	37 and (GW 57, Recheck	@ GW29, Walkthr	ugh 588 bumping	g pumps and gather	rina
			•	•		set for Envision.	-		5 Familie and Same	
Blower reading:		CO2: %	02:		3AL: %	VAC:	FLOW: SCFM			
221 reading:	CH4: %	CO2: %	02:		BAL: %	VAC:	FLOW: SCFM			
ZZTTCdding.	0114. 70	002. //	02.	70 L		VAO.				

Prepared by: Logan Culhane ACCEPTED BY:

DAILY LOG

JOB NO. 0722	23016.00	TASK N	O	00001		DATE _3/20		OJECT Me _BRIST	FOL	
TEMP		WEATH	ER			B.P.	WI	ND		
SCS-FS LA	BOR	HOURS		OT				HOURS	OT	
Logan Culhane		5								
Billy Bellew										
Ryan Seymour										
Zac Barton		5					DAILY TOTAL	10		
EQUIP, SVCS	, , MLG	QTY	U	NITS				QTY	UNITS	
GEM 50	00	2		Day		MX4		4	Day	
Truck	Truck			Day	Gener		or	1	Day	
INSTRUMEN	T CALIBRA	TION (CAL. GA	S)	- CH4		CH4	02 LOW CALE	CO2		
MODE	EL	S/N	(%-V			(%-LEL)	%-VOL)	(%-VOL)	H2S (PPM)	
5000)	500399		50)		20.9	35		
SUMMARY	Blower/fla	are check Bump	test m	nx4s Hiah	02 at fla	ere Replace 1.75	orifice plates with	 1 25 at side slone	wells 1L, 2L, and 2	211
		•		•		•	•	· · · · ·	ment and parts dov	
Disuar reading			•			•				
Blower reading		CO2: %	02:		BAL: %	VAC:	FLOW: SCFM			
221 reading:	CH4: %	CO2: %	02:		BAL: %	VAC:	FLOW: SCFM	otor, Unload Grai	ngor chinmont	
		lex aniving. wee			iye place				nger snipment.	

Prepared by: Logan Culhane ACCEPTED BY:

DAILY LOG

JOB NO. 0722301	6.00	TASK N	O. 00002	2	DATE <u>3/2</u>	20/23	PROJE NAME	ECT BRIST	ſOL	
ТЕМР		WEATH	ER		B.P.		WIND			
SCS-FS LABOF	R	HOURS	ОТ					HOURS	ОТ	
Logan Culhane	;	3								
Billy Bellew										
Ryan Seymour										
Zac Barton		3				DAILY TOT	AL			
EQUIP, SVCS, , ML	G	QTY	UNITS					QTY	UNITS	
GEM 5000		2	Day		MX4	-		4	Day	
Truck		2	Day		Genera	itor		1	Day	
INSTRUMENT CA	ALIBRA	TION (CAL. GA	S)	CH4	CH4	02 LOW CAL	E	CO2		
MODEL		S/N		%-VOL)	(%-LEL)	%-VOL		(%-VOL)	H2S (PPM)	
5000		500399		50		20.9		35		
SUMMARY No	oticed 25	5 PSI air pressur	re throughou	t 588. Meet	with Brandon to	discuss issue.	. Frozen 2	2" airline disco	vered outside conr	nex.
		-	-						poly valve. Gather	
and fuse line. Repre	essurize	line. Pickup wo	rk area.							
		<u></u>								

Prepared by: Logan Culhane ACCEPTED BY:

DAILY LOG

JOB NO. 07	223016.00	TASK N	0.	00001		DATE	3/21	/2023	PRO NAM	JECT IE	BRIST	OL	
TEMP 49		WEATH	ER	Clear		B.P.	30.4	1	WIN	D	2 NE		
SCS-FS	ABOR	HOURS		OT						HOL	JRS	OT	
Logan Culha	ne	8											
Billy Bellew													
Ryan Seymo	ur												
Zac Barton								DAILY TOT	AL				
EQUIP, SV	CS, , MLG	QTY	ι	JNITS						QT	Υ	UNITS	
GEM	5000	2		Day			MX4			4		Day	
Tru	ck	2	_	Day		G	enerato	or		1		Day	-
INSTRUME	NT CALIBRA	ATION (CAL. GA	S)	CH	14	СН	4	02 LOW CAL	F	CC)2		
MO	DEL	S/N		(%-\		(%-L		%-VOL		(%-V		H2S (PPM)	
Env	sion	ENV230226	1B	5	0			11		3	5		
SUMMARY	Blower/fla	are check CAP a	and bl	ower/flare	mohile fr	orms Cool	dinate	connex dron (off Wa	alkthroug	1h 588 P	ump and check pu	mns
SUIVIIVIANT		GW58, GW50, an						•				· ·	impo.
				•									
Blower reading					2: 6.4%		30.85%		: 24.57	7 F	LOW: 77	0 SCFM	
221 reading:	CH4: %	CO2: %	02:	%	BAL: %	VAC):	FLOW: SCF	М				
Wellhead rep	airs @ GW38	3 and GW48. We	llhead	d and pum	p head re	epairs @ G	GW66. (Conversations	s with g	gas plan	t regardi	ng start up.	

Prepared by: Logan Culhane ACCEPTED BY:

DAILY LOG

JOB NO.	07223016.0	<u>0 TASK I</u>	10.	00001		DATE	3/23	/2023	PRO NAM	JECT IE [BRIST	OL	
TEMP	58	WEATH	IER	Cloudy		B.P.	30.1	6	WIN	D	6 NE		
SCS	-FS LABOR	HOURS		OT						HOUR	S	OT	
Logan C	ulhane	8											
Billy Bell	lew												
Ryan Se	eymour												
Zac Bart	ton							DAILY TOT	AL				
EQUIF	P, SVCS, , MLG	QTY	l	JNITS						QTY		UNITS	
G	EM 5000	2		Day			MX4			4		Day	
	Truck	2		Day	_	G	enerato	or		1		Day	
INSTR	RUMENT CALIE	BRATION (CAL. GA	AS)	CH	14	СН	4	02 LOW CA	IF	CO2			
	MODEL	S/N		(%-V		(%-LI		%-VOL		(%-VO		H2S (PPM)	
	Envision	ENV23022	61B	50)			11		35			
SUMMA	ARY Blowe	r/flare check. Bump	o test i	mx4s. Well	field read	dings in 58	8. Gas	sampling in	588. Co	ordinate h	neader	isolation with con	struction
		Bump and backflu				•							
Blower r	eading: CH4· 3	0.31% CO2: 3	2.84%	02	2: 5.41%	BA	L: 31.4	4% V	/AC: 24	.64 F	LOW	328 SCFM	
							/AC: 24			328 SCFM			
						-			-		-		

Prepared by: Logan Culhane ACCEPTED BY:

DAILY LOG

JOB NO. 0722	23016.00	TASK N	0.	00001		DATE	3/24	/2023	PRO NAM	JECT IE BRIST	ΓOL	
TEMP		WEATH	ER			B.P.			WIN	D		
SCS-FS L/	ABOR	HOURS		ОТ						HOURS	OT	
Logan Culhane)	8										
Billy Bellew												
Ryan Seymour												
Zac Barton								DAILY TOT	AL			
EQUIP, SVCS	EQUIP, SVCS, , MLG QTY GEM 5000 2			NITS						QTY	UNITS	
GEM 50	GEM 5000 2			Day			MX4			4	Day	
Truck	Truck 2			Day	Generator				1	Day		
INSTRUMEN	T CALIBR	ATION (CAL. GA	S)	CH	14	СН	4	02 LOW CAL	F	CO2		
MOD	EL	S/N		(%-∖		(%-L		%-VOL		(%-VOL)	H2S (PPM)	
Envis	ion	ENV230226	61B 50)			11		35		
SUMMARY	Blower/fla	are check. Take v	valve r	neasurem	nents at f	l lare for Mil	ke. Mee	et with Austin	and re	view truck and n	nonthly equipment	loas.
											Added kanaflex cla	0
Blower reading	L CH4: 31%	CO2: 31.3	3%	02: 5	5%	BAL: 3	2.2%	VAC: 2	24 65	FLOW: 700	SCEM	
221 reading:	CH4: 20.9				1.9%	BAL: 4		VAC: 2		FLOW: 700		
Ŭ		dinate plans with										
		ining. Set up cor										

Prepared by: Logan Culhane ACCEPTED BY:

DAILY LOG

JOB NO.	07223016.00	TASK NO) . <u>00001</u>		DATE	3/27	/2023	PRO- NAM	JECT E B	RISTO	DL	
TEMP	55	WEATHE	R Cloudy	,	B.P.	29.9	0	WINE) 5	5 NE		
SCS	-FS LABOR	HOURS	ОТ						HOURS	S	ОТ	
Logan C	ulhane	8										
Billy Bell	ew											
Ryan Se	eymour											
Zac Bart	on						DAILY TOT	AL				
EQUIF	P, SVCS, , MLG	QTY	UNITS						QTY		UNITS	
G	EM 5000	2	Day			MX4			4		Day	
	Truck	2	Day		Ge	enerato	or		1		Day	
INSTR	UMENT CALIBRA	ATION (CAL. GAS		H4	CH4	1	02 LOW CAI		CO2			
	MODEL	S/N	-	·VOL)	(%-LE		%-VOL		(%-VOL)	H2S (PPM)	
	Envision	ENV2302261	В	50			11		35			
SUMMA		are check. Bump t	est my/s Pic	k un arour	nd huilding	Chan	ne filters on r	espirate	ors Walkth	rough	221 GW8 fernco	
SOlviivir		f. Secure fernco c										
						<u> </u>	•					
Blower r	Blower reading: CH4: 29.27% CO2: 27.64% O2: 7.08% BAL: 36.01% VAC: 24.59 FLOW: 230 SCFM											
221 reading: CH4: 20.83% CO2: 18.39% O2: 13.09% BAL: 47.69% VAC: 24.49 FLOW: 230 SCFM												
Convers	ation with Mike M	artin regarding Pu	mpOne order	progress.	CAP and b	olower	mobile forms	. Build	new tri tubi	ng for	GW 51 @ 88'.	
Pull old	oump and tri tubin	g. Drop new pump	and tri tubin	g. Pumping	g. Counter	#0244	985.					

Prepared by: Logan Culhane ACCEPTED BY:

DAILY LOG

JOB NO.	07223016.00	TASK NO	00001		DATE	3/28	/2023	PRC NAM	DJECT MeBRIS	TOL		
TEMP	46	WEATHE	R Cloudy		B.P.	30.1	5	WIN	ID 4 SW	/		
SCS	-FS LABOR	HOURS	OT						HOURS	OT		
Logan C	ulhane	8										
Billy Bell	ew	8										
Ryan Se	eymour	8										
Zac Bart	on	8					DAILY TOT	AL	32			
EQUIF	P, SVCS, , MLG	QTY	UNITS						QTY	UNITS		
G	EM 5000	2	Day			MX4			4	Day		
	Truck	2	Day		G	enerato	or		1	Day		
INSTR	UMENT CALIBR	ATION (CAL. GAS)	CH	IN	CH	1	02 LOW CA		CO2			
	MODEL	S/N	€F (%-\		(%-LE		%-VOI		(%-VOL)	H2S (PPM)		
	Envision ENV2302261B 50 11								35			
01104044	SLIMMADY Blower/flare check Bump test my/s, 588 wellfield readings, 3 samples needed GW59, GW57, and GW37, Walktbrough 221 to											
SUMMARY Blower/flare check. Bump test mx4s. 588 wellfield readings. 3 samples needed GW59, GW57, and GW37. Walkthrough 221 to												
	ensure no wellheads were blown off. Investigate North and South side cleanouts for possible 02 intrusions. Drop off truck for oil change. Prep new FM tees for 588 with teflon. GW24 and GW25 have been removed. Could not get readings. Need confirmation											
		vere decommission									Innation	
Diaman								(10.0		700.00514		
221 read	eading: CH4: 28.3			2: 6.93% 2: 13.42%		L: 27.2		/AC: 24 /AC: 24		: 700 SCFM : 700 SCFM		
		/32, and GW32R. F				L: 43.5						
		and adjusted count						94. VVIII				
		nected. Connect pu					#0224500					
	op orifice plate fro	•			uniping: o							
	• •	crease air pressure	. Now pumpir	ng. Counte	er #01526	97						
	GW35 tape leaking sample port.											
GW51 fo	oam at sample po	rts, unable to get re	ading. Backfli	ush pump	and incre	ase air	pressure. No	ow pur	nping. Adjusted	counter. Counter #	0256814	
EW68 bi	ump pump. Now p	oumping. Counter #	1831535									
GW49 fo	oam blowing out o	f exhaust. Pump sh	nut down									
GW50 bi	ump pump. Now p	oumping. Counter #	0839985.									
GW61 bi	ump pump. Now p	oumping. Counter #	0212104									
GW65 bi	ump and backflus	h pump. Foam blov	ving out of ex	haust. Pur	mp shut de	own.						
Blower re	eading: CH4: 29.8		4% 02	2:6.05%	BAL	.:25.11	% VA	AC: 25.	.05 FLOW:7	740 SCFM		
221 read	ling: CH4: 20.4	12% CO2: 24.5	1% 02	2:12.91%	BAL	.: 42.16	5% VA	AC: 24.	78 FLOW:	740 SCFM		

Prepared by: Logan Culhane ACCEPTED BY:

DAILY LOG

JOB NO0722	23016.00	TASK N	0.	00001		DATE	3/29		ROJEC AME	T BRIST	ΓOL	
TEMP 36		WEATH	ER	Cloudy		B.P.	30.2	9 V	/IND	2 S		
SCS-FS LA	BOR	HOURS		OT					Н	OURS	ОТ	
Logan Culhane	•	8										
Billy Bellew		8										
Ryan Seymour		8										
Zac Barton		8						DAILY TOTAL	32			
EQUIP, SVCS	, , MLG	QTY	ι	INITS						QTY	UNITS	
GEM 50	00	2		Day			MX4			4	Day	
Truck	Truck 2			Day		Generator				1	Day	
INSTRUMEN	INSTRUMENT CALIBRATION (CAL. GAS)				CH4 CH4 02 LOW CALE					CO2		
MOD	MODEL			(%-VC		(%-L		%-VOL)		602 6-VOL)	H2S (PPM)	
Envisi			NV2302261B)			11		35		
SUMMARY	Blower/fla	ra chack Bump	tost r	nv/s Con	voreation	e with Bra	undon re	aarding constru	ction dril	lling and p	ump updates. Milea	ago and
SUIVIIVIART								•••		•	d bolts to fit missing	•
		•										y spois.
Blower reading					2: 6.42%		L: 30.1		: 24.50		330 SCFM	
221 reading:	CH4: 20.06	5% CO2: 17	.83%	02	2: 13.37%	b BA	L: 48.7	4% VAC	: 24.24	FLOW:	330 SCFM	
Review maps.	Review maps. Open isolation valve between GW64 and GW34 more to restore vacuum @ GW29 and GW32R. Finish 588 readings. Gas samples											
on GW37, GW	51, and GW	57. Fill out chain	of cu	stody and	box up s	amples. S	Ship at F	edEx. Bump an	d check p	oumps.		
Build new tri tu	bing and dro	p pump @ GW6	60. Co	ounter #01	63945							
Build and prep	pump and tr	i tubing to be dr	oppeo	d.								
Blower reading: CH4: 30.09% CC		9% CO2: 32	.14%	02	2: 4.81%	BAL	: 32.96	% VAC:	24.91	FLOW: 8	360 SCFM	
221 reading: CH4: 20.99% CO2: 17.40% O2: 10.54%			BAL	.: 51.07	% VAC:	24.77	FLOW: 8	360 SCFM				
Prepared by	Prepared by: ACCEPTED BY:											

Prepared by: Logan Culhane ACCEPTED BY:

DAILY LOG

JOB NO.	07223016.00	TASK N	0.	00001		DATE	3/30		PROJ NAME		RISTO	DL	
TEMP	37	WEATH	ER	Clear		B.P.	30.3	2	WIND	3	W		
SCS-F	S LABOR	HOURS		OT						HOURS		OT	
Logan Cul	hane	8											
Billy Bellev	N												
Ryan Seyr	nour	<u>8</u>											
Zac Bartor	า	<u>8</u>						DAILY TOTAI	L	24			
EQUIP,	SVCS, , MLG	QTY	U	JNITS						QTY		UNITS	
GE	M 5000	2		Day			MX4			4		Day	
	Fruck	2		Day		G	Generato	or		1		Day	
INSTRU	MENT CALIBR	ATION (CAL. GA	S)	CH	I A	СН	14	02 LOW CALE		CO2			
Ν	NODEL	S/N		(%-V		(%-L		%-VOL)		(%-VOL))	H2S (PPM)	
E	Invision	ENV230226	1B	50)			11		35			
SUMMAF	RY Blower re	eading: CH4: 26.2	26%	CO2: 2	28.92%	02:	6.94%	BAL: 37.	88%	VAC	24.5	5 FLOW: 420	0SCFM
	221 read	ling: CH4: 18.	57%	CO2: 2	20.20%	02:	12.16%	BAL: 49.	07%	VAC	24.3	FLOW: 420	0SCFM
Blower/flar	re check. Bump	test mx4s. Conve	ersatio	on with Bra	andon reg	garding ab	andonr	nent points and	d plans	related to	drilling	g and new infrastr	ucture
Sort throug	gh PumpOne or	der and organize	parts										
GW52 inst	tall pump and re	place flex hose.											
GW62 pull	l and swap pum	р											
Finish repl	acing bolts and	washers @ blow	er. Pi	ck up work	k area. 3p	m weekly	call						
Blower rea	ading: CH4: %	CO2: %	02:	% E	BAL: %	VAC	D:	FLOW: SCFN	1				
221 readin	ng: CH4: %	CO2: %	02:	% E	BAL: %	VAC	D:	FLOW: SCFN	1				
Prepare Logan (ed by: Culhane			ACCEP [.]	TED BY	/ :							

Appendix C

Semi-Monthly Temperature Update Memos

April 10, 2023 File No. 02218208.04

MEMORANDUM

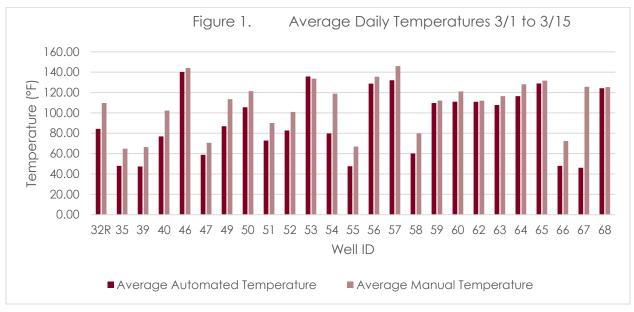
- TO: Kristin Hall, EPA Region III Tracy Blalock, VDEQ-SWRO
- FROM: D. Brandon King, SCS Engineers Quinn Bernier, SCS Engineers
- SUBJECT: Semi-Monthly Status Update March 1st through March 15th, 2023 Bristol Integrated Waste Management Facility, Bristol, Virginia

SCS is submitting this semi-monthly status update to satisfy the conditions of compliance provision #2 of the Environmental Protection Agency (EPA) Region III letter, *Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility*, dated 8/23/21. Accordingly, this memo is a summary of temperature monitoring activities as well as work accomplished during the semi-monthly monitoring period of 3/1/23 through 3/15/23.

TEMPERATURE MONITORING

Automated Wellhead Temperature Measurements

Twenty-five (25) individual landfill gas (LFG) wellheads in the Permit #588 Landfill have automated temperature sensors installed. VDEQ and USEPA have been receiving Daily Gas Well Temperature Reports with data from these automated temperature sensors since 12/1/22.


During the period of monitoring described in this memorandum, all 25 wellheads now have 2-inch automated sensors. SCS believes that the new 2-inch sensors measure temperature with more accuracy than the 1-inch sensors that were used in the majority of the 25 wells prior to March 1.

SCS reviewed the automated hourly temperature measurements from 3/1/23 to 3/15/23, and identified the following trends:

- Temperatures over 145°F: Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded at GW-46, GW-53 and GW-57. At GW-53, these instances were sporadic. Temperatures greater than 145°F persisted for approximately three days (3/13-3/15) at GW-57, but at GW-46 temperatures at or around 145°F throughout the monitoring period.
- Error at GW-67: Because negative temperatures were recorded for approximately 8 days of this reporting period, SCS assumes there was an error in the wellhead's new 2-inch temperature sensor. This skews the data in Figure 1, but appears to be resolved as of 3/10/23.

• **Temperature Trends by Location:** As shown in Figure 1, the wells with the highest average temperatures were GW-46, GW-53, GW-56, and GW-57. Only GW-46 and GW-53 are located in close proximity, however all of these wells are in the southern portion of the landfill.

Manual Daily Temperature Monitoring

Manual temperature measurements are being made daily by field staff with a GEM5000 or equivalent LFG analyzer. The manual measurements are used to verify the automated wellhead temperature sensors and to provide temperature data for the 13 wellheads without automated sensors.

Comparing the difference between manual temperature measurements and automated temperature measurements in Figure 2, the new 2-inch sensors appear to have improved correlation in some wells, but not in others. At wells with little correlation between measurement methods, SCS suspects errors similar to those in the automated sensor at GW-67. SCS also reviewed LFG flow data to assess the effect of low LFG flow on correlation between manual and automated temperature measurements, but did not notice any correlation. A list of wells with a temperature difference of greater than $\pm 10^{\circ}$ F has been sent to field staff to check for any physical causes.

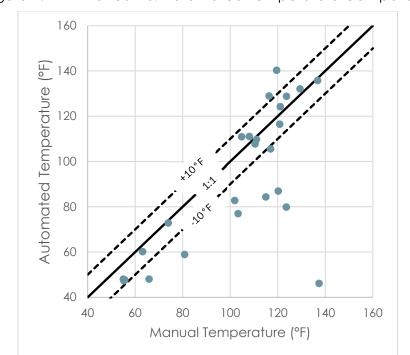


Figure 2. Manual vs. Automated Temperature Comparison

All daily temperatures recorded manually are provided in Attachment A.

Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted 3/1/23, 3/7/23, and 3/15/23. Temperatures greater than 145° F continue to be recorded consistently in GW-37, and new temperature exceedances were measured at GW-57 and GW-67. See Table 2 for a list of the status of all exceedances recorded during this monitoring period.

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 2/28/23
GW-37	4/6/22	3/15/23 147.7°F	10 months	HOV request submitted 3/8/22
GW-57	3/1/23	See below	8 days	Resolved 3/9/23
GW-57	3/15/23	3/15/23 170.5°F	1 day	Ongoing, within 15-day timeline
GW-67	3/1/23	3/15/23 123.1°F	1 day	Resolved 3/2/23

Table 2.	March ⁻	Temperature	Exceedance	Summary
	multi	remperatore	LYCEEGUUICE	JULINALY

Work Accomplished During Monitoring Period

LFG Sampling

SCS collected LFG samples from well GW-37 using 1.5-L Summa canisters on 3/2/23 and 3/9/23 to fulfill the requirement in 40 CFR 63.1961(a)(5) for temperature exceedances lasting more than 7 days. The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H₂) content. Lab results are summarized in Table 3. Full laboratory analytical data is included in **Attachment B** for further detail.

Sample Date	GW-37				
	CO (ppmv) H2 (Vol.				
3/2/23	152	2.78			
3/9/23	129	2.35			

The presence of hydrogen in samples from GW-37 and GW-53 indicates that combustion reactions are unlikely. The carbon monoxide measurements were all greater than 100 ppmv, indicating that continued weekly CO sampling should continue per 40 CFR 63.1961(a)(5)(viii) until the temperature exceedance is corrected or CO is less than 100 ppmv for four consecutive weekly samples.

Construction Activities

SCS-Field Services (SCS-FS) continued trenching activities along the quarry sidewall to install the lower collector section of the Sidewall Odor Mitigation System (SOMS). SCS-FS placed linear low density polyethelene (LLDPE) geomembrane and geotextile in the lower collector to replace sidewall liner that had been damaged prior to SOMS construction. Following the installation of the replacement liner, perforated pipe and aggregate was placed in the trench. Construction progressed primarily on the eastern side of the quarry.

SCS-FS then started working on a section of the northern SOMS from the quarry entrance along the access road, in an effort to get ahead and prepare for Chesapeake Containment Systems (Chesapeake). Chesapeake will tie the SOMS into the existing liner, cover the lower collector, and extend the liner 40-feet from the sidewall. Chesapeake began liner work on 3/15/23 beginning just south of the Phase I Pilot Study area along the western sidewall heading towards the southwest corner.

SCS-FS reconfigured the LFG piping of the four Pilot Study Phase I horizontal collectors into the main LFG collection and control system (LFGCCS) adjacent to GW-49 to improve LFG collection. Since connection to the main LFGCCS, LFG quality measured at the Pilot Study Phase I collectors is variable, sometimes less than 10% methane and others greater than 40% methane. Since the reconfiguration, SCS is still in the process of tuning these collectors to establish more consistent LFG quality.

Weekly SEM

SCS is continuing weekly surface emissions monitoring (SEM) per the Plan of Action Report dated 7/6/22. No exceedances of the 500-ppmv threshold were recorded during the weekly SEM event held on 3/9/23 and 3/15/23.

MEMORANDUM 4/10/23 Page 5

The City has placed intermediate cover throughout the Permit No. 588 Landfill and installed well bore skirts at 19 select LFG wells exhibiting methane exceedances at pipe penetrations during past weekly SEM events. The actions appear to be working based on the results of the weekly SEM events during this monitoring period.

LFG System O&M

SCS, the City, and their O&M contractor continued to coordinate on procurement pump parts to better facilitate routine pump maintenance. O&M continued to tune the new QED 1-inch wellheads on the Permit #221 Landfill.

Pump One cleaned, serviced, and returned the six pumps removed in February to the Bristol Landfill. The O&M contractor reinstalled the pumps and took note of additional pump replacement parts warranted. The O&M contractor has also repaired and/or replaced pump cycle stroke counters as needed and recorded pump cycle stroke counter data weekly.

Please contact SCS or City personnel if you have any questions or require additional information.

cc: Randall Eads, City of Bristol Jon Hayes, City of Bristol Jeff Hurst, VDEQ-SWRO Tom Lock, SCS Field Services David Cochran, City of Bristol Erin Willard, EPA Region III Stacy Bowers, VDEQ-SWRO Robert E. Dick, P.E., SCS Engineers

Attachment A

City of Bristol Daily LFG Well Temperature Readings

				Month	March	March	March	March	March	March	March	March	March	March	March	March	March	March	March
	Depth	≡		Day	Vednesda	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Vednesda	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Vednesda
	De	Ď	ų	Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Note	Well	Date Drill	Phase	Well Number			-			-	-	-							
ADI	102	10/16/2016	Old Well	35	72	73	74	74	73	72	76		64		70	73	47	37	38
ADI	70	9/6/2017	Old Well	39	73	75	76	76	74	74	80		65		74	75	44	44	33
ADI	100	9/7/2017	Old Well	40	109	107	109	109	109	116	120		99		115	113	76	87	60
ADI	110	10/4/2016	Old Well	46	145	146	147	146	146	140	140		145		140	141	146	146	146
ADI	120	10/4/2016	Old Well	47	96	98	98	49	48	56	59		74		65	67	77	76	55
				•															
6	120	9/17/2013	Old Well	29	92	92	92	91	92	90	100		95		100	123	68	54	54
7	100	8/23/2017	Old Well	30R	130	131	134	133	133	135	135		128		130	127	100	95	97
8	120	8/30/2017	Old Well	31R	125	126	128	128	126	128	129		131		81	83	108	105	106
9	70	7/29/2016	Old Well	32	75	75	96	70	70	75	80		82		126	124	86	86	79
10	100	7/28/2016	Old Well	33	120	120	122	121	120	125	128		127		125	123	118	118	118
11	100	7/30/2016	Old Well	34	119	118	118	118	118	120	122		126		127	129	110	105	104
12	100	8/1/2016	Old Well	36	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall		Too Tall		Too Tall	Too Tall	49	37	39
13	100	8/24/2017	Old Well	37	150	150	150	150	150	150	150		150		147	137	149	149	149
14	50	8/25/2017	Old Well	38	92	90	91	91	93	95	96		97		96	101	90	87	87
15	75	9/8/2017	Old Well	41	90	91	91	91	90	92	95		94		93	96	55	45	47
16	57	9/8/2017	Old Well	42	74	72	77	75	75	76	80		81		80	83	118	117	117
17	110	10/7/2016	Old Well	48	72	73	72	72	72	74	76		77		75	77	41	32	32
							-		-	-	-	-	-	-	-	-		-	
1	120	10/1/2021	New Well	32R	119	120	122	121	119	120	127		92		121	119	79	84	83
2	110	10/1/2021	New Well	49	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall		127		Too Tall	Too Tall	110	104	113
3	96	10/1/2021	New Well	50	121	122	122	122	122	124	125		121		122	124	117	118	118
4	114	10/1/2021	New Well	51	92	94	95	95	95	96	99		104		95	98	74	66	68
5	109	10/1/2021	New Well	52	109	110	111	111	111	112	112		99		110	113	82	71	62
6	91	10/1/2021	New Well	53	137	135	136	136	133	130	130		142		136	129	136	122	136
7	91	10/1/2021	New Well	54	131	132	133	132	131	133	135		94		130	126	106	97	66
8	104	10/1/2021	New Well	55	75	76	76	76	71	76	80		65		81	84	44	37	29
9	109 103	10/1/2021	New Well	56 57	132 144	130	180	131	131	130	134		135		130	131	135 152	131 162	132 164
10 11		10/1/2021	New Well New Well	57	74	144 73	145 74	144 74	144 74	140 73	140 76		136 69		140 74	143 72	152	162	82
11	92 72	10/1/2021	New Well	58	74 111	112	113	74 111	74 111	112	76 114		113		110	112	112	112	82 114
12	120	10/1/2021	New Well	60	128	12	126	126	126	112	114		113		120	112	113	112	114
13	120	10/1/2021	New Well	61	120	129	126	126	120	127	125		115		120	124	88	83	82
14	105	10/1/2021	New Well	62	117	114	115	115	112	118	102		111		105	107	111	109	110
16	120	10/1/2021	New Well	63	123	117	122	117	123	118	102		111		105	117	109	99	100
17	120	10/1/2021	New Well	64	133	120	122	131	131	130	134		116		125	124	132	130	121
18	100	10/1/2021	New Well	65	133	130	130	133	133	135	134		131		130	124	132	130	130
19	100	10/1/2021	New Well	66	78	78	79	80	81	90	95		69		85	87	44	39	36
20	102	10/1/2021	New Well	67	135	132	130	130	129	128	127		125			5,	118	110	118
20	75	10/1/2021	New Well	68	126	125	126	126	125	128	127		125				123	123	123
<u> </u>	, ,	10/ 1/2021	INCIN WIEII		120	125	120	120	120	120	120	L	120	l	L	L	125	120	123

Attachment B

Laboratory Analytical Reports

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 3, 2023 11:20
	4330 Lewis Road, Suite 1	Date Issued:	March 10, 2023 16:26
	Harrisburg, PA 17111	Project Number:	7223016
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/03/2023 11:20. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTATS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 3, 2023 11:20		
	4330 Lewis Road, Suite 1	Date Issued:	March 10, 2023 16:26		
	Harrisburg, PA 17111	Project Number:	7223016		
Submitted To:	Tom Lock	Purchase Order:	07-SO04485		
Client Site I.D.:	Bristol				

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23C0229-01	Air	03/02/2023 08:48	03/03/2023 11:20

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 3, 2023 11:20 March 10, 2023 16:26
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	7223016
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESU	JLTS	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 26
Field Sample #: 37	Sub Description/Location:		Final Vacuum(in Hg): 3.4
Sample ID: 23C0229-01	Canister ID: 063-00184::11073		Receipt Vacuum(in Hg): 3.4
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 3/2/2023 08:48			Flow Controller ID:

Sample Type: LFG

	Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis											
		ppmv		ALT-145			Date/Time					
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst				
Carbon Monoxide, as received	152	90.0	90.0		9	1	3/7/23 12:56	MER				

	Vola	atile Organi Vol%	c Compour	nds by GC/TCD - Unadjusted, as received basis EPA 3C	6			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	11.9	0.45	0.45		9	1	3/7/23 12:56	MER
Carbon dioxide, as received	27.5	0.45	0.45		9	1	3/7/23 12:56	MER
Oxygen (O2), as received	6.58	0.45	0.45		9	1	3/7/23 12:56	MER
Hydrogen (H2), as received	2.78	0.18	0.18		9	1	3/7/23 12:56	MER
Nitrogen (N2), as received	42.5	9.00	9.00		9	1	3/7/23 12:56	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Clier	Client Name: SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1		Date Received: Date Issued:	March 3, 2023 11:20 March 10, 2023 16:26
		Harrisburg, PA 17111		
Subm	itted To:	Tom Lock	Project Number:	7223016
Clien	Site I.D.:	Bristol	Purchase Order:	07-SO04485

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Co	mpounds by GC/TCD - Unadjust	ed, as received basis	Preparation Method:	No Prep VOC GC Air	
23C0229-01	1.00 mL / 1.00 mL	ALT-145	BGC0223	SGC0222	AG00026
23C0229-01	1.00 mL / 1.00 mL	EPA 3C	BGC0223	SGC0222	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 3, 2023 11:20 March 10, 2023 16:26
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	7223016
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control Enthalpy Analytical

			C U	itnaipy	Analyt	icai				
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0223 - No Prep VO	DC GC Air									
Blank (BGC0223-BLK1)					Prep	bared &	Analyzed	: 03/07/2	023	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Carbon Monoxide	<	10.0	ppmv							
LCS (BGC0223-BS1)					Prep	bared &	Analyzed	: 03/07/2	023	
Methane	4020	0.05	ppmv	5000		80.3	80-120			
Methane	4020	500	ppmv	5000		80.3	0-200			
Carbon dioxide	4380	500	ppmv	5000		87.5	0-200			
Carbon dioxide	4380	0.05	ppmv	5000		87.5	80-120			
Oxygen (O2)	5120	500	ppmv	5000		102	0-200			
Oxygen (O2)	5120	0.05	ppmv	5000		102	80-120			
Hydrogen (H2)	5990	200	ppmv	5100		117	0-200			
Nitrogen (N2)	5370	2000	ppmv	5000		107	0-200			
Nitrogen (N2)	5370	1	ppmv	5000		107	80-120			
Hydrogen (H2)	5990	0.02	ppmv	5100		117	80-120			
Carbon Monoxide	4900	10	ppmv	5000		98.1	0-200			
Carbon Monoxide	4900	0.001	ppmv	5000		98.1	80-120			
Duplicate (BGC0223-DUP1)		So	urce: 23C	0229-01	Prep	pared &	Analyzed	: 03/07/2	023	
Methane	121000	4500	ppmv		11900	00		1.21	25	
Methane	12.1	0.45	Vol%		11.9)		1.21	5	
Carbon dioxide	279000	4500	ppmv		2750	00		1.57	25	
Carbon dioxide	27.9	0.45	Vol%		27.5	5		1.57	5	
Oxygen (O2)	6.64	0.45	Vol%		6.58	3		0.826	5	
Oxygen (O2)	66400	4500	ppmv		6580	0		0.826	25	
Nitrogen (N2)	430000	18000	ppmv		4250	00		1.04	25	
Nitrogen (N2)	43.0	9.00	Vol%		42.5	5		1.04	5	
Hydrogen (H2)	28100	1800	ppmv		2780	0		0.923	25	
Hydrogen (H2)	2.81	0.18	Vol%		2.78	3		0.923	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 3, 2023 11:20 March 10, 2023 16:26
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	7223016
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC0223 - No Prep VOC GC Air											

Duplicate (BGC0223-DUP1)		So	urce: 23C0229-01	Prepared & A	nalyzed: 03/07/202	23
Carbon Monoxide	156	90.0	ppmv	152	2.74	25
Carbon Monoxide	0.02	0.009	Vol%	0.02	2.74	5
Duplicate (BGC0223-DUP2)		So	urce: 23C0258-01	Prepared & A	nalyzed: 03/07/202	23
Methane	41.1	0.45	Vol%	41.0	0.266	5
Methane	411000	4500	ppmv	410000	0.266	25
Carbon dioxide	40.2	0.45	Vol%	40.1	0.335	5
Carbon dioxide	402000	4500	ppmv	401000	0.335	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Hydrogen (H2)	97600	1800	ppmv	96900	0.705	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Duplicate (BGC0223-DUP3)		So	urce: 23C0258-02	Prepared & A	nalyzed: 03/07/202	23
Methane	41.8	0.45	Vol%	42.2	0.919	5
Methane	418000	4500	ppmv	422000	0.919	25
Carbon dioxide	453000	4500	ppmv	454000	0.353	25
Carbon dioxide	45.3	0.45	Vol%	45.4	0.353	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Hydrogen (H2)	28000	1800	ppmv	28100	0.437	25
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Hydrogen (H2)	2.80	0.18	Vol%	2.81	0.437	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 3, 2023 11:20 March 10, 2023 16:26
Harrisburg, PA 17111		
Tom Lock	Project Number:	7223016
Bristol	Purchase Order:	07-SO04485
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111 Tom Lock	4330 Lewis Road, Suite 1Date Issued:Harrisburg, PA 17111Tom LockProject Number:

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

RPD	Relative Percent Difference
Qual	Qualifers
-RE	Denotes sample was re-analyzed
PF	Preparation Factor
MDL	Method Detection Limit
LOQ	Limit of Quantitation
ppbv	parts per billion by volume
	Toutotically I doubtified Commenced and an according to the t

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

ENTHALPY			V	Air Chain of Custody Record			Turi	Turn Around Time (ri				(rush by advanced notice only)							
				ALI		Lab No:				Standard:		5 Day:		X	3	Day:			
3						Page:	1	of	1	2 Day:		1 Day:			C	Custom	TAT		
	Enthal	py Analytical	- Richmor	nd		CUSTOMER INFORMATION				PROJECT INFORMATION									
L	1941 Re	ymet Road, Richm	nond, VA 2323	7		Company:	SCS Fie	d Services			Name:				Brist	tol Lan	dfill		
L		Phone 804-358-	8295	· · ·		Report To:	Tom Lo	ock / Mike Gi	bbons	·	Number:				7	22301	5		
•••	pecial Instructions: PA 3C for Methane, Carbon	Dioxide, Oxvgen, I	Nitrogen, and	Hydrogen		Email:	<u>tlock(</u>	Øscsengin	eers.com	<u> </u>	P.O. #:								
со) via EPA ALT-145.					Address:	mgibt	oons@scse	ngineers	.com	Address:								
Re	eturned empty canisters ma	rked (No Sample).				Phone:	703-25	4-4664			Global ID:								
						Fax:					Sampled By:								
	A. A				621	07/23	– Mek								Analy	/sis Re	quest	∋d	
	Mar De	yman					COUNTR	#1107%,1	+11078	=>110	72								
		/		- (ANIX	12 007 60	UL VACL	m= 2104	Paira		73 m= 3.4 "	He	õ	N2,H2)					
			Туре	Equipme	ent Infor	mation			Sampling Ir	nformation		<u> </u>	ALT-145 (CO)	3C (CH4,CO2,O2,N2,H2)					
	Sample ID		(I) Indoor		Size	Flow	Sample	Sample	Vacuum	Sample	Sample	Vacuum	11	С Н Н					
	Jampie ID		(A) Ambient (SV) Soil Vapor		(1L, 3L,	Controller	Start Data	Start	Start ("Hg)	End	End	End ("Hg)		3C (C					
			(S) Source		6L, 15L)	ID	Date	Time	(''6/	Date	Time	1 1/8/	EPA	EPA				\perp	
· · · · ·	37		LFG	11078	1L	063-00491	3/2/2023	8:45AM	26	3/2/2023	8:48	9	х	x					
		····		279				 											
3									<u> </u>	·							⊢	\perp	
4																	┝╍╍┠		
5														_					
6 −℃	SCS Field Se	rvices 23	C0229				<u>-</u>		 										
6 23 20 24 5 5 10	5 Bristol						<u></u>		┣ ┃		20,3°C			_			\rightarrow		
6.9	Recd: 03/03/202	23 Due: 03/					****				310						\downarrow		
5	r	1	v130325002								no ice				\perp				
10						Durint t		 			10 sect								
1			ignature			Print N			C	ompany /		_				/ Tin			
	elinquished By:		n Seymour			Ryan Se	ymour			field tec	n			3/2	/23	11:0	MAC		
-	eceived By:		<u>dex E</u>				· · · · ·												
_	elinquished By:		¥E									<u> </u>	1.1			<u> </u>			
	eceived By:	Cub	ul-									<u> </u>	[3]	23	11	20			
	elinquished By:																		
×e	eceived By:															[F	age {	8 of 9

