April Monthly Compliance Report

Solid Waste Permit No. 588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-18 | May 10, 2023

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sec	tion			Page
	Intro	duction		4
1.0	Gas	Collection	on	4
	1.1	Surfac	e and Leachate Collection Emissions	4
		1.1.1	Surface Emissions	4
		1.1.1.	1 Quarterly SEM	4
		1.1.1.2	2 Weekly SEM	4
		1.1.2	Leachate Collection Emissions	5
	1.2	Existin	ng Gas Extraction System Performance	6
	1.3	Remot	te Monitoring System	6
	1.4	Large-	Diameter Dual-Phase Extraction Wells	6
	1.5	VDEQ	Concurrence on Wells	7
2.0	Side	wall Odd	or Mitigation	7
	2.1	Perime	eter Gas Collection System	8
	2.2	Sidewa	all Odor Mitigation System	10
	2.3	Pilot S	ystem Construction	10
	2.4	Full Sy	stem Construction	12
3.0	Was	te Temp	perature Monitoring	14
	3.1	Tempe	erature Monitoring System Design	14
	3.2	Tempe	erature Monitoring System Installation	14
4.0	Lead	hate Ex	traction and Monitoring	23
	4.1	Existin	ng System Optimization	24
	4.2	Sampl	ling and Analysis Plan	26
	4.3	Sampl	ling and Analysis	27
		4.3.1	Sample Collection	27
		4.3.2	Quality Assurance and Quality Control	27
		4.3.3	Data Validation	28
		4.3.4	Laboratory Analytical Results	29
5.0	Settl	ement l	Monitoring and Management	30
	5.1	Settler	ment Monitoring and Management Plan	30
	5.2	Month	lly Surveys	30
		5.2.1	Topographic Data Collection	30
		5.2.2	Settlement Plate Surveys	34
6.0	Inter	mediate	e Cover and EVOH Cover System	35

Table of Contents

Secti	on		Page
	6.1	Intermediate Cover Installation	36
	6.2	EVOH Cover System Design	36
	6.3	EVOH Cover System Procurement	36
	6.4	EVOH Cover System Installation	36
7.0	Storr	nWater Management	
		ellaneous	
	8.1	Cease Waste Acceptance	37
	8.2	Long-Term Plan	
	8.3	Monthly Compliance Reports	
	8.4	Community Outreach Program	
		Figures	
Figure	1 د	Stainless Steel Well Casings in Storage at the ISWMF	7
Figure		Landfill Gas Extraction Well Drilling Operations	
Figure		Landfill Gas Extraction Well EW-84 Connected to Lateral Piping	
Figure Figure		SOMS Phase I Approximate As-Built Phase 2 SOMS Construction	
Figure		Phase 2 Sidewall Odor Mitigation System Progress As-Built	
Figure		Average Temperatures within TP-1 on Select Days in April	
Figure Figure		Average Temperatures within TP-2 on Select Days in April	
Figure		Average Temperatures within TP-3 on Select Days in April	
Figure		Average Temperatures within TP-5 on Select Days in April	
Figure		Average Temperatures within TP-6 on Select Days in April	
Figure	e 13.	Average Temperatures within TP-7 on Select Days in April	21
Figure		Average Temperatures within TP-8 on Select Days in April	
Figure		Average Temperatures within TP-9 on Select Days in April	
Figure		Estimated Volume of Liquids Removed from Landfill Gas Wells	
Figure		1-Month Elevation Change Color Map	
Figure Figure		3-Month Elevation Change Color MapSettlement Plate Locations	
		Tables	
Table		Summary of April Surface Emissions Monitoring	
Table Table		Cleanout Pipe IdentificationSidewall HC Wellhead Gas Quality Measurements	
Table		Summary of Dual Extraction Well Pump Stroke Counter Data	
Table		Summary of Dual Extraction Well Pump Liquids Removal	

Table of Contents

Section		Page
Table 6.	Monthly LFG-EW Leachate Monitoring Event Summary	29
Table 7.	Settlement Plate Locations	
Appendic	ces	
Appendix A	Surface Emissions Monitoring Summary Letters	
Appendix B	North South Clean-Outs Data 04/01/2023 to 04/30/2023	
Appendix C	Semi-Monthly Temperature Update Memos	
Appendix D	Solid Waste Permit 588 Daily Borehole Temperature Averages	
Appendix E	Monthly Topography Analysis	
Appendix F	Sample Collection Log, Lab Reports, and Historical LFG-EW Leachate Monito	oring
	Results Summary	
Appendix G	Notice to VDEQ on Perimeter LFG Wells Installation	
Appendix H	Sidewall Odor Mitigation System Progress Drawings	
Annendix I	Solid Waste Permit No. 588 Stormwater Management Plan	

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report provides updates regarding the progress towards completion of the items outlined in Appendix A of the Consent Decree between the City and VDEQ. The following sections outline progress during the month of April 2023 related to Solid Waste Permit (SWP) No. 588.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

1.1.1.1 Quarterly SEM

The First Quarter 2023 surface emissions monitoring event was conducted on March 15, 2023. Results from that monitoring event are documented in the March compliance report. No quarterly monitoring event was conducted in April. SCS anticipates conducting the Second Quarterly Monitoring event for the SWP 588 landfill in June 2023.

1.1.1.2 Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, SCS performed additional surface emissions monitoring on April 4, 2023, April 13, 2023, April 20, 2023, and April 27, 2023. These Weekly Surface Emissions Monitoring (SEM) Events were performed in accordance item 1.i in Appendix A of the Consent Decree between the City and VDEQ.

The monitoring in April generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint.

SCS submitted letters to VDEQ outlining the results of the April monitoring events on April 12, 2023, April 19, 2023, April 26, 2023, and May 3, 2023. Copies of those submittals are included in Appendix A. Table 1 summarizes the results of the four monitoring events in April.

Table 1. Summary of April Surface Emissions Monitoring

Description	April 4, 2023	April 13, 2023	April 20, 2023	April 27, 2023
Number of Points Sampled	147	147	160	158
Number of Points in Serpentine Route	100	100	104	100
Number of Points at Surface Cover Penetrations	47	47	56	58
Number of Exceedances	1	3	5	4
Number of Serpentine Exceedances	1	1	1	1
Number of Pipe Penetration Exceedances	0	2	4	3

Due to a variety of factors, an increase in surface emissions was detected during the April 2023 monitoring events. Three separate serpentine exceedances were detected in April. These were likely the result of the ongoing construction of the Sidewall Odor Mitigation System, which has temporarily required excavations into the cover soil and waste. At the time this report was prepared, additional collection from newly installed vertical extraction wells and/or the addition of soil has returned two of the three locations to compliance. A retest will be performed at the one remaining location in the first week of May.

In addition, exceedances were detected at the pipe penetration of eight vertical extraction wells. Six of these points were located at recently installed vertical wells 84, 89, 90, 94, 95, and 100. These wells have not yet been equipped with supplemental emissions reducing equipment, such as liquids extraction pumps and wellbore seals. Those components will be added once the expansion is complete. The remaining two exceedances, at vertical wells at 59 and 38, were corrected via repairs and/or upgrades to the gas collection system in the vicinity of the two wells.

1.1.2 Leachate Collection Emissions

SCS Field Services (SCS-FS) visited the Bristol Landfill on April 3, 2023 and April 19, 2023, and performed monitoring of the leachate, witness zone, and gradient control clean-outs at the northern and southern ends of the landfill. The results of that monitoring are included in Appendix B. The monitoring data for the clean-outs at the southern end of the landfill are listed as LC01 – LC10. The monitoring data for the clean-outs at the northern end of the landfill are listed as NC01 – NC10. Table 2 presents the cleanout pipe identification labeling convention, which is based on site records and review of correspondence.

Table 2. Cleanout Pipe Identification

N	orthern Cleanouts	Southern Cleanouts		
ID # Description		ID#	Description	
NC01	Leachate East	LC01	Gradient West	
NC02	Leachate Center	LC02	Gradient East	
NC03	Leachate West	LC03	Leachate Center	
NC04	Witness East	LC04	Witness East	

N	orthern Cleanouts	Southern Cleanouts		
ID # Description		ID#	Description	
NC05	Witness Center	LC05	Leachate West	
NC06	Witness West	LC06	Gradient Center West	
NC07	Gradient East	LC07	Leachate East	
NC08	Gradient Center East	LC08	Gradient Center East	
NC09	Gradient Center West	LC09	Leachate West	
NC10	Gradient West	LC10	Witness Center	

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in SCS-FS's summary report for the month of April.

1.3 REMOTE MONITORING SYSTEM

In the fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas well-heads. The purpose of the sensors is to record and transmit well-head gas temperatures via a cellular connection to a database managed by SCS-RMC. As decribed in previous monthly compliance reports for the SWP No. 588 Landfill the system is currently undergoing commissioning.

The City is providing average temperatures recorded by the sensors to VDEQ on a daily basis via e-mail. In addition, SCS prepares a semi-monthly report with analysis of this data. The semi-monthly reports for April are included in Appendix C.

1.4 LARGE-DIAMETER DUAL-PHASE EXTRACTION WELLS

SCS completed design work on an expansion of the existing GCCS during the month of December. The proposed expansion includes at least 5 large diameter dual-phase extraction wells. SCS submitted the design to VDEQ prior to December 31, 2022. The City commenced solicitation of contractor's bids for this project by advertising for bids and received one bid for the project from SCS Field Services Construction (SCS-CONS). On January 26, 2023 the City awarded the project to SCS-CONS.

During the month of April work on the expansion of the GCCS focused on the construction of perimeter gas collection system described on Section 2.1. The City and SCS-CONS were awaiting the delivery of stainless steel casings required for the construction of the large diameter dual-phase extraction wells. The stainless steel casing were delivered to the site on April 26, 2023. Casings being stored on-site are shown in Figure 1.

Figure 1. Stainless Steel Well Casings in Storage at the ISWMF

1.5 VDEQ CONCURRENCE ON WELLS

As described in previous monthly compliance reports, the City engaged with VDEQ in discussions about the proposed approach for landfill GCCS improvements and expansions. Upon completion of the landfill gas collection system, SCS will submit updated as-built drawings depicting the completed system to VDEQ. The City intends to delay installation of temporary or final cover systems until the City and VDEQ agree that the GCCS is sufficient.

2.0 SIDEWALL ODOR MITIGATION

The City initiated design and construction work to address fugitive emissions emanating from the quarry sidewalls. Specific aspects of the proposed design features are decribed in the following sections.

2.1 PERIMETER GAS COLLECTION SYSTEM

SCS's design of the GCCS expansion described in Section 1.4 included perimeter LFG wells. These wells will be placed closer to the sidewall to intercept landfill gas that potentially could migrate to the quarry wall. These wells will supplement the sidewall odor mitigation system described in section 2.2. The City completed bidding and contracting of construction for the perimeter LFG wells as part of the large diameter dual extraction well installation described in Section 1.4.

Figure 2. Landfill Gas Extraction Well Drilling Operations

As described in the March Monthly Compliance Report for the SWP No. 588 Landfill, 5 perimeter vertical landfill gas wells were installed. Between April 1, 2023 and April 15, 2023 SCS-CONS installed the remaining 13 vertical landfill gas extraction wells that comprised the perimeter gas collection system portion of the landfill GCCS expansion. Drilling of one of the wells is shown in Figure 2 Between April 18, 2023 and April 27, 2023, all 18 wells were equipped with a wellhead and connected to lateral piping that created a connection to the rest of the landfill GCCS. Vacuum was applied to all 18 wells which enabled the recovery of LFG from the wells. One of these wells connected to lateral piping is shown in Figure 3.

Figure 3. Landfill Gas Extraction Well EW-84 Connected to Lateral Piping

SCS submitted a letter to VDEQ documenting completion of the Perimeter Gas Collection System on May 1, 2023. A copy of that letter is included in Appendix G. As described in Section 1.1.1.2 the wells will be equipped with supplemental equipment to improve performance and reduce emissions, such as liquids extraction pumps and wellbore seals at a later date.

2.2 SIDEWALL ODOR MITIGATION SYSTEM

On behalf of the City and in an effort to capture emissions from the quarry sidewall, SCS designed a sidewall odor mitigation system (SOMS) during the month of October 2022. On October 20, 2022 SCS provided an overview of the proposed system to VDEQ staff. The design of this system was prepared and submitted to VDEQ on November 1, 2022. A project manual detailing the specifications of the system was developed concurrently with the design of the system.

2.3 PILOT SYSTEM CONSTRUCTION

SCS-CONS completed substantial construction of Phase 1 of the SOMS during the month of February 2023, began monitoring Phase 1 connected Horizontal Collector (HC) wellheads during the month of March, and continued weekly wellhead monitoring during the month of April 2023. Phase 1 is considered the pilot system portion of the SOMS. SCS submitted a design engineer certification to VDEQ on February 10, 2023 that documented the substantial completion of Phase 1 of the SOMS. Figure 4 shows the Phase 1 as-built, which includes the locations of the HC wellheads and HC sumps installed in Phase I, as well as the 4" header connection to the existing LFGCCS. The lower collector installed as part of Phase II was tied-in to the north end of the Phase I lower collector.

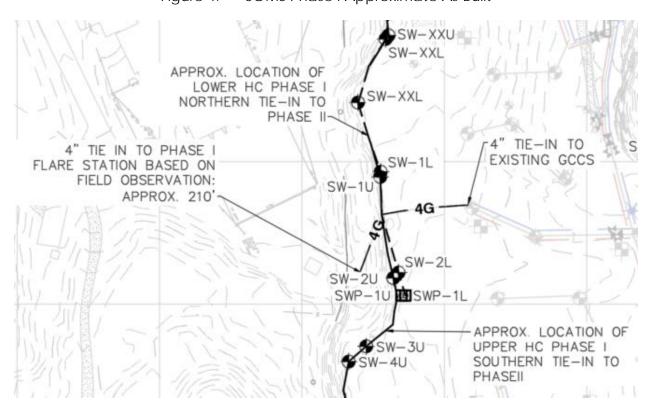


Figure 4. SOMS Phase I Approximate As-Built

Phase 1 was initially connected to an auxiliary flare located near the system. HC wellhead measurements of gas quality continued to be taken on a weekly basis during the month of April 2023. A summary of those measurements is shown in Table 3.

Table 3. Sidewall HC Wellhead Gas Quality Measurements

Device ID	Date/Time	CH ₄ (%)	CO ₂ (%)	O ₂ (%)
SW1L	4/4/2023 10:01:20 AM	11.2	31.2	9.1
SW1L	4/11/2023 10:13:18 AM	12.9	34.7	8.5
SW1L	4/17/2023 2:01:22 PM	13.2	29.6	9.7
SW1L	4/24/2023 9:15:48 AM	17.1	40.6	7.6
SW1U	4/4/2023 10:04:30 AM	1.7	8.1	19.3
SW1U	4/11/2023 10:16:19 AM	4.8	16.6	17.3
SW1U	4/17/2023 2:04:05 PM	0.3	0.9	20.6
SW1U	4/24/2023 9:19:21 AM	2.6	9.1	18.1
SW2L	4/4/2023 10:07:29 AM	32.1	49.7	2.8
SW2L	4/11/2023 10:19:17 AM	28.7	48.1	4.2
SW2L	4/18/2023 11:03:07 AM	30.8	53.1	2.0
SW2L	4/24/2023 9:22:39 AM	24.5	50.4	3.9
SW2U	4/4/2023 10:09:55 AM	16.4	42.6	8.6
SW2U	4/11/2023 10:21:44 AM	9.9	28.9	14.1
SW2U	4/18/2023 11:00:23 AM	17.3	44.8	7.9
SW2U	4/27/2023 4:03:08 PM	2.8	9.8	17.2

Sidewall wellhead lower collector 1 (SW1L) is connected to the horizontal collector placed in waste inside the landfill liner close to the northern limit of Phase 1. Measurements of gas composition taken at SW1L indicate that methane levels are low, but that landfill gas continues to be captured by the system. Sidewall wellhead upper collector 1 (SW1U) is connected to the horizontal collector placed outside of the liner and waste. SW1U is close to the northern limit of Phase 1. Measurements of gas composition taken at SW1U indicate that ambient air is being pulled in at this location. This is expected for the proximity of this section of the horizontal collector to the Phase 1 temporary termination.

Sidewall wellhead lower collector 2 (SW2L) is connected to the horizontal collector placed in waste inside the landfill liner close to the center of Phase 1. Measurements of gas composition taken at SW1L indicate that methane levels are lower than typical of landfill gas collection systems, but the presence of methane in addition to high carbon dioxide levels indicate that landfill gas is being captured by the system. Sidewall wellhead upper collector 2 (SW2U) is connected to the horizontal collector placed outside of the liner and waste and is close to the center of Phase 1. Measurements of gas composition taken at SW2U indicate that methane levels are low, but that landfill gas is being captured by the system. On April 26, 2023, SCS-CON completed the southern tie-in of the pilot system upper collector via HDPE pipe welding process.

Collection landfill gas by both the upper and lower collectors indicates that the system is capturing fugitive emissions. Based on this data, Phase 2 is being constructed utilizing the same general configuration. SCS-FS will continue to monitor Phase 1 of the system during the month of May 2023.

2.4 FULL SYSTEM CONSTRUCTION

SCS-CONS continued construction of Phase 2 of the SOMS. Lower horizontal collector placement has been completed along the west sidewall south of Phase 1, the south sidewall, the southern portion of the east sidewall, the northeastern sidewall, and toward the northeastern section of sidewall, with approximately 350 feet remaining. Upper horizontal collector placement has been completed along the west sidewall south of Phase 1, the south sidewall, the southern portion of the east sidewall, as well as portions of the northeastern sidewall. Upper horizontal collector remains to be installed in the remaining less than 100-foot section of the northern sidewall, and the 350-foot section along the eastern section of the sidewall. Figure 5 shows Phase 2 construction activities. The crew continued the installation of liquids collection sumps at low elevation points, and wellhead(s) installation at every 100'. Phase 2 lower and upper collectors construction progress, including HC wellhead and sump locations, is shown in the approximate as-built depicted as Figure 6. An additional drawing showing the completed portions of the SOMS is included in Appendix H.

Figure 5. Phase 2 SOMS Construction

Upon placement of the upper collector, stone, and liner on the southern section of the sidewall, clay placement was completed to a depth of 3 feet, and continues to be placed to meet the 7 foot depth of cover.

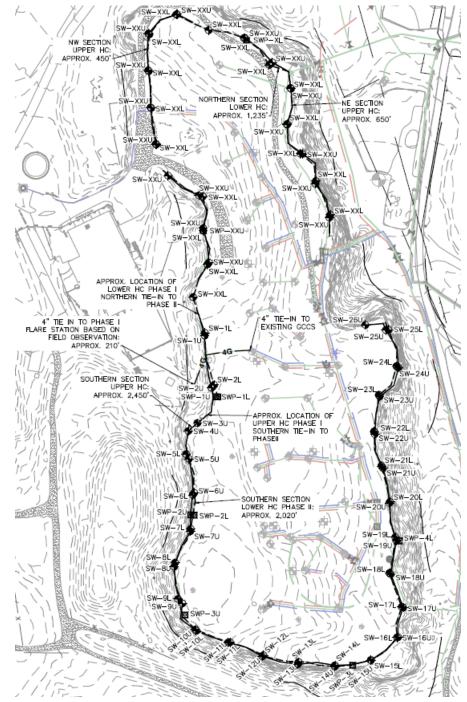


Figure 6. Phase 2 Sidewall Odor Mitigation System Progress As-Built

Throughout the month of April 2023, SCS-CON continued installing Phase 2 lower and upper horizontal collectors. There remains approximately 350 feet of the system to be installed along the eastern sidewall. Installation of this section will be completed as soon as GCCS liquids removal infrastructure and header pipes can be relocated. A small section (approximately less than 100 feet) of the upper collector also needs to be installed on the northern section. Installation of the upper horizontal collector proceeded past this section, due to a road crossing in that area.

3.0 WASTE TEMPERATURE MONITORING

On behalf of the City, SCS designed a temperature monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

3.1 TEMPERATURE MONITORING SYSTEM DESIGN

The temperature monitoring system consists of 9 boreholes drilled into the waste mass. A steel casing was placed in each borehole and the hole was backfilled around the casing with aggregate. A series of temperature sensors was placed inside the steel casing. At the top of each borehole, an IIoT transmitter collects the data from the sensors and transmits it to a cloud-based RMC system. The City submitted design of the temperature monitoring system to VDEQ on November 30, 2022.

3.2 TEMPERATURE MONITORING SYSTEM INSTALLATION

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP No. 588 Landfill.

SCS began collecting temperature data on a daily basis on February 15, 2023. The temperature sensors continued to transmit temperature data from all 9 casings during the month of April. Average daily temperatures recorded by the sensors for the Month of April are included in Appendix D. Each week the average temperatures from a select day of that week are downloaded and compared to temperatures recorded during the previous week. Average daily temperatures recorded on select days during the month of April are shown in Figures 7 through 15 on the following pages. Average temperatures recorded on February 15, 2023 (the first day that the sensors collected data) and March 15, 2023 are also shown.

Figure 7 shows daily average temperatures in Temperature Probe 1 (TP-1) on February 15, 2023; March 15, 2023; April 5, 2023; April 13, 2023; April 19, 2023; and April 26, 2023. On average, during the month of April the average variation¹ in temperatures at any given monitoring point along the length of the probe² was approximately 8 degrees Fahrenheit. TP-1 was originally drilled to a depth of 180 feet, but the contractor was unable to install the casing beyond a depth of 160 feet. TP-1 is equipped with an ambient temperature sensor above the waste surface, but a software issue prevented that sensor from reporting during the month of February. A software update resolved the ambient temperature reporting issue and ambient temperatures were recorded during the months of March and April.

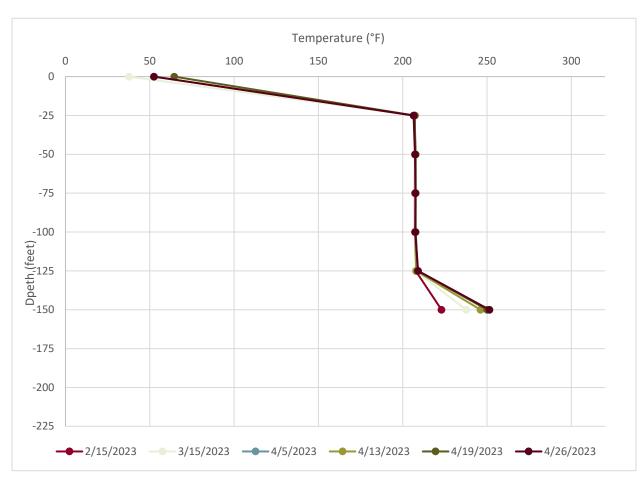


Figure 7. Average Temperatures within TP-1 on Select Days in April

¹ Variation is defined as the difference in the minimum and maximum daily average temperatures on the select days reviewed.

² Ambient temperatures were excluded from the average.

Figure 8 shows daily average temperatures in Temperature Probe 2 (TP-2) on February 15, 2023; March 15, 2023; April 5, 2023; April 13, 2023; April 19, 2023; and April 26, 2023. During the month of April the average variation³ in temperatures at any given monitoring point along the length of the probe⁴ was approximately 9 degrees Fahrenheit. TP-2 was originally drilled to a depth of 160 feet. TP-2 is equipped with an ambient temperature sensor above the waste surface, but a software issue prevented that sensor from reporting during the month of February. A software update resolved the ambient temperature reporting issue and ambient temperatures were recorded during the month of April.

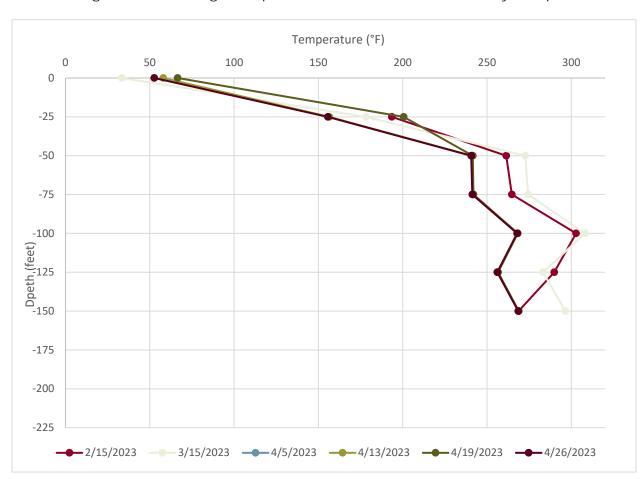


Figure 8. Average Temperatures within TP-2 on Select Days in April

³ Variation is defined as the difference in the minimum and maximum daily average temperatures on the select days reviewed.

⁴ Ambient temperatures were excluded from the average.

Figure 9 shows daily average temperatures in Temperature Probe 3 (TP-3) on February 15, 2023; March 15, 2023; April 5, 2023; April 13, 2023; April 19, 2023; and April 26, 2023. During the month of April the average variation⁵ in temperatures at any given monitoring point along the length of the probe⁶ was approximately 4 degrees Fahrenheit.

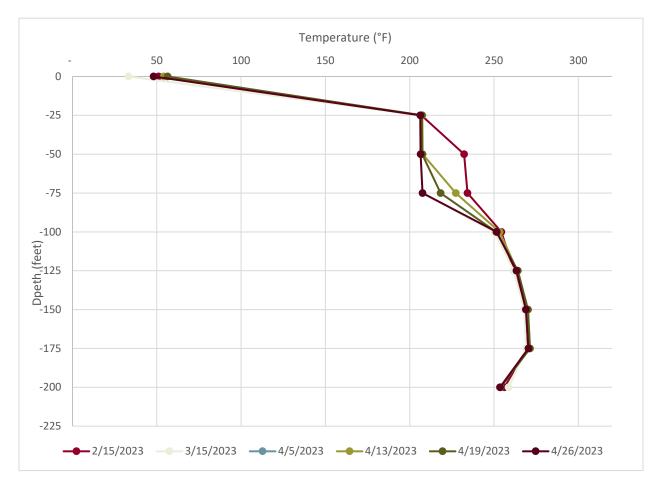


Figure 9. Average Temperatures within TP-3 on Select Days in April

⁵ Variation is defined as the difference in the minimum and maximum daily average temperatures on the select days reviewed.

⁶ Ambient temperatures were excluded from the average.

Figure 10 shows daily average temperatures in Temperature Probe 4 (TP-4) on February 15, 2023; March 15, 2023; April 5, 2023; April 13, 2023; April 19, 2023; and April 26, 2023. During the month of April the average variation⁷ in temperatures at any given monitoring point along the length of the probe⁸ was approximately 6 degrees Fahrenheit.

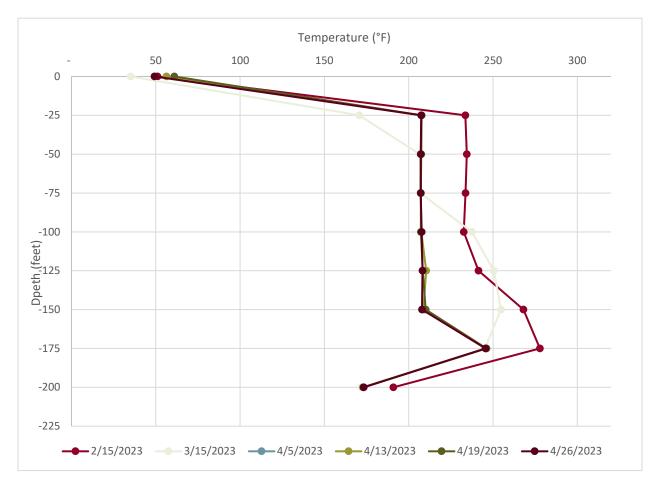


Figure 10. Average Temperatures within TP-4 on Select Days in April

⁷ Variation is defined as the difference in the minimum and maximum daily average temperatures on the select days reviewed.

⁸ Ambient temperatures were excluded from the average.

Figure 11 shows daily average temperatures in Temperature Probe 5 (TP-5) on February 15, 2023; March 15, 2023; April 13, 2023; April 19, 2023; and April 26, 2023. During the month of April the average variation⁹ in temperatures at any given monitoring point along the length of the probe¹⁰ was approximately 9 degrees Fahrenheit.

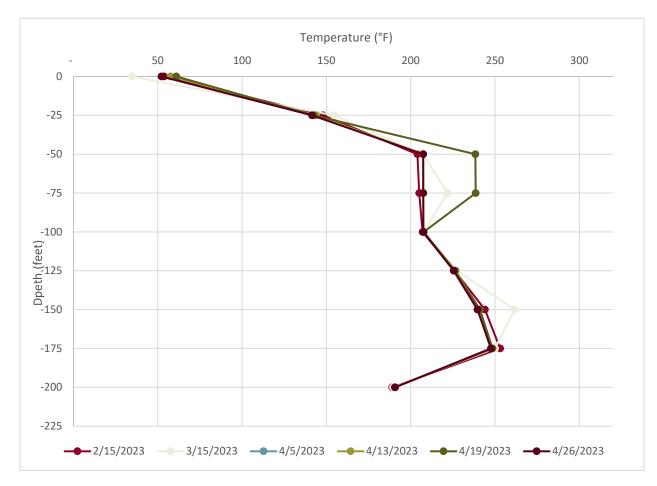


Figure 11. Average Temperatures within TP-5 on Select Days in April

⁹ Variation is defined as the difference in the minimum and maximum daily average temperatures on the select days reviewed.

¹⁰ Ambient temperatures were excluded from the average.

Figure 12 shows daily average temperatures in Temperature Probe 6 (TP-6) on February 15, 2023; March 15, 2023; April 5, 2023; April 13, 2023; April 19, 2023; and April 26, 2023. During the month of March the average variation¹¹ in temperatures at any given monitoring point along the length of the probe¹² was approximately 8 degrees Fahrenheit. TP-6 was originally drilled to a depth of 208 feet and casing was installed to the full depth. During the installation of the installation of replacement sensors, a blockage within the casing prevented placement of sensors below the 125-foot depth.

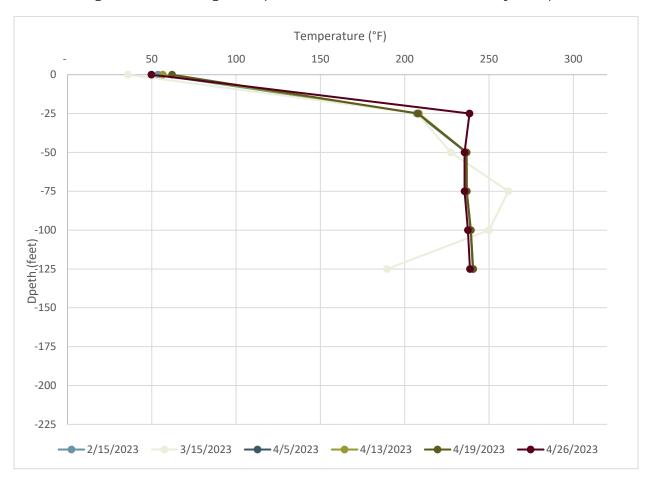


Figure 12. Average Temperatures within TP-6 on Select Days in April

 $^{^{11}}$ Variation is defined as the difference in the minimum and maximum daily average temperatures on the select days reviewed.

¹² Ambient temperatures were excluded from the average.

Figure 13 shows daily average temperatures in Temperature Probe 7 (TP-7) on February 15, 2023; March 15, 2023; April 13, 2023; April 19, 2023; and April 26, 2023. During the month of April the average variation¹³ in temperatures at any given monitoring point along the length of the probe¹⁴ was approximately 4 degrees Fahrenheit.

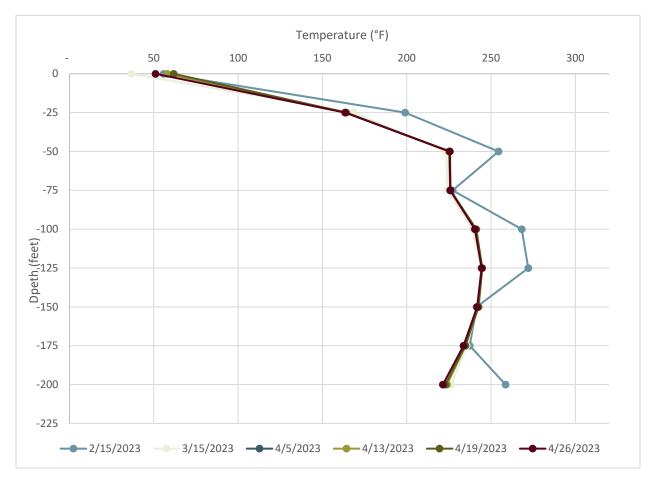


Figure 13. Average Temperatures within TP-7 on Select Days in April

¹³ Variation is defined as the difference in the minimum and maximum daily average temperatures on the select days reviewed.

¹⁴ Ambient temperatures were excluded from the average.

Figure 14 shows daily average temperatures in Temperature Probe 8 (TP-8) on February 15, 2023; March 15, 2023; April 13, 2023; April 19, 2023; and April 26, 2023. During the month of April the average variation¹⁵ in temperatures at any given monitoring point along the length of the probe¹⁶ was approximately 1 degree Fahrenheit.

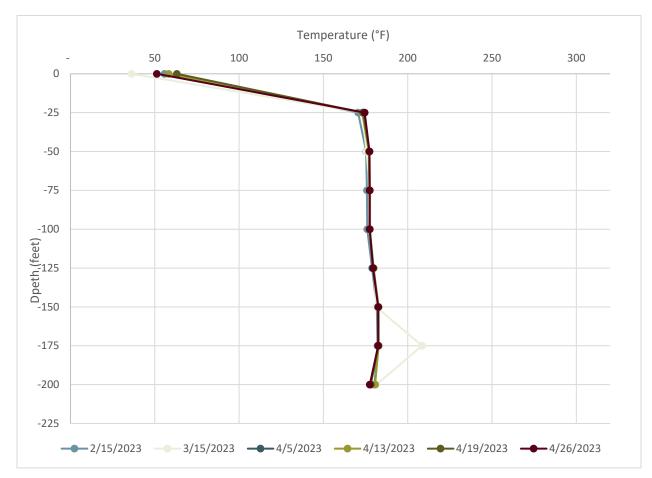


Figure 14. Average Temperatures within TP-8 on Select Days in April

¹⁵ Variation is defined as the difference in the minimum and maximum daily average temperatures on the select days reviewed.

¹⁶ Ambient temperatures were excluded from the average.

Figure 15 shows daily average temperatures in Temperature Probe 9 (TP-9) on February 15, 2023; March 15, 2023; April 13, 2023; April 19, 2023; and April 26, 2023. During the month of April the average variation¹⁷ in temperatures at any given monitoring point along the length of the probe¹⁸ was approximately 1 degree Fahrenheit.

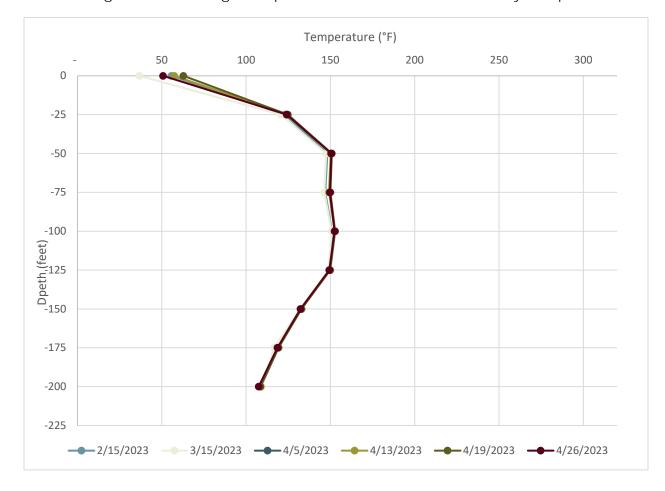


Figure 15. Average Temperatures within TP-9 on Select Days in April

The data indicate that temperatures within the landfill are stable and are typical of those observe at elevated temperature landfills (ETLFs). These temperatures are substantially lower than those associated with landfill fires or other combustion processes which can exceed 1000°F.

4.0 LEACHATE EXTRACTION AND MONITORING

The City has begun taking steps to improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals.

 $^{^{17}}$ Variation is defined as the difference in the minimum and maximum daily average temperatures on the select days reviewed.

¹⁸ Ambient temperatures were excluded from the average.

4.1 EXISTING SYSTEM OPTIMIZATION

During weekly gas extraction well monitoring, SCS also collected stroke counter data from the pumps installed in the GCCS extraction wells. Stroke counts were collected from 20 wells on April 4, 2023; April 11, 2023; April 17, 2023; and April 24, 2023. The data collected is summarized in Table 4. Cells marked with "*" represent dates when the pump was removed from the well for maintenance or had not yet been installed.

Table 4. Summary of Dual Extraction Well Pump Stroke Counter Data

Well	April 4, 2023	April 11, 2023	April 17, 2023	April 24, 2023
EW49	439674	439689	439689	473548
EW50	845964	845969	845969	875548
EW51	293870	295093	386151	386151
EW52	*	227419	227419	227419
EW53	1852621	1852621	1852623	2058923
EW54	*	187927	241201	241210
EW55	*	*	67988	73869
EW57	248612	249017	271202	271262
EW58	1765798	1765870	1818020	1861996
EW59	1455025	1509345	1561477	1613360
EW60	*	165775	171643	172057
EW61	212105	212106	212110	212110
EW62	114035	114038	114043	114045
EW63	48073	48074	48074	48074
EW64	98083	98085	98085	98090
EW65	3950	3956	3967	3967
EW67	347194	347200	386151	450465
EW68	1839271	1844600	1849676	1851951
EW94	*	*	*	33291

Based on this data and stroke counts taken on March 30, 2023, SCS can estimate the number of gallons of liquid pumped from each well. SCS assumed that each stroke correlates to approximately 0.3 gallons of liquid removed from the well. This data will then be used to repair or replace pumps or replace nonfunctional stroke counters. Estimates of the quantities of liquids removed between the reading dates is shown in Table 5.

Table 5. Summary of Dual Extraction Well Pump Liquids Removal

Well	Liquids Removed (gal) March 30, 2023 to April 4, 2023	Liquids Removed (gal) April 4, 2023 to April 11, 2023	Liquids Removed (gal) April 11, 2023 to April 17, 2023	Liquids Removed (gal) April 17, 2023 to April 24, 2023
EW49	1	5	1	10158
EW50	0	2	0	8874
EW51	3838	367	27317	0
EW52	0	3	0	0
EW53	1	0	1	61890
EW54	0	24619	15982	3
EW55	0	0	20396	1764
EW57	0	122	6655	18
EW58	2312	22	15645	13193
EW59	25108	16296	15639	15564
EW60	0	559	1760	124
EW61	0	0	1	0
EW62	7	0	2	1
EW63	1	1	0	0
EW64	0	1	0	2
EW65	0	2	3	0
EW67	1	2	11685	19294
EW68	1780	1599	1522	683
EW94	1	0	5	9987

SCS estimates that approximately 334,000 gallons of liquids were removed from the landfill gas collection and control system during the month of April. This is an increase of approximately 104,000 gallons when compared to the previous month. The change in landfill gas liquids removal over the last three months is depicted in Figure 16.

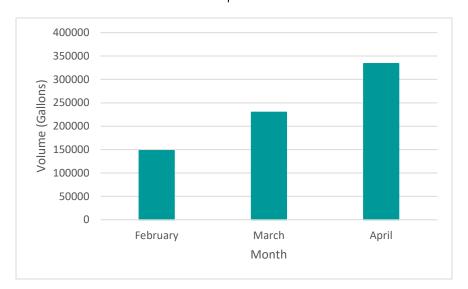


Figure 16. Estimated Volume of Liquids Removed from Landfill Gas Wells

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations. Pumps require servicing after relatively short intervals. During April, pumps were cleaned and repaired on 4/5, 4/6, 4/10, 4/18, 4/19, and 4/21.

Pumps that were determined to be inoperative were removed from their respective extraction wells and replaced with a clean, functioning pump. In April, EW-49, EW-53, EW-55 and EW-59 had their pumps removed and replaced. While servicing EW-53, the tri-tubing was found to be kinked and was repaired. The pump for EW-51 was removed for an extraction well raise and will be reinstalled once fill has been placed around that device.

On April 25, 2023, four pumps were removed and shipped back to the manufacturer's facility (Pump One) for cleaning and repair. These pumps will be returned to the site once repaired and reinstalled in their respective extraction wells.

Wells EW-62, EW-63, EW-64, and EW-65 were disconnected from the airline used to power the pumps for portions of the month of April 2023 due infrastructure relocation associated with the sidewall odor mitigation system and landfill GCCS expansion construction projects.

During the construction of the LFGCCS expansion outlined in Sections 1.4 and 2.1, multiple types of leachate extraction pumps will be installed. After installation, the City and SCS will evaluate the performance of those pumps. Based on that evaluation, the City will select the pump type that is most effective given the landfill conditions.

4.2 SAMPLING AND ANALYSIS PLAN

On November 1, 2022, SCS submitted to VDEQ the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan for the Bristol Integrated Solid Waste Management Facility Solid Waste Permit No. 588 Landfill and the plan was subsequently revised on December 1, 2022. Refer to the November and December Compliance Reports for the SWP No. 588 Landfill for additional information.

4.3 SAMPLING AND ANALYSIS

4.3.1 Sample Collection

On April 13, 2023, SCS collected leachate samples from two Dual Phase LFG-EWs (EW-58 and EW-60). At the time of sample collection dissolved oxygen, oxidation-reduction potential, pH, specific conductance, temperature, and turbidity were measured and recorded. The sample collection log is included in **Appendix F**.

SCS' field staff was not able to collect samples from the other wells for the following reasons:

- Pumps were not running at the time of sample collection in the following wells: EW-49, EW-50, EW-51, EW-52, EW-53, EW-54, EW-56, EW-57, EW-59, EW-61, EW-62, EW-63, EW-64, EW-65, EW-67, and EW-68.
- The pump was not running and well head was stuck and could not be removed on well EW-55.

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia and Weck Laboratories, Inc (Weck) in City of Industry, California for analysis. The Enthalpy's Virginia Division of Consolidated Laboratory Services (VELAP) certifications are provided on the certificate of analysis (COA) included in **Appendix F**. The samples were analyzed for the parameters utilizing the analytical methods described in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan.

4.3.2 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for volatile organic compound (VOC) analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analyses. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A brief summary of each of these is presented below:

- Method Blank The method blank is deionized water subjected to the same reagents
 and manipulations to which site samples are subjected. Positive results in the method
 blanks may indicate either contamination of the chemical reagents or the glassware and
 implements used to store or prepare the sample and resulting solutions.
- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis. MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike

recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.

LCS - These samples consist of distilled/deionized water injected with the parameters of
interest for single parameter methods and selected parameters for multi-parameter
methods according to the appropriate analytical method. LCS samples are prepared and
analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to
monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are similar to the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

Field and laboratory QA/QC also involves the routine collection and analysis of duplicate field samples. These samples are collected at a rate of one per sample event. A duplicate is a separate sample collected independently in such a manner that it equally represents the medium at a given time and location. Co-located samples provide intra-laboratory precision information for the entire measurement system, including sample collection, homogeneity, handling, shipping, storage, preparation, and analysis.

No method or trip blank detects were identified for the April 2023 monitoring event. The laboratory analysis report for the April 2023 monitoring event trip blank is included in **Appendix F**. The April 2023 monitoring event laboratory QA/QC reports, including the method blank results, are included in the COAs in **Appendix F**.

4.3.3 Data Validation

To identify analytical data that may not represent valid results, data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection Agency (EPA) guidance¹⁹. Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with parameter detections less than five times that of the trip blank, field blank, and/or method blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Samples with common laboratory contaminant parameter detections less than 10 times that of the trip blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not validated as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis.

¹⁹ United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. January 2017. United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. January 2017.

No leachate results were flagged with a "B" qualifier for the April 2023 monitoring event as no constituents were detected in the April 2023 method and trip blanks. Constituent detections flagged with a "J" qualifier are shown on **Table 6**.

4.3.4 Laboratory Analytical Results

Chemical characteristics of leachate samples collected from extraction wells EW-58 and EW-60 are summarized in **Table 6**. The associated COA is included in **Appendix F**. Parameter results from April 2023 and previous monitoring events (November 2022 – March 2023) are presented on a table in **Appendix F**. The volatile fatty acids (VFAs) lab results were not available at the time of preparation of this report. VFA monitoring results will be provided in the next compliance report when available.

Table 6. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-58	EW-60	LOD	100
Parameter	April 2023 Co	ncentration	LOD	LOQ
Ammonia as N (mg/L)	1410	1220	73.1	100
Biological Oxygen Demand (mg/L)	8430	2860	0.2	2
Chemical Oxygen Demand (mg/L)		7370	1000	1000
Chemical Oxygen Demand (mg/L)	16800		2000	2000
Nitrate as N (mg/L)	ND	ND	0.6	2.6
Nitrite as N (mg/L)	ND	ND	0.5	2.5
Total Kjeldahl Nitrogen (mg/L)	1820	1510	16.8	50
Total Recoverable Phenolics (mg/L)	18.7	5.1	0.3	0.5
SEMI-VOLATILE ORGANIC COMPOUND	(ug/L)			
Anthracene	ND		37.4	74.8
Antinacene		ND	38.8	77.7
TOTAL METALS (mg/L)				
Arsenic		0.11	0.0005	0.001
Alseriic	0.36		0.005	0.01
TOTAL METALS (mg/L)				
Barium	1.21	0.326	0.01	0.05
Cadmium	0.000158 J	0.000333 J	0.0001	0.001
Chromium		0.142	0.0004	0.001
Chiomidin	0.306		0.004	0.01
Copper	0.00664	0.00767	0.0003	0.001
Lead	0.0022	0.0067	0.001	0.001
Mercury		0.00128	0.0002	0.0002
Mercury	ND		0.0004	0.0004
Nickel	0.1143	0.1732	0.001	0.001
Selenium	0.00189	0.00185	0.00085	0.001
Silver	ND	0.00011 J	0.00006	0.001
Zinc	0.0539		0.0025	0.005
ZIIIC		0.414	0.025	0.05

Table 6. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-58	EW-60	LOD	LOQ	
Parameter	April 2023 Concentration		LOD	LOQ	
VOLATILE ORGANIC COMPOUNDS (ug/L)					
2-Butanone (MEK)	3420	5530	750	2500	
Acetone	8290	7560	1750	2500	
Benzene	3740	320	4	10	
Ethylbenzene	186	43.4	4	10	
Tetrahydrofuran	2410	4790	100	100	
Toluene	303	94.4	5	10	
Xylenes, Total	329	97.4	10	30	

^{--- =} not available

5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

On behalf of the City, SCS submitted a settlement monitoring and management plan to VDEQ on November 15, 2022. Refer to the November Monthly Compliance Report for the SWP No. 588 Landfill for additional information.

5.2 MONTHLY SURVEYS

5.2.1 Topographic Data Collection

The City, through SCS, collected topographic data of the Solid Waste Permit No. 588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone). On April 11, 2023 the flight was completed and the topographic data collected. The topographic data collected is shown on Sheet 1 in Appendix E.

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on March 9, 2023. A drawing depicting the March 9, 2023 topography is included as Sheet 2 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 15,300 cubic yards. During that same time period approximately 5,400 cubic yards of construction related fill were placed on the

J = Constituent was detected at a concentration above the laboratory's LOD but below the laboratory's LOQ. Concentration is estimated and not validated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 9,900 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 17. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 3 in Appendix E.

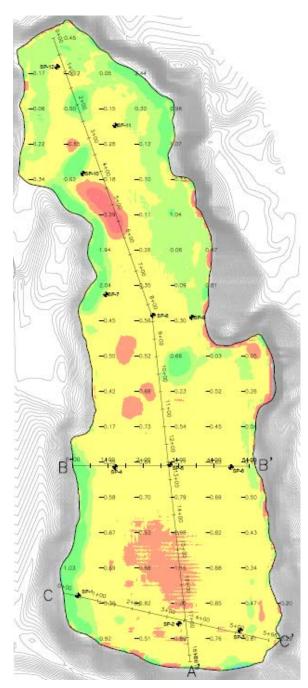


Figure 17. 1-Month Elevation Change Color Map

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 1 foot or more in some areas. The southern end of the landfill is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions. Settlement in the northern portion of the landfill was generally less substantial or was offset by soil placement associated with construction activities. These changes in elevation more representative of typical settlement at municipal landfills. The eastern side of the landfill exhibited an increase in elevation, likely due to sediment deposition during storm events and waste relocation associated with construction of the Sidewall Odor Mitigation System. Increases in elevation along the western edge of the landfill are most likely due to installation of the Sidewall Odor Mitigation System. Some soil stockpile locations associated with the Sidewall Odor Mitigation System showed a large negative elevation change due to material removal from the stockpiles.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation decrease was approximately 0.4 feet.

SCS also compared the topographic data collected in April to the topographic data collected on January 10, 2023. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 16,300 cubic yards. During that same time period approximately 9,900 cubic yards of construction related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 6,400 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 18. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 4 in Appendix E.

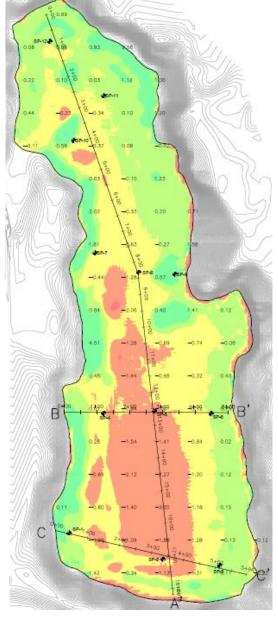


Figure 18. 3-Month Elevation Change Color Map

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 2 feet or more in some areas. The southern end of the landfill is the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions. Settlement in the northern portion of the landfill was generally less substantial or was offset by soil placement associated with construction activities. Changes in elevation in these areas are more representative of typical settlement at municipal landfills. The eastern side of the landfill exhibited an increase in elevation, likely due to sediment deposition during storm events and waste relocation associated with construction of the Sidewall Odor Mitigation System. Increases in elevation along the western edge of the landfill are most likely due to installation of the Sidewall Odor Mitigation System. There were some large variations in elevation associated with soil stockpiling operations.

SCS will collect topographic data covering the landfill surface again in May using photogrammetric methods via UAV. This data will be compared to the data collected in April and February.

5.2.2 Settlement Plate Surveys

On November 7, 2022 SCS field services installed 12 settlement plates on the Solid Waste Permit No. 588 landfill. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan. The tops of the PVC pipes were spray painted orange to improve visibility.

The locations of the settlement plates were surveyed by the City's surveyor on November 14, 2022. The settlement plates were surveyed again on December 13, 2022; January 3, 2023; February 6, 2023; March 8, 2023; and April 3, 2023. The settlement plate locations are depicted in Figure 23 on Sheet 1 in Appendix E. The surveyed coordinates²⁰ and elevation changes of the settlement plates are shown in Table 7.

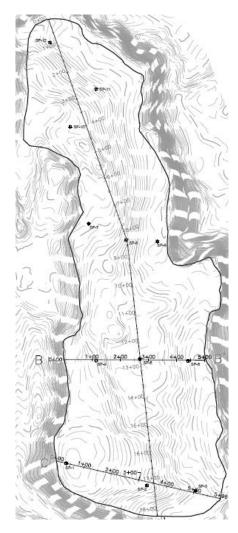


Figure 19. Settlement Plate Locations

²⁰ Settlement plate locations and coordinates are based on a local coordinate system.

Table 7. Settlement Plate Locations

Settlement Plate	Northing	Easting	Elevation on April 3, 2023	Elevation Change Since March 8, 2023	Strain ²¹ Since March 8, 2023	Elevation Change Since Installation	Strain Since Installation
SP-1	3,397,886.5	10,412,078.5	1,832.9	0.0	0.0%	-1.5	-2.2%
SP-2	3,397,807.4	10,412,364.5	1,807.4	-0.4	-0.2%	-3.1	-1.9%
SP-3	3,397,787.2	10,412,536.6	1,783.4	0.0	0.0%	-0.3	-0.4%
SP-4 ²²	3,398,250.1	10,412,186.7	1,813.8	-0.6	-0.4%	-3.7	-2.4%
SP-5	3,398,256.4	10,412,339.0	1,798.2	-0.3	-0.1%	-2.5	-1.0%
SP-6	3,398,249.5	10,412,510.7	1,777.0	0.0	0.0%	-0.7	-0.5%
SP-7 ²³	3,398,736.5	10,412,156.8	1,827.7	0.9	0.8%	-0.9	-0.8%
SP-8	3,398,679.2	10,412,290.7	1,805.4	-0.2	-0.1%	-1.9	-0.8%
SP-9	3,398,674.0	10,412,401.2	1,785.0	-0.2	-0.2%	-0.8	-0.8%
SP-10	3,399,080.4	10,412,091.9	1,839.4	-0.2	-0.1%	-0.8	-0.3%
SP-11	3,399,216.1	10,412,183.7	1,816.0	0.0	0.0%	-0.3	-0.1%
SP-12	3,399,381.7	10,412,019.4	1,810.4	0.0	0.0%	-0.2	-0.2%

Settlement Plates 1, 2, and 4 demonstrated substantial elevation change. SCS believes that Settlement Plate 4 was disturbed by grading work on an adjacent roadway. The other 2 settlement plates are towards the center of the waste mass and in the southern end of the landfill. This area is where waste was most recently placed and is expected to show the most rapid settlement. This area is also the location of the gas wells and temperature probes exhibiting higher temperatures. These higher settlement values are typical of elevated temperature landfill conditions.

The changed in elevation at Settlement Plates 10, 11, and 12 is lower more representative of typical settlement at municipal landfills. The change in elevation at Settlement Plates 3, 5, 6, 8, and 9 falls somewhere in between these two categories. Field observations indicate that Settlement Plate 7 may also have been damaged during construction operations.

The settlement plates will be surveyed again during the month of May. The elevations surveyed will be compared to the elevations surveyed the previous months.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City is taking steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below outline the steps taken by the City.

²¹ Strain is defined as the change in elevation divided by the estimated waste depth.

²² Based on field observations SP-4 appears to have been disturbed during grading on an adjacent roadway.

²³ Based on field observations SP-7 appears to have been disturbed during grading on an adjacent stockpile.

6.1 INTERMEDIATE COVER INSTALLATION

The City completed hauling and placement of a 12-inch thick intermediate cover across the entire landfill prior to October 10, 2022. The cover was placed in accordance with 9VAC20-81-140(B)(1)(d). SCS coordinated with the City to dig a series of test holes to verify cover thickness in select locations. Details of these verifications were discussed in the October Monthly Compliance Report for the SWP No. 588 Landfill.

6.2 EVOH COVER SYSTEM DESIGN

SCS submitted responses, including revised documents, on March 20, 2023 to comments received from VDEQ concerning the Interim EVOH Cover System Preliminary Design Plans. The submitted documents included a revised operations manual and settlement calculations for the proposed stormwater basin.

SCS is preparing construction drawings for the EVOH Cover System, including revisions discussed in the response to comments letter. The construction drawings build upon the preliminary design plans. The stormwater management plan drawings will be incorporated into the construction drawing set. Potential modifications to the stormwater management plan submitted to VDEQ on April 28, 2023 will be included in the construction drawing set along with applicable calculations. Other additions to the construction drawings include additional design cross sections, landfill gas management plans and details, access road design, and other items.

SCS is also drafting specifications and contract documents for the construction of the EVOH Cover System.

6.3 EVOH COVER SYSTEM PROCUREMENT

Drawings used for the purposes of bidding, procurement and construction of the EVOH cover system will generally conform to the layout and details in the drawings described in section 6.2. SCS also prepared and submitted to VDEQ a specification for the EVOH geomembrane on January 30, 2023 based upon industry standards and discussions with material manufacturers. This specification and drawing set represent the first steps in the procurement process. SCS and the City have coordinated with potential suppliers to specify a product that is not currently anticipated to have long lead times. SCS has received a pro-forma data sheet from one manufacturer which is preparing a customized EVOH product for the No. 588 landfill.

6.4 EVOH COVER SYSTEM INSTALLATION

Installation of the EVOH cover system will begin after the installation of other infrastructure is complete.

7.0 STORMWATER MANAGEMENT

The stormwater management plan was submitted to VDEQ on April 28, 2023. The plan addresses the stormwater volume calculations, assumptions, design, and control measures. A copy of this plan in included in Appendix I.

The plan proposes a stormwater pumping system to convey stormwater collected atop the EVOH cover system to an adequate discharge point in compliance with VPDES permit VAR050053. The

proposed system includes the construction of a collection basin in the southeast corner of the quarry and the installation of a nearby long-term stormwater pump. The stormwater will be conveyed by a pipe adjacent to the basin access road.

The plan proposes modifications to the existing stormwater basins west of the quarry to achieve discharge quantity targets. Modifications include potentially increasing the basin depths and installing new outlet riser structures.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit No. 588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

SCS submitted the Monitoring, Maintenance, and Repair Plan to VDEQ for the SWP No. 588 landfill on December 30, 2022. Refer to the December 2022 Monthly Compliance Report for the SWP No. 588 Landfill for additional information. The City has taken steps to implement the plan that were detailed in the March 2023 Monthly Compliance Report for the SWP No. 588.

8.3 MONTHLY COMPLIANCE REPORTS

As described in the introduction this report is intended to provide comprehensive updates regarding progress towards completion of each item described in Appendix A of the Consent Decree between the City and VDEQ,

8.4 COMMUNITY OUTREACH PROGRAM

The City's consultant leading community outreach, McGuireWoods Consulting, described the actions taken as part of their community outreach efforts. For the month of April, those actions include:

- April ongoing basis: Fifteen posts on the BristalVALandfill.org site and the existing City
 of Bristol Landfill Notifications and Information page covering several important updates
 including:
 - Progress updates during construction of the Sidewall Odor Mitigation System (SOMS).
 - Progress updates during installation of the gas well expansion project
 - City published statement related to the consent order resolution regarding the federal lawsuit over the Bristol Quarry Landfill between Bristol, VA and Bristol, TN
 - Provided links to news articles chronicling construction updates and information on legal updates about the quarry landfill
- E-mail communication sent to the list of members of the public signed up through the Bristol, VA website, the BristolVALandfill.org website, or at the November 1 Open House to receive information via e-mail

- E-mails sent included weekly remediation progress update and links to website updates and latest news articles on the following days:
 - Friday, April 7th
 - Friday, April 21st
 - Friday, April 28th

Appendix A

Surface Emissions Monitoring Summary Letters

April 12, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – April 4, 2023

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on April 4, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the newly installed temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	147
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	47
Number of Exceedances ¹	1
Number of Serpentine Exceedances	1
Number of Pipe Penetration Exceedances	0

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	4/4/23 Event	4/4/23 Event Result	Comments
EW-52	3/29/23	10-Day Retest	Passed	Requires 30-Day Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Quinn F. Bernier, PE Project Professional SCS Engineers Lucas S. Nachman Project Professional SCS Engineers

Lucus D. Nachman

LSN/QFB/cjw

cc: Randall Eads, City of Bristol

Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	20.8 PPM	OK			Start Serpentine
2	3.5 PPM	OK			Route
3	35.8 PPM	OK			
4	4.5 PPM	OK			
5	49.4 PPM	OK			
6	6.9 PPM	OK			
7	8.4 PPM	OK			
8	33 PPM	OK			
9	1 <i>5.7</i> PPM	OK			
10	40 PPM	OK			
11	31.8 PPM	OK			
12	318 PPM	OK			
13	5.5 PPM	OK			
14	4.8 PPM	OK			
15	8.8 PPM	OK			
16	9.1 PPM	OK			
17	410 PPM	OK			
18	6.7 PPM	OK			
19	7.8 PPM	OK			
20	65 PPM	OK			
21	42.4 PPM	OK			
22	81.9 PPM	OK			
23	71.4 PPM	OK			
24	190 PPM	OK			
25	229 PPM	OK			
26	5908 PPM	HIGH_ALRM	36.59755	-82.14758	
27	89.3 PPM	OK			
28	208 PPM	OK			
29	44.5 PPM	OK			
30	10.9 PPM	OK			
31	12.3 PPM	OK			
32	4.6 PPM	OK			
33	6.4 PPM	OK			
34	10.8 PPM	OK			
35	7.3 PPM	OK			
36	15.4 PPM	OK			
37	6.8 PPM	OK			
38	1.5 PPM	OK			
39	0.9 PPM	OK			
40	1 PPM	OK			
41	2.7 PPM	OK			
42	7.4 PPM	OK			
72	/ • ** 11/41	OK .			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
43	4.6 PPM	OK			
44	3.8 PPM	OK			
45	0.4 PPM	OK			
46	3.7 PPM	OK			
47	3.5 PPM	OK			
48	44.4 PPM	OK			
49	7.7 PPM	OK			
50	2.5 PPM	OK			
51	2.7 PPM	OK			
52	463 PPM	OK			
53	0.6 PPM	OK			
54	10.2 PPM	OK			
55	15.2 PPM	OK			
56	3.5 PPM	OK			
57	O PPM	OK			
58	0.4 PPM	OK			
59	3 PPM	OK			
60	0.5 PPM	OK			
61	2.5 PPM	OK			
62	32.5 PPM	OK			
63	4.6 PPM	OK			
64	12.4 PPM	OK			
65	3.5 PPM	OK			
66	2 PPM	OK			
67	19.2 PPM	OK			
68	37.5 PPM	OK			
69	25.9 PPM	OK			
70	77.3 PPM	OK			
71	2.6 PPM	OK			
72	36.7 PPM	OK			
73	6.2 PPM	OK			
74	30.1 PPM	OK			
75	40.7 PPM	OK			
76	39.6 PPM	OK			
77	59.6 PPM	OK			
78	107 PPM	OK			
79	52.3 PPM	OK			
80	2.8 PPM	OK			
81	1 PPM	OK			
82	1.1 PPM	OK			
83	3.5 PPM	OK			
84	7.4 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
85	3.6 PPM	OK			
86	0.4 PPM	OK			
87	1.7 PPM	OK			
88	11.9 PPM	OK			
89	4.4 PPM	OK			
90	0.1 PPM	OK			
91	13.9 PPM	OK			
92	11.2 PPM	OK			
93	5.4 PPM	OK			
94	40.3 PPM	OK			
95	67.1 PPM	OK			
96	13.8 PPM	OK			
97	1 <i>7</i> 1 PPM	OK			
98	12.2 PPM	OK			
99	115 PPM	OK			
100	13.6 PPM	OK			End Serpentine
					Route
101	43.2 PPM	OK			EW-35
102	64.8 PPM	OK			EW-52
103	6.9 PPM	OK			TP-4
104	119 PPM	OK			EW-60
105	104 PPM	OK			EW-48
106	0.2 PPM	OK			TP-6
107	9.6 PPM	OK			EW-61
108	3.3 PPM	OK			EW-36
109	18.2 PPM	OK			EW-34
110	37 PPM	OK			EW-50
111	68.9 PPM	OK			EW-67
112	0.7 PPM	OK			EW-47
113	416 PPM	OK			EW-54
114	29 PPM	OK			EW-55
115	4 PPM	OK			TP-2
116	5.2 PPM	OK			EW-46
117	9.7 PPM	OK			EW-66
118	152 PPM	OK			EW-58
119	3.3 PPM	OK			EW-57
120	26 PPM	OK OK			TP-1
121	170 PPM	OK OK			EW-59
121	148 PPM	OK OK			EW-56
123	68.9 PPM	OK OK			EW-41
123		OK OK			EW-53
124	36.9 PPM 19.6 PPM	OK OK			EW-53 EW-40

	Methane			ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comment
126	17.2 PPM	ОК			TP-3
127	202 PPM	OK			EW-51
128	46 PPM	OK			EW-39
129	12.3 PPM	OK			TP-5
130	55.9 PPM	OK			EW-68
131	206 PPM	OK			EW-38
132	5.5 PPM	OK			TP-7
133	0.8 PPM	OK			EW-49
134	3.9 PPM	OK			EW-31R
135	0.1 PPM	OK			EW-65
136	0.3 PPM	OK			EW-37
137	1.1 PPM	OK			TP-8
138	0.8 PPM	OK			EW-64
139	7.6 PPM	OK			EW-30R
140	6.4 PPM	OK			EW-63
141	3.3 PPM	OK			EW-42
142	2.2 PPM	OK			TP-9
143	1 PPM	OK			EW-33F
144	2.3 PPM	OK			EW-62
145	0.8 PPM	OK			EW-29
	4.5 PPM	OK			EW-32
146		OK			EW-32

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - APRIL 4, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

Methane GPS Coordinates

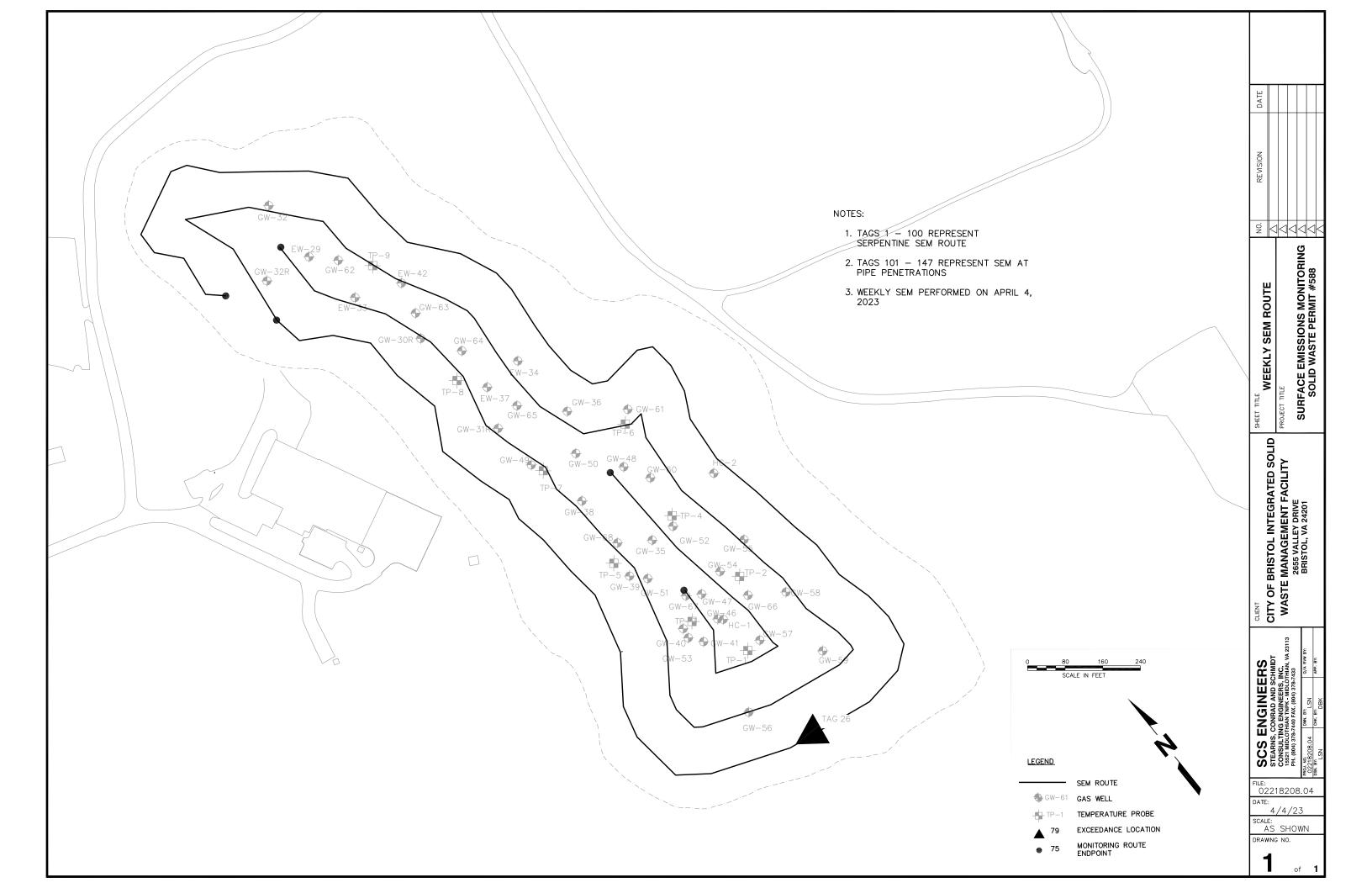
ID # Concentration Compliance Lat. Long. Comments

NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 147 represent SEM at Pipe Penetrations

Weather Conditions: Partly Cloudy, 65°F Wind: W - 5 MPH


Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm

 4/4/2023
 8:15
 ZERO
 0.0 PPM

 4/4/2023
 8:17
 SPAN
 500.0 PPM

Background Reading:

4/4/2023 8:21 Upwind 1.5 PPM 4/4/2023 8:28 Downwind 22.1 PPM

April 19, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event - April 13, 2023

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on April 13, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	147
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	47
Number of Exceedances ¹	3
Number of Serpentine Exceedances	1
Number of Pipe Penetration Exceedances	2

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	4/13/23 Event	4/13/23 Event Result	Comments
EW-52	3/29/23	10-Day Retest	Failed	Requires Second 10-Day Retest
Tag 26	4/4/23	10-Day Retest	Failed	Requires Second 10-Day Retest

If you have questions or require additional information, please contact either of the undersigned.

Lucas D. Nachman

Lucas S. Nachman

SCS Engineers

Senior Project Professional

Sincerely,

Nicholas Gathings Associate Staff Professional SCS Engineers

LSN/QFB/cjw

cc: Randall Eads, City of Bristol

Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	44.2 PPM	OK			Start Serpentine
2	147 PPM	OK			Route
3	78.7 PPM	OK			
4	126 PPM	OK			
5	60.4 PPM	OK			
6	94.7 PPM	OK			
7	325 PPM	OK			
8	126 PPM	OK			
9	93.1 PPM	OK			
10	74.7 PPM	OK			
11	78.9 PPM	OK			
12	61 PPM	OK			
13	127 PPM	OK			
14	115 PPM	OK			
15	91.7 PPM	OK			
16	78 PPM	OK			
1 <i>7</i>	210 PPM	OK			
18	150 PPM	OK			
19	55.6 PPM	OK			
20	280 PPM	OK			
21	129 PPM	OK			
22	267 PPM	OK			
23	29.8 PPM	OK			
24	4.1 PPM	OK			
25	80.3 PPM	OK			
26	117 PPM	OK			
27	4415 PPM	HIGH_ALRM	36.59729	-82.14759	
28	315 PPM	OK			
29	212 PPM	OK			
30	29.6 PPM	OK			
31	147 PPM	OK			
32	6.2 PPM	OK			
33	7.3 PPM	OK			
34	7.6 PPM	OK			
35	43.4 PPM	OK			
36	9.2 PPM	OK			
37	144 PPM	OK			
38	58.8 PPM	OK			
39	22.4 PPM	OK			
40	32.2 PPM	OK			
41	15.9 PPM	OK			
42	31.6 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
43	34.7 PPM	OK			
44	30.5 PPM	OK			
45	36.3 PPM	OK			
46	26 PPM	OK			
47	285 PPM	OK			
48	70 PPM	OK			
49	173 PPM	OK			
50	411 PPM	OK			
51	72.6 PPM	OK			
52	213 PPM	OK			
53	141 PPM	OK			
54	156 PPM	OK			
55	57.5 PPM	OK			
56	44.3 PPM	OK			
57	30.7 PPM	OK			
58	29.1 PPM	OK			
59	29.1 PPM	OK			
60	24.8 PPM	OK			
61	37.1 PPM	OK			
62	90.8 PPM	OK			
63	50.8 PPM	OK			
64	105 PPM	OK			
65	78.9 PPM	OK			
66	448 PPM	OK			
67	228 PPM	OK			
68	93.2 PPM	OK			
69	131 PPM	OK			
70	113 PPM	OK			
71	465 PPM	OK			
72	97.8 PPM	OK			
73	8.1 PPM	OK			
74	5.7 PPM	OK			
75	6.7 PPM	OK			
76	27.4 PPM	OK			
77	12.1 PPM	OK			
78	10 PPM	OK			
79	10.7 PPM	OK			
80	3.2 PPM	OK			
81	97.7 PPM	OK			
82	92.2 PPM	OK			
83	18.4 PPM	OK			
84	10.6 PPM	OK			

//	Methane			ordinates	_
ID#	Concentration	Compliance	Lat.	Long.	Comments
85	33 PPM	OK			
86	29.2 PPM	OK			
87	28.3 PPM	OK			
88	29.8 PPM	OK			
89	29 PPM	OK			
90	29.8 PPM	OK			
91	343 PPM	OK			
92	43.8 PPM	OK			
93	7.2 PPM	OK			
94	144 PPM	OK			
95	474 PPM	OK			
96	147 PPM	OK			
97	298 PPM	OK			
98	107 PPM	OK			
99	119 PPM	OK			
100	50.9 PPM	OK			End Serpentine
					Route
101	458 PPM	OK			EW-35
102	1705 PPM	HIGH_ALRM	36.59900	-82.14749	EW-52
103	196 PPM	OK			TP-4
104	216 PPM	OK			EW-60
105	186 PPM	OK			EW-48
106	90.5 PPM	OK			TP-6
10 <i>7</i>	90.7 PPM	OK			EW-61
108	151 PPM	OK			EW-36
109	364 PPM	OK			EW-34
110	164 PPM	OK			EW-50
111	373 PPM	OK			EW-67
112	220 PPM	OK			EW-47
113	193 PPM	OK			EW-54
114	252 PPM	OK			EW-55
115	46.1 PPM	OK			TP-2
116	44.4 PPM	OK			EW-46
11 <i>7</i>	299 PPM	OK			EW-66
118	366 PPM	OK			EW-58
119	154 PPM	OK			EW-57
120	155 PPM	OK			TP-1
121	798 PPM	HIGH_ALRM	36.59789	-82.14716	EW-59
122	38.7 PPM	OK			EW-56
123	45.3 PPM	OK			EW-41
124	135 PPM	OK			EW-53
125	65 PPM	OK			EW-40

	Methane			ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comment
126	123 PPM	ОК			TP-3
127	11.5 PPM	OK			EW-51
128	24.5 PPM	OK			EW-39
129	267 PPM	OK			TP-5
130	3.7 PPM	OK			EW-68
131	61.6 PPM	OK			EW-38
132	106 PPM	OK			TP-7
133	2.2 PPM	OK			EW-49
134	4.2 PPM	OK			EW-31
135	12.1 PPM	OK			EW-65
136	1.7 PPM	OK			EW-37
137	36.6 PPM	OK			TP-8
138	3.3 PPM	OK			EW-64
139	6.1 PPM	OK			EW-301
140	13.6 PPM	OK			EW-63
141	0.4 PPM	OK			EW-42
142	3.1 PPM	OK			TP-9
143	2.7 PPM	OK			EW-331
144	5.5 PPM	OK			EW-62
145	0.8 PPM	OK			EW-291
1.47	38.3 PPM	OK			EW-32
146					EW-321

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - APRIL 13, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

Methane GPS Coordinates

ID # Concentration Compliance Lat. Long. Comments

NOTES:

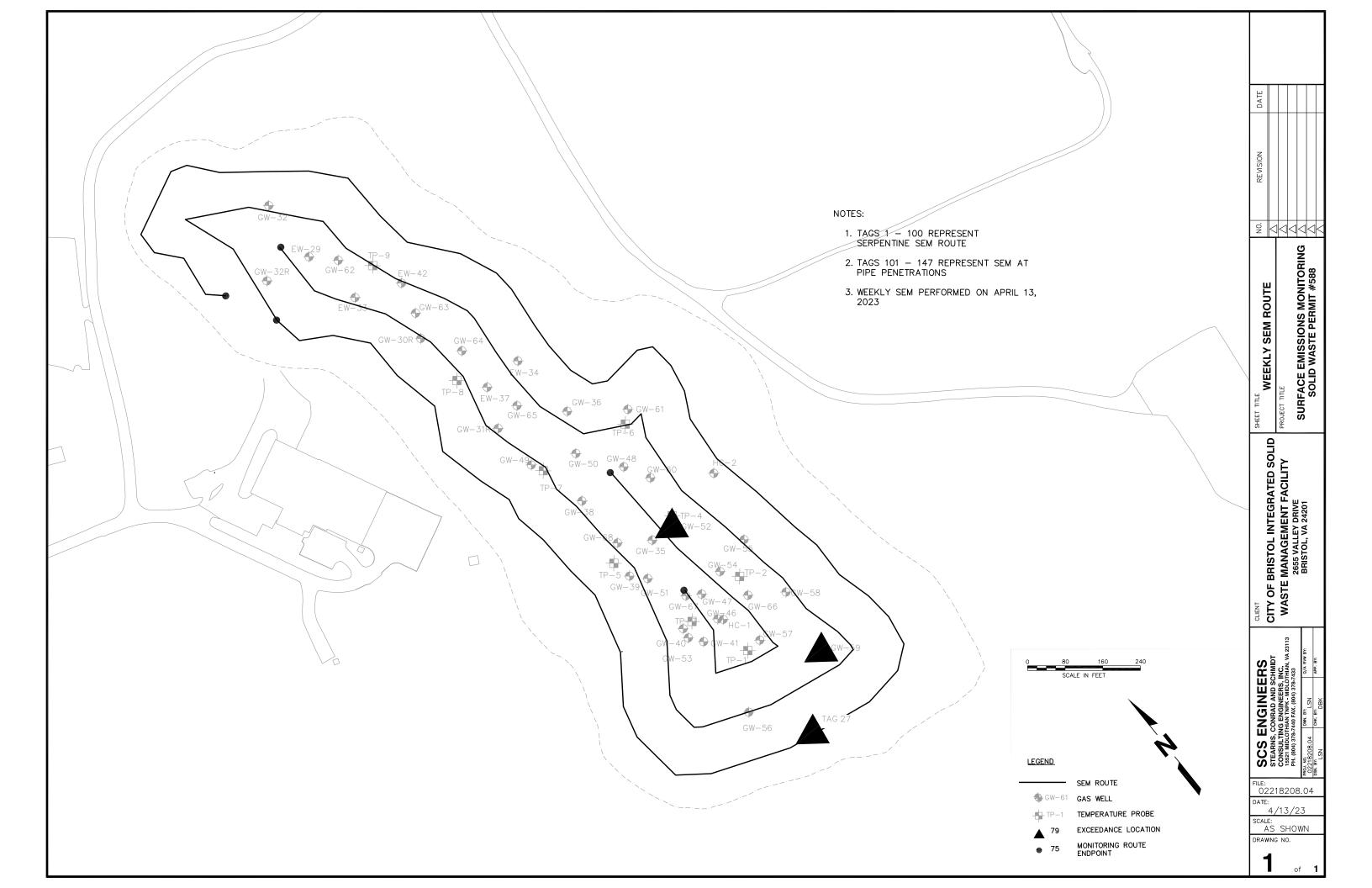
Points 1 through 100 represent serpentine SEM route.

Points 101 through 147 represent SEM at Pipe Penetrations

Weather Conditions: Partly Cloudy,74°F Wind: NW - 5 MPH

Tag 27 was recorded at the approximate location of the exceedance tag 26 from the April 4, 2023 monitoring event. Therefore, Tag 27 is to be documented as a continuation of the exceedance rather than a new exceedance point

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm


 4/13/2023
 7:12
 ZERO
 0.0 PPM

 4/13/2023
 7:15
 SPAN
 500.0 PPM

Background Reading:

 4/13/2023
 7:18
 Upwind
 3.2 PPM

 4/13/2023
 7:25
 Downwind
 11.3 PPM

April 26, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – April 20, 2023

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on April 20, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	160
Number of Points in Serpentine Route	104
Number of Points at Surface Cover Penetrations	56
Number of Exceedances ¹	5
Number of Serpentine Exceedances	1
Number of Pipe Penetration Exceedances	4

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

SCS believes the following factors are influencing surface emissions at the Permit No. 588 Landfill:

- Construction of the Sidewall Odor Mitigation System has required excavations into the cover soil and waste temporarily resulting in increased surface emissions.
- Modifications to the landfill gas collection system has resulted in a temporary reduction in the capacity of the landfill gas collection system. These modifications are necessary to install the sidewall odor mitigation system.
- New landfill gas extraction wells have been installed and brought online, but have not yet been equipped with supplemental emissions reducing components, such as liquids extraction pumps and wellbore seals. Those components will be added after the expansion is complete.