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 3, 2023 11:20 March 10, 2023 16:26
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	7223016
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 10, 2023 11:15
	4330 Lewis Road, Suite 1	Date Issued:	March 17, 2023 15:45
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/10/2023 11:15. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTATS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 10, 2023 11:15
	4330 Lewis Road, Suite 1	Date Issued:	March 17, 2023 15:45
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485
Client Site I.D.:	Bristol		

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23C0611-01	Air	03/09/2023 11:28	03/10/2023 11:15

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 21.6
Field Sample #: 37	Sub Description/Location:		Final Vacuum(in Hg): 2.4
Sample ID: 23C0611-01	Canister ID: 063-00461::14300		Receipt Vacuum(in Hg): 2.4
•	Canister Size: 1.4L		Flow Controller Type: Passive
Sample Matrix: Air Sampled: 3/9/2023 11:28			Flow Controller ID:

Sample Type: LV

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as received bas	is			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	129	90.0	90.0		9	1	3/14/23 11:43	MER

	Vol	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as received b	asis			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	11.1	0.45	0.45		9	1	3/14/23 11:43	MER
Carbon dioxide, as received	23.5	0.45	0.45		9	1	3/14/23 11:43	MER
Oxygen (O2), as received	9.36	0.45	0.45		9	1	3/14/23 11:43	MER
Hydrogen (H2), as received	2.35	0.18	0.18		9	1	3/14/23 11:43	MER
Nitrogen (N2), as received	47.8	18.0	18.0		18	1	3/14/23 13:46	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	3/14/23 11:43	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Dete/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Date/Time Analyzed	Analyst
Benzene	52800	1560	3890		170000	5000	12000	7780	1	3/15/23 13:59	DFH
Surrogate(s)		% Re	covery		% Re	covery Li	nits				
4-Bromofluorobenzene (Surr)			101		6	30-120				3/15/23 13:59	

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
Harrisburg, PA 17111		
Tom Lock	Project Number:	07223016.00
Bristol	Purchase Order:	07-SO04485
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111 Tom Lock	4330 Lewis Road, Suite 1Date Issued:Harrisburg, PA 17111Tom LockProject Number:

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjusted	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23C0611-01	1.00 mL / 1.00 mL	ALT-145	BGC0500	SGC0482	AG00026
23C0611-01	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0482	AG00026
23C0611-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0482	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	No Prep VOC Air	
23C0611-01	400 mL / 400 mL	EPA TO-15	BGC0346	SGC0540	AC30128
23C0611-01RE1	400 mL / 400 mL	EPA TO-15	BGC0346	SGC0540	AC30128

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

				-						
		eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
atch BGC0346 - No Prep VO	C Air									
Blank (BGC0346-BLK1)					Prep	ared & A	Analyzed	: 03/09/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene Surr)	4.90		ppbv	5.00		98.0	80-120			
_CS (BGC0346-BS1)					Prep	ared & A	Analyzed	: 03/09/2	023	
I,1,1-Trichloroethane	5.38	0.5	ppbv	5.00		108	70-130			
,1,2,2-Tetrachloroethane	5.67	0.5	ppbv	5.00		113	70-130			
,1,2-Trichloro-1,2,2-trifluoroetha	5.16	0.5	ppbv	5.00		103	70-130			
e ,1,2-Trichloroethane	5.32	0.5	ppbv	5.00		106	70-130			
,1-Dichloroethane	4.99	0.5	ppbv	5.00		99.8	70-130			
,1-Dichloroethylene	4.33 5.17	0.5	ppbv	5.00		103	70-130			
,2,4-Trimethylbenzene	5.64	0.5	ppbv	5.00		113	70-130			
,2-Dibromoethane (EDB)	5.63	0.5	ppbv	5.00		113	70-130			
,2-Dichlorobenzene	5.91	0.5	ppbv	5.00		118	70-130			
,2-Dichloroethane	5.32	0.5	ppbv	5.00		106	70-130			
,2-Dichloropropane	5.25	0.5	ppbv	5.00		105	70-130			
I,2-Dichlorotetrafluoroethane	5.44	0.5	ppbv	5.00		109	70-130			
, 1,3,5-Trimethylbenzene	5.61	0.5	ppbv	5.00		112	70-130			
I,3-Butadiene	4.79	0.5	ppbv	5.00		95.8	70-130			
,3-Dichlorobenzene	5.86	0.5	ppbv	5.00		117	70-130			
,4-Dichlorobenzene	5.90	0.5	ppbv	5.00		118	70-130			
,4-Dioxane	5.41	0.5	ppbv	5.00		108	70-130			
2-Butanone (MEK)	4.57	0.5	ppbv	5.00		91.4	70-130			
I-Methyl-2-pentanone (MIBK)	5.35	0.5	ppbv	5.00		107	70-130			
Allyl chloride	4.84	0.5	ppbv	5.00		96.8	70-130			
Benzene	5.21	0.5	ppbv	5.00		104	70-130			
Benzyl Chloride	5.49	0.5	ppbv	5.00		110	70-130			
Bromodichloromethane	5.02	0.5	ppbv	5.00		100	70-130			
Bromoform	1.34	0.5	ppbv	5.00		26.8	70-130			L
Bromomethane	5.71	0.5	ppbv	5.00		114	70-130			
Carbon Disulfide	5.16	0.5	ppbv	5.00		103	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Entholmy Analytical

Enthalpy Analytical										
Analyte	Reporting			Spike	Source		%REC		RPD	
	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0346 - No Prep V	OC Air									
LCS (BGC0346-BS1)					Prep	oared & /	Analyzed	: 03/09/2	023	
Carbon Tetrachloride	5.36	0.5	ppbv	5.00		107	70-130			
Chlorobenzene	5.59	0.5	ppbv	5.00		112	70-130			
Chloroethane	5.32	0.5	ppbv	5.00		106	70-130			
Chloroform	5.07	0.5	ppbv	5.00		101	70-130			
Chloromethane	5.06	0.5	ppbv	5.00		101	70-130			
cis-1,2-Dichloroethylene	5.11	0.5	ppbv	5.00		102	70-130			
cis-1,3-Dichloropropene	5.47	0.5	ppbv	5.00		109	70-130			
Cyclohexane	5.24	0.5	ppbv	5.00		105	70-130			
Dichlorodifluoromethane	5.16	0.5	ppbv	5.00		103	70-130			
Ethyl acetate	5.38	0.5	ppbv	5.00		108	70-130			
Ethylbenzene	5.53	0.5	ppbv	5.00		111	70-130			
Heptane	5.03	0.5	ppbv	5.00		101	70-130			
Hexane	5.06	0.5	ppbv	5.00		101	70-130			
m+p-Xylenes	11.2	1	ppbv	10.0		112	70-130			
Methylene chloride	4.67	1	ppbv	5.00		93.4	70-130			
Methyl-t-butyl ether (MTBE)	5.17	0.5	ppbv	5.00		103	70-130			
Naphthalene	5.24	0.5	ppbv	5.00		105	60-140			
o-Xylene	5.55	0.5	ppbv	5.00		111	70-130			
Propylene	5.02	1	ppbv	5.00		100	70-130			
Styrene	5.59	0.5	ppbv	5.00		112	70-130			
Tetrachloroethylene (PCE)	5.61	0.5	ppbv	5.00		112	70-130			
Tetrahydrofuran	5.16	0.5	ppbv	5.00		103	70-130			
Toluene	5.36	0.5	ppbv	5.00		107	70-130			
trans-1,2-Dichloroethylene	5.13	0.5	ppbv	5.00		103	70-130			
trans-1,3-Dichloropropene	5.55	0.5	ppbv	5.00		111	70-130			
Trichloroethylene	5.40	0.5	ppbv	5.00		108	70-130			
Trichlorofluoromethane	5.27	0.5	ppbv	5.00		105	70-130			
Vinyl acetate	4.77	0.5	ppbv	5.00		95.4	70-130			
Vinyl bromide	4.79	0.5	ppbv	5.00		95.8	70-130			
Vinyl chloride	5.21	0.5	ppbv	5.00		104	70-130			
Surr: 4-Bromofluorobenzene (Surr)	5.14		ppbv	5.00		103	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	Enthalpy Analytical												
	Re	eporting		Spike	Source		%REC		RPD				
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual			
Batch BGC0346 - No Prep VO	C Air												
LCS Dup (BGC0346-BSD1)					Prep	pared &	Analyzed	: 03/09/20	023				
1,1,1-Trichloroethane	5.38	0.5	ppbv	5.00		108	70-130	0.00	25				
1,1,2,2-Tetrachloroethane	5.70	0.5	ppbv	5.00		114	70-130	0.528	25				
1,1,2-Trichloro-1,2,2-trifluoroetha ne	5.17	0.5	ppbv	5.00		103	70-130	0.194	25				
1,1,2-Trichloroethane	5.35	0.5	ppbv	5.00		107	70-130	0.562	25				
1,1-Dichloroethane	4.97	0.5	ppbv	5.00		99.4	70-130	0.402	25				
1,1-Dichloroethylene	5.19	0.5	ppbv	5.00		104	70-130	0.386	25				
1,2,4-Trimethylbenzene	5.63	0.5	ppbv	5.00		113	70-130	0.177	25				
1,2-Dibromoethane (EDB)	5.60	0.5	ppbv	5.00		112	70-130	0.534	25				
1,2-Dichlorobenzene	5.85	0.5	ppbv	5.00		117	70-130	1.02	25				
1,2-Dichloroethane	5.31	0.5	ppbv	5.00		106	70-130	0.188	25				
1,2-Dichloropropane	5.22	0.5	ppbv	5.00		104	70-130	0.573	25				
1,2-Dichlorotetrafluoroethane	5.53	0.5	ppbv	5.00		111	70-130	1.64	25				
1,3,5-Trimethylbenzene	5.60	0.5	ppbv	5.00		112	70-130	0.178	25				
1,3-Butadiene	4.62	0.5	ppbv	5.00		92.4	70-130	3.61	25				
1,3-Dichlorobenzene	5.88	0.5	ppbv	5.00		118	70-130	0.341	25				
1,4-Dichlorobenzene	5.88	0.5	ppbv	5.00		118	70-130	0.340	25				
1,4-Dioxane	5.43	0.5	ppbv	5.00		109	70-130	0.369	25				
2-Butanone (MEK)	4.58	0.5	ppbv	5.00		91.6	70-130	0.219	25				
4-Methyl-2-pentanone (MIBK)	5.42	0.5	ppbv	5.00		108	70-130	1.30	25				
Allyl chloride	4.93	0.5	ppbv	5.00		98.6	70-130	1.84	25				
Benzene	5.26	0.5	ppbv	5.00		105	70-130	0.955	25				
Benzyl Chloride	5.39	0.5	ppbv	5.00		108	70-130	1.84	25				
Bromodichloromethane	5.04	0.5	ppbv	5.00		101	70-130	0.398	25				
Bromoform	1.35	0.5	ppbv	5.00		27.0	70-130	0.743	25	L			
Bromomethane	5.66	0.5	ppbv	5.00		113	70-130	0.880	25				
Carbon Disulfide	5.17	0.5	ppbv	5.00		103	70-130	0.194	25				
Carbon Tetrachloride	5.35	0.5	ppbv	5.00		107	70-130	0.187	25				
Chlorobenzene	5.59	0.5	ppbv	5.00		112	70-130	0.00	25				
Chloroethane	5.28	0.5	ppbv	5.00		106	70-130	0.755	25				
Chloroform	5.08	0.5	ppbv	5.00		102	70-130	0.197	25				
Chloromethane	5.05	0.5	ppbv	5.00		101	70-130	0.198	25				
cis-1,2-Dichloroethylene	5.11	0.5	ppbv	5.00		102	70-130	0.00	25				
cis-1,3-Dichloropropene	5.42	0.5	ppbv	5.00		108	70-130	0.918	25				

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

			En	itnaipy	Analyt	cal					
	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC0346 - No Prep VC	DC Air										
LCS Dup (BGC0346-BSD1)					Prep	bared &	Analyzed	: 03/09/20)23		
Cyclohexane	5.28	0.5	ppbv	5.00		106	70-130	0.760	25		
Dichlorodifluoromethane	5.15	0.5	ppbv	5.00		103	70-130	0.194	25		
Ethyl acetate	5.36	0.5	ppbv	5.00		107	70-130	0.372	25		
Ethylbenzene	5.53	0.5	ppbv	5.00		111	70-130	0.00	25		
Heptane	5.05	0.5	ppbv	5.00		101	70-130	0.397	25		
Hexane	5.05	0.5	ppbv	5.00		101	70-130	0.198	25		
n+p-Xylenes	11.2	1	ppbv	10.0		112	70-130	0.626	25		
lethylene chloride	4.71	1	ppbv	5.00		94.2	70-130	0.853	25		
/lethyl-t-butyl ether (MTBE)	5.17	0.5	ppbv	5.00		103	70-130	0.00	25		
laphthalene	5.18	0.5	ppbv	5.00		104	60-140	1.15	25		
-Xylene	5.51	0.5	ppbv	5.00		110	70-130	0.723	25		
Propylene	5.01	1	ppbv	5.00		100	70-130	0.199	25		
Styrene	5.63	0.5	ppbv	5.00		113	70-130	0.713	25		
Fetrachloroethylene (PCE)	5.62	0.5	ppbv	5.00		112	70-130	0.178	25		
Fetrahydrofuran	5.17	0.5	ppbv	5.00		103	70-130	0.194	25		
Toluene	5.34	0.5	ppbv	5.00		107	70-130	0.374	25		
rans-1,2-Dichloroethylene	5.13	0.5	ppbv	5.00		103	70-130	0.00	25		
rans-1,3-Dichloropropene	5.58	0.5	ppbv	5.00		112	70-130	0.539	25		
Trichloroethylene	5.42	0.5	ppbv	5.00		108	70-130	0.370	25		
Frichlorofluoromethane	5.12	0.5	ppbv	5.00		102	70-130	2.89	25		
/inyl acetate	4.80	0.5	ppbv	5.00		96.0	70-130	0.627	25		
/inyl bromide	4.81	0.5	ppbv	5.00		96.2	70-130	0.417	25		
/inyl chloride	5.23	0.5	ppbv	5.00		105	70-130	0.383	25		
Surr: 4-Bromofluorobenzene	5.12		ppbv	5.00		102	70-130				

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	Reporting S			Spike	Source	%REC	%REC R			
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

Batch BGC0500 - No Prep VOC GC Air

Blank (BGC0500-BLK1)					Prepared &	Analyzed: 03/14/2	023	
Methane	<	0.05	Vol%					
Carbon dioxide	<	0.05	Vol%					
Oxygen (O2)	<	0.05	Vol%					
Nitrogen (N2)	<	1.00	Vol%					
Hydrogen (H2)	<	0.02	Vol%					
Carbon Monoxide	<	10.0	ppmv					
Carbon Monoxide	<	0.001	Vol%					
LCS (BGC0500-BS1)					Prepared &	Analyzed: 03/14/2	023	
Methane	4690	500	ppmv	5000	93.9	0-200		
Methane	4690	0.05	ppmv	5000	93.9	80-120		
Carbon dioxide	5230	500	ppmv	5000	105	0-200		
Carbon dioxide	5230	0.05	ppmv	5000	105	80-120		
Oxygen (O2)	5110	500	ppmv	5000	102	0-200		
Oxygen (O2)	5110	0.05	ppmv	5000	102	80-120		
Nitrogen (N2)	5370	2000	ppmv	5000	107	0-200		
Hydrogen (H2)	5910	200	ppmv	5100	116	0-200		
Hydrogen (H2)	5910	0.02	ppmv	5100	116	80-120		
Nitrogen (N2)	5370	1	ppmv	5000	107	80-120		
Carbon Monoxide	4880	10	ppmv	5000	97.7	0-200		
Carbon Monoxide	4880	0.001	ppmv	5000	97.7	80-120		
Duplicate (BGC0500-DUP1)		So	urce: 23C	0611-01	Prepared &	Analyzed: 03/14/2	023	
Methane	11.0	0.45	Vol%		11.1	0.199	5	
Methane	110000	4500	ppmv		111000	0.199	25	
Carbon dioxide	23.7	0.45	Vol%		23.5	1.06	5	
Carbon dioxide	237000	4500	ppmv		235000	1.06	25	
Oxygen (O2)	9.38	0.45	Vol%		9.36	0.200	5	
Oxygen (O2)	93800	4500	ppmv		93600	0.200	25	
Hydrogen (H2)	2.34	0.18	Vol%		2.35	0.278	5	
Nitrogen (N2)	469000	18000	ppmv		469000	0.0733	25	
Hydrogen (H2)	23400	1800	ppmv		23500	0.278	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01	1.39	5	
Carbon Monoxide	131	90.0	ppmv		129	1.39	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

L	LCS recovery is outside of established acceptance limits
RPD	Relative Percent Difference
Qual	Qualifers
-RE	Denotes sample was re-analyzed
PF	Preparation Factor
MDL	Method Detection Limit
LOQ	Limit of Quantitation
ppbv	parts per billion by volume
TIC	Tentatively Identified Compounds are compounds that are

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

AIR ANALYSIS

		/V// 20	0010101	163			CHAIN	OF CUS	TODY	E	quipm	nent due	e 3/30/20)23					
COMPANY NAME	: SCS Fiel	d Servi	ces - Harri	isbu	ırg IN	VOICE TO): Same				PROJ	ECT NAM	E/Quote	#: Bristo					·
CONTACT:					IN	VOICE CC	ONTACT:				SITE		nistal						
ADDRESS:					IN	VOICE AD	DRESS:				PROJ	ECT NUM	IBER:	72230	516.	9	;		
PHONE #:					IN	VOICE PH	IONE #:				P.O. #								
FAX #:			EN	IAIL		<u> </u>					Pretre	atment Pr	ogram:						
Is sample for comp	liance rep	orting?	YES NO)	Regulat	tory State:	VA Is:	sample fro	m a chlori	nated sup	oly?	YES 🖌	D PV	NS I.D. #:					
SAMPLER NAME	(PRINT):	Kya/	Eyn	NU	si si	AMPLER S	IGNATUR	E: Ryan	v.S.	umor	Turn	Around T	ime: Cir	cle: 10 🤇	5 Days	>	or _	_ D	ay(s)
Matrix Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV=Land	dfill/V	/ent Gas O	T=Other				0		063	-23B-001	4					
	Regulator	Info	Canister In	nform	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	nation		ŝ	٩NA	LYS	SIS
CLIENT						LAB	LAB	Barometric	Pres. (in Ho	g):		Barometric	: Pres. (in H	lg):		Codes)		2	5
SAMPLE I.D.	Flow Controller ID	Cal Flow (mUmin)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in ^{Hg)}		Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in ^{Hg)}	Ending Sample Temp *F	Matrix (See Coo	Alt 145 C(Ranzana	TO-15
" 37	063-004	,	14300	1.4	, 230126-02	21.6	2.4	3/9/23	11:24 Am	e 28	Mg	3/1/23	11:28 Am	1	149				x
2)			14308	1.4	230126-02	21.6										LG	x	(x
3)														:					
4)	V												· · ·						
RELINQUISHED:				REC	EIVED:		DAT	E / TIME	QC Data P	ackage LA	BUSE		310	20.3	40	Ser	(''	L J	J.
RELINQUISHED: Grand & G RELINQUISHED:				l	F.CM & EIVED: M SM EIVED:	Ex G ~ 3	10/23	(> E / TIME	Level I Level II Level III	□ SCS	Field	l Servic		C0611					
				<u> </u>					Level IV	- Recd	1: 03/1	0/2023	Due: 03/	v130325002		Pag	e 11		12

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 10, 2023 11:15 March 17, 2023 15:45
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

SCS ENGINEERS

April 10, 2023 File No. 02218208.04

MEMORANDUM

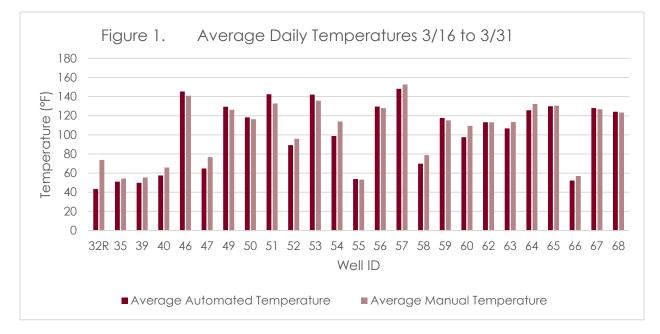
- TO: Kristin Hall, EPA Region III Tracy Blalock, VDEQ-SWRO
- FROM: D. Brandon King, SCS Engineers Quinn Bernier, SCS Engineers
- SUBJECT: Semi-Monthly Status Update March 16th through March 31st, 2023 Bristol Integrated Waste Management Facility, Bristol, Virginia

SCS is submitting this semi-monthly status update to satisfy the conditions of compliance provision #2 of the Environmental Protection Agency (EPA) Region III letter, *Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility*, dated 8/23/21. Accordingly, this memo is a summary of temperature monitoring activities as well as work accomplished during the semi-monthly monitoring period of 3/16/23 through 3/31/23.

TEMPERATURE MONITORING

Automated Wellhead Temperature Measurements

Twenty-five (25) individual landfill gas (LFG) wellheads in the Permit #588 Landfill have automated temperature sensors installed. VDEQ and USEPA have been receiving Daily Gas Well Temperature Reports with data from these automated temperature sensors since 12/1/22.


Since March 1, 2023, all 25 wellheads have 2-inch automated sensors. SCS believes that the new 2-inch sensors measure temperature with more accuracy than the 1-inch sensors that were used in the majority of the 25 wells prior to March 1.

SCS reviewed the automated hourly temperature measurements from 3/16/23 to 3/31/23, and identified the following trends:

- Temperatures over 145°F: Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded at seven wells during this monitoring period. This represents generally higher temperatures across the wellfield than usual. Temperatures greater than 145°F were recorded most consistently at EW-46, however the highest temperatures were measured at EW-51 (up to 188°F at times). Field staff believe that the general increase in wellfield temperatures suggests the wellfield may be over-tuned, meaning that applied vacuum at wellheads is greater than necessary. This may have caused the higher oxygen concentrations observed at the blower/flare station and increased well temperatures.
- Low temperatures at certain wells: Average temperatures between 40°F and 60°F at certain wells generally correlated with low LFG flow rates measured during monthly wellfield monitoring events. These low temperatures are likely close to ambient because little to no LFG is passing through the wellhead where the sensors are placed.

0

• **Temperature Trends by Location:** Not all of the wells with the highest temperatures, for example over 145°F, were collocated. Of the wells with the highest temperatures during this monitoring period, EW-46, EW-51, and EW-57, were the closest to each other; generally located in the southwestern corner of the landfill.

Manual Daily Temperature Monitoring

Manual temperature measurements are being made daily by field staff with a GEM5000 or equivalent LFG analyzer. The manual measurements are used to verify the automated wellhead temperature sensors and to provide temperature data for the 13 wellheads without automated sensors.

Comparing the difference between manual temperature measurements and automated temperature measurements in Figure 2, the new 2-inch sensors appear to have overall improved correlation with manual measurements. This supports SCS' previous suspicion that continued differences between temperature measurement methods were due to troubleshooting the first two weeks of operation of the 2-inch automated sensors in early March. However, EW-32R continued to show significant differences. The sensor at this well should be investigated further for potential physical issues that may be causing it to record temperatures much lower than manually measured temperatures.

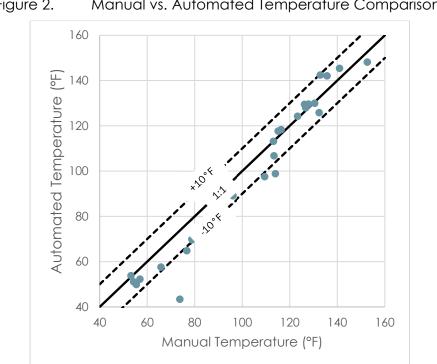


Figure 2. Manual vs. Automated Temperature Comparison

All daily temperatures recorded manually are provided in Attachment A.

Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted 3/1/23, 3/7/23, and 3/15/23. During this monitoring period, temperature exceedances were resolved at GW-37 and GW-57, and new temperature exceedances were measured at GW-37, GW-51, GW-57, and GW-59. See Table 2 for a list of the status of all exceedances recorded during this monitoring period.

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 3/31/23
GW-37	4/6/22	3/23/23 144.9°F	10 months	New exceedance, see below
GW-37	3/28/23	3/29/23 150.6°F	4 days	Ongoing, within 15-day timeline
GW-51	3/23/23	3/29/23 169.8°F	9 days	Ongoing, within 15-day timeline
GW-57	3/15/23	3/23/23 133.5°F	9 days	New exceedance, see below
GW-57	3/28/23	3/29/23 162.1°F	4 days	Ongoing, within 15-day timeline
GW-59	3/28/23	3/29/23 119.3°F	1 day	Resolved

Table 2. March Temperature Exceedance Summary

Work Accomplished During Monitoring Period

LFG Sampling

SCS collected LFG samples from wells GW-37 and GW-53 using 1.5-L Summa canisters on 3/16/23, and well EW-51 on 3/23/23 to fulfill the requirement in 40 CFR 63.1961(a)(5) for temperature exceedances lasting more than 7 days. The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H₂) content. Lab results are summarized in Table 3. Full laboratory analytical data is included in **Attachment B** for further detail.

				1 0	- /		
Sample Date	GW	1-37	GW	-51	GW-57		
	CO (ppmv)	H2 (Vol. %)	CO (ppmv)	H2 (Vol. %)	CO (ppmv)	H2 (Vol. %)	
3/16/23	168	3.08			855	13.5	
3/23/23			554	8.90			
3/29/23	167	3.07	1430	25.8	884	11.1	

Table 2. LFG Wellhead Sampling Sum	mmarv
------------------------------------	-------

The presence of hydrogen in all of the samples collected during this monitoring period indicates that combustion reactions are unlikely. The carbon monoxide measurements were all greater than 100 ppmv, indicating that continued weekly CO sampling should continue per 40 CFR 63.1961(a)(5)(viii) until the temperature exceedance is corrected or CO is less than 100 ppmv for four consecutive weekly samples.

Construction Activities

SCS-Field Services (SCS-FS) continued trenching activities along the quarry sidewall for the Odor Mitigation System (SOMS), from the northern section along the entrance access road towards the northeast corner of the landfill. SCS-FS isolated and cut sections of the existing LFG header,

removing a section of 12-inch LFG header between the sidewall and condensate sump CPS-1 to install the lower horizontal collector from the northeast corner down the eastern sidewall back to CPS-1. SCS-FS also trenched and installed the lower horizontal collector along a short stretch of the northwest sidewall just north of the Phase I Pilot Study section back to the quarry entrance.

Chesapeake Containment Systems (Chesapeake) began liner work on 3/15/23 beginning just south of the Phase I Pilot Study area along the western sidewall and heading south

Drilling EW-70, installed SOMS liner in the background

MEMORANDUM 4/10/23 Page 5

along the perimeter of the landfill. Chesapeake tied the SOMS into the existing liner, covered the lower collector, and extended the liner 40-feet from the sidewall in all areas where SCS-FS has installed the SOMS.

Bentonite and other materials were delivered to the Landfill in anticipation of vertical well drilling (LFG System Phase I). SCS and the City staked out the 34 proposed LFG extraction well locations. The 18 near-sidewall LFG wells are to be constructed using 8-inch CPVC pipe, while 16 deep interior LFG wells are to be constructed using 304 stainless steel pipe. The driller and LFG System Phase I contractor mobilized and had a Pre-Construction meeting with the City and SCS on 3/28/23. The drilling contractor commenced drilling activities on 3/29/23 subsequent to the City's press release. The contractor drilled five of the CPVC LFG extraction wells in the northeast section of the quarry by the end of this monitoring period.

Weekly SEM

SCS is continuing weekly surface emissions monitoring (SEM) per the Plan of Action Report dated 7/6/22. No exceedances of the 500-ppmv threshold were recorded during the weekly SEM event held on 3/23/23. One exceedance was recorded at the pipe penetration of EW-52 during the weekly event conducted on 3/29/23. This point will be remonitored pending corrective actions.

The City has placed intermediate cover throughout the Permit No. 588 Landfill and installed well bore skirts at 19 select LFG wells exhibiting methane exceedances at pipe penetrations during past weekly SEM events. The actions appear to be working based on the results of the weekly SEM event during this monitoring period and may be employed to resolve the new exceedance at EW-52 if needed.

LFG System O&M

The City's O&M contractor received a variety of pump replacement parts from Pump One to assist O&M with pulling and switching out pneumatic pumps. Pump One also provided a custom pump cleaning and testing station to the City. O&M is now rebuilding several pumps with the new pump supplies. In addition, air regulators, tri-tubing, and other pump appurtenances are being replaced where needed with the pump replacement parts. O&M is replacing outdated flexible tubing at select wellheads with Solarguard flex tubing. The City has ordered a dozen new QED 2-inch wellheads to assist with wellfield tuning activities on the Permit #588 Landfill.

Please contact SCS or City personnel if you have any questions or require additional information.

cc: Randall Eads, City of Bristol Jon Hayes, City of Bristol Jeff Hurst, VDEQ-SWRO Tom Lock, SCS Field Services David Cochran, City of Bristol Erin Willard, EPA Region III Stacy Bowers, VDEQ-SWRO Robert E. Dick, P.E., SCS Engineers

Attachment A

City of Bristol Daily LFG Well Temperature Readings

				Month	March	March	March	March	March	March	March									
	pth	.≓		Day	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Vednesda	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Vednesda	Thursday	Friday
	De	Ā	e,	Date	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Note	Well Depth	Date Drill	Phase	Well Number			_							_			_	-		
ADI	102	10/16/2016	Old Well	35	58	52	39	28	60	54	45	61	79	60	41	64	56	62	62	48
ADI	70	9/6/2017	Old Well	39	49	50	41	50	45	49	44	60	81	58	41	71	77	63	62	46
ADI	100	9/7/2017	Old Well	40	100	85	58	40	54	54	47	61	88	70	51	76	67	76	72	54
ADI	110	10/4/2016	Old Well	46	146	146	138	140	77	146	146	147	147	145	140	147	148	147	148	147
ADI	120	10/4/2016	Old Well	47	91	87	80	70	59	60	59	74	88	88	80	72	83	73	103	60
6	120	9/17/2013	Old Well	29	77	72	56	46	70	65	72	76	78	72	64	66	74	76	103	100
#REF!	100	8/23/2017	Old Well	30R	101	104			101	98	95	122	124	128	112	115	126	128	127	125
#REF!	120	8/30/2017	Old Well	31R	126	130	103	126	128	125	127	128	132	132	130	134	135	130	133	132
#REF!	70	7/29/2016	Old Well	32	75	70	36	30	72	70	74	70	78	82	78	88	80	82	80	81
#REF!	100	7/28/2016	Old Well	33	120	121	119	119	122	122	119	120	122	120	124	126	123	124	124	122
#REF!	100	7/30/2016	Old Well	34	107	127	120	112	128	126	125	125	125	130	112	115	118	118	112	110
#REF!	100	8/1/2016	Old Well	36	53	53	40	38	54	52	55	60	67	64	62	70	77	71	76	78
#REF!	100	8/24/2017	Old Well	37	149	150	143	146	150	150	149	153	150	150	150	149	150	149	149	150
#REF!	50	8/25/2017	Old Well	38	90	91	90	85	93	90	92	95	100	98	99	100	108	102	100	98
#REF!	75	9/8/2017	Old Well	41	76	64	58	28	65	64	66	67	69	74	60	66	73	71	75	77
#REF!	57	9/8/2017	Old Well	42	119	120	117	118	122	125	124	112	116	112	99	68	709	110	112	112
#REF!	110	10/7/2016	Old Well	48	52	49	36	40	43	44	48	50	70	60	42	52	52	56	65	61
			1		1	l.	1		1		1		l.	1		1	1	1	1	
1	120	10/1/2021	New Well	32R	61	55	60	60	60	49	79	64	78	62	48	61	59	133	126	125
2	110	10/1/2021	New Well	49	133	86	120	120	131	132	129	131	132	125	124	131	133	131	132	129
3	96	10/1/2021	New Well	50	121	94	119	119	117	118	117	118	119	112	118	118	118	118	118	118
	114	10/1/2021	NI 147 II		76	100	100	170	150	100	170	170	06	00	50			105	167	107
4	114	10/1/2021	New Well	51	76 85	100 91	182 80	176 85	158 86	188 85	173 87	172 95	96 102	88	56 68	84 94	88 88	185 91	167 163	137 142
5	109 91	10/1/2021 10/1/2021	New Well New Well	52 53	85 144	152	132	56	133	146	87 140	95 145	102	92 138	130	94 149	88 142	138	163	142
7	91 91	10/1/2021	New Well	55	144	103	100	90	67	72	69	88	149	150	130	149	142	150	141	135
8	91 104	10/1/2021	New Well	55	50	52	39	20	34	27	47	62	84	62	50	73	60	69	70	52
9	104	10/1/2021	New Well	56	133	134	142	120	89	132	131	132	134	125	130	130	129	129	128	128
10	103	10/1/2021	New Well	57	164	173	142	120	138	152	140	152	145	140	130	142	163	151	159	141
11	92	10/1/2021	New Well	58	110	60	112	110	47	74	68	86	87	62	48	83	103	75	76	46
12	72	10/1/2021	New Well	59	114	117	110	110	54	116	117	107	111	105	109	159	149	124	121	119
13	120	10/1/2021	New Well	60	109	112	110	110	107	108	109	110	112	112	104	110	110	110	110	108
14	105	10/1/2021	New Well	61	90	97	88	81	95	110	105	106	110	130	122	116	137	130	135	132
15	120	10/1/2021	New Well	62	111	112	111	115	112	112	112	112	115	112	112	116	115	116	114	113
16	117	10/1/2021	New Well	63	119	116	100	90	99	107	107	115	170	100	92	115	111	125	126	122
17	120	10/1/2021	New Well	64	140	140	120	139	125	127	125	140	130	140	124	129	139	132	139	129
18	100	10/1/2021	New Well	65	133	133	125	130	130	129	130	130	131	130	128	131	133	131	134	130
19	102	10/1/2021	New Well	66	58	52	39	30	54	49	46	62	83	64	49	66	64	69	78	48
20	100	10/1/2021	New Well	67	133	138	115	110	131	128	137	138	134	110	110	145	125	119	127	128
21	75	10/1/2021	New Well	68	124	124	122	121	124	125	124	124	125	120	120	124	123	125	125	123

Attachment B

Laboratory Analytical Reports

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 17, 2023 11:14
	4330 Lewis Road, Suite 1	Date Issued:	March 23, 2023 17:20
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485
Submitted To:		2	

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/17/2023 11:14. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTAS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 17, 2023 11:14
	4330 Lewis Road, Suite 1	Date Issued:	March 23, 2023 17:20
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485
Client Site I.D.:	Bristol		

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23C1038-01	Air	03/16/2023 10:00	03/17/2023 11:14
57	23C1038-02	Air	03/16/2023 10:10	03/17/2023 11:14

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1		Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 21.6
Field Sample #: 37	Sub Description/Location:		Final Vacuum(in Hg): 3.8
Sample ID: 23C1038-01	Canister ID: 063-00306::11293		Receipt Vacuum(in Hg): 3.8
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 3/16/2023 10:00			Flow Controller ID:

Sample Type: LV

		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	168	90.0	90.0		9	1	3/17/23 16:02	MER

	Vola	atile Organi Vol%	c Compour	ids by GC/TCD - Unadjusted, as received basi EPA 3C	s			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	13.4	0.45	0.45		9	1	3/17/23 16:02	MER
Carbon dioxide, as received	31.0	0.45	0.45		9	1	3/17/23 16:02	MER
Oxygen (O2), as received	6.22	0.45	0.45		9	1	3/17/23 16:02	MER
Hydrogen (H2), as received	3.08	0.18	0.18		9	1	3/17/23 16:02	MER
Nitrogen (N2), as received	41.1	9.00	9.00		9	1	3/17/23 16:02	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	3/17/23 16:02	MER

			Volatile (Drganic Compo EPA TO-1		S					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	62500	1560	3890		200000	5000	12000	7780	1	3/21/23 14:41	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			94.6		5	30-120				3/21/23 14:41	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 21.6
Field Sample #: 57	Sub Description/Location:		Final Vacuum(in Hg): 3.4
Sample ID: 23C1038-02	Canister ID: 063-00322::12383		Receipt Vacuum(in Hg): 3.4
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 3/16/2023 10:10			Flow Controller ID:

Sample Type: LV

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received ba	asis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	855	90.0	90.0		9	1	3/17/23 16:56	MER

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as received ba	isis			
		Vol%		EPA 3C			D. () (T)	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	20.1	0.45	0.45		9	1	3/17/23 16:56	MER
Carbon dioxide, as received	55.1	0.45	0.45		9	1	3/17/23 16:56	MER
Oxygen (O2), as received	1.27	0.45	0.45		9	1	3/17/23 16:56	MER
Hydrogen (H2), as received	13.5	1.08	1.08		54	1	3/20/23 15:24	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	3/17/23 16:56	MER
Carbon Monoxide, as received	0.09	0.009	0.009		9	1	3/17/23 16:56	MER

			Volatile (Organic Compo EPA TO-1		S					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	208000	2330	5830		670000	7500	19000	11700	1	3/21/23 16:14	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			95.8		6	30-120				3/21/23 16:14	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
Harrisburg, PA 17111		
Tom Lock	Project Number:	07223016.00
Bristol	Purchase Order:	07-SO04485
	4330 Lewis Road, Suite 1 Harrisburg, PA 17111 Tom Lock	4330 Lewis Road, Suite 1Date Issued:Harrisburg, PA 17111Tom LockProject Number:

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23C1038-01	1.00 mL / 1.00 mL	ALT-145	BGC0500	SGC0658	AG00026
23C1038-02	1.00 mL / 1.00 mL	ALT-145	BGC0500	SGC0658	AG00026
23C1038-01	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0658	AG00026
23C1038-02	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0658	AG00026
23C1038-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGC0718	SGC0713	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	No Prep VOC Air	
23C1038-01	400 mL / 400 mL	EPA TO-15	BGC0743	SGC0734	AC30195
23C1038-02	400 mL / 400 mL	EPA TO-15	BGC0743	SGC0734	AC30195