The City and the installation contractor are working diligently to minimize the duration and impacts of these temporary factors.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	4/20/23 Event	4/20/23 Event Result	Comments
EW-52	3/29/23	Second 10-Day Retest	Passed	Requires 30-Day Retest
Tag 26	4/4/23	Second 10-Day Retest	Passed	Requires 30-Day Retest
EW-59	4/13/23	10-Day Retest	Passed	Requires 30-Day Retest

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Quinn F. Bernier, PE Project Professional

SCS Engineers

Lucas S. Nachman

Senior Project Professional

Lucus D. Nachman

SCS Engineers

LSN/QFB/cjw

cc: Randall Eads, City of Bristol

Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

	Methane	GPS Coordinates			
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	1.1 PPM	OK			Start Serpentine
2	5.8 PPM	OK			Route
3	12.8 PPM	OK			
4	404 PPM	OK			
5	13.6 PPM	OK			
6	37 PPM	OK			
7	84.4 PPM	OK			
8	110 PPM	OK			
9	54 PPM	OK			
10	55.3 PPM	OK			
11	184 PPM	OK			
12	287 PPM	OK			
13	267 PPM	OK			
14	29.5 PPM	OK			
15	108 PPM	OK			
16	20.5 PPM	OK			
17	9.1 PPM	OK			
18	49.3 PPM	OK			
19	59.5 PPM	OK			
20	6.8 PPM	OK			
21	1706 PPM	HIGH_ALRM	36.59845	-82.14681	
22	284 PPM	OK			
23	69.7 PPM	OK			
24	47.6 PPM	OK			
25	453 PPM	OK			
26	333 PPM	OK			
27	272 PPM	OK			
28	32.7 PPM	OK			
29	24.1 PPM	OK			
30	25.3 PPM	OK			
31	4.1 PPM	OK			
32	4.6 PPM	OK			
33	3.7 PPM	OK			
34	3.2 PPM	OK			
35	9.9 PPM	OK			
36	29.6 PPM	OK			
37	12.8 PPM	OK			
38	15.2 PPM	OK			
39	45.7 PPM	OK			
40	8.2 PPM	OK			
41	8.1 PPM	OK OK			
42		OK OK			
42	11.9 PPM	OK			

	Methane	GPS Coordinates			
ID#	Concentration	Compliance	Lat.	Long.	Comments
43	3.9 PPM	OK			
44	3.6 PPM	OK			
45	27.7 PPM	OK			
46	75.1 PPM	OK			
47	3.2 PPM	OK			
48	6.5 PPM	OK			
49	3.6 PPM	OK			
50	1.7 PPM	OK			
51	2.3 PPM	OK			
52	1.4 PPM	OK			
53	2.8 PPM	OK			
54	26.3 PPM	OK			
55	4.8 PPM	OK			
56	4.3 PPM	OK			
57	1.6 PPM	OK			
58	1.1 PPM	OK			
59	2.8 PPM	OK			
60	1.3 PPM	OK			
61	2.5 PPM	OK			
62	5.9 PPM	OK			
63	45.2 PPM	OK			
64	0.8 PPM	OK			
65	45.5 PPM	OK			
66	10.8 PPM	OK			
67	13.3 PPM	OK			
68	4.4 PPM	OK			
69	9.9 PPM	OK			
70	8.1 PPM	OK			
71	1.4 PPM	OK			
72	3 PPM	OK			
73	1.4 PPM	OK			
74	7.2 PPM	OK			
75	17.3 PPM	OK			
76	27.6 PPM	OK			
77	3.6 PPM	OK			
78	12.1 PPM	OK			
79	56.1 PPM	OK			
80	376 PPM	OK			
81	6.6 PPM	OK			
82	98.2 PPM	OK			
83	15 PPM	OK			
84	75.1 PPM	OK			

		Methane	GPS Coordinates			
II) #	Concentration	Compliance	Lat.	Long.	Comments
;	85	4 PPM	OK			
;	86	2.1 PPM	OK			
;	87	3.2 PPM	OK			
;	88	0.1 PPM	OK			
;	89	1.2 PPM	OK			
•	90	1.5 PPM	OK			
•	91	1.8 PPM	OK			
•	92	2.6 PPM	OK			
	93	2 PPM	OK			
•	94	370 PPM	OK			
	95	5.5 PPM	OK			
	96	2.2 PPM	OK			
	97	17.9 PPM	OK			
	98	1.6 PPM	OK			
•	99	58.5 PPM	OK			
1	00	38.5 PPM	OK			
1	01	55.8 PPM	OK			
	02	31.2 PPM	OK			
	03	10.2 PPM	OK			
	04	0.9 PPM	OK			End Serpentine
						Route
1	05	391 PPM	OK			EW-35
	06	176 PPM	OK			EW-52
	07	23.2 PPM	OK			TP-4
	08	159 PPM	OK			EW-60
	09	196 PPM	OK			EW-48
	10	6 PPM	OK			TP-6
	11	62.3 PPM	OK			EW-61
	12	0.7 PPM	OK			EW-36
	13	64.3 PPM	OK			EW-34
	14	24.5 PPM	OK			EW-50
	15	210 PPM	OK			EW-67
	16	387 PPM	OK			EW-47
	17	144 PPM	OK			EW-54
	18	251 PPM	OK			EW-55
	19	1.8 PPM	OK			TP-2
	20	4.3 PPM	OK OK			EW-46
	21	27.8 PPM	OK OK			EW-66
	22	42.1 PPM	OK OK			EW-58
	23	127 PPM	OK OK			EW-57
	24	127 PPM 121 PPM	OK OK			TP-1
	25	66.6 PPM	OK OK			EW-59

	Methane			ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
10/	400 PP44	01/			5) 1 / 5 /
126	423 PPM	OK			EW-56
127	136 PPM	OK			EW-41
128	55.2 PPM	OK			EW-53
129	23 PPM	OK			EW-40
130	31.1 PPM	OK			TP-3
131	9.6 PPM	OK			EW-51
132	424 PPM	OK			EW-39
133	94.3 PPM	OK			TP-5
134	15.6 PPM	OK			EW-68
135	3061 PPM	HIGH_ALRM	36.59944	-82.14791	EW-38
136	89.8 PPM	OK			TP-7
137	50.3 PPM	OK			EW-49
138	1.1 PPM	OK			EW-31R
139	5 PPM	OK			EW-65
140	1.6 PPM	OK			EW-37
141	1.8 PPM	OK			TP-8
142	0.2 PPM	OK			EW-64
143	4.1 PPM	OK			EW-30R
144	0.2 PPM	OK			EW-63
145	3.7 PPM	OK			EW-42
146	7 PPM	OK			TP-9
147	1.8 PPM	OK			EW-33R
148	1.8 PPM	OK			EW-62
149	5.5 PPM	OK			EW-29R
150	0.1 PPM	OK			EW-32
151	1 PPM	OK			EW-32R
152	1588 PPM	HIGH_ALRM	36.59860	-82.14692	EW-94
153	54.6 PPM	OK	20.27000	02072	EW-98
154	314 PPM	OK			EW-100
155	6 PPM	OK OK			EW-99
156	6.2 PPM	OK OK			EW-95
157	4123 PPM	HIGH_ALRM	36.59890	-82.14826	EW-90
158	477 PPM	OK	30.37070	-02.14020	EW-86
159	2376 PPM	HIGH_ALRM	36.59989	-82.14832	EW-84
160	2.2 PPM	OK	30.37707	-02.14032	EW-84
100	Z.Z YY/V\	OK			E 44-90

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - APRIL 20, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

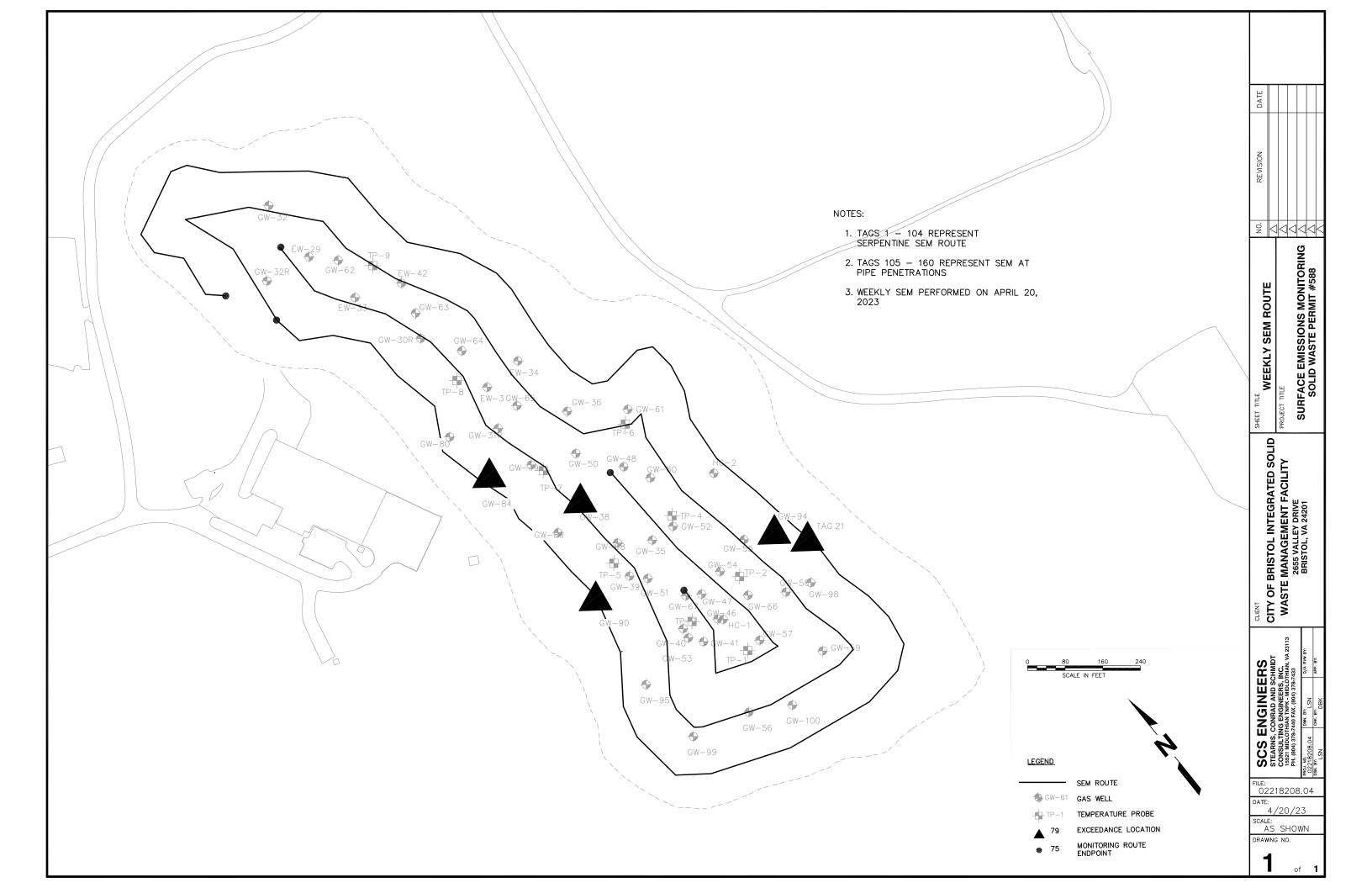
Methane GPS Coordinates

ID # Concentration Compliance Lat. Long. Comments

Number of locations sampled: 160
Number of exceedance locations: 5

NOTES:

Points 1 through 104 represent serpentine SEM route. Points 105 through 160 represent SEM at Pipe Penetrations Weather Conditions: Sunny, $70^{\circ}F$ Wind: E - 5 MPH


Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm

4/20/2023 8:13 ZERO 0.1 PPM 4/20/2023 8:16 SPAN 499.0 PPM

Background Reading:

 4/20/2023
 8:17
 Upwind
 2 PPM

 4/20/2023
 8:37
 Downwind
 3.6 PPM

May 3, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event - April 27, 2023

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on April 27, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the temperature probes and the newly installed and connected gas extraction wells. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	158
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	58
Number of Exceedances	4
Number of Serpentine Exceedances	1
Number of Pipe Penetration Exceedances	3

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

SCS believes the following factors are influencing surface emissions at the Permit No. 588 Landfill:

- Construction of the Sidewall Odor Mitigation System has required excavations into the cover soil and waste temporarily resulting in increased surface emissions.
- Modifications to the landfill gas collection system has resulted in a temporary reduction in the capacity of the landfill gas collection system. These modifications are necessary to install the sidewall odor mitigation system.
- New landfill gas extraction wells have been installed and brought online, but have not yet been equipped with supplemental emissions reducing components, such as liquids extraction pumps and wellbore seals. Those components will be added after the expansion is complete.

The City and the installation contractor are working diligently to minimize the duration and impacts of these temporary factors.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	4/27/23 Event	4/27/23 Event Result	Comments
EW-52	3/29/23	30-Day Retest	Passed	Exceedance Resolved
Tag 26	4/4/23	N/A	Passed	Requires 30-Day Retest
EW-59	4/13/23	N/A	Passed	Requires 30-Day Retest
Tag 21	4/20/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-38	4/20/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-84	4/20/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-90	4/20/23	10-Day Retest	Passed	Requires 30-Day Retest
EW-94	4/20/23	10-Day Retest	Passed	Requires 30-Day Retest

If you have questions or require additional information, please contact either of the undersigned.

Lucus D. Nachman

Lucas S. Nachman

SCS Engineers

Senior Project Professional

Sincerely,

Nicholas Gathings **Associate Staff Professional**

SCS Engineers

LSN/NG/cjw

Randall Eads, City of Bristol cc:

Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. **Surface Emissions Monitoring Results**

Bristol SEM Route Drawing

	Methane	GPS Coordinates			
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	16.4 PPM	OK			Start Serpentine
2	11.9 PPM	OK			Route
3	52 PPM	OK			
4	14.4 PPM	OK			
5	56.8 PPM	OK			
6	54.9 PPM	OK			
7	39.6 PPM	OK			
8	63.4 PPM	OK			
9	116 PPM	OK			
10	51.4 PPM	OK			
11	63.8 PPM	OK			
12	60.3 PPM	OK			
13	61.8 PPM	OK			
14	54.7 PPM	OK			
15	179 PPM	OK			
16	62.5 PPM	OK			
17	60.8 PPM	OK			
18	39.9 PPM	OK			
19	92.5 PPM	OK			
20	49.9 PPM	OK			
21	43.3 PPM	OK			
22	51.1 PPM	OK			
23	216 PPM	OK			
24	27 PPM	OK			
25	30.8 PPM	OK			
26	40.7 PPM	OK			
27	17.3 PPM	OK			
28	7.2 PPM	OK			
29	3.5 PPM	OK			
30	2.9 PPM	OK			
31	3.5 PPM	OK			
32	9.6 PPM	OK			
33	10.5 PPM	OK			
34	31.1 PPM	OK			
35	66.2 PPM	OK			
36	12.4 PPM	OK			
37	9618 PPM	HIGH_ALRM	36.59857	-82.14844	
38	339 PPM	OK			
39	30.6 PPM	OK			
40	5.8 PPM	OK			
41	6.5 PPM	OK			
42	7.2 PPM	OK			
74	/ · Z	OK			

	<u> </u>				
	Methane	GPS Coordinates		ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
43	9.1 PPM	OK			
44	9.5 PPM	OK			
45	15.1 PPM	OK			
46	15.8 PPM	OK			
47	24.1 PPM	OK			
48	26.6 PPM	OK			
49	18.5 PPM	OK			
50	19.4 PPM	OK			
51	18.3 PPM	OK			
52	14.9 PPM	OK			
53	14.1 PPM	OK			
54	25.6 PPM	OK			
55	31.2 PPM	OK			
56	20.2 PPM	OK			
57	22.3 PPM	OK			
58	25 PPM	OK			
59	26.5 PPM	OK			
60	27 PPM	OK			
61	26.4 PPM	OK			
62	30.9 PPM	OK			
63	35.6 PPM	OK			
64	28.3 PPM	OK			
65	29.6 PPM	OK			
66	28.2 PPM	OK			
67	28.6 PPM	OK			
68	33.7 PPM	OK			
69	69.9 PPM	OK			
70	171 PPM	OK			
71	145 PPM	OK			
72	77.2 PPM	OK			
73	48.5 PPM	OK			
74	34.5 PPM	OK			
75	6.1 PPM	OK			
76	12.5 PPM	OK			
77	8 PPM	OK			
78	12.3 PPM	OK			
79	5.5 PPM	OK			
80	8.9 PPM	OK			
81	12.2 PPM	OK			
82	10.8 PPM	OK			
83	82.5 PPM	OK			
84	9.3 PPM	OK			
	7.5 117.11	J.K			

SCS ENGINEERS

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - APRIL 27, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
85	20 PPM	OK			
86	24.8 PPM	OK			
87	13.6 PPM	OK			
88	18.8 PPM	OK			
89	26.8 PPM	OK			
90	19.3 PPM	OK			
91	326 PPM	OK			
92	15.8 PPM	OK			
93	8.5 PPM	OK			
94	15.2 PPM	OK			
95	123 PPM	OK			
96	51.7 PPM	OK			
97	122 PPM	OK			
98	6.7 PPM	OK			
99	21.5 PPM	OK			
100	5.7 PPM	OK			End Serpentine
					Route
101	80.5 PPM	OK			EW-35
102	355 PPM	OK			EW-52
103	10.3 PPM	OK			TP-4
104	70.5 PPM	OK			EW-60
105	122 PPM	OK			EW-48
106	15.9 PPM	OK			TP-6
107	14.3 PPM	OK			EW-61
108	7.9 PPM	OK			EW-36
109	44.7 PPM	OK			EW-34
110	14.4 PPM	OK			EW-50
111	14.2 PPM	OK			EW-67
112	84.9 PPM	OK			EW-47
113	389 PPM	OK			EW-54
114	242 PPM	OK			EW-55
115	94.9 PPM	OK			TP-2
116	11.6 PPM	OK			EW-46
11 <i>7</i>	124 PPM	OK			EW-66
118	10.7 PPM	OK			EW-58
119	225 PPM	OK			EW-57
120	57.4 PPM	OK			TP-1
121	325 PPM	OK			EW-59
122	147 PPM	OK			EW-56
123	39.6 PPM	OK			EW-41
124	83.1 PPM	OK			EW-53
125	39.2 PPM	OK			EW-40

SCS ENGINEERS

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - APRIL 27, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
126	15.5 PPM	OK			TP-3
127	14.1 PPM	OK			EW-51
128	52.1 PPM	OK			EW-39
129	1 <i>7.</i> 4 PPM	OK			TP-5
130	16.9 PPM	OK			EW-68
131	457 PPM	OK			EW-38
132	54 PPM	OK			TP-7
133	14.5 PPM	OK			EW-49
134	5.5 PPM	OK			EW-31R
135	6.7 PPM	OK			EW-65
136	11.1 PPM	OK			EW-37
137	3.5 PPM	OK			TP-8
138	1.3 PPM	OK			EW-64
139	19 PPM	OK			EW-30R
140	2.5 PPM	OK			EW-63
141	2.1 PPM	OK			EW-42
142	1.6 PPM	OK			TP-9
143	2.4 PPM	OK			EW-33R
144	1.4 PPM	OK			EW-62
145	1.3 PPM	OK			EW-29R
146	6.5 PPM	OK			EW-32
147	4.4 PPM	OK			EW-32R
148	11600 PPM	HIGH_ALRM	36.59923	-82.14716	EW-89
149	58.9 PPM	OK			EW-93
150	199 PPM	OK			EW-94
151	64.2 PPM	OK			EW-98
152	13100 PPM	HIGH_ALRM	36.59775	-82.14757	EW-100
153	3 PPM	OK			EW-99
154	4331 PPM	HIGH_ALRM	36.59835	-82.14834	EW-95
155	5.8 PPM	OK			EW-90
156	0.4 PPM	OK			EW-86
1 <i>57</i>	8.9 PPM	OK			EW-84
158	7.8 PPM	OK			EW-80

SCS ENGINEERS

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - APRIL 27, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

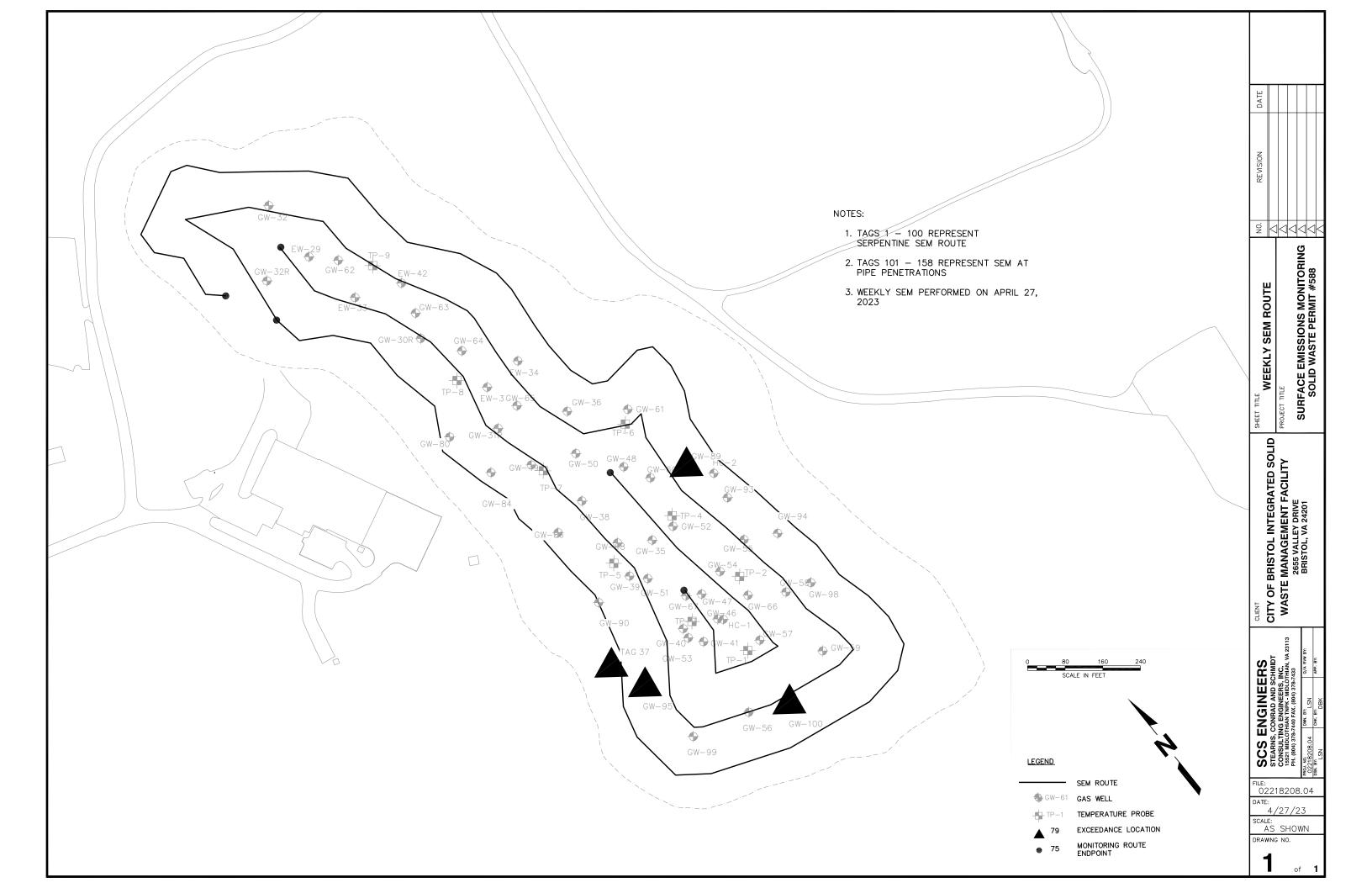
Methane GPS Coordinates

ID # Concentration Compliance Lat. Long. Comments

Number of locations sampled: 158
Number of exceedance locations: 4

NOTES:

Points 1 through 100 represent serpentine SEM route. Points 101 through 158 represent SEM at Pipe Penetrations Weather Conditions: Sunny, $55^{\circ}F$ Wind: E - 10 MPH


Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm

4/27/2023 6:59 ZERO 0.0 PPM 4/27/2023 7:03 SPAN 499.0 PPM

Background Reading:

 4/27/2023
 7:04
 Upwind
 2.6 PPM

 4/27/2023
 7:16
 Downwind
 7.1 PPM

Appendix B

Bristol Virginia Landfill - North South Clean-Outs Data 04/01/2023 to 04/30/2023

Bristol Virginia Landfill - North South Clean-Outs Data - 04/01/2023 to 04/30/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
LC01	4/19/2023 09:13	52.0	46.4	0.0	1.6	58.5	58.5	-18.8	-18.8	-19.3	Valve Adjustment:Opened Valve 1/2 to 1 turn
LC02	4/19/2023 09:15	46.6	52.4	0.0	1.0	58.0	58.0	-19.1	-19.0	-19.3	
LC03	4/19/2023 09:17	3.2	6.6	19.7	70.5	55.1	55.1	-19.2	-19.1	-19.0	
LC04	4/19/2023 09:20	17.1	9.6	14.0	59.3	56.5	56.6	-19.1	-19.1	-19.3	Valve Adjustment:Closed valve 1/2 to 1 turn
LC05	4/19/2023 09:22	50.2	48.1	0.0	1.7	58.7	58.7	-18.8	-18.7	-19.1	
LC06	4/19/2023 09:25	40.4	35.4	4.6	19.7	58.5	58.5	-19.0	-19.0	-19.0	
LC08	4/19/2023 09:27	49.9	48.6	0.0	1.5	58.2	58.2	-18.5	-18.7	-19.0	Valve Adjustment:Opened Valve 1/2 to 1 turn
LC09	4/19/2023 09:30	28.6	24.3	9.9	37.2	60.5	60.7	-18.9	-18.9	-18.8	Valve Adjustment:Closed Valve > 1 turn
LC10	4/3/2023 11:52	19.1	15.5	14.5	51.0	62.4	62.4	-17.5	-17.6	-17.8	
LC10	4/19/2023 09:32	16.4	13.5	14.4	55.7	63.0	63.2	-18.9	-18.9	-18.8	
NC01	4/3/2023 13:49	0.0	0.0	21.3	78.7	77.5	77.3	-41.1	-16.4	-22.8	
NC02	4/3/2023 13:50	0.0	0.0	21.5	78.5	76.3	76.3	-3.8	-3.8	0.0	
NC03	4/3/2023 13:52	0.0	0.0	21.5	78.5	76.3	76.2	-41.7	-16.9	-21.0	
NC04	4/3/2023 13:54	0.0	0.0	21.4	78.6	76.5	76.4	-15.7	-15.7	0.0	
NC05	4/3/2023 13:55	0.0	0.0	21.4	78.7	76.6	76.7	4.9	4.9	-159.5	
NC06	4/3/2023 13:56	0.0	0.0	21.3	78.7	77.0	77.1		-15.7		
NC07	4/3/2023 13:58	60.8	23.1	1.0	15.1	77.3	77.3	-16.3	-16.6	0.0	
NC08	4/3/2023 13:59	51.5	30.6	4.1	13.9	77.3	77.3	-16.4	-16.5	0.0	
NC09	4/3/2023 14:00	54.9	32.2	2.0	11.0	77.6	77.5	-16.1	-16.7	0.0	
NC10	4/3/2023 14:01	3.5	11.8	19.4	65.4	77.6	77.6	-16.1	-16.1	0.0	

Appendix C

Semi-Monthly Temperature Update Memos

Environmental Consulting & Contracting

SCS ENGINEERS

May 4, 2023 File No. 02218208.04

MEMORANDUM

TO: Kristin Hall, EPA Region III Tracy Blalock, VDEQ-SWRO

FROM: D. Brandon King, SCS Engineers
Quinn Bernier, SCS Engineers

SUBJECT: Semi-Monthly Status Update – April 1st through April 15th, 2023 Bristol Integrated Waste Management Facility, Bristol, Virginia

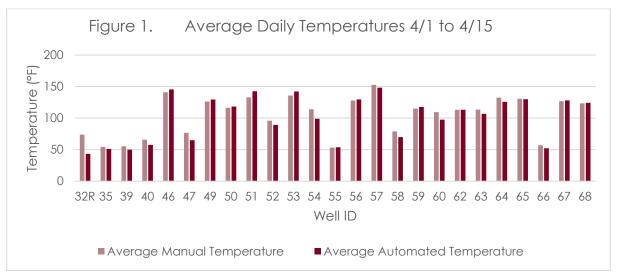
SCS is submitting this semi-monthly status update to satisfy the conditions of compliance provision #2 of the Environmental Protection Agency (EPA) Region III letter, *Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility*, dated 8/23/21. Accordingly, this memo is a summary of temperature monitoring activities as well as work accomplished during the semi-monthly monitoring period of 4/1/23 through 4/15/23.

TEMPERATURE MONITORING

Automated Wellhead Temperature Measurements

Twenty-five (25) individual landfill gas (LFG) wellheads in the Permit #588 Landfill have automated temperature sensors installed. VDEQ and USEPA have been receiving Daily Gas Well Temperature Reports with data from these automated temperature sensors since 12/1/22.

The 25 wellheads have 2-inch automated sensors. SCS believes that the 2-inch sensors measure temperature with more accuracy than the 1-inch sensors that were used in the majority of the 25 wells prior to March 1, 2023, but we are still comparing with manual temperature to assess the validity.


SCS reviewed the automated hourly temperature measurements from 4/1/23 to 4/15/23, and identified the following trends:

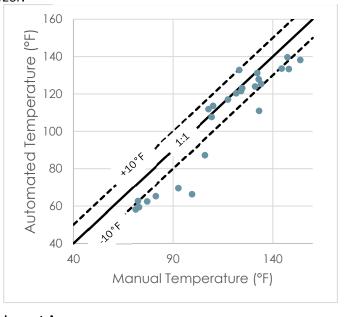
- Temperatures over 145°F: Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded at seven wells during this monitoring period. This represents a continuation of higher temperatures across the wellfield since mid-March 2023. Temperatures greater than 145°F were again recorded most consistently at EW-46, however the highest temperatures were measured at EW-51, EW-52, and EW-67 (greater than 170°F at times). Field staff believe that the general increase in wellfield temperatures suggests the wellfield may be over-tuned, meaning that applied vacuum at wellheads is greater than necessary, or simply that liquids removal from newly cleaned pumps is increasing LFG extraction as intended.
- Low temperatures at certain wells: Average temperatures between 50°F and 70°F at seven wells generally correlated with low LFG flow rates measured during monthly wellfield

monitoring events. These low temperatures are likely close to ambient because little to no LFG is passing through the wellhead where the sensors are placed.

• Temperature Trends by Location: Not all of the wells with the highest temperatures, for example over 145°F, were collocated. Of the wells with the highest temperatures during this monitoring period, EW-46, EW-51, and EW-67, were the closest to each other; generally located in the south-central portion of the landfill.

Manual Daily Temperature Monitoring

Manual temperature measurements are being made daily by field staff with a GEM5000 or equivalent LFG analyzer.


The manual measurements are used to verify the automated wellhead temperature sensors and to provide temperature data for the 13 wellheads without automated sensors.

Comparing the difference between manual temperature measurements and automated temperature measurements in Figure 2, the new 2-inch sensors appear to have generally satisfactory correlation with manual measurements. This supports SCS' belief that the 2-inch automated sensors are measuring temperature accurately.

During this monitoring period, the sensor in EW-32R appeared to be either malfunctioning or not successfully transmitting data because it recorded values of 0°F for hours at a time. Field staff and SCS RMC have been notified of this issue and are investigating potential causes. All daily

temperatures recorded manually are provided in Attachment A.

Figure 2. Manual vs. Automated Temperature Comparison

Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted 4/3/23, with follow-up monitoring on several days after. During this monitoring period, temperature exceedances were resolved at EW-51, EW-53, and EW-57. See Table 2 for a list of the status of all exceedances recorded during this monitoring period.

Table 1. March Temperature Exceedance Summary

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 4/15/23
EW-37	3/28/23	4/12/23 149.3°F	17 days	Ongoing, within 60-day timeline
EW-51	3/23/23	4/14/23¹ 82.2°F	13 days	Resolved within 15- day timeline
EW-52	4/11/23	4/12/23 153°F	5 days	Ongoing, within 15-day timeline
EW-53	4/4/23	4/11/23 141.8°F	12 days	Resolved within 15- day timeline
EW-54	4/11/23	4/12/23 170.8°F	5 days	Ongoing, within 15-day timeline
EW-57	3/15/23	4/4/23 144.3°F	12 days	Resolved within 15- day timeline
EW-57	4/11/23	4/12/23 152.7°F	5 days	Ongoing, within 15-day timeline
EW-67	4/4/23	4/12/23 180°F	12 days	Ongoing, within 15-day timeline

¹ measurement that resolved exceedance recorded on 4/4/23

Work Accomplished During Monitoring Period

LFG Sampling

SCS collected LFG samples from wells EW-37 and EW-53 using 1.5-L Summa canisters on 3/16/23, and well EW-51 on 3/23/23 to fulfill the requirement in 40 CFR 63.1961(a)(5) for temperature exceedances lasting more than 7 days. The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H₂) content. Lab results are summarized in Table 3. Full laboratory analytical data is included in **Attachment B** for further detail.

Table 2. LFG Wellhead Sampling Summary

Sample Da	te	4/4/2023	4/12/2023
EW-37	CO (ppmv)	153	150
EVV-31	H2 (Vol. %)	2.41	2.36
EW-52	CO (ppmv)		330
EW-32	H2 (Vol. %)		12.5
EW-53	CO (ppmv)	427	
EW-33	H2 (Vol. %)	6.64	
EW-54	CO (ppmv)		817
EW-54	H2 (Vol. %)		23.1
EW-57	CO (ppmv)		947
EW-57	H2 (Vol. %)		10.7
EW-67	CO (ppmv)	188	1080
EVV-O/	H2 (Vol. %)	2.77	24.6

The presence of hydrogen in all of the samples collected during this monitoring period indicates that combustion reactions are unlikely. The carbon monoxide measurements were all greater than 100 ppmv, indicating that continued weekly CO sampling should continue per 40 CFR 63.1961(a)(5)(viii) until the temperature exceedance is corrected or CO is less than 100 ppmv for four consecutive weekly samples.

Construction Activities

SCS-Field Services (SCS-FS) continued installation of the upper horizontal collector along the northern sections of the Sidewall Odor Mitigation System (SOMS) where liner installation has been completed. Chesapeake Containment Systems (Chesapeake) finished installation of the lower liner section along the northeast section of the quarry sidewall at the beginning of this reporting period. SCS-FS crew placed compacted cover soil on completed sections of the lower liner on the southwest portion and northern sections of the landfill. At the end of this reporting period, Shotcrete operations began at the northwest section of the sidewall odor mitigation system above the upper collector.

The drilling contractor continued drilling activities throughout this reporting period. The contractor drilled the remaining 13 CPVC LFG extraction wells during this monitoring period. The CPVC wells were drilled and installed in accordance with SCS Phase I LFG System drawing set. These wells will be connected to vacuum during the following reporting period.

Weekly SEM

SCS is continuing weekly surface emissions monitoring (SEM) per the Plan of Action Report dated 7/6/22. One exceedance of the 500-ppmv threshold were recorded during the weekly SEM event held on 4/4/23, and three exceedances were recorded during the weekly event conducted on 4/13/23. The exceedance detected on the event conducted on 3/29/23 passed the first 10-day retest.

MEMORANDUM 5/4/23 Page 5

The ongoing construction of new wells and the sidewall odor mitigation system, in addition to connection of new LFG collecting piping, is likely contributing to surface emissions exceedances in April. To a degree, increased emissions during the disturbance of the landfill surface, however SCS and the City continue to install well bore skirts at pipe penetration exceedances and placing additional cover in all exceedance areas as corrective actions.

LFG System O&M

The City's O&M contractor has installed a variety of replacement pump parts in the wellfield (e.g., new air hose and air regulators) as well as new QED wellheads and Solarguard flexible tubing. The O&M contractor reconfigured the pump discharge assembly at all wells equipped with pumps to include pressure gauges. Staff will now be able to monitor the buildup of air pressure on the forcemain piping at a wellhead, and release the excess when needed to maintain working conditions.

O&M continued pulling and cleaning five pumps each week with a focus on the south end of Permit #588 Landfill during this reporting period. SCS has observed a steady increase in total liquids removed from the wellfield since full-time O&M presence was established.

Please contact SCS or City personnel if you have any questions or require additional information.

cc: Randall Eads, City of Bristol Jon Hayes, City of Bristol Jeff Hurst, VDEQ-SWRO Tom Lock, SCS Field Services David Cochran, City of Bristol Erin Willard, EPA Region III Stacy Bowers, VDEQ-SWRO Robert E. Dick, P.E., SCS Engineers

Attachment A City of Bristol Daily LFG Well Temperature Readings

Month	April	April	April	April	April	April	April	April	April	April	April	April	April	April	April
Day	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Well Number															
35	63	62	60	79	71	77	72	75	76	70	49	86	90	80	84
39	62	62	59	78	66	70	69	71	67	82	50	84	91	77	81
40	71	72	68	87	75	79	76	75	80	145	78	146	151	145	145
46	147	148	147	147	147	148	146	147	148	147	148	148	146	147	149
47	100	97	69	88	84	88	86	88	83	101	88	105	107	103	103
29	98	100	100	108	115	119	116	105	112	106	92	108	107	108	103
30R	108	126	124	126	129	130	128	129	125	87	93	80	93	91	90
31R	132	133	128	128	132	131	130	129	126	109	125	116	120	117	116
32	80	81	88	89	99	100	91	99	97	76	56	76	91	75	70
33	124	124	127	129	132	130	128	130	127	121	120	122	122	122	122
34	116	115	120	122	122	124	120	122	120	123	111	129	127	127	123
36	74	75	76	77	82	80	79	80	77	81	44	76	79	73	69
37	149	149	150	150	150	149	151	150	148	149	148	149	148	149	149
38	101	102	100	102	106	110	108	105	102	112	95	105	104	100	102
41	73	70	77	79	80	82	79	81	77	100	70	96	101	95	100
42	110	108	162	163	108	108	140	120	126	111	112	112	112	111	111
48	61	63	68	77	79	77	75	76	70	75	38	86	92	72	72
							•							•	
32R	123	120	121	122	122	122	120	121	123	122	122	122	122	121	122
49	133	132	129	133	133	133	132	133	130	132	129	136	138	138	133
50	118	118	117	118	118	120	117	119	121	117	115	114	117	117	117
51	150	152	105	120	94	99	100	110	97	112	90	101	89	78	93
52	157	154	130	164	166	167	151	162	163	134	168	155	150	142	144
53	140	139	138	143	144	141	140	144	139	81	135	86	91	83	104
54	146	142	111	116	121	123	122	118	123	138	134	156	149	147	151
55	69	70	63	83	68	69	67	65	73	79	47	74	135	75	49
56	128	129	129	132	134	136	133	130	135	133	126	130	132	130	130
57	158	155	132	140	139	140	140	131	139	147	143	152	152	149	150
58	75	74	58	81	74	72	73	74	70	70	44	119	117	103	116
59	120	121	113	46	118	119	106	110	118	113	111	118	113	112	113
60	110	110	107	109	110	116	112	110	107	109	107	107	110	107	109
61	133	135	134	127	125	127	129	126	131	141	135	150	157	163	145
62	114	112	112	114	113	112	113	111	113	112	110	113	112	43	112
63	125	126	123	126	127	120	122	124	120	126	124	127	127	128	125
64	130	132	130	132	133	134	131	131	134	137	137	138	138	138	138
65	131	134	132	133	133	128	130	130	131	133	131	134	134	135	134
66	74	69	62	87	72	74	73	75	71	82	57	88	97	86	88
67	127	125	135	176	153	150	152	160	154	118	160	172	137	132	170
68	124	125	124	125	125	126	123	126	124	123	123	123	127	121	123

Attachment B Laboratory Analytical Reports

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

Client Name: SCS Field Services - Harrisburg, PA Date Received:

April 5, 2023 11:05

4330 Lewis Road, Suite 1

Date Issued:

April 12, 2023 15:11

Harrisburg, PA 17111

Project Number:

07223016.00

Submitted To: Tom Lock

150/0/415

Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 04/05/2023 11:05. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

Client Name: SCS Field Services - Harrisburg, PA

Date Received: April 5, 2023 11:05

4330 Lewis Road, Suite 1

Date Issued: April 12, 2023 15:11

Harrisburg, PA 17111

Project Number: 07223016.00

Submitted To: Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23D0256-01	Air	04/04/2023 14:53	04/05/2023 11:05
53	23D0256-02	Air	04/04/2023 15:03	04/05/2023 11:05
67	23D0256-03	Air	04/04/2023 15:10	04/05/2023 11:05

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

SCS Field Services - Harrisburg, PA Client Name:

4330 Lewis Road, Suite 1

Date Received: Date Issued:

April 5, 2023 11:05

April 12, 2023 15:11

Harrisburg, PA 17111

0.02

0.009

0.009

Bristol

Tom Lock Submitted To:

Project Number:

07223016.00

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Type: LV

Field Sample #: 37

Sample ID: 23D0256-01 Sample Matrix: Air

Sampled: 4/4/2023 14:53

Carbon Monoxide, as received

Client Site I.D.:

Sample Description/Location: Sub Description/Location: Canister ID: 063-00223::10095

Canister Size: 1.4L

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 6.4 Receipt Vacuum(in Hg):

Flow Controller Type: Passive

Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis ALT-145

ppmv Date/Time Analyte Result MDL LOQ Flag/Qual ΡF Analyzed Analyst Carbon Monoxide, as received 153 90.0 90.0 9 1 4/10/23 14:02 MER

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis EPA 3C Vol% Date/Time Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst Analyte 9.32 0.45 0.45 9 4/10/23 14:02 Methane, as received 1 MER Carbon dioxide, as received 24.0 0.45 0.45 9 1 4/10/23 14:02 MER Oxygen (O2), as received 7.01 0.45 0.45 9 1 4/10/23 14:02 MER Hydrogen (H2), as received 2.41 0.18 0.18 9 4/10/23 14:02 MER Nitrogen (N2), as received 47.8 18.0 18.0 18 4/10/23 16:39 MER

Volatile Organic Compounds by GCMS

				EPA TO-1	5						
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	95100	1560	3890		300000	5000	12000	7780	1	4/11/23 10:50	DFH
Surrogate(s)		% Re	covery		% Re	covery Li	mits				
4-Bromofluorobenzene (Surr)			94.4		3	30-120				4/11/23 10:50	

4/10/23 14:02 MER

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 5, 2023 11:05

4330 Lewis Road, Suite 1

Date Issued:

April 12, 2023 15:11

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock Project Number:

07223016.00

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 53

Sample ID: 23D0256-02

Sampled: 4/4/2023 15:03

Sample Matrix: Air

Client Site I.D.:

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00183::12064

Canister Size: 1.4L

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 6.2 Receipt Vacuum(in Hg):

Flow Controller Type: Passive

Flow Controller ID:

Sample Type: LV

Volatile Organic Compounds by	y GC/TCD -	Unadjusted,	as received basis

ppmv	ALT-145
PPIIII	

					Date/Time				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst	
arbon Monoxide, as received	427	90.0	90.0		9	1	4/10/23 14:58	MER	

V-1-61- 0 1- 0			
Volatile Organic Compou	nas by GC/TCD	· Unadjusted,	as received basis

	VOI	Vol%	c Compour	EPA 3C	received basis			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	23.2	0.45	0.45		9	1	4/10/23 14:58	MER
Carbon dioxide, as received	52.1	0.45	0.45		9	1	4/10/23 14:58	MER
Oxygen (O2), as received	2.32	0.45	0.45		9	1	4/10/23 14:58	MER
Hydrogen (H2), as received	6.64	0.54	0.54		27	1	4/10/23 16:55	MER
Nitrogen (N2), as received	9.05	9.00	9.00		9	1	4/10/23 14:58	MER
Carbon Monoxide, as received	0.04	0.009	0.009		9	1	4/10/23 14:58	MER

Volatile Organic Compounds by GCMS EPA TO-15

		ppbv		EFA 10-1	<u> </u>	ug/M³		_		Data /Tima	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Date/Time Analyzed	Analyst
Benzene	216000	3500	8750		690000	11000	28000	17500	1	4/11/23 13:32	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			96.0			80-120				4/11/23 13:32	

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

SCS Field Services - Harrisburg, PA Client Name:

4330 Lewis Road, Suite 1

0.02

0.009

Date Received: Date Issued:

April 5, 2023 11:05

April 12, 2023 15:11

Harrisburg, PA 17111

Bristol

Tom Lock Submitted To:

Project Number:

07223016.00

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 67

Sample Type: LV

Sample ID: 23D0256-03

Sample Matrix: Air

Sampled: 4/4/2023 15:10

Carbon Monoxide, as received

Client Site I.D.:

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00094::12458 Canister Size: 1.4L

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 6.0

Receipt Vacuum(in Hg):

Flow Controller Type: Passive

Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis ALT-145

ppmv Date/Time Analyte Result MDL LOQ Flag/Qual Dilution ΡF Analyzed Analyst 188 Carbon Monoxide, as received 90.0 90.0 9 1 4/10/23 15:49 MER

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis EPA 3C Vol% Date/Time Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst Analyte ND 0.45 0.45 9 4/10/23 15:49 Methane, as received 1 MER Carbon dioxide, as received 5.44 0.45 0.45 9 1 4/10/23 15:49 MER Oxygen (O2), as received 17.1 0.45 0.45 9 1 4/10/23 15:49 MER Hydrogen (H2), as received 2.77 0.18 0.18 9 4/10/23 15:49 MER Nitrogen (N2), as received 63.0 27.0 27.0 27 4/10/23 17:10 MER

Volatile Organic Compounds by GCMS

0.009

				EPA TO-1	5						
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	51800	1170	2920		170000	3700	9300	5830	1	4/11/23 12:18	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			97.8		8	30-120				4/11/23 12:18	

4/10/23 15:49 MER

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

Client Name: SCS Field Services - Harrisburg, PA

ourg, PA Date Received:

April 5, 2023 11:05

4330 Lewis Road, Suite 1

Date Issued:

April 12, 2023 15:11

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order: 07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	ounds by GC/TCD - Unadjusted	, as received basis	Preparation Method:	No Prep VOC GC Air	
23D0256-01	1.00 mL / 1.00 mL	ALT-145	BGD0285	SGD0308	AG00026
23D0256-02	1.00 mL / 1.00 mL	ALT-145	BGD0285	SGD0308	AG00026
23D0256-03	1.00 mL / 1.00 mL	ALT-145	BGD0285	SGD0308	AG00026
23D0256-01	1.00 mL / 1.00 mL	EPA 3C	BGD0285	SGD0308	AG00026
23D0256-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGD0285	SGD0308	AG00026
23D0256-02	1.00 mL / 1.00 mL	EPA 3C	BGD0285	SGD0308	AG00026
23D0256-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGD0285	SGD0308	AG00026
23D0256-03	1.00 mL / 1.00 mL	EPA 3C	BGD0285	SGD0308	AG00026
23D0256-03RE1	1.00 mL / 1.00 mL	EPA 3C	BGD0285	SGD0308	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	ounds by GCMS		Preparation Method:	No Prep VOC Air	
23D0256-01	400 mL / 400 mL	EPA TO-15	BGD0267	SGD0343	AC30195
23D0256-02	400 mL / 400 mL	EPA TO-15	BGD0267	SGD0343	AC30195
23D0256-03	400 mL / 400 mL	EPA TO-15	BGD0267	SGD0343	AC30195

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 5, 2023 11:05

4330 Lewis Road, Suite 1

Date Issued:

April 12, 2023 15:11

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0267 - No Prep VO	C Air									
Blank (BGD0267-BLK1)					Prep	ared &	Analyzed	: 04/10/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene (Surr)	4.76		ppbv	5.00		95.2	80-120			
LCS (BGD0267-BS1)					Prep	ared &	Analyzed	: 04/10/2	023	
1,1,1-Trichloroethane	5.24	0.5	ppbv	5.00		105	70-130			
1,1,2,2-Tetrachloroethane	5.52	0.5	ppbv	5.00		110	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha ne	4.85	0.5	ppbv	5.00		97.0	70-130			
1,1,2-Trichloroethane	5.30	0.5	ppbv	5.00		106	70-130			
1,1-Dichloroethane	4.83	0.5	ppbv	5.00		96.6	70-130			
1,1-Dichloroethylene	4.89	0.5	ppbv	5.00		97.8	70-130			
1,2,4-Trimethylbenzene	5.46	0.5	ppbv	5.00		109	70-130			
1,2-Dibromoethane (EDB)	5.36	0.5	ppbv	5.00		107	70-130			
1,2-Dichlorobenzene	5.68	0.5	ppbv	5.00		114	70-130			
1,2-Dichloroethane	5.21	0.5	ppbv	5.00		104	70-130			
1,2-Dichloropropane	5.22	0.5	ppbv	5.00		104	70-130			
1,2-Dichlorotetrafluoroethane	5.48	0.5	ppbv	5.00		110	70-130			
1,3,5-Trimethylbenzene	5.44	0.5	ppbv	5.00		109	70-130			
1,3-Butadiene	5.13	0.5	ppbv	5.00		103	70-130			
1,3-Dichlorobenzene	5.63	0.5	ppbv	5.00		113	70-130			
1,4-Dichlorobenzene	5.64	0.5	ppbv	5.00		113	70-130			
1,4-Dioxane	5.71	0.5	ppbv	5.00		114	70-130			
2-Butanone (MEK)	4.73	0.5	ppbv	5.00		94.6	70-130			
4-Methyl-2-pentanone (MIBK)	5.36	0.5	ppbv	5.00		107	70-130			
Allyl chloride	4.72	0.5	ppbv	5.00		94.4	70-130			
Benzene	5.25	0.5	ppbv	5.00		105	70-130			
Benzyl Chloride	5.06	0.5	ppbv	5.00		101	70-130			
Bromodichloromethane	4.84	0.5	ppbv	5.00		96.8	70-130			
Bromoform	0.79	0.5	ppbv	5.00		15.8	70-130			L
Bromomethane	5.96	0.5	ppbv	5.00		119	70-130			
Carbon Disulfide	4.80	0.5	ppbv	5.00		96.0	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

SCS Field Services - Harrisburg, PA Client Name:

Date Received:

April 5, 2023 11:05

4330 Lewis Road, Suite 1

Date Issued:

April 12, 2023 15:11

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

_CS (BGD0267-BS1)					Prepared &	Analyzed: 04/10/2023	
Carbon Tetrachloride	5.17	0.5	ppbv	5.00	103	70-130	
Chlorobenzene	5.32	0.5	ppbv	5.00	106	70-130	
Chloroethane	5.65	0.5	ppbv	5.00	113	70-130	
Chloroform	4.86	0.5	ppbv	5.00	97.2	70-130	
Chloromethane	5.20	0.5	ppbv	5.00	104	70-130	
cis-1,2-Dichloroethylene	4.88	0.5	ppbv	5.00	97.6	70-130	
sis-1,3-Dichloropropene	5.42	0.5	ppbv	5.00	108	70-130	
Cyclohexane	5.22	0.5	ppbv	5.00	104	70-130	
Dichlorodifluoromethane	4.93	0.5	ppbv	5.00	98.6	70-130	
Ethyl acetate	5.07	0.5	ppbv	5.00	101	70-130	
thylbenzene	5.43	0.5	ppbv	5.00	109	70-130	
Heptane	5.07	0.5	ppbv	5.00	101	70-130	
łexane	5.06	0.5	ppbv	5.00	101	70-130	
n+p-Xylenes	10.8	1	ppbv	10.0	108	70-130	
flethylene chloride	5.24	1	ppbv	5.00	105	70-130	
lethyl-t-butyl ether (MTBE)	4.93	0.5	ppbv	5.00	98.6	70-130	
laphthalene	4.52	0.5	ppbv	5.00	90.4	60-140	
-Xylene	5.30	0.5	ppbv	5.00	106	70-130	
Propylene	4.98	1	ppbv	5.00	99.6	70-130	
Styrene	5.39	0.5	ppbv	5.00	108	70-130	
etrachloroethylene (PCE)	5.25	0.5	ppbv	5.00	105	70-130	
「etrahydrofuran	5.20	0.5	ppbv	5.00	104	70-130	
Toluene	5.26	0.5	ppbv	5.00	105	70-130	
rans-1,2-Dichloroethylene	4.93	0.5	ppbv	5.00	98.6	70-130	
rans-1,3-Dichloropropene	5.51	0.5	ppbv	5.00	110	70-130	
richloroethylene	5.23	0.5	ppbv	5.00	105	70-130	
richlorofluoromethane	5.31	0.5	ppbv	5.00	106	70-130	
/inyl acetate	4.88	0.5	ppbv	5.00	97.6	70-130	
/inyl bromide	5.78	0.5	ppbv	5.00	116	70-130	
/inyl chloride	5.40	0.5	ppbv	5.00	108	70-130	
Gurr: 4-Bromofluorobenzene Surr)	4.96		ppbv	5.00	99.2	70-130	

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received: Date Issued:

April 5, 2023 11:05 April 12, 2023 15:11

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGD0267 - No Prep V	OC Air										
LCS Dup (BGD0267-BSD1)					Prep	ared & A	Analyzed	I: 04/10/2	023		

LCS Dup (BGD0267-BSD1)					Prepared &	Analyzed	: 04/10/20)23		
1,1,1-Trichloroethane	5.19	0.5	ppbv	5.00	104	70-130	0.959	25		
1,1,2,2-Tetrachloroethane	5.46	0.5	ppbv	5.00	109	70-130	1.09	25		
1,1,2-Trichloro-1,2,2-trifluoroetha	4.81	0.5	ppbv	5.00	96.2	70-130	0.828	25		
ne										
1,1,2-Trichloroethane	5.23	0.5	ppbv	5.00	105	70-130	1.33	25		
1,1-Dichloroethane	4.73	0.5	ppbv	5.00	94.6	70-130	2.09	25		
1,1-Dichloroethylene	4.85	0.5	ppbv	5.00	97.0	70-130	0.821	25		
1,2,4-Trimethylbenzene	5.38	0.5	ppbv	5.00	108	70-130	1.48	25		
I,2-Dibromoethane (EDB)	5.32	0.5	ppbv	5.00	106	70-130	0.749	25		
1,2-Dichlorobenzene	5.67	0.5	ppbv	5.00	113	70-130	0.176	25		
1,2-Dichloroethane	5.14	0.5	ppbv	5.00	103	70-130	1.35	25		
1,2-Dichloropropane	5.13	0.5	ppbv	5.00	103	70-130	1.74	25		
1,2-Dichlorotetrafluoroethane	5.35	0.5	ppbv	5.00	107	70-130	2.40	25		
,3,5-Trimethylbenzene	5.38	0.5	ppbv	5.00	108	70-130	1.11	25		
,3-Butadiene	5.00	0.5	ppbv	5.00	100	70-130	2.57	25		
,3-Dichlorobenzene	5.55	0.5	ppbv	5.00	111	70-130	1.43	25		
,4-Dichlorobenzene	5.57	0.5	ppbv	5.00	111	70-130	1.25	25		
,4-Dioxane	5.71	0.5	ppbv	5.00	114	70-130	0.00	25		
2-Butanone (MEK)	4.66	0.5	ppbv	5.00	93.2	70-130	1.49	25		
l-Methyl-2-pentanone (MIBK)	5.42	0.5	ppbv	5.00	108	70-130	1.11	25		
Allyl chloride	4.64	0.5	ppbv	5.00	92.8	70-130	1.71	25		
Benzene	5.17	0.5	ppbv	5.00	103	70-130	1.54	25		
Benzyl Chloride	5.07	0.5	ppbv	5.00	101	70-130	0.197	25		
Bromodichloromethane	4.79	0.5	ppbv	5.00	95.8	70-130	1.04	25		
Bromoform	0.78	0.5	ppbv	5.00	15.6	70-130	1.27	25	L	
Bromomethane	5.64	0.5	ppbv	5.00	113	70-130	5.52	25		
Carbon Disulfide	4.72	0.5	ppbv	5.00	94.4	70-130	1.68	25		
Carbon Tetrachloride	5.11	0.5	ppbv	5.00	102	70-130	1.17	25		
Chlorobenzene	5.24	0.5	ppbv	5.00	105	70-130	1.52	25		
Chloroethane	5.40	0.5	ppbv	5.00	108	70-130	4.52	25		
Chloroform	4.85	0.5	ppbv	5.00	97.0	70-130	0.206	25		
Chloromethane	5.16	0.5	ppbv	5.00	103	70-130	0.772	25		
sis-1,2-Dichloroethylene	4.91	0.5	ppbv	5.00	98.2	70-130	0.613	25		
sis-1,3-Dichloropropene	5.35	0.5	ppbv	5.00	107	70-130	1.30	25		

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received:

April 5, 2023 11:05

Date Issued:

April 12, 2023 15:11

Harrisburg, PA 17111

Submitted To: Tom Lock

Bristol

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

LCS Dup (BGD0267-BSD1)					Prepared &	Analyzed	04/10/20	23
Cyclohexane	5.12	0.5	ppbv	5.00	102	70-130	1.93	25
Dichlorodifluoromethane	4.85	0.5	ppbv	5.00	97.0	70-130	1.64	25
Ethyl acetate	4.95	0.5	ppbv	5.00	99.0	70-130	2.40	25
Ethylbenzene	5.31	0.5	ppbv	5.00	106	70-130	2.23	25
Heptane	4.94	0.5	ppbv	5.00	98.8	70-130	2.60	25
Hexane	5.01	0.5	ppbv	5.00	100	70-130	0.993	25
m+p-Xylenes	10.7	1	ppbv	10.0	107	70-130	1.58	25
Methylene chloride	5.11	1	ppbv	5.00	102	70-130	2.51	25
Methyl-t-butyl ether (MTBE)	4.86	0.5	ppbv	5.00	97.2	70-130	1.43	25
Naphthalene	4.49	0.5	ppbv	5.00	89.8	60-140	0.666	25
o-Xylene	5.27	0.5	ppbv	5.00	105	70-130	0.568	25
Propylene	4.94	1	ppbv	5.00	98.8	70-130	0.806	25
Styrene	5.30	0.5	ppbv	5.00	106	70-130	1.68	25
Tetrachloroethylene (PCE)	5.22	0.5	ppbv	5.00	104	70-130	0.573	25
Tetrahydrofuran	5.08	0.5	ppbv	5.00	102	70-130	2.33	25
Toluene	5.19	0.5	ppbv	5.00	104	70-130	1.34	25
trans-1,2-Dichloroethylene	4.86	0.5	ppbv	5.00	97.2	70-130	1.43	25
trans-1,3-Dichloropropene	5.43	0.5	ppbv	5.00	109	70-130	1.46	25
Trichloroethylene	5.16	0.5	ppbv	5.00	103	70-130	1.35	25
Trichlorofluoromethane	5.19	0.5	ppbv	5.00	104	70-130	2.29	25
/inyl acetate	4.78	0.5	ppbv	5.00	95.6	70-130	2.07	25
/inyl bromide	5.89	0.5	ppbv	5.00	118	70-130	1.89	25
/inyl chloride	5.26	0.5	ppbv	5.00	105	70-130	2.63	25
Surr: 4-Bromofluorobenzene	4.98		ppbv	5.00	99.6	70-130		

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received:

April 5, 2023 11:05

Date Issued:

April 12, 2023 15:11

Harrisburg, PA 17111

Submitted To: Tom Lock

Bristol

Client Site I.D.:

Carbon Monoxide

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0285 - No Prep VOC	GC Air									
Blank (BGD0285-BLK1)					Prep	ared &	Analyzed	: 04/10/20)23	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Carbon Monoxide	<	10.0	ppmv							
Carbon Monoxide	<	0.001	Vol%							
LCS (BGD0285-BS1)					Prep	ared &	Analyzed	: 04/10/20	023	
Methane	4350	500	ppmv	5000		87.1	0-200			
Methane	4350	0.05	ppmv	5000		87.1	80-120			
Carbon dioxide	5880	500	ppmv	5000		118	0-200			
Carbon dioxide	5880	0.05	ppmv	5000		118	80-120			
Oxygen (O2)	5180	500	ppmv	5000		104	0-200			
Oxygen (O2)	5180	0.05	ppmv	5000		104	80-120			
Nitrogen (N2)	5450	2000	ppmv	5000		109	0-200			
Nitrogen (N2)	5450	1	ppmv	5000		109	80-120			
Hydrogen (H2)	5940	200	ppmv	5100		117	0-200			
Hydrogen (H2)	5940	0.02	ppmv	5100		117	80-120			
Carbon Monoxide	4930	10	ppmv	5000		98.6	0-200			
Carbon Monoxide	4930	0.001	ppmv	5000		98.6	80-120			
Duplicate (BGD0285-DUP1)		Soi	urce: 23D	0078-01	Prep	ared &	Analyzed	: 04/10/20)23	
Methane	212000	4500	ppmv		21100	00		0.718	25	
Methane	21.2	0.45	Vol%		21.1			0.718	5	
Carbon dioxide	235000	4500	ppmv		23400	00		0.294	25	
Carbon dioxide	23.5	0.45	Vol%		23.4	ļ		0.294	5	
Oxygen (O2)	26300	4500	ppmv		2640	0		0.0447	25	
Oxygen (O2)	2.63	0.45	Vol%		2.64			0.0447	5	
Hydrogen (H2)		4000			<180	Λ		NA	25	
riyarogen (riz)	<	1800	ppmv		100	U		147 (
· · · ·	<	0.18	ppmv Vol%		<0.1			NA	5	
Hydrogen (H2) Nitrogen (N2)						8				

< 0.009

NA

5

0.009

Vol%

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 5, 2023 11:05

4330 Lewis Road, Suite 1

Reporting

Date Issued:

April 12, 2023 15:11

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

%REC

07-SO04485

RPD

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Spike

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0285 - No Prep VC	C GC Air									
Duplicate (BGD0285-DUP2)		Sou	urce: 23D	0256-01	Prep	ared & A	Analyzed	: 04/10/20	23	
Methane	92900	4500	ppmv		9320	0		0.364	25	
Methane	9.29	0.45	Vol%		9.32			0.364	5	
Carbon dioxide	239000	4500	ppmv		24000	00		0.351	25	
Carbon dioxide	23.9	0.45	Vol%		24.0			0.351	5	
Oxygen (O2)	7.02	0.45	Vol%		7.01			0.141	5	
Oxygen (O2)	70200	4500	ppmv		7010	0		0.141	25	
Nitrogen (N2)	473000	18000	ppmv		47300	0		0.00668	25	
Hydrogen (H2)	24600	1800	ppmv		2410	0		1.84	25	
Hydrogen (H2)	2.46	0.18	Vol%		2.41			1.84	5	
Carbon Monoxide	156	90.0	ppmv		153			1.63	25	
Carbon Monoxide	0.02	0.009	Vol%		0.02			1.63	5	
Duplicate (BGD0285-DUP3)		Sou	urce: 23D	0256-02	Prep	ared & A	Analyzed	: 04/10/20	23	
Methane	235000	4500	ppmv		23200	00		1.23	25	
Methane	23.5	0.45	Vol%		23.2			1.23	5	
Carbon dioxide	525000	4500	ppmv		52100	0		0.884	25	
Carbon dioxide	52.5	0.45	Vol%		52.1			0.884	5	
Oxygen (O2)	23400	4500	ppmv		2320	0		0.884	25	
Oxygen (O2)	2.34	0.45	Vol%		2.32			0.884	5	
Hydrogen (H2)	67600	1800	ppmv		6670	0		1.31	25	
Nitrogen (N2)	91400	18000	ppmv		9050	0		0.950	25	
Nitrogen (N2)	9.14	9.00	Vol%		9.05			0.950	5	
Carbon Monoxide	424	90.0	ppmv		427			0.867	25	
Carbon Monoxide	0.04	0.009	Vol%		0.04			0.867	5	
Duplicate (BGD0285-DUP4)		Sou	urce: 23D	0256-03	Prep	ared & A	Analyzed	: 04/10/20	23	
Methane	<	4500	ppmv		<450	0		NA	25	
Methane	<	0.45	Vol%		<0.4	5		NA	5	
Carbon dioxide	56100	4500	ppmv		5440	0		3.02	25	
Carbon dioxide	5.61	0.45	Vol%		5.44			3.02	5	
Oxygen (O2)	172000	4500	ppmv		17100	00		0.331	25	
Oxygen (O2)	17.2	0.45	Vol%		17.1			0.331	5	
Hydrogen (H2)	28100	1800	ppmv		2770	0		1.47	25	
Hydrogen (H2)	2.81	0.18	Vol%		2.77			1.47	5	
Nitrogen (N2)	641000	18000	ppmv		64100	00		0.00257	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 5, 2023 11:05

4330 Lewis Road, Suite 1

Date Issued:

April 12, 2023 15:11

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

Batch BGD0285 - No Prep VOC GC Air

Duplicate (BGD0285-DUP4)	Sou	urce: 23D0256-03	Prepared & A	Prepared & Analyzed: 04/10/2023		
Carbon Monoxide	182	90.0	ppmv	188	3.20	25
Carbon Monoxide	0.02	0.009	Vol%	0.02	3.20	5

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental	93016	06/14/2023
VELAP	NELAP-Virginia Certificate #12333	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Apr

April 5, 2023 11:05

4330 Lewis Road, Suite 1

Date Issued: April 12, 2023 15:11

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Qualifiers and Definitions

L LCS recovery is outside of established acceptance limits

RPD Relative Percent Difference

Qual Qualifers

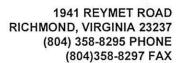
TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation


ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

AIR ANALYSIS

Equipment due 4/11/2023

Page 1 of 2

								OTIV	01 000	.00.		Jaipin	one auc	7/11/20				~9	-	01 2
CO	MPANY NAME:	SCS Field	Servi	ces - Harri	sbu	rg IN\	OICE TO	Same	9			PROJ	ECT NAM	IE/Quote#	Bristo	ľ				
СО	NTACT:					INV	OICE CO	NTACT:				SITE I	NAME: B	RISTOL	-					
ADI	DRESS:					INV	OICE AD	DRESS:		PROJECT NUMBER: 07223016.00										
PHONE #: INVOICE PHONE #:												P.O. #	•							
FAX #: Pretreatment Program:																				
ls s	ample for comp	liance repo	orting?	(YES) NO		Regulato	ory State:	VA Is:	sample fro	m a chlori	nated supp	oly?	YES (NO PV	/S I.D. #:					
SAI	MPLER NAME ((PRINT):	Loga	o Cul	ha	ne SA	MPLER S	IGNATUR	E:			Turn /		ime: Circ		5 Days		or	_	Day(s)
Matri	x Codes: AA=Indoor	/Ambient Air	SG=Soil	Gas LV=Land	ifill/V	ent Gas OT	=Other		0				063	3-23C-0004	4					
		Regulator I	nfo	Canister In	form	nation			Sampling 9	Start Inform	ation		Sampling	Stop Inform	ation		des)	AN.	ALY	'SIS
	CLIENT						LAB	LAB	Barometric	Pres. (in H	g):	1	Barometri	Pres. (in H	1000		3e Co	ဗ္ဗ		
	SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in Hg)	Starting Sample Temp °F	Stop Date		Final Canister Vacuum (in Hg)	Ending Sample Temp °F	Matrix (Se	Alt 145 C	30	TO-15 Benzene
1)	37			10095	1.4	230307-01	30	6.4	4/4	251	25	149.8	4/4	2:53	10	149.9		1 1		x
2)	53			12064	1.4	230307-01	30	6.2	4,4	7:01	27	145.9	4/9	3:03	W	146.1	LG	x	x	x
3)	67			12458	1.4	230307-01	30	6.0	7,4	3:98	26	1723	4	3:10	10	172.7	LG	x	x	х
4)											67									
		1																	18	ARR
REL	NQUISHED:				REC	EIVED:		DAT	E / TIME		Package L	AB USE	ONLY						7	77
REL	INQUISHED:	1	DA7	TE / TIME 4:000		CEIVED:	G	DA	TE / TIME	Level I Level II	SCS I	ield S	Service	s 23D	0256					2090
REL	INQUISHED:	dlx c	DA	TE / TIME		EIVED:	Colon 41		1105	Level III Level IV	Bristol	Ē		ue: 04/12	/2023 _					N036

Certificate of Analysis

Final Report

Laboratory Order ID 23D0256

SCS Field Services - Harrisburg, PA Client Name:

April 5, 2023 11:05 Date Received: Date Issued:

4330 Lewis Road, Suite 1

April 12, 2023 15:11

Harrisburg, PA 17111

Submitted To: Tom Lock

Bristol

Client Site I.D.:

Project Number: 07223016.00

Purchase Order: 07-SO04485

Sample Conditions Checklist

Samples Received at:	20.90°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

Client Name: SCS Field Services - Harrisburg, PA Date Received: April 13, 2023 10:43

4330 Lewis Road, Suite 1 Date Issued: April 20, 2023 14:49

Harrisburg, PA 17111 Project Number: 072223016

Submitted To: Tom Lock Purchase Order: 07-S004485

Client Site I.D.: Bristol

150/0/415

Enclosed are the results of analyses for samples received by the laboratory on 04/13/2023 10:43. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

Client Name: SCS Field Services - Harrisburg, PA

Date Received: April 13, 2023 10:43

4330 Lewis Road, Suite 1

Date Issued: April 20, 2023 14:49

Harrisburg, PA 17111

Project Number: 072223016

Submitted To: Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
67	23D0696-01	Air	04/12/2023 13:01	04/13/2023 10:43
54	23D0696-02	Air	04/12/2023 13:09	04/13/2023 10:43
57	23D0696-03	Air	04/12/2023 13:16	04/13/2023 10:43
37	23D0696-04	Air	04/12/2023 12:37	04/13/2023 10:43
52	23D0696-05	Air	04/12/2023 12:50	04/13/2023 10:43

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

SCS Field Services - Harrisburg, PA Client Name:

Date Received:

April 13, 2023 10:43

4330 Lewis Road, Suite 1

April 20, 2023 14:49 Date Issued:

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

072223016

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Sub Description/Location:

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 5.4

Field Sample #: 67

Canister ID: 063-00176::10094

Receipt Vacuum(in Hg):

Sample ID: 23D0696-01

Flow Controller Type: Passive

Sample Matrix: Air

Canister Size: 1.4

Flow Controller ID:

Sampled: 4/12/2023 13:01 Sample Type: LG

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145

Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	1080	90.0	90.0		9	1	4/17/23 14:43	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as rece	ived basis			
		Vol%		EPA 3C			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	9.59	0.45	0.45		9	1	4/17/23 14:43	MER
Carbon dioxide, as received	63.5	0.45	0.45		9	1	4/17/23 14:43	MER
Oxygen (O2), as received	0.47	0.45	0.45		9	1	4/17/23 14:43	MER
Hydrogen (H2), as received	24.6	1.62	1.62		81	1	4/19/23 10:08	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	4/17/23 14:43	MER
Carbon Monoxide, as received	0.11	0.009	0.009		9	1	4/17/23 14:43	MER

Volatile Organic Compounds by GCMS											
		ppbv		EPA TO-1	5	ug/M³		_		Data (Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Date/Time Analyzed	Analyst
Benzene	483000	10500	26200		1500000	34000	84000	52500	1	4/19/23 16:34	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			90.8		3	30-120				4/19/23 16:34	

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

Client Name: SCS Field Services - Harrisburg, PA Date Received:

April 13, 2023 10:43

4330 Lewis Road, Suite 1

Date Issued:

April 20, 2023 14:49

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

072223016

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Initial Vacuum(in Hg): 30

Field Sample #: 54

Sub Description/Location:

Final Vacuum(in Hg): 6.0

Sample ID: 23D0696-02

Canister ID: 063-00186::12853

Receipt Vacuum(in Hg):

Sample Matrix: Air

Flow Controller Type: Passive

Sampled: 4/12/2023 13:09

Canister Size: 1.4

Flow Controller ID:

Sample Type: LG

Volatile Organic Compounds by	GC/TCD -	Unadjusted,	as received basis

ppmv	ALT-145
ppilit	

Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
arbon Monovide, as received	817	90 N	90 O	·	0	1	A/17/23 15·A2 I	MER

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	6.59	0.45	0.45		9	1	4/17/23 15:42	MER
Carbon dioxide, as received	52.6	0.45	0.45		9	1	4/17/23 15:42	MER
Oxygen (O2), as received	2.76	0.45	0.45		9	1	4/17/23 15:42	MER
Hydrogen (H2), as received	23.1	1.62	1.62		81	1	4/19/23 10:33	MER
Nitrogen (N2), as received	10.1	9.00	9.00		9	1	4/17/23 15:42	MER
Carbon Monoxide, as received	0.08	0.009	0.009		9	1	4/17/23 15:42	MER

Volatile Organic Compounds by GCMS EPA TO-15

ppbv uq/M³											
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	- Dilution	PF	Date/Time Analyzed	Analyst
Benzene	493000	10500	26200		1600000	34000	84000	52500	1	4/19/23 17:18	DFH
Surrogate(s)		% Red	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			95.8		8	30-120				4/19/23 17:18	

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 13, 2023 10:43

4330 Lewis Road, Suite 1

Date Issued:

April 20, 2023 14:49

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

072223016

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Initial Vacuum(in Hg): 30

Field Sample #: 57

Sub Description/Location:

Final Vacuum(in Hg): 5.2

Sample ID: 23D0696-03

Canister ID: 063-00270::13369

Receipt Vacuum(in Hg):

Flow Controller Type: Passive

Sample Matrix: Air Sampled: 4/12/2023 13:16 Canister Size: 1.4

Flow Controller ID:

Sample Type: LG

Volatile Organic Compounds by GC/TCD -	 Unadjusted, as received basis

ppmv	ALT-145
PPIIII	

Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed Anal	lyst
Carbon Monovide, as received	047	90.0	00.0		0	1	4/17/23 16:33 MED	

Valatila Organia Compounda by CC/TCD	Unadjusted as received basis
Volatile Organic Compounds by GC/TCD -	- Unadjusted, as received basis

		Vol%	-	EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	22.1	0.45	0.45		9	1	4/17/23 16:33	MER
Carbon dioxide, as received	59.3	0.45	0.45		9	1	4/17/23 16:33	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	4/17/23 16:33	MER
Hydrogen (H2), as received	10.7	1.08	1.08		54	1	4/19/23 10:49	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	4/17/23 16:33	MER
Carbon Monoxide, as received	0.09	0.009	0.009		9	1	4/17/23 16:33	MER

Volatile Organic Compounds by GCMS EPA TO-15

EPA 10-13											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	349000	7000	17500		1100000	22000	56000	35000	1	4/19/23 18:03	DFH
Surrogate(s)		% Recovery		% Recovery Limits							
4-Bromofluorobenzene (Surr)			95.2			30-120				4/19/23 18:03	

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

SCS Field Services - Harrisburg, PA Client Name:

Date Received:

April 13, 2023 10:43

4330 Lewis Road, Suite 1

April 20, 2023 14:49 Date Issued:

Harrisburg, PA 17111

Submitted To: Tom Lock **Project Number:** 072223016

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Initial Vacuum(in Hg): 30

Field Sample #: 37

Sub Description/Location: Canister ID: 063-00197::11322 Final Vacuum(in Hg): 4.6

Sample ID: 23D0696-04

Receipt Vacuum(in Hg): Flow Controller Type: Passive

Sample Matrix: Air

Canister Size: 1.4

ppmv

Flow Controller ID:

Sampled: 4/12/2023 12:37

Sample Type: LG

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145

Date/Time Analyte Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst 150 9 Carbon Monoxide, as received 90.0 90.0 1 4/17/23 17:24 MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basis	3			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	8.64	0.45	0.45		9	1	4/17/23 17:24	MER
Carbon dioxide, as received	22.2	0.45	0.45		9	1	4/17/23 17:24	MER
Oxygen (O2), as received	7.10	0.45	0.45		9	1	4/17/23 17:24	MER
Hydrogen (H2), as received	2.36	0.18	0.18		9	1	4/17/23 17:24	MER
Nitrogen (N2), as received	46.4	27.0	27.0		27	1	4/19/23 11:04	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	4/17/23 17:24	MER

			Volatile (Organic Compo		IS					
		ppbv		EPA IU-II		ug/M³				Data/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Date/Time Analyzed	Analyst
Benzene	77100	1560	3890		250000	5000	12000	7780	1	4/19/23 15:04	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	mits				-
4-Bromofluorobenzene (Surr)			94.6		}	30-120				4/19/23 15:04	

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

SCS Field Services - Harrisburg, PA Client Name:

Date Received:

April 13, 2023 10:43

4330 Lewis Road, Suite 1

April 20, 2023 14:49 Date Issued:

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

072223016

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Sub Description/Location:

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 5.2

Field Sample #: 52

Canister ID: 063-00107::12782

Receipt Vacuum(in Hg):

Sample ID: 23D0696-05

Flow Controller Type: Passive

Sample Matrix: Air

Canister Size: 1.4

Flow Controller ID:

Sampled: 4/12/2023 12:50

Sample Type: LG

Volatile Organic Compounds by GC/TCD -	Unadjusted, as received basis

ppmv	ALT-145
ppiiiv	

		ppiliv					Date/Time		
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst	
Carbon Monoxide, as received	330	90.0	90.0		9	1	4/19/23 9:17	MER	

Volatile Organic	Compounds by	GC/TCD -	Unadjusted,	as received basis

	Vol	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received bas	SIS			
		Vol%		EPA 3C			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	25.7	0.45	0.45		9	1	4/19/23 9:17	MER
Carbon dioxide, as received	46.9	0.45	0.45		9	1	4/19/23 9:17	MER
Oxygen (O2), as received	1.38	0.45	0.45		9	1	4/19/23 9:17	MER
Hydrogen (H2), as received	12.5	0.36	0.36		18	1	4/19/23 11:20	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	4/19/23 9:17	MER
Carbon Monoxide, as received	0.03	0.009	0.009		9	1	4/19/23 9:17	MER

Volatile Organic Compounds by GCMS EPA TO-15

				EPA 10-1	9						
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	112000	1560	3890		360000	5000	12000	7780	1	4/19/23 15:49	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			94.2		8	30-120				4/19/23 15:49	

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

Client Name: SCS Field Services - Harrisburg, PA

Date Received: April 1

April 13, 2023 10:43

4330 Lewis Road, Suite 1

Date Issued: April 20

April 20, 2023 14:49

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number: 072223016

Purchase Order: 07-SO04485

Bristol

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC GO	Air
23D0696-01	1.00 mL / 1.00 mL	ALT-145	BGD0597	SGD0603	AG00026
23D0696-02	1.00 mL / 1.00 mL	ALT-145	BGD0597	SGD0603	AG00026
23D0696-03	1.00 mL / 1.00 mL	ALT-145	BGD0597	SGD0603	AG00026
23D0696-04	1.00 mL / 1.00 mL	ALT-145	BGD0597	SGD0603	AG00026
23D0696-05	1.00 mL / 1.00 mL	ALT-145	BGD0597	SGD0694	AG00026
23D0696-01	1.00 mL / 1.00 mL	EPA 3C	BGD0597	SGD0603	AG00026
23D0696-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGD0597	SGD0694	AG00026
23D0696-02	1.00 mL / 1.00 mL	EPA 3C	BGD0597	SGD0603	AG00026
23D0696-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGD0597	SGD0694	AG00026
23D0696-03	1.00 mL / 1.00 mL	EPA 3C	BGD0597	SGD0603	AG00026
23D0696-03RE1	1.00 mL / 1.00 mL	EPA 3C	BGD0597	SGD0694	AG00026
23D0696-04	1.00 mL / 1.00 mL	EPA 3C	BGD0597	SGD0603	AG00026
23D0696-04RE1	1.00 mL / 1.00 mL	EPA 3C	BGD0597	SGD0694	AG00026
23D0696-05	1.00 mL / 1.00 mL	EPA 3C	BGD0597	SGD0694	AG00026
23D0696-05RE1	1.00 mL / 1.00 mL	EPA 3C	BGD0597	SGD0694	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	No Prep VOC Air	•
23D0696-01	400 mL / 400 mL	EPA TO-15	BGD0664	SGD0680	AC30195
23D0696-02	400 mL / 400 mL	EPA TO-15	BGD0664	SGD0680	AC30195
23D0696-03	400 mL / 400 mL	EPA TO-15	BGD0664	SGD0680	AC30195
23D0696-04	400 mL / 400 mL	EPA TO-15	BGD0664	SGD0680	AC30195
23D0696-05	400 mL / 400 mL	EPA TO-15	BGD0664	SGD0680	AC30195

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

Client Name: SCS Field Services - Harrisburg, PA Date Received:

April 13, 2023 10:43

4330 Lewis Road, Suite 1

Date Issued:

April 20, 2023 14:49

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

072223016

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0664 - No Prep VO	C Air									
Blank (BGD0664-BLK1)					Prep	pared &	Analyzed	: 04/18/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene (Surr)	4.70		ppbv	5.00		94.0	80-120			
LCS (BGD0664-BS1)					Prep	pared &	Analyzed	: 04/18/2	023	
1,1,1-Trichloroethane	5.53	0.5	ppbv	5.00		111	70-130			
1,1,2,2-Tetrachloroethane	5.89	0.5	ppbv	5.00		118	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha ne	5.09	0.5	ppbv	5.00		102	70-130			
1,1,2-Trichloroethane	5.70	0.5	ppbv	5.00		114	70-130			
1,1-Dichloroethane	5.06	0.5	ppbv	5.00		101	70-130			
1,1-Dichloroethylene	5.14	0.5	ppbv	5.00		103	70-130			
1,2,4-Trimethylbenzene	5.72	0.5	ppbv	5.00		114	70-130			
1,2-Dibromoethane (EDB)	5.63	0.5	ppbv	5.00		113	70-130			
1,2-Dichlorobenzene	6.01	0.5	ppbv	5.00		120	70-130			
1,2-Dichloroethane	5.54	0.5	ppbv	5.00		111	70-130			
1,2-Dichloropropane	5.60	0.5	ppbv	5.00		112	70-130			
1,2-Dichlorotetrafluoroethane	6.30	0.5	ppbv	5.00		126	70-130			
1,3,5-Trimethylbenzene	5.71	0.5	ppbv	5.00		114	70-130			
1,3-Butadiene	4.82	0.5	ppbv	5.00		96.4	70-130			
1,3-Dichlorobenzene	5.98	0.5	ppbv	5.00		120	70-130			
1,4-Dichlorobenzene	5.92	0.5	ppbv	5.00		118	70-130			
1,4-Dioxane	6.14	0.5	ppbv	5.00		123	70-130			
2-Butanone (MEK)	4.95	0.5	ppbv	5.00		99.0	70-130			
4-Methyl-2-pentanone (MIBK)	5.83	0.5	ppbv	5.00		117	70-130			
Allyl chloride	4.88	0.5	ppbv	5.00		97.6	70-130			
Benzene	5.56	0.5	ppbv	5.00		111	70-130			
Benzyl Chloride	5.43	0.5	ppbv	5.00		109	70-130			
Bromodichloromethane	5.16	0.5	ppbv	5.00		103	70-130			
Bromoform	0.75	0.5	ppbv	5.00		15.0	70-130			L
Bromomethane	6.90	0.5	ppbv	5.00		138	70-130			L
Carbon Disulfide	5.11	0.5	ppbv	5.00		102	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 13, 2023 10:43

4330 Lewis Road, Suite 1

Date Issued: April 20, 2023 14:49

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

072223016

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

LCS (BGD0664-BS1)					Prepared &	Analyzed: 04/18/2023		
Carbon Tetrachloride	5.50	0.5	ppbv	5.00	110	70-130		
Chlorobenzene	5.62	0.5	ppbv	5.00	112	70-130		
Chloroethane	6.37	0.5	ppbv	5.00	127	70-130		
Chloroform	5.16	0.5	ppbv	5.00	103	70-130		
Chloromethane	5.75	0.5	ppbv	5.00	115	70-130		
cis-1,2-Dichloroethylene	5.16	0.5	ppbv	5.00	103	70-130		
cis-1,3-Dichloropropene	5.69	0.5	ppbv	5.00	114	70-130		
Cyclohexane	5.52	0.5	ppbv	5.00	110	70-130		
Dichlorodifluoromethane	5.13	0.5	ppbv	5.00	103	70-130		
Ethyl acetate	5.27	0.5	ppbv	5.00	105	70-130		
Ethylbenzene	5.57	0.5	ppbv	5.00	111	70-130		
Heptane	5.40	0.5	ppbv	5.00	108	70-130		
Hexane	5.32	0.5	ppbv	5.00	106	70-130		
n+p-Xylenes	11.3	1	ppbv	10.0	113	70-130		
Methylene chloride	5.56	1	ppbv	5.00	111	70-130		
Methyl-t-butyl ether (MTBE)	5.00	0.5	ppbv	5.00	100	70-130		
Naphthalene	4.67	0.5	ppbv	5.00	93.4	60-140		
o-Xylene	5.62	0.5	ppbv	5.00	112	70-130		
Propylene	5.30	1	ppbv	5.00	106	70-130		
Styrene	5.57	0.5	ppbv	5.00	111	70-130		
Tetrachloroethylene (PCE)	5.46	0.5	ppbv	5.00	109	70-130		
Tetrahydrofuran	5.47	0.5	ppbv	5.00	109	70-130		
Toluene	5.64	0.5	ppbv	5.00	113	70-130		
rans-1,2-Dichloroethylene	5.14	0.5	ppbv	5.00	103	70-130		
trans-1,3-Dichloropropene	5.81	0.5	ppbv	5.00	116	70-130		
Trichloroethylene	5.62	0.5	ppbv	5.00	112	70-130		
Trichlorofluoromethane	5.89	0.5	ppbv	5.00	118	70-130		
/inyl acetate	5.04	0.5	ppbv	5.00	101	70-130		
/inyl bromide	6.73	0.5	ppbv	5.00	135	70-130	L	
/inyl chloride	6.20	0.5	ppbv	5.00	124	70-130		
Surr: 4-Bromofluorobenzene (Surr)	4.85		ppbv	5.00	97.0	70-130		

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Ap

April 13, 2023 10:43

4330 Lewis Road, Suite 1

Date Issued:

April 20, 2023 14:49

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

072223016

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	R	Reporting			Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batala BODOOA Na Busa W	00 4:-										

LCS Dup (BGD0664-BSD1)					Prepared &	Analyzed	04/18/20	23	
1,1,1-Trichloroethane	5.48	0.5	ppbv	5.00	110	70-130	0.908	25	
1,1,2,2-Tetrachloroethane	5.94	0.5	ppbv	5.00	119	70-130	0.845	25	
1,1,2-Trichloro-1,2,2-trifluoroetha ne	5.01	0.5	ppbv	5.00	100	70-130	1.58	25	
1,1,2-Trichloroethane	5.70	0.5	ppbv	5.00	114	70-130	0.00	25	
1,1-Dichloroethane	4.97	0.5	ppbv	5.00	99.4	70-130	1.79	25	
1,1-Dichloroethylene	5.07	0.5	ppbv	5.00	101	70-130	1.37	25	
1,2,4-Trimethylbenzene	5.78	0.5	ppbv	5.00	116	70-130	1.04	25	
1,2-Dibromoethane (EDB)	5.62	0.5	ppbv	5.00	112	70-130	0.178	25	
1,2-Dichlorobenzene	6.03	0.5	ppbv	5.00	121	70-130	0.332	25	
1,2-Dichloroethane	5.49	0.5	ppbv	5.00	110	70-130	0.907	25	
1,2-Dichloropropane	5.50	0.5	ppbv	5.00	110	70-130	1.80	25	
1,2-Dichlorotetrafluoroethane	6.10	0.5	ppbv	5.00	122	70-130	3.23	25	
1,3,5-Trimethylbenzene	5.73	0.5	ppbv	5.00	115	70-130	0.350	25	
1,3-Butadiene	5.03	0.5	ppbv	5.00	101	70-130	4.26	25	
1,3-Dichlorobenzene	6.01	0.5	ppbv	5.00	120	70-130	0.500	25	
1,4-Dichlorobenzene	5.94	0.5	ppbv	5.00	119	70-130	0.337	25	
1,4-Dioxane	6.14	0.5	ppbv	5.00	123	70-130	0.00	25	
2-Butanone (MEK)	4.89	0.5	ppbv	5.00	97.8	70-130	1.22	25	
4-Methyl-2-pentanone (MIBK)	5.77	0.5	ppbv	5.00	115	70-130	1.03	25	
Allyl chloride	4.85	0.5	ppbv	5.00	97.0	70-130	0.617	25	
Benzene	5.58	0.5	ppbv	5.00	112	70-130	0.359	25	
Benzyl Chloride	5.47	0.5	ppbv	5.00	109	70-130	0.734	25	
Bromodichloromethane	5.14	0.5	ppbv	5.00	103	70-130	0.388	25	
Bromoform	0.76	0.5	ppbv	5.00	15.2	70-130	1.32	25	L
Bromomethane	6.78	0.5	ppbv	5.00	136	70-130	1.75	25	L
Carbon Disulfide	5.01	0.5	ppbv	5.00	100	70-130	1.98	25	
Carbon Tetrachloride	5.50	0.5	ppbv	5.00	110	70-130	0.00	25	
Chlorobenzene	5.68	0.5	ppbv	5.00	114	70-130	1.06	25	
Chloroethane	6.22	0.5	ppbv	5.00	124	70-130	2.38	25	
Chloroform	5.09	0.5	ppbv	5.00	102	70-130	1.37	25	
Chloromethane	5.67	0.5	ppbv	5.00	113	70-130	1.40	25	
cis-1,2-Dichloroethylene	5.05	0.5	ppbv	5.00	101	70-130	2.15	25	
cis-1,3-Dichloropropene	5.66	0.5	ppbv	5.00	113	70-130	0.529	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 13, 2023 10:43

4330 Lewis Road, Suite 1

Date Issued:

April 20, 2023 14:49

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

072223016

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source	%REC		RPD	
Analyte	Result Limit Units			Level	Result	%REC Limits	RPD	Limit	Qual

LCS Dup (BGD0664-BSD1)					Prepared &	Analyzed	: 04/18/20	23	
Cyclohexane	5.50	0.5	ppbv	5.00	110	70-130	0.363	25	
Dichlorodifluoromethane	5.11	0.5	ppbv	5.00	102	70-130	0.391	25	
Ethyl acetate	5.22	0.5	ppbv	5.00	104	70-130	0.953	25	
Ethylbenzene	5.65	0.5	ppbv	5.00	113	70-130	1.43	25	
Heptane	5.36	0.5	ppbv	5.00	107	70-130	0.743	25	
Hexane	5.23	0.5	ppbv	5.00	105	70-130	1.71	25	
m+p-Xylenes	11.3	1	ppbv	10.0	113	70-130	0.265	25	
Methylene chloride	5.45	1	ppbv	5.00	109	70-130	2.00	25	
Methyl-t-butyl ether (MTBE)	5.02	0.5	ppbv	5.00	100	70-130	0.399	25	
Naphthalene	4.67	0.5	ppbv	5.00	93.4	60-140	0.00	25	
o-Xylene	5.65	0.5	ppbv	5.00	113	70-130	0.532	25	
Propylene	5.21	1	ppbv	5.00	104	70-130	1.71	25	
Styrene	5.52	0.5	ppbv	5.00	110	70-130	0.902	25	
Tetrachloroethylene (PCE)	5.52	0.5	ppbv	5.00	110	70-130	1.09	25	
Tetrahydrofuran	5.54	0.5	ppbv	5.00	111	70-130	1.27	25	
Toluene	5.64	0.5	ppbv	5.00	113	70-130	0.00	25	
trans-1,2-Dichloroethylene	5.01	0.5	ppbv	5.00	100	70-130	2.56	25	
trans-1,3-Dichloropropene	5.80	0.5	ppbv	5.00	116	70-130	0.172	25	
Trichloroethylene	5.57	0.5	ppbv	5.00	111	70-130	0.894	25	
Trichlorofluoromethane	5.75	0.5	ppbv	5.00	115	70-130	2.41	25	
Vinyl acetate	4.99	0.5	ppbv	5.00	99.8	70-130	0.997	25	
Vinyl bromide	6.63	0.5	ppbv	5.00	133	70-130	1.50	25	L
Vinyl chloride	6.08	0.5	ppbv	5.00	122	70-130	1.95	25	
Surr: 4-Bromofluorobenzene	4.94		ppbv	5.00	98.8	70-130			
Gan. + Diomondolopenzene	7.34		pppv	0.00	30.0	, 0-130			

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 13, 2023 10:43

4330 Lewis Road, Suite 1

0.11

0.009

Vol%

Date Issued: A

April 20, 2023 14:49

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Carbon Monoxide

Project Number:

072223016

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

				_	_					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0597 - No Prep VC	OC GC Air									_
Blank (BGD0597-BLK1)					Prep	ared &	Analyzed	: 04/17/20	23	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Carbon Monoxide	<	10.0	ppmv							
Carbon Monoxide	<	0.001	Vol%							
LCS (BGD0597-BS1)					Prep	ared &	Analyzed	: 04/17/20	23	
Methane	4340	500	ppmv	5000		86.8	0-200			
Methane	4340	0.05	ppmv	5000		86.8	80-120			
Carbon dioxide	5400	500	ppmv	5000		108	0-200			
Carbon dioxide	5400	0.05	ppmv	5000		108	80-120			
Oxygen (O2)	5070	500	ppmv	5000		101	0-200			
Oxygen (O2)	5070	0.05	ppmv	5000		101	80-120			
Hydrogen (H2)	5620	200	ppmv	5100		110	0-200			
Nitrogen (N2)	5330	1	ppmv	5000		107	80-120			
Nitrogen (N2)	5330	2000	ppmv	5000		107	0-200			
Hydrogen (H2)	5620	0.02	ppmv	5100		110	80-120			
Carbon Monoxide	4830	10	ppmv	5000		96.6	0-200			
Carbon Monoxide	4830	0.001	ppmv	5000		96.6	80-120			
Duplicate (BGD0597-DUP1)		So	urce: 23D	0696-01	Prep	ared &	Analyzed	: 04/17/20	23	
Methane	95200	4500	ppmv		9590	0		0.740	25	
Methane	9.52	0.45	Vol%		9.59	1		0.740	5	
Carbon dioxide	635000	4500	ppmv		63500	00		0.0485	25	
Carbon dioxide	63.5	0.45	Vol%		63.5			0.0485	5	
Oxygen (O2)	4610	4500	ppmv		4680)		1.56	25	
Oxygen (O2)	0.46	0.45	Vol%		0.47			1.56	5	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00)		NA	5	
Hydrogen (H2)	257000	1800	ppmv		25800	00		0.157	25	
Carbon Monoxide	1090	90.0	ppmv		1080)		0.698	25	
					_				_	

0.11

0.698

5

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 13, 2023 10:43

4330 Lewis Road, Suite 1

Reporting

Date Issued: Apr

April 20, 2023 14:49

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

072223016

Client Site I.D.: Bristol

Purchase Order:

%REC

07-SO04485

RPD

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Spike

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0597 - No Prep VO	C GC Air									
Duplicate (BGD0597-DUP2)		Sou	ırce: 23D	0696-02	Prep	ared & A	Analyzed	l: 04/17/20	023	
	65300	4500	ppmv		6590	0		0.966	25	
Methane	6.53	0.45	Vol%		6.59)		0.966	5	
Carbon dioxide	52.2	0.45	Vol%		52.6	i		0.728	5	
Carbon dioxide	522000	4500	ppmv		52600	00		0.728	25	
Oxygen (O2)	2.72	0.45	Vol%		2.76	i		1.33	5	
Oxygen (O2)	27200	4500	ppmv		2760	0		1.33	25	
Hydrogen (H2)	248000	1800	ppmv		25000	00		0.667	25	
Nitrogen (N2)	10.0	9.00	Vol%		10.1			0.733	5	
Nitrogen (N2)	100000	18000	ppmv		10100	00		0.733	25	
Carbon Monoxide	0.08	0.009	Vol%		0.08	;		0.663	5	
Carbon Monoxide	812	90.0	ppmv		817			0.663	25	
Duplicate (BGD0597-DUP3)		Sou	urce: 23D	0696-03	Prep	ared & A	Analyzed	l: 04/17/2	023	
Methane	219000	4500	ppmv		22100	00		0.841	25	
Methane	21.9	0.45	Vol%		22.1			0.841	5	
Carbon dioxide	589000	4500	ppmv		59300	00		0.663	25	
Carbon dioxide	58.9	0.45	Vol%		59.3	•		0.663	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	<	18000	ppmv		<1800	00 NA			25	
Nitrogen (N2)	<	9.00	Vol%		<9.00	0		NA	5	
Hydrogen (H2)	110000	1800	ppmv		11100	00		1.18	25	
Carbon Monoxide	937	90.0	ppmv		947			1.16	25	
Carbon Monoxide	0.09	0.009	Vol%		0.09)		1.16	5	
Duplicate (BGD0597-DUP4)		Sou	urce: 23D	0696-04	Prep	ared & A	Analyzed	l: 04/17/20	023	
Methane	85200	4500	ppmv		8640	0		1.37	25	
Methane	8.52	0.45	Vol%		8.64			1.37	5	
Carbon dioxide	218000	4500	ppmv		22200	00		1.58	25	
Carbon dioxide	21.8	0.45	Vol%		22.2			1.58	5	
Oxygen (O2)	70000	4500	ppmv		7100	0		1.34	25	
Oxygen (O2)	7.00	0.45	Vol%		7.10)		1.34	5	
Hydrogen (H2)	23200	1800	ppmv		2360	0		1.85	25	
Nitrogen (N2)	463000	18000	ppmv		47000	00		1.40	25	
Hydrogen (H2)	2.32	0.18	Vol%		2.36			1.85	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 13, 2023 10:43

4330 Lewis Road, Suite 1

Date Issued:

April 20, 2023 14:49

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

072223016

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0597 - No Prep VO	C GC Air									
Duplicate (BGD0597-DUP4)		Sou	ırce: 23D	0696-04	Prep	ared & A	Analyzed	: 04/17/20)23	
Carbon Monoxide	148 90.0 ppmv							1.63	25	
Carbon Monoxide	0.01	0.009	Vol%		0.02			1.63	5	
Duplicate (BGD0597-DUP5)		Sou	ırce: 23D	0696-05	Prep	ared & A	Analyzed	: 04/19/20)23	
Methane	257000	4500	ppmv		25700	00		0.0854	25	
Methane	25.7	0.45	Vol%		25.7			0.0854	5	
Carbon dioxide	47.2	0.45	Vol%		46.9			0.647	5	
Carbon dioxide	472000	4500	ppmv		46900	00		0.647	25	
Oxygen (O2)	1.36	0.45	Vol%		1.38			0.984	5	
Oxygen (O2)	13600	4500	ppmv		1380	0		0.984	25	
Hydrogen (H2)	127000	1800	ppmv		12700	00		0.506	25	
Nitrogen (N2)	46100	18000	ppmv		4650	0		0.751	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00	<9.00 NA			5	
Carbon Monoxide	333	90.0	ppmv		330			0.949	25	
Carbon Monoxide	0.03	0.009	Vol%		0.03			0.949	5	
Duplicate (BGD0597-DUP6)		Sou	ırce: 23D	0813-01	Prep	ared & A)23			
Methane	45.6	0.45	Vol%		45.0			1.41	5	
Methane	456000	4500	ppmv		45000	00		1.41	25	
Carbon dioxide	48.5	0.45	Vol%		47.8			1.32	5	
Carbon dioxide	485000	4500	ppmv		47800	00		1.32	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00)		NA	5	
Hydrogen (H2)	< 0.18 Vol%			<0.18	3		NA	5		
Nitrogen (N2)	< 18000 ppmv			<1800	00		NA	25		
Hydrogen (H2)	< 1800 ppmv				<180	0		NA	25	
Carbon Monoxide	< 0.009 Vol%				<0.00	9		NA	5	
Carbon Monoxide	<	90.0	ppmv		<90.0 NA 25					

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 13, 2023 10:43

4330 Lewis Road, Suite 1

Date Issued:

April 20, 2023 14:49

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

072223016

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental	93016	06/14/2023
VELAP	NELAP-Virginia Certificate #12333	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

L	LCS recovery is outside of established acceptance limits

RPD Relative Percent Difference

Qual Qualifers

TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

formerly Air, Water & Soil Laboratories

AIR ANALYSIS CHAIN OF CUSTODY

Equipment due 5/9/2023

Page 1 of 1

												-1 1			<u> </u>				-		
COMPANY NAME: SCS Field Services - Harrisburg INVOICE TO: Same CONTACT: INVOICE CONTACT: ADDRESS: INVOICE ADDRESS:												PROJ	ECT NAM	E/Quote#	: Bristo	1					
CON.	TACT:					IN	OICE CO	NTACT:				SITE	NAME: B	RISTOL	_						
ADD	RESS:					IN	OICE AD	DRESS:				PROJ	ECT NUM	IBER: O	7223	0/6.	00)			
PHO	NE #:					IN	OICE PH	ONE #:				P.O. #	: -								
FAX:	#:			EN	IAIL	:						Pretreatment Program:									
ls sar	mple for comp	liance rep	orting?	YES NO		Regulate	ory State:	VA Is	sample fro	m a chlori	nated sup	ply?	YES (io) PV	VS I.D. #:						
SAMI	PLER NAME (PRINT):	L06.	an Cu	Ш	anz SA	MPLER S	IGNATUR	E: <			Turn	Around T	ime: Circ	cle: 10	5 Days)	or	_	Day(s)	
Matrix (Codes: AA=Indoor	/Ambient Air	SG=Soil	Gas LV=Land	ifili/V	ent Gas OT	=Other <u>しド</u>		- 0				063	-23C-003	7						
		Regulator	Info	Canister In	forn	nation			Sampling S	Start Inform			Sampling	Stop Inform	nation		(S)	AN.	AL۱	/SIS	
	CLIENT						LAB	LAB	Barometric	Pres. (in H	p: 30.7	33	Barometri	Pres. (in H	g): 30.3	33	e Codes)				
	SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (ii Hg)	Starting Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in Hg)	Ending Sample Temp *F	Matrix (See	Alt 145 CO	ဒ္ကင	TO-15 Benzene	<u>5</u>
1)	67			10094	1.4	230328-01	30	5.4	4/12/23	12:57	30	180	4/12/23	1:01 pm	0	180 .1	1	1 1	- 1	x	
2)	54			12853	1.4	230328-01	30	6.0	1/12/23	1:05pm	30	170.2	1/12/23	1:09PM	9	170.4	LG	x	х	x	
3)	57			13369	1.4	230328-01	30	5.2	4/12/23	1:1 3 pm	30	152.7	4/12/23	1 16p	10	152.7	LG	х	x	x	
4)																					
	•				r									19.80	310, 10	ice,	na	Sen			_
RELING	QUISHED:	1			REC	EIVED:		DAI	E / IIME	1	i i	AB USE	ONLY								
RELING	QUISHED:						Pex G					s s		d Servi	ces 23	D 069	96				
RELING				TE / TIME	REC	EIVED:				Level III		8 ~									
L	13369 1.4 230328-01 30 5.2 4/12/23 1:13pm 30 /52.7 Lg x x x 13369 1.4 230328-01 30 5.2 4/12/23 1:13pm 30 /52.7 Lg x x x 13369 1.4 230328-01 30 5.2 4/12/23 1:13pm 30 /52.7 Lg x x x 13369 1.4 230328-01 30 5.2 4/12/23 1:13pm 30 /52.7 Lg x x x 13369 1.4 230328-01 30 5.2 4/12/23 1:13pm 30 /52.7 Lg x x x 13369 1.4 230328-01 30 5.2 4/12/23 1:13pm 30 /52.7 Lg x x x 13369 1.4 230328-01 30 5.2 4/12/23 1:13pm 30 /52.7 Lg x x x 13369 1.4 230328-01 30 5.2 4/12/23 1:13pm 30 /52.7 Lg x x x 13369 1.4 230328-01 30 5.2 4/12/23 1:13pm 30 /52.7 Lg x x x 13369 1.4 230328-01 30 5.2 4/12/23 1:13pm 30 /52.7 Lg x x x 13369 1.4 230328-01 30 5.2 4/12/23 1:13pm 30 /52.7 Lg x x x 13369 1.4 230328-01 30 5.2 4/12/23 1:13pm 30 /52.7 Lg x x x 13369 1.4 230328-01 30 5.2 4/12/23 1:13pm 30 /52.7 Lg x x x 13369 1.4 230328-01 30 5.2 4/12/23 1:13pm 30 /52.7 Lg x x x x																				

AIR ANALYSIS CHAIN OF CUSTODY

Equipment due 3/9/2023

		,						OHAN				i arribarri								_
COV	IPANY NAME:	SCS Field	Servi	ces - Harris	rg IN\			ECT NAM		Bristo	<u> </u>				_					
CON	NTACT:					IN/	OICE CO	NTACT:						pristal			··-			_
ADD	RESS:					IN/	OICE ADI	DRESS:				PROJ	ECT NUM	BER: O	7223	<u> </u>	<u>o</u>			_
PHC	NE #:					IN	OICE PH	ONE #:				P.O. #								_
FAX	#:			EM	IAIL	:						Pretreatment Program:								_
ls sa	ample for comp	liance rep	orting?	(YES)NO		Regulate	ory State:	/// Is	sample fro	m a chlorir	nated supp	oly?	YES N	10 / PV	VS I.D. #:					_
_	IPLER NAME (LLANOSA	MPLER SI	IGNATUR	E:			Turn	Around Ti			5 Days	<u>></u>	or _	_ D	ay —-
	Codes: AA=Indoo								0				063	-23A-003	3		т-т			_
Regulator Info Canister Information Sampling Start Information Sampling Stop Information																_				
	CLIENT			33 T	Barometric	Pres. (in H		53 I	See Co	႙ၟ႞		Perzent								
	SAMPLE I.D.	Flow	Cal		3		Outgoing Canister	Receiving Canister]		Initial Canister	Starting			Final Canister	Endina	ž	45	Ţ	
	•	Controller	Flow	0	l e	Cleaning	Vacuum (in	Vacuum (in	Start Date	Start Time	Vacuum (in Hg)	Sample Temp °F	Stop Date		Vacuum (in Hg)	Ending Sample Temp °F	Mat	₹ ç	4K	عاذ
-		ID_	(mL/min)	Canister ID	S	Batch ID	Hg)	Hg)									\Box	十	1	7
1)	37			11322	1.4	230119-01	21.0	4.6	4/12	1234	26	149.3	4/12	1237	10	149.3	LG	x :	시	~
\vdash							04.0		4/12	.247	17	153	4/12	1250	10	153	LG	丁	,	
2)	52			12782	1.4	230119-01	21.0	5.2	9/12	1011	21		SIIC	12 70		1-7			<u> </u>	
3)																	LG	x	×	
"																	Ш	\bot	1	_
	· · · · · · · · · · · · · · · · · · ·																LG	x		
4)																				
Ш			<u> </u>		ــــــــــــــــــــــــــــــــــــــ	J	·				<u> </u>			19.800	, 310, no:	ود م	> <u>Se</u>	<u>-</u>	$oldsymbol{oldsymbol{oldsymbol{oldsymbol{\Box}}}$	
RELI	NQUISHED:	1		T .	REC	CEIVED:		DA	TE / TIME	QC Data F	Package LA	AB USI	ONLY		•	•				
L.	NOUICUER	//	DA	TE / TIME	BE.	CEIVED:		DA	TE / TIME	Level I		ť	CCC E	.I.J. C	.: 1	21104	۲0 <i>۲</i>			
KELI	NQUISHED!			3:000	1	_	ex B	27.		Level II		23	SCS Fig Bristol	eia Serv	ices 2	23D06	סענ			
RELI	NQUISHED.			TE / TIME		CEIVED:			TE / TIME	Level III		8	Bristol	14 0 10 00 0	D ^	4 10 0 10			•	
	$\overline{\mathcal{O}}$	Fedex	G			Cant	Recd: 04/13/23 093 Level IV Recd: 04/13/2023 Due: 04/20/2023					_		—						

Certificate of Analysis

Final Report

Laboratory Order ID 23D0696

Client Name: SCS Field Services - Harrisburg, PA Date Received: April 13, 2023 10:43

4330 Lewis Road, Suite 1 Date Issued: April 20, 2023 14:49

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number: 072223016

Client Site I.D.: Bristol Purchase Order: 07-S004485

Sample Conditions Checklist

Samples Received at:	19.80°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Environmental Consulting & Contracting

SCS ENGINEERS

May 10, 2023 File No. 02218208.04

MEMORANDUM

TO: Kristin Hall, EPA Region III Tracy Blalock, VDEQ-SWRO

FROM: D. Brandon King, SCS Engineers
Quinn Bernier, SCS Engineers

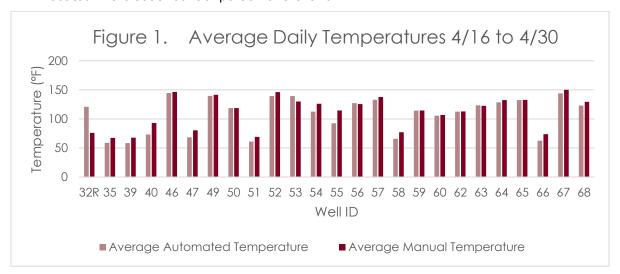
SUBJECT: Semi-Monthly Status Update – April 16th through April 30th, 2023 Bristol Integrated Waste Management Facility, Bristol, Virginia

SCS is submitting this semi-monthly status update to satisfy the conditions of compliance provision #2 of the Environmental Protection Agency (EPA) Region III letter, *Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility*, dated 8/23/21. Accordingly, this memo is a summary of temperature monitoring activities as well as work accomplished during the semi-monthly monitoring period of 4/16/23 through 4/30/23.

TEMPERATURE MONITORING

Automated Wellhead Temperature Measurements

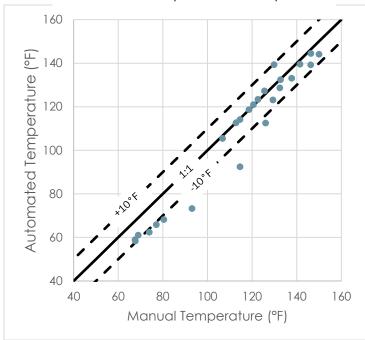
Twenty-five (25) individual landfill gas (LFG) wellheads in the Permit #588 Landfill have automated temperature sensors installed. VDEQ and USEPA have been receiving Daily Gas Well Temperature Reports with data from these automated temperature sensors since 12/1/22.


The 25 wellheads have 2-inch automated sensors. SCS believes that the 2-inch sensors measure temperature with more accuracy than the 1-inch sensors that were used in the majority of the 25 wells prior to March 1, 2023, but we are still comparing with manual temperature to assess the validity of this assertion.

SCS reviewed the automated hourly temperature measurements from 4/16/23 to 4/30/23, and identified the following trends:

• Temperatures over 145°F: Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded at seven wells during this monitoring period. This represents a continuation of higher temperatures across the wellfield since mid-March 2023. Temperatures greater than 145°F were again recorded most consistently at EW-46, however the highest temperatures were measured at EW-52, EW-55 (greater than 170°F at times) and EW-67 (greater than 180°F at times). Field staff believe that the general increase in wellfield temperatures suggests that, with the increase in pneumatic pump operation, the collection system is being successfully dewatered. Due to the increased perforations available from these efforts, the warmer landfill gases are being collected, thus the elevated average temperature.

- Low temperatures at certain wells: Average temperatures between 50°F and 80°F at seven wells generally correlated with low LFG flow rates measured during monthly wellfield monitoring events. These low temperatures are likely close to ambient because little to no LFG is passing through the wellhead where the sensors are placed.
- Temperature Trends by Location: Not all wells with the highest temperatures, for example over 145°F, were collocated. Of the wells with the highest temperatures during this monitoring period, EW-46, EW-52, and EW-67, were the closest to each other; generally located in the south-central portion of the landfill.


Manual Daily Temperature Monitoring

Manual temperature measurements are being made daily by field staff with a GEM5000 or equivalent LFG analyzer. The manual measurements are used to verify the automated wellhead temperature sensors and to provide temperature data for the 13 wellheads without automated sensors.

Comparing the difference between manual temperature measurements and automated temperature measurements in Figure 2, the new 2-inch sensors appear to have satisfactory correlation with manual measurements, with a few outliers. This supports SCS' belief that the 2-inch automated sensors are measuring temperature accurately.

All daily temperatures recorded manually are provided in **Attachment A**.

Figure 2. Manual vs. Automated Temperature Comparison

Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted 4/3/23, with follow-up monitoring on several days after. During this monitoring period, temperature exceedances were resolved at EW-52, EW-54, EW-55, EW-57, EW-61 and EW-67. See Table 1 for a list of the status of all exceedances recorded during this monitoring period.

Table 1.	April Temperature	e Exceedance Si	Jmmary
ا مانا اما	1 4		

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 4/30/23
EW-37	3/28/23	4/27/23 149.2°F	30 days	Ongoing, within 60-day timeline
EW-52	4/11/23	4/17/23 122.6°F	6 days	Resolved within 15- day timeline
EW-52	4/24/23	4/27/23 143.2°F	3 days	Resolved within 15- day timeline
EW-54	4/11/23	4/17/23 143.6°F	6 days	Resolved within 15- day timeline
EW-55	4/24/23	4/27/23 143.5°	3 days	Resolved within 15- day timeline
EW-57	4/11/23	4/17/23 138.4°F	6 days	Resolved within 15- day timeline
EW-61	4/17/23	4/27/23 143.9°	10 days	Resolved within 15- day timeline
EW-67	4/4/23	4/17/23 115.6°F	13 days	Resolved within 15- day timeline
EW-84	4/18/23	4/27/23 189.2°	12 days	Ongoing, within 15-day timeline
EW-86	4/18/23	4/27/23 175.8°	12 days	Ongoing, within 15-day timeline
EW-90	4/18/23	4/27/23 161.7	12 days	Ongoing, within 15-day timeline
EW-100	4/20/23	4/27/23 157.4°	10 days	Ongoing, within 15-day timeline

Work Accomplished During Monitoring Period

LFG Sampling

SCS collected LFG samples from wells EW-37, EW-61, EW-84, EW-86 and EW-90 using 1.5-L Summa canisters on 4/19/23 and EW-37, EW-84, EW-86, EW-90, and EW-100 on 4/27/23 to fulfill the requirement in 40 CFR 63.1961(a)(5) for temperature exceedances lasting more than 7 days. The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H₂) content. Lab results are summarized in Table 2. Full laboratory analytical data is included in **Attachment B** for further detail.

Table 2. LFG Wellhead S	Sampling Summary
-------------------------	------------------

Sample Da	ate	4/19/2023	4/27/2023		
	CO (ppmv)	165	153		
EW-37	H2 (Vol. %)	2.41	2.71		
	CO (ppmv)	571			
EW-61	H2 (Vol. %)	14.9			
	CO (ppmv)	1150	650		
EW-84	H2 (Vol. %)	25.6	15.1		
	CO (ppmv)	463	277		
EW-86	H2 (Vol. %)	10.8	6.23		
	CO (ppmv)	713	171		
EW-90	H2 (Vol. %)	14.2	3.59		
	CO (ppmv)	-	ND		
EW-100	H2 (Vol. %)		4.79		

The presence of hydrogen in all of the samples collected during this monitoring period indicates that combustion reactions are unlikely. The carbon monoxide measurements were greater than 100 ppmv in all but EW-100, indicating that continued weekly CO sampling should continue per 40 CFR 63.1961(a)(5)(viii) until the temperature exceedance is corrected or CO is less than 100 ppmv for four consecutive weekly samples.

Construction Activities

SCS-Field Services (SCS-FS) completed installation of the upper horizontal collector along the northern sections of the Sidewall Odor Mitigation System (SOMS) where liner installation has been completed up to the final 300-foot section of eastern sidewall. The SOMS crew applied soil cover on the lower liner ahead of the Shotcrete crew on remaining sections of the SOMS at the beginning of this reporting period. Shotcrete operations continued in the northern, southwest, and eastern sections of the sidewall odor mitigation system above the upper collector.

The drilling contractor completed drilling of all 18 CPVC wells on 4/15/23. The drilling contractor demobilized during this reporting period, while SCS-FS awaited the first shipment of stainless steel pipe. SCS-FS Phase I LFG System crew connected all 18 CPVC wells to vacuum on or prior to 4/27/23. The Phase I LFG System crew fused a new 12-inch LFG header to traverse the northern section of the quarry from new well EW-69 to a new low point adjacent to well EW-36. The LFG System construction crew reconnected the northern 6-inch LFG header to the new 12-inch LFG header on 4/27/23, which is the day the first shipment of stainless-steel piping arrived for the dual phase LFG extraction interior deep wells.

Weekly SEM

SCS is continuing weekly surface emissions monitoring (SEM) per the Plan of Action Report dated 7/6/22. Five exceedances of the 500-ppmv threshold were recorded during the weekly SEM event held on 4/20/23, and four exceedances were recorded during the weekly event conducted on 4/27/23.

The ongoing construction of new wells and the sidewall odor mitigation system, in addition to connection of new LFG collecting piping, is likely contributing to surface emissions exceedances in April. To a degree, increased emissions during the disturbance of the landfill surface, however SCS and the City continue to install well bore skirts at pipe penetration exceedances where possible, and place additional cover in all exceedance areas as corrective actions.

LFG System O&M

The City's O&M contractor recorded LFG monitoring data on the 18 new CPVC wells during this reporting period. The O&M contractor placed a PVC well bore skirt around well EW-59, as well as replaced the well pump. O&M also replaced pumps in wells EW-49 and EW-53. Wellheads and kanaflex tubing was replaced at wells EW-41, EW-47, EW-54, and EW-57 with 2-inch QED Precision wellheads and Solarguard flexible tubing. In addition, the wellhead was replaced at EW-48. The dewatering system regulator and airline was replaced in well EW-52 and EW-68.

O&M continued regular well and pump maintenance during this reporting period. The O&M contractor shipped four pumps total to Pump One for repair and rebuild. O&M completed April LFG monthly wellfield retest monitoring during this period. In addition, O&M collected 11 samples total during this reporting period based on LFG wellhead temperatures recorded greater than 145°F per NESHAP AAAA.

Please contact SCS or City personnel if you have any questions or require additional information.

cc: Randall Eads, City of Bristol Jon Hayes, City of Bristol Jeff Hurst, VDEQ-SWRO Tom Lock, SCS Field Services David Cochran, City of Bristol Erin Willard, EPA Region III Stacy Bowers, VDEQ-SWRO Robert E. Dick, P.E., SCS Engineers

Attachment A City of Bristol Daily LFG Well Temperature Readings

Month	April	April	April	April	April	April	April	April	April	April	April	April	April	April	April
Day	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Date	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Well Number															
35	81	61	69	78	86	81	58	43	62	67	62	64	74	63	64
39	82	69	70	81	88	83	54	39	61	65	61	66	75	61	60
40	145	77	78	94	99	95	132	84	84	88	93	73	84	85	85
46	146	148	147	147	147	147	146	147	145	145	147	147	146	145	145
47	103	86	76	86	91	85	84	77	67	71	90	74	84	65	67
29	103	99	98	99	100	95	90	42	80	88	96	95	97	80	81
30R	90	125	126	129	128	126	55	92	88	91	127	127	125	89	89
31R	115	133	130	130	132	130	65	117	110	108	135	136	135	110	111
32	70	65	67	68	66	65	82	82	80	82	80	84	88	80	81
33	120	121	122	125	124	122	122	121	122	122	122	122	120	122	122
34	122	122	120	124	124	124	34	125	128	126	130	132	132	127	126
36	70	67	67	70	72	71	66	63	55	52	56	69	68	55	55
37	150	149	149	150	149	150	148	148	149	150	149	149	149	149	150
38	101	95	95	97	98	99	95	95	96	99	100	98	100	46	47
41	98	85	87	89	88	86	88	125	120	116	76	78	77	120	121
42	111	110	111	114	112	113	113	104	100	101	100	112	114	101	101
48	73	62	68	68	69	67	53	40	50	55	60	63	60	58	57
32R	121	121	120	122	121	120	120	121	120	120	121	121	120	120	121
49	133	135	131	135	142	145	146	134	146	138	150	148	147	146	146
50	115	121	118	120	124	118	116	116	115	120	123	122	119	116	116
51	93	68	69	81	87	82	56	44	60	69	61	64	78	61	62
52	145	130	117	134	138	168	149	136	169	156	144	150	137	160	161
53	105	140	140	143	145	145	70	61	141	145	145	140	143	141	143
54	151	136	108	119	125	119	140	141	117	114	146	126	132	108	108
55	50	126	167	103	157	113	70	54	160	84	72	151	88	160	163
56	130	126	129	130	129	129	122	121	123	126	119	124	130	123	122
57	151	140	135	139	142	139	141	139	137	133	133	124	139	137	137
58	116	60	77	102	103	94	84	61	64	64	64	67	70	65	65
59	115	111	112	112	116	118	118	110	115	115	112	117	120	115	112
60	109	108	107	108	107	109	103	104	105	107	107	108	107	106	106
61	146	154	155	152	150	145	155	154	155	148	140	106	112	155	155
62	113	112	112	113	113	114	111	111	113	112	114	113	114	113	113
63	125	112	112	126	125	126	123	122	123	124	124	124	126	123	124
64	138	137	128	130	131	131	138	137	128	129	137	137	130	127	128
65	135	132	132	133	133	133	133	132	132	132	133	133	133	132	132
66	88	68	76	88	94	89	58	46	70	75	67	70	78	70	71
67	169	177	179	165	157	168	150	148	139	139	126	117	140	138	138
68	120	124	124	124	125	125	168	168	123	123	123	123	123	123	124

Attachment B Laboratory Analytical Reports

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

Client Name: SCS Field Services - Harrisburg, PA Date Received: April 20, 2023 15:53

4330 Lewis Road, Suite 1 Date Issued: April 28, 2023 17:44

Harrisburg, PA 17111 Project Number: 07223016.00

Submitted To: Tom Lock Purchase Order: 07-S004485

Client Site I.D.: Bristol

150/0/415

Enclosed are the results of analyses for samples received by the laboratory on 04/20/2023 15:53. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

Client Name: SCS Field Services - Harrisburg, PA

Date Received: April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued: April 28, 2023 17:44

Harrisburg, PA 17111

Project Number: 07223016.00

Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
86	23D1115-01	Air	04/19/2023 10:40	04/20/2023 15:53
84	23D1115-02	Air	04/19/2023 10:52	04/20/2023 15:53

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received:
Date Issued:

April 20, 2023 15:53 April 28, 2023 17:44

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 86

ield Sample #: 86

Sample ID: 23D1115-01

Sampled: 4/19/2023 10:40

Sample Matrix: Air

Client Site I.D.:

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00116::292 Canister Size: 1.4L

ppmv

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 5.6 Receipt Vacuum(in Hg):

Flow Controller Type: Passive

Flow Controller ID:

Sample Type: LV

Volatile Organic Compounds by	GC/TCD -	Unadjusted,	as received basis

ALT-145

Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed Analyst
Carbon Monoxide, as received	463	90.0	90.0		9	1	4/27/23 10:20 MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basis	i			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	26.0	0.45	0.45		9	1	4/27/23 10:20	MER
Carbon dioxide, as received	55.4	0.45	0.45		9	1	4/27/23 10:20	MER
Oxygen (O2), as received	0.51	0.45	0.45		9	1	4/27/23 10:20	MER
Hydrogen (H2), as received	10.8	1.08	1.08		54	1	4/27/23 12:02	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	4/27/23 10:20	MER
Carbon Monoxide, as received	0.05	0.009	0.009		9	1	4/27/23 10:20	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	254000	4670	11700		810000	15000	37000	23300	1	4/28/23 14:52	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			130	* S	;	80-120				4/28/23 14:52	

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued: April 28, 2023 17:44

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Initial Vacuum(in Hg): 30

Field Sample #: 84

Sub Description/Location:

Final Vacuum(in Hg): 5.2

Sample ID: 23D1115-02

Canister ID: 063-00100::00296

Receipt Vacuum(in Hg):

Sample Matrix: Air

Canister Size: 1.4L

Flow Controller Type: Passive Flow Controller ID:

Sampled: 4/19/2023 10:52

Sample Type: LV

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145

Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Carbon Monoxide, as received	1150	90.0	90.0		9	1	4/27/23 11·11 N	MFR

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basi	s			
		Vol%		EPA 3C			B. 4. (T)	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	5.27	0.45	0.45		9	1	4/27/23 11:11	MER
Carbon dioxide, as received	62.2	0.45	0.45		9	1	4/27/23 11:11	MER
Oxygen (O2), as received	1.04	0.45	0.45		9	1	4/27/23 11:11	MER
Hydrogen (H2), as received	25.6	1.62	1.62		81	1	4/27/23 12:17	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	4/27/23 11:11	MER
Carbon Monoxide, as received	0.11	0.009	0.009		9	1	4/27/23 11:11	MER

			Volatile C	rganic Compo EPA TO-1		S					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	551000	9330	23300		1800000	30000	75000	46700	1	4/28/23 15:34	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			124	* S	3	30-120				4/28/23 15:34	

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Date Issued: April 20, 2023 15:53

4330 Lewis Road, Suite 1

April 28, 2023 17:44

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Comp	ounds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23D1115-01	1.00 mL / 1.00 mL	ALT-145	BGD0990	SGD1018	AG00026
23D1115-02	1.00 mL / 1.00 mL	ALT-145	BGD0990	SGD1018	AG00026
23D1115-01	1.00 mL / 1.00 mL	EPA 3C	BGD0990	SGD1018	AG00026
23D1115-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGD0990	SGD1018	AG00026
23D1115-02	1.00 mL / 1.00 mL	EPA 3C	BGD0990	SGD1018	AG00026
23D1115-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGD0990	SGD1018	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Comp	ounds by GCMS		Preparation Method:	No Prep VOC Air	
23D1115-01	400 mL / 400 mL	EPA TO-15	BGD0935	SGD1010	AC30133
23D1115-02	400 mL / 400 mL	EPA TO-15	BGD0935	SGD1010	AC30133

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

Client Name: SCS Field Services - Harrisburg, PA Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued:

April 28, 2023 17:44

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0935 - No Prep VO	C Air									
Blank (BGD0935-BLK1)					Prep	pared &	Analyzed	: 04/26/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene (Surr)	4.38		ppbv	5.00		87.6	80-120			
LCS (BGD0935-BS1)					Prep	pared &	Analyzed	: 04/26/2	023	
1,1,1-Trichloroethane	5.29	0.5	ppbv	5.00		106	70-130			
1,1,2,2-Tetrachloroethane	5.81	0.5	ppbv	5.00		116	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha ne	4.91	0.5	ppbv	5.00		98.2	70-130			
1,1,2-Trichloroethane	5.47	0.5	ppbv	5.00		109	70-130			
1,1-Dichloroethane	4.89	0.5	ppbv	5.00		97.8	70-130			
1,1-Dichloroethylene	4.90	0.5	ppbv	5.00		98.0	70-130			
1,2,4-Trimethylbenzene	5.61	0.5	ppbv	5.00		112	70-130			
1,2-Dibromoethane (EDB)	5.59	0.5	ppbv	5.00		112	70-130			
1,2-Dichlorobenzene	5.88	0.5	ppbv	5.00		118	70-130			
1,2-Dichloroethane	5.22	0.5	ppbv	5.00		104	70-130			
1,2-Dichloropropane	5.32	0.5	ppbv	5.00		106	70-130			
1,2-Dichlorotetrafluoroethane	6.04	0.5	ppbv	5.00		121	70-130			
1,3,5-Trimethylbenzene	5.58	0.5	ppbv	5.00		112	70-130			
1,3-Butadiene	5.55	0.5	ppbv	5.00		111	70-130			
1,3-Dichlorobenzene	5.85	0.5	ppbv	5.00		117	70-130			
1,4-Dichlorobenzene	5.76	0.5	ppbv	5.00		115	70-130			
1,4-Dioxane	5.95	0.5	ppbv	5.00		119	70-130			
2-Butanone (MEK)	4.80	0.5	ppbv	5.00		96.0	70-130			
4-Methyl-2-pentanone (MIBK)	5.49	0.5	ppbv	5.00		110	70-130			
Allyl chloride	4.68	0.5	ppbv	5.00		93.6	70-130			
Benzene	5.36	0.5	ppbv	5.00		107	70-130			
Benzyl Chloride	5.14	0.5	ppbv	5.00		103	70-130			
Bromodichloromethane	4.90	0.5	ppbv	5.00		98.0	70-130			
Bromoform	0.69	0.5	ppbv	5.00		13.8	70-130			L
Bromomethane	6.64	0.5	ppbv	5.00		133	70-130			L
Carbon Disulfide	4.92	0.5	ppbv	5.00		98.4	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

SCS Field Services - Harrisburg, PA Client Name:

Date Received: 4330 Lewis Road, Suite 1

Date Issued:

April 20, 2023 15:53 April 28, 2023 17:44

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source	%RE	EC	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limi	ts RPD	Limit	Qual

CS (BGD0935-BS1)					Prepared &	Analyzed: 04/26/2023
rbon Tetrachloride	5.25	0.5	ppbv	5.00	105	70-130
llorobenzene	5.56	0.5	ppbv	5.00	111	70-130
lloroethane	6.14	0.5	ppbv	5.00	123	70-130
lloroform	4.99	0.5	ppbv	5.00	99.8	70-130
loromethane	5.44	0.5	ppbv	5.00	109	70-130
-1,2-Dichloroethylene	5.02	0.5	ppbv	5.00	100	70-130
-1,3-Dichloropropene	5.38	0.5	ppbv	5.00	108	70-130
rclohexane	5.29	0.5	ppbv	5.00	106	70-130
chlorodifluoromethane	5.05	0.5	ppbv	5.00	101	70-130
nyl acetate	5.05	0.5	ppbv	5.00	101	70-130
nylbenzene	5.58	0.5	ppbv	5.00	112	70-130
ptane	5.12	0.5	ppbv	5.00	102	70-130
ane	5.10	0.5	ppbv	5.00	102	70-130
o-Xylenes	11.2	1	ppbv	10.0	112	70-130
nylene chloride	5.28	1	ppbv	5.00	106	70-130
yl-t-butyl ether (MTBE)	4.86	0.5	ppbv	5.00	97.2	70-130
nthalene	4.36	0.5	ppbv	5.00	87.2	60-140
rlene	5.56	0.5	ppbv	5.00	111	70-130
ylene	5.20	1	ppbv	5.00	104	70-130
ene	5.51	0.5	ppbv	5.00	110	70-130
achloroethylene (PCE)	5.46	0.5	ppbv	5.00	109	70-130
ahydrofuran	5.32	0.5	ppbv	5.00	106	70-130
uene	5.42	0.5	ppbv	5.00	108	70-130
ns-1,2-Dichloroethylene	4.95	0.5	ppbv	5.00	99.0	70-130
ns-1,3-Dichloropropene	5.50	0.5	ppbv	5.00	110	70-130
hloroethylene	5.40	0.5	ppbv	5.00	108	70-130
hlorofluoromethane	4.91	0.5	ppbv	5.00	98.2	70-130
d acetate	4.83	0.5	ppbv	5.00	96.6	70-130
/I bromide	6.35	0.5	ppbv	5.00	127	70-130
/I chloride	5.97	0.5	ppbv	5.00	119	70-130