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
nalyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
atch BGC0743 - No Prep VO	C Air									
Blank (BGC0743-BLK1)					Prep	pared & /	Analyzed	: 03/21/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene Surr)	4.90		ppbv	5.00		98.0	80-120			
LCS (BGC0743-BS1)					Prep	bared & /	Analyzed	: 03/21/2	023	
1,1,1-Trichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130			
1,1,2,2-Tetrachloroethane	5.19	0.5	ppbv	5.00		104	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha	4.64	0.5	ppbv	5.00		92.8	70-130			
ne 1,1,2-Trichloroethane	4.93	0.5	ppbv	5.00		98.6	70-130			
1,1-Dichloroethane	4.93	0.5	ppbv	5.00		90.0 91.8	70-130			
1,1-Dichloroethylene	4.59	0.5	ppbv	5.00		93.2	70-130			
, 2,4-Trimethylbenzene	5.23	0.5	ppbv	5.00		105	70-130			
1,2-Dibromoethane (EDB)	5.12	0.5	ppbv	5.00		103	70-130			
,2-Dichlorobenzene	5.48	0.5	ppbv	5.00		1102	70-130			
1,2-Dichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130			
1,2-Dichloropropane	4.90	0.5	ppbv	5.00		98.0	70-130			
1,2-Dichlorotetrafluoroethane	4.70	0.5	ppbv	5.00		94.0	70-130			
1,3,5-Trimethylbenzene	5.20	0.5	ppbv	5.00		104	70-130			
1,3-Butadiene	4.57	0.5	ppbv	5.00		91.4	70-130			
1.3-Dichlorobenzene	5.35	0.5	ppbv	5.00		107	70-130			
1,4-Dichlorobenzene	5.37	0.5	ppbv	5.00		107	70-130			
, 1,4-Dioxane	5.47	0.5	ppbv	5.00		109	70-130			
2-Butanone (MEK)	4.55	0.5	ppbv	5.00		91.0	70-130			
4-Methyl-2-pentanone (MIBK)	5.13	0.5	ppbv	5.00		103	70-130			
Allyl chloride	4.49	0.5	ppbv	5.00		89.8	70-130			
Benzene	4.93	0.5	ppbv	5.00		98.6	70-130			
Benzyl Chloride	4.84	0.5	ppbv	5.00		96.8	70-130			
Bromodichloromethane	4.62	0.5	ppbv	5.00		92.4	70-130			
Bromoform	0.98	0.5	ppbv	5.00		19.6	70-130			L
Bromomethane	4.81	0.5	ppbv	5.00		96.2	70-130			
Carbon Disulfide	4.50	0.5	ppbv	5.00		90.0	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	D	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0743 - No Prep V	/OC Air									
LCS (BGC0743-BS1)					Prep	pared & A	Analyzed	: 03/21/2	023	
Carbon Tetrachloride	4.91	0.5	ppbv	5.00		98.2	70-130			
Chlorobenzene	5.05	0.5	ppbv	5.00		101	70-130			
Chloroethane	4.62	0.5	ppbv	5.00		92.4	70-130			
Chloroform	4.66	0.5	ppbv	5.00		93.2	70-130			
Chloromethane	4.61	0.5	ppbv	5.00		92.2	70-130			
cis-1,2-Dichloroethylene	4.69	0.5	ppbv	5.00		93.8	70-130			
cis-1,3-Dichloropropene	5.12	0.5	ppbv	5.00		102	70-130			
Cyclohexane	4.95	0.5	ppbv	5.00		99.0	70-130			
Dichlorodifluoromethane	4.66	0.5	ppbv	5.00		93.2	70-130			
Ethyl acetate	4.90	0.5	ppbv	5.00		98.0	70-130			
Ethylbenzene	5.17	0.5	ppbv	5.00		103	70-130			
Heptane	4.82	0.5	ppbv	5.00		96.4	70-130			
Hexane	4.82	0.5	ppbv	5.00		96.4	70-130			
m+p-Xylenes	10.3	1	ppbv	10.0		103	70-130			
Methylene chloride	4.91	1	ppbv	5.00		98.2	70-130			
Methyl-t-butyl ether (MTBE)	4.81	0.5	ppbv	5.00		96.2	70-130			
Naphthalene	4.58	0.5	ppbv	5.00		91.6	60-140			
o-Xylene	5.10	0.5	ppbv	5.00		102	70-130			
Propylene	4.57	1	ppbv	5.00		91.4	70-130			
Styrene	5.18	0.5	ppbv	5.00		104	70-130			
Tetrachloroethylene (PCE)	5.05	0.5	ppbv	5.00		101	70-130			
Tetrahydrofuran	4.93	0.5	ppbv	5.00		98.6	70-130			
Toluene	4.97	0.5	ppbv	5.00		99.4	70-130			
trans-1,2-Dichloroethylene	4.72	0.5	ppbv	5.00		94.4	70-130			
trans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00		105	70-130			
Trichloroethylene	4.95	0.5	ppbv	5.00		99.0	70-130			
Trichlorofluoromethane	4.68	0.5	ppbv	5.00		93.6	70-130			
Vinyl acetate	4.76	0.5	ppbv	5.00		95.2	70-130			
Vinyl bromide	4.66	0.5	ppbv	5.00		93.2	70-130			
Vinyl chloride	4.65	0.5	ppbv	5.00		93.0	70-130			
Surr: 4-Bromofluorobenzene (Surr)	5.10		ppbv	5.00		102	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	Enthalpy Analytical										
	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC0743 - No Prep VO	C Air										
LCS Dup (BGC0743-BSD1)					Prep	bared &	Analyzed	: 03/21/20	023		
1,1,1-Trichloroethane	5.00	0.5	ppbv	5.00		100	70-130	0.803	25		
1,1,2,2-Tetrachloroethane	5.12	0.5	ppbv	5.00		102	70-130	1.36	25		
1,1,2-Trichloro-1,2,2-trifluoroetha ne	4.68	0.5	ppbv	5.00		93.6	70-130	0.858	25		
1,1,2-Trichloroethane	5.02	0.5	ppbv	5.00		100	70-130	1.81	25		
1,1-Dichloroethane	4.62	0.5	ppbv	5.00		92.4	70-130	0.651	25		
1,1-Dichloroethylene	4.68	0.5	ppbv	5.00		93.6	70-130	0.428	25		
1,2,4-Trimethylbenzene	5.18	0.5	ppbv	5.00		104	70-130	0.961	25		
1,2-Dibromoethane (EDB)	5.08	0.5	ppbv	5.00		102	70-130	0.784	25		
1,2-Dichlorobenzene	5.42	0.5	ppbv	5.00		108	70-130	1.10	25		
1,2-Dichloroethane	4.98	0.5	ppbv	5.00		99.6	70-130	0.402	25		
1,2-Dichloropropane	4.90	0.5	ppbv	5.00		98.0	70-130	0.00	25		
1,2-Dichlorotetrafluoroethane	4.84	0.5	ppbv	5.00		96.8	70-130	2.94	25		
1,3,5-Trimethylbenzene	5.11	0.5	ppbv	5.00		102	70-130	1.75	25		
1,3-Butadiene	4.48	0.5	ppbv	5.00		89.6	70-130	1.99	25		
1,3-Dichlorobenzene	5.35	0.5	ppbv	5.00		107	70-130	0.00	25		
1,4-Dichlorobenzene	5.32	0.5	ppbv	5.00		106	70-130	0.935	25		
1,4-Dioxane	5.57	0.5	ppbv	5.00		111	70-130	1.81	25		
2-Butanone (MEK)	4.55	0.5	ppbv	5.00		91.0	70-130	0.00	25		
4-Methyl-2-pentanone (MIBK)	5.25	0.5	ppbv	5.00		105	70-130	2.31	25		
Allyl chloride	4.41	0.5	ppbv	5.00		88.2	70-130	1.80	25		
Benzene	4.96	0.5	ppbv	5.00		99.2	70-130	0.607	25		
Benzyl Chloride	4.77	0.5	ppbv	5.00		95.4	70-130	1.46	25		
Bromodichloromethane	4.66	0.5	ppbv	5.00		93.2	70-130	0.862	25		
Bromoform	0.97	0.5	ppbv	5.00		19.4	70-130	1.03	25	L	
Bromomethane	4.96	0.5	ppbv	5.00		99.2	70-130	3.07	25		
Carbon Disulfide	4.51	0.5	ppbv	5.00		90.2	70-130	0.222	25		
Carbon Tetrachloride	4.95	0.5	ppbv	5.00		99.0	70-130	0.811	25		
Chlorobenzene	5.03	0.5	ppbv	5.00		101	70-130	0.397	25		
Chloroethane	4.70	0.5	ppbv	5.00		94.0	70-130	1.72	25		
Chloroform	4.67	0.5	ppbv	5.00		93.4	70-130	0.214	25		
Chloromethane	4.58	0.5	ppbv	5.00		91.6	70-130	0.653	25		
cis-1,2-Dichloroethylene	4.76	0.5	ppbv	5.00		95.2	70-130	1.48	25		
cis-1,3-Dichloropropene	5.14	0.5	ppbv	5.00		103	70-130	0.390	25		
			••								

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Enthalpy Analytical										
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0743 - No Prep VC	DC Air									
LCS Dup (BGC0743-BSD1)					Prep	bared &	Analyzed	: 03/21/20	023	
Cyclohexane	4.96	0.5	ppbv	5.00		99.2	70-130	0.202	25	
Dichlorodifluoromethane	4.65	0.5	ppbv	5.00		93.0	70-130	0.215	25	
Ethyl acetate	4.88	0.5	ppbv	5.00		97.6	70-130	0.409	25	
Ethylbenzene	5.14	0.5	ppbv	5.00		103	70-130	0.582	25	
leptane	4.83	0.5	ppbv	5.00		96.6	70-130	0.207	25	
Hexane	4.78	0.5	ppbv	5.00		95.6	70-130	0.833	25	
n+p-Xylenes	10.3	1	ppbv	10.0		103	70-130	0.777	25	
lethylene chloride	4.88	1	ppbv	5.00		97.6	70-130	0.613	25	
/lethyl-t-butyl ether (MTBE)	4.79	0.5	ppbv	5.00		95.8	70-130	0.417	25	
laphthalene	4.32	0.5	ppbv	5.00		86.4	60-140	5.84	25	
-Xylene	5.06	0.5	ppbv	5.00		101	70-130	0.787	25	
Propylene	4.75	1	ppbv	5.00		95.0	70-130	3.86	25	
Styrene	5.15	0.5	ppbv	5.00		103	70-130	0.581	25	
Fetrachloroethylene (PCE)	5.02	0.5	ppbv	5.00		100	70-130	0.596	25	
Fetrahydrofuran	4.96	0.5	ppbv	5.00		99.2	70-130	0.607	25	
Toluene	5.05	0.5	ppbv	5.00		101	70-130	1.60	25	
rans-1,2-Dichloroethylene	4.71	0.5	ppbv	5.00		94.2	70-130	0.212	25	
rans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00		105	70-130	0.00	25	
Frichloroethylene	5.03	0.5	ppbv	5.00		101	70-130	1.60	25	
Frichlorofluoromethane	4.72	0.5	ppbv	5.00		94.4	70-130	0.851	25	
/inyl acetate	4.69	0.5	ppbv	5.00		93.8	70-130	1.48	25	
/inyl bromide	4.70	0.5	ppbv	5.00		94.0	70-130	0.855	25	
/inyl chloride	4.73	0.5	ppbv	5.00		94.6	70-130	1.71	25	
Surr: 4-Bromofluorobenzene	5.07		ppbv	5.00		101	70-130			

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

Batch BGC0500 - No Prep VOC GC Air

Blank (BGC0500-BLK1)	Prepared & Analyzed: 03/14/2023							
Methane	<	0.05	Vol%					
Carbon dioxide	<	0.05	Vol%					
Oxygen (O2)	<	0.05	Vol%					
Nitrogen (N2)	<	1.00	Vol%					
Hydrogen (H2)	<	0.02	Vol%					
Carbon Monoxide	<	10.0	ppmv					
Carbon Monoxide	<	0.001	Vol%					
LCS (BGC0500-BS1)					Prepared &	Analyzed: 03/14	/2023	
Methane	4690	500	ppmv	5000	93.9	0-200		
Methane	4690	0.05	ppmv	5000	93.9	80-120		
Carbon dioxide	5230	500	ppmv	5000	105	0-200		
Carbon dioxide	5230	0.05	ppmv	5000	105	80-120		
Oxygen (O2)	5110	500	ppmv	5000	102	0-200		
Oxygen (O2)	5110	0.05	ppmv	5000	102	80-120		
Hydrogen (H2)	5910	200	ppmv	5100	116	0-200		
Nitrogen (N2)	5370	2000	ppmv	5000	107	0-200		
Nitrogen (N2)	5370	1	ppmv	5000	107	80-120		
Hydrogen (H2)	5910	0.02	ppmv	5100	116	80-120		
Carbon Monoxide	4880	10	ppmv	5000	97.7	0-200		
Carbon Monoxide	4880	0.001	ppmv	5000	97.7	80-120		
Duplicate (BGC0500-DUP1)		So	urce: 23C	0611-01	Prepared &	Analyzed: 03/14	/2023	
Methane	11.0	0.45	Vol%		11.1	0.199	5	
Methane	110000	4500	ppmv		111000	0.199	25	
Carbon dioxide	237000	4500	ppmv		235000	1.06	25	
Carbon dioxide	23.7	0.45	Vol%		23.5	1.06	5	
Oxygen (O2)	93800	4500	ppmv		93600	0.200	25	
Oxygen (O2)	9.38	0.45	Vol%		9.36	0.200) 5	
Hydrogen (H2)	2.34	0.18	Vol%		2.35	0.278	5 5	
Nitrogen (N2)	469000	18000	ppmv		469000	0.073	3 25	
Hydrogen (H2)	23400	1800	ppmv		23500	0.278	3 25	
Carbon Monoxide	0.01	0.009	Vol%		0.01	1.39	5	
Carbon Monoxide	131	90.0	ppmv		129	1.39	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	Reporting			Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	

Batch BGC0500 - No Prep VOC GC Air

Duplicate (BGC0500-DUP2)		Sou	urce: 23C1038-0	1 Prepared & Ana	alyzed: 03/17/202	23	
Methane	134000	4500	ppmv	134000	0.654	25	
Methane	13.4	0.45	Vol%	13.4	0.654	5	
Carbon dioxide	30.7	0.45	Vol%	31.0	0.911	5	
Carbon dioxide	307000	4500	ppmv	310000	0.911	25	
Oxygen (O2)	6.21	0.45	Vol%	6.22	0.209	5	
Oxygen (O2)	62100	4500	ppmv	62200	0.209	25	
Hydrogen (H2)	3.00	0.18	Vol%	3.08	2.63	5	
Nitrogen (N2)	40.9	9.00	Vol%	41.1	0.473	5	
Hydrogen (H2)	30000	1800	ppmv	30800	2.63	25	
Nitrogen (N2)	409000	18000	ppmv	411000	0.473	25	
Carbon Monoxide	0.02	0.009	Vol%	0.02	0.428	5	
Carbon Monoxide	169	90.0	ppmv	168	0.428	25	
Duplicate (BGC0500-DUP3)		Sou	urce: 23C1038-0	2 Prepared & Ana	Prepared & Analyzed: 03/17/2023		
Methane	204000	4500	ppmv	201000	1.59	25	
Methane	20.4	0.45	Vol%	20.1	1.59	5	
Carbon dioxide	55.9	0.45	Vol%	55.1	1.40	5	
Carbon dioxide	559000	4500	ppmv	551000	1.40	25	
Oxygen (O2)	1.28	0.45	Vol%	1.27	0.951	5	
Oxygen (O2)	12800	4500	ppmv	12700	0.951	25	
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5	
Hydrogen (H2)	138000	1800	ppmv	136000	1.74	25	
Nitrogen (N2)	43900	18000	ppmv	43400	1.19	25	
Carbon Monoxide	874	90.0	ppmv	855	2.27	25	
Carbon Monoxide	0.09	0.009	Vol%	0.09	2.27	5	

Batch BGC0718 - No Prep VOC GC Air

Blank (BGC0718-BLK1)				Prepared & Analyzed: 03/20/2023
Methane	<	0.05	Vol%	
Carbon dioxide	<	0.05	Vol%	
Oxygen (O2)	<	0.05	Vol%	
Hydrogen (H2)	<	0.02	Vol%	
Nitrogen (N2)	<	1.00	Vol%	
Carbon Monoxide	<	0.001	Vol%	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20	
	Harrisburg, PA 17111			
Submitted To:	Tom Lock	Project Number:	07223016.00	
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485	

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

			En	itnaipy	Analyti	cai				
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0718 - No Prep VC	C GC Air									
LCS (BGC0718-BS1)					Prep	ared &	Analyzed	: 03/20/20)23	
Methane	4760	0.05	ppmv	5000		95.2	80-120			
Carbon dioxide	5840	0.05	ppmv	5000		117	80-120			
Oxygen (O2)	5190	0.05	ppmv	5000		104	80-120			
Nitrogen (N2)	5430	1	ppmv	5000		109	80-120			
Hydrogen (H2)	5830	0.02	ppmv	5100		114	80-120			
Carbon Monoxide	4950	0.001	ppmv	5000		99.0	80-120			
Duplicate (BGC0718-DUP1)		So	urce: 23C	1051-01	Prep	ared &	Analyzed	: 03/20/20)23	
Methane	38.3	0.45	Vol%		38.5			0.499	5	
Carbon dioxide	42.1	0.45	Vol%		42.3			0.546	5	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	11.4	9.00	Vol%		11.5			0.554	5	
Hydrogen (H2)	2.39	0.18	Vol%		2.40			0.567	5	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Duplicate (BGC0718-DUP2)		So	urce: 23C	1051-02	Prep	ared &	Analyzed	: 03/20/20)23	
Methane	38.3	0.45	Vol%		38.4			0.171	5	
Carbon dioxide	38.6	0.45	Vol%		38.6			0.0315	5	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	<	9.00	Vol%		<9.00	C		NA	5	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Duplicate (BGC0718-DUP3)		So	urce: 23C	1051-03	Prep	ared &	Analyzed	: 03/21/20)23	
Methane	36.9	0.45	Vol%		37.2			0.658	5	
Carbon dioxide	38.2	0.45	Vol%		38.4			0.498	5	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	14.1	9.00	Vol%		14.2			0.849	5	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

Batch BGC0718 - No Prep VOC GC Air

Duplicate (BGC0718-DUP4)		Sou	urce: 23C1051-04	Prepared & Ai	nalyzed: 03/21/202	23
Methane	37.3	0.45	Vol%	37.7	0.902	5
Carbon dioxide	45.2	0.45	Vol%	45.6	0.771	5
Oxygen (O2)	0.53	0.45	Vol%	0.55	2.83	5
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Hydrogen (H2)	4.46	0.18	Vol%	4.51	1.11	5
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Qualifiers and Definitions

- L LCS recovery is outside of established acceptance limits
- RPD Relative Percent Difference
- Qual Qualifers
- -RE Denotes sample was re-analyzed
- PF Preparation Factor
- MDL Method Detection Limit
- LOQ Limit of Quantitation
- ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

ENTHALPY A N A L Y T I C A L formerly Air, Water & Soil Laboratories

AIR ANALYSIS

10

		011 20	oorator	103			CHAIN	OF CUS	TODY	Ec	quipm	nent due	e 3/30/20	23					
COMPANY NAME	: SCS Fiel	d Servi	ces - Harri	sbu	rg IN	VOICE TO	: Same	1			PROJ	ECT NAM	IE/Quote #	E Bristo	bl				
CONTACT:					IN	VOICE CC	NTACT:	1		-	SITE NAME: Bristol								
ADDRESS: INVOICE ADDRESS: PROJECT NUMBER: 072230								2014	14.00										
PHONE #: INVOICE PHONE #: P.O. #:																			
FAX #: EMAIL: Pretreatment Program:																			
Is sample for comp	oliance rep	orting?	YES NO		Regulat	ory State:	VA Is:	sample fro	m a chlori	nated supp	oly?	YES O	10 PV	VS I.D. #:					
SAMPLER NAME	(PRINT):	yew	Seyn	Nor	Jr SA	MPLER S	IGNATUR	E: Pyc	in A	upro	Turn	Around T	ime: Circ	cle: 10 (5 Days	>	or		Day(s)
Matrix Codes: AA=Indoo	or/Ambient Air	SG=Soil				=Other	V			0		063	3-23B-001	4					
	Regulator	Info	Canister In	forn	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	nation		ies)	AN	AL١	/SIS
CLIENT						LAB	LAB	Barometric	Pres. (in Ho	1): 30.0	4	Barometri	c Pres. (in H	g): 30.	04	e Cod	0		by
SAMPLE I.D.	Flow Controller ID	Cal Flow (mUmin)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in ^{Hg)}	Receiving Canister Vacuum (in ^{Hg)}	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in ^{Hg)}	Starting Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in _{Hg)}	Ending Sample Temp °F	Matrix (se	Alt 145 CO	EPA 3C	Benzene I TO-15
1) 37			11293	1.4	230202-02	21.6	3.8	3/16/23	9:58 AM	28	148	10:00 19m	100	10	148	LG			x
2) 57			12383	1.4	230202-02	21.6	3.4	3/14/23	10:08 Am	28	146	10:10	3/16/23	10	147	LG	x	x	x
3)			12418	1.4	230202-02	21.6										LG	x	x	x
4)	a.		14294	1.4	230126-02	21.6			×.							LG	x	x	x
RELINQUISHED:		-	3/11/29	REC	EIVED:		DAT	E / TIME	QC Data P	ackage LA	<u>310</u> в use	NOTE	Nosca						
	nu -		E / TIME 5:25	-	EIVED: Add	ExG		E / TIME	Level I Level II Level III				CS Field ristol	d Servic	ces	230	C1(038	3
	dexG				lleu	UMur	3/17/2	3[114	Level IV			R	ecd: 03/1	7/2023	Due:	03/2		2 02	
Extra	Box	NO	So	w	rple'	Col	Hected	. 01	d Be	x fo	und	-			[P	age	15	of 16

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 17, 2023 11:14 March 23, 2023 17:20
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 24, 2023 10:00
	4330 Lewis Road, Suite 1	Date Issued:	March 29, 2023 16:48
	Harrisburg, PA 17111	Project Number:	[none]
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/24/2023 10:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTAS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 24, 2023 10:00
	4330 Lewis Road, Suite 1	Date Issued:	March 29, 2023 16:48
	Harrisburg, PA 17111	Project Number:	[none]
Submitted To:	Tom Lock	Purchase Order:	07-SO04485
Client Site I.D.: Br	istol		

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
51	23C1352-02	Air	03/23/2023 13:33	03/24/2023 10:00

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS	3	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 21.6
Field Sample #: 51	Sub Description/Location:		Final Vacuum(in Hg): 12
Sample ID: 23C1352-02	Canister ID: 063-00084::12418		Receipt Vacuum(in Hg): 6.4
Sample Matrix: Air	Canister Size: 1.4L		Flow Controller Type: Passive
Sampled: 3/23/2023 13:33			Flow Controller ID:

Sample Type: LV

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as recei	ved basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	554	90.0	90.0		9	1	3/27/23 12:20	MER

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadjusted, as receive EPA 3C	d basis			
		Vol%		EFA 30			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	12.6	0.45	0.45		9	1	3/27/23 12:20	MER
Carbon dioxide, as received	44.3	0.45	0.45		9	1	3/27/23 12:20	MER
Oxygen (O2), as received	5.35	0.45	0.45		9	1	3/27/23 12:20	MER
Hydrogen (H2), as received	8.90	0.54	0.54		27	1	3/27/23 15:04	MER
Nitrogen (N2), as received	19.2	9.00	9.00		9	1	3/27/23 12:20	MER
Carbon Monoxide, as received	0.06	0.009	0.009		9	1	3/27/23 12:20	MER

			Volatile (Organic Compo EPA TO-1		S					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	162000	2330	5830		520000	7500	19000	11700	1	3/28/23 10:50	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			101		6	30-120				3/28/23 10:50	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

- Analytical Summary

Preparation Factors Initial / Final	Factors Method Batch ID		Sequence ID	Calibration ID
pounds by GC/TCD - Unadjusted	d, as received basis	Preparation Method:	No Prep VOC GC Air	
1.00 mL / 1.00 mL	ALT-145	BGC0954	SGC0940	AG00026
1.00 mL / 1.00 mL	EPA 3C	BGC0954	SGC0940	AG00026
1.00 mL / 1.00 mL	EPA 3C	BGC0954	SGC0940	AG00026
Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
pounds by GCMS		Preparation Method:	No Prep VOC Air	
400 mL / 400 mL	EPA TO-15	BGC0743	SGC0974	AC30195
	Initial / Final pounds by GC/TCD - Unadjuster 1.00 mL / 1.00 mL 1.00 mL / 1.00 mL 1.00 mL / 1.00 mL Preparation Factors Initial / Final pounds by GCMS	Initial / Final Method pounds by GC/TCD - Unadjusted, as received basis 1.00 mL / 1.00 mL ALT-145 1.00 mL / 1.00 mL EPA 3C 1.00 mL / 1.00 mL EPA 3C Preparation Factors Initial / Final	Initial / FinalMethodBatch IDpounds by GC/TCD - Unadjusted, as received basisPreparation Method:1.00 mL / 1.00 mLALT-145BGC09541.00 mL / 1.00 mLEPA 3CBGC09541.00 mL / 1.00 mLEPA 3CBGC09541.00 mL / 1.00 mLMethodBatch IDPreparation Factors Initial / Finalpounds by GCMSPreparation Method:	Initial / FinalMethodBatch IDSequence IDpounds by GC/TCD - Unadjusted, as received basisPreparation Method:No Prep VOC GC Air1.00 mL / 1.00 mLALT-145BGC0954SGC09401.00 mL / 1.00 mLEPA 3CBGC0954SGC09401.00 mL / 1.00 mLEPA 3CBGC0954SGC09401.00 mL / 1.00 mLMethodBatch IDSequence IDPreparation Factors Initial / Finalpounds by GCMSPreparation Method:No Prep VOC Air

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0743 - No Prep VO	C Air									
Blank (BGC0743-BLK1)					Prep	ared & /	Analyzed	: 03/21/2	023	
Benzene	<	0.50	ppbv							
urr: 4-Bromofluorobenzene Surr)	4.90		ppbv	5.00		98.0	80-120			
_CS (BGC0743-BS1)					Prep	ared & A	Analyzed	: 03/21/2	023	
I,1,1-Trichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130			
I,1,2,2-Tetrachloroethane	5.19	0.5	ppbv	5.00		104	70-130			
I,1,2-Trichloro-1,2,2-trifluoroetha	4.64	0.5	ppbv	5.00		92.8	70-130			
ne I.1.2-Trichloroethane	4.93	0.5	ppbv	5.00		98.6	70-130			
I,1-Dichloroethane	4.59	0.5	ppbv	5.00		91.8	70-130			
I,1-Dichloroethylene	4.59	0.5	ppbv	5.00		93.2	70-130			
, 2,4-Trimethylbenzene	5.23	0.5	ppbv	5.00		105	70-130			
,2-Dibromoethane (EDB)	5.12	0.5	ppbv	5.00		102	70-130			
,2-Dichlorobenzene	5.48	0.5	ppbv	5.00		110	70-130			
,2-Dichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130			
,2-Dichloropropane	4.90	0.5	ppbv	5.00		98.0	70-130			
I,2-Dichlorotetrafluoroethane	4.70	0.5	ppbv	5.00		94.0	70-130			
1,3,5-Trimethylbenzene	5.20	0.5	ppbv	5.00		104	70-130			
I,3-Butadiene	4.57	0.5	ppbv	5.00		91.4	70-130			
I,3-Dichlorobenzene	5.35	0.5	ppbv	5.00		107	70-130			
I,4-Dichlorobenzene	5.37	0.5	ppbv	5.00		107	70-130			
I,4-Dioxane	5.47	0.5	ppbv	5.00		109	70-130			
2-Butanone (MEK)	4.55	0.5	ppbv	5.00		91.0	70-130			
1-Methyl-2-pentanone (MIBK)	5.13	0.5	ppbv	5.00		103	70-130			
llyl chloride	4.49	0.5	ppbv	5.00		89.8	70-130			
Benzene	4.93	0.5	ppbv	5.00		98.6	70-130			
Benzyl Chloride	4.84	0.5	ppbv	5.00		96.8	70-130			
Bromodichloromethane	4.62	0.5	ppbv	5.00		92.4	70-130			
Bromoform	0.98	0.5	ppbv	5.00		19.6	70-130			L
Bromomethane	4.81	0.5	ppbv	5.00		96.2	70-130			
Carbon Disulfide	4.50	0.5	ppbv	5.00		90.0	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

				inapy	Analyti	Gui				
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0743 - No Prep V	/OC Air									
LCS (BGC0743-BS1)					Prep	ared & A	Analyzed	: 03/21/2	023	
Carbon Tetrachloride	4.91	0.5	ppbv	5.00		98.2	70-130			
Chlorobenzene	5.05	0.5	ppbv	5.00		101	70-130			
Chloroethane	4.62	0.5	ppbv	5.00		92.4	70-130			
Chloroform	4.66	0.5	ppbv	5.00		93.2	70-130			
Chloromethane	4.61	0.5	ppbv	5.00		92.2	70-130			
cis-1,2-Dichloroethylene	4.69	0.5	ppbv	5.00		93.8	70-130			
cis-1,3-Dichloropropene	5.12	0.5	ppbv	5.00		102	70-130			
Cyclohexane	4.95	0.5	ppbv	5.00		99.0	70-130			
Dichlorodifluoromethane	4.66	0.5	ppbv	5.00		93.2	70-130			
Ethyl acetate	4.90	0.5	ppbv	5.00		98.0	70-130			
Ethylbenzene	5.17	0.5	ppbv	5.00		103	70-130			
Heptane	4.82	0.5	ppbv	5.00		96.4	70-130			
Hexane	4.82	0.5	ppbv	5.00		96.4	70-130			
m+p-Xylenes	10.3	1	ppbv	10.0		103	70-130			
Methylene chloride	4.91	1	ppbv	5.00		98.2	70-130			
Methyl-t-butyl ether (MTBE)	4.81	0.5	ppbv	5.00		96.2	70-130			
Naphthalene	4.58	0.5	ppbv	5.00		91.6	60-140			
o-Xylene	5.10	0.5	ppbv	5.00		102	70-130			
Propylene	4.57	1	ppbv	5.00		91.4	70-130			
Styrene	5.18	0.5	ppbv	5.00		104	70-130			
Tetrachloroethylene (PCE)	5.05	0.5	ppbv	5.00		101	70-130			
Tetrahydrofuran	4.93	0.5	ppbv	5.00		98.6	70-130			
Toluene	4.97	0.5	ppbv	5.00		99.4	70-130			
trans-1,2-Dichloroethylene	4.72	0.5	ppbv	5.00		94.4	70-130			
trans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00		105	70-130			
Trichloroethylene	4.95	0.5	ppbv	5.00		99.0	70-130			
Trichlorofluoromethane	4.68	0.5	ppbv	5.00		93.6	70-130			
√inyl acetate	4.76	0.5	ppbv	5.00		95.2	70-130			
Vinyl bromide	4.66	0.5	ppbv	5.00		93.2	70-130			
Vinyl chloride	4.65	0.5	ppbv	5.00		93.0	70-130			
Surr: 4-Bromofluorobenzene (Surr)	5.10		ppbv	5.00		102	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	Enthalpy Analytical										
	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC0743 - No Prep VO	C Air										
LCS Dup (BGC0743-BSD1)					Prep	bared &	Analyzed	: 03/21/20	023		
1,1,1-Trichloroethane	5.00	0.5	ppbv	5.00		100	70-130	0.803	25		
1,1,2,2-Tetrachloroethane	5.12	0.5	ppbv	5.00		102	70-130	1.36	25		
1,1,2-Trichloro-1,2,2-trifluoroetha ne	4.68	0.5	ppbv	5.00		93.6	70-130	0.858	25		
1,1,2-Trichloroethane	5.02	0.5	ppbv	5.00		100	70-130	1.81	25		
1,1-Dichloroethane	4.62	0.5	ppbv	5.00		92.4	70-130	0.651	25		
1,1-Dichloroethylene	4.68	0.5	ppbv	5.00		93.6	70-130	0.428	25		
1,2,4-Trimethylbenzene	5.18	0.5	ppbv	5.00		104	70-130	0.961	25		
1,2-Dibromoethane (EDB)	5.08	0.5	ppbv	5.00		102	70-130	0.784	25		
1,2-Dichlorobenzene	5.42	0.5	ppbv	5.00		108	70-130	1.10	25		
1,2-Dichloroethane	4.98	0.5	ppbv	5.00		99.6	70-130	0.402	25		
1,2-Dichloropropane	4.90	0.5	ppbv	5.00		98.0	70-130	0.00	25		
1,2-Dichlorotetrafluoroethane	4.84	0.5	ppbv	5.00		96.8	70-130	2.94	25		
1,3,5-Trimethylbenzene	5.11	0.5	ppbv	5.00		102	70-130	1.75	25		
1,3-Butadiene	4.48	0.5	ppbv	5.00		89.6	70-130	1.99	25		
1,3-Dichlorobenzene	5.35	0.5	ppbv	5.00		107	70-130	0.00	25		
1,4-Dichlorobenzene	5.32	0.5	ppbv	5.00		106	70-130	0.935	25		
1,4-Dioxane	5.57	0.5	ppbv	5.00		111	70-130	1.81	25		
2-Butanone (MEK)	4.55	0.5	ppbv	5.00		91.0	70-130	0.00	25		
4-Methyl-2-pentanone (MIBK)	5.25	0.5	ppbv	5.00		105	70-130	2.31	25		
Allyl chloride	4.41	0.5	ppbv	5.00		88.2	70-130	1.80	25		
Benzene	4.96	0.5	ppbv	5.00		99.2	70-130	0.607	25		
Benzyl Chloride	4.77	0.5	ppbv	5.00		95.4	70-130	1.46	25		
Bromodichloromethane	4.66	0.5	ppbv	5.00		93.2	70-130	0.862	25		
Bromoform	0.97	0.5	ppbv	5.00		19.4	70-130	1.03	25	L	
Bromomethane	4.96	0.5	ppbv	5.00		99.2	70-130	3.07	25		
Carbon Disulfide	4.51	0.5	ppbv	5.00		90.2	70-130	0.222	25		
Carbon Tetrachloride	4.95	0.5	ppbv	5.00		99.0	70-130	0.811	25		
Chlorobenzene	5.03	0.5	ppbv	5.00		101	70-130	0.397	25		
Chloroethane	4.70	0.5	ppbv	5.00		94.0	70-130	1.72	25		
Chloroform	4.67	0.5	ppbv	5.00		93.4	70-130	0.214	25		
Chloromethane	4.58	0.5	ppbv	5.00		91.6	70-130	0.653	25		
cis-1,2-Dichloroethylene	4.76	0.5	ppbv	5.00		95.2	70-130	1.48	25		
cis-1,3-Dichloropropene	5.14	0.5	ppbv	5.00		103	70-130	0.390	25		
			••								

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

			En	itnaipy	Analyt	cal				
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0743 - No Prep VC	DC Air									
LCS Dup (BGC0743-BSD1)					Prep	bared &	Analyzed	: 03/21/20	023	
Cyclohexane	4.96	0.5	ppbv	5.00		99.2	70-130	0.202	25	
Dichlorodifluoromethane	4.65	0.5	ppbv	5.00		93.0	70-130	0.215	25	
Ethyl acetate	4.88	0.5	ppbv	5.00		97.6	70-130	0.409	25	
Ethylbenzene	5.14	0.5	ppbv	5.00		103	70-130	0.582	25	
leptane	4.83	0.5	ppbv	5.00		96.6	70-130	0.207	25	
Hexane	4.78	0.5	ppbv	5.00		95.6	70-130	0.833	25	
n+p-Xylenes	10.3	1	ppbv	10.0		103	70-130	0.777	25	
lethylene chloride	4.88	1	ppbv	5.00		97.6	70-130	0.613	25	
/lethyl-t-butyl ether (MTBE)	4.79	0.5	ppbv	5.00		95.8	70-130	0.417	25	
laphthalene	4.32	0.5	ppbv	5.00		86.4	60-140	5.84	25	
-Xylene	5.06	0.5	ppbv	5.00		101	70-130	0.787	25	
Propylene	4.75	1	ppbv	5.00		95.0	70-130	3.86	25	
Styrene	5.15	0.5	ppbv	5.00		103	70-130	0.581	25	
Fetrachloroethylene (PCE)	5.02	0.5	ppbv	5.00		100	70-130	0.596	25	
Fetrahydrofuran	4.96	0.5	ppbv	5.00		99.2	70-130	0.607	25	
Toluene	5.05	0.5	ppbv	5.00		101	70-130	1.60	25	
rans-1,2-Dichloroethylene	4.71	0.5	ppbv	5.00		94.2	70-130	0.212	25	
rans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00		105	70-130	0.00	25	
Frichloroethylene	5.03	0.5	ppbv	5.00		101	70-130	1.60	25	
Frichlorofluoromethane	4.72	0.5	ppbv	5.00		94.4	70-130	0.851	25	
/inyl acetate	4.69	0.5	ppbv	5.00		93.8	70-130	1.48	25	
/inyl bromide	4.70	0.5	ppbv	5.00		94.0	70-130	0.855	25	
/inyl chloride	4.73	0.5	ppbv	5.00		94.6	70-130	1.71	25	
Surr: 4-Bromofluorobenzene	5.07		ppbv	5.00		101	70-130			

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

Batch BGC0954 - No Prep VOC GC Air

Blank (BGC0954-BLK1)					Prepared &	Analyzed: 03/27/2	023	
Methane	<	0.05	Vol%					
Carbon dioxide	<	0.05	Vol%					
Oxygen (O2)	<	0.05	Vol%					
Nitrogen (N2)	<	1.00	Vol%					
Hydrogen (H2)	<	0.02	Vol%					
Carbon Monoxide	<	10.0	ppmv					
Carbon Monoxide	<	0.001	Vol%					
LCS (BGC0954-BS1)					Prepared &	Analyzed: 03/27/2	023	
Methane	4640	500	ppmv	5000	92.8	0-200		
Methane	4640	0.05	ppmv	5000	92.8	80-120		
Carbon dioxide	5400	500	ppmv	5000	108	0-200		
Carbon dioxide	5400	0.05	ppmv	5000	108	80-120		
Oxygen (O2)	5060	500	ppmv	5000	101	0-200		
Oxygen (O2)	5060	0.05	ppmv	5000	101	80-120		
Nitrogen (N2)	5300	2000	ppmv	5000	106	0-200		
Hydrogen (H2)	5910	200	ppmv	5100	116	0-200		
Hydrogen (H2)	5910	0.02	ppmv	5100	116	80-120		
Nitrogen (N2)	5300	1	ppmv	5000	106	80-120		
Carbon Monoxide	4840	10	ppmv	5000	96.8	0-200		
Carbon Monoxide	4840	0.001	ppmv	5000	96.8	80-120		
Duplicate (BGC0954-DUP1)		So	urce: 23C	1352-02	Prepared &	Analyzed: 03/27/2	023	
Methane	125000	4500	ppmv		126000	1.28	25	
Methane	12.5	0.45	Vol%		12.6	1.28	5	
Carbon dioxide	43.3	0.45	Vol%		44.3	2.29	5	
Carbon dioxide	433000	4500	ppmv		443000	2.29	25	
Oxygen (O2)	53000	4500	ppmv		53500	0.925	25	
Oxygen (O2)	5.30	0.45	Vol%		5.35	0.925	5	
Hydrogen (H2)	91700	1800	ppmv		91800	0.0737	25	
Nitrogen (N2)	190000	18000	ppmv		192000	0.971	25	
Nitrogen (N2)	19.0	9.00	Vol%		19.2	0.971	5	
Carbon Monoxide	552	90.0	ppmv		554	0.407	25	
Carbon Monoxide	0.06	0.009	Vol%		0.06	0.407	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	Reporting		Spike	Source		%REC		RPD	
Analyte Resul	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch BGC0954 - No Prep VOC GC Air