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

SCS Field Services - Harrisburg, PA Client Name:

4330 Lewis Road, Suite 1

Date Received: Date Issued:

April 20, 2023 15:53

April 28, 2023 17:44

Harrisburg, PA 17111

Bristol

Tom Lock Submitted To:

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGD0935 - No Prep VO	C Air										
LCS Dup (BGD0935-BSD1)					Prep	pared &	Analyzed	: 04/26/2	023		
1,1,1-Trichloroethane	5.16	0.5	ppbv	5.00		103	70-130	2.49	25		
1,1,2,2-Tetrachloroethane	5.69	0.5	ppbv	5.00		114	70-130	2.09	25		
1,1,2-Trichloro-1,2,2-trifluoroetha	4.83	0.5	ppbv	5.00		96.6	70-130	1.64	25		

1,1,1-Trichloroethane	5.16	0.5	ppbv	5.00	103	70-130	2.49	25	
1,1,2,2-Tetrachloroethane	5.69	0.5	ppbv	5.00	114	70-130	2.09	25	
1,1,2-Trichloro-1,2,2-trifluoroetha	4.83	0.5	ppbv	5.00	96.6	70-130	1.64	25	
ne									
1,1,2-Trichloroethane	5.32	0.5	ppbv	5.00	106	70-130	2.78	25	
1,1-Dichloroethane	4.81	0.5	ppbv	5.00	96.2	70-130	1.65	25	
1,1-Dichloroethylene	4.87	0.5	ppbv	5.00	97.4	70-130	0.614	25	
1,2,4-Trimethylbenzene	5.54	0.5	ppbv	5.00	111	70-130	1.26	25	
1,2-Dibromoethane (EDB)	5.52	0.5	ppbv	5.00	110	70-130	1.26	25	
1,2-Dichlorobenzene	5.81	0.5	ppbv	5.00	116	70-130	1.20	25	
1,2-Dichloroethane	5.09	0.5	ppbv	5.00	102	70-130	2.52	25	
1,2-Dichloropropane	5.21	0.5	ppbv	5.00	104	70-130	2.09	25	
1,2-Dichlorotetrafluoroethane	5.79	0.5	ppbv	5.00	116	70-130	4.23	25	
1,3,5-Trimethylbenzene	5.53	0.5	ppbv	5.00	111	70-130	0.900	25	
1,3-Butadiene	4.28	0.5	ppbv	5.00	85.6	70-130	25.8	25	Р
1,3-Dichlorobenzene	5.72	0.5	ppbv	5.00	114	70-130	2.25	25	
1,4-Dichlorobenzene	5.69	0.5	ppbv	5.00	114	70-130	1.22	25	
1,4-Dioxane	5.75	0.5	ppbv	5.00	115	70-130	3.42	25	
2-Butanone (MEK)	4.72	0.5	ppbv	5.00	94.4	70-130	1.68	25	
4-Methyl-2-pentanone (MIBK)	5.37	0.5	ppbv	5.00	107	70-130	2.21	25	
Allyl chloride	4.61	0.5	ppbv	5.00	92.2	70-130	1.51	25	
Benzene	5.18	0.5	ppbv	5.00	104	70-130	3.42	25	
Benzyl Chloride	5.11	0.5	ppbv	5.00	102	70-130	0.585	25	
Bromodichloromethane	4.77	0.5	ppbv	5.00	95.4	70-130	2.69	25	
Bromoform	0.67	0.5	ppbv	5.00	13.4	70-130	2.94	25	L
Bromomethane	6.31	0.5	ppbv	5.00	126	70-130	5.10	25	
Carbon Disulfide	4.83	0.5	ppbv	5.00	96.6	70-130	1.85	25	
Carbon Tetrachloride	5.06	0.5	ppbv	5.00	101	70-130	3.69	25	
Chlorobenzene	5.47	0.5	ppbv	5.00	109	70-130	1.63	25	
Chloroethane	5.85	0.5	ppbv	5.00	117	70-130	4.84	25	
Chloroform	4.92	0.5	ppbv	5.00	98.4	70-130	1.41	25	
Chloromethane	5.44	0.5	ppbv	5.00	109	70-130	0.00	25	
cis-1,2-Dichloroethylene	4.93	0.5	ppbv	5.00	98.6	70-130	1.81	25	
cis-1,3-Dichloropropene	5.28	0.5	ppbv	5.00	106	70-130	1.88	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued:

April 28, 2023 17:44

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

LCS Dup (BGD0935-BSD1)					Prepared &	Analyzed	04/26/20	23
Cyclohexane	5.16	0.5	ppbv	5.00	103	70-130	2.49	25
Dichlorodifluoromethane	4.95	0.5	ppbv	5.00	99.0	70-130	2.00	25
Ethyl acetate	5.20	0.5	ppbv	5.00	104	70-130	2.93	25
Ethylbenzene	5.46	0.5	ppbv	5.00	109	70-130	2.17	25
Heptane	5.01	0.5	ppbv	5.00	100	70-130	2.17	25
Hexane	5.07	0.5	ppbv	5.00	101	70-130	0.590	25
m+p-Xylenes	11.0	1	ppbv	10.0	110	70-130	1.26	25
Methylene chloride	5.22	1	ppbv	5.00	104	70-130	1.14	25
Methyl-t-butyl ether (MTBE)	4.83	0.5	ppbv	5.00	96.6	70-130	0.619	25
Naphthalene	4.32	0.5	ppbv	5.00	86.4	60-140	0.922	25
o-Xylene	5.43	0.5	ppbv	5.00	109	70-130	2.37	25
Propylene	5.10	1	ppbv	5.00	102	70-130	1.94	25
Styrene	5.42	0.5	ppbv	5.00	108	70-130	1.65	25
Tetrachloroethylene (PCE)	5.37	0.5	ppbv	5.00	107	70-130	1.66	25
Tetrahydrofuran	5.11	0.5	ppbv	5.00	102	70-130	4.03	25
Toluene	5.21	0.5	ppbv	5.00	104	70-130	3.95	25
trans-1,2-Dichloroethylene	4.89	0.5	ppbv	5.00	97.8	70-130	1.22	25
trans-1,3-Dichloropropene	5.36	0.5	ppbv	5.00	107	70-130	2.58	25
Trichloroethylene	5.20	0.5	ppbv	5.00	104	70-130	3.77	25
Trichlorofluoromethane	4.81	0.5	ppbv	5.00	96.2	70-130	2.06	25
Vinyl acetate	4.84	0.5	ppbv	5.00	96.8	70-130	0.207	25
Vinyl bromide	6.17	0.5	ppbv	5.00	123	70-130	2.88	25
Vinyl chloride	5.72	0.5	ppbv	5.00	114	70-130	4.28	25
Surr: 4-Bromofluorobenzene	4.67		ppbv	5.00	93.4	70-130		

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

Client Name: SCS Field Services - Harrisburg, PA Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

163

90.0

ppmv

Date Issued:

April 28, 2023 17:44

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: Bristol

Carbon Monoxide

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0990 - No Prep VC	C GC Air									
Blank (BGD0990-BLK1)					Prep	ared &	Analyzed	: 04/26/20	23	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Carbon Monoxide	<	0.001	Vol%							
Carbon Monoxide	<	10.0	ppmv							
_CS (BGD0990-BS1)					Prep	ared &	Analyzed	: 04/26/20	23	
Methane	4350	500	ppmv	5000		87.0	0-200			
Methane	4350	0.05	ppmv	5000		87.0	80-120			
Carbon dioxide	4440	500	ppmv	5000		88.7	0-200			
Carbon dioxide	4440	0.05	ppmv	5000		88.7	80-120			
Oxygen (O2)	5150	500	ppmv	5000		103	0-200			
Oxygen (O2)	5150	0.05	ppmv	5000		103	80-120			
Nitrogen (N2)	5410	2000	ppmv	5000		108	0-200			
Hydrogen (H2)	5830	200	ppmv	5100		114	0-200			
Nitrogen (N2)	5410	1	ppmv	5000		108	80-120			
Hydrogen (H2)	5830	0.02	ppmv	5100		114	80-120			
Carbon Monoxide	4900	10	ppmv	5000		98.1	0-200			
Carbon Monoxide	4900	0.001	ppmv	5000		98.1	80-120			
Ouplicate (BGD0990-DUP1)		Soi	urce: 23D	1116-01	Prep	ared &	Analyzed	: 04/26/20	23	
Methane	9.59	0.45	Vol%		9.56	;		0.285	5	
Methane	95900	4500	ppmv		9560	0		0.285	25	
Carbon dioxide	23.7	0.45	Vol%		24.0)		1.28	5	
Carbon dioxide	237000	4500	ppmv		24000	00		1.28	25	
Oxygen (O2)	7.52	0.45	Vol%		7.52	2		0.0206	5	
Oxygen (O2)	75200	4500	ppmv		7520	0		0.0206	25	
Hydrogen (H2)	2.42	0.18	Vol%		2.41			0.0805	5	
Hydrogen (H2)	24200	1800	ppmv		2410	0		0.0805	25	
Nitrogen (N2)	484000	18000	ppmv		48700	00		0.532	25	
Carbon Monoxide	0.02	0.009	Vol%		0.02	2		1.43	5	

165

1.43

25

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Reporting

Date Issued:

April 28, 2023 17:44

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

%REC

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

RPD

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Spike

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0990 - No Prep VC	C GC Air									
Duplicate (BGD0990-DUP2)		Soi	urce: 23D	1116-02	Prep	ared & A	Analyzed	: 04/26/20	23	
Methane	174000	4500	ppmv		17300	00		0.505	25	
Methane	17.4	0.45	Vol%		17.3	;		0.505	5	
Carbon dioxide	644000	4500	ppmv		62800	00		2.60	25	
Carbon dioxide	64.4	0.45	Vol%		62.8	;		2.60	5	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Hydrogen (H2)	151000	1800	ppmv		15100	00		0.337	25	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Carbon Monoxide	573	90.0	ppmv		571			0.283	25	
Carbon Monoxide	0.06	0.009	Vol%		0.06	i		0.283	5	
Duplicate (BGD0990-DUP3)		Soi	urce: 23D	1116-03	Prep	ared & A	Analyzed	: 04/26/20	23	
Methane	205000	4500	ppmv		20600	00		0.674	25	
Methane	20.5	0.45	Vol%		20.6	i		0.674	5	
Carbon dioxide	610000	4500	ppmv		61400	00		0.771	25	
Carbon dioxide	61.0	0.45	Vol%		61.4			0.771	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Hydrogen (H2)	146000	1800	ppmv		14600	00		0.509	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Carbon Monoxide	705	90.0	ppmv		713			1.00	25	
Carbon Monoxide	0.07	0.009	Vol%		0.07			1.00	5	
Duplicate (BGD0990-DUP4)		Soi	urce: 23D	1115-01	Prep	ared: 04	1/26/2023	3 Analyze	d: 04/27/202	23
Methane	260000	4500	ppmv		26000	00		0.0171	25	<u> </u>
Methane	26.0	0.45	Vol%		26.0)		0.0172	5	
Carbon dioxide	551000	4500	ppmv		55400	00		0.454	25	
Carbon dioxide	55.1	0.45	Vol%		55.4			0.454	5	
Oxygen (O2)	5130	4500	ppmv		5130)		0.0544	25	
Oxygen (O2)	0.51	0.45	Vol%		0.51			0.0544	5	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Hydrogen (H2)	116000	1800	ppmv		11600	00		0.596	25	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

SCS Field Services - Harrisburg, PA Client Name:

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued:

April 28, 2023 17:44

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: Bristol Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0990 - No Prep VC	C GC Air									
Duplicate (BGD0990-DUP4)		Sou	urce: 23D	1115-01	Prep	oared: 04	4/26/2023	3 Analyze	d: 04/27/202	3
Carbon Monoxide	470	90.0	ppmv		463			1.45	25	
Carbon Monoxide	0.05	0.009	Vol%		0.05	j		1.45	5	
Duplicate (BGD0990-DUP5)		Sou	urce: 23D	1115-02	Prep	ared: 04	4/26/2023	3 Analyze	d: 04/27/202	3
Methane	52500	4500	ppmv		5270	0		0.482	25	
Methane	5.25	0.45	Vol%		5.27	•		0.482	5	
Carbon dioxide	61.8	0.45	Vol%		62.2	2		0.727	5	
Carbon dioxide	618000	4500	ppmv		62200	00		0.727	25	
Oxygen (O2)	10400	4500	ppmv		1040	0		0.0733	25	
Oxygen (O2)	1.04	0.45	Vol%		1.04	1		0.0732	5	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Nitrogen (N2)	36400	18000	ppmv		3680	0		1.06	25	
Hydrogen (H2)	271000	1800	ppmv		27400	00		0.868	25	
Carbon Monoxide	0.11	0.009	Vol%		0.11			0.236	5	
Carbon Monoxide	1140	90.0	ppmv		1150)		0.236	25	
Duplicate (BGD0990-DUP6)		Source: 23D1119-01		Prepared: 04/26/2023 Analyzed: 04/27/2023				3		
Methane	412000	4500	ppmv		40700	00		1.20	25	
Methane	41.2	0.45	Vol%		40.7	•		1.20	5	
Carbon dioxide	41.2	0.45	Vol%		40.8	3		1.06	5	
Carbon dioxide	412000	4500	ppmv		40800	00		1.06	25	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Nitrogen (N2)	48200	18000	ppmv		4790	0		0.578	25	
Hydrogen (H2)	77200	1800	ppmv		7630	0		1.21	25	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Reporting

Date Issued: April 28, 2023 17:44

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

%REC

07-SO04485

RPD

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Spike

	1	reporting		Opine	Oddice		701 NEO		IN D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0990 - No Prep VO	C GC Air									
Duplicate (BGD0990-DUP7)	Source: 23D1119-02		Prep	Prepared: 04/26/2023 Analyzed: 04/27/2023						
Methane	46.6	0.45	Vol%		46.4			0.452	5	
Methane	466000	4500	ppmv		46400	00		0.452	25	
Carbon dioxide	448000	4500	ppmv		44200	00		1.15	25	
Carbon dioxide	44.8	0.45	Vol%		44.2	!		1.15	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Hydrogen (H2)	27800	1800	ppmv		2740	0		1.41	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Hydrogen (H2)	2.78	0.18	Vol%		2.74			1.41	5	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Duplicate (BGD0990-DUP8)	Source: 23D1119-03		Prep	Prepared: 04/26/2023 Analyzed: 04/27/2023				23		
Methane	418000	4500	ppmv		42100	00		0.729	25	
Methane	41.8	0.45	Vol%		42.1			0.729	5	
Carbon dioxide	419000	4500	ppmv		42100	00		0.483	25	
Carbon dioxide	41.9	0.45	Vol%		42.1			0.483	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	24100	18000	ppmv		2420	0		0.561	25	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Hydrogen (H2)	88200	1800	ppmv		8880	0		0.709	25	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Duplicate (BGD0990-DUP9)	Source: 23D1119-04		Prepared: 04/26/2023 Analyzed: 04/27/2023			23				
Methane	451000	4500	ppmv		45300	00		0.495	25	
Methane	45.1	0.45	Vol%		45.3	1		0.495	5	
Carbon dioxide	45.0	0.45	Vol%		45.2	!		0.287	5	
Carbon dioxide	450000	4500	ppmv		45200	00		0.287	25	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Hydrogen (H2)	50300	1800	ppmv		5000	0		0.431	25	
Nitrogen (N2)	<	18000	ppmv		<1800	10		NA	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

Client Name: SCS Field Services - Harrisburg, PA Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

0.009

Vol%

Date Issued:

April 28, 2023 17:44

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: Bristol Purchase Order:

07-SO04485

NA

5

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0990 - No Prep VC	OC GC Air									
Duplicate (BGD0990-DUP9)		Soi	urce: 23D	1119-04	Prep	ared: 04	1/26/2023	3 Analyze	ed: 04/27/2023	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Duplicate (BGD0990-DUPA)		Soi	urce: 23D	1119-05	Prep	ared: 04	4/26/2023	3 Analyze	ed: 04/27/2023	
Methane	350000	4500	ppmv		35100	00		0.260	25	
Methane	35.0	0.45	Vol%		35.1			0.260	5	
Carbon dioxide	585000	4500	ppmv		58600	00		0.274	25	
Carbon dioxide	58.5	0.45	Vol%		58.6	;		0.274	5	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Hydrogen (H2)	5090	1800	ppmv		5120)		0.636	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Hydrogen (H2)	0.51	0.18	Vol%		0.51			0.636	5	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	

Certified Analytes included in this Report

Carbon Monoxide

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

< 0.009

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued:

April 28, 2023 17:44

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental	93016	06/14/2023
VELAP	NELAP-Virginia Certificate #12333	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

L LCS recovery is outside of established acceptance limits

P Duplicate analysis does not meet the acceptance criteria for precision

S Surrogate recovery was outside acceptance criteria

RPD Relative Percent Difference

Qual Qualifers

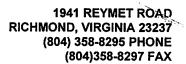
TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation


ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

AIR ANALYSIS

			1			CHAIN	OF CUS	TODY	E	quipm	ent due	∍ 5/18/2 0	23		F	Paç	je 1	l of 1
COMPANY NAME: SCS F	ield Servi	ces - Harri	sbur	g IN	VOICE TO	: Same				PROJECT NAME/Quote #: Bristol								
CONTACT:				IN'	VOICE CO	NTACT:	3/12/01											
ADDRESS:				ĮIN'	VOICE AD	DRESS:												
PHONE #:				lin	VOICE PH	ONE #:		P.O. #:										
FAX #:	37.	EM	IAIL:							Pretre	atment Pr	rogram:	-					
Is sample for compliance	reporting?	(YES YIO		Regulat	ory State:	VA Is	sample fro	m a chlori	nated sup	oly?	YES (PV	VS I.D. #:					
SAMPLER NAME (PRINT): LOGA	~ Cu	LH	ANE SA	MPLER S	IGNATUR	E: <			Turn	Around T	ime: Circ	de: 10 (5 Days	<u>ئ</u>	or		Day(s)
Matrix Codes: AA=Indoor/Ambien	Air SG=Soil	Gas LV=Land	Ifill/Ve	ent Gas OT	=Other		0				063	3-23D-000	5					
Regula	tor Info	Canister In	form	ation			Sampling S	Start Inform	ation		Sampling	Stop Inform	nation		<u>§</u>	ANALYS		/SIS
CLIENT					LAB	LAB	Barometric	Pres. (in Ho			Barometri	c Pres. (in H		Γ	(See Coo	8		
SAMPLE I.D. Flow Contro ID	04.	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in Hg)	Starting Sample Temp *F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in Hg)	Ending Sample Temp *F	Matrix (se		၁င	TO-15 Benzene onlv
1) 86		292	1.4	230408-01	30	5.6	4/19/23	10:37	30		4/19/23	10:40	10	/87.1				x
2) 84		296	1.4	230408-01	30	5.2	4/19/23	10:49	30	197	4/19/23	10:52	10	197./	LG	x	x	x
3) NOT SAMPLED		13953	1.4	230408-01	30										LG	x	x	x
4)	٠																	
RELINQUISHED:			RECE	EIVED:		DAT	E / TIME	QC Data P	ackage LA	LAB USE ONLY					3	10		
RELINQUISHED	4/19	4:0072		EVED: Fedu	21/5		E / TIME	Level II		SCS Field Services 23D1115				γ	MAN C			
Fedly	S	E / IIVIE	A COL	OOL	Hoel	44/2	1553		_		/20/2023	Due: 04	4/27/2023 v130325002					

Page 16 of 17

Certificate of Analysis

Final Report

Laboratory Order ID 23D1115

SCS Field Services - Harrisburg, PA Client Name:

April 20, 2023 15:53 Date Received: Date Issued:

4330 Lewis Road, Suite 1

April 28, 2023 17:44

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number: 07223016.00

Bristol Purchase Order: 07-SO04485

Sample Conditions Checklist

Samples Received at:	19.60°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA Date Received: April 20, 2023 15:53

4330 Lewis Road, Suite 1 Date Issued: April 28, 2023 17:43

Harrisburg, PA 17111 Project Number: 07223016.00

Submitted To: Tom Lock Purchase Order: 07-S004485

Client Site I.D.: Bristol

150/0/415

Enclosed are the results of analyses for samples received by the laboratory on 04/20/2023 15:53. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

Date Received: April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued: April 28, 2023 17:43

Harrisburg, PA 17111

Project Number: 07223016.00

Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23D1116-01	Air	04/19/2023 10:07	04/20/2023 15:53
61	23D1116-02	Air	04/19/2023 10:17	04/20/2023 15:53
90	23D1116-03	Air	04/19/2023 10:32	04/20/2023 15:53

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued: April 28, 2023 17:43

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Initial Vacuum(in Hg): 30

Field Sample #: 37

Sub Description/Location:

Final Vacuum(in Hg): 4.2

Sample ID: 23D1116-01

Canister ID: 063-00276::13384

Receipt Vacuum(in Hg):

Sample Matrix: Air

Canister Size: 1.4L

Flow Controller Type: Passive Flow Controller ID:

Sampled: 4/19/2023 10:07

Sample Type: LV

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145

Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed Analys	t
arbon Monoxide, as received	165	90.0	90.0		9	1	4/26/23 15:52 MER	_

	Vol	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basis	3			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	9.56	0.45	0.45		9	1	4/26/23 15:52	MER
Carbon dioxide, as received	24.0	0.45	0.45		9	1	4/26/23 15:52	MER
Oxygen (O2), as received	7.52	0.45	0.45		9	1	4/26/23 15:52	MER
Hydrogen (H2), as received	2.41	0.18	0.18		9	1	4/26/23 15:52	MER
Nitrogen (N2), as received	47.3	18.0	18.0		18	1	4/26/23 18:21	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	4/26/23 15:52	MER

Volatile Organic Compounds by GCMS EPA TO-15											
	ppbv ug/M³						Data/Time				
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Date/Time Analyzed	Analyst
Benzene	75000	1560	3890		240000	5000	12000	7780	1	4/28/23 10:34	DFH
Surrogate(s)	Surrogate(s) % Recovery		% Recovery Limits					-			
4-Bromofluorobenzene (Surr) 119		80-120			4/28/23 10:34						

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

Date Issued:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

April 28, 2023 17:43

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Initial Vacuum(in Hg): 30

Field Sample #: 61

Sub Description/Location:

Final Vacuum(in Hg): 4.2

Sample ID: 23D1116-02

Canister ID: 063-00380::13961

Receipt Vacuum(in Hg):

Sample Matrix: Air

Canister Size: 1.4L

Flow Controller Type: Passive

Sampled: 4/19/2023 10:17

Flow Controller ID:

Sample Type: LV

Volatile Organic Compounds by	GC/TCD -	Unadjusted,	as received basis

	ALT-145
ppmv	

Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst	
Carbon Monoxide, as received	571	90.0	90.0		9	1	4/26/23 16:39	MFR	_

Volatile Organic Compounds by GC/TCD -	Unadjusted, as received basis

		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	17.3	0.45	0.45		9	1	4/26/23 16:39	MER
Carbon dioxide, as received	62.8	0.45	0.45		9	1	4/26/23 16:39	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	4/26/23 16:39	MER
Hydrogen (H2), as received	14.9	1.08	1.08		54	1	4/26/23 18:37	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	4/26/23 16:39	MER
Carbon Monoxide, as received	0.06	0.009	0.009		9	1	4/26/23 16:39	MER

Volatile Organic Compounds by GCMS

		ppbv			:PA 10-1	5	/8//3					
Analyte	Results	MDL	LOQ	Flag	J/Qual	Results	ug/M³ MDL	LOQ	- Dilution	PF	Date/Time Analyzed	Analyst
Benzene	195000	3110	7780			620000	9900	25000	15600	1	4/28/23 11:17	DFH
Surrogate(s)		% Re	covery			% Re	covery Li	mits				
4-Bromofluorobenzene (Surr)			123	*	S	3	30-120				4/28/23 11:17	

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued: April 28, 2023 17:43

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Project Number:

07223016.00

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Initial Vacuum(in Hg): 30

Field Sample #: 90

Sub Description/Location:

Final Vacuum(in Hg): 4.8

Field Sample #: 90

Sub Description/Location:

inal vacuum(iii rig). 4.0

Sample ID: 23D1116-03

Canister ID: 063-00354::13966

Receipt Vacuum(in Hg):

Sample Matrix: Air

Canister Size: 1.4L

ppmv

Flow Controller Type: Passive Flow Controller ID:

Sampled: 4/19/2023 10:32

Client Site I.D.:

Sample Type: LV

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145

Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst	
rbon Monoxide, as received	713	90.0	90.0		9	1	4/26/23 17:30	MFR	

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as rece	ived basis			
		Vol%		EPA 3C			D. 1. (T)	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	20.6	0.45	0.45		9	1	4/26/23 17:30	MER
Carbon dioxide, as received	61.4	0.45	0.45		9	1	4/26/23 17:30	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	4/26/23 17:30	MER
Hydrogen (H2), as received	14.2	1.08	1.08		54	1	4/26/23 18:52	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	4/26/23 17:30	MER
Carbon Monoxide, as received	0.07	0.009	0.009		9	1	4/26/23 17:30	MER

			Volatile C	rganic Compo		s					
		ppbv		EPA TO-15) 	ug/M³		_		Data (Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Date/Time Analyzed	Analyst
Benzene	471000	9330	23300		1500000	30000	75000	46700	1	4/28/23 11:59	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				-
4-Bromofluorobenzene (Surr)			125	* S	}	30-120				4/28/23 11:59	

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued:

April 28, 2023 17:43

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order: 0

07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	unds by GC/TCD - Unadjusted, a	as received basis	Preparation Method:	No Prep VOC GC Air	
23D1116-01	1.00 mL / 1.00 mL	ALT-145	BGD0990	SGD1005	AG00026
23D1116-02	1.00 mL / 1.00 mL	ALT-145	BGD0990	SGD1005	AG00026
23D1116-03	1.00 mL / 1.00 mL	ALT-145	BGD0990	SGD1005	AG00026
23D1116-01	1.00 mL / 1.00 mL	EPA 3C	BGD0990	SGD1005	AG00026
23D1116-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGD0990	SGD1005	AG00026
23D1116-02	1.00 mL / 1.00 mL	EPA 3C	BGD0990	SGD1005	AG00026
23D1116-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGD0990	SGD1005	AG00026
23D1116-03	1.00 mL / 1.00 mL	EPA 3C	BGD0990	SGD1005	AG00026
23D1116-03RE1	1.00 mL / 1.00 mL	EPA 3C	BGD0990	SGD1005	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	unds by GCMS		Preparation Method:	No Prep VOC Air	
23D1116-01	400 mL / 400 mL	EPA TO-15	BGD0935	SGD1010	AC30133
23D1116-02	400 mL / 400 mL	EPA TO-15	BGD0935	SGD1010	AC30133
23D1116-03	400 mL / 400 mL	EPA TO-15	BGD0935	SGD1010	AC30133

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued:

April 28, 2023 17:43

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0935 - No Prep VO	C Air									
Blank (BGD0935-BLK1)					Prep	pared &	Analyzed	: 04/26/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene (Surr)	4.38		ppbv	5.00		87.6	80-120			
LCS (BGD0935-BS1)					Prep	pared &	Analyzed	: 04/26/2	023	
1,1,1-Trichloroethane	5.29	0.5	ppbv	5.00		106	70-130			
1,1,2,2-Tetrachloroethane	5.81	0.5	ppbv	5.00		116	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha ne	4.91	0.5	ppbv	5.00		98.2	70-130			
1,1,2-Trichloroethane	5.47	0.5	ppbv	5.00		109	70-130			
1,1-Dichloroethane	4.89	0.5	ppbv	5.00		97.8	70-130			
1,1-Dichloroethylene	4.90	0.5	ppbv	5.00		98.0	70-130			
1,2,4-Trimethylbenzene	5.61	0.5	ppbv	5.00		112	70-130			
1,2-Dibromoethane (EDB)	5.59	0.5	ppbv	5.00		112	70-130			
1,2-Dichlorobenzene	5.88	0.5	ppbv	5.00		118	70-130			
1,2-Dichloroethane	5.22	0.5	ppbv	5.00		104	70-130			
1,2-Dichloropropane	5.32	0.5	ppbv	5.00		106	70-130			
1,2-Dichlorotetrafluoroethane	6.04	0.5	ppbv	5.00		121	70-130			
1,3,5-Trimethylbenzene	5.58	0.5	ppbv	5.00		112	70-130			
1,3-Butadiene	5.55	0.5	ppbv	5.00		111	70-130			
1,3-Dichlorobenzene	5.85	0.5	ppbv	5.00		117	70-130			
1,4-Dichlorobenzene	5.76	0.5	ppbv	5.00		115	70-130			
1,4-Dioxane	5.95	0.5	ppbv	5.00		119	70-130			
2-Butanone (MEK)	4.80	0.5	ppbv	5.00		96.0	70-130			
4-Methyl-2-pentanone (MIBK)	5.49	0.5	ppbv	5.00		110	70-130			
Allyl chloride	4.68	0.5	ppbv	5.00		93.6	70-130			
Benzene	5.36	0.5	ppbv	5.00		107	70-130			
Benzyl Chloride	5.14	0.5	ppbv	5.00		103	70-130			
Bromodichloromethane	4.90	0.5	ppbv	5.00		98.0	70-130			
Bromoform	0.69	0.5	ppbv	5.00		13.8	70-130			L
Bromomethane	6.64	0.5	ppbv	5.00		133	70-130			L
Carbon Disulfide	4.92	0.5	ppbv	5.00		98.4	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued: April 28,

April 28, 2023 17:43

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

CS (BGD0935-BS1)					Prepared &	Analyzed: 04/26/2023
arbon Tetrachloride	5.25	0.5	ppbv	5.00	105	70-130
hlorobenzene	5.56	0.5	ppbv	5.00	111	70-130
hloroethane	6.14	0.5	ppbv	5.00	123	70-130
hloroform	4.99	0.5	ppbv	5.00	99.8	70-130
hloromethane	5.44	0.5	ppbv	5.00	109	70-130
s-1,2-Dichloroethylene	5.02	0.5	ppbv	5.00	100	70-130
s-1,3-Dichloropropene	5.38	0.5	ppbv	5.00	108	70-130
yclohexane	5.29	0.5	ppbv	5.00	106	70-130
ichlorodifluoromethane	5.05	0.5	ppbv	5.00	101	70-130
thyl acetate	5.05	0.5	ppbv	5.00	101	70-130
thylbenzene	5.58	0.5	ppbv	5.00	112	70-130
eptane	5.12	0.5	ppbv	5.00	102	70-130
exane	5.10	0.5	ppbv	5.00	102	70-130
+p-Xylenes	11.2	1	ppbv	10.0	112	70-130
ethylene chloride	5.28	1	ppbv	5.00	106	70-130
ethyl-t-butyl ether (MTBE)	4.86	0.5	ppbv	5.00	97.2	70-130
aphthalene	4.36	0.5	ppbv	5.00	87.2	60-140
Xylene	5.56	0.5	ppbv	5.00	111	70-130
ropylene	5.20	1	ppbv	5.00	104	70-130
tyrene	5.51	0.5	ppbv	5.00	110	70-130
etrachloroethylene (PCE)	5.46	0.5	ppbv	5.00	109	70-130
etrahydrofuran	5.32	0.5	ppbv	5.00	106	70-130
oluene	5.42	0.5	ppbv	5.00	108	70-130
ans-1,2-Dichloroethylene	4.95	0.5	ppbv	5.00	99.0	70-130
ans-1,3-Dichloropropene	5.50	0.5	ppbv	5.00	110	70-130
richloroethylene	5.40	0.5	ppbv	5.00	108	70-130
richlorofluoromethane	4.91	0.5	ppbv	5.00	98.2	70-130
nyl acetate	4.83	0.5	ppbv	5.00	96.6	70-130
inyl bromide	6.35	0.5	ppbv	5.00	127	70-130
inyl chloride	5.97	0.5	ppbv	5.00	119	70-130
urr: 4-Bromofluorobenzene Surr)	4.62		ppbv	5.00	92.4	70-130

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

Date Issued:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Reporting

5.44

4.93

5.28

Chloromethane

cis-1,2-Dichloroethylene

cis-1,3-Dichloropropene

0.5

0.5

0.5

ppbv

ppbv

ppbv

5.00

5.00

5.00

109

98.6

106

70-130

70-130

70-130

0.00

1.81

1.88

25

25

25

April 28, 2023 17:43

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: **Bristol** Purchase Order:

%REC

07-SO04485

RPD

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

Source

Spike

		1 3									
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGD0935 - No Prep VO	C Air										
LCS Dup (BGD0935-BSD1)					Prep	pared &	Analyzed	: 04/26/20	023		
1,1,1-Trichloroethane	5.16	0.5	ppbv	5.00		103	70-130	2.49	25		
1,1,2,2-Tetrachloroethane	5.69	0.5	ppbv	5.00		114	70-130	2.09	25		
1,1,2-Trichloro-1,2,2-trifluoroetha ne	4.83	0.5	ppbv	5.00		96.6	70-130	1.64	25		
1,1,2-Trichloroethane	5.32	0.5	ppbv	5.00		106	70-130	2.78	25		
1,1-Dichloroethane	4.81	0.5	ppbv	5.00		96.2	70-130	1.65	25		
1,1-Dichloroethylene	4.87	0.5	ppbv	5.00		97.4	70-130	0.614	25		
1,2,4-Trimethylbenzene	5.54	0.5	ppbv	5.00		111	70-130	1.26	25		
,2-Dibromoethane (EDB)	5.52	0.5	ppbv	5.00		110	70-130	1.26	25		
,2-Dichlorobenzene	5.81	0.5	ppbv	5.00		116	70-130	1.20	25		
,2-Dichloroethane	5.09	0.5	ppbv	5.00		102	70-130	2.52	25		
,2-Dichloropropane	5.21	0.5	ppbv	5.00		104	70-130	2.09	25		
,2-Dichlorotetrafluoroethane	5.79	0.5	ppbv	5.00		116	70-130	4.23	25		
,3,5-Trimethylbenzene	5.53	0.5	ppbv	5.00		111	70-130	0.900	25		
,3-Butadiene	4.28	0.5	ppbv	5.00		85.6	70-130	25.8	25	Р	
,3-Dichlorobenzene	5.72	0.5	ppbv	5.00		114	70-130	2.25	25		
,4-Dichlorobenzene	5.69	0.5	ppbv	5.00		114	70-130	1.22	25		
,4-Dioxane	5.75	0.5	ppbv	5.00		115	70-130	3.42	25		
P-Butanone (MEK)	4.72	0.5	ppbv	5.00		94.4	70-130	1.68	25		
-Methyl-2-pentanone (MIBK)	5.37	0.5	ppbv	5.00		107	70-130	2.21	25		
Allyl chloride	4.61	0.5	ppbv	5.00		92.2	70-130	1.51	25		
Benzene	5.18	0.5	ppbv	5.00		104	70-130	3.42	25		
Benzyl Chloride	5.11	0.5	ppbv	5.00		102	70-130	0.585	25		
Bromodichloromethane	4.77	0.5	ppbv	5.00		95.4	70-130	2.69	25		
Bromoform	0.67	0.5	ppbv	5.00		13.4	70-130	2.94	25	L	
Bromomethane	6.31	0.5	ppbv	5.00		126	70-130	5.10	25		
Carbon Disulfide	4.83	0.5	ppbv	5.00		96.6	70-130	1.85	25		
Carbon Tetrachloride	5.06	0.5	ppbv	5.00		101	70-130	3.69	25		
Chlorobenzene	5.47	0.5	ppbv	5.00		109	70-130	1.63	25		
Chloroethane	5.85	0.5	ppbv	5.00		117	70-130	4.84	25		
Chloroform	4.92	0.5	ppbv	5.00		98.4	70-130	1.41	25		

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued:

April 28, 2023 17:43

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

LCS Dup (BGD0935-BSD1)					Prepared &	Analyzed	04/26/20	23
Cyclohexane	5.16	0.5	ppbv	5.00	103	70-130	2.49	25
Dichlorodifluoromethane	4.95	0.5	ppbv	5.00	99.0	70-130	2.00	25
Ethyl acetate	5.20	0.5	ppbv	5.00	104	70-130	2.93	25
Ethylbenzene	5.46	0.5	ppbv	5.00	109	70-130	2.17	25
Heptane	5.01	0.5	ppbv	5.00	100	70-130	2.17	25
Hexane	5.07	0.5	ppbv	5.00	101	70-130	0.590	25
m+p-Xylenes	11.0	1	ppbv	10.0	110	70-130	1.26	25
Methylene chloride	5.22	1	ppbv	5.00	104	70-130	1.14	25
Methyl-t-butyl ether (MTBE)	4.83	0.5	ppbv	5.00	96.6	70-130	0.619	25
Naphthalene	4.32	0.5	ppbv	5.00	86.4	60-140	0.922	25
o-Xylene	5.43	0.5	ppbv	5.00	109	70-130	2.37	25
Propylene	5.10	1	ppbv	5.00	102	70-130	1.94	25
Styrene	5.42	0.5	ppbv	5.00	108	70-130	1.65	25
Tetrachloroethylene (PCE)	5.37	0.5	ppbv	5.00	107	70-130	1.66	25
Tetrahydrofuran	5.11	0.5	ppbv	5.00	102	70-130	4.03	25
Toluene	5.21	0.5	ppbv	5.00	104	70-130	3.95	25
trans-1,2-Dichloroethylene	4.89	0.5	ppbv	5.00	97.8	70-130	1.22	25
trans-1,3-Dichloropropene	5.36	0.5	ppbv	5.00	107	70-130	2.58	25
Trichloroethylene	5.20	0.5	ppbv	5.00	104	70-130	3.77	25
Trichlorofluoromethane	4.81	0.5	ppbv	5.00	96.2	70-130	2.06	25
Vinyl acetate	4.84	0.5	ppbv	5.00	96.8	70-130	0.207	25
Vinyl bromide	6.17	0.5	ppbv	5.00	123	70-130	2.88	25
Vinyl chloride	5.72	0.5	ppbv	5.00	114	70-130	4.28	25
Surr: 4-Bromofluorobenzene	4.67		ppbv	5.00	93.4	70-130		

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

ourg, PA Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

163

90.0

ppmv

Date Issued: April 28, 2023 17:43

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Carbon Monoxide

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0990 - No Prep VC	OC GC Air									
Blank (BGD0990-BLK1)					Prep	pared &	Analyzed	: 04/26/20)23	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Carbon Monoxide	<	0.001	Vol%							
Carbon Monoxide	<	10.0	ppmv							
LCS (BGD0990-BS1)					Prep	pared &	Analyzed	: 04/26/20)23	
Methane	4350	500	ppmv	5000		87.0	0-200			
Methane	4350	0.05	ppmv	5000		87.0	80-120			
Carbon dioxide	4440	500	ppmv	5000		88.7	0-200			
Carbon dioxide	4440	0.05	ppmv	5000		88.7	80-120			
Oxygen (O2)	5150	500	ppmv	5000		103	0-200			
Oxygen (O2)	5150	0.05	ppmv	5000		103	80-120			
Nitrogen (N2)	5410	2000	ppmv	5000		108	0-200			
Hydrogen (H2)	5830	200	ppmv	5100		114	0-200			
Nitrogen (N2)	5410	1	ppmv	5000		108	80-120			
Hydrogen (H2)	5830	0.02	ppmv	5100		114	80-120			
Carbon Monoxide	4900	10	ppmv	5000		98.1	0-200			
Carbon Monoxide	4900	0.001	ppmv	5000		98.1	80-120			
Duplicate (BGD0990-DUP1)		Soi	urce: 23D	1116-01	Prep	pared & A	Analyzed	: 04/26/20)23	
Methane	9.59	0.45	Vol%		9.56	6		0.285	5	
Methane	95900	4500	ppmv		9560	0		0.285	25	
Carbon dioxide	23.7	0.45	Vol%		24.0)		1.28	5	
Carbon dioxide	237000	4500	ppmv		24000	00		1.28	25	
Oxygen (O2)	7.52	0.45	Vol%		7.52	2		0.0206	5	
Oxygen (O2)	75200	4500	ppmv		7520	0		0.0206	25	
Hydrogen (H2)	2.42	0.18	Vol%		2.41			0.0805	5	
Hydrogen (H2)	24200	1800	ppmv		2410	0		0.0805	25	
Nitrogen (N2)	484000	18000	ppmv		48700	00		0.532	25	
Carbon Monoxide	0.02	0.009	Vol%		0.02	2		1.43	5	

165

1.43

25

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Ap

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Reporting

116000

1800

9.00

ppmv

Vol%

Date Issued:

April 28, 2023 17:43

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Hydrogen (H2)

Nitrogen (N2)

Project Number:

%REC

07223016.00

RPD

Bristol Purchase Order: 07-SO04485

Spike

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control Enthalpy Analytical

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0990 - No Prep VC	OC GC Air									
Duplicate (BGD0990-DUP2)		So	urce: 23D	1116-02	Prep	Prepared & Analyzed: 04/26/2023				
Methane	174000	4500	ppmv		17300	00		0.505	25	
Methane	17.4	0.45	Vol%		17.3			0.505	5	
Carbon dioxide	644000	4500	ppmv		62800	00		2.60	25	
Carbon dioxide	64.4	0.45	Vol%		62.8			2.60	5	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Nitrogen (N2)	<	18000	ppmv		<1800	0		NA	25	
Hydrogen (H2)	151000	1800	ppmv		15100	00		0.337	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00)		NA	5	
Carbon Monoxide	573	90.0	ppmv		571			0.283	25	
Carbon Monoxide	0.06	0.009	Vol%		0.06			0.283	5	
Duplicate (BGD0990-DUP3)		So	urce: 23D	1116-03	Prep	ared & A	Analyzed	I: 04/26/20	023	
Methane	205000	4500	ppmv		20600	00		0.674	25	
Methane	20.5	0.45	Vol%		20.6			0.674	5	
Carbon dioxide	610000	4500	ppmv		61400	00		0.771	25	
Carbon dioxide	61.0	0.45	Vol%		61.4			0.771	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Hydrogen (H2)	146000	1800	ppmv		14600	00		0.509	25	
Nitrogen (N2)	<	18000	ppmv		<1800	0		NA	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00)		NA	5	
Carbon Monoxide	705	90.0	ppmv		713			1.00	25	
Carbon Monoxide	0.07	0.009	Vol%		0.07			1.00	5	
Duplicate (BGD0990-DUP4)		So	urce: 23D	1115-01	Prep	ared: 04	1/26/2023	3 Analyze	d: 04/27/202	23
Methane	260000	4500	ppmv		26000	00		0.0171	25	
Methane	26.0	0.45	Vol%		26.0			0.0172	5	
Carbon dioxide	551000	4500	ppmv		55400	00		0.454	25	
Carbon dioxide	55.1	0.45	Vol%		55.4			0.454	5	
Oxygen (O2)	5130	4500	ppmv		5130)		0.0544	25	
Oxygen (O2)	0.51	0.45	Vol%		0.51			0.0544	5	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Lhudaa aa aa (UO)	440000	4000			44000			0.500	05	

116000

<9.00

0.596

NA

25

5

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Date Issued:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

sued: April 28, 2023 17:43

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

$\label{lem:compounds} \mbox{Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control}$

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0990 - No Prep VO	C GC Air									
Duplicate (BGD0990-DUP4)		Sou	urce: 23D	1115-01	Prep	oared: 04	1/26/2023	Analyze	d: 04/27/2023	3
Carbon Monoxide	470	90.0	ppmv		463			1.45	25	
Carbon Monoxide	0.05	0.009	Vol%		0.05	5		1.45	5	
Duplicate (BGD0990-DUP5)		Sou	urce: 23D	1115-02	Prep	ared: 04	1/26/2023	Analyze	d: 04/27/2023	3
Methane	52500	4500	ppmv		5270	0		0.482	25	
Methane	5.25	0.45	Vol%		5.27	•		0.482	5	
Carbon dioxide	61.8	0.45	Vol%		62.2	2		0.727	5	
Carbon dioxide	618000	4500	ppmv		62200	00		0.727	25	
Oxygen (O2)	10400	4500	ppmv		1040	0		0.0733	25	
Oxygen (O2)	1.04	0.45	Vol%		1.04	1		0.0732	5	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Nitrogen (N2)	36400	18000	ppmv		3680	0		1.06	25	
Hydrogen (H2)	271000	1800	ppmv		27400	00		0.868	25	
Carbon Monoxide	0.11	0.009	Vol%		0.11			0.236	5	
Carbon Monoxide	1140	90.0	ppmv		1150)		0.236	25	
Duplicate (BGD0990-DUP6)		Sou	urce: 23D	1119-01	Prep	ared: 04	1/26/2023	Analyze	d: 04/27/2023	3
Methane	412000	4500	ppmv		40700	00		1.20	25	
Methane	41.2	0.45	Vol%		40.7	•		1.20	5	
Carbon dioxide	41.2	0.45	Vol%		40.8	3		1.06	5	
Carbon dioxide	412000	4500	ppmv		40800	00		1.06	25	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Nitrogen (N2)	48200	18000	ppmv		4790	0		0.578	25	
Hydrogen (H2)	77200	1800	ppmv		7630	0		1.21	25	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Reporting

Date Issued:

April 28, 2023 17:43

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

%REC

07-SO04485

RPD

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Spike

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0990 - No Prep VC	C GC Air									
Duplicate (BGD0990-DUP7)		Sou	ırce: 23D	1119-02	Prep	Prepared: 04/26/2023 Analyzed: 04/27/2023				
Methane	46.6	0.45	Vol%		46.4			0.452	5	
Methane	466000	4500	ppmv		46400	00		0.452	25	
Carbon dioxide	448000	4500	ppmv		44200	00		1.15	25	
Carbon dioxide	44.8	0.45	Vol%		44.2	2		1.15	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Hydrogen (H2)	27800	1800	ppmv		2740	0		1.41	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Hydrogen (H2)	2.78	0.18	Vol%		2.74	ļ		1.41	5	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Ouplicate (BGD0990-DUP8)	Source: 23D1119-03			Prep	ared: 04	1/26/2023	3 Analyze	d: 04/27/202	23	
Methane	418000	4500	ppmv		42100	00		0.729	25	
/lethane	41.8	0.45	Vol%		42.1			0.729	5	
Carbon dioxide	419000	4500	ppmv		42100	00		0.483	25	
Carbon dioxide	41.9	0.45	Vol%		42.1			0.483	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	24100	18000	ppmv		2420	0		0.561	25	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Hydrogen (H2)	88200	1800	ppmv		8880	0		0.709	25	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Duplicate (BGD0990-DUP9)		Sou	ırce: 23D	1119-04	Prep	ared: 04	1/26/2023	3 Analyze	d: 04/27/202	23
Methane	451000	4500	ppmv		45300	00		0.495	25	
Methane	45.1	0.45	Vol%		45.3	3		0.495	5	
Carbon dioxide	45.0	0.45	Vol%		45.2	2		0.287	5	
Carbon dioxide	450000	4500	ppmv		45200	00		0.287	25	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Hydrogen (H2)	50300	1800	ppmv		5000	0		0.431	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

5090

0.51

<

1800

18000

0.18

9.00

90.0

0.009

ppmv

ppmv

Vol%

Vol%

ppmv

Vol%

Date Issued: Ar

0.636

NA

0.636

NA

NA

NA

25

25

5

5

25

5

April 28, 2023 17:43

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Hydrogen (H2)

Nitrogen (N2)

Hydrogen (H2)

Nitrogen (N2)

Carbon Monoxide

Carbon Monoxide

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGD0990 - No Prep VO	C GC Air									
Duplicate (BGD0990-DUP9)		Sou	urce: 23D1	119-04	Prep	ared: 04	1/26/2023	3 Analyze	d: 04/27/2023	
Nitrogen (N2)	<	9.00	Vol%		<9.0)		NA	5	·
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Carbon Monoxide	<	90.0	ppmv		<90.)		NA	25	
Duplicate (BGD0990-DUPA)		Sou	urce: 23D1	119-05	Prep	ared: 04	1/26/2023	3 Analyze	d: 04/27/2023	
Methane	350000	4500	ppmv		35100	00		0.260	25	
Methane	35.0	0.45	Vol%		35.1			0.260	5	
Carbon dioxide	585000	4500	ppmv		58600	00		0.274	25	
Carbon dioxide	58.5	0.45	Vol%		58.6	i		0.274	5	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	

5120

<18000

0.51

<9.00

<90.0

< 0.009

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued:

April 28, 2023 17:43

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental	93016	06/14/2023
VELAP	NELAP-Virginia Certificate #12333	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

L LCS recovery is outside of established acceptance limits

P Duplicate analysis does not meet the acceptance criteria for precision

S Surrogate recovery was outside acceptance criteria

RPD Relative Percent Difference

Qual Qualifers

TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

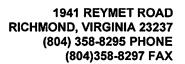
LOQ Limit of Quantitation

ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.



AIR ANALYSIS CHAIN OF CUSTODY

Equipment due 5/9/2023

Page 1 of 2

						<u>_</u>			
COMPANY NAME: SCS Field Services - Harrisburg	INVOICE TO: Same			NAME: Bristo					
CONTACT:									
ADDRESS:	223016.0	<u>ථ</u>							
PHONE #:	INVOICE PHONE #:		P.O. #	<u>.</u>					
FAX #: Pretreatment Program:									
Is sample for compliance reporting? YES NO Regulatory State: VA Is sample from a chlorinated supply? YES NO PWS I.D. #:									
SAMPLER NAME (PRINT): LOGAN CULHANE SAMPLER SIGNATURE: Turn Around Time: Circle: 10 (5 Days) or _ Day(s)									
Matrix Codes: AA=Indoor/Ambient Air SG=Soll Gas LV=Landfill/Vent Gas	OT=OtherV			063-23C-003	7		<u> </u>		
Regulator Info Canister Information		Sampling Start Information	<u>1</u>	Sampling Stop Inform	nation	4 9	ALYSIS		
CLIENT	LAB LAB	Barometric Pres. (in Hg):		Barometric Pres. (in H		00 88 00 00 00 00 00			
SAMPLE I.D. Flow Cal Controller Flow ID (mL/min) Canister ID Canister ID Batch		Ca Start Time Vac	nitial anister Starting cuum (in Sample Hg) Temp °F	1 1 '	Final Canister Ending Vacuum (in Sample Hg) Temp °F	Matrix (s Alt 145 C	3C TO-15 Benzene only		
1) 10094 1.4 230324	8-01 30					LG x			
2) 12853 1.4 230324	8-01 30					LG x	x x		
3) 2 13369 1.4 230320	8-01 30					LG x	x x		
4) 37 13384 1.4 23032	8-01 30 4.7	4/19/23/10:02	30 149	4/19/23 10:07	10 149	LG x	x x		
			- I			· · · · · · · · · · · · · · · · · · ·	1.000		
RELINQUISHED: RECEIVED:	DAI	E / TIME QC Data Packa	age LAB USE	EONLY	5	10 19	1.6°C		
RELINQUISHED. DATE / TIME RECEIVED:		E / TIME					Nosea		
1/19 4:00g PC	dex to	E / TIME Level III	SCS Bristo	Field Services	23D1116				
Fedex G	XXX 1111 MY 412912	3 (553 Level IV D			. 04/25/2022				
	4 1		Keca:	04/20/2023 Due	: U4/27/2U23 v130325002	Pane	17 of 19		

AIR ANALYSIS

, , ,							CHAIN	OF CUS	TODY	E	quipm	ent due	5/9/202	:3			'ag	<u> </u>	of 2
COMPANY NAME	: SCS Field	d Servi	ces - Harri	sbu	ourg INVOICE TO: Same						PROJECT NAME/Quote #: Bristol								
CONTACT:					INVOICE CONTACT:						SITE NAME:								
ADDRESS:			INVOICE ADDRESS:							PROJECT NUMBER:									
PHONE #:					IN/	INVOICE PHONE #:						:							
FAX #: EMAIL:										atment Pr	ogram:								
Is sample for compliance reporting? YES NO Regulatory State: VA Is sample from a chlorinated supply? YES NO PWS I.D. #:																			
SAMPLER NAME	(PRINT):	L06A	~ Cul	44	√≨ SA	MPLER S	IGNATUR	E: <			Turn /	Around T	ime: Cir	cle: 10 (5 Days	>	or .		Day(s)
Matrix Codes: AA=Indoo	or/Ambient Air	SG=Soil	Gas LV=Land	dfill/V	ent Gas OT	=Other	<u>/</u>					063	3-23C-003	7					
	Regulator	Info	Canister In	form	nation	r		Sampling S	Start Inform	ation			Stop Inforn			Codes)	AN/	<u>\LY</u>	SIS
CLIENT						LAB	LAB	Barometric	Pres. (in Ho		1	Barometric	Pres. (in H		· · · · · ·	(See Co	ဂ္ဂ		
SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in Hg)	Starting Sample Temp *F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in Hg)	Ending Sample Temp °F	Matrix (s	Alt 145 (ည္က သူ	I O-15 Benzene only
1) 61			13961		230328-01	30	4.2	4/19/23	10:13	30	/55	4/19/23	10:17	10	155		x		x
2) 90			13966	1.4	230328-01	30	4.8	4/19/23	(O:28	30	180.9	4/19/ 123	10:32	10	181.2	LG	x	x	х
3)																			
4)											Ī								
RELINQUISHED:			·	Inco	EIVED:		DAT	E / TIME	LOC Data B	nakaga I A	D HOT	ONLY		<u> </u>				亅	3 (0
RELINQUISHED:	1			INEC	EIVED.		DAI	C 7 111112	Level	ackage LA	10 USE	ONLY							3 (U 19.60
RELINQUISHED:	4	/19 DAT	TE / TIME 4:00 PM		EIVED: FLOUX	E	DAT	E / TIME	Level II		S Fie	ld Serv	ices 2	23D1116				į	Noice Voseed
RELINQUISHED:	- od ox	C	TE / TIME		EIVED:			E / TIME	Level III	u		20/2022	D	4 (A = 10 = -				'	
\	realx	<u> []</u>		1,4	WILL	Daw	y 41WID	3 1553	Level IV	_ Ket	.u. V4/	20/2023	Due: 04	4/27/2023 v130325002		—	—		

Page 18 of 19

Certificate of Analysis

Final Report

Laboratory Order ID 23D1116

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 20, 2023 15:53

4330 Lewis Road, Suite 1

Date Issued:

April 28, 2023 17:43

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Sample Conditions Checklist

Samples Received at:	19.60°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23E0004

Client Name: SCS Field Services - Harrisburg, PA Date Received: April 28, 2023 9:52

4330 Lewis Road, Suite 1 Date Issued: May 4, 2023 16:19

Harrisburg, PA 17111 Project Number: 07223016.00

Submitted To: Tom Lock Purchase Order: 07-S004485

Client Site I.D.: Bristol

150/0/415

Enclosed are the results of analyses for samples received by the laboratory on 04/28/2023 09:52. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23E0004

Client Name: SCS Field Services - Harrisburg, PA

Date Received: April 28, 2023 9:52

4330 Lewis Road, Suite 1

Date Issued: May 4, 2023 16:19

07-SO04485

Harrisburg, PA 17111

Project Number: 07223016.00

Tom Lock Purchase Order:

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
84	23E0004-01	Air	04/27/2023 09:08	04/28/2023 09:52
86	23E0004-02	Air	04/27/2023 09:28	04/28/2023 09:52
37	23E0004-03	Air	04/27/2023 10:52	04/28/2023 09:52
100	23E0004-04	Air	04/27/2023 09:56	04/28/2023 09:52
90	23E0004-05	Air	04/27/2023 09:40	04/28/2023 09:52

Certificate of Analysis

Final Report

Laboratory Order ID 23E0004

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 28, 2023 9:52

4330 Lewis Road, Suite 1

Date Issued:

May 4, 2023 16:19

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Initial Vacuum(in Hg): 30

Field Sample #: 84

Sub Description/Location:

Final Vacuum(in Hg): 4.0

Sample ID: 23E0004-01

Canister ID: 063-00224::12854

Receipt Vacuum(in Hg): Flow Controller Type: Passive

Sample Matrix: Air

Canister Size: 1.4L

Flow Controller ID:

Sampled: 4/27/2023 09:08

Sample Type: LV

Volatile Organic Compounds by GC/TCD -	Unadjusted, as received basis

ppmv	ALT-145
ppilit	

Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst	
rbon Monoxide, as received	650	90.0	90.0		9	1	5/2/23 13:47	MER	

Valatila Organia Compoundo b	V CC/TCD	Unadiustad	as received basis
Volatile Organic Compounds by	y GC/TCD -	unaujusteu,	as received basis

		Vol%	-	EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	15.3	0.45	0.45		9	1	5/2/23 13:47	MER
Carbon dioxide, as received	55.9	0.45	0.45		9	1	5/2/23 13:47	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	5/2/23 13:47	MER
Hydrogen (H2), as received	15.1	1.08	1.08		54	1	5/2/23 17:00	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/2/23 13:47	MER
Carbon Monoxide, as received	0.07	0.009	0.009		9	1	5/2/23 13:47	MER

Volatile Organic Compounds by GCMS EPA TO-15

		ppbv				ug/M³					
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Date/Time Analyzed	Analyst
Benzene	429000	9330	23300		1400000	30000	75000	46700	1	5/3/23 10:03	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			85.2		3	30-120				5/3/23 10:03	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0004

Client Name: SCS Field Services - Harrisburg, PA

Date Received: 4330 Lewis Road, Suite 1

Date Issued: May 4, 2023 16:19

April 28, 2023 9:52

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

90.0

Initial Vacuum(in Hg): 30

Field Sample #: 86

Sub Description/Location:

Final Vacuum(in Hg): 6.2

Sample ID: 23E0004-02

Canister ID: 063-00369::13962

Receipt Vacuum(in Hg): Flow Controller Type: Passive

5/2/23 14:40

MER

Sample Matrix: Air

Analyte

Carbon Monoxide, as received

Canister Size: 1.4L

90.0

Flow Controller ID:

Sampled: 4/27/2023 09:28

Sample Type: LV

Vol	atile Organio	c Compour	•	Unadjusted, as received basis					
	ppmv		ALT-145				Date/Time		
Result	MDL	LOQ	Flag/Qual		Dilution	PF	Analyzed	Analyst	

	Vol	-	c Compour	eceived basis				
		Vol%		EPA 3C			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	34.4	0.45	0.45		9	1	5/2/23 14:40	MER
Carbon dioxide, as received	44.2	0.45	0.45		9	1	5/2/23 14:40	MER
Oxygen (O2), as received	1.66	0.45	0.45		9	1	5/2/23 14:40	MER
Hydrogen (H2), as received	6.23	0.36	0.36		18	1	5/2/23 17:15	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/2/23 14:40	MER
Carbon Monoxide, as received	0.03	0.009	0.009		9	1	5/2/23 14:40	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	231000	4670	11700		740000	15000	37000	23300	1	5/3/23 13:48	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			86.2			80-120				5/3/23 13:48	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0004

SCS Field Services - Harrisburg, PA Client Name:

Date Received: Date Issued:

April 28, 2023 9:52 May 4, 2023 16:19

4330 Lewis Road, Suite 1

Harrisburg, PA 17111

Tom Lock

Project Number:

07223016.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 4.0

Field Sample #: 37

Sub Description/Location:

Sample ID: 23E0004-03

Canister ID: 063-00051::12415

Receipt Vacuum(in Hg):

Sample Matrix: Air

Canister Size: 1.4L

ppmv

Flow Controller Type: Passive Flow Controller ID:

Sampled: 4/27/2023 10:52

Submitted To:

Sample Type: LV

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145

Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Carbon Monoxide, as received	153	90.0	90.0		9	1	5/2/23 15:32	MER

	Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis							
		Vol%		EPA 3C			B. (
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	9.59	0.45	0.45		9	1	5/2/23 15:32	MER
Carbon dioxide, as received	24.2	0.45	0.45		9	1	5/2/23 15:32	MER
Oxygen (O2), as received	7.04	0.45	0.45		9	1	5/2/23 15:32	MER
Hydrogen (H2), as received	2.71	0.18	0.18		9	1	5/2/23 15:32	MER
Nitrogen (N2), as received	47.2	18.0	18.0		18	1	5/2/23 17:31	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	5/2/23 15:32	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv		LIA IO-II		ug/M³		_		Data/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Date/Time Analyzed	Analyst
Benzene	88600	1560	3890		280000	5000	12000	7780	1	5/3/23 12:19	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				-
4-Bromofluorobenzene (Surr)			81.6		}	30-120				5/3/23 12:19	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0004

SCS Field Services - Harrisburg, PA Client Name:

Date Received: Date Issued:

April 28, 2023 9:52 May 4, 2023 16:19

4330 Lewis Road, Suite 1

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Bristol

Purchase Order: 07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Type: LV

Field Sample #: 100

Sample ID: 23E0004-04 Sample Matrix: Air

Sampled: 4/27/2023 09:56

Client Site I.D.:

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00070::12467

Canister Size: 1.4L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 3.6

Receipt Vacuum(in Hg):

Flow Controller Type: Passive

Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis ALT-145

		ppmv		ALI-145			Data/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Carbon Monoxide, as received	ND	90.0	90.0		9	1	5/2/23 16:23	MER

	Vol	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basis	;			
		Vol%		EPA 3C			Data /Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	40.1	0.45	0.45		9	1	5/2/23 16:23	MER
Carbon dioxide, as received	44.4	0.45	0.45		9	1	5/2/23 16:23	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	5/2/23 16:23	MER
Hydrogen (H2), as received	4.79	0.36	0.36		18	1	5/2/23 17:47	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/2/23 16:23	MER
Carbon Monoxide, as received	ND	0.009	0.009		9	1	5/2/23 16:23	MER

			Volatile 0	Organic Compo		s					
		ppbv		EPA TO-1	5						
		phna				ug/M³				Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	41100	583	1460		130000	1900	4700	2920	1	5/3/23 15:19	DFH
Surrogate(s)		% Re	covery		% Re	covery Lin	nits				
4-Bromofluorobenzene (Surr)			89.6		8	30-120				5/3/23 15:19	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0004

Client Name: SCS Field Services - Harrisburg, PA

Date Received: 4330 Lewis Road, Suite 1

Date Issued: May 4, 2023 16:19

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number: 07223016.00

Client Site I.D.: **Bristol** Purchase Order: 07-SO04485

ANALYTICAL RESULTS

Project Location: Field Sample #: 90 Sample Description/Location:

Sub Description/Location:

Canister ID: 063-00005::12664

Canister Size: 1.4L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 3.8 Receipt Vacuum(in Hg):

April 28, 2023 9:52

Flow Controller Type: Passive

Flow Controller ID:

Sample ID: 23E0004-05 Sample Matrix: Air

Sampled: 4/27/2023 09:40

4-Bromofluorobenzene (Surr)

Sample Type: LV

volatile Organic Comp	ounds by GC/TCD - Unadjusted, as received basis	
vmqq	ALT-145	
Ppilit		Dat
		Dat

Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst	
Carbon Monoxide as received	171	90.0	90.0		9	1	5/3/23 10:17	MFR	_

	Vol	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basi	s			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	36.8	0.45	0.45		9	1	5/3/23 10:17	MER
Carbon dioxide, as received	50.4	0.45	0.45		9	1	5/3/23 10:17	MER
Oxygen (O2), as received	ND	0.45	0.45		9	1	5/3/23 10:17	MER
Hydrogen (H2), as received	3.59	0.18	0.18		9	1	5/3/23 10:17	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	5/3/23 10:17	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	5/3/23 10:17	MER

			Volatile C	rganic Compou EPA TO-15		IS					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	250000	10500	26200		800000	34000	84000	52500	1	5/3/23 14:32	DFH
Surrogate(s)		% Red	covery		% Re	covery Lir	nits				

80-120

82.8

5/3/23 14:32

Certificate of Analysis

Final Report

Laboratory Order ID 23E0004

April 28, 2023 9:52

May 4, 2023 16:19

SCS Field Services - Harrisburg, PA Client Name:

Date Received: 4330 Lewis Road, Suite 1

Date Issued:

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number: 07223016.00 Client Site I.D.: **Bristol** Purchase Order: 07-SO04485

Analytical Summary

AG00026 AG00	Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
AG00026 AG00	Volatile Organic Con	npounds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC G	C Air
ABCO004-03 1.00 mL / 1.00 mL	23E0004-01	1.00 mL / 1.00 mL	ALT-145	BGE0110	SGE0105	AG00026
ALT-145 BGE0110 SGE0105 AG00026	23E0004-02	1.00 mL / 1.00 mL	ALT-145	BGE0110	SGE0105	AG00026
ALT-145 BGE0110 SGE0123 AG00026	23E0004-03	1.00 mL / 1.00 mL	ALT-145	BGE0110	SGE0105	AG00026
1.00 mL / 1.00 mL 1.00 mL 1.00 mL EPA 3C BGE0110 SGE0105 AG00026 BGE0004-01RE1 1.00 mL 1.00 mL EPA 3C BGE0110 SGE0105 AG00026 BGE0004-02 1.00 mL 1.00 mL EPA 3C BGE0110 SGE0105 AG00026 BGE0004-02 1.00 mL 1.00 mL EPA 3C BGE0110 SGE0105 AG00026 BGE0004-03 1.00 mL 1.00 mL EPA 3C BGE0110 SGE0105 AG00026 BGE0004-03 1.00 mL 1.00 mL EPA 3C BGE0110 SGE0105 AG00026 BGE0004-03 1.00 mL 1.00 mL EPA 3C BGE0110 SGE0105 AG00026 BGE0004-04 1.00 mL 1.00 mL EPA 3C BGE0110 SGE0105 AG00026 BGE0004-04 1.00 mL 1.00 mL EPA 3C BGE0110 SGE0105 AG00026 BGE0004-04RE1 1.00 mL 1.00 mL EPA 3C BGE0110 SGE0105 AG00026 BGE0004-05 1.00 mL 1.00 mL EPA 3C BGE0110 SGE0105 AG00026 BGE0004-05 1.00 mL 1.00 mL EPA 3C BGE0110 SGE0123 AG00026 BGE0004-05 1.00 mL 1.00 mL EPA 3C BGE0110 SGE0123 AG00026 BGE0004-05 BGE00105 AG00026 BGE00105	23E0004-04	1.00 mL / 1.00 mL	ALT-145	BGE0110	SGE0105	AG00026
### REPAIR SECONDAL CONTROL FPAIR SC FPA	23E0004-05	1.00 mL / 1.00 mL	ALT-145	BGE0110	SGE0123	AG00026
SECOND Color Col	23E0004-01	1.00 mL / 1.00 mL	EPA 3C	BGE0110	SGE0105	AG00026
SECONDA-02RE1 1.00 mL / 1.00 mL EPA 3C BGE0110 SGE0105 AG00026	23E0004-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0110	SGE0105	AG00026
1.00 mL / 1.00 mL 1.00 mL EPA 3C BGE0110 SGE0105 AG00026	23E0004-02	1.00 mL / 1.00 mL	EPA 3C	BGE0110	SGE0105	AG00026
SECONDA-03RE1	23E0004-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0110	SGE0105	AG00026
SECONDI-04 1.00 mL / 1.00 mL EPA 3C BGE0110 SGE0105 AG00026	23E0004-03	1.00 mL / 1.00 mL	EPA 3C	BGE0110	SGE0105	AG00026
Sacond-04RE1	23E0004-03RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0110	SGE0105	AG00026
Record 1.00 mL / 1.00 mL EPA 3C BGE0110 SGE0123 AG00026	23E0004-04	1.00 mL / 1.00 mL	EPA 3C	BGE0110	SGE0105	AG00026
Preparation Factors Initial / Final Method Batch ID Sequence ID Calibration ID	23E0004-04RE1	1.00 mL / 1.00 mL	EPA 3C	BGE0110	SGE0105	AG00026
Sample ID	23E0004-05	1.00 mL / 1.00 mL	EPA 3C	BGE0110	SGE0123	AG00026
23E0004-01 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195 23E0004-02 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195 23E0004-03 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195 23E0004-04 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195 23E0004-04RE1 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195	Sample ID	•	Method	Batch ID	Sequence ID	Calibration ID
23E0004-02 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195 23E0004-03 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195 23E0004-04 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195 23E0004-04RE1 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195	Volatile Organic Con	npounds by GCMS		Preparation Method:	No Prep VOC Ai	r
23E0004-03 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195 23E0004-04 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195 23E0004-04RE1 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195	23E0004-01	400 mL / 400 mL	EPA TO-15	BGE0119	SGE0113	AC30195
23E0004-04 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195 23E0004-04RE1 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195	23E0004-02	400 mL / 400 mL	EPA TO-15	BGE0119	SGE0113	AC30195
3E0004-04RE1 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195	23E0004-03	400 mL / 400 mL	EPA TO-15	BGE0119	SGE0113	AC30195
	23E0004-04	400 mL / 400 mL	EPA TO-15	BGE0119	SGE0113	AC30195
3E0004-05 400 mL / 400 mL EPA TO-15 BGE0119 SGE0113 AC30195	23E0004-04RE1	400 mL / 400 mL	EPA TO-15	BGE0119	SGE0113	AC30195
	23E0004-05	400 mL / 400 mL	EPA TO-15	BGE0119	SGE0113	AC30195

Certificate of Analysis

Final Report

Laboratory Order ID 23E0004

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 28, 2023 9:52

4330 Lewis Road, Suite 1

Date Issued:

May 4, 2023 16:19

Harrisburg, PA 17111

Submitted To: Tom

Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	Re	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGE0119 - No Prep V	OC Air										
Blank (BGE0119-BLK1)					Prep	pared & /	Analyzed	: 05/02/20	023		
Benzene	<	0.50	ppbv								
Surr: 4-Bromofluorobenzene (Surr)	4.04		ppbv	5.00		80.8	80-120				
LCS (BGE0119-BS1)					Prep	pared & /	Analyzed	: 05/02/20	023		
Benzene	5.51	0.5	ppbv	5.00		110	70-130				
Surr: 4-Bromofluorobenzene (Surr)	4.32		ppbv	5.00		86.4	70-130				
LCS Dup (BGE0119-BSD1)					Prep	pared &	Analyzed	: 05/02/20	023		
Benzene	5.55	0.5	ppbv	5.00		111	70-130	0.723	25		
Surr: 4-Bromofluorobenzene (Surr)	4.32		ppbv	5.00		86.4	70-130				

Certificate of Analysis

Final Report

Laboratory Order ID 23E0004

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Issued: May 4, 2023 16:19

Date Received:

April 28, 2023 9:52

0.07

0.009

Vol%

Harrisburg, PA 17111

Submitted To: Tom Lock

Carbon Monoxide

Project Number: 07223016.00

Client Site I.D.: Bristol Purchase Order: 07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGE0110 - No Prep VC	OC GC Air									
Blank (BGE0110-BLK1)					Prep	pared &	Analyzed	: 05/02/20	023	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
litrogen (N2)	<	1.00	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Carbon Monoxide	<	0.001	Vol%							
Carbon Monoxide	<	10.0	ppmv							
.CS (BGE0110-BS1)					Prep	pared &	Analyzed	: 05/02/20	023	
Methane	4230	500	ppmv	5000		84.7	0-200			
Methane	4230	0.05	ppmv	5000		84.7	80-120			
Carbon dioxide	5480	500	ppmv	5000		110	0-200			
Carbon dioxide	5480	0.05	ppmv	5000		110	80-120			
Oxygen (O2)	5060	500	ppmv	5000		101	0-200			
Oxygen (O2)	5060	0.05	ppmv	5000		101	80-120			
litrogen (N2)	5330	2000	ppmv	5000		107	0-200			
Nitrogen (N2)	5330	1	ppmv	5000		107	80-120			
Hydrogen (H2)	5690	0.02	ppmv	5100		112	80-120			
Hydrogen (H2)	5690	200	ppmv	5100		112	0-200			
Carbon Monoxide	4820	10	ppmv	5000		96.5	0-200			
Carbon Monoxide	4820	0.001	ppmv	5000		96.5	80-120			
Ouplicate (BGE0110-DUP1)		So	urce: 23E	0004-01	Prep	pared &	Analyzed	: 05/02/20	023	
/lethane	154000	4500	ppmv		1530	00		0.514	25	
Methane	15.4	0.45	Vol%		15.3	3		0.514	5	
Carbon dioxide	563000	4500	ppmv		5590	00		0.710	25	
Carbon dioxide	56.3	0.45	Vol%		55.9)		0.710	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Hydrogen (H2)	161000	1800	ppmv		1590	00		1.08	25	
litrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Nitrogen (N2)	70500	18000	ppmv		7010	0		0.539	25	
Carbon Monoxide	659	90.0	ppmv		650	ı		1.28	25	
Carbon Manavida	0.07	0.000	1/-10/		0.0-	,		4.00	_	

0.07

1.28

5

Certificate of Analysis

Final Report

Laboratory Order ID 23E0004

Client Name: SCS Field Services - Harrisburg, PA

rield Services - Harrisburg, FA

Reporting

Date Received:

April 28, 2023 9:52

4330 Lewis Road, Suite 1

Date Issued:

May 4, 2023 16:19

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

%REC

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

RPD

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Spike

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGE0110 - No Prep VO	C GC Air									
Duplicate (BGE0110-DUP2)		Sou	urce: 23E	0004-02	Prep	ared & A	Analyzed	: 05/02/20	23	
Methane	34.4	0.45	Vol%		34.4			0.0493	5	
Methane	344000	4500	ppmv		34400	00		0.0493	25	
Carbon dioxide	44.1	0.45	Vol%		44.2	2		0.219	5	
Carbon dioxide	441000	4500	ppmv		44200	00		0.219	25	
Oxygen (O2)	16500	4500	ppmv		1660	0		0.468	25	
Oxygen (O2)	1.65	0.45	Vol%		1.66	5		0.468	5	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Hydrogen (H2)	64200	1800	ppmv		6360	0		1.05	25	
Nitrogen (N2)	63000	18000	ppmv		6310	0		0.147	25	
Carbon Monoxide	0.03	0.009	Vol%		0.03	3		0.554	5	
Carbon Monoxide	275	90.0	ppmv		277			0.554	25	
Duplicate (BGE0110-DUP3)		Sou	urce: 23E	0004-03	Prep	ared & A	Analyzed	: 05/02/20	23	
Methane	97400	4500	ppmv		9590	0		1.56	25	
Methane	9.74	0.45	Vol%		9.59)		1.56	5	
Carbon dioxide	241000	4500	ppmv		24200	00		0.258	25	
Carbon dioxide	24.1	0.45	Vol%		24.2	2		0.258	5	
Oxygen (O2)	71200	4500	ppmv		7040	0		1.14	25	
Oxygen (O2)	7.12	0.45	Vol%		7.04	ļ		1.14	5	
Hydrogen (H2)	27400	1800	ppmv		2710	0		1.14	25	
Nitrogen (N2)	469000	18000	ppmv		46500	00		0.965	25	
Hydrogen (H2)	2.74	0.18	Vol%		2.71			1.14	5	
Carbon Monoxide	159	90.0	ppmv		153			4.04	25	
Carbon Monoxide	0.02	0.009	Vol%		0.02	2		4.04	5	
Duplicate (BGE0110-DUP4)		Sou	urce: 23E	0004-04	Prep	ared & A	Analyzed	: 05/02/20	23	
Methane	40.1	0.45	Vol%		40.1			0.0897	5	
Methane	401000	4500	ppmv		40100	00		0.0897	25	
Carbon dioxide	44.4	0.45	Vol%		44.4	ļ		0.0392	5	
Carbon dioxide	444000	4500	ppmv		44400	00		0.0392	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Hydrogen (H2)	49100	1800	ppmv		4890	0		0.426	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23E0004

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 28, 2023 9:52

4330 Lewis Road, Suite 1

Date Issued:

May 4, 2023 16:19

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

Duplicate (BGE0110-DUP4)	Duplicate (BGE0110-DUP4)			Prepared & A	23		
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25	
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5	
Duplicate (BGE0110-DUP5)		So	urce: 23E0004-05	Prepared & A	nalyzed: 05/03/202	23	
Methane	365000	4500	ppmv	368000	0.866	25	
Methane	36.5	0.45	Vol%	36.8	0.866	5	
Carbon dioxide	499000	4500	ppmv	504000	0.953	25	
Carbon dioxide	49.9	0.45	Vol%	50.4	0.953	5	
Oxygen (O2)	<	4500	ppmv	<4500	NA	25	
Oxygen (O2)	<	0.45	Vol%	<0.45	NA	5	
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25	
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5	
Hydrogen (H2)	3.56	0.18	Vol%	3.59	0.966	5	
Hydrogen (H2)	35600	1800	ppmv	35900	0.966	25	
Carbon Monoxide	174	90.0	ppmv	171	1.73	25	
Carbon Monoxide	0.02	0.009	Vol%	0.02	1.73	5	

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Certificate of Analysis

Final Report

Laboratory Order ID 23E0004

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 28, 2023 9:52

4330 Lewis Road, Suite 1

Date Issued:

May 4, 2023 16:19

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental	93016	06/14/2023
VELAP	NELAP-Virginia Certificate #12333	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

RPD Relative Percent Difference

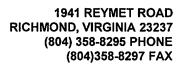
Qual Qualifers

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation


ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

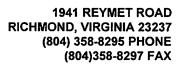
Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

AIR ANALYSIS

formerly Air, Water & Soil Laboratories Page 1 of 1 CHAIN OF CUSTODY Equipment due 5/25/2023 COMPANY NAME: SCS Field Services - Harrisburg INVOICE TO: PROJECT NAME/Quote #: Same **Bristol** CONTACT: INVOICE CONTACT: SITE NAME: PROJECT NUMBER: 07273016.00 ADDRESS: INVOICE ADDRESS: PHONE #: INVOICE PHONE #: P.O. #: FAX #: EMAIL: Pretreatment Program: Is sample for compliance reporting? (YES) NO (NO Regulatory State: \(\int \int \) is sample from a chlorinated supply? YES PWS I.D. #: CILLANS SAMPLER SIGNATURE: SAMPLER NAME (PRINT): 1.00 AN Turn Around Time: Circle: 10 5 Days or _ Day(s) Matrix Codes: AA=Indoor/Ambient Air SG=Soil Gas LV=Landfill/Vent Gas OT=Other 063-23D-0011 ANALYSIS Canister Information Sampling Start Information Regulator Info Sampling Stop Information Barometric Pres. (in Hg): Barometric Pres. (in Hg): LAB LAB ဗြ CLIENT TO-15 Benzene only Outgoing Receiving Initial Final SAMPLE I.D. Matrix (8 Alt 145 (Flow Canister Cal Canister Canister Canister Starting Ending Controller Size Flow Vacuum (in Vacuum (in Start Time Vacuum (in Stop Time Vacuum (in Cleaning Sample Sample ပ္က (mL/min) Canister ID (24hr clock) Temp *F | Stop Date Batch ID Hg) Hg) Start Date (24hr clock) Temp *F 189.2 189.2 84 9:03 20 4/27 LGIX 12854 1.4 230411-01 30 4127 9:08 X 4,0 10 X 175.5 4/27 175.8 io. 2 dB 4127 9:23 9:28 LGIXIX 2) 13962 30 1.4 230411-01 X 30 10 3) LG x X X **SCS Field Services** 23E0004 **Bristol** Recd: 04/28/2023 Due: 05/05/2023 LG x 4) Х X v130325002 QC Data Package LAB USE ONLY RELINQUISHED: RECEIVED: DATE / TIME 310 20.0°C Noïce Level f RELINQUISHED: DATE / TIME RECEIVED DATE / TIME 50% rush surcharge П Level II 5:00 NUScery DATE / TIME Level III RELINQUISMED: DATE / TIME FEDEXE Level IV

AIR ANALYSIS


CHAIN OF CUSTODY Equipment due

Equipment due 5/25/2023 Page 1 of 1

v130325002

063-23D-0014-2

									" " " " " " " " " " " " " " " " " " " 			1 m · P · ·									<u> </u>
СО	MPANY NAME:	SCS Field	d Servi	ces - Harri	sbu	rg IN	VOICE TO	Same				PROJ	ECT NAM	IE/Quote#	Bristo	<u>,1</u>					
СО	NTACT:					IN	VOICE CO	NTACT:				SITE	NAME: B	RISTOL							
ADI	DRESS:					IN	VOICE AD	DRESS:				PROJ	ECT NUM	IBER:	57223	016	, O	0			
PH	ONE #:					IN	VOICE PH	ONE #:				P.O. #	! :								
FA	K #:			_ EN	IAIL	<u>:</u>						Pretre	atment Pr	ogram:							
ls s	ample for comp	liance rep	orting?	(YES)NO)	Regulat	ory State:	VA Iss	sample fro	m a chlorir	nated supp	oly?	YES (D PV	/S I.D. #:						
SAI	MPLER NAME ((PRINT):	Logi	m Cui	LH	ane sa	MPLER S	IGNATUR	E:			Turn A	Around T	ime: Circ	de: 10 (5 Days	5	or	_	Day(s))
Matri	ix Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV=Land	dfill/\	/ent Gas OT	=Other		8				063	3-23D-001	1						
		Regulator	Info	Canister In	forn	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	ation		(S)	AN	AL)	YSIS	
	CLIENT			l			LAB	LAB	Barometric	Pres. (in Hg	ı):		Barometri	Pres. (in H	g):		ပ္သို	ဗြ			
	SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in Hg)	Starting Sample Temp "F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in Hg)	Ending Sample Temp *F	Matrix (se		3C	TO-15 Benzene	only
1)	HOT SAMPLED			11325		230411-01	30										LG	x	x	X	
2)	37			12415	1.4	230411-01	30	4.0	4127	10:46	20	149.7	4127	10:52	0	149.2	LG	x	x	x	
3)	100 .		:	12467	1.4	230411-01	30	3.6	4127	9:52	150	157.3	4177	9:56	10	157 .4	LG	x	x	x	
4)	90			12664	1.4	230411-01	30	3.8	4127	9:34	30	161.8	UIV	9:4D	10	161.7	LG	x	x	х	
					1																ightharpoonup
RELI	NQUISHED:	_			REC	CEIVED:		DAT	E / TIME		ackage LA	B USE	ONLY					31	D,	20.09	2
RELI	NQUISHED:	/	DAT 4/27	TE / TIME 5.00	REC	CEIVED:	LIKE.	DAT	E / TIME	Level I Level II		50%	rush su	rcharge				Ì	70	57.CR 105C	ساھ
RELI	NQUISHED:	lex e		TE / TIME	REC	CEIVED:	HN OOLU		E / TIME	Level III Level IV	SCS Briss		d Servi	ces 23	E0004						
	1 00		<u> </u>			- La Mille	Mary	(10010					28/2023	Due: 05/	05/2023	Γ		200	15	of 17	$\overline{}$
											11001	, _					۲	aye	. 10	OII/	- I

AIR ANALYSIS

formerly Air, Water & Soil Laboratories **Equipment due 5/25/2023** Page 1 of 1 CHAIN OF CUSTODY INVOICE TO: PROJECT NAME/Quote #: COMPANY NAME: SCS Field Services - Harrisburg Same **Bristol** INVOICE CONTACT: SITE NAME: CONTACT: PROJECT NUMBER: INVOICE ADDRESS: ADDRESS: PHONE #: INVOICE PHONE #: P.O. #: FAX #: EMAIL: Pretreatment Program: PWS I.D. #: Is sample for compliance reporting? YES NO Regulatory State: Is sample from a chlorinated supply? YES NO SAMPLER SIGNATURE: Turn Around Time: Circle: 10 SAMPLER NAME (PRINT): 5 Davs or __ Day(s) 063-23D-0011 Matrix Codes: AA=Indoor/Ambient Air SG=Soil Gas LV=Landfill/Vent Gas OT=Other ANALYSIS Sampling Start Information Sampling Stop Information Regulator Info Canister Information Barometric Pres. (in Hg): Barometric Pres. (in Hg): LAB LAB ဗြ Matrix (See CLIENT TO-15 Benzene only Outgoing Receiving Initial Final SAMPLE I.D. Alt 145 (Flow Canister Cal Canister Canister Canister Starting **Ending** Controller Size Vacuum (in Vacuum (in Start Time Vacuum (in Stop Time Vacuum (in Sample Flow Cleaning Sample ည္က Start Date Stop Date (mL/min) Canister ID Batch ID (24hr clock) Temp *F (24hr clock) Hg) Temp °F Hg) LG x 289 1.4 230411-01 X 1) X LG x 2) 10042 1 4 230411-01 X X 23E0004 **SCS Field Services** LGI x 3) 11079 1.4 230411-01 X X **Bristol** Recd: 04/28/2023 Due: 05/05/2023 LG x 4) 11081 1.4 230411-01 X X v130325002 RELINQUISHED: RECEIVED: DATE / TIME QC Data Package LAB USE ONLY 20.00 Level I Noice DATE / TIME DATE / TIME RELINQUISHED: RECEIVED: 50% rush surcharge Level II 5:00 Nuseul Level III RELINQUISHED DATE / TIME DATE / TIME