Duplicate (BGC0954-DUP2)		So	urce: 23C1480-01	Prepared & A	Analyzed: 03/28/202	23
Methane	183000	4500	ppmv	180000	1.38	25
Methane	18.3	0.45	Vol%	18.0	1.38	5
Carbon dioxide	208000	4500	ppmv	207000	0.499	25
Carbon dioxide	20.8	0.45	Vol%	20.7	0.499	5
Oxygen (O2)	52500	4500	ppmv	52000	0.938	25
Oxygen (O2)	5.25	0.45	Vol%	5.20	0.938	5
Hydrogen (H2)	<	1800	ppmv	<1800	NA	25
Nitrogen (N2)	516000	18000	ppmv	509000	1.41	25
Hydrogen (H2)	<	0.18	Vol%	<0.18	NA	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5
Duplicate (BGC0954-DUP3)		So	urce: 23C1480-02	Prepared & A	Analyzed: 03/28/202	23
Methane	325000	4500	ppmv	328000	0.944	25
Methane	32.5	0.45	Vol%	32.8	0.944	5
Carbon dioxide	348000	4500	ppmv	352000	1.05	25
Carbon dioxide	34.8	0.45	Vol%	35.2	1.05	5
0	0000	4500		6040	0.0403	25
Oxygen (O2)	6030	4500	ppmv	6040	0.0100	20
Oxygen (O2) Oxygen (O2)	0.60	4500 0.45	ppmv Vol%	0.60	0.0403	5
Oxygen (O2)	0.60	0.45	Vol%	0.60	0.0403	5
Oxygen (O2) Hydrogen (H2)	0.60 76600	0.45 1800	Vol% ppmv	0.60 77500	0.0403 1.19	5 25
Oxygen (O2) Hydrogen (H2) Nitrogen (N2)	0.60 76600 156000	0.45 1800 18000	Vol% ppmv ppmv	0.60 77500 157000	0.0403 1.19 1.04	5 25 25

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

L	LCS recovery is outside of established acceptance limits
RPD	Relative Percent Difference
Qual	Qualifers
-RE	Denotes sample was re-analyzed
PF	Preparation Factor
MDL	Method Detection Limit
LOQ	Limit of Quantitation

ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

E. μ đ **AIR ANALYSIS** Page 12 formerly Air, Water & Soil Laboratories CHAIN OF CUSTODY Equipment due 3/30/2023 INVOICE TO: COMPANY NAME: SCS Field Services - Harrisburg Same PROJECT NAME/Quote #: Bristol CONTACT: INVOICE CONTACT: SITE NAME: INVOICE ADDRESS: PROJECT NUMBER: ADDRESS: INVOICE PHONE #: P.O. #: PHONE #: FAX #: EMAIL: Pretreatment Program: Is sample from a chlorinated supply? Is sample for compliance reporting? YES PWS I.D. #: YES NO Regulatory State: \/ 4-NO SAMPLER SIGNATURE: Turn Around Time: Circle: 10 5 Days or _ Day(s) SAMPLER NAME (PRINT): 063-23B-0014 Matrix Codes: AA=Indoor/Amblent Air SG=Soil Gas LV=Landfill/Vent Gas OT=Other_ ANALYSIS **Canister Information** Sampling Start Information Sampling Stop Information Regulator Info Codes) Barometric Pres. (in Hg): **Barometric Pres. (in Hg):** à LAB LAB 8 CLIENT (See Benzene I TO-15 Outgoing Receiving Initial Final SAMPLE I.D. Alt 145 (EPA 3C Matrix Flow Cal E Canister Canister Canister Canister Starting Ending Controller Size Start Time Stop Time Flow Vacuum (in Vacuum (in Vacuum (in Vacuum (in Sample Sample Cleaning (mUmin) Canister ID Start Date (24hr clock) Stop Date Temp *F **ID** Batch ID Hg) Hg) Ha) Temp *F (24hr clock) Hg) >79/w LGX 11293 1.4 230202-02 21.6 Х Х 1) 1 No Sand 14308 23012601 DIÝ 23 Ì N 12383 21.6 143 -230202-0Z NOT 2) 1.4 Х 23 123 SAMRI 1651LG X Å 12418 1.4 230202-02 21.6 3) х 23 6.4" 2Bim 9. 1453 LG x x 14294 230126-02 21.6 1.4 Х 123 AQRENVED FOR THIS TEMP. DIRAGE + DISPOSE. THANKS 310 ¥555 CANCE 15 RECEIVED: DATE / TIME LAB USE ONLY RELINQUISHED: **QC Data Package** Ē Feder Fed ex E 9 Lo. Level I DATE / TIME RELINQUISHED: DATE / TIME RECEIVED: **SCS Field Services** in ohnen Level II Fedar E 3/24/23 1000 NO SENI 23C1352 Bristol RELINQUISHED: DATE / TIME RECEIVED DATE / TIME Level III Recd: 03/24/2023 Due: 03/31/2023 Level IV

v130325002

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 24, 2023 10:00 March 29, 2023 16:48
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Sample Conditions Checklist

Samples Received at:	20.90°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Analysis for sample -03: 46 not required per Tom Lock via email. MRS 03/24/213 1332

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 30, 2023 16:03
	4330 Lewis Road, Suite 1	Date Issued:	April 6, 2023 17:34
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/30/2023 16:03. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOJAS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	March 30, 2023 16:03
	4330 Lewis Road, Suite 1	Date Issued:	April 6, 2023 17:34
	Harrisburg, PA 17111	Project Number:	07223016.00
Submitted To:	Tom Lock	Purchase Order:	07-SO04485

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
51	23C1681-01	Air	03/29/2023 12:25	03/30/2023 16:03
57	23C1681-02	Air	03/29/2023 12:14	03/30/2023 16:03
37	23C1681-03	Air	03/29/2023 11:59	03/30/2023 16:03

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34	
	Harrisburg, PA 17111			
Submitted To:	Tom Lock	Project Number:	07223016.00	
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485	
	ANALYTICAL RESUL	тѕ		
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 27	
Field Sample #: 51	Sub Description/Location:		Final Vacuum(in Hg): 2.2	
Sample ID: 23C1681-01	Canister ID: 063-00475::15039		Receipt Vacuum(in Hg): 2.2	
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive	
Sampled: 3/29/2023 12:25			Flow Controller ID:	

Sample Type: LG

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis								
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	1430	90.0	90.0		9	1	4/3/23 11:17	MER

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis								
		Vol%		EPA 3C			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	4.48	0.45	0.45		9	1	4/3/23 11:17	MER
Carbon dioxide, as received	62.3	0.45	0.45		9	1	4/3/23 11:17	MER
Oxygen (O2), as received	1.84	0.45	0.45	С	9	1	4/3/23 11:17	MER
Hydrogen (H2), as received	25.8	1.62	1.62		81	1	4/3/23 14:25	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	4/3/23 11:17	MER
Carbon Monoxide, as received	0.14	0.009	0.009		9	1	4/3/23 11:17	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34	
	Harrisburg, PA 17111			
Submitted To:	Tom Lock	Project Number:	07223016.00	
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485	
	ANALYTICAL RESULTS			
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 27	
Field Sample #: 57	Sub Description/Location:		Final Vacuum(in Hg): 4.6	
Sample ID: 23C1681-02	Canister ID: 063-00473::15043		Receipt Vacuum(in Hg): 4.6	
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive	
Sampled: 3/29/2023 12:14			Flow Controller ID:	

Sample Type: LG

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis								
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	884	90.0	90.0		9	1	4/3/23 12:08	MER

	Vola	atile Organi Vol%	c Compour	ids by GC/TCD - Unadjusted, as received bas EPA 3C	sis			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	18.5	0.45	0.45		9	1	4/3/23 12:08	MER
Carbon dioxide, as received	48.2	0.45	0.45		9	1	4/3/23 12:08	MER
Oxygen (O2), as received	3.57	0.45	0.45	С	9	1	4/3/23 12:08	MER
Hydrogen (H2), as received	11.1	1.08	1.08		54	1	4/3/23 14:10	MER
Nitrogen (N2), as received	16.9	9.00	9.00		9	1	4/3/23 12:08	MER
Carbon Monoxide, as received	0.09	0.009	0.009		9	1	4/3/23 12:08	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485
	ANALYTICAL RESULTS	3	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 28
Field Sample #: 37	Sub Description/Location:		Final Vacuum(in Hg): 3.0
Sample ID: 23C1681-03	Canister ID: 063-00268::13370		Receipt Vacuum(in Hg): 3.0
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 3/29/2023 11:59			Flow Controller ID:

Sample Type: LG

	Vola	atile Organi	ic Compour	nds by GC/TCD - Unadjusted, as rece	eived basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	167	90.0	90.0		9	1	4/3/23 13:00	MER

	Vola	atile Organi	c Compou	nds by GC/TCD - Unadjusted, as received basis	S			
	EPA 3C							
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	12.3	0.45	0.45		9	1	4/3/23 13:00	MER
Carbon dioxide, as received	28.6	0.45	0.45		9	1	4/3/23 13:00	MER
Oxygen (O2), as received	6.13	0.45	0.45	С	9	1	4/3/23 13:00	MER
Hydrogen (H2), as received	3.07	0.18	0.18		9	1	4/3/23 13:00	MER
Nitrogen (N2), as received	43.1	9.00	9.00		9	1	4/3/23 13:00	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	4/3/23 13:00	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23C1681-01	1.00 mL / 1.00 mL	ALT-145	BGC1179	SGD0023	AG00026
23C1681-02	1.00 mL / 1.00 mL	ALT-145	BGC1179	SGD0023	AG00026
23C1681-03	1.00 mL / 1.00 mL	ALT-145	BGC1179	SGD0023	AG00026
23C1681-01	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-02	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-03	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

			En	thalpy	Analyti	ical				
	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC1179 - No Prep V	OC GC Air									
Blank (BGC1179-BLK1)					Prep	pared &	Analyzed	: 03/31/20	023	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Carbon Monoxide	<	10.0	ppmv							
Carbon Monoxide	<	0.001	Vol%							
LCS (BGC1179-BS1)					Prep	bared &	Analyzed	: 03/31/20	023	
Methane	4740	500	ppmv	5000		94.9	0-200			
Methane	4740	0.05	ppmv	5000		94.9	80-120			
Carbon dioxide	4400	500	ppmv	5000		88.0	0-200			
Carbon dioxide	4400	0.05	ppmv	5000		88.0	80-120			
Oxygen (O2)	5150	500	ppmv	5000		103	0-200			
Oxygen (O2)	5150	0.05	ppmv	5000		103	80-120			
Hydrogen (H2)	5880	200	ppmv	5100		115	0-200			
Nitrogen (N2)	5450	2000	ppmv	5000		109	0-200			
Nitrogen (N2)	5450	1	ppmv	5000		109	80-120			
Hydrogen (H2)	5880	0.02	ppmv	5100		115	80-120			
Carbon Monoxide	4940	10	ppmv	5000		98.8	0-200			
Carbon Monoxide	4940	0.001	ppmv	5000		98.8	80-120			
Duplicate (BGC1179-DUP1)		So	urce: 23C	1537-01	Prep	bared &	Analyzed	: 03/31/20	023	
Methane	325000	4500	ppmv		32800	00		0.935	25	
Methane	32.5	0.45	Vol%		32.8	3		0.934	5	
Carbon dioxide	372000	4500	ppmv		37600	00		1.15	25	
Carbon dioxide	37.2	0.45	Vol%		37.6	6		1.15	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Hydrogen (H2)	151000	1800	ppmv		15200	00		0.704	25	
Nitrogen (N2)	10.9	9.00	Vol%		11.0)		0.809	5	
Nitrogen (N2)	109000	18000	ppmv		11000	00		0.809	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch BGC1179 - No Prep VOC GC Air

Duplicate (BGC1179-DUP1) Source: 23C1537-01 Prepared & Analyzed: 03/31/202	23
Carbon Monoxide 182 90.0 ppmv 180 1.19	25
Carbon Monoxide 0.02 0.009 Vol% 0.02 1.19	5
Duplicate (BGC1179-DUP2) Source: 23C1537-02 Prepared & Analyzed: 03/31/202	23
Methane 354000 4500 ppmv 356000 0.576	25
Methane 35.4 0.45 Vol% 35.6 0.576	5
Carbon dioxide 368000 4500 ppmv 367000 0.218	25
Carbon dioxide 36.8 0.45 Vol% 36.7 0.218	5
Oxygen (O2) 4500 4500 ppmv 4500 0.0320	25
Oxygen (O2) 0.45 0.45 Vol% 0.45 0.0320	5
Hydrogen (H2) 103000 1800 ppmv 104000 0.362	25
Nitrogen (N2) 98700 18000 ppmv 99200 0.445	25
Nitrogen (N2) 9.87 9.00 Vol% 9.92 0.445	5
Carbon Monoxide 0.01 0.009 Vol% 0.01 3.98	5
Carbon Monoxide 113 90.0 ppmv 118 3.98	25
Duplicate (BGC1179-DUP3) Source: 23C1537-03 Prepared & Analyzed: 03/31/202	23
Methane 51100 4500 ppmv 49600 2.91	25
Methane 5.11 0.45 Vol% 4.96 2.91	5
Carbon dioxide 365000 4500 ppmv 366000 0.168	25
Carbon dioxide 36.5 0.45 Vol% 36.6 0.168	5
Oxygen (O2) < 4500 ppmv <4500 NA	25
Oxygen (O2) < 0.45 Vol% <0.45 NA	5
Nitrogen (N2) < 18000 ppmv <18000 NA	25
Hydrogen (H2) 656000 1800 ppmv 654000 0.289	25
Nitrogen (N2) < 9.00 Vol% <9.00 NA	5
Carbon Monoxide 545 90.0 ppmv 545 0.0825	25
Carbon Monoxide 0.05 0.009 Vol% 0.05 0.0825	5

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC1179 - No Prep VOC GC Air											

Duplicate (BGC1179-DUP4)		So	urce: 23C1537-04	Prepared & A	nalyzed: 03/31/202	23
Methane	495000	4500	ppmv	494000	0.197	25
Methane	49.5	0.45	Vol%	49.4	0.197	5
Carbon dioxide	358000	4500	ppmv	358000	0.0120	25
Carbon dioxide	35.8	0.45	Vol%	35.8	0.0119	5
Oxygen (O2)	<	4500	ppmv	<4500	NA	25
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5
Hydrogen (H2)	51000	1800	ppmv	50400	1.03	25
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Carbon Monoxide	100	90.0	ppmv	103	2.13	25
Carbon Monoxide	0.01	0.009	Vol%	0.01	2.13	5
Duplicate (BGC1179-DUP5)		So	urce: 23C1681-01	Prepared & A	nalyzed: 04/03/202	23
Methane	44500	4500	ppmv	44800	0.529	25
Methane	4.45	0.45	Vol%	4.48	0.529	5
Carbon dioxide	61.7	0.45	Vol%	62.3	0.827	5
Carbon dioxide	617000	4500	ppmv	623000	0.827	25
Oxygen (O2)	1.82	0.45	Vol%	1.84	0.913	5
Oxygen (O2)	18200	4500	ppmv	18400	0.913	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Nitrogen (N2)	62700	18000	ppmv	63500	1.24	25
Hydrogen (H2)	261000	1800	ppmv	264000	0.954	25
Carbon Monoxide	1420	90.0	ppmv	1430	0.785	25
Carbon Monoxide	0.14	0.009	Vol%	0.14	0.785	5
Duplicate (BGC1179-DUP6)		So	urce: 23C1681-02	Prepared & A	nalyzed: 04/03/202	23
Methane	185000	4500	ppmv	185000	0.0304	25
Methane	18.5	0.45	Vol%	18.5	0.0304	5
Carbon dioxide	484000	4500	ppmv	482000	0.269	25
Carbon dioxide	48.4	0.45	Vol%	48.2	0.269	5
Oxygen (O2)	35800	4500	ppmv	35700	0.0408	25
Oxygen (O2)	3.58	0.45	Vol%	3.57	0.0408	5
Hydrogen (H2)	119000	1800	ppmv	119000	0.0497	25
Nitrogen (N2)	168000	18000	ppmv	169000	0.0671	25
Nitrogen (N2)	16.8	9.00	Vol%	16.9	0.0671	5

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	07223016.00
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	Re	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch BGC1179 - No Prep VOC GC Air

Duplicate (BGC1179-DUP6)		So	urce: 23C1681-02	Prepared & A	nalyzed: 04/03/202	23
Carbon Monoxide	890	90.0	ppmv	884	0.629	25
Carbon Monoxide	0.09	0.009	Vol%	0.09	0.629	5
Duplicate (BGC1179-DUP7)		So	urce: 23C1681-03	Prepared & A	nalyzed: 04/03/202	23
Methane	12.3	0.45	Vol%	12.3	0.00188	5
Methane	123000	4500	ppmv	123000	0.00187	25
Carbon dioxide	284000	4500	ppmv	286000	0.721	25
Carbon dioxide	28.4	0.45	Vol%	28.6	0.721	5
Oxygen (O2)	60900	4500	ppmv	61300	0.625	25
Oxygen (O2)	6.09	0.45	Vol%	6.13	0.625	5
lydrogen (H2)	30700	1800	ppmv	30700	0.201	25
Nitrogen (N2)	429000	18000	ppmv	431000	0.466	25
Nitrogen (N2)	42.9	9.00	Vol%	43.1	0.466	5
Hydrogen (H2)	3.07	0.18	Vol%	3.07	0.201	5
Carbon Monoxide	166	90.0	ppmv	167	0.216	25
Carbon Monoxide	0.02	0.009	Vol%	0.02	0.216	5

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Service 4330 Lewis Road	es - Harrisburg, PA , Suite 1	Date Received: March 30, 2023 16:0 Date Issued: April 6, 2023 17:34				
	Harrisburg, PA 17	'111					
Submitted To:	Tom Lock		Project Number:	07223016.00			
Client Site I.D.:	Bristol		Purchase Order:	07-SO04485			
Code		Description	Laboratory ID	Expires			
MdDOE		Maryland DE Drinking Water	341	12/31/2023			
NC		North Carolina DENR	495	12/31/2023			
NCDEQ		North Carolina DEQ	495	12/31/2023			
NCDOH		North Carolina Department of Health	51714	07/31/2023			
NYDOH		New York DOH Drinking Water	12069	04/01/2024			
PADEP		NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023			
SCDHEC		South Carolina Dept of Health and Environment	ntal 93016	06/14/2023			
VELAP		NELAP-Virginia Certificate #12333	460021	06/14/2023			
WVDEP		West Virginia DEP	350	11/30/2023			

Qualifiers and Definitions

C Continuing calibration verification response for this analyte is outside specifications.

- RPD Relative Percent Difference
- Qual Qualifers

- -RE Denotes sample was re-analyzed
- PF Preparation Factor
- MDL Method Detection Limit
- LOQ Limit of Quantitation
- ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

.

AIR ANALYSIS

10				••••				CHAIN	OF CUS	TODY	E	quipm	ent due	4/11/20	23		P	'ag	e 2	? of 2
CO	MPANY NAME:	SCS Field	d Servio	ces - Harri	sbu	rg IN	VOICE TO	: Same				PROJ	PROJECT NAME/Quote #: Bristol							
CO	NTACT:					IN							SITE NAME:							
ADI	DRESS:					IN	INVOICE ADDRESS: PROJECT NUMBER: 0723616,00													
PH	ONE #:					IN	VOICE PH	ONE #:				P.O. #	:							
FA)	(#:			EN	1AIL					_		Pretre	atment Pr	ogram:						
ls s	ample for comp	liance rep	orting?	(YES NO		Regulat	ory State:	VA Is:	sample fro	m a chlorii	nated sup	ply?	YES (N	IO) PV	VS I.D. #:	_				
SAI	SAMPLER NAME (PRINT): Logan Culhane SAMPLER SIGNATURE: Turn Around Time: Circle: 10 5 Days or _ Day(s)																			
Matri	Matrix Codes: AA=Indoor/Ambient Air SG=Soil Gas LV=Landfill/Vent Gas OT=Other 0 063-23C-0004																			
		Regulator	Info	Canister In	forn	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	nation		Codes)	AN		(SIS
	CLIENT						LAB	LAB	Barometric	Pres. (in Ho		1	Barometric	: Pres. (in H			ပိ ခ	<u></u>		ξeν
	SAMPLE I.D.	Flow	Cal		E		Outgoing Canister	Receiving Canister			Initial Canister	Starting			Final Canister	Ending	rix (s	45 0		HY MAREN
		Controller ID	Flow	Canister ID	2	Cleaning Batch ID	Vacuum (in Hg)	Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Vacuum (ir Hg)	Sample	Stop Date	Stop Time (24hr clock)	Vacuum (in Hg)	Sample Temp *F	Matrix (see co	Alt 1	ပ္က	μY
1)	51			15039		230307-01	20	2.2	3/29/23	12:23 pm	27	169.3	3/29/13	12:25 pm	9	169.8				X
2)	57			15043	1.4	230307-01	20	4.6	3/29	12:12 em @1	27	162	3/27/ 23	12:14 PM	9	151.7	LG	x	x	χ
3)	.37			13370	1.4	230307-01	20	3.0 0		11:54	28	150.6	³ / _{27/} /23	11:59	10	, Sr	LG	x	x	×
4)																				
	/										310	noice	nus	cal 2	1.0%					
REL		ex		4:159 E / TIME E / TIME	n REC	CEIVED:	dex Navi	3/30/2		QC Data F Level I Level II Level III Level IV		SCS Bristo			23C16 : 04/06/2	023				
																Ľ	Pa	age	12	of 13

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	March 30, 2023 16:03 April 6, 2023 17:34		
	Harrisburg, PA 17111				
Submitted To:	Tom Lock	Project Number:	07223016.00		
Client Site I.D.:	Bristol	Purchase Order:	07-SO04485		

Sample Conditions Checklist

Samples Received at:	21.00°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

Solid Waste Permit 588 Daily Borehole Temperature Averages

March 2023

02218208.05 | May 25, 2023

15521 Midlothian Turnpike Midlothian, VA 23113 804-378-7440

	Depth from Surface												
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft							
1-Mar	206.7	207.0	207.1	207.1	207.5	229.8							
2-Mar	206.3	206.5	207.0	207.1	207.4	229.7							
3-Mar	206.1	206.3	206.5	206.6	206.9	230.4							
4-Mar	206.4	206.5	206.6	206.8	207.2	231.6							
5-Mar	206.9	207.1	207.4	207.5	207.7	233.3							
6-Mar	206.7	207.0	207.4	207.5	207.6	234.7							
7-Mar	206.7	206.9	207.0	207.2	207.5	235.6							
8-Mar	206.5	206.8	207.3	207.3	207.5	236.2							
9-Mar	206.7	207.1	207.3	207.3	207.5	236.9							
10-Mar	206.1	206.4	206.7	206.8	207.1	236.3							
11-Mar	206.4	206.4	206.5	206.5	207.2	236.4							
12-Mar	206.0	206.0	206.3	206.4	207.0	236.6							
13-Mar	r 206.1 206.3		206.5	206.5	207.0	237.1							
14-Mar	206.2 206.4		206.6	206.7	207.0	237.1							
15-Mar	206.7	206.8	207.3	207.3	207.6	237.6							
16-Mar	206.8	206.8	207.0	207.2	207.6	238.0							
17-Mar	206.0	206.0	206.3	206.3	206.9	237.8							
18-Mar	206.3	206.4	206.5	206.6	207.1	237.4							
19-Mar	206.3	206.3	206.7	206.9	207.3	237.1							
20-Mar	206.7	206.9	207.3	207.4	207.6	237.7							
21-Mar	207.1	207.4	207.7	207.8	208.0	238.6							
22-Mar	207.0	207.1	207.3	207.4	208.0	238.3							
23-Mar	207.1	207.3	207.5	207.5	208.0	239.1							
24-Mar	206.8	207.2	207.4	207.5	207.7	239.2							
25-Mar	206.0	207.0	207.1	207.3	207.7	239.2							
26-Mar	206.8	207.5	207.6	207.5	208.0	239.6							
27-Mar	206.5	207.1	207.3	207.3	207.6	240.0							
28-Mar	206.4	207.0	207.3	207.1	207.5	241.1							
29-Mar	206.7	207.0	207.3	207.3	207.7	242.0							
30-Mar	206.9	207.5	207.7	207.6	207.8	241.6							
31-Mar	206.4	207.0	207.2	207.2	207.7	242.5							
Average	206.5	206.8	207.1	207.1	207.5	237.1							

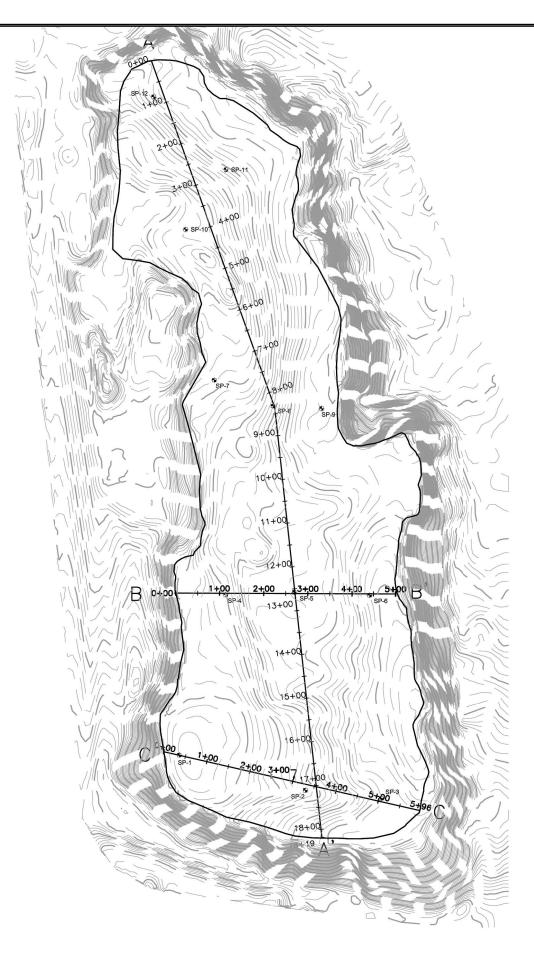
			Depth fro	m Surface		
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft
1-Mar	176.4	240.7	241.5	268.2	256.0	268.6
2-Mar	174.9	240.5	241.3	268.1	256.0	268.4
3-Mar	173.8	240.5	241.5	268.2	256.1	268.5
4-Mar	171.9	240.1	241.0	268.3	256.0	268.5
5-Mar	169.8	239.3	240.1	268.2	255.9	268.6
6-Mar	168.2	238.9	239.8	268.2	256.2	268.5
7-Mar	166.4	237.8	238.6	268.5	256.4	268.3
8-Mar	164.8	236.2	237.4	268.0	255.8	267.9
9-Mar	163.6	235.7	236.8	268.4	256.2	268.5
10-Mar	163.1	235.0	236.2	268.2	256.2	268.2
11-Mar	162.5	234.6	236.1	268.3	256.2	268.4
12-Mar	161.9	234.3	235.5	268.0	256.0	268.0
13-Mar	161.2	234.3	235.6	268.0	256.0	268.1
14-Mar	161.0	234.4	235.5	268.0	256.0	268.0
15-Mar	160.9	234.6	236.0	268.3	256.4	268.1
16-Mar	160.7	234.9	236.2	268.3	256.4	268.4
17-Mar	160.5	234.5	235.8	267.9	256.0	268.0
18-Mar	160.1	234.4	235.8	268.2	256.2	268.2
19-Mar	159.7	234.3	235.5	267.8	256.0	267.9
20-Mar	159.3	234.2	235.4	267.8	256.0	268.0
21-Mar	159.4	235.1	236.2	268.1	256.2	268.3
22-Mar	159.0	234.6	235.8	268.0	256.0	268.0
23-Mar	159.2	235.2	236.5	268.5	256.5	268.5
24-Mar	159.3	235.2	236.5	268.5	256.6	268.6
25-Mar	158.6	235.5	236.8	268.5	256.7	268.6
26-Mar	158.6	235.6	236.9	268.4	256.6	268.6
27-Mar	158.3	235.0	236.9	268.5	256.6	268.6
28-Mar	157.8	235.1	236.4	267.9	256.2	268.0
29-Mar	157.6	235.2	236.6	268.0	256.6	268.2
30-Mar	157.5	235.4	236.8	268.0	256.5	268.3
31-Mar	157.0	235.1	236.6	267.8	256.2	267.9
Average	162.7	236.0	237.2	268.2	256.2	268.3

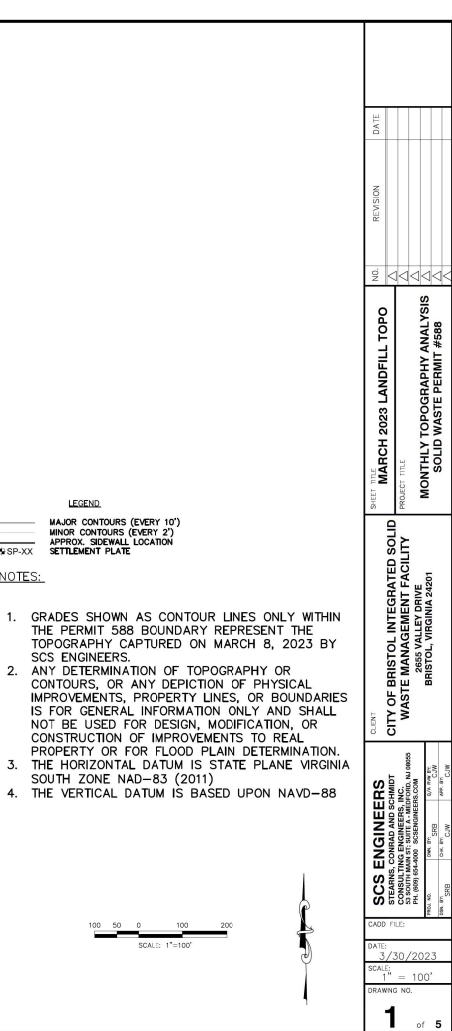
				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Mar	206.8	208.1	208.5	252.8	262.8	268.9	270.2	257.1
2-Mar	206.1	208.8	211.4	252.3	262.6	268.7	269.9	256.8
3-Mar	206.3	206.5	207.3	252.9	262.8	269.1	270.3	256.7
4-Mar	206.2	206.6	207.8	250.8	262.2	268.2	269.3	256.0
5-Mar	206.3	207.1	208.5	250.7	261.8	267.8	269.1	255.7
6-Mar	206.1	207.5	208.7	250.9	261.9	268.0	269.2	255.8
7-Mar	206.5	207.5	208.5	250.8	262.1	268.3	269.4	255.9
8-Mar	206.3	209.8	210.3	250.3	261.6	268.0	269.2	256.2
9-Mar	206.2	210.3	211.7	250.7	261.9	268.2	269.3	258.0
10-Mar	205.9	207.6	208.6	250.5	261.9	268.0	269.1	257.7
11-Mar	206.0	206.4	207.3	250.5	262.0	268.2	269.3	257.5
12-Mar	205.1	205.9	207.0	250.4	261.7	268.1	269.3	258.2
13-Mar	205.6	206.1	207.1	250.2	261.8	268.0	269.0	258.3
14-Mar	206.2	206.4	207.3	250.3	262.0	268.0	269.3	258.5
15-Mar	206.1	206.5	207.7	250.2	261.6	267.8	269.0	258.6
16-Mar	206.2	206.8	208.0	250.9	262.0	268.1	269.5	258.8
17-Mar	205.3	205.8	207.3	250.5	261.8	267.8	269.0	257.8
18-Mar	206.0	206.4	207.2	245.0	262.5	268.7	269.5	257.3
19-Mar	206.3	206.5	207.5	242.2	262.3	268.6	269.4	256.7
20-Mar	206.0	206.0	207.8	249.8	261.9	267.9	269.3	256.6
21-Mar	206.6	206.8	208.2	251.3	262.5	268.6	269.8	257.1
22-Mar	205.8	206.2	208.0	250.2	262.2	268.0	269.1	256.6
23-Mar	206.4	206.7	208.2	249.8	262.7	268.7	269.8	256.8
24-Mar	206.2	206.8	208.1	251.9	262.9	268.9	270.0	256.9
25-Mar	206.8	207.0	207.3	252.7	263.4	270.0	271.0	256.8
26-Mar	207.4	217.5	215.4	253.7	263.8	270.3	271.5	256.9
27-Mar	207.1	211.3	218.1	246.3	263.6	270.0	271.0	256.6
28-Mar	206.3	211.2	211.8	249.0	262.9	269.1	270.2	256.3
29-Mar	207.5	219.0	219.5	253.4	263.7	270.0	271.3	256.0
30-Mar	206.5	206.6	208.1	246.4	263.0	269.0	270.0	256.1
31-Mar	206.6	212.7	213.3	250.0	263.2	269.3	270.5	255.8
Average	206.3	208.2	209.4	250.2	262.4	268.6	269.7	257.0

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Mar	175.6	207.0	207.0	207.5	243.3	249.7	245.5	171.9
2-Mar	175.0	206.9	207.0	210.2	244.2	250.1	245.2	172.0
3-Mar	175.0	206.3	206.4	229.8	245.2	250.7	245.3	172.1
4-Mar	174.4	205.8	206.2	234.0	245.7	251.0	245.2	171.7
5-Mar	174.4	204.4	204.6	235.2	246.6	251.6	245.3	171.6
6-Mar	174.5	204.9	205.0	235.9	247.2	252.0	245.4	171.8
7-Mar	174.2	204.8	205.1	236.4	247.7	252.5	245.4	171.7
8-Mar	173.3	204.4	204.5	236.1	247.7	252.5	245.1	171.4
9-Mar	173.3	205.0	205.4	236.9	248.8	253.3	245.5	171.9
10-Mar	171.6	205.2	205.2	237.1	249.1	253.3	245.3	172.0
11-Mar	171.3	205.3	205.3	237.3	249.3	253.5	245.3	171.8
12-Mar	170.8	204.3	204.8	237.6	249.3	253.9	245.0	172.0
13-Mar	170.6	204.9	205.5	238.0	249.7	254.1	245.0	171.9
14-Mar	170.3	205.5	206.0	237.6	250.0	254.0	245.0	171.9
15-Mar	170.7	206.5	206.9	237.5	250.5	254.7	245.3	171.8
16-Mar	170.4	206.9	207.0	237.3	251.0	255.1	245.6	172.0
17-Mar	170.2	206.0	206.1	236.6	251.0	255.3	245.2	172.1
18-Mar	170.3	206.3	206.5	230.3	251.2	255.4	245.3	172.1
19-Mar	170.1	206.7	206.8	208.5	251.1	255.4	245.1	172.1
20-Mar	170.1	207.3	207.4	209.2	251.1	255.8	245.4	171.8
21-Mar	170.0	207.6	207.6	209.9	251.6	256.5	245.6	172.5
22-Mar	169.9	207.2	207.3	208.6	251.3	256.7	245.4	172.2
23-Mar	170.0	207.5	207.5	207.8	251.7	257.0	245.8	172.7
24-Mar	170.0	207.3	207.4	207.4	251.5	257.3	246.0	172.8
25-Mar	170.5	207.0	207.0	207.4	251.0	257.4	246.0	172.9
26-Mar	172.9	207.1	206.8	207.2	249.3	258.2	246.0	172.7
27-Mar	175.1	207.2	205.9	207.7	247.7	258.0	246.3	173.0
28-Mar	175.0	207.2	206.3	206.6	245.1	256.8	245.6	172.8
29-Mar	176.6	207.3	206.9	206.9	239.3	256.1	245.5	172.8
30-Mar	179.1	207.5	207.5	207.6	237.5	254.7	245.7	173.0
31-Mar	185.5	207.0	207.3	207.2	233.4	254.3	245.6	172.7
Average	172.9	206.3	206.3	222.4	247.7	254.4	245.4	172.2

				Depth fro	om Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Mar	146.3	207.0	207.2	207.4	226.6	244.3	251.9	189.7
2-Mar	146.0	206.8	207.0	207.0	226.5	244.2	251.7	189.5
3-Mar	145.5	206.2	206.4	206.7	226.8	244.3	251.7	189.6
4-Mar	145.3	206.5	206.9	207.1	227.3	244.3	251.4	189.4
5-Mar	145.3	207.2	207.5	207.5	227.7	244.5	251.5	189.6
6-Mar	145.6	207.2	207.3	207.4	227.7	244.5	251.5	189.6
7-Mar	145.2	207.0	207.1	207.5	227.8	244.5	251.3	189.5
8-Mar	145.4	207.3	207.3	207.4	227.3	244.3	250.7	189.4
9-Mar	145.3	207.3	207.3	207.6	228.2	244.8	251.0	189.7
10-Mar	145.6	206.6	206.9	207.3	227.7	244.9	250.9	189.5
11-Mar	145.0	206.5	206.6	207.3	228.0	244.8	250.5	189.5
12-Mar	144.1	206.0	206.0	206.5	227.7	244.8	250.0	189.2
13-Mar	144.6	206.3	206.4	207.0	227.4	244.3	250.1	189.3
14-Mar	145.0	206.8	206.9	207.0	227.0	244.0	250.0	189.3
15-Mar	145.3	207.3	207.4	207.5	227.3	243.8	250.0	189.5
16-Mar	145.5	207.2	207.2	207.4	227.5	244.0	250.0	189.8
17-Mar	145.0	206.0	206.2	206.7	227.0	243.9	249.7	189.7
18-Mar	145.0	206.4	206.5	207.0	227.0	243.7	249.5	189.6
19-Mar	144.7	207.1	207.2	207.3	227.2	243.7	249.4	189.5
20-Mar	144.6	207.4	207.5	207.5	226.7	243.4	249.5	189.6
21-Mar	144.5	207.5	207.5	207.8	228.2	243.9	249.5	190.0
22-Mar	144.1	207.1	207.2	207.8	228.3	244.0	249.2	190.0
23-Mar	144.4	207.4	207.4	207.7	228.6	244.3	249.5	190.4
24-Mar	144.4	207.3	207.3	207.4	228.4	244.4	249.6	190.4
25-Mar	144.2	206.8	207.0	207.3	228.0	244.2	249.5	190.3
26-Mar	144.0	207.1	207.2	207.5	227.8	243.8	249.4	190.3
27-Mar	143.0	207.2	207.2	207.4	227.8	243.8	249.4	190.4
28-Mar	143.3	207.0	207.2	207.4	227.0	243.0	248.8	190.0
29-Mar	143.5	207.3	207.4	207.5	226.5	242.2	248.9	190.3
30-Mar	143.7	207.5	207.5	207.7	227.0	242.5	248.8	190.5
31-Mar	143.0	207.0	207.0	207.4	226.9	242.0	248.7	190.0
Average	144.7	207.0	207.0	207.3	227.4	244.0	250.1	189.8

		Dept	th from Su	rface	
Date	25 ft	50 ft	75 ft	100 ft	125 ft
1-Mar	206.5	235.6	236.0	238.7	240.5
2-Mar	206.3	235.8	236.0	238.8	240.1
3-Mar	205.9	235.8	235.8	238.8	240.2
4-Mar	206.6	236.0	236.2	239.1	240.4
5-Mar	207.0	235.8	236.0	238.9	240.2
6-Mar	206.8	235.9	236.0	239.0	240.3
7-Mar	207.0	235.7	236.1	238.8	240.3
8-Mar	207.3	235.4	235.5	238.4	239.6
9-Mar	207.3	235.8	236.1	238.8	240.2
10-Mar	206.5	235.9	236.1	238.7	240.0
11-Mar	206.4	235.7	236.2	238.6	240.1
12-Mar	206.0	235.9	236.0	238.3	240.0
13-Mar	206.5	235.9	236.0	238.3	240.0
14-Mar	207.0	235.6	236.0	238.4	239.8
15-Mar	207.5	235.8	236.3	238.8	239.9
16-Mar	207.1	235.8	236.5	238.8	240.3
17-Mar	206.1	235.9	236.0	238.8	240.0
18-Mar	206.7	236.3	236.3	239.0	240.3
19-Mar	207.3	236.3	236.3	239.0	240.2
20-Mar	207.5	236.5	236.6	239.0	240.5
21-Mar	207.7	236.7	236.8	239.4	240.6
22-Mar	207.3	236.2	236.6	239.1	240.1
23-Mar	207.5	236.9	237.1	239.7	240.8
24-Mar	207.3	237.2	237.3	239.7	240.9
25-Mar	207.2	237.3	237.4	240.0	241.2
26-Mar	207.3	237.2	237.3	239.8	240.8
27-Mar	207.1	237.3	237.3	239.8	240.9
28-Mar	191.4	236.6	236.9	239.5	240.5
29-Mar	179.8	236.8	237.0	239.5	240.7
30-Mar	178.9	236.8	236.9	239.7	240.8
31-Mar	179.3	236.8	236.8	239.5	240.6
Average	203.7	236.2	236.4	239.0	240.3


				Depth fro	om Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Mar	171.4	225.8	225.9	239.5	243.9	242.0	236.5	228.5
2-Mar	169.5	225.6	226.0	239.3	244.0	242.0	236.2	228.1
3-Mar	167.7	225.6	226.0	239.3	244.0	242.1	236.3	228.2
4-Mar	167.1	225.1	225.8	239.4	244.0	242.2	236.5	228.0
5-Mar	169.0	225.1	225.7	239.5	243.8	242.0	236.5	227.9
6-Mar	168.5	225.5	225.5	239.4	243.9	242.2	236.5	227.6
7-Mar	169.1	225.3	225.5	239.0	243.8	242.2	236.3	227.6
8-Mar	169.7	224.6	225.1	238.6	243.5	241.9	235.6	227.2
9-Mar	170.2	225.0	225.3	239.1	244.0	242.4	236.4	227.5
10-Mar	169.3	225.0	225.2	239.0	244.0	242.2	236.2	227.3
11-Mar	169.3	224.3	224.8	238.8	244.0	242.2	236.2	227.4
12-Mar	168.9	224.0	224.2	238.7	243.9	242.0	236.0	227.0
13-Mar	168.0	224.0	224.3	239.0	244.0	242.0	235.8	226.8
14-Mar	168.1	224.0	224.0	239.0	243.9	242.0	235.5	226.6
15-Mar	168.5	223.6	224.0	239.0	244.0	242.1	235.6	226.4
16-Mar	168.6	223.2	223.5	239.1	244.4	242.2	235.5	226.1
17-Mar	168.5	222.5	223.0	239.0	244.0	242.0	235.0	225.5
18-Mar	168.3	223.7	224.1	239.0	244.2	242.2	235.1	225.4
19-Mar	167.8	224.3	224.3	238.5	244.0	242.2	235.0	225.2
20-Mar	167.5	224.5	224.5	238.7	243.9	241.9	234.8	224.9
21-Mar	167.4	224.5	224.6	239.2	244.5	242.4	235.2	225.2
22-Mar	167.1	224.1	224.4	239.0	244.0	242.0	235.0	224.8
23-Mar	167.3	224.8	224.9	239.5	244.5	242.5	235.3	225.3
24-Mar	167.4	225.3	225.2	239.6	244.5	242.5	235.5	225.5
25-Mar	166.2	225.3	225.8	239.8	244.5	242.6	235.5	225.4
26-Mar	165.8	225.7	226.0	239.7	244.5	242.6	235.5	225.2
27-Mar	166.4	225.7	226.3	240.0	244.5	242.5	235.5	225.4
28-Mar	166.0	225.4	225.5	239.5	244.3	242.3	234.8	224.6
29-Mar	166.0	225.4	225.6	239.7	244.5	242.4	234.9	224.7
30-Mar	166.2	225.5	225.7	239.8	244.6	242.5	234.9	224.8
31-Mar	165.9	225.0	225.5	239.7	244.1	242.1	234.7	224.1
Average	168.0	224.7	225.0	239.2	244.1	242.2	235.6	226.3

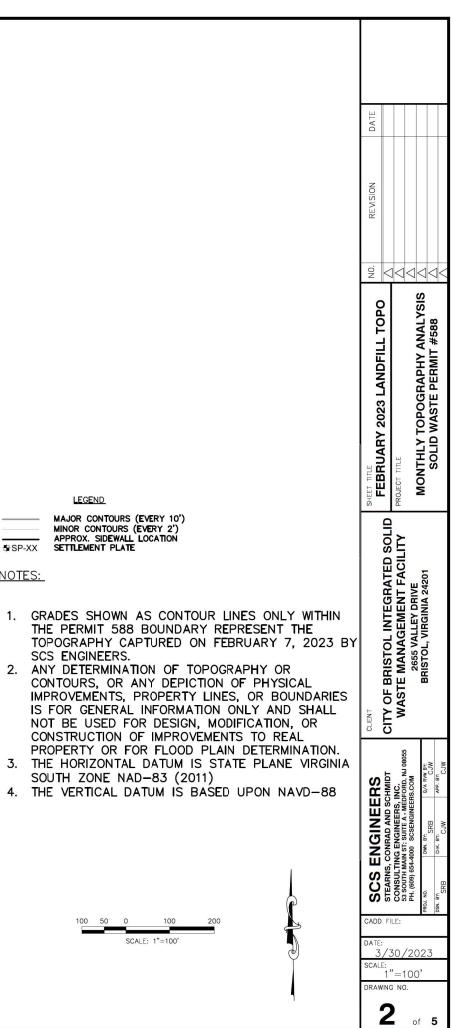

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Mar	171.4	175.6	175.8	176.1	178.4	181.4	181.8	179.8
2-Mar	171.6	175.5	176.0	176.0	178.3	181.2	182.0	180.0
3-Mar	171.9	175.4	175.8	176.0	178.0	181.1	181.9	180.0
4-Mar	172.3	175.3	175.5	175.6	177.7	181.0	181.5	179.5
5-Mar	172.4	175.4	175.5	175.5	177.8	181.2	181.5	179.7
6-Mar	172.3	175.4	175.6	175.7	178.1	181.1	181.5	179.6
7-Mar	172.1	175.5	175.7	176.2	178.2	181.2	181.5	179.6
8-Mar	171.9	175.3	175.5	176.1	178.3	181.1	181.4	179.4
9-Mar	171.1	175.7	176.1	176.4	178.7	181.5	182.0	179.9
10-Mar	171.0	175.5	176.0	176.2	178.3	181.2	182.0	180.0
11-Mar	171.3	175.4	176.1	176.2	178.3	181.3	181.8	180.0
12-Mar	171.4	175.3	175.9	176.0	178.0	181.0	181.8	179.8
13-Mar	171.7	175.3	176.0	176.0	178.2	181.1	181.6	179.8
14-Mar	170.8	175.2	176.0	176.0	178.0	181.0	181.6	179.6
15-Mar	171.4	175.5	176.1	176.2	178.4	181.3	181.6	179.6
16-Mar	171.9	175.8	176.3	176.5	178.5	181.6	181.9	179.8
17-Mar	171.8	175.7	176.0	176.0	177.9	181.0	181.8	179.9
18-Mar	172.6	175.3	175.8	175.8	177.7	181.1	181.4	179.6
19-Mar	172.6	175.3	176.0	175.8	177.9	181.1	181.3	179.5
20-Mar	172.4	175.4	175.9	175.8	178.2	181.3	181.5	179.5
21-Mar	172.6	175.7	176.3	176.3	178.3	181.4	181.8	179.8
22-Mar	173.0	175.8	176.1	176.1	178.1	181.1	181.9	179.9
23-Mar	173.0	176.2	176.3	176.3	178.4	181.4	182.2	180.3
24-Mar	172.8	176.2	176.4	176.2	178.5	181.5	182.0	180.2
25-Mar	172.5	176.2	176.5	176.2	178.7	181.8	182.1	180.1
26-Mar	172.6	176.2	176.4	176.4	178.6	181.5	182.0	180.0
27-Mar	172.6	176.3	176.4	176.5	178.9	181.8	182.2	180.3
28-Mar	172.7	176.1	176.3	176.4	178.6	181.6	181.9	180.0
29-Mar	173.1	176.3	176.3	176.4	178.5	181.5	181.9	179.8
30-Mar	173.2	176.3	176.5	176.5	178.8	181.6	182.1	180.0
31-Mar	173.0	176.0	176.3	176.6	178.6	181.6	182.0	180.0
Average	172.2	175.7	176.1	176.1	178.3	181.3	181.8	179.8

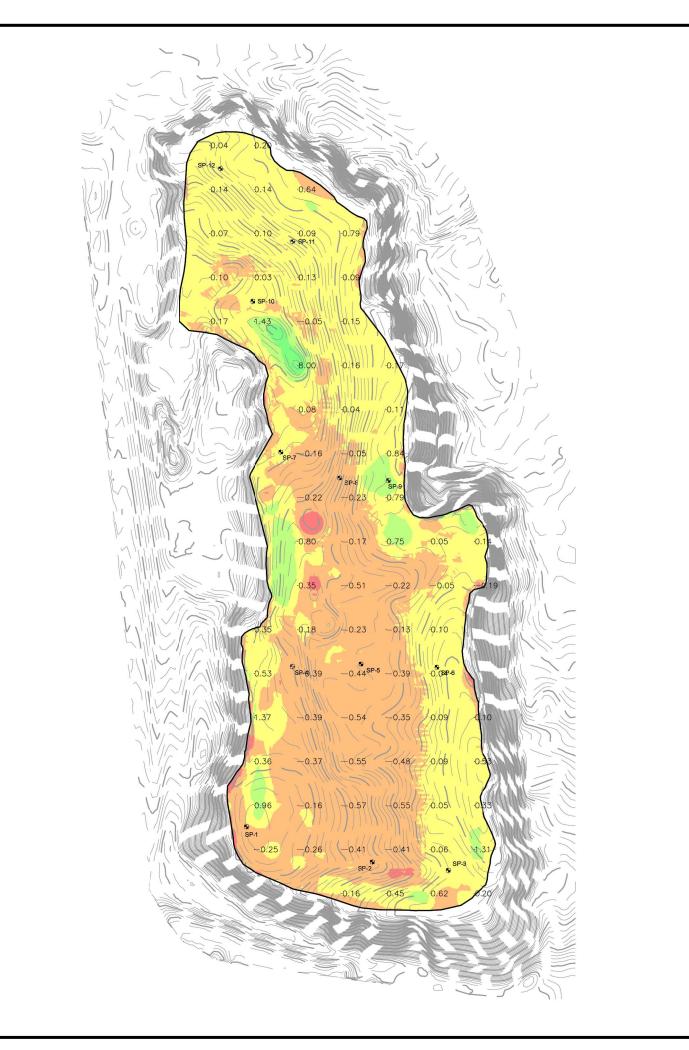
				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Mar	121.0	147.8	146.6	151.1	149.7	132.9	118.0	109.4
2-Mar	120.5	148.0	146.4	151.2	149.7	132.7	116.7	109.3
3-Mar	120.5	147.6	146.3	151.2	149.8	132.7	116.7	109.8
4-Mar	119.5	147.3	146.0	151.0	149.5	132.5	116.4	109.8
5-Mar	121.1	147.2	146.1	150.8	149.6	132.6	116.7	109.8
6-Mar	120.5	147.7	146.6	151.0	149.6	132.6	116.8	109.9
7-Mar	119.8	146.9	145.7	150.8	149.6	132.6	116.8	109.8
8-Mar	119.8	146.3	145.3	150.3	149.2	132.1	116.4	109.4
9-Mar	120.0	147.0	145.9	150.8	149.7	132.5	117.0	110.0
10-Mar	119.5	146.3	145.1	150.3	149.3	132.2	117.0	109.9
11-Mar	119.6	145.7	144.5	150.1	149.3	132.3	116.6	109.5
12-Mar	120.0	146.0	145.0	150.0	149.0	132.0	116.3	109.0
13-Mar	119.5	146.3	145.4	150.3	149.1	132.1	116.3	109.3
14-Mar	119.6	146.2	145.2	150.0	148.9	132.0	116.0	109.0
15-Mar	120.6	147.5	146.4	150.7	148.9	132.1	116.6	109.5
16-Mar	120.5	147.3	146.1	150.9	149.2	132.1	116.9	109.7
17-Mar	120.4	147.1	145.8	150.8	149.2	132.1	117.0	109.4
18-Mar	120.0	146.8	145.6	150.5	149.3	132.2	117.3	109.4
19-Mar	120.7	146.7	145.6	150.3	149.0	131.9	117.2	109.1
20-Mar	121.3	147.4	146.5	150.6	149.0	131.8	117.1	108.8
21-Mar	121.3	147.5	146.4	151.0	149.3	132.2	117.9	109.1
22-Mar	121.1	147.1	146.0	150.8	149.3	132.1	117.7	109.1
23-Mar	121.6	147.8	146.5	151.4	150.0	132.8	118.4	109.5
24-Mar	121.5	147.7	146.5	151.6	150.5	133.0	118.6	109.5
25-Mar	121.6	147.8	146.6	151.5	150.3	132.9	118.5	109.4
26-Mar	121.8	147.8	146.6	151.4	150.2	132.6	118.7	109.2
27-Mar	122.0	147.9	146.8	151.4	150.3	132.8	118.8	109.3
28-Mar	121.5	147.6	146.6	151.2	149.5	132.4	118.3	108.6
29-Mar	121.9	148.0	147.1	151.3	149.7	132.5	118.5	108.6
30-Mar	122.4	148.8	147.8	151.8	149.9	132.7	118.8	108.7
31-Mar	122.5	147.8	146.7	151.3	149.5	132.1	118.2	108.2
Average	120.8	147.3	146.1	150.9	149.5	132.4	117.4	109.3

Appendix E

Monthly Topography Analysis

	MAJOR CONT MINOR CONT APPROX. SID
SP-XX	SETTLEMENT

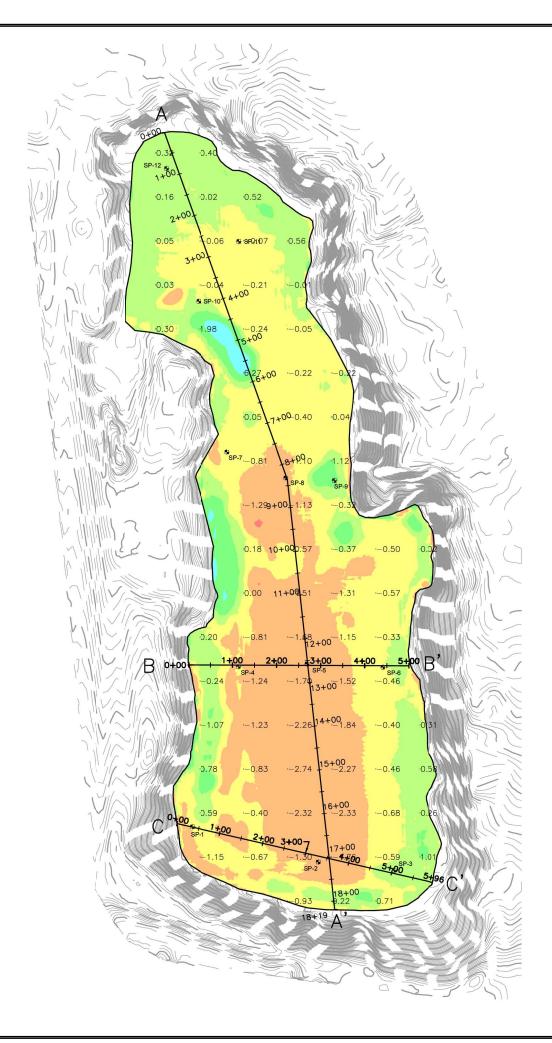

NOTES:



SP-XX

NOTES:

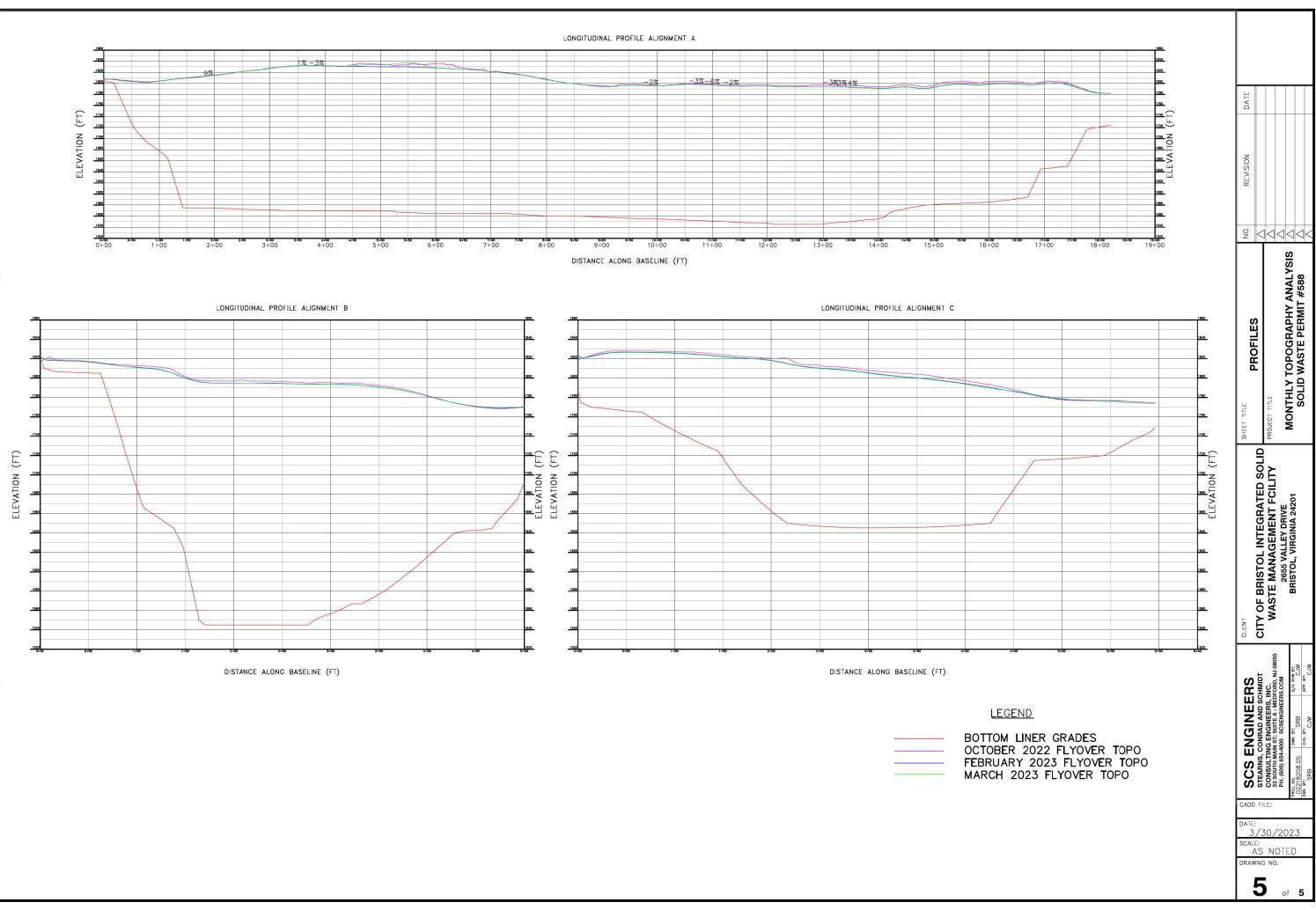
SCS ENGINEERS.



ne Base Surfcce 2-7-23 TOPO Comparison Surface 3-9-23 TOPO Cut volume 3788.50 Cu. Yd. Fill volume 6294.35 Cu. Yd. Net Fill 2505.85 Cu. Yd.	DATE	
Elevation Changes Color Min. Elevation Max. Elevation -5.00' -1.00' -1.00' 0.00'	REVISION	
0.00' 1.00' 1.00' 5.00'	NO.	
5.00' 10.00' OTES: 10.00' 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AREIAL TOPOGRAPHY DATA CAPTURED ON FEBRUARY 7, 2023 AND THE AERIAL TOPOGRAPHY DATA CAPTURED ON MARCH 9, 2023 BY SCS ENGINEERS. POSITIVE VALUE (+) INDICATES FILL AND NEGATIVE VALUES (-) INDICATE CUT (SETTLEMENT).VALUES ARE ROUNDED TO THE	SHEET TILE VOLUME CHANGE MARCH 2023	PROJECT TITLE MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588
 NEAREST FOOT. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION. SETTLEMENT PLATE LOCATIONS AND COORDINATES ARE BASED ON A SITE SPECIFIC COORDINATE SYSTEM. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011) THE VERTICAL DATUM IS BASED UPON NAVD-88 		
100 50 0 100 200 SCALE: 1"=100'	SCS ENGINEERS	PROJ 02 DSN.
LEGEND. MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2') APPROX. SIDEWALL LOCATION SP-XX SETTLEMENT PLATE	SCALE:	30/2023 "=100'

NO

Surfcco parison volume	e Surface	2-7-23 T 3-9-23 T 3788.50 C	PPO	DATE		
olume		6294.35 C 2505.85 C	ı. Yd.			
				Z		
	Elevation Chang	95		REVISION		
Color	Min. Elevation	Max. Elevation				
COIOI	-5.00'	-1.00'				
-	-1.00'	0.00'				
-	0.00'	1.00'		NO. <		
	1.00'	5.00'		_		
	5.00'	10.00'			6	2
	3.00	10.00		VOLUME CHANGE MARCH 2023		MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588
				20	2	ПНLY ГОРОGRAPHY ANAL SOLID WASTE PERMIT #588
				프		AN #
						£ ⊨
S:				A I		L S
<u></u>						ÅΠ
				U		ЪШ
THE		N CHAN	ES ARE CALCULATED	AN		D'S
			TOPOGRAPHY DATA	I I		
			RY 7, 2023 AND THE AERIAL		5	
			APTURED ON MARCH 9, 2023	Ē		
BY S		JEEDS D	OSITIVE VALUE (+) INDICATES	щ 5	ĒĒ	S
		NEERS. F	USITIVE VALUE (+) INDICATES			5
			LUES (-) INDICATE CUT		PROJECT TITLE	ž
			ARE ROUNDED TO THE	R	РК	
	EST FOO			6	د	
			F TOPOGRAPHY OR		Į į	
			EPICTION OF PHYSICAL			
			RTY LINES, OR BOUNDARIES	9	2 =	
			RMATION ONLY AND SHALL	Ë	5	101
			SIGN, MODIFICATION, OR		INT FCIL	24201
			ROVEMENTS TO REAL			a
			OOD PLAIN DETERMINATION.	Ë	$\Sigma >$	NIS
			CATIONS AND COORDINATES	Z	MANAGEME	IRC
		N A SII	SPECIFIC COORDINATE		S & S	1
SYST				ļ	55 A	10
			IM IS STATE PLANE VIRGINIA		S 8	BRISTOL, VIRGINI
	H ZONE			ā	WASTE MANAGEME	ä
THE	VERTICAL	. DATUM	IS BASED UPON NAVD-88	<u>۳</u>	AS	
				CLENT CITY OF BRISTOL INTEG	3	
					Ę	
				° °	,	
			I.		22	
					CONSULTING ENGINEERS, INC. 53 SOUTH MAIN ST: SUITE A - MEDFORD, NJ 08055 PH. (609) 654-4000 SCSENGINEERS.COM	ž N
			L. L		N.N.	a/a RVW BY: CJW APP. BY: CJW
			(P)		COR OS	Q/A
100	50 0	100	200	ШС	E HE	
				Шg	A-N	
	SCALE:	1"=100'		SCS ENGINEERS	SEN	N. BY: SRB A. BY: CJW
			Ŷ	5	SOUTING SOUTING	DWN. BY: CHK. BY:
					19004 19004	DWN. CHK.
			1		1 MA	05
			٦			208. ZB
				S and a second	H. (SO)	NO. 2182 SF
						PROJ. NO. 02218208.05 DSN. BY: SRB
				CADD F	ILE:	
		LEGEND		DATE:	70 /2-	0.7
			S (EVERY 10')		30/20	123
		D CONTOUR		CONT		
		OR CONTOUR		SCALE:	"=100	,
÷ S	APP	DR CONTOUR: ROX. SIDEWA FLEMENT PLA	L LOCATION			,
₿S	APP	ROX. SIDEWA	L LOCATION	1		,
₿S	APP	ROX. SIDEWA	L LOCATION	1		



ol	ume Base Surfac Comparison Cut volume Fill volume Net Cut	Surface 3	u. Yd.				ION DATE		
Number	Minimum Elevation	tions Table Maximum Elevation	Color				REVISION		
1	-10.000	-5.000							
3	-1.000	0.000							
4	0.000	1.000		_			No.		
6	5.000	10.000		-					S
2. 3. 4.	THE ELEVAT BETWEEN TH CAPTURED (AERIAL TOP 9, 2023 BY INDICATES F INDICATES F INDICATE CL TO THE NEA ANY DETERN CONTOURS, IMPROVEMEN IS FOR GENI S FOR GENI THE HORIZO SOUTH ZONI	ION CHANGE IE AREIAL TO OGRAPHY DA SCS ENGINE ILL AND NEG ILL AND NEG REST FOOT ILL SETTLEM OR ANY DEG INFOR FOOT OR FOR FLOC ON A SITE NTAL DATUM E NAD-83 (AL DATUM IS	OPOGRA R 2, 20 ATA CAI EERS. P GATIVE ENT).VA TOPOG PICTION TY LINE MATION GN, MO OVEMEN DO PLAI ATIONS SPECIFI 1 IS ST 2011)	APHY DA D22 AND PTURED OSITIVE VALUES ALUES AF RAPHY (OF PHY ES, OR B ONLY AN DIFICATIO ITS TO F IN DETER AND CO C COORE ATE PLA	TA THE ON MARCI VALUE (+ (-) RE ROUND SICAL SOUNDARIE ND SHALL ON, OR REAL RMINATION ORDINATE DINATE) ED S	CLIENT SHEET TILE MARCH VOLUME CHANGE MARCH 2023 TO DECEMBER 2022	WASTE MANAGEMEN	BRISTOL, VIRGINIA 24201 MONTHLY TOPOGRAPHY ANALYSIS
SP-X>		TOURS (EVERY 10 OURS (EVERY 2') DEWALL LOCATION					SCALE:	30/2 '=10	2023

N

.

OCTOD
 FEBRU/
 MARCH

Appendix F

Sample Collection Log and Lab Report

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (°C)	рН (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-49									
EW-50									
EW-51									
EW-52									
EW-53	11								
EW-54								1	
EW-55									
EW-56									
EW-57									
EW-58	030623	1045	54,9	7.33	9.80	0.97	-271.7	277 90	
EW-59	030623	1033	55.0	7.59	17.08	2,29	-271.7 -77.2	-7390 7100	Highly odorus "
EW-60									gor toan yhee
EW-61									
EW-62									
EW-63									
EW-64									
EW-65									
EW-67									
EW-68		A							
Sampler:	·	A.Mir	inich		I I	Sample	es Shipped By:	Courier	
.og Check	ed By:	J. Robb (SCS	;)			-		Enthalpy An	alytical

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date				3/6/2	2023			
Personnel				A. Minnick,	N. Gathing	S		
Location ID	Date	Well Casing Depth (ft)	Pump Depth (ft)	Cycle Count	Depth to Liquid (ft)	Casing Sickup (ft)	Liquid Column Thickness (ft)	Comments
EW-49	3/6/2023	96.15	90	439652		5.49		Stickup Too Tall
EW-50	3/6/2023	77.70	83	793509	30.04	2.71	47.66	
EW-51	3/6/2023	92.80	95		32.04	3.32	60.76	No Cycle Counter
EW-52	3/6/2023	98.70	93			2.41		No Pump
EW-53	3/6/2023	100.70		1852600	11.76	3.61	88.94	
EW-54	3/6/2023	82.70	75			4.32		No Pump
EW-55	3/6/2023	90.40	90	529010	24.03	5.28	66.37	No Airhose
EW-56	3/6/2023	58.50	58					No Pump
EW-57	3/6/2023	107.40	71			3.69		No Pump
EW-58	3/6/2023	84.50	82	1615442	17.21	4.98	67.29	
EW-59	3/6/2023	73.40	64	1121029	30.05	3.41	43.35	
EW-60	3/6/2023	81.80	70			2.52		No Pump
EW-61	3/6/2023	87.80	66	212085	28.21	3.53	59.59	
EW-62	3/6/2023	110.60	80	113994	55.90	3.62	54.70	
EW-63	3/6/2023	62.10	64	48068	42.24	4.09	19.86	No Airhose
EW-64	3/6/2023	109.00	113	98033	62.80	6.41	46.20	Lines Disconnected
EW-65	3/6/2023	88.40	50	3871	39.28	5.23	49.12	Lines Disconnected
EW-67	3/6/2023	107.75	62.5	347157	35.77	4.21	71.98	
EW-68	3/6/2023	73.57	68	1813225	30.28	3.29	43.29	

--- = not applicable/available

Well casing depths measured on 12/20-21/2022 from top of PVC.

Well casing stickup - measured on 01/17/2023.

Log Checked By: J. Robb

1941 Reymet Road

Richmond, Virginia 23237

Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 23C0397

Client Name: SCS Engineers-Winchester 296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Date Received:March 8, 20238:00Date Issued:April 4, 202315:37Project Number:02218208.15 Task 1Purchase Order:

Client Site I.D.: City of Bristol Landfill

Enclosed are the results of analyses for samples received by the laboratory on 03/08/2023 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTATS

Ted Soyars Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

			<u>Analysis</u>	Detects Report					
Client Name:	SCS Engineers-Winch	ester			Date Issued:	4/4/	/2023 3:3	7:46PM	
Client Site ID:	City of Bristol Landfill								
	•								
Submitted To:	Jennifer Robb								
Laboratory Sample ID	: 23C0397-01	Client Sar	nple ID: EW-58						
Parameter		Samp ID	Reference Meth	od Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Arsenic		01RE1	SW6010D	1.07		0.0100	0.0200	1	mg/L
Barium		01	SW6010D	0.406		0.0050	0.0100	1	mg/L
Chromium		01RE1	SW6010D	0.213		0.0080	0.0100	1	mg/L
Nickel		01RE1	SW6010D	0.1254		0.0070	0.0100	1	mg/L
Zinc		01	SW6010D	0.0689		0.0100	0.0100	1	mg/L
2-Butanone (MEK)		01	SW8260D	257		30.0	100	10	ug/L
Acetone		01	SW8260D	375		70.0	100	10	ug/L
Benzene		01	SW8260D	1540		4.00	10.0	10	ug/L
Ethylbenzene		01	SW8260D	131		4.00	10.0	10	ug/L
Tetrahydrofuran		01	SW8260D	353		100	100	10	ug/L
Toluene		01	SW8260D	182		5.00	10.0	10	ug/L
Xylenes, Total		01	SW8260D	240		10.0	30.0	10	ug/L
Ammonia as N		01	EPA350.1 R2.0			73.1	100	1000	mg/L
BOD		01	SM22 5210B-207			0.2	2.0	1	mg/L
COD		01	SM22 5220D-207			500	500	1	mg/L
TKN as N		01	EPA351.2 R2.0			33.6	100	200	mg/L
Total Recoverable Phenol	lics	01	SW9065	0.400		0.030	0.050	1	mg/L

			Analysis Detec	<u>ts Report</u>					
Client Name:	SCS Engineers-Winch	ester			Date Issued:	4/4/	/2023 3:3	7:46PM	
Client Site ID:	City of Bristol Landfill								
Submitted To:	Jennifer Robb								
Laboratory Sample ID:		Client Sa	mple ID: EW-59						
Parameter	: 23C0397-02	Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Arsenic		02RE1	SW6010D	1.00		0.0100	0.0200	1	mg/L
Barium		02	SW6010D	0.683		0.0050	0.0100	1	mg/L
Chromium		02RE1	SW6010D	0.188		0.0080	0.0100	1	mg/L
Nickel		02RE1	SW6010D	0.1033		0.0070	0.0100	1	mg/L
Zinc		02	SW6010D	0.0538		0.0100	0.0100	1	mg/L
2-Butanone (MEK)		02	SW8260D	2770		30.0	100	10	ug/L
Acetone		02RE1	SW8260D	6810		700	1000	100	ug/L
Benzene		02	SW8260D	727		4.00	10.0	10	ug/L
Ethylbenzene		02	SW8260D	71.5		4.00	10.0	10	ug/L
Tetrahydrofuran		02	SW8260D	464		100	100	10	ug/L
Toluene		02	SW8260D	98.1		5.00	10.0	10	ug/L
Xylenes, Total		02	SW8260D	111		10.0	30.0	10	ug/L
Ammonia as N		02	EPA350.1 R2.0	1480		73.1	100	1000	mg/L
BOD		02	SM22 5210B-2011	9190		0.2	2.0	1	mg/L
COD		02	SM22 5220D-2011	10600		2000	2000	200	mg/L
TKN as N		02	EPA351.2 R2.0	1920		33.6	100	200	mg/L
Total Recoverable Phenol	lics	02	SW9065	13.9		0.300	0.500	10	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Date Issued:

4/4/2023 3:37:46PM

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-58	23C0397-01	Ground Water	03/06/2023 10:45	03/08/2023 08:00
EW-59	23C0397-02	Ground Water	03/06/2023 10:33	03/08/2023 08:00
Trip Blank	23C0397-03	Ground Water	01/09/2023 14:30	03/08/2023 08:00

Analysis for Volatile Fatty Acids was subcontracted to Weck. The subcontracted results are attached at the end of this Certificate of Analysis.

				<u>(</u>	Certificate o	f Analysis							
Client Name:	SCS Engine	ers-Winch	nester				Da	te Issue	d:	4/4/2023	3 3:3	7:46PM	
Client Site I.D.:	City of Brist	ol Landfill											
Submitted To:	Jennifer Rob	b											
Client Sample ID:	EW-58					Laboratory	Sample ID:	23C0	397-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA 6	:000/7000 Sorias I	Vathada											
Silver	1000//000 Series I	01	7440-22-4	SW6010D	03/10/2023 12:30	03/13/2023 12:51	BLOD		0.0050	0.0100	1	mg/L	AB
Arsenic		01RE1	7440-22-4	SW6010D	03/10/2023 12:30	03/20/2023 14:30	1.07		0.0000	0.0100	1	mg/L	ACM
Barium		01	7440-39-3	SW6010D	03/10/2023 12:30	03/13/2023 12:51	0.406		0.0050	0.0200	1	mg/L	AB
Cadmium		01	7440-43-9	SW6010D	03/10/2023 12:30	03/13/2023 12:51	BLOD		0.0020	0.0040	1	mg/L	AB
Chromium		01RE1	7440-47-3	SW6010D	03/10/2023 12:30	03/20/2023 14:30	0.213		0.0080	0.0100	1	mg/L	ACM
Copper		01	7440-50-8	SW6010D	03/10/2023 12:30	03/13/2023 12:51	BLOD		0.0080	0.0100	1	mg/L	AB
Mercury		01	7439-97-6	SW7470A	03/09/2023 11:10	03/09/2023 14:14	BLOD		0.00020	0.00020	1	mg/L	SGT
Nickel		01RE1	7440-02-0	SW6010D	03/10/2023 12:30	03/20/2023 14:30	0.1254		0.0070	0.0100	1	mg/L	ACM
Lead		01	7439-92-1	SW6010D	03/10/2023 12:30	03/13/2023 12:51	BLOD		0.0060	0.0100	1	mg/L	AB
Selenium		01	7782-49-2	SW6010D	03/10/2023 12:30	03/13/2023 12:51	BLOD		0.0400	0.0500	1	mg/L	AB
Zinc		01	7440-66-6	SW6010D	03/10/2023 12:30	03/13/2023 12:51	0.0689		0.0100	0.0100	1	mg/L	AB
Volatile Organic Comp	ounds by GCMS												
2-Butanone (MEK)		01	78-93-3	SW8260D	03/09/2023 17:33	03/09/2023 17:33	257		30.0	100	10	ug/L	RJB
Acetone		01	67-64-1	SW8260D	03/09/2023 17:33	03/09/2023 17:33	375		70.0	100	10	ug/L	RJB
Benzene		01	71-43-2	SW8260D	03/09/2023 17:33	03/09/2023 17:33	1540		4.00	10.0	10	ug/L	RJB
Ethylbenzene		01	100-41-4	SW8260D	03/09/2023 17:33	03/09/2023 17:33	131		4.00	10.0	10	ug/L	RJB
Toluene		01	108-88-3	SW8260D	03/09/2023 17:33	03/09/2023 17:33	182		5.00	10.0	10	ug/L	RJB
Xylenes, Total		01	1330-20-7	SW8260D	03/09/2023 17:33	03/09/2023 17:33	240		10.0	30.0	10	ug/L	RJB
Tetrahydrofuran		01	109-99-9	SW8260D	03/09/2023 17:33	03/09/2023 17:33	353		100	100	10	ug/L	RJB
Surr: 1,2-Dichloroethan	e-d4 (Surr)	01	96.8	3 % 70-120	03/09/2023 17	7:33 03/09/2023 17:3	3						
Surr: 4-Bromofluoroben	. ,	01	92.2		03/09/2023 17								
Surr: Dibromofluoromet Surr: Toluene-d8 (Surr)	hane (Surr)	01 01	94.7 98.3		03/09/2023 17 03/09/2023 17								

				<u>(</u>	Certificate of	<u>Analysis</u>							
Client Name:	SCS Eng	ineers-Winche	ester				Dat	te Issue	d:	4/4/202	3 3:3	87:46PM	
Client Site I.D.:	City of B	ristol Landfill											
Submitted To:	Jennifer F	Robb											
Client Sample ID:	EW-58					Laboratory	/ Sample ID:	23C0	397-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Semivolatile Organic C	ompounds by	y GCMS											
Anthracene		01	120-12-7	SW8270E	03/09/2023 08:50	03/09/2023 17:25	BLOD		117	234	1	ug/L	KCS
Surr: 2,4,6-Tribromophe	nol (Surr)	01	194	% 5-136	03/09/2023 08:5	50 03/09/2023 17:	25						S
Surr: 2-Fluorobiphenyl (Surr)	01	65.5	% 9-117	03/09/2023 08:5	50 03/09/2023 17:	25						
Surr: 2-Fluorophenol (S	urr)	01	26.0	% 5-60	03/09/2023 08:5	50 03/09/2023 17:	25						
Surr: Nitrobenzene-d5 (Surr)	01	67.5	% 5-151	03/09/2023 08:5	50 03/09/2023 17:	25						
Surr: Phenol-d5 (Surr)		01	25.0	% 5-60	03/09/2023 08:5	50 03/09/2023 17:	25						
Surr: p-Terphenyl-d14 (S	Surr)	01	74.5	% 5-141	03/09/2023 08:5	50 03/09/2023 17:	25						

					Certificate o	of Analysis							
Client Name:	SCS Engine	eers-Winch	nester				Da	te Issue	d:	4/4/202	3 3:3	7:46PM	
Client Site I.D.:	City of Bris	tol Landfill											
Submitted To:	Jennifer Ro	bb											
Client Sample ID:	EW-58					Laborator	y Sample ID:	23C0	397-01				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analys	sis												
Ammonia as N		01	7664-41-7	EPA350.1 R2.0	03/13/2023 14:04	03/13/2023 14:04	667		73.1	100	1000	mg/L	MKS
BOD		01	E1640606	SM22 5210B-2011	03/08/2023 09:57	03/08/2023 09:57	1570		0.2	2.0	1	mg/L	TMB
COD		01	NA	SM22 5220D-2011	03/10/2023 09:30	03/10/2023 09:30	1690		500	500	1	mg/L	MGC
Nitrate as N		01	14797-55-8	Calc.	03/16/2023 12:19	03/16/2023 12:19	BLOD		1.04	5.10	100	mg/L	LTN
Nitrate+Nitrite as N		01	E701177	SM22 4500-NO3F- 2011	03/16/2023 12:19	03/16/2023 12:19	BLOD		0.04	0.10	1	mg/L	NBT
Nitrite as N		01	14797-65-0	SM22 4500-NO2B- 2011	03/08/2023 09:05	03/08/2023 16:44	BLOD		1.00	5.00	100	mg/L	LTN
Total Recoverable Phe	enolics	01	NA	SW9065	03/10/2023 16:52	03/10/2023 16:52	0.400		0.030	0.050	1	mg/L	MAH
TKN as N		01	E17148461	EPA351.2 R2.0	03/16/2023 11:43	03/16/2023 11:43	879		33.6	100	200	mg/L	AAL

					Certificate o	of Analysis							
Client Name:	SCS Engin	eers-Winch	lester				Da	te Issue	ed:	4/4/2023	3 3:3	87:46PM	
Client Site I.D.:	City of Bris	stol Landfill											
Submitted To:	Jennifer Ro	bb											
Client Sample ID:	EW-59					Laborator	y Sample ID:	23C0	397-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA	6000/7000 Series	s Methods											
Silver		02	7440-22-4	SW6010D	03/10/2023 12:30	03/13/2023 12:52	BLOD		0.0050	0.0100	1	mg/L	AB
Arsenic		02RE1	7440-38-2	SW6010D	03/10/2023 12:30	03/20/2023 14:35	1.00		0.0100	0.0200	1	mg/L	ACM
Barium		02	7440-39-3	SW6010D	03/10/2023 12:30	03/13/2023 12:52	0.683		0.0050	0.0100	1	mg/L	AB
Cadmium		02	7440-43-9	SW6010D	03/10/2023 12:30	03/13/2023 12:52	BLOD		0.0020	0.0040	1	mg/L	AB
Chromium		02RE1	7440-47-3	SW6010D	03/10/2023 12:30	03/20/2023 14:35	0.188		0.0080	0.0100	1	mg/L	ACM
Copper		02	7440-50-8	SW6010D	03/10/2023 12:30	03/13/2023 12:52	BLOD		0.0080	0.0100	1	mg/L	AB
Mercury		02	7439-97-6	SW7470A	03/09/2023 11:10	03/09/2023 14:16	BLOD		0.00040	0.00040	1	mg/L	SGT
Nickel		02RE1	7440-02-0	SW6010D	03/10/2023 12:30	03/20/2023 14:35	0.1033		0.0070	0.0100	1	mg/L	ACM
Lead		02	7439-92-1	SW6010D	03/10/2023 12:30	03/13/2023 12:52	BLOD		0.0060	0.0100	1	mg/L	AB
Selenium		02	7782-49-2	SW6010D	03/10/2023 12:30	03/13/2023 12:52	BLOD		0.0400	0.0500	1	mg/L	AB
Zinc		02	7440-66-6	SW6010D	03/10/2023 12:30	03/13/2023 12:52	0.0538		0.0100	0.0100	1	mg/L	AB

				<u>(</u>	Certificate of	<u>Analysis</u>							
Client Name:	SCS Engine	eers-Winch	ester				Da	te Issue	d:	4/4/202	3 3:3	7:46PM	
Client Site I.D.:	City of Bris	tol Landfill											
Submitted To:	Jennifer Ro	bb											
Client Sample ID:	EW-59					Laboratory	y Sample ID:	2300	397-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analys
Volatile Organic Comp	ounds by GCMS												
2-Butanone (MEK)	-	02	78-93-3	SW8260D	03/09/2023 18:22	03/09/2023 18:22	2770		30.0	100	10	ug/L	RJB
Acetone		02RE1	67-64-1	SW8260D	03/09/2023 18:46	03/09/2023 18:46	6810		700	1000	100	ug/L	RJB
Benzene		02	71-43-2	SW8260D	03/09/2023 18:22	03/09/2023 18:22	727		4.00	10.0	10	ug/L	RJB
Ethylbenzene		02	100-41-4	SW8260D	03/09/2023 18:22	03/09/2023 18:22	71.5		4.00	10.0	10	ug/L	RJB
Toluene		02	108-88-3	SW8260D	03/09/2023 18:22	03/09/2023 18:22	98.1		5.00	10.0	10	ug/L	RJB
Xylenes, Total		02	1330-20-7	SW8260D	03/09/2023 18:22	03/09/2023 18:22	111		10.0	30.0	10	ug/L	RJB
Tetrahydrofuran		02	109-99-9	SW8260D	03/09/2023 18:22	03/09/2023 18:22	464		100	100	10	ug/L	RJB
Surr: 1,2-Dichloroethar	ne-d4 (Surr)	02	92.8	% 70-120	03/09/2023 18:2	2 03/09/2023 18:	22						
Surr: 4-Bromofluorober	nzene (Surr)	02	93.2	% 75-120	03/09/2023 18:2	2 03/09/2023 18:	22						
Surr: Dibromofluorome	thane (Surr)	02	93.4	% 70-130	03/09/2023 18:2	2 03/09/2023 18:	22						
Surr: Toluene-d8 (Surr)		02	98.4										
Surr: 1,2-Dichloroethar	()	02RE1	98.3										
Surr: 4-Bromofluorober	. ,	02RE1	96.3										
Surr: Dibromofluorome	. ,	02RE1 02RE1	95.1 98.5										
Surr: Toluene-d8 (Surr) Semivolatile Organic (90.5	% 70-130	03/09/2023 18.4	6 03/09/2023 18.	40						
Anthracene	compounds by G	02	120-12-7	SW8270E	03/09/2023 08:50	03/10/2023 14:20	BLOD		51.0	102	10	ug/L	KCS
Surr: 2,4,6-Tribromoph	enol (Surr)	02	79.6		03/09/2023 08:5		-		01.0	102	-	~g/ L	
Surr: 2-Fluorobiphenyl	. ,	02	30.0		03/09/2023 08:								
Surr: 2-Fluorophenol (S	. ,	02	12.7		03/09/2023 08:5								
Surr: Nitrobenzene-d5	,	02	69.0		03/09/2023 08:5								
Surr: Phenol-d5 (Surr)		02	0.100	% 5-60	03/09/2023 08:5	50 03/10/2023 14:	20						DS
Surr: p-Terphenyl-d14	(Surr)	02	23.4	% 5-141	03/09/2023 08:5	50 03/10/2023 14:	20						

					Certificate o	of Analysis							
Client Name:	SCS Engine	eers-Winch	nester				Da	te Issue	d:	4/4/202	3 3:3	7:46PM	
Client Site I.D.:	City of Bris	tol Landfill											
Submitted To:	Jennifer Ro	bb											
Client Sample ID:	EW-59					Laborator	y Sample ID:	23C0	397-02				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analys	sis												
Ammonia as N		02	7664-41-7	EPA350.1 R2.0	03/13/2023 14:04	03/13/2023 14:04	1480		73.1	100	1000	mg/L	MKS
BOD		02	E1640606	SM22 5210B-2011	03/08/2023 09:59	03/08/2023 09:59	9190		0.2	2.0	1	mg/L	TMB
COD		02	NA	SM22 5220D-2011	03/10/2023 09:30	03/10/2023 09:30	10600		2000	2000	200	mg/L	MGC
Nitrate as N		02	14797-55-8	Calc.	03/16/2023 12:21	03/16/2023 12:21	BLOD		1.04	5.10	100	mg/L	LTN
Nitrate+Nitrite as N		02	E701177	SM22 4500-NO3F- 2011	03/16/2023 12:21	03/16/2023 12:21	BLOD		0.04	0.10	1	mg/L	NBT
Nitrite as N		02	14797-65-0	SM22 4500-NO2B- 2011	03/08/2023 09:05	03/08/2023 16:44	BLOD		1.00	5.00	100	mg/L	LTN
Total Recoverable Phe	enolics	02	NA	SW9065	03/15/2023 16:21	03/15/2023 16:21	13.9		0.300	0.500	10	mg/L	MAH
TKN as N		02	E17148461	EPA351.2 R2.0	03/16/2023 11:44	03/16/2023 11:44	1920		33.6	100	200	mg/L	AAL

				<u>(</u>	Certificate of	<u>f Analysis</u>							
Client Name:	SCS Engine	eers-Winch	ester				Da	ite Issue	d:	4/4/202	3 3:3	7:46PM	
Client Site I.D.:	City of Bris	tol Landfill											
Submitted To:	Jennifer Ro	bb											
Client Sample ID:	Trip Blank					Laborator	y Sample ID:	23C0	397-03				
Parameter		Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compo	ounds by GCMS												
2-Butanone (MEK)		03	78-93-3	SW8260D	03/09/2023 11:51	03/09/2023 11:51	BLOD		3.00	10.0	1	ug/L	RJB
Acetone		03	67-64-1	SW8260D	03/09/2023 11:51	03/09/2023 11:51	BLOD		7.00	10.0	1	ug/L	RJB
Benzene		03	71-43-2	SW8260D	03/09/2023 11:51	03/09/2023 11:51	BLOD		0.40	1.00	1	ug/L	RJB
Ethylbenzene		03	100-41-4	SW8260D	03/09/2023 11:51	03/09/2023 11:51	BLOD		0.40	1.00	1	ug/L	RJB
Toluene		03	108-88-3	SW8260D	03/09/2023 11:51	03/09/2023 11:51	BLOD		0.50	1.00	1	ug/L	RJB
Xylenes, Total		03	1330-20-7	SW8260D	03/09/2023 11:51	03/09/2023 11:51	BLOD		1.00	3.00	1	ug/L	RJB
Tetrahydrofuran		03	109-99-9	SW8260D	03/09/2023 11:51	03/09/2023 11:51	BLOD		10.0	10.0	1	ug/L	RJB
Surr: 1,2-Dichloroethane	e-d4 (Surr)	03	94.0	% 70-120	03/09/2023 11:	51 03/09/2023 11	:51						
Surr: 4-Bromofluorobenz	zene (Surr)	03	94.8	% 75-120	03/09/2023 11:	51 03/09/2023 11	:51						
Surr: Dibromofluorometh Surr: Toluene-d8 (Surr)	hane (Surr)	03 03	95.8 99.3		03/09/2023 11: 03/09/2023 11:								

			<u>C</u>	ertificate o	<u>f Analysi</u>	<u>s</u>				
Client Name:	SCS Engineers-Winches	ter					Date Issue	ed:	4/4/2023	3:37:46PM
Client Site I.D.:	City of Bristol Landfill									
Submitted To:	Jennifer Robb									
		Matala			vias Mathada C	v alite Cantual				
		Metals	(lotal) by	EPA 6000/7000 Se		uality Control				
				Enthalpy Ana	alytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGC0322 - SV	V7470A								
Blank (BGC0322-BLK1)				Prepared & Analy	zed: 03/09/2023					
Mercury	ND	0.00020	mg/L							
LCS (BGC0322-BS1)				Prepared & Analy	zed: 03/09/2023					
Mercury	0.00253	0.00020	mg/L	0.00250		101	80-120			
Matrix Spike (BGC0322-M	IS1) S	ource: 23C0441-0	1	Prepared & Analy	zed: 03/09/2023					
Mercury	0.00217	0.00020	mg/L	0.00250	BLOD	86.8	80-120			
Matrix Spike Dup (BGC03	322-MSD1) S	ource: 23C0441-0	1	Prepared & Analy	zed: 03/09/2023					
Mercury	0.00205	0.00020	mg/L	0.00250	BLOD	82.1	80-120	5.56	20	
	Batch BGC0373 - EF	A200.2/R2.8								
Blank (BGC0373-BLK1)				Prepared: 03/10/2	023 Analyzed: 0	3/13/2023				
Arsenic	ND	0.0200	mg/L							
Barium	ND	0.0100	mg/L							
Cadmium	ND	0.0040	mg/L							
Chromium	ND	0.0100	mg/L							
Copper	ND	0.0100	mg/L							
Lead	ND	0.0100	mg/L							
Nickel	ND	0.0100	mg/L							
Selenium	ND	0.0500	mg/L							
Silver	ND	0.0100	mg/L							
Zinc	ND	0.0100	mg/L							
LCS (BGC0373-BS1)				Prepared: 03/10/2	023 Analyzed: 0	3/13/2023				
Arsenic	0.550	0.0200	mg/L	0.500		110	80-120			
Barium	0.487	0.0100	mg/L	0.500		97.5	80-120			

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	ch BGC0373 - EPA2		01110	20101	rtooun	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Linito		Linix	
LCS (BGC0373-BS1)				Prepared: 03/10/	2023 Analyzed: ()3/13/2023				
Cadmium	0.572	0.0040	mg/L	0.500		114	80-120			
Chromium	0.546	0.0100	mg/L	0.500		109	80-120			
Copper	0.564	0.0100	mg/L	0.500		113	80-120			
Lead	0.572	0.0100	mg/L	0.500		114	80-120			
Nickel	0.5629	0.0100	mg/L	0.500		113	80-120			
Selenium	0.566	0.0500	mg/L	0.500		113	80-120			
Silver	0.0991	0.0100	mg/L	0.100		99.1	80-120			
Zinc	0.525	0.0100	mg/L	0.500		105	80-120			
Matrix Spike (BGC0373-MS1)	Sour	ce: 23C0431-0	7	Prepared: 03/10/	2023 Analyzed: (03/13/2023				
Arsenic	0.558	0.0200	mg/L	0.500	BLOD	112	75-125			
Barium	0.590	0.0100	mg/L	0.500	0.0756	103	75-125			
Cadmium	0.572	0.0040	mg/L	0.500	BLOD	114	75-125			
Chromium	0.558	0.0100	mg/L	0.500	BLOD	112	75-125			
Copper	0.566	0.0100	mg/L	0.500	BLOD	113	75-125			
Lead	0.571	0.0100	mg/L	0.500	BLOD	114	75-125			
Nickel	0.5703	0.0100	mg/L	0.500	0.0082	112	75-125			
Selenium	0.568	0.0500	mg/L	0.500	BLOD	114	75-125			
Silver	0.103	0.0100	mg/L	0.100	BLOD	103	75-125			E
Zinc	0.515	0.0100	mg/L	0.500	BLOD	103	75-125			
Matrix Spike (BGC0373-MS2)	Sour	ce: 23C0431-0	8	Prepared: 03/10/	2023 Analyzed: (03/13/2023				
Arsenic	0.600	0.0200	mg/L	0.500	BLOD	120	75-125	_		
Barium	0.549	0.0100	mg/L	0.500	BLOD	110	75-125			
Cadmium	0.622	0.0040	mg/L	0.500	BLOD	124	75-125			
Chromium	0.596	0.0100	mg/L	0.500	BLOD	119	75-125			

4/4/2023 3:37:46PM

Certificate of Analysis Date Issued:

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BGC0373 - EPA2	00.2/R2.8								
Matrix Spike (BGC0373-MS2)	Sou	rce: 23C0431-0	8	Prepared: 03/10/	/2023 Analyzed: (03/13/2023				
Copper	0.620	0.0100	mg/L	0.500	BLOD	124	75-125			
Lead	0.623	0.0100	mg/L	0.500	BLOD	125	75-125			
Nickel	0.6141	0.0100	mg/L	0.500	BLOD	123	75-125			
Selenium	0.611	0.0500	mg/L	0.500	BLOD	122	75-125			
Silver	0.110	0.0100	mg/L	0.100	BLOD	110	75-125			E
Zinc	0.555	0.0100	mg/L	0.500	BLOD	111	75-125			
Matrix Spike Dup (BGC0373-MSD1)	Sou	rce: 23C0431-0)7	Prepared: 03/10/	/2023 Analyzed: (03/13/2023				
Arsenic	0.551	0.0200	mg/L	0.500	BLOD	110	75-125	1.15	20	
Barium	0.578	0.0100	mg/L	0.500	0.0756	100	75-125	2.18	20	
Cadmium	0.568	0.0040	mg/L	0.500	BLOD	114	75-125	0.754	20	
Chromium	0.554	0.0100	mg/L	0.500	BLOD	111	75-125	0.648	20	
Copper	0.562	0.0100	mg/L	0.500	BLOD	112	75-125	0.567	20	
Lead	0.568	0.0100	mg/L	0.500	BLOD	114	75-125	0.439	20	
Nickel	0.5659	0.0100	mg/L	0.500	0.0082	112	75-125	0.775	20	
Selenium	0.564	0.0500	mg/L	0.500	BLOD	113	75-125	0.672	20	
Silver	0.102	0.0100	mg/L	0.100	BLOD	102	75-125	1.08	20	E
Zinc	0.514	0.0100	mg/L	0.500	BLOD	103	75-125	0.194	20	
Matrix Spike Dup (BGC0373-MSD2)	Sou	rce: 23C0431-0)8	Prepared: 03/10/	/2023 Analyzed: (03/13/2023				
Arsenic	0.560	0.0200	mg/L	0.500	BLOD	112	75-125	6.81	20	
Barium	0.507	0.0100	mg/L	0.500	BLOD	101	75-125	7.86	20	
Cadmium	0.580	0.0040	mg/L	0.500	BLOD	116	75-125	6.93	20	
Chromium	0.556	0.0100	mg/L	0.500	BLOD	111	75-125	7.01	20	
Copper	0.578	0.0100	mg/L	0.500	BLOD	116	75-125	7.08	20	
Lead	0.581	0.0100	mg/L	0.500	BLOD	116	75-125	6.91	20	

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGC0373 - EPA20	00.2/R2.8								
Matrix Spike Dup (BGC0373-MSD2)	Sour	ce: 23C0431-0	8	Prepared: 03/10/	2023 Analyzed: (03/13/2023				
Nickel	0.5738	0.0100	mg/L	0.500	BLOD	115	75-125	6.79	20	
Selenium	0.574	0.0500	mg/L	0.500	BLOD	115	75-125	6.21	20	
Silver	0.104	0.0100	mg/L	0.100	BLOD	104	75-125	5.53	20	E
Zinc	0.512	0.0100	mg/L	0.500	BLOD	102	75-125	8.07	20	

			<u>Ce</u>	rtificate o	of Analysi	is				
Client Name: SCS	Engineers-Winchester						Date Issue	ed:	4/4/2023	3:37:46PM
Client Site I.D.: City	of Bristol Landfill									
	ifer Robb									
		,				0				
		\	volatile Orga	anic Compounds	-	ly Control				
				Enthalpy A	nalytical					
Analuta	Result	LOQ	Units	Spike	Source	%REC	%REC Limits	RPD	RPD Limit	Qual
Analyte	Result	LUQ	Units	Level	Result	%REC	Limits	RPD	Limit	Quai
	Batch BGC0325 - SW5030	B-MS								
Blank (BGC0325-BLK1)				Prepared & Anal	yzed: 03/09/2023					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Tetrahydrofuran	ND	10.0	ug/L							
Surr: 1,2-Dichloroethane-d4	(Surr) 48.3		ug/L	50.0		96.6	70-120			
Surr: 4-Bromofluorobenzene	(Surr) 47.7		ug/L	50.0		95.4	75-120			
Surr: Dibromofluoromethane	. ,		ug/L	50.0		95.9	70-130			
Surr: Toluene-d8 (Surr)	49.1		ug/L	50.0		98.2	70-130			
LCS (BGC0325-BS1)				Prepared & Anal	yzed: 03/09/2023	i.				
1,1,1,2-Tetrachloroethane	55.4	0.4	ug/L	50.0		111	80-130			
1,1,1-Trichloroethane	46.7	1	ug/L	50.0		93.5	65-130			
1,1,2,2-Tetrachloroethane	52.1	0.4	ug/L	50.0		104	65-130			
1,1,2-Trichloroethane	47.7	1	ug/L	50.0		95.4	75-125			
1,1-Dichloroethane	41.2	1	ug/L	50.0		82.4	70-135			
1,1-Dichloroethylene	40.1	1	ug/L	50.0		80.1	70-130			
1,1-Dichloropropene	42.8	1	ug/L	50.0		85.5	75-135			
1,2,3-Trichlorobenzene	55.7	1	ug/L	50.0		111	55-140			
1,2,3-Trichloropropane	51.7	1	ug/L	50.0		103	75-125			
1,2,4-Trichlorobenzene	57.9	1	ug/L	50.0		116	65-135			
1,2,4-Trimethylbenzene	51.7	1	ug/L	50.0		103	75-130			
1,2-Dibromo-3-chloropropan	e (DBCP) 60.0	1	ug/L	50.0		120	50-130			

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 4/4/2023 3:37:46PM City of Bristol Landfill Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGC0325 - SW5030B-MS LCS (BGC0325-BS1) Prepared & Analyzed: 03/09/2023 1 1,2-Dibromoethane (EDB) 56.0 ug/L 50.0 112 80-120 1.2-Dichlorobenzene 54.8 0.5 ug/L 50.0 110 70-120 50.0 87.8 70-130 1.2-Dichloroethane 43.9 1 ug/L 42.7 0.5 50.0 85.4 75-125 1,2-Dichloropropane ug/L 1,3,5-Trimethylbenzene 50.0 1 ug/L 50.0 100 75-125 55.7 1 75-125 1.3-Dichlorobenzene ug/L 50.0 111 1,3-Dichloropropane 46.6 1 ug/L 50.0 93.2 75-125 1 109 75-125 1.4-Dichlorobenzene 54.4 ug/L 50.0 1 90.5 70-135 2,2-Dichloropropane 45.2 ug/L 50.0 43.9 10 50.0 87.9 30-150 2-Butanone (MEK) ua/L 2-Chlorotoluene 54.1 1 50.0 108 75-125 ug/L 2-Hexanone (MBK) 55.5 5 ug/L 50.0 111 55-130 4-Chlorotoluene 54.0 1 50.0 108 75-130 ug/L 52.9 50.0 75-130 4-Isopropyltoluene 1 ug/L 106 4-Methyl-2-pentanone (MIBK) 53.6 5 50.0 107 60-135 ug/L Acetone 51.8 10 50.0 40-140 ug/L 104 Benzene 45.7 1 ug/L 50.0 91.3 80-120 58.0 1 50.0 75-125 Bromobenzene ug/L 116 Bromochloromethane 45.6 1 50.0 91.2 65-130 ug/L 52.6 0.5 75-120 Bromodichloromethane ug/L 50.0 105 Bromoform 58.3 1 50.0 117 70-130 ug/L Bromomethane 46.3 1 ug/L 50.0 92.6 30-145 Carbon disulfide 50.9 10 ug/L 50.0 102 35-160 Carbon tetrachloride 51.8 1 ug/L 50.0 104 65-140 54.3 1 ug/L 109 Chlorobenzene 50.0 80-120

Certificate of Analysis Client Name: SCS Engineers-Winchester Date Issued: 4/4/2023 3:37:46PM City of Bristol Landfill Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** RPD Spike Source %REC Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGC0325 - SW5030B-MS LCS (BGC0325-BS1) Prepared & Analyzed: 03/09/2023 42.4 1 Chloroethane ug/L 50.0 84.8 60-135 Chloroform 43.2 0.5 ug/L 50.0 86.5 65-135 50.0 82.8 Chloromethane 41.4 1 ug/L 40-125 cis-1,2-Dichloroethylene 42.2 1 50.0 84.4 70-125 ug/L cis-1,3-Dichloropropene 37.8 1 ug/L 50.0 75.7 70-130 Dibromochloromethane 53.1 0.5 50.0 60-135 ug/L 106 Dibromomethane 50.7 1 ug/L 50.0 101 75-125 Dichlorodifluoromethane 53.5 1 50.0 107 30-155 ug/L 1 75-125 Ethylbenzene 53.9 ug/L 50.0 108 Hexachlorobutadiene 58.2 0.8 50.0 116 50-140 ua/L Isopropylbenzene 51.4 1 ug/L 50.0 103 75-125 m+p-Xylenes 107 2 ug/L 100 107 75-130 Methylene chloride 44.8 4 50.0 89.6 55-140 ug/L 43.7 1 50.0 65-125 Methyl-t-butyl ether (MTBE) ug/L 87.3 Naphthalene 49.0 1 50.0 97.9 55-140 ug/L 52.0 1 50.0 70-135 n-Butylbenzene ug/L 104 n-Propylbenzene 51.6 1 ug/L 50.0 103 70-130 55.6 1 50.0 80-120 o-Xylene ug/L 111 sec-Butylbenzene 54.2 1 50.0 108 70-125 ug/L 65-135 Styrene 50.5 1 ug/L 50.0 101 tert-Butylbenzene 51.2 1 50.0 102 70-130 ug/L Tetrachloroethylene (PCE) 51.7 1 ug/L 50.0 103 45-150 Toluene 48.5 1 97.0 75-120 ug/L 50.0 trans-1,2-Dichloroethylene 39.0 1 ug/L 50.0 78.1 60-140 41.9 1 83.7 55-140 trans-1,3-Dichloropropene ug/L 50.0

			<u>Ce</u>	ertificate o	of Analysis	<u>}</u>				
Client Name: SCS	Engineers-Winchester						Date Issue	ed:	4/4/2023	3:37:46PM
Client Site I.D.: City	of Bristol Landfill									
	fer Robb									
Submitted to. Jennin						.				
		```	Volatile Org	anic Compounds I	by GCMS - Quality	Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGC0325 - SW5030	B-MS								
LCS (BGC0325-BS1)				Prepared & Anal	yzed: 03/09/2023					
Trichloroethylene	47.0	1	ug/L	50.0		94.1	70-125			
Trichlorofluoromethane	54.2	1	ug/L	50.0		108	60-145			
Vinyl chloride	51.2	0.5	ug/L	50.0		102	50-145			
Surr: 1,2-Dichloroethane-d4 (	Surr) 46.3		ug/L	50.0		92.5	70-120			
Surr: 4-Bromofluorobenzene (	(Surr) 49.6		ug/L	50.0		99.2	75-120			
Surr: Dibromofluoromethane (	(Surr) 46.8		ug/L	50.0		93.5	70-130			
Surr: Toluene-d8 (Surr)	50.3		ug/L	50.0		101	70-130			
Matrix Spike (BGC0325-MS1)	Source	: 23C0431-0	D1	Prepared & Anal	yzed: 03/09/2023					
1,1,1,2-Tetrachloroethane	52.1	0.4	ug/L	50.0	BLOD	104	80-130			
1,1,1-Trichloroethane	43.4	1	ug/L	50.0	BLOD	86.8	65-130			
1,1,2,2-Tetrachloroethane	49.0	0.4	ug/L	50.0	BLOD	98.1	65-130			
1,1,2-Trichloroethane	45.8	1	ug/L	50.0	BLOD	91.7	75-125			
1,1-Dichloroethane	38.3	1	ug/L	50.0	BLOD	76.7	70-135			
1,1-Dichloroethylene	37.6	1	ug/L	50.0	BLOD	75.2	50-145			
1,1-Dichloropropene	39.2	1	ug/L	50.0	BLOD	78.5	75-135			
1,2,3-Trichlorobenzene	53.7	1	ug/L	50.0	BLOD	107	55-140			
1,2,3-Trichloropropane	48.7	1	ug/L	50.0	BLOD	97.4	75-125			
1,2,4-Trichlorobenzene	54.0	1	ug/L	50.0	BLOD	108	65-135			
1,2,4-Trimethylbenzene	48.6	1	ug/L	50.0	BLOD	97.1	75-130			
1,2-Dibromo-3-chloropropane	(DBCP) 56.8	1	ug/L	50.0	BLOD	114	50-130			
1,2-Dibromoethane (EDB)	52.7	1	ug/L	50.0	BLOD	105	80-120			
1,2-Dichlorobenzene	51.2	0.5	ug/L	50.0	BLOD	102	70-120			
1,2-Dichloroethane	42.5	1	ug/L	50.0	BLOD	84.9	70-130			
1,2-Dichloropropane	40.0	0.5	ug/L	50.0	BLOD	80.1	75-125			



## Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Date Issued:

4/4/2023 3:37:46PM

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BGC0325 - SW503	0B-MS								
/atrix Spike (BGC0325-MS1)	Sourc	e: 23C0431-0	1	Prepared & Anal	yzed: 03/09/2023	i				
1,3,5-Trimethylbenzene	46.1	1	ug/L	50.0	BLOD	92.2	75-124			
1,3-Dichlorobenzene	52.2	1	ug/L	50.0	BLOD	104	75-125			
1,3-Dichloropropane	44.8	1	ug/L	50.0	BLOD	89.6	75-125			
1,4-Dichlorobenzene	52.1	1	ug/L	50.0	BLOD	104	75-125			
2,2-Dichloropropane	41.5	1	ug/L	50.0	BLOD	82.9	70-135			
2-Butanone (MEK)	48.3	10	ug/L	50.0	BLOD	96.6	30-150			
2-Chlorotoluene	50.8	1	ug/L	50.0	BLOD	102	75-125			
2-Hexanone (MBK)	53.4	5	ug/L	50.0	BLOD	107	55-130			
4-Chlorotoluene	48.8	1	ug/L	50.0	BLOD	97.6	75-130			
4-Isopropyltoluene	49.0	1	ug/L	50.0	BLOD	98.1	75-130			
4-Methyl-2-pentanone (MIBK)	52.3	5	ug/L	50.0	BLOD	105	60-135			
Acetone	49.1	10	ug/L	50.0	BLOD	96.4	40-140			
Benzene	42.5	1	ug/L	50.0	BLOD	85.0	80-120			
Bromobenzene	54.7	1	ug/L	50.0	BLOD	109	75-125			
Bromochloromethane	44.2	1	ug/L	50.0	BLOD	88.3	65-130			
Bromodichloromethane	49.6	0.5	ug/L	50.0	BLOD	99.2	75-136			
Bromoform	55.5	1	ug/L	50.0	BLOD	111	70-130			
Bromomethane	44.7	1	ug/L	50.0	BLOD	89.3	30-145			
Carbon disulfide	49.8	10	ug/L	50.0	BLOD	99.6	35-160			
Carbon tetrachloride	47.4	1	ug/L	50.0	BLOD	94.9	65-140			
Chlorobenzene	50.2	1	ug/L	50.0	BLOD	100	80-120			
Chloroethane	40.2	1	ug/L	50.0	BLOD	80.4	60-135			
Chloroform	40.3	0.5	ug/L	50.0	BLOD	80.7	65-135			
Chloromethane	39.1	1	ug/L	50.0	BLOD	78.2	40-125			
cis-1,2-Dichloroethylene	39.6	1	ug/L	50.0	BLOD	79.3	70-125			



### **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 4/4/2023 3:37:46PM City of Bristol Landfill Client Site I.D.: Jennifer Robb Submitted To: Volatile Organic Compounds by GCMS - Quality Control **Enthalpy Analytical** Spike Source %REC RPD Result LOQ Units Level Result %REC Limits RPD Limit Qual Analyte Batch BGC0325 - SW5030B-MS Matrix Spike (BGC0325-MS1) Prepared & Analyzed: 03/09/2023 Source: 23C0431-01 35.4 70.9 cis-1,3-Dichloropropene 1 ug/L 50.0 BLOD 47-136 Dibromochloromethane 51.4 0.5 ug/L 50.0 BLOD 103 60-135 48.3 50.0 BLOD 96.6 75-125 Dibromomethane 1 ug/L Dichlorodifluoromethane 51.0 1 50.0 BLOD 102 30-155 ug/L Ethylbenzene 49.1 1 ug/L 50.0 BI OD 98.2 75-125 Hexachlorobutadiene 53 6 0.8 BLOD 107 50-140 ug/L 50.0 Isopropylbenzene 47.9 1 ug/L 50.0 BI OD 95.8 75-125 2 BLOD 99.3 75-130 m+p-Xylenes 99.3 ug/L 100 BLOD 82.5 55-140 Methylene chloride 41.2 4 ug/L 50.0 41.7 1 50.0 BLOD 83.4 65-125 Methyl-t-butyl ether (MTBE) ua/L Naphthalene 48.8 1 50.0 BLOD 97.6 55-140 ug/L n-Butylbenzene 46.8 1 ug/L 50.0 BLOD 93.5 70-135 n-Propylbenzene 48.4 1 50.0 BLOD 96.7 70-130 ug/L BLOD 80-120 o-Xylene 51.6 1 ug/L 50.0 103 50.6 1 50.0 BI OD 70-125 sec-Butylbenzene ug/L 101 46.7 1 50.0 BLOD 93.4 65-135 Stvrene ug/L tert-Butylbenzene 47.6 1 ug/L 50.0 BLOD 95.3 70-130 45.4 1 50.0 0.97 88.9 51-231 Tetrachloroethylene (PCE) ug/L 45.3 1 50.0 BLOD 90.5 75-120 Toluene ug/L trans-1,2-Dichloroethylene 36.3 1 ug/L 50.0 BLOD 72.7 60-140 trans-1,3-Dichloropropene 40.0 1 50.0 BLOD 79.9 55-140 ug/L Trichloroethylene 43.9 1 ug/L 50.0 BI OD 87.8 70-125 Trichlorofluoromethane 1 BLOD 99.4 60-145 49.7 ug/L 50.0 Vinyl chloride 48.3 0.5 ug/L 50.0 BI OD 96.7 50-145 Surr: 1,2-Dichloroethane-d4 (Surr) 45.8 50.0 91.7 70-120 ug/L

### Page 21 of 56



				<u>C</u> e	ertificate c	of Analysi	S				
Client Name:	SCS Engineers	-Winchester				-		Date Issue	ed:	4/4/2023	3:37:46PM
Client Site I.D.:	City of Bristol L	_andfill									
Submitted To:	Jennifer Robb										
Submitted 10.											
			Vo	latile Org	anic Compounds t	by GCMS - Qualit	y Control				
					Enthalpy Ar	nalytical					
Analyte		Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BC	GC0325 - SW5030	B-MS								
Matrix Spike (BGC032	5-MS1)	Source:	23C0431-01		Prepared & Analy	/zed: 03/09/2023					
Surr: 4-Bromofluoro	benzene (Surr)	49.0		ug/L	50.0		98.0	75-120			
Surr: Dibromofluoroi	methane (Surr)	46.8		ug/L	50.0		93.5	70-130			
Surr: Toluene-d8 (Si	urr)	49.4		ug/L	50.0		98.7	70-130			
Matrix Spike Dup (BG	C0325-MSD1)	Source:	23C0431-01		Prepared & Analy	/zed: 03/09/2023					
1,1,1,2-Tetrachloroe	thane	50.3	0.4	ug/L	50.0	BLOD	101	80-130	3.55	30	
1,1,1-Trichloroethan	e	40.5	1	ug/L	50.0	BLOD	81.1	65-130	6.84	30	
1,1,2,2-Tetrachloroe	thane	49.8	0.4	ug/L	50.0	BLOD	99.7	65-130	1.62	30	
1,1,2-Trichloroethan	e	45.9	1	ug/L	50.0	BLOD	91.8	75-125	0.196	30	
1,1-Dichloroethane		36.1	1	ug/L	50.0	BLOD	72.2	70-135	5.94	30	
1,1-Dichloroethylene	e	35.7	1	ug/L	50.0	BLOD	71.5	50-145	5.10	30	
1,1-Dichloropropene	9	36.9	1	ug/L	50.0	BLOD	73.8	75-135	6.17	30	Μ
1,2,3-Trichlorobenze	ene	53.4	1	ug/L	50.0	BLOD	107	55-140	0.448	30	
1,2,3-Trichloropropa	ine	50.0	1	ug/L	50.0	BLOD	99.9	75-125	2.62	30	
1,2,4-Trichlorobenze		53.6	1	ug/L	50.0	BLOD	107	65-135	0.688	30	
1,2,4-Trimethylbenz		46.4	1	ug/L	50.0	BLOD	92.9	75-130	4.48	30	
1,2-Dibromo-3-chlor	,	57.8	1	ug/L	50.0	BLOD	116	50-130	1.88	30	
1,2-Dibromoethane	( )	52.6	1	ug/L	50.0	BLOD	105	80-120	0.342	30	
1,2-Dichlorobenzene	e	50.7	0.5	ug/L	50.0	BLOD	101	70-120	0.844	30	
1,2-Dichloroethane		41.3	1	ug/L	50.0	BLOD	82.6	70-130	2.79	30	
1,2-Dichloropropane		39.2	0.5	ug/L	50.0	BLOD	78.5	75-125	2.02	30	
1,3,5-Trimethylbenz		45.0	1	ug/L	50.0	BLOD	90.0	75-124	2.37	30	
1,3-Dichlorobenzene		50.4	1	ug/L	50.0	BLOD	101	75-125	3.41	30	
1,3-Dichloropropane		45.4	1	ug/L	50.0	BLOD	90.7	75-125	1.31	30	
1,4-Dichlorobenzene	9	50.0	1	ug/L	50.0	BLOD	100	75-125	4.09	30	



## **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Date Issued:

4/4/2023 3:37:46PM

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	BGC0325 - SW503	0B-MS								
Matrix Spike Dup (BGC0325-MSD1)	Sourc	e: 23C0431-0	1	Prepared & Anal	yzed: 03/09/2023					
2,2-Dichloropropane	39.1	1	ug/L	50.0	BLOD	78.1	70-135	5.94	30	
2-Butanone (MEK)	45.1	10	ug/L	50.0	BLOD	90.2	30-150	6.79	30	
2-Chlorotoluene	49.7	1	ug/L	50.0	BLOD	99.4	75-125	2.15	30	
2-Hexanone (MBK)	53.0	5	ug/L	50.0	BLOD	106	55-130	0.770	30	
4-Chlorotoluene	49.2	1	ug/L	50.0	BLOD	98.3	75-130	0.715	30	
4-Isopropyltoluene	46.7	1	ug/L	50.0	BLOD	93.4	75-130	4.91	30	
4-Methyl-2-pentanone (MIBK)	52.0	5	ug/L	50.0	BLOD	104	60-135	0.709	30	
Acetone	48.5	10	ug/L	50.0	BLOD	95.3	40-140	1.07	30	
Benzene	40.7	1	ug/L	50.0	BLOD	81.4	80-120	4.32	30	
Bromobenzene	53.0	1	ug/L	50.0	BLOD	106	75-125	3.25	30	
Bromochloromethane	42.6	1	ug/L	50.0	BLOD	85.3	65-130	3.50	30	
Bromodichloromethane	48.1	0.5	ug/L	50.0	BLOD	96.2	75-136	3.03	30	
Bromoform	54.8	1	ug/L	50.0	BLOD	110	70-130	1.23	30	
Bromomethane	43.6	1	ug/L	50.0	BLOD	87.2	30-145	2.47	30	
Carbon disulfide	49.1	10	ug/L	50.0	BLOD	98.2	35-160	1.42	30	
Carbon tetrachloride	45.4	1	ug/L	50.0	BLOD	90.8	65-140	4.37	30	
Chlorobenzene	48.5	1	ug/L	50.0	BLOD	97.0	80-120	3.36	30	
Chloroethane	38.4	1	ug/L	50.0	BLOD	76.7	60-135	4.63	30	
Chloroform	39.2	0.5	ug/L	50.0	BLOD	78.4	65-135	2.92	30	
Chloromethane	37.0	1	ug/L	50.0	BLOD	74.1	40-125	5.49	30	
cis-1,2-Dichloroethylene	38.3	1	ug/L	50.0	BLOD	76.6	70-125	3.46	30	
cis-1,3-Dichloropropene	34.6	1	ug/L	50.0	BLOD	69.3	47-136	2.23	30	
Dibromochloromethane	51.2	0.5	ug/L	50.0	BLOD	102	60-135	0.331	30	
Dibromomethane	48.4	1	ug/L	50.0	BLOD	96.7	75-125	0.145	30	
Dichlorodifluoromethane	47.9	1	ug/L	50.0	BLOD	95.8	30-155	6.19	30	



## **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Date Issued:

4/4/2023 3:37:46PM

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	GC0325 - SW503	0B-MS								
Matrix Spike Dup (BGC0325-MSD1)	Sourc	e: 23C0431-0	1	Prepared & Anal	yzed: 03/09/2023					
Ethylbenzene	47.0	1	ug/L	50.0	BLOD	94.0	75-125	4.43	30	
Hexachlorobutadiene	52.3	0.8	ug/L	50.0	BLOD	105	50-140	2.46	30	
Isopropylbenzene	45.3	1	ug/L	50.0	BLOD	90.6	75-125	5.64	30	
m+p-Xylenes	93.1	2	ug/L	100	BLOD	93.1	75-130	6.43	30	
Methylene chloride	39.9	4	ug/L	50.0	BLOD	79.7	55-140	3.40	30	
Methyl-t-butyl ether (MTBE)	41.3	1	ug/L	50.0	BLOD	82.7	65-125	0.915	30	
Naphthalene	49.9	1	ug/L	50.0	BLOD	99.9	55-140	2.29	30	
n-Butylbenzene	46.2	1	ug/L	50.0	BLOD	92.4	70-135	1.21	30	
n-Propylbenzene	47.1	1	ug/L	50.0	BLOD	94.2	70-130	2.60	30	
o-Xylene	49.1	1	ug/L	50.0	BLOD	98.2	80-120	4.96	30	
sec-Butylbenzene	48.8	1	ug/L	50.0	BLOD	97.6	70-125	3.70	30	
Styrene	44.8	1	ug/L	50.0	BLOD	89.6	65-135	4.20	30	
tert-Butylbenzene	46.5	1	ug/L	50.0	BLOD	92.9	70-130	2.49	30	
Tetrachloroethylene (PCE)	43.0	1	ug/L	50.0	0.97	84.1	51-231	5.41	30	
Toluene	43.1	1	ug/L	50.0	BLOD	86.2	75-120	4.91	30	
trans-1,2-Dichloroethylene	34.4	1	ug/L	50.0	BLOD	68.7	60-140	5.63	30	
trans-1,3-Dichloropropene	39.1	1	ug/L	50.0	BLOD	78.1	55-140	2.30	30	
Trichloroethylene	42.1	1	ug/L	50.0	BLOD	84.3	70-125	4.11	30	
Trichlorofluoromethane	47.0	1	ug/L	50.0	BLOD	94.0	60-145	5.59	30	
Vinyl chloride	45.3	0.5	ug/L	50.0	BLOD	90.6	50-145	6.45	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	47.0		ug/L	50.0		94.1	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.2		ug/L	50.0		98.4	75-120			
Surr: Dibromofluoromethane (Surr)	47.4		ug/L	50.0		94.7	70-130			
Surr: Toluene-d8 (Surr)	49.7		ug/L	50.0		99.5	70-130			



				Ce	rtificate o	of Analysi	is				
Client Name:	SCS Engineers-W	inchester				-		Date Issu	ed:	4/4/2023	3:37:46PM
Client Site I.D.:	City of Bristol Lan	dfill									
Submitted To:	Jennifer Robb										
Submitted 10.			-								
			Se	mivolatile Or	ganic Compound	ls by GCMS - Qu	ality Control				
					Enthalpy A	nalytical					
					Spike	Source		%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGC0	321 - SW3510	C/EPA600	)-MS							
Blank (BGC0321-BLK	(1)				Prepared & Anal	yzed: 03/09/2023	}				
Anthracene		ND	10.0	ug/L							
Surr: 2,4,6-Tribrom	ophenol (Surr)	108		ug/L	200		54.0	5-136			
Surr: 2-Fluorobiphe	enyl (Surr)	36.1		ug/L	100		36.1	9-117			
Surr: 2-Fluorophen	ol (Surr)	48.4		ug/L	200		24.2	5-60			
Surr: Nitrobenzene	-d5 (Surr)	38.4		ug/L	100		38.4	5-151			
Surr: Phenol-d5 (St	urr)	30.6		ug/L	200		15.3	5-60			
Surr: p-Terphenyl-d	114 (Surr)	32.6		ug/L	100		32.6	5-141			
LCS (BGC0321-BS1)					Prepared & Anal	yzed: 03/09/2023	}				
1,2,4-Trichlorobenz	zene	26.8	10.0	ug/L	50.0		53.6	57-130			L
1,2-Dichlorobenzen	ne	23.4	10.0	ug/L	50.0		46.8	22-115			
1,3-Dichlorobenzen	ne	22.0	10.0	ug/L	50.0		44.0	22-112			
1,4-Dichlorobenzen	ne	23.5	10.0	ug/L	50.0		47.0	13-112			
2,4,6-Trichlorophen	lor	25.6	10.0	ug/L	50.0		51.2	52-129			L
2,4-Dichlorophenol		26.7	10.0	ug/L	50.0		53.4	53-122			
2,4-Dimethylphenol	I	28.4	5.00	ug/L	50.0		56.7	42-120			
2,4-Dinitrophenol		16.4	50.0	ug/L	50.0		32.7	48-127			L
2,4-Dinitrotoluene		34.5	10.0	ug/L	50.0		69.0	10-173			
2,6-Dinitrotoluene		36.0	10.0	ug/L	50.0		72.1	68-137			
2-Chloronaphthaler	ne	25.9	10.0	ug/L	50.0		51.9	65-120			L
2-Chlorophenol		26.9	10.0	ug/L	50.0		53.9	36-120			
2-Nitrophenol		33.7	10.0	ug/L	50.0		67.4	45-167			
3,3'-Dichlorobenzid	line	26.2	10.0	ug/L	50.0		52.5	10-213			
4,6-Dinitro-2-methy	lphenol	35.2	50.0	ug/L	50.0		70.4	53-130			
4-Bromophenyl phe	enyl ether	37.3	10.0	ug/L	50.0		74.5	65-120			



# **Certificate of Analysis**

30.5

10.0

ug/L

Fluorene

Client Name: SC	CS Engineers-Winchester						Date Issued:		4/4/2023	3:37:46PM
Client Site I.D.: C	ity of Bristol Landfill									
	ennifer Robb									
Submitted 10. 00										
		Se	mivolatile Org	anic Compound	ls by GCMS - Qu	ality Control				
				Enthalpy A	nalytical					
				Spike	Source		%REC		RPD	<b>.</b> .
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGC0321 - SW3510	C/EPA600	-MS							
LCS (BGC0321-BS1)			Р	Prepared & Anal	yzed: 03/09/2023					
4-Chlorophenyl phenyl et	her 29.4	10.0	ug/L	50.0		58.8	38-145			
4-Nitrophenol	9.19	50.0	ug/L	50.0		18.4	13-129			
Acenaphthene	27.0	10.0	ug/L	50.0		54.0	60-132			L
Acenaphthylene	27.5	10.0	ug/L	50.0		55.0	54-126			
Acetophenone	24.6	20.0	ug/L	50.0		49.2	0-200			
Anthracene	31.0	10.0	ug/L	50.0		61.9	43-120			
Benzidine	ND	50.0	ug/L	50.0			12-309			L
Benzo (a) anthracene	33.0	10.0	ug/L	50.0		66.0	42-133			
Benzo (a) pyrene	35.8	10.0	ug/L	50.0		71.7	32-148			
Benzo (b) fluoranthene	30.9	10.0	ug/L	50.0		61.8	42-140			
Benzo (g,h,i) perylene	41.4	10.0	ug/L	50.0		82.9	10-195			
Benzo (k) fluoranthene	30.5	10.0	ug/L	50.0		61.0	25-146			
bis (2-Chloroethoxy) meth	hane 27.6	10.0	ug/L	50.0		55.2	49-165			
bis (2-Chloroethyl) ether	25.3	10.0	ug/L	50.0		50.6	43-126			
2,2'-Oxybis (1-chloroprop		10.0	ug/L	50.0		53.4	63-139			L
bis (2-Ethylhexyl) phthala		10.0	ug/L	50.0		70.1	29-137			
Butyl benzyl phthalate	37.1	10.0	ug/L	50.0		74.2	10-140			
Chrysene	33.6	10.0	ug/L	50.0		67.1	44-140			
Dibenz (a,h) anthracene	44.4	10.0	ug/L	50.0		88.8	10-200			
Diethyl phthalate	34.1	10.0	ug/L	50.0		68.3	10-120			
Dimethyl phthalate	31.7	10.0	ug/L	50.0		63.4	10-120			
Di-n-butyl phthalate	35.2	10.0	ug/L	50.0		70.5	10-120			
Di-n-octyl phthalate	27.3	10.0	ug/L	50.0		54.6	19-132			
Fluoranthene	37.3	10.0	ug/L	50.0		74.5	43-121			
<b>F</b> lucence a	00 F	40.0	//	50.0		01.0	70.400			

50.0

61.0

70-120

L



# **Certificate of Analysis**

Matrix Spike (BGC0321-MS1)

Client Name:	SCS Engineer					-		Date Issued:		4/4/2023	3:37:46PM
Client Site I.D.:	City of Bristol										
Submitted To:	Jennifer Robb	)									
			Sei	mivolatile Org	anic Compound	s by GCMS - Qu	ality Control				
					Enthalpy Ar	nalytical					
		D 11	1.00	11.2	Spike	Source	* <b>D</b> E0	%REC		RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch E	3GC0321 - SW3510	C/EPA600	-MS							
LCS (BGC0321-BS1)				P	repared & Anal	/zed: 03/09/2023	ł				
Hexachlorobenzene		49.2	1.00	ug/L	50.0		98.3	10-142			
Hexachlorobutadiene	e	29.0	10.0	ug/L	50.0		57.9	38-120			
Hexachlorocyclopent	adiene	17.4	10.0	ug/L	50.0		34.8	10-76			
Hexachloroethane		25.0	10.0	ug/L	50.0		50.1	55-120			L
Indeno (1,2,3-cd) pyr	ene	44.4	10.0	ug/L	50.0		88.8	10-151			
Isophorone		17.9	10.0	ug/L	50.0		35.9	47-180			L
Naphthalene		24.9	5.00	ug/L	50.0		49.8	36-120			
Nitrobenzene		28.6	10.0	ug/L	50.0		57.1	54-158			
n-Nitrosodimethylami	ine	16.0	10.0	ug/L	50.0		32.1	10-85			
n-Nitrosodi-n-propyla	imine	22.0	10.0	ug/L	50.0		44.0	14-198			
n-Nitrosodiphenylami	ine	25.6	10.0	ug/L	50.0		51.2	12-97			
p-Chloro-m-cresol		29.8	10.0	ug/L	50.0		59.6	10-142			
Pentachlorophenol		20.8	20.0	ug/L	50.0		41.6	38-152			
Phenanthrene		32.8	10.0	ug/L	50.0		65.6	65-120			
Phenol		12.2	10.0	ug/L	50.5		24.1	17-120			
Pyrene		30.0	10.0	ug/L	50.0		60.0	70-120			L
Pyridine		17.4	10.0	ug/L	50.0		34.8	10-103			
Surr: 2,4,6-Tribromop	ohenol (Surr)	102		ug/L	200		51.1	5-136			
Surr: 2-Fluorobiphen	• • •	27.4		ug/L	100		27.4	9-117			
Surr: 2-Fluorophenol	(Surr)	33.4		ug/L	200		16.7	5-60			
Surr: Nitrobenzene-d	15 (Surr)	31.9		ug/L	100		31.9	5-151			
Surr: Phenol-d5 (Suri	,	23.4		ug/L	200		11.7	5-60			
Surr: p-Terphenyl-d14	4 (Surr)	32.8		ug/L	100		32.8	5-141			

Prepared & Analyzed: 03/09/2023

Source: 23C0421-12



4/4/2023 3:37:46PM

Date Issued:

## **Certificate of Analysis**

SCS Engineers-Winchester Client Name:

Benzo (a) pyrene

49.6

10.0

ug/L

50.0

	e Engineere Wineheeter									
Client Site I.D.: Cit	y of Bristol Landfill									
Submitted To: Jen	nifer Robb									
		0			1. h	- lite : O - interal				
		Ser	mivolatile C	Organic Compound	is by GCMS - Qu	ality Control				
				Enthalpy A	nalytical					
				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
	Batch BGC0321 - SW3510	)C/EPA600	-MS							
Matrix Spike (BGC0321-MS1)	Source	: 23C0421-1	12	•	yzed: 03/09/2023					
1,2,4-Trichlorobenzene	44.5	10.0	ug/L	50.0	BLOD	89.0	44-142			
1,2-Dichlorobenzene	42.9	10.0	ug/L	50.0	BLOD	85.8	22-115			
1,3-Dichlorobenzene	39.8	10.0	ug/L	50.0	BLOD	79.6	22-112			
1,4-Dichlorobenzene	44.3	10.0	ug/L	50.0	BLOD	88.6	13-112			
2,4,6-Trichlorophenol	51.2	10.0	ug/L	50.0	BLOD	102	37-144			
2,4-Dichlorophenol	47.9	10.0	ug/L	50.0	BLOD	95.7	39-135			
2,4-Dimethylphenol	43.7	5.00	ug/L	50.0	BLOD	87.4	32-120			
2,4-Dinitrophenol	56.8	50.0	ug/L	50.0	BLOD	114	39-139			
2,4-Dinitrotoluene	50.4	10.0	ug/L	50.0	BLOD	101	10-191			
2,6-Dinitrotoluene	47.1	10.0	ug/L	50.0	BLOD	94.1	50-158			
2-Chloronaphthalene	46.0	10.0	ug/L	50.0	BLOD	92.0	60-120			
2-Chlorophenol	45.2	10.0	ug/L	50.0	BLOD	90.5	23-134			
2-Nitrophenol	47.7	10.0	ug/L	50.0	BLOD	95.4	29-182			
3,3'-Dichlorobenzidine	22.4	10.0	ug/L	50.0	BLOD	44.7	10-262			
4,6-Dinitro-2-methylphenol	60.6	50.0	ug/L	50.0	BLOD	121	10-181			
4-Bromophenyl phenyl ethe	er ND	10.0	ug/L	50.0	BLOD		53-127			Μ
4-Chlorophenyl phenyl ethe	er 45.6	10.0	ug/L	50.0	BLOD	91.3	25-158			
4-Nitrophenol	19.0	50.0	ug/L	50.0	BLOD	38.0	10-132			
Acenaphthene	46.6	10.0	ug/L	50.0	BLOD	93.2	47-145			
Acenaphthylene	45.0	10.0	ug/L	50.0	BLOD	90.1	33-145			
Acetophenone	44.8	20.0	ug/L	50.0	BLOD	89.6	0-200			
Anthracene	46.4	10.0	ug/L	50.0	BLOD	92.8	27-133			
Benzidine	ND	50.0	ug/L	50.0	BLOD		12-309			Μ
Benzo (a) anthracene	47.7	10.0	ug/L	50.0	BLOD	95.4	33-143			
	10.0	40.0	//	50.0		00.4	47 400			

99.1

17-163

BLOD



# **Certificate of Analysis**

n-Nitrosodimethylamine

27.3

10.0

ug/L

50.0

BLOD

54.6

10-85

Client Name:	SCS Engineers-Wi	nchester						Date Issued:	4/4/2023	3:37:46PM
Client Site I.D.:	City of Bristol Land	dfill								
Submitted To:	Jennifer Robb									
Submitted 10.										
			Ser	nivolatile O	rganic Compound	s by GCMS - Qua	lity Control			
					Enthalpy An	alytical				
0 m m h d n		Decult	1.00	Linita	Spike	Source		%REC	RPD	
Analyte		Result	LOQ	Units	Level	Result	%REC	Limits F	RPD Limit	Qual
	Batch BGC03	21 - SW351	0C/EPA600	-MS						
Matrix Spike (BGC0321	1-MS1)	Sourc	e: 23C0421-1	2	Prepared & Analy	zed: 03/09/2023				
Benzo (b) fluoranthe	ne	47.8	10.0	ug/L	50.0	BLOD	95.6	24-159		
Benzo (g,h,i) perylen	ne	37.1	10.0	ug/L	50.0	BLOD	74.2	10-219		
Benzo (k) fluoranthei	ne	54.6	10.0	ug/L	50.0	BLOD	109	11-162		
bis (2-Chloroethoxy)	methane	42.3	10.0	ug/L	50.0	BLOD	84.6	33-184		
bis (2-Chloroethyl) et	ther	43.4	10.0	ug/L	50.0	BLOD	86.8	12-158		
2,2'-Oxybis (1-chloro	ppropane)	43.4	10.0	ug/L	50.0	BLOD	86.8	36-166		
bis (2-Ethylhexyl) phi	thalate	48.2	10.0	ug/L	50.0	BLOD	96.5	10-158		
Butyl benzyl phthalat	te	41.0	10.0	ug/L	50.0	BLOD	82.1	10-152		
Chrysene		56.6	10.0	ug/L	50.0	BLOD	113	17-169		
Dibenz (a,h) anthrac	ene	46.4	10.0	ug/L	50.0	BLOD	92.8	10-227		
Diethyl phthalate		47.1	10.0	ug/L	50.0	BLOD	94.3	10-120		
Dimethyl phthalate		44.8	10.0	ug/L	50.0	BLOD	89.5	10-120		
Di-n-butyl phthalate		53.6	10.0	ug/L	50.0	BLOD	107	10-120		
Di-n-octyl phthalate		48.9	10.0	ug/L	50.0	BLOD	97.8	10-146		
Fluoranthene		58.7	10.0	ug/L	50.0	BLOD	117	26-137		
Fluorene		48.3	10.0	ug/L	50.0	BLOD	96.6	59-121		
Hexachlorobenzene		41.7	1.00	ug/L	50.0	BLOD	83.4	10-152		
Hexachlorobutadiene	е	47.9	10.0	ug/L	50.0	BLOD	95.8	24-120		
Hexachlorocyclopent	tadiene	32.3	10.0	ug/L	50.0	BLOD	64.6	10-90		
Hexachloroethane		45.1	10.0	ug/L	50.0	BLOD	90.1	40-120		
Indeno (1,2,3-cd) pyr	rene	45.0	10.0	ug/L	50.0	BLOD	89.9	10-171		
Isophorone		25.5	10.0	ug/L	50.0	BLOD	51.0	21-196		
Naphthalene		43.0	5.00	ug/L	50.0	BLOD	85.9	21-133		
Nitrobenzene		54.6	10.0	ug/L	50.0	BLOD	109	35-180		



4/4/2023 3:37:46PM

Date Issued:

## **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D City of Printol Londfill

Client Site I.D.: City of Bristol L	andfill									
Submitted To: Jennifer Robb										
		Semi	volatile C	Organic Compound	s by GCMS - Qua	ality Control				
				Enthalpy An	alytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BG	C0321 - SW3510C	/EPA600-N	IS							
Matrix Spike (BGC0321-MS1)	Source: 2	3C0421-12		Prepared & Analy	/zed: 03/09/2023					
n-Nitrosodi-n-propylamine	49.8	10.0	ug/L	50.0	BLOD	99.7	10-230			
n-Nitrosodiphenylamine	39.4	10.0	ug/L	50.0	BLOD	78.8	12-111			
p-Chloro-m-cresol	46.1	10.0	ug/L	50.0	BLOD	92.2	10-127			
Pentachlorophenol	43.3	20.0	ug/L	50.0	BLOD	86.6	14-176			
Phenanthrene	54.8	10.0	ug/L	50.0	BLOD	110	54-120			
Phenol	18.3	10.0	ug/L	50.5	BLOD	36.2	10-120			
Pyrene	43.7	10.0	ug/L	50.0	BLOD	87.3	52-120			
Pyridine	29.9	10.0	ug/L	50.0	BLOD	59.8	10-110			
Surr: 2,4,6-Tribromophenol (Surr)	96.0		ug/L	200		48.0	5-136			
Surr: 2-Fluorobiphenyl (Surr)	45.8		ug/L	100		45.8	9-117			
Surr: 2-Fluorophenol (Surr)	50.5		ug/L	200		25.2	5-60			
Surr: Nitrobenzene-d5 (Surr)	54.2		ug/L	100		54.2	5-151			
Surr: Phenol-d5 (Surr)	38.1		ug/L	200		19.1	5-60			
Surr: p-Terphenyl-d14 (Surr)	36.8		ug/L	100		36.8	5-141			
/atrix Spike Dup (BGC0321-MSD1)	Source: 2	3C0421-12		Prepared & Analy	/zed: 03/09/2023					
1,2,4-Trichlorobenzene	36.8	10.0	ug/L	50.0	BLOD	73.6	44-142	18.8	20	
1,2-Dichlorobenzene	34.3	10.0	ug/L	50.0	BLOD	68.6	22-115	22.3	20	Р
1,3-Dichlorobenzene	32.3	10.0	ug/L	50.0	BLOD	64.6	22-112	20.8	20	Р
1,4-Dichlorobenzene	36.4	10.0	ug/L	50.0	BLOD	72.8	13-112	19.6	20	
2,4,6-Trichlorophenol	42.8	10.0	ug/L	50.0	BLOD	85.7	37-144	17.8	20	
2,4-Dichlorophenol	39.6	10.0	ug/L	50.0	BLOD	79.1	39-135	19.0	20	
2,4-Dimethylphenol	36.5	5.00	ug/L	50.0	BLOD	72.9	32-120	18.0	20	
2,4-Dinitrophenol	49.5	50.0	ug/L	50.0	BLOD	99.0	39-139	13.7	20	
2.4-Dinitrotoluene	43.0	10.0	ug/L	50.0	BLOD	85.9	10-191	15.9	20	



4/4/2023 3:37:46PM

Date Issued:

# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

46.6

10.0

ug/L

50.0

BLOD

93.3

17-169

19.4

20

Chrysene

Client Site I.D.: City of Bristo	l Landfill									
Submitted To: Jennifer Robb	o									
		Ser	nivolatile (	Organic Compound	ls by GCMS - Qu	ality Control				
				Enthalpy A	nalytical					
<b>F</b>					,					
				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch	BGC0321 - SW351	10C/EPA600	-MS							
Matrix Spike Dup (BGC0321-MSD1)	Sourc	ce: 23C0421-1	2	Prepared & Anal	yzed: 03/09/2023	3				
2,6-Dinitrotoluene	42.2	10.0	ug/L	50.0	BLOD	84.3	50-158	11.0	20	
2-Chloronaphthalene	39.5	10.0	ug/L	50.0	BLOD	78.9	60-120	15.3	20	
2-Chlorophenol	36.7	10.0	ug/L	50.0	BLOD	73.5	23-134	20.7	20	Р
2-Nitrophenol	39.6	10.0	ug/L	50.0	BLOD	79.1	29-182	18.7	20	
3,3'-Dichlorobenzidine	18.3	10.0	ug/L	50.0	BLOD	36.5	10-262	20.2	20	Р
4,6-Dinitro-2-methylphenol	55.2	50.0	ug/L	50.0	BLOD	110	10-181	9.40	20	
4-Bromophenyl phenyl ether	37.4	10.0	ug/L	50.0	BLOD	74.9	53-127		20	
4-Chlorophenyl phenyl ether	39.9	10.0	ug/L	50.0	BLOD	79.8	25-158	13.4	20	
4-Nitrophenol	17.4	50.0	ug/L	50.0	BLOD	34.7	10-132	9.08	20	
Acenaphthene	39.8	10.0	ug/L	50.0	BLOD	79.5	47-145	15.8	20	
Acenaphthylene	38.7	10.0	ug/L	50.0	BLOD	77.3	33-145	15.2	20	
Acetophenone	37.4	20.0	ug/L	50.0	BLOD	74.8	0-200	18.1	20	
Anthracene	38.9	10.0	ug/L	50.0	BLOD	77.8	27-133	17.5	20	
Benzidine	ND	50.0	ug/L	50.0	BLOD		12-309		20	М
Benzo (a) anthracene	41.1	10.0	ug/L	50.0	BLOD	82.3	33-143	14.8	20	
Benzo (a) pyrene	41.6	10.0	ug/L	50.0	BLOD	83.3	17-163	17.4	20	
Benzo (b) fluoranthene	42.1	10.0	ug/L	50.0	BLOD	84.2	24-159	12.7	20	
Benzo (g,h,i) perylene	32.4	10.0	ug/L	50.0	BLOD	64.8	10-219	13.6	20	
Benzo (k) fluoranthene	42.2	10.0	ug/L	50.0	BLOD	84.5	11-162	25.5	20	Р
bis (2-Chloroethoxy) methane	36.8	10.0	ug/L	50.0	BLOD	73.6	33-184	14.0	20	
bis (2-Chloroethyl) ether	35.7	10.0	ug/L	50.0	BLOD	71.5	12-158	19.4	20	
2,2'-Oxybis (1-chloropropane)	35.1	10.0	ug/L	50.0	BLOD	70.2	36-166	21.2	20	Р
bis (2-Ethylhexyl) phthalate	41.8	10.0	ug/L	50.0	BLOD	83.6	10-158	14.4	20	
Butyl benzyl phthalate	37.9	10.0	ug/L	50.0	BLOD	75.9	10-152	7.87	20	
	10.0	40.0	//	50.0		00.0	47 400	40.4	00	



4/4/2023 3:37:46PM

Date Issued:

# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Surr: 2,4,6-Tribromophenol (Surr)

82.8

ug/L

200

41.4

5-136

Client Site I.D.: City of Bristo Submitted To: Jennifer Robb										
	•	Ser	nivolatile Oi	ganic Compound	ls by GCMS - Qu	ality Control				
				Enthalpy A	nalytical					
Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGC0321 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BGC0321-MSD1)	Sourc	e: 23C0421-1	12	Prepared & Anal	yzed: 03/09/2023	5				
Dibenz (a,h) anthracene	38.8	10.0	ug/L	50.0	BLOD	77.6	10-227	17.8	20	
Diethyl phthalate	40.3	10.0	ug/L	50.0	BLOD	80.6	10-120	15.7	20	
Dimethyl phthalate	38.8	10.0	ug/L	50.0	BLOD	77.6	10-120	14.3	20	
Di-n-butyl phthalate	44.1	10.0	ug/L	50.0	BLOD	88.2	10-120	19.5	20	
Di-n-octyl phthalate	45.2	10.0	ug/L	50.0	BLOD	90.4	10-146	7.95	20	
Fluoranthene	47.0	10.0	ug/L	50.0	BLOD	94.1	26-137	22.0	20	Р
Fluorene	41.5	10.0	ug/L	50.0	BLOD	83.0	59-121	15.1	20	
Hexachlorobenzene	36.1	1.00	ug/L	50.0	BLOD	72.2	10-152	14.4	20	
Hexachlorobutadiene	39.9	10.0	ug/L	50.0	BLOD	79.8	24-120	18.2	20	
Hexachlorocyclopentadiene	26.6	10.0	ug/L	50.0	BLOD	53.1	10-90	19.4	20	
Hexachloroethane	36.1	10.0	ug/L	50.0	BLOD	72.1	40-120	22.2	20	Р
Indeno (1,2,3-cd) pyrene	38.8	10.0	ug/L	50.0	BLOD	77.5	10-171	14.9	20	
Isophorone	22.1	10.0	ug/L	50.0	BLOD	44.2	21-196	14.3	20	
Naphthalene	35.8	5.00	ug/L	50.0	BLOD	71.6	21-133	18.2	20	
Nitrobenzene	44.0	10.0	ug/L	50.0	BLOD	88.0	35-180	21.5	20	Р
n-Nitrosodimethylamine	14.8	10.0	ug/L	50.0	BLOD	29.5	10-85	59.7	20	Р
n-Nitrosodi-n-propylamine	39.9	10.0	ug/L	50.0	BLOD	79.8	10-230	22.1	20	Р
n-Nitrosodiphenylamine	34.4	10.0	ug/L	50.0	BLOD	68.8	12-111	13.6	20	
p-Chloro-m-cresol	37.6	10.0	ug/L	50.0	BLOD	75.2	10-127	20.2	20	Р
Pentachlorophenol	37.3	20.0	ug/L	50.0	BLOD	74.7	14-176	14.8	20	
Phenanthrene	46.0	10.0	ug/L	50.0	BLOD	91.9	54-120	17.5	20	
Phenol	14.4	10.0	ug/L	50.5	BLOD	28.5	10-120	23.8	20	Р
Pyrene	38.2	10.0	ug/L	50.0	BLOD	76.4	52-120	13.4	20	
Pyridine	16.9	10.0	ug/L	50.0	BLOD	33.7	10-110	55.7	20	Р



#### **Certificate of Analysis** Client Name: SCS Engineers-Winchester Date Issued: 4/4/2023 3:37:46PM Client Site I.D.: City of Bristol Landfill Jennifer Robb Submitted To: Semivolatile Organic Compounds by GCMS - Quality Control Enthalpy Analytical RPD Spike Source %REC %REC RPD Analyte Result LOQ Units Level Result Limits Limit Qual Batch BGC0321 - SW3510C/EPA600-MS Matrix Spike Dup (BGC0321-MSD1) Prepared & Analyzed: 03/09/2023 Source: 23C0421-12 39.0 Surr: 2-Fluorobiphenyl (Surr) ug/L 100 39.0 9-117 Surr: 2-Fluorophenol (Surr) 27.4 200 13.7 5-60 ug/L Surr: Nitrobenzene-d5 (Surr) 44.8 ug/L 100 44.8 5-151 Surr: Phenol-d5 (Surr) 29.7 ug/L 200 14.9 5-60 Surr: p-Terphenyl-d14 (Surr) 29.3 100 29.3 ug/L 5-141



					-				
			<u>C</u> (	ertificate of Anal	<u>ysis</u>	5 4 4		414/0000	0.07.40014
Client Name:	SCS Engineers-Winchester					Date Issue	d:	4/4/2023	3:37:46PM
Client Site I.D.:	City of Bristol Landfill								
Submitted To:	Jennifer Robb								
			We	t Chemistry Analysis - Quality (	Control				
				Enthalpy Analytical					
Analyte	Result	LOQ	Units	Spike Sourc Level Resul		%REC Limits	RPD	RPD Limit	Qual
	Batch BGC0274 - No Prep	Wet Cher	n						
Blank (BGC0274-BLK	1)			Prepared & Analyzed: 03/08/	2023				
BOD	0.4	2.0	mg/L						
LCS (BGC0274-BS1)				Prepared & Analyzed: 03/08/	2023				
BOD	220	2	mg/L	198	111	84.6-115.4			
Duplicate (BGC0274-D		: 23C0316-0	01	Prepared & Analyzed: 03/08/	2023				
BOD	5.3	2.0	mg/L	5.3			0.567	20	
	Batch BGC0305 - No Prep	Wet Cher	n						
Blank (BGC0305-BLK	1)			Prepared & Analyzed: 03/08/	2023				
Nitrite as N	ND	0.05	mg/L						
LCS (BGC0305-BS1)				Prepared & Analyzed: 03/08/	2023				
Nitrite as N	0.10	0.05	mg/L	0.100	103	80-120			
Matrix Spike (BGC030		: 23C0489-0	)2	Prepared & Analyzed: 03/08/					
Nitrite as N	0.10	0.05	mg/L	0.100 BLOD	105	80-120			
Matrix Spike Dup (BG	C0305-MSD1) Source	: 23C0489-0	)2	Prepared & Analyzed: 03/08/	2023				
Nitrite as N	0.10	0.05	mg/L	0.100 BLOD	105	80-120	0.00	20	
	Batch BGC0411 - No Prep	Wet Chen	n						
Blank (BGC0411-BLK1	1)			Prepared & Analyzed: 03/10/	2023				
COD	ND	10.0	mg/L						



			<u>C</u>	ertificate o	of Analysis	<u>s</u>				
Client Name:	SCS Engineers-Winch	nester					Date Issue	ed:	4/4/2023	3:37:46PM
Client Site I.D.:	City of Bristol Landfill									
Submitted To:	Jennifer Robb									
			W	et Chemistry Analys	sis - Quality Contro	1				
				Enthalpy A						
Analyte	Res	sult LO	Q Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGC0411	- No Prep Wet C	hem							
LCS (BGC0411-BS1)				Prepared & Ana	lyzed: 03/10/2023					
COD	4	7.4 10	.0 mg/l	50.0		94.9	88-119			
Matrix Spike (BGC041	1-MS1)	Source: 23C04	51-01	Prepared & Ana	lyzed: 03/10/2023					
COD	5	4.2 10	.0 mg/L	50.0	BLOD	108	72.4-130			
Matrix Spike Dup (BG	C0411-MSD1)	Source: 23C04	51-01	Prepared & Ana	lyzed: 03/10/2023					
COD	5	3.2 10	.0 mg/l	50.0	BLOD	106	72.4-130	1.92	20	
	Batch BGC0423	- No Prep Wet C	hem							
Blank (BGC0423-BLK	1)			Prepared & Ana	lyzed: 03/10/2023					
Total Recoverable P	Phenolics	ND 0.0	50 mg/l	-						
LCS (BGC0423-BS1)				Prepared & Ana	lyzed: 03/10/2023					
Total Recoverable P	Phenolics 0	.45 0.0	50 mg/l	0.500		89.2	80-120			
Matrix Spike (BGC042	3-MS1)	Source: 23C04	27-01	Prepared & Ana	lyzed: 03/10/2023					
Total Recoverable P	Phenolics 0	.54 0.0	50 mg/L	0.500	BLOD	108	70-130			
Matrix Spike Dup (BG	C0423-MSD1)	Source: 23C04	27-01	Prepared & Ana	lyzed: 03/10/2023					
Total Recoverable P	Phenolics 0	.52 0.0	50 mg/L	0.500	BLOD	104	70-130	3.39	20	
	Batch BGC0460	- No Prep Wet C	hem							
Blank (BGC0460-BLK	1)			Prepared & Ana	lyzed: 03/13/2023					
Ammonia as N		ND 0.	10 mg/L	-						



				Ce	ertificate o	of Analysi	S				
Client Name: S	SCS Engineers-Win	chester				-	_	Date Issue	ed:	4/4/2023	3:37:46PM
Client Site I.D.:	City of Bristol Landf	Fill									
	lennifer Robb										
				Wet	Chemistry Analys	is - Quality Contro	h				
				110		•					
					Enthalpy Ar	laiyucai					
Analyte	R	lesult	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGC046	60 - No Pre	p Wet Chen	n							
LCS (BGC0460-BS1)					Prepared & Anal	/zed: 03/13/2023					
Ammonia as N		1.98	0.1	mg/L	2.00		99.1	90-110			
Matrix Spike (BGC0460-M	S1)	Sourc	e: 23C0661-0	)1	Prepared & Anal	/zed: 03/13/2023					
Ammonia as N		2.03	0.10	mg/L	2.00	0.09	96.6	89.3-131			
Matrix Spike Dup (BGC046	60-MSD1)	Sourc	e: 23C0661-0	)1	Prepared & Analy	/zed: 03/13/2023					
Ammonia as N		1.97	0.10	mg/L	2.00	0.09	93.9	89.3-131	2.75	20	
	Batch BGC057	/8 - No Pre	p Wet Chen	n							
Blank (BGC0578-BLK1)					Prepared & Anal	/zed: 03/15/2023					
Total Recoverable Phen	nolics	ND	0.050	mg/L							
LCS (BGC0578-BS1)					Prepared & Anal	/zed: 03/15/2023					
Total Recoverable Phen	nolics	0.45	0.050	mg/L	0.500		90.4	80-120			
Matrix Spike (BGC0578-M	S1)	Sourc	e: 23C0769-0	)2	Prepared & Anal	/zed: 03/15/2023					
Total Recoverable Phen	nolics	0.52	0.050	mg/L	0.500	BLOD	104	70-130			
Matrix Spike Dup (BGC057	78-MSD1)	Sourc	e: 23C0769-0	)2	Prepared & Anal	/zed: 03/15/2023					
Total Recoverable Phen	nolics	0.53	0.050	mg/L	0.500	BLOD	106	70-130	1.90	20	
	Batch BGC058	87 - No Pre	p Wet Chen	n							
Blank (BGC0587-BLK1)					Prepared & Anal	/zed: 03/16/2023					
TKN as N		ND	0.50	mg/L	· · ·						



				Ce	ertificate o	f Analysis	5				
Client Name:	SCS Engineers-Winc	hester						Date Issue	ed:	4/4/2023	3:37:46PM
Client Site I.D.:	City of Bristol Landfil	I									
Submitted To:	Jennifer Robb										
	-			Wet	Chemistry Analysi	s - Qualitv Control					
					Enthalpy An	-					
Analyte	Re	sult	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	Batch BGC0587	- No Prep W	Vet Chem								
LCS (BGC0587-BS1)					Prepared & Analy	zed: 03/16/2023					
TKN as N		10.5	0.50	mg/L	10.0		105	90-110			
Matrix Spike (BGC058	87-MS1)	Source: 2	3C0779-02		Prepared & Analy	zed: 03/16/2023					
TKN as N	8	3.74	0.50	mg/L	10.0	BLOD	87.4	90-110			М
Matrix Spike (BGC058	87-MS2)	Source: 2	3C0507-01		Prepared & Analy	zed: 03/16/2023					
TKN as N		10.6	0.50	mg/L	10.0	0.39	102	90-110			
Matrix Spike Dup (BG	C0587-MSD1)	Source: 2	3C0779-02		Prepared & Analy	zed: 03/16/2023					
TKN as N	(	6.72	0.50	mg/L	10.0	BLOD	67.2	90-110	26.2	20	Μ
Matrix Spike Dup (BG	C0587-MSD2)	Source: 2	3C0507-01		Prepared & Analy	zed: 03/16/2023					
TKN as N		10.7	0.50	mg/L	10.0	0.39	103	90-110	1.45	20	
	Batch BGC0609	- No Prep W	Vet Chem								
Blank (BGC0609-BLK	1)				Prepared & Analy	zed: 03/16/2023					
Nitrate+Nitrite as N		ND	0.02	mg/L							
LCS (BGC0609-BS1)					Prepared & Analy	zed: 03/16/2023					
Nitrate+Nitrite as N		2.73	0.1	mg/L	2.50		109	90-110			
Matrix Spike (BGC060	9-MS1)	Source: 2	3C0339-01		Prepared & Analy	zed: 03/16/2023					
Nitrate+Nitrite as N	;	3.50	0.1	mg/L	2.50	0.09	136	90-110			М
Matrix Spike Dup (BG	C0609-MSD1)	Source: 2	3C0339-01		Prepared & Analy	zed: 03/16/2023					
Nitrate+Nitrite as N		3.46	0.1	mg/L	2.50	0.09	135	90-110	1.06	20	М



			Certificate	of Analysis		
Client Name:	SCS Engineers-Winch	nester			Date Issued:	4/4/2023 3:37:46F
Client Site I.D.:	City of Bristol Landfill					
Submitted To:	Jennifer Robb					
	Analytical Summary					
23C0397-01 23C0397-02		Subcontract Subcontract				
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Metals (Total) by EPA	6000/7000 Series Methods		Preparation Method:	EPA200.2/R2.8		
23C0397-01	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141	
23C0397-01RE1	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0689	AC30187	
23C0397-02	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141	
23C0397-02RE1	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0689	AC30187	
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Wet Chemistry Analys	iis		Preparation Method:	No Prep Wet Chem		
23C0397-01	300 mL / 300 mL	SM22 5210B-2011	BGC0274	SGC0427		
23C0397-02	300 mL / 300 mL	SM22 5210B-2011	BGC0274	SGC0427		
23C0397-01	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGC0305	SGC0294	AJ20138	
23C0397-02	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGC0305	SGC0294	AJ20138	
23C0397-01	0.0400 mL / 2.00 mL	SM22 5220D-2011	BGC0411	SGC0407	AB30171	
23C0397-02	2.00 mL / 2.00 mL	SM22 5220D-2011	BGC0411	SGC0407	AB30171	
23C0397-01	5.00 mL / 10.0 mL	SW9065	BGC0423	SGC0415	AL20103	
23C0397-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGC0460	SGC0461	AC30146	
23C0397-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGC0460	SGC0461	AC30146	
23C0397-02	5.00 mL / 10.0 mL	SW9065	BGC0578	SGC0557	AL20103	
23C0397-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171	
23C0397-02	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171	
23C0397-01	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BGC0609	SGC0599	AC30173	
	· · · · · · · · · · · · · · · · · · ·					



### **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Jennifer Robb

Client Site I.D.: City of Bristol Landfill

Submitted To:

**Preparation Factors** Sample ID Method Batch ID Sequence ID Calibration ID Initial / Final Semivolatile Organic Compounds by GCMS Preparation Method: SW3510C/EPA600-MS 23C0397-01 1070 mL / 25.0 mL SW8270E BGC0321 SGC0358 AL20040 BGC0321 23C0397-02 980 mL / 1.00 mL SW8270E SGC0408 AL20040 **Preparation Factors** Method Batch ID Calibration ID Sample ID Sequence ID Initial / Final Volatile Organic Compounds by GCMS **Preparation Method:** SW5030B-MS 23C0397-01 5.00 mL / 5.00 mL SW8260D BGC0325 SGC0351 AB30127 23C0397-02 5.00 mL / 5.00 mL SW8260D BGC0325 SGC0351 AB30127 23C0397-02RE1 SW8260D BGC0325 SGC0351 AB30127 5.00 mL / 5.00 mL 23C0397-03 5.00 mL / 5.00 mL SW8260D BGC0325 SGC0351 AB30127 Preparation Factors Calibration ID Sample ID Method Batch ID Sequence ID Initial / Final Metals (Total) by EPA 6000/7000 Series Methods Preparation Method: SW7470A BGC0322 SGC0341 23C0397-01 20.0 mL / 20.0 mL SW7470A AC30132 23C0397-02 10.0 mL / 20.0 mL SW7470A BGC0322 SGC0341 AC30132

Date Issued:

4/4/2023 3:37:46PM



# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Date Issued:

4/4/2023 3:37:46PM

Client Site I.D.: City of Bristol Landfill Submitted To: Jennifer Robb

QC Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	6000/7000 Series Methods		Preparation Method:	EPA200.2/R2.8	
BGC0373-BLK1	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141
BGC0373-BS1	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141
BGC0373-MS1	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141
BGC0373-MS2	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141
BGC0373-MSD1	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141
BGC0373-MSD2	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	rsis		Preparation Method:	No Prep Wet Chem	
BGC0274-BLK1	300 mL / 300 mL	SM22 5210B-2011	BGC0274	SGC0427	
BGC0274-BS1	300 mL / 300 mL	SM22 5210B-2011	BGC0274	SGC0427	
BGC0274-DUP1	300 mL / 300 mL	SM22 5210B-2011	BGC0274	SGC0427	
BGC0305-BLK1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGC0305	SGC0294	AJ20138
BGC0305-BS1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGC0305	SGC0294	AJ20138
BGC0305-MRL1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGC0305	SGC0294	AJ20138
BGC0305-MS1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGC0305	SGC0294	AJ20138
BGC0305-MSD1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGC0305	SGC0294	AJ20138
BGC0411-BLK1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGC0411	SGC0407	AB30171
BGC0411-BS1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGC0411	SGC0407	AB30171
BGC0411-MRL1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGC0411	SGC0407	AB30171
BGC0411-MS1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGC0411	SGC0407	AB30171
BGC0411-MSD1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGC0411	SGC0407	AB30171
BGC0423-BLK1	5.00 mL / 10.0 mL	SW9065	BGC0423	SGC0415	AL20103



# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester Client Site I.D.: City of Bristol Landfill

Submitted To:

Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analys	is		Preparation Method:	No Prep Wet Chem	
BGC0423-BS1	5.00 mL / 10.0 mL	SW9065	BGC0423	SGC0415	AL20103
BGC0423-MRL1	5.00 mL / 10.0 mL	SW9065	BGC0423	SGC0415	AL20103
BGC0423-MS1	5.00 mL / 10.0 mL	SW9065	BGC0423	SGC0415	AL20103
BGC0423-MSD1	5.00 mL / 10.0 mL	SW9065	BGC0423	SGC0415	AL20103
BGC0460-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGC0460	SGC0461	AC30146
BGC0460-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGC0460	SGC0461	AC30146
BGC0460-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGC0460	SGC0461	AC30146
BGC0460-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGC0460	SGC0461	AC30146
BGC0578-BLK1	5.00 mL / 10.0 mL	SW9065	BGC0578	SGC0557	AL20103
BGC0578-BS1	5.00 mL / 10.0 mL	SW9065	BGC0578	SGC0557	AL20103
BGC0578-MRL1	5.00 mL / 10.0 mL	SW9065	BGC0578	SGC0557	AL20103
BGC0578-MS1	5.00 mL / 10.0 mL	SW9065	BGC0578	SGC0557	AL20103
BGC0578-MSD1	5.00 mL / 10.0 mL	SW9065	BGC0578	SGC0557	AL20103
BGC0587-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
BGC0587-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
BGC0587-MRL1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
BGC0587-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
BGC0587-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
BGC0587-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
BGC0587-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
BGC0609-BLK1	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BGC0609	SGC0599	AC30173
BGC0609-BS1	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BGC0609	SGC0599	AC30173
BGC0609-MRL1	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BGC0609	SGC0599	AC30173
BGC0609-MS1	50.0 mL / 50.0 mL	SM22 4500-NO3F-2011	BGC0609	SGC0599	AC30173
BGC0609-MSD1	50.0 mL / 50.0 mL	SM22 4500-NO3F-2011	BGC0609	SGC0599	AC30173
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic (	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-MS	2

Date Issued:

4/4/2023 3:37:46PM



4/4/2023 3:37:46PM

Date Issued:

# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600	-MS
BGC0321-BLK1	1000 mL / 1.00 mL	SW8270E	BGC0321	SGC0358	AL20040
BGC0321-BLK2		SW8270E	BGC0321	SGC0360	AL20040
BGC0321-BS1	1000 mL / 1.00 mL	SW8270E	BGC0321	SGC0358	AL20040
BGC0321-MS1	1000 mL / 1.00 mL	SW8270E	BGC0321	SGC0361	AB30070
BGC0321-MSD1	1000 mL / 1.00 mL	SW8270E	BGC0321	SGC0361	AB30070
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	SW5030B-MS	
BGC0325-BLK1	5.00 mL / 5.00 mL	SW8260D	BGC0325	SGC0351	AB30127
BGC0325-BS1	5.00 mL / 5.00 mL	SW8260D	BGC0325	SGC0351	AB30127
BGC0325-MS1	5.00 mL / 5.00 mL	SW8260D	BGC0325	SGC0351	AB30127
BGC0325-MSD1	5.00 mL / 5.00 mL	SW8260D	BGC0325	SGC0351	AB30127
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	SW7470A	
BGC0322-BLK1	20.0 mL / 20.0 mL	SW7470A	BGC0322	SGC0341	AC30132
BGC0322-BS1	20.0 mL / 20.0 mL	SW7470A	BGC0322	SGC0341	AC30132
BGC0322-MS1	20.0 mL / 20.0 mL	SW7470A	BGC0322	SGC0341	AC30132
BGC0322-MSD1	20.0 mL / 20.0 mL	SW7470A	BGC0322	SGC0341	AC30132



		Certificate of Analysis			
Client Name:	SCS Engineers Winshester	Certificate of Analysis	Date Issued:	4/4/2023 3:37:46PM	
	SCS Engineers-Winchester		Dale Issueu.	4/4/2023 3.37.40FW	
Client Site I.D.:	City of Bristol Landfill				
Submitted To:	Jennifer Robb				
<b>Certified Analys</b>	es included in this Report				
Analyte		Certifications			
EPA350.1 R2.0 in N	on-Potable Water				
Ammonia as N		VELAP,NCDEQ,PADEP,WVDEP			
EPA351.2 R2.0 in N	on-Potable Water				
TKN as N		VELAP,NCDEQ,WVDEP			
SM22 4500-NO2B-2	2011 in Non-Potable Water				
Nitrite as N		VELAP,WVDEP			
SM22 4500-NO3F-2	011 in Non-Potable Water				
Nitrate+Nitrite as N		VELAP,WVDEP			
SM22 5210B-2011 i	n Non-Potable Water				
BOD		VELAP,NCDEQ,WVDEP			
SM22 5220D-2011 ii	n Non-Potable Water				
COD		VELAP,NCDEQ,PADEP,WVDEP			
SW6010D in Non-P	otable Water				
Arsenic		VELAP,WVDEP			
Barium		VELAP,WVDEP,PADEP			
Cadmium		VELAP,WVDEP,PADEP			
Chromium		VELAP,WVDEP			
Copper		VELAP,WVDEP			
Lead		VELAP,WVDEP			
Nickel		VELAP,WVDEP			
Selenium		VELAP,WVDEP			
Silver		VELAP,WVDEP,PADEP			
Zinc		VELAP,WVDEP			
SW7470A in Non-P	otable Water				
Mercury		VELAP,NCDEQ,WVDEP			



		<b>Certificate of Analysis</b>		
Client Name:	SCS Engineers-Winchester		Date Issued:	4/4/2023 3:37:46PM
Client Site I.D.:	City of Bristol Landfill			
Submitted To:	Jennifer Robb			
Certified Analys	ses included in this Report			
Analyte		Certifications		
SW8260D in Non-F	Potable Water			
2-Butanone (MEK)		VELAP,NCDEQ,PADEP,WVDEP		
Acetone		VELAP,NCDEQ,PADEP,WVDEP		
Benzene		VELAP,NCDEQ,PADEP,WVDEP		
Ethylbenzene		VELAP,NCDEQ,PADEP,WVDEP		
Toluene		VELAP,NCDEQ,PADEP,WVDEP		
Xylenes, Total		VELAP,NCDEQ,PADEP,WVDEP		
Tetrahydrofuran		VELAP,PADEP		
SW8270E in Non-P	Potable Water			
Anthracene		VELAP, PADEP, NCDEQ, WVDEP		
SW9065 in Non-Po	table Water			
Total Recoverable F	Phenolics	VELAP,WVDEP		



# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/14/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Date Issued:

4/4/2023 3:37:46PM



		Certificate of Analysis					
Client Na	ame:	SCS Engineers-Winchester	Date Issued:	4/4/2023	3:37:46PM		
Client Sit	te I.D.:	City of Bristol Landfill					
Submitte	d To:	Jennifer Robb					
		Qualifiers and Definitions					
DS	Surrogate o	concentration reflects a dilution factor.					
Е	Estimated	concentration, outside calibration range					
J	The reporte	ed result is an estimated value.					
L	LCS recovery is outside of established acceptance limits						
М	Matrix spike recovery is outside established acceptance limits						
Р	Duplicate analysis does not meet the acceptance criteria for precision						
S	Surrogate r	recovery was outside acceptance criteria					
RPD	Relative Per	cent Difference					
Qual	Qualifers						
-RE	Denotes san	nple was re-analyzed					
LOD	Limit of Dete	ection					
BLOD	Below Limit	of Detection					
LOQ	Limit of Qua	ntitation					
DF	Dilution Fact	tor					
TIC	library. A TIC	dentified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral C spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are recalculated using an internal standard response factor of 1.					
PCBs, Tota	I Total PC	Bs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.					



**1941 REYMET ROAD** RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

### CHAIN OF CUSTODY

		-					See September		- 005						1				_				PAGE 1 OF
COMPANY NAME: SCS En	-	ers				VOICE TO				SAM	IE				PRO	JEC		ΛE/C	Quot	:e #:			
CONTACT: Jennifer Robb					IN	VOICE CO	NTAC	T:	1264						SITE					f Bris			
ADDRESS: 11260 Roger Baco				1	IN	VOICE AD	DRES	S:						1	PRO.	JEC	TNUN	ИВЕ	R:	0221	8208	8.15	Task 1
Ste. 300, Reston VA	4 20	190			IN	VOICE PH	IONE #	!:					1		P.O.								
PHONE #: 703-471-6150				EMAIL:	jrobb@	scsengin	eers.co	om	1						Pretre	eatm	ent P	rogr	am:				
Is sample for compliance reporting	ng?		YES	S NO Reg	gulator	ry State:	VA	Is sar	nple fro	om a	chl	lorin	nate	d sup	oly?	YE	S I	NO	_	PWS	I.D.	#:	
SAMPLER NAME (PRINT):	th	m/1			ts Cal				NATUR		21	1	1	1	nox	Re		5	Tu	rn Aro	und	Tim	ne: 10 Day(s)
Matrix Codes: WW=Waste Water/Storm Wa	ter G	W=G	iround	d Water DW=[						11	=Wip	pe O	T=O	her	10				-I				COMMENTS
- <u>2</u> -17			als)				٩							ANAL	YSIS /	(PR	ESEF	RVA	TIVI	Ξ)			Preservative Codes: N=Nitric Acid C=Hydrochloric Acid S=Sulfuric Acid H=Sodium Hydroxide A=Ascorbic
CLIENT SAMPLE I.D. 1) EW-58 2) EW-39 3) Trip Bkan M 4)	X X Grab	Composite	Field Filtered (Dissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date			<ul><li>S S S S Matrix (See Codes)</li></ul>	Number of Containers	XX Ammonia - EPA 350.1	1	X X COD - SM22 5220D-2011	X Nitrate SM22 450-NO3F-2011 (report seperatly from Nitrite)	Nitrite SM22 450-NO3F- 2011	X X SVOC (Anthracene) 8270	Total Metals (As, Ba, Cd, Cr, Cu, Pb, Ni, Se, Ag, Zn) 6010	I - EPA 351.2		Total Recoverable	0	VOCs (See List) 8260	Acid Z=Zinc Acetate T=Sodium Thiosulfate M=Methanol Note VOC 8260 no HCI PLEASE NOTE PRESERVATIVE(S INTERFERENCE CHECKS or PUM RATE (L/min)
5)	-								GW	$\left  \right $	-		-	SC	S-W	1 1			I	220			
6)									GW				-	12 19 19	of B	nict	15-	:		230	03	9/9	
7)		- 24							GW														
8)									GW					Rec	d: 03/	/08/2	2023	D	ue:	03/2	2/2(	023	Section States
9)					12.0	1.101		14	GW												v13032	25002	
10)									DI						1				-				24
RELINQUISHED: RELINQUISHED:	DATI 070 DATI	-3/			N			DATE /		QC			ncka		B USE C tody Sea			tact?		1)	C		ER TEMP Received on ice? (Y)N)
LCW	2111				even	, 030	8 23	080															
RELINQUISHED:	DAT	E / 1	TIME	RECEIVED		1	1	DATE /	TIME	Leve	IIV												

Sample Preservation Log Form #: F1301 Rev # 12.0 Effective: Feb 17, 2022 Page 1 of 1



# **Sample Preservation Log**

Order ID 2300397

#### Date Performed: 3/8/23 Analyst Performing Check: <u>CSJ3</u> Pesticide Pest/PCB SVOC CrVI * ** (508) / TKN Phos, Tot NO3+NO2 DRO Sulfide Ammonia (8081/608/508) Metals Cyanide Phenolics (525/8270/625) COD PCB DW only SVOC(525) ₽ Container ID pH as pH as pH as pH as pH as oH as Received Received pH as pH as pH as pH as pH as Sample I Finsi pH Received E Received pH Final pH H Final pH Æ Final pH H Ŧ Ξ Æ 푑 Res. Cl Received Received Received Received Received Received Received Received Res. Cl Received Received final final Final p Final Final Final Final Final Final Final 2 Other + or -+ or -42 Other < 2 Other < 2 Other > 12 Other > 9 Other < 2 Other 7 42 A 01 Ġ 6 6 12 6 22 B 42 42 01 6 2 $\mathcal{D}$ 01 E 01 А 02 7 42 6 42 В 6 42 6 42 6 02 42 6 42 D 02 Ε 02 NaOH ID: ______ HNO3 ID: ______ 3A03297____ CrVI preserved date/time: Analyst Initials: * pH must be adjusted between 9.3 - 9.7 H2SO4 ID: 260 1944 Na2S2O3 ID: _____ Buffer Sol'n ID: _____ Na2SO3 ID: _____ 1N NaOH ID: 5N NaOH: HCL ID:

Metals were received with pH = 7. HNO3 was added at 0900 on 08 Mar 2023 by CSB in the Log-In room to bring pH= <2.



# **Certificate of Analysis**

Client Name: SCS Engineers-Winchester

Jennifer Robb

Client Site I.D.: City of Bristol Landfill

Submitted To:

Date Issued:

4/4/2023 3:37:46PM



	Certificate of Analysis		
Client Name:		ate Issued:	4/4/2023 3:37:46PM
Client Site I.D.:	City of Bristol Landfill		
Submitted To:	Jennifer Robb		
	Laboratory Order ID: 23C0397		
	Sample Conditions Checklist		
	Samples Received at:		2.40°C
	How were samples received?	Logistic	s Courier
	Were Custody Seals used? If so, were they received intact?		Yes
	Are the custody papers filled out completely and correctly?		Yes
	Do all bottle labels agree with custody papers?		Yes
	Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?		Yes
	Are all samples within holding time for requested laboratory tests?		Yes
	Is a sufficient amount of sample provided to perform the tests included?		Yes
	Are all samples in appropriate containers for the analyses requested?		Yes
	Were volatile organic containers received?		Yes
	Are all volatile organic and TOX containers free of headspace?		Yes
	ls a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.		Yes
	Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.		No
	H2SO4-preserved containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 and -02: EW-59 received containers for samples -01: EW-58 received containers for samples -01: EW-58 received containers -01: EW-59 received containers -01	ved with	

pH 6; H2SO4 added to bring pH to <2. Jennifer Robb notified via email. MRS 03/0823 1130



FINAL REPORT

Work Orders:	3C09089	Report Date:	4/03/2023
		Received Date:	3/9/2023
Project:	23C0397	Turnaround Time:	Normal
i loject.		Phones:	(804) 358-8295
		Fax:	
Attn:	JP Verheul	P.O. #:	042132
Client:	Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237	Billing Code:	

#### DoD-ELAP ANAB #ADE-2882 • DoD-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • ISO17025 ANAB #L2457.01 • LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear JP Verheul,

Enclosed are the results of analyses for samples received 3/09/23 with the Chain-of-Custody document. The samples were received in good condition, at 3.5 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

James

Alejandra D. Gomez Project Manager

3C09089





FINAL REPORT

#### Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237

Project Number: 23C0397

Project Manager: JP Verheul

**Reported:** 04/03/2023 16:59

### Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
23C0397-01: EW-58	Client	3C09089-01	Water	03/06/23 10:45	
23C0397-02: EW-59	Client	3C09089-02	Water	03/06/23 10:33	

# WECK LABORATORIES, INC.

# Certificate of Analysis

FINAL REPORT

Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237 Project Number: 23C0397

Project Manager: JP Verheul

04/03/2023 16:59

Sampled: 03/06/23 10:33 by Client

Reported:

Sample Results

Sample:	23C0397-01: EW-58				Sa	mpled: 03/06/23	10:45 by Client
	3C09089-01 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
cohols by G	C/FID						
Method: EPA	A 8015M		Instr: GC09				
Batch ID:	W3C2245	Preparation: _NONE (SVOC)	Prepared: 03/2	27/23 10:03			Analyst: ecs
Acetic acid	d	ND	500	mg/l	50	03/27/23	M-05
Butyric aci	id	ND	500	mg/l	50	03/27/23	M-05
Heptanoic	acid	ND	500	mg/l	50	03/27/23	M-05
Hexanoic	acid	ND	500	mg/l	50	03/27/23	M-05
Isobutyric	acid	ND	500	mg/l	50	03/27/23	M-05
Isocaproic	acid	ND	500	mg/l	50	03/27/23	M-05
Isovaleric	acid	ND	500	mg/l	50	03/27/23	M-05
Propionic	acid	ND	500	mg/l	50	03/27/23	M-05
Valeric aci	id	ND	500	mg/l	50	03/27/23	M-05

### Sample Results

Sample: 23C0397-02: EW-59

3C09089-02 (Water)						
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Alcohols by GC/FID						
Method: EPA 8015M		Instr: GC09				
Batch ID: W3C2245	Preparation: _NONE (SVOC)	Prepared: 03/2	7/23 10:03			Analyst: ecs
Acetic acid	640	500	mg/l	50	03/27/23	M-05
Butyric acid	ND	500	mg/l	50	03/27/23	M-05
Heptanoic acid	ND	500	mg/l	50	03/27/23	M-05
Hexanoic acid	ND	500	mg/l	50	03/27/23	M-05
Isobutyric acid	ND	500	mg/l	50	03/27/23	M-05
Isocaproic acid	ND	500	mg/l	50	03/27/23	M-05
Isovaleric acid	ND	500	mg/l	50	03/27/23	M-05
Propionic acid	ND	500	mg/l	50	03/27/23	M-05
Valeric acid	ND	500	mg/l	50	03/27/23	M-05



.....

**FINAL REPORT** 

Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237

Project Number: 23C0397

Reported:

Project Manager: JP Verheul

04/03/2023 16:59

### **Quality Control Results**

#### Alcohols by GC/FID

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W3C2245 - EPA 8015M										
Blank (W3C2245-BLK1)	10	40		Prepared & A	nalyzed: 03/	27/23				
Acetic acid	• • • • • • • • • • • • ND	10	mg/l							
Butyric acid		10	mg/l							
Heptanoic acid		10	mg/l							
Hexanoic acid		10	mg/l							
Isobutyric acid	ND	10	mg/l							
Isocaproic acid	ND	10	mg/l							
Isovaleric acid	ND	10	mg/l							
Propionic acid	ND	10	mg/l							
Valeric acid	ND	10	mg/l							
LCS (W3C2245-BS1)				Prepared & A	nalyzed: 03/	27/23				
Acetic acid	52.0	10	mg/l	50.0		104	50-150			
Butyric acid	48.4	10	mg/l	50.0		97	50-150			
Heptanoic acid	42.8	10	mg/l	50.0		86	50-150			
Hexanoic acid	42.7	10	mg/l	50.0		85	50-150			
Isobutyric acid	48.0	10	mg/l	50.0		96	50-150			
Isocaproic acid	41.9	10	mg/l	50.0		84	50-150			
Isovaleric acid	45.9	10	mg/l	50.0		92	50-150			
Propionic acid	42.6	10	mg/l	50.0		85	50-150			
Valeric acid	45.9	10	mg/l	50.0		92	50-150			
Matrix Spike (W3C2245-MS1)	Source: 3C08040	5-01		Prepared & A	nalvzed: 03/	27/23				
Acetic acid	65.4	10	mg/l	50.0	ND	131	50-150			
Butyric acid	51.6	10	mg/l	50.0	ND	103	50-150			
Heptanoic acid	44.4	10	mg/l	50.0	ND	89	50-150			
Hexanoic acid	45.7	10	mg/l	50.0	ND	91	50-150			
Isobutyric acid	50.2	10	mg/l	50.0	ND	100	50-150			
Isocaproic acid	43.8	10	mg/l	50.0	ND	88	50-150			
Isovaleric acid	48.6	10	mg/l	50.0	ND	97	50-150			
Propionic acid	47.0	10	mg/l	50.0	ND	94	50-150			
Valeric acid	49.3	10	mg/l	50.0	ND	99	50-150			
Matrix Spike Dup (W3C2245-MSD1)	Source: 3C08040	5 01		Prepared & A	naluzadi 02/	ככי דכי				
Acetic acid		10	mg/l	50.0	ND	118	50-150	11	25	
Butyric acid	45.6	10	mg/l	50.0	ND	91	50-150	12	25	
Heptanoic acid	38.8	10	mg/l	50.0	ND	78	50-150	13	25	
Hexanoic acid		10	mg/l	50.0	ND	78	50-150	16	25	
Isobutyric acid	43.1	10	mg/l	50.0	ND	86	50-150	15	25	
Isocaproic acid		10	mg/l	50.0	ND	76	50-150	14	25	
Isovaleric acid		10	mg/l	50.0	ND	84	50-150	15	25	
Propionic acid		10	mg/l	50.0	ND	85	50-150	10	25	
Valeric acid		10	mg/l	50.0	ND	83	50-150	17	25	
3C09089	11.0	10		00.0		00	00 100	.,	20	Dogo 4 - f
JCU3U03										Page 4 of



FINAL REPORT

Enthalpy Analytical - Richmond VA	Pro	ject Number:	23C0397						04/00/	Reported:
1941 Reymet Road Richmond, VA 23237	Proj	ect Manager:	JP Verheul						04/03/2	2023 16:59
Quality Control Results									(Co	ontinued)
Alcohols by GC/FID (Continued)										
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W3C2245 - EPA 8015M (Continued)										
Matrix Spike Dup (W3C2245-MSD1)	Source: 3C08046	-01	F	Prepared & A	nalyzed: 03/	27/23				

Page 5 of 6



FINAL REPORT

#### Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237

Project Number: 23C0397

**Reported:** 04/03/2023 16:59

Project Manager: JP Verheul

### Notes and Definitions

tem	Definition
И-05	Due to the nature of matrix interferences, sample was diluted prior to analysis. The MDL and MRL were raised due to the dilution.
%REC	Percent Recovery
Dil	Dilution
/IRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference
Source	Sample that was matrix spiked or duplicated.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

3C09089

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68		100
Parameter	Monitoring Event					Conc	entration					LOD	LOQ
	November-2022					1560		1400	1380			50	50
	December-2022	1700	2280	2110		1410	1310			1150	1780	100	100
Ammonia as N (mg/L)	January-2023	1520			1500				1330			50	50
	Junuary-2023					2440						100	100
	February-2023										1490	100	100
	March-2023				667	1480						73.1	100
	November-2022					15700		5860	5140			0.2	2
	December-2022	6440	12500	11400		9240	3330			8360	6770	0.2	2
Biological Oxygen Demand (mg/L)	January-2023	9920			999	28100			7060			0.2	2
	February-2023										7230	0.2	2
	March-2023				1570	9190						0.2	2
	November-2022							9790	10800			1000	1000
						23500						2000	2000
		7440										1000	1000
	December-2022					13200	8000			20300	14100	2000	2000
	December-2022			22400								5000	5000
Chemical Oxygen Demand (mg/L)			86800									10000	10000
					3630							500	500
	January-2023	14900							8430			2000	2000
						47600						5000	5000
	February-2023										9210	1000	1000
	March-2023				1690							500	500
						10600						2000	2000

# Historical LFG-EW Leachate Monitoring Results Summary

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conc	entration					LOD	LUQ
Nitrate+Nitrite as N (mg/L)	November-2022					2.91		0.16	0.33			0.1	0.1
										ND		0.2	0.2
	December-2022						ND					0.2	0.6
	December-2022	ND	ND	ND		ND						1.1	5.1
											ND	1.5	5.5
Nitrate as N (mg/L)	January-2023				ND							0.35	1.35
									ND			1.1	1.1
	JUI 1001 y-2023	3.9										2.1	2.1
						ND						2.2	2.2
	February-2023										ND	0.35	1.35
	March-2023				ND	ND						1.04	5.1
	December-2022						0.12 J					0.1	0.5
		ND	ND	ND		ND				ND	ND	1	5
					ND							0.25	1.25
Nitrite as N (mg/L)	January-2023								ND			1	1
		ND				ND						2	2
	February-2023										0.48 J	0.25	1.25
	March-2023				ND	ND						1	5
	November-2022							1290	1470			20	50
						2110						50	125
	December-2022	1510	3570	1790		1830	1490			1340	1940	200	500
Total Kjeldahl Nitrogen (mg/L)	January-2023	1840			881				1410			20	50
	Jui 1001 y-2020					2970						40	100
	February-2023										1870	16.8	50
	March-2023				879	1920						33.6	100

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conc	entration					LOD	LUQ
	New area or 0000							5.68	3			0.3	0.5
	November-2022					28.8						0.75	1.25
	December 2022						8.94					0.3	0.5
	December-2022	24.9	54.6	28.3		32				20.2	36	1.5	2.5
Total Recoverable Phenolics (mg/L)	January-2023	27.2			1.3				20.2			0.75	1.25
	January-2023					56.5						1.5	2.5
	February-2023										22.4	1.5	2.5
	March-2023				0.4							0.03	0.05
						13.9						0.3	0.5
SEMI-VOLATILE ORGANIC COMPOUND (	ug/L)												
	November-2022							ND	ND			46.7	93.5
						ND						93.5	187
	December-2022 -					ND	ND				ND	9.35	9.35
				ND						ND		11.7	11.7
			ND									23.4	23.4
		ND										485	971
Anthracene					ND							243	485
	January-2023								ND			253	505
	JUI 1001 y-2023	ND										490	980
						ND						500	1000
	February-2023										ND	187	374
	March-2023					ND						51	102
					ND							117	234
TOTAL METAL (mg/L)													
	November-2022					0.863		0.464	1.3			0.02	0.04
	December-2022	1.02	0.406	0.174		1.69	0.49			0.159	0.574	0.02	0.04
Arsenic	January-2023	0.285			0.596	0.225			0.846			0.01	0.02
	February-2023										0.29	0.005	0.01
	March-2023				1.07	1						0.01	0.02

# Historical LFG-EW Leachate Monitoring Results Summary

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event	Concentration										LOD	100
TOTAL METALS (mg/L)													
	November-2022					0.871		0.485	0.36			0.01	0.02
	December-2022	0.566	0.803	0.978		0.438	0.214			0.856	0.793	0.01	0.02
Barium	January-2023	0.643			0.683	1.92			0.554			0.005	0.01
	February-2023										1.04	0.01	0.05
	March-2023				0.406	0.683						0.005	0.01
	November-2022					ND		ND	ND			0.004	0.008
	December-2022	ND	0.0104	ND		ND	ND			ND	ND	0.004	0.008
Cadmium	January-2023	ND			ND	ND			ND			0.002	0.004
	February-2023										0.000297 J	0.0001	0.001
	March-2023				ND	ND						0.002	0.004
	November-2022					0.208		0.112	0.354			0.016	0.02
	December-2022	0.503	1.08	1.76		0.274	0.319			0.499	0.822	0.016	0.02
Chromium	January-2023	0.31			0.488	0.178			0.155			0.008	0.01
	February-2023										0.277	0.004	0.01
	March-2023				0.213	0.188						0.008	0.01
	November-2022					ND		ND	ND			0.016	0.02
	December-2022	ND	ND	ND		ND	ND			ND	ND	0.016	0.02
Copper	January-2023	ND			0.0127	0.0256			ND			0.008	0.01
	February-2023										0.00365	0.0003	0.001
	March-2023				ND	ND						0.008	0.01
	November-2022					ND		ND	0.017 J			0.012	0.02
	December-2022	ND	0.0381	ND		ND	ND			ND	ND	0.012	0.02
Lead	January-2023	ND			ND	ND			ND			0.006	0.01
	February-2023										0.006	0.001	0.001
	March-2023				ND	ND						0.006	0.01

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	100
Parameter	Monitoring Event		Concentration										LOQ
TOTAL METALS (mg/L)													
	N							0.00169	0.00053			0.0004	0.0004
	November-2022					ND						0.0008	0.0008
		0.00051										0.0004	0.0004
	December-2022			0.00118		ND	0.00588			0.0048	ND	0.0008	0.0008
Moroun			ND									0.004	0.004
Mercury		ND			ND				ND			0.0004	0.0004
	January-2023					ND						0.004	0.004
	February-2023										ND	0.0004	0.0004
	March 2022				ND							0.0002	0.0002
	March-2023					ND						0.0004	0.0004
	November-2022					0.0866		0.1344	0.173			0.014	0.02
	December-2022	0.1722	0.5025	0.2989		0.1299	0.287			0.1853	0.346	0.014	0.02
Nickel	January-2023	0.1074			0.1442	0.0407			0.0769			0.007	0.01
	February-2023										0.1726	0.001	0.001
	March-2023				0.1254	0.1033						0.007	0.01
	November-2022					ND		ND	ND			0.08	0.1
	December-2022	ND	ND	ND		ND	ND			ND	ND	0.08	0.1
Selenium	January-2023	ND			ND	ND			ND			0.04	0.05
	February-2023										0.00199	0.00085	0.001
	March-2023				ND	ND						0.04	0.05
	November-2022					ND		ND	ND			0.01	0.02
	December-2022	ND	0.0187 J	ND		ND	ND			ND	ND	0.01	0.02
Silver	January-2023	ND			ND	ND			ND			0.005	0.01
	February-2023										ND	0.00006	0.001
	March-2023				ND	ND						0.005	0.01
	November-2022					ND		0.032	0.694			0.02	0.02
	December-2022	0.208	29.7	0.162		0.0686	0.75			0.364	0.286	0.02	0.02
Zinc	January-2023	0.133			0.15	0.074			0.0752			0.01	0.01
	February-2023										0.0851	0.0025	0.005
	March-2023				0.0689	0.0538						0.01	0.01

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event		Concentration										LOQ
VOLATILE FATTY ACIDS mg/L													
	November-2022							1600				25	100
	NOVEINDEI-2022					3500			150 J			62	250
Acetic Acid	December-2022	1800										62	250
	January-2023	ND			ND	4400			ND				500
	February-2023										ND		500
	March-2023				ND	640							500
	November-2022							430				12	100
						830			ND			29	250
Butyric Acid	December-2022	ND										29	250
	January-2023	ND			ND	1800			ND				500
	February-2023										ND		500
	March-2023				ND	ND							500
	November-2022							ND				11	100
Lactic Acid						ND			ND			27	250
	December-2022	90 J										27	250
	Nevreneber 2022							620				11	100
	November-2022					1600			73 J			27	250
Pronionic Acid	December-2022	640										27	250
	January-2023	ND			ND	2000			ND				500
actic Acid ropionic Acid	February-2023										ND		500
	March-2023				ND	ND							500
	November-2022							46 J				12	100
Pyruvic Acid						98 J			ND			30	250
	December-2022	ND										30	250

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter Monitoring Event			Concentration										
VOLATILE ORGANIC COMPOUNDS (ug/L	)												
						3510			1140			30	100
	November-2022							15600				300	1000
		3140					3390					30	100
	December-2022		26800	27700		5670				21700	7150	300	1000
2-Butanone (MEK)		3480			632							30	100
	January-2023					7840			5470			300	1000
	February-2023										14400	600	2000
	March-2023				257	2770						30	100
									4420			70	100
	November-2022					16100		38300				700	1000
	December-2022					15600	5170				9800	700	1000
		8500										1750	2500
			53100	49900						45600		3500	5000
Acetone	January-2023				1530							70	100
						22200			14000			700	1000
		8130										1750	2500
	February-2023										23900	1400	2000
					375							70	100
	March-2023					6810						700	1000
	November-2022					7.4 J		2860	50.4			4	10
	December-2022	301	2960			6.3 J	622			1750	179	4	10
Benzene	December-2022			6550								40	100
	January-2023	240			28.7	1620			167			4	10
	February-2023										1370	4	10
	March-2023				1540	727						4	10
	December-2022	67.3	172	287		ND	48.5			108	27.4	4	10
	November-2022					ND		194	16.2			4	10
Ethylbenzene	January-2023	65.1			ND	93.9			20.8			4	10
	February-2023										151	4	10
	March-2023				131	71.5						4	10

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event		Concentration									LOD	LUQ
VOLATILE ORGANIC COMPOUNDS (ug/l	.)												
	November-2022					309			176			100	100
	NOVEITIDEI-2022							8530				1000	1000
	December 2022	151				170	1120				663	100	100
Tetrahydrofuran	December-2022		5210	19800						6130		1000	1000
	January-2023	183			566	1810			352			100	100
	February-2023										3760	2000	2000
	March-2023				353	464						100	100
	November-2022					ND		214	32.8			5	10
	December-2022	122	175	195		ND	113			113	48.3	5	10
Toluene	January-2023	122			8 J	139			35.3			5	10
	February-2023										224	5	10
	March-2023				182	98.1						5	10
	November-2022					ND		185	37.8			10	30
	December-2022	161	222	186		ND	112			197	59.9	10	30
Xylenes, Total	January-2023	138			ND	134			38.1			10	30
	February-2023										240	10	30
	March-2023				240	111						10	30

---- = not applicable/available

J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

# Appendix G

Monitoring, Maintenance, and Repair Plan Implementation Letter

# SCS ENGINEERS

March 31, 2023 File No. 02218208.05

Mr. Jonathan Chapman Enforcement Specialist VA DEQ – Southwest Regional Office 355-A Deadmore Street Abingdon, Virginia

Subject: Implementation of the Monitoring, Maintenance, and Repair Plan Integrated Solid Waste Management Facility – Solid Waste Permit No. 588 Bristol, Virginia

### Dear Mr. Chapman:

SCS Engineers (SCS) and SCS Field Services (SCS-FS) are submitting this letter on behalf of the City of Bristol, Virginia (City) to describe actions that the City has taken to implement the procedures contained in the Monitoring, Maintenance, and Repair Plan (Plan) for the Solid Waste Permit (SWP) No. 588 landfill. The Plan was submitted to the Virginia Department of Environmental Quality (VDEQ) on December 30, 2022. The City has implemented those portions of the plan that are appropriate given the current status of remediation efforts. A summary of implementation activities completed to date includes the following:

- Neither the interim EVOH cover system nor the Final Cover system have been installed at this time. Inspections of the intermediate cover are being completed at least quarterly by City Staff. Records of these inspections are scanned and stored on the landfill computer server in a folder designated for the purpose of storing environmental records.
- SCS is currently performing surface emission monitoring at the landfill on behalf of the City. Locations where measurements indicate the methane is present in concentrations above 500 ppm are investigated and actions are taken to reduce emissions at the location. Monitoring includes both a serpentine route over the surface of the landfill and pipe penetrations. Results of these monitoring events are currently being submitted to VDEQ.
- At this time only soil cover is in place on the SWP No. 588 Landfill. Maintenance of the intermediate cover primary consists of placing additional fill in areas soil cover has been removed through erosion or disturbed by construction activities. Maintenance of the intermediate cover is based on observations documented during quarterly inspections.
- SCS is currently reading stroke counts on the landfill gas liquids extraction wells on a regular basis. Stroke counts are currently documented during surface emissions monitoring events. Based on a review of the stroke count data, SCS-FS schedules the pumps and supporting equipment for maintenance and repairs. Stroke count data and



Mr. Jonathan Chapman March 31, 2023 Page 2

estimates of liquids removed from the system are documented in monthly compliance reports submitted to VDEQ.

- SCS-FS is currently performing monitoring activities on the landfill gas collection system as the City's designated OM&M contractor as described in the Plan. Based on observations during monitoring activities, SCS-FS is also making appropriate repairs to the landfill gas collection system.
- At this time stormwater conveyance features have not been installed on the landfill. Those features will be installed once other remediation activities on the site are completed. Once installed, those features will be inspected at least quarterly. Maintenance and repairs to the stormwater conveyance features will be performed based on observations documented during inspections.

If you have questions, please contact either of the undersigned at the letterhead address.

Sincerely,

Varien Inde

Charles J. Warren, PE Project Manager SCS Engineers

mit the

Mike Gibbons Project Manager SCS Field Services

CJW/MWG

cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jake Chandler, City of Bristol Jon Hayes, City of Bristol Jeff Hurst, VDEQ Susan Blalock, VDEQ Stacy Bowers, VDEQ Daniel Scott, VDEQ