Level IV

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 23E0004

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

April 28, 2023 9:52

4330 Lewis Road, Suite 1

Date Issued:

May 4, 2023 16:19

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Sample Conditions Checklist

Samples Received at:	20.00°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctty?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	No

Work Order Comments

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

Solid Waste Permit 588 Daily Borehole Temperature Averages

SCS ENGINEERS

02218208.05 | **May 10, 2023**

15521 Midlothian Turnpike Midlothian, VA 23113 804-378-7440

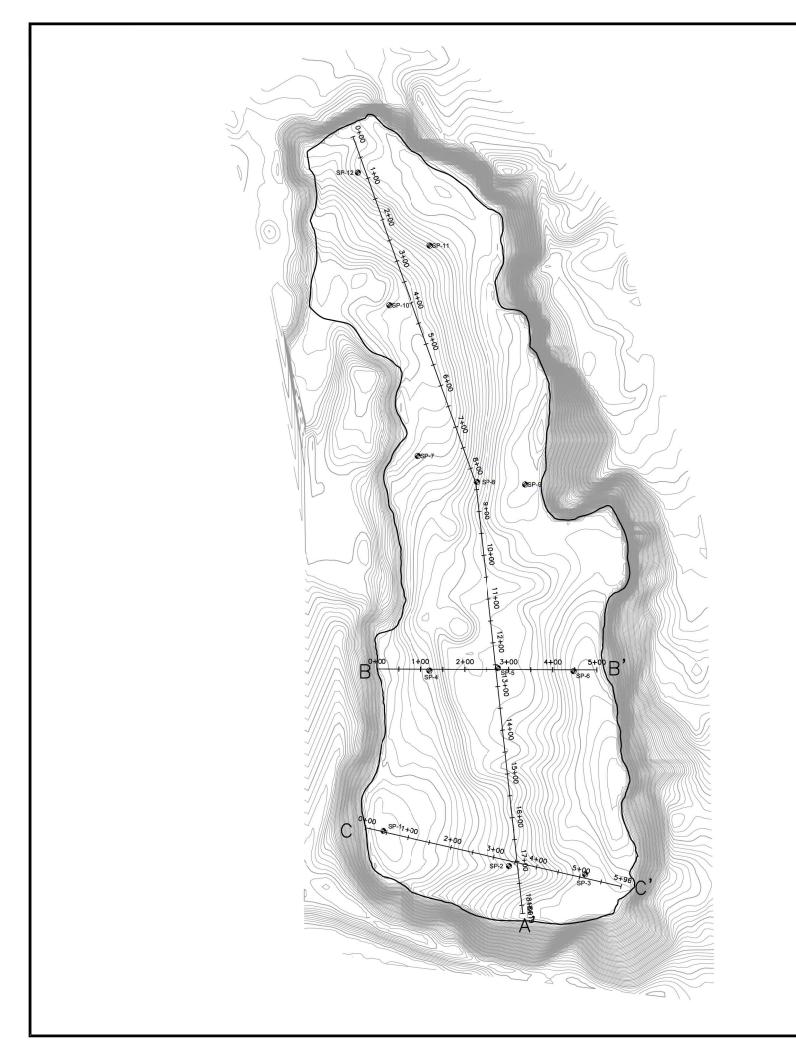
	Depth from Surface								
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft			
1-Apr	197.9	207.0	207.1	207.1	207.5	242.4			
2-Apr	206.0	207.0	207.0	207.0	207.0	241.0			
3-Apr	207.0	207.0	207.0	207.0	208.0	242.0			
4-Apr	207.0	208.0	208.0	208.0	208.0	243.0			
5-Apr	207.2	207.8	207.9	207.8	208.4	243.7			
6-Apr	207.4	208.0	208.2	208.2	208.0	244.0			
7-Apr	191.0	207.1	207.5	207.5	208.0	244.0			
8-Apr	204.1	207.0	207.3	207.3	207.9	244.3			
9-Apr	206.9	207.5	207.6	207.6	208.0	245.0			
10-Apr	206.9	207.8	208.0	207.8	208.0	245.9			
11-Apr	207.0	208.0	208.0	208.0	208.0	246.0			
12-Apr	207.0	208.0	208.0	208.0	207.9	246.0			
13-Apr	206.8	207.5	207.7	207.5	208.2	247.0			
14-Apr	206.4	207.4	207.3	207.3	208.3	247.4			
15-Apr	206.5	207.3	207.3	207.4	208.1	248.1			
16-Apr	206.5	207.4	207.4	207.4	208.5	249.1			
17-Apr	206.1	206.8	206.8	206.8	208.3	248.9			
18-Apr	206.5	207.1	207.2	207.1	208.4	249.5			
19-Apr	207.0	207.8	207.8	207.7	209.0	250.1			
20-Apr	207.1	208.0	208.0	207.8	209.3	250.8			
21-Apr	206.8	207.5	207.6	207.5	209.3	251.1			
22-Apr	206.0	206.9	207.0	206.9	208.3	250.8			
23-Apr	206.5	207.0	207.1	207.0	208.6	250.5			
24-Apr	206.7	207.2	207.4	207.4	209.0	250.7			
25-Apr	206.7	207.3	207.5	207.5	209.2	251.1			
26-Apr	206.5	207.3	207.5	207.4	209.1	251.5			
27-Apr	206.3	207.3	207.3	207.3	209.4	251.6			
28-Apr	206.3	207.3	207.3	207.2	209.6	251.8			
29-Apr	206.4	207.3	207.3	207.3	209.3	251.7			
30-Apr	205.9	206.2	206.3	206.2	209.3	251.5			
Average	205.7	207.4	207.4	207.4	208.5	247.7			

	Depth from Surface								
Date	25 ft 50 ft 75 ft 100 ft 125 ft								
1-Apr	157.5	236.1	237.9	268.4	256.8	268.6			
2-Apr	157.4	235.8	237.1	268.2	256.6	268.5			
3-Apr	157.0	236.1	237.7	268.1	256.5	268.5			
4-Apr	157.0	237.0	239.0	269.0	257.0	269.0			
5-Apr	157.0	238.0	239.0	269.0	257.0	269.0			
6-Apr	157.0	238.0	239.0	268.0	257.0	269.0			
7-Apr	156.6	237.5	238.9	268.0	256.0	268.1			
8-Apr	156.1	238.7	239.8	267.9	256.0	268.1			
9-Apr	157.0	240.0	241.0	268.0	257.0	269.0			
10-Apr	156.7	239.7	240.8	268.2	256.7	269.0			
11-Apr	156.6	240.7	241.5	268.2	256.5	269.0			
12-Apr	157.0	241.0	242.0	268.0	256.0	269.0			
13-Apr	156.7	241.6	242.0	268.3	256.7	269.1			
14-Apr	157.0	241.6	242.1	268.0	256.0	269.0			
15-Apr	156.6	241.5	242.2	268.4	256.6	268.8			
16-Apr	156.6	241.5	242.3	268.6	256.7	269.2			
17-Apr	156.3	241.3	241.8	268.1	256.1	268.7			
18-Apr	156.1	241.5	241.9	268.1	256.3	268.8			
19-Apr	156.0	242.0	242.0	268.0	257.0	269.0			
20-Apr	156.0	242.0	242.0	269.0	257.0	269.1			
21-Apr	156.3	241.6	242.9	268.5	256.8	269.1			
22-Apr	155.8	241.2	241.4	268.0	256.2	268.5			
23-Apr	155.7	240.8	241.6	267.8	256.2	268.6			
24-Apr	155.6	240.8	241.4	267.8	256.2	268.6			
25-Apr	155.7	240.9	241.3	267.9	256.1	268.6			
26-Apr	155.6	240.7	241.2	267.9	256.1	268.5			
27-Apr	155.7	240.5	241.0	267.7	256.0	268.5			
28-Apr	156.1	240.5	241.0	268.3	256.4	268.8			
29-Apr	156.2	240.1	241.0	268.3	256.3	269.0			
30-Apr	155.8	239.9	240.3	268.1	256.1	268.8			
Average	156.4	240.0	240.8	268.2	256.5	268.8			

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Apr	207.3	214.8	229.2	253.9	264.2	270.5	271.6	256.1
2-Apr	207.1	217.2	219.4	253.2	263.6	269.9	271.1	255.7
3-Apr	207	207.1	207.7	253.2	263.4	270.0	271.2	255.7
4-Apr	206.9	206.9	208.1	253.1	263.8	269.9	270.9	256.0
5-Apr	207.5	207.7	208.1	253.4	263.9	270.0	271.2	256.0
6-Apr	207.4	207.4	208.3	253.1	263.8	269.9	270.8	254.8
7-Apr	207.5	208.0	207.9	253.3	263.5	270.0	271.0	253.5
8-Apr	207.3	207.6	207.5	253.1	263.1	270.0	271.0	253.2
9-Apr	207.6	215.6	215.8	252.3	263.8	270.2	271.5	253.6
10-Apr	207.8	213.6	214.0	251.5	264.0	270.2	271.5	253.8
11-Apr	207.4	216.5	219.5	250.3	263.8	270.0	271.0	253.5
12-Apr	207.5	207.8	227.3	253.3	263.8	270.2	271.4	253.8
13-Apr	207.8	221.8	225.0	254.3	264.4	271.0	272.1	254.0
14-Apr	206.9	207.1	208.1	251.1	263.9	270.0	271.0	253.6
15-Apr	206.9	216.0	216.0	253.2	264.0	270.0	271.1	253.4
16-Apr	207.4	215.1	216.4	254.0	264.5	270.7	271.8	253.7
17-Apr	206.4	215.8	217.0	253.0	263.8	269.7	270.7	253.4
18-Apr	207.2	221.5	230.6	253.9	264.3	270.5	271.8	253.8
19-Apr	207.3	207.4	218.0	251.2	264.1	270.1	271.3	253.9
20-Apr	208.0	224.3	232.4	254.3	264.9	270.9	272.1	254.0
21-Apr	207.5	207.8	211.8	253.4	264.7	270.4	271.5	254.1
22-Apr	206.8	206.8	207.4	246.4	264.1	270.0	271.1	253.4
23-Apr	207.3	218.5	222.7	253.4	264.2	270.3	271.4	253.5
24-Apr	206.9	207.0	208.4	251.5	263.7	269.6	270.7	253.8
25-Apr	206.3	206.6	207.9	250.0	263.3	269.0	270.3	253.6
26-Apr	206.3	206.5	207.6	251.6	263.3	268.9	270.4	253.5
27-Apr	207.1	219.7	219.5	253.3	264.2	270.1	271.3	253.6
28-Apr	206.8	207.1	207.5	253.5	264.4	270.2	271.3	254.0
29-Apr	207.0	219.2	219.0	253.3	264.3	270.3	271.4	254.4
30-Apr	206.0	206.4	206.8	252.5	263.8	269.7	270.8	253.8
Average	207.1	212.2	215.2	252.6	264.0	270.1	271.2	254.1

	Depth from Surface							
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Apr	205.4	207.1	207.0	207.3	217.4	254.1	246.0	173.2
2-Apr	207.1	207.0	206.8	207.3	207.5	252.2	245.7	172.8
3-Apr	207.0	207.0	206.5	207.4	208.0	250.3	245.8	173.0
4-Apr	207.5	207.5	207.4	207.6	216.4	248.3	246.3	173.4
5-Apr	207.7	207.7	207.9	207.9	212.1	244.7	246.5	172.6
6-Apr	208.0	207.8	208.2	208.7	209.3	229.2	246.4	172.5
7-Apr	207.6	207.0	207.8	207.9	208.1	211.3	245.6	172.0
8-Apr	207.1	207.0	207.1	208.9	208.0	210.2	245.3	172.0
9-Apr	207.5	207.5	207.1	207.7	208.5	211.5	245.7	172.6
10-Apr	207.8	207.7	207.2	207.9	208.8	209.2	245.8	173.0
11-Apr	207.7	207.6	207.1	207.8	211.1	209.1	245.8	173.3
12-Apr	207.5	207.5	207.1	207.6	210.5	208.8	246.0	173.4
13-Apr	207.6	207.4	207.0	207.4	209.0	208.6	246.0	173.1
14-Apr	207.3	207.3	207.1	207.0	208.2	208.3	246.0	173.3
15-Apr	207.4	207.5	206.8	207.3	208.1	208.4	246.1	173.6
16-Apr	207.3	207.3	206.7	207.0	207.9	208.3	245.1	173.8
17-Apr	206.9	206.8	206.4	206.6	207.6	207.9	245.6	173.6
18-Apr	207.0	206.9	206.7	206.9	207.8	208.7	245.8	173.9
19-Apr	207.7	207.3	207.2	207.2	208.3	210.1	246.1	173.0
20-Apr	207.9	207.6	207.5	207.9	208.9	209.6	246.2	173.0
21-Apr	207.5	207.3	207.2	208.0	209.3	208.7	246.2	173.2
22-Apr	207.1	206.6	206.5	207.7	208.0	208.2	246.0	173.1
23-Apr	206.9	206.7	206.7	207.5	207.9	208.2	245.8	173.0
24-Apr	207.3	206.9	206.8	207.7	207.8	208.1	245.7	173.0
25-Apr	207.5	207.0	207.0	207.8	207.9	207.9	245.8	173.1
26-Apr	207.5	207.1	207.1	207.7	208.2	207.9	245.6	173.3
27-Apr	207.3	206.9	206.8	207.5	207.7	207.7	245.7	173.5
28-Apr	207.2	206.8	206.7	207.5	207.5	207.5	244.8	173.9
29-Apr	207.3	207.0	206.8	207.5	207.4	207.5	237.6	174.1
30-Apr	206.3	206.2	206.1	206.7	206.6	206.9	220.1	173.9
Average	207.3	207.2	207.0	207.6	209.0	216.2	244.7	173.2

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Apr	143.0	207.0	207.1	207.2	226.3	241.9	249.1	190.5
2-Apr	143.0	207.0	207.2	207.5	226.3	241.4	248.8	190.4
3-Apr	143.2	206.9	207.1	207.5	226.0	240.9	248.9	190.5
4-Apr	143.5	207.5	207.5	207.8	226.3	241.1	249.3	190.7
5-Apr	143.8	207.7	207.7	208.0	226.5	241.4	249.3	190.9
6-Apr	144.1	207.8	207.9	208.2	226.3	241.1	249.1	190.7
7-Apr	143.0	207.1	207.4	208.0	226.0	240.2	248.3	190.0
8-Apr	143.0	207.0	207.1	207.8	226.0	240.0	248.0	190.0
9-Apr	143.5	207.5	207.5	207.7	226.1	240.5	248.3	190.4
10-Apr	143.8	207.6	207.7	207.9	225.9	240.4	248.5	190.6
11-Apr	143.8	207.6	207.7	207.9	226.5	240.8	248.6	190.6
12-Apr	143.9	207.5	207.5	207.6	226.6	241.1	248.6	190.6
13-Apr	144.1	207.5	207.5	207.8	226.3	241.1	248.6	190.9
14-Apr	143.5	207.3	207.3	207.5	226.1	240.6	248.5	191.1
15-Apr	143.1	207.3	207.4	207.5	226.2	240.6	248.4	191.1
16-Apr	143.1	207.3	207.3	207.4	226.4	241.1	248.5	191.0
17-Apr	142.5	206.7	206.7	207.0	226.3	241.0	247.9	190.7
18-Apr	142.5	207.1	207.1	207.5	226.5	241.4	248.1	190.8
19-Apr	142.5	207.5	207.6	207.8	226.2	241.0	248.4	190.8
20-Apr	142.4	207.8	207.8	207.9	226.0	240.8	248.6	191.2
21-Apr	142.4	207.4	207.4	207.7	225.7	240.4	248.5	191.1
22-Apr	141.9	206.9	207.1	207.2	225.3	240.2	248.1	191.0
23-Apr	141.4	206.8	207.0	207.5	225.5	240.3	247.8	190.8
24-Apr	141.5	207.3	207.4	207.6	225.2	239.9	247.7	190.7
25-Apr	141.5	207.3	207.4	207.5	225.2	239.5	247.7	190.8
26-Apr	141.5	207.4	207.4	207.5	225.5	239.6	247.6	190.6
27-Apr	141.3	207.1	207.2	207.3	225.5	239.9	247.6	190.8
28-Apr	141.5	206.9	207.2	207.3	225.8	240.3	248.1	191.3
29-Apr	141.5	207.0	207.2	207.3	225.5	240.0	248.1	191.2
30-Apr	141.2	206.1	206.3	206.6	225.0	239.8	247.7	191.1
Average	142.7	207.2	207.3	207.6	226.0	240.6	248.4	190.8


		Dep	th from Su	rface	
Date	25 ft	50 ft	75 ft	100 ft	125 ft
1-Apr	206.7	237.4	237.4	240.0	241.2
2-Apr	207.3	236.8	236.8	239.6	240.7
3-Apr	207.0	236.8	236.8	239.6	240.7
4-Apr	207.6	237.3	237.3	240.0	241.1
5-Apr	207.8	237.4	237.5	240.0	241.1
6-Apr	208.0	237.2	237.3	239.8	240.7
7-Apr	207.3	236.5	236.8	239.0	240.0
8-Apr	207.7	236.0	236.2	239.0	240.0
9-Apr	208.1	236.7	236.6	239.2	240.4
10-Apr	208.2	236.7	236.7	239.1	240.6
11-Apr	208.4	236.7	236.7	239.1	240.5
12-Apr	208.5	236.8	236.8	239.3	240.6
13-Apr	207.7	237.0	237.0	239.6	240.8
14-Apr	207.2	237.1	237.2	239.5	240.4
15-Apr	207.3	236.7	236.9	239.4	240.3
16-Apr	207.9	236.9	237.1	239.3	240.4
17-Apr	207.6	236.5	236.5	239.1	240.2
18-Apr	207.4	236.6	236.7	239.1	240.5
19-Apr	207.8	236.8	236.8	239.2	240.6
20-Apr	207.8	236.8	236.8	239.1	240.5
21-Apr	207.5	236.4	236.7	239.0	240.3
22-Apr	207.3	236.3	236.3	238.5	239.8
23-Apr	207.6	235.7	236.2	238.4	239.4
24-Apr	207.8	235.7	235.8	238.4	239.5
25-Apr	207.8	235.4	235.5	238.3	239.3
26-Apr	207.6	235.5	235.5	237.5	238.7
27-Apr	207.7	235.3	235.3	237.7	239.0
28-Apr	208.2	235.5	235.9	238.1	239.4
29-Apr	208.2	235.5	235.7	238.2	239.2
30-Apr	207.6	235.3	235.4	237.8	238.9
Average	207.7	236.4	236.5	239.0	240.2

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Apr	164.0	225.4	226.0	240.3	244.5	242.4	235.3	224.5
2-Apr	163.3	225.2	225.5	239.8	244.5	242.3	234.8	224.2
3-Apr	164.8	225.5	225.7	239.9	244.5	242.2	234.9	224.1
4-Apr	165.4	225.8	226.2	240.5	244.8	242.6	235.4	224.5
5-Apr	165.5	225.7	226.3	240.5	244.8	242.6	235.5	224.5
6-Apr	165.0	225.6	226.0	240.4	244.8	242.5	235.3	224.3
7-Apr	163.5	225.0	225.5	240.0	244.0	242.0	234.7	223.6
8-Apr	161.8	225.0	225.4	240.0	244.0	241.9	234.2	223.2
9-Apr	163.6	225.8	225.9	240.7	244.8	242.4	234.8	223.9
10-Apr	163.6	225.6	225.8	240.5	244.6	242.1	234.8	223.6
11-Apr	163.5	225.6	225.8	240.5	244.6	242.1	234.8	223.6
12-Apr	163.8	225.1	225.7	240.8	244.8	242.5	235.0	223.9
13-Apr	163.6	225.1	225.8	240.9	244.9	242.5	234.9	223.8
14-Apr	163.8	225.5	226.1	240.9	245.1	242.4	235.2	223.4
15-Apr	163.3	225.4	226.0	241.0	245.0	242.2	235.2	223.6
16-Apr	164.0	225.4	225.6	241.3	244.9	242.5	235.2	223.5
17-Apr	163.5	224.8	225.5	240.9	244.6	242.3	234.6	223.0
18-Apr	163.8	225.0	225.7	240.9	244.6	242.1	234.6	222.9
19-Apr	164.2	225.7	225.9	241.3	244.8	242.7	234.8	223.0
20-Apr	164.3	226.0	226.6	241.1	244.8	242.6	234.7	222.8
21-Apr	164.2	225.7	226.1	241.0	245.0	242.3	234.6	222.5
22-Apr	163.9	225.4	226.2	240.9	244.6	242.1	234.1	222.0
23-Apr	163.7	225.7	226.6	240.6	244.6	241.8	233.8	221.8
24-Apr	163.5	226.1	226.8	240.7	244.6	242.0	234.0	222.0
25-Apr	163.3	225.5	225.5	240.4	244.5	241.8	233.8	221.8
26-Apr	163.5	225.5	225.7	240.4	244.5	241.7	233.7	221.5
27-Apr	163.4	225.3	225.7	240.3	244.4	241.9	233.7	221.4
28-Apr	163.4	224.1	224.4	240.5	244.8	242.2	233.8	221.3
29-Apr	163.7	221.0	221.3	240.5	245.2	242.2	233.7	220.9
30-Apr	162.9	212.7	213.1	240.7	245.0	241.7	233.1	220.0
Average	163.8	224.8	225.3	240.6	244.7	242.2	234.6	223.0

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Apr	172.9	176.4	176.5	176.8	178.9	182.1	182.2	180.2
2-Apr	173.2	176.3	176.4	176.5	178.6	181.7	182.1	180.1
3-Apr	173.1	176.4	176.5	176.6	178.7	181.7	182.0	179.9
4-Apr	173.3	176.6	176.9	177.0	179.3	182.3	182.5	180.4
5-Apr	173.3	176.8	177.1	177.3	179.5	182.5	182.6	180.6
6-Apr	173.4	177.0	177.0	177.1	179.4	182.3	182.4	180.5
7-Apr	173.0	176.2	176.9	177.0	179.0	182.0	182.0	180.0
8-Apr	172.9	176.4	176.8	177.0	179.2	182.0	182.0	180.0
9-Apr	173.0	176.5	176.7	177.3	179.6	182.5	182.5	180.5
10-Apr	173.2	176.7	176.8	177.3	179.7	182.6	182.6	180.5
11-Apr	173.2	176.8	177.1	177.4	179.9	182.8	182.6	180.6
12-Apr	173.1	177.0	177.2	177.4	179.9	182.8	182.8	180.7
13-Apr	173.5	177.1	177.3	177.3	179.7	182.7	182.8	180.8
14-Apr	173.4	177.0	177.2	177.2	179.8	182.8	183.0	181.0
15-Apr	173.5	177.2	177.2	177.3	179.8	182.8	183.0	180.9
16-Apr	173.1	177.3	177.3	177.4	179.9	182.8	182.7	180.3
17-Apr	173.4	176.9	177.1	177.2	179.5	182.5	182.6	179.5
18-Apr	173.4	177.0	177.2	177.3	179.6	182.6	182.6	177.9
19-Apr	173.7	177.3	177.5	177.5	179.6	182.7	182.7	178.0
20-Apr	173.9	177.5	177.5	177.5	179.8	182.7	182.8	178.5
21-Apr	173.7	177.5	177.5	177.5	179.8	182.7	182.8	178.4
22-Apr	173.4	177.2	177.3	177.6	179.5	182.5	182.6	177.9
23-Apr	173.5	178.1	177.3	178.2	180.3	182.5	182.5	178.6
24-Apr	174.0	177.3	177.3	177.4	179.5	182.5	182.5	178.0
25-Apr	174.4	177.3	177.3	177.4	179.3	182.4	182.5	177.8
26-Apr	174.5	177.3	177.4	177.5	179.4	182.4	182.5	177.5
27-Apr	174.4	177.2	177.2	177.5	179.1	182.2	182.3	177.0
28-Apr	174.2	177.3	177.3	177.5	179.3	182.4	182.5	177.3
29-Apr	174.6	177.4	177.4	177.4	179.1	182.2	182.5	177.2
30-Apr	174.1	177.2	177.2	177.3	179.1	182.2	182.3	177.3
Average	173.5	177.0	177.1	177.3	179.5	182.4	182.5	179.3

				Depth fro	m Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
1-Apr	123.3	147.3	145.7	151.2	150.3	132.8	118.8	108.8
2-Apr	123.6	147.9	146.7	151.1	149.7	132.5	118.7	108.6
3-Apr	124.0	148.5	147.5	151.9	149.9	132.5	118.7	108.4
4-Apr	124.3	149.8	148.9	152.4	150.3	133.1	119.2	109.2
5-Apr	124.5	149.9	148.9	152.6	150.1	133.1	119.3	109.2
6-Apr	124.5	150.4	149.5	152.5	149.9	133.0	119.3	108.9
7-Apr	123.8	150.0	149.0	152.0	149.0	132.0	118.2	108.0
8-Apr	123.3	149.5	148.7	152.0	149.0	132.0	118.2	108.0
9-Apr	124.0	149.7	148.9	152.2	149.3	132.5	118.7	108.2
10-Apr	124.2	150.1	149.4	152.4	149.4	132.7	118.9	108.2
11-Apr	124.1	150.4	149.6	152.6	149.5	132.7	118.9	108.4
12-Apr	124.3	150.1	149.1	152.7	149.7	132.9	119.2	108.7
13-Apr	124.5	150.3	149.5	152.9	150.0	133.0	119.3	108.7
14-Apr	124.4	150.4	149.6	152.7	150.3	133.0	119.4	108.7
15-Apr	124.4	150.5	149.5	152.5	150.3	132.6	119.4	108.7
16-Apr	124.5	150.4	149.4	152.6	150.0	132.7	119.3	108.5
17-Apr	124.0	149.9	148.9	152.2	149.5	132.5	118.8	108.2
18-Apr	124.4	150.4	149.5	152.6	149.7	132.6	118.9	108.3
19-Apr	124.8	150.9	150.0	152.8	150.0	132.9	119.3	108.6
20-Apr	124.9	151.0	150.1	153.0	150.0	132.9	119.3	108.5
21-Apr	125.5	152.2	149.9	152.9	150.0	134.0	120.3	109.2
22-Apr	124.4	150.5	149.6	152.5	149.7	132.5	119.1	108.1
23-Apr	124.0	150.5	149.6	152.5	149.5	132.3	118.8	107.8
24-Apr	124.2	150.7	149.9	152.5	149.4	132.2	118.8	107.8
25-Apr	124.0	150.8	149.9	152.5	149.3	132.2	118.7	107.6
26-Apr	124.1	150.5	149.7	152.5	149.3	132.2	118.6	107.5
27-Apr	124.0	150.4	149.7	152.4	149.4	132.3	118.7	107.4
28-Apr	124.1	150.5	149.8	152.6	149.6	132.5	119.3	107.8
29-Apr	124.3	150.8	150.2	152.8	149.7	132.6	119.4	107.9
30-Apr	123.7	150.4	149.5	152.5	149.4	132.3	119.0	107.8
Average	124.2	150.2	149.2	152.4	149.7	132.6	119.0	108.3

Appendix E Monthly Topography Analysis

LEGEND

MAJOR CONTOURS (EVERY 10')

MINOR CONTOURS (EVERY 2')

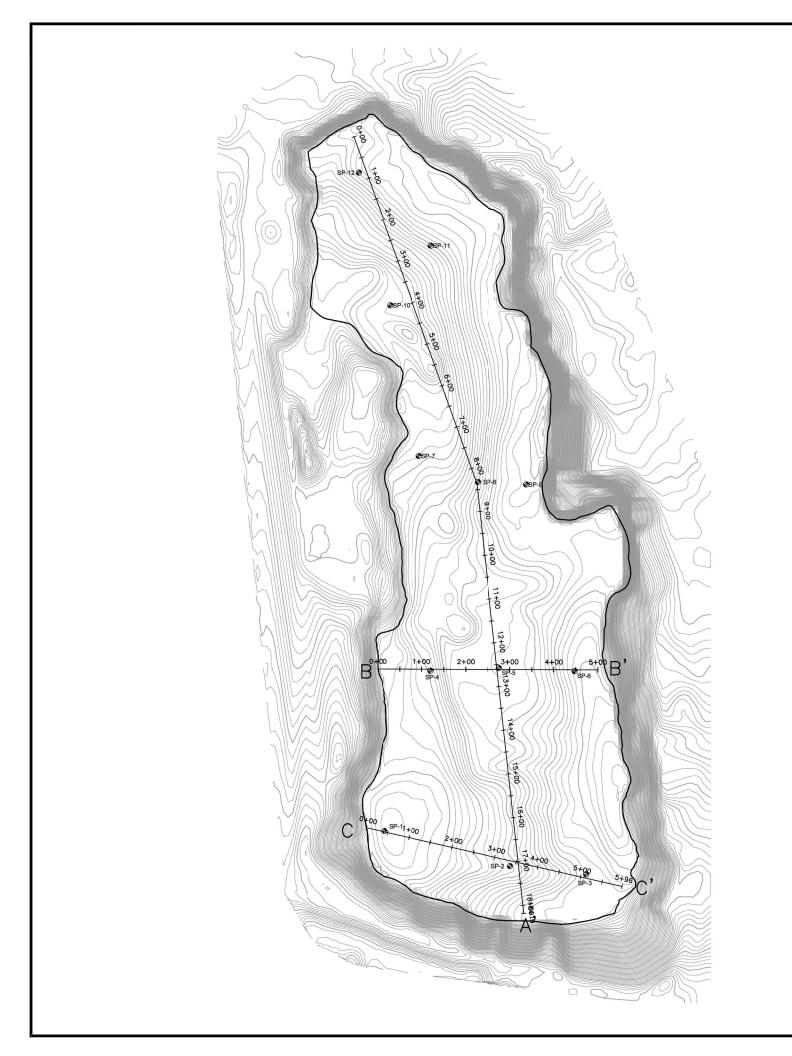
APPROXIMATE SIDEWALL LOCATION

SP-9

SETTLEMENT PLATE

NOTES:

- GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENTS THE TOPOGRAPHY CAPTURED ON APRIL 11, 2023 BY SCS ENGINEERS.
 ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
 THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
 THE VERTICAL DATUM IS BASED UPON NAVD-88.


SHET TILE APRIL 2023 LANDFILL TOPOGRAPHY	PROJECT TITE	MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588
CLENT CITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY	2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201

SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS, INC. 33 SOUTH MAN STS, SUITE A. MEDIOSID, NJ. PH. (1699) 584-4000 SCSENGINEERS, COM.

CADD FILE: SURF COMP

DRAWING NO.

9 44444

<u>LEGEND</u>

MAJOR CONTOURS (EVERY 10')

MINOR CONTOURS (EVERY 2')

APPROXIMATE SIDEWALL LOCATION

SP-9

SETTLEMENT PLATE

NOTES:

- GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY
 REPRESENTS THE TOPOGRAPHY CAPTURED ON MARCH 9, 2023 BY SCS ENGINEERS.
 ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL
 IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY
 AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF
 IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
 THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
 THE VERTICAL DATUM IS BASED UPON NAVD-88.

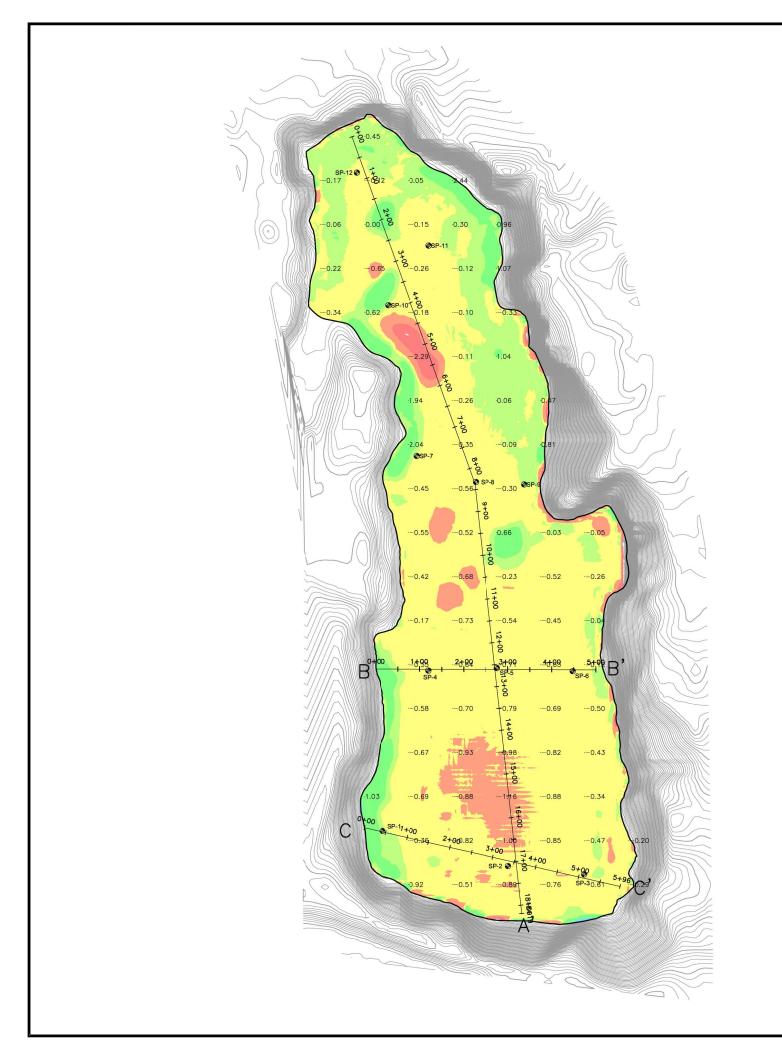
SCALE: 1"=100'

CITY OF BRISTOL INTEGRATED SOLID
WASTE MANAGEMENT FACILITY
2655 VALLEY DRIVE
BRISTOL, VIRGINIA 24201

9 44444

MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588

MARCH 2023 LANDFILL TOPO


SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS, INC. 53 SOUTH MAIN ST, SUITE A. MEDORD, NJ PH. (609) 654-4000 SCSENGINEERS.COM

CADD FILE: SURF COMP

SCALE: 1" = 100'

DRAWING NO.

2

LEGEND

MAJOR CONTOURS (EVERY 10')

MINOR CONTOURS (EVERY 2')

APPROXIMATE SIDEWALL LOCATION

SP-9 SETTLEMENT PLATE

SPOT ELEVATION ON 100' GRID

Volume

Base Surface TOPO - MAR 9, 2023 Comparison Surface TOPO - APR 11, 2023

Cut Volume 15248.51 Cu. Yd. Fill Volume 5371.80 Cu. Yd. 9876.71 Cu. Yd. Net Cut

Elevations Table

Number	Minimum Elevation	Maximum Elevation	Color
1	-10.000	-5.000	
2	-5.000	-1.000	
3	-1.000	0.000	
4	0.000	1.000	
5	1.000	5.000	
6	5.000	10.000	

NOTES:

- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON MARCH 9, 2023 AND APRIL 11, 2023 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT

 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.

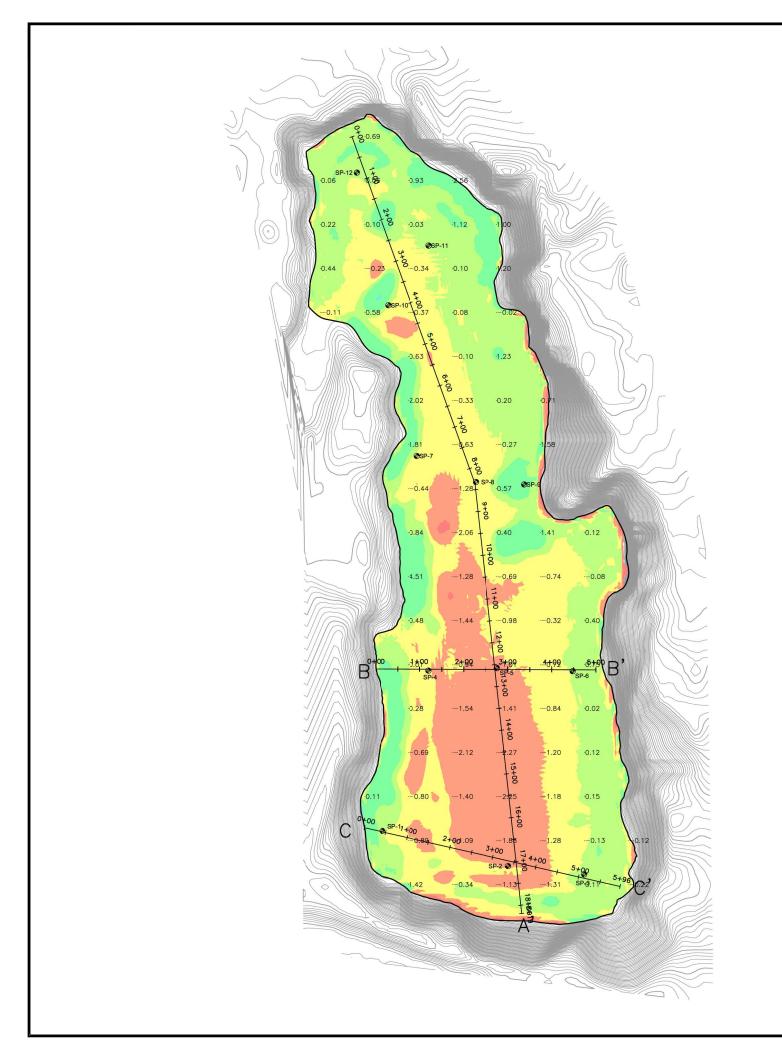
 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)

 4. THE VERTICAL DATUM IS BASED UPON NAVD-88.

Z	V	V	\	V	\	/
NO.		<u></u>		_	_	
REVISION						
DATE						

MARCH 2023 TO APRIL 2023	OJECT TITLE	MONTHLY TOPOGRAPHY ANALYSI SOLID WASTE PERMIT #588
	OJEC.	M

CLIENT
SITY OF BRISTOL INTEGRATED SOL
WASTE MANAGEMENT FACILITY
2655 VALLEY DRIVE
BRISTOL, VIRGINIA 24201


 \Box

	ı
ERS SCHMIDT S, INC. EDFORD, NJ 08055 ERS.COM	Q/A RVW BY:
SENGINEERS RNS, CONRAD AND SCHMIDT SULTING ENGINEERS, INC. UNI MAN ST SUNTE A. MEDFORD, NA 00055 00) 6554000 SCSEMOINEERS.COM	DWN. BY:
SULT SULT SULT SO (68	l

SCONSI STEAR CONSI 53 SOUT PH. (609

CADD FILE: SURF COMP

DRAWING NO.

LEGEND

MAJOR CONTOURS (EVERY 10')

MINOR CONTOURS (EVERY 2')

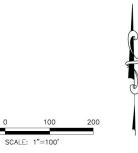
APPROXIMATE SIDEWALL LOCATION

SETTLEMENT PLATE

SPOT ELEVATION ON 100' GRID -0.39

Volume

Base Surface TOPO - JAN 10, 2023 Comparison Surface TOPO - APR 11, 2023


Cut Volume 16330.66 Cu. Yd. Fill Volume 9896.35 Cu. Yd. Net Cut 6434.31 Cu. Yd.

Elevations Table

Number	Minimum Elevation	Maximum Elevation	Color
1	-10.000	-5.000	
2	-5.000	-1.000	
3	-1.000	0.000	
4	0.000	1.000	
5	1.000	5.000	
6	5.000	10.000	

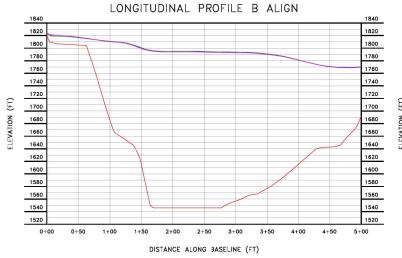
NOTES:

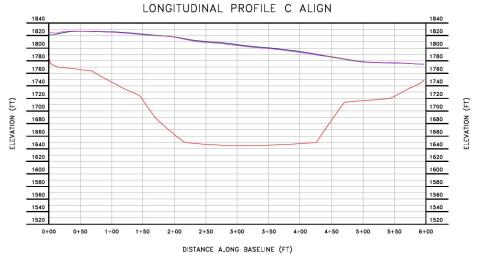
- THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AERIAL TOPOGRAPHY DATA CAPTURED ON JANUARY 10, 2023 AND APRIL 11, 2023 BY SCS ENGINEERS. POSITIVE VALUES (+) INDICATE AREAS OF FILL AND NEGATIVE VALUES (-) INDICATE AREAS OF CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT
 ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
 THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
 THE VERTICAL DATUM IS BASED UPON NAVD-88.

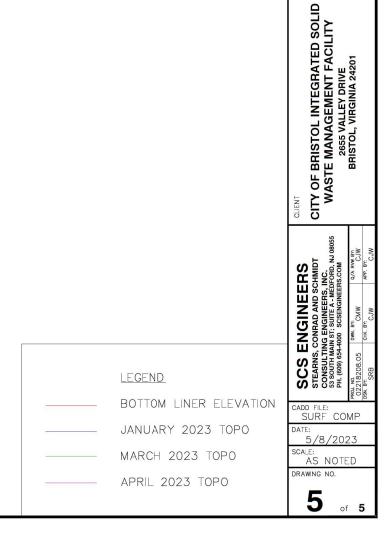
O	<	\triangleleft	abla	abla	<
APRIL VOLUME CHANGE	JANUARI 2023 IO AFRIL 2023		TOPOGRAPHY ANALYSIS	D WASTE PERMIT #588	

CITY OF BRISTOL INTEGRATED SOLI WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201

 \Box


ERS CHMIDT INC. EDFORD, NJ 0805 ERS.COM	CMW CJW BY:
SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS, INC. 35 SOUTH MAIN ST: SUITE A. MEDFORD, NJ 0005 PH. (609) 654-4000 SCSENGINEERS.COM	DWN. BY: CMW
SCS E STEARNS, C CONSULTIN 53 SOUTH MAII PH. (609) 6544	PROJ. NO. 02218208.05


CADD FILE: SURF COMP 5/8/2023


DRAWING NO.

MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588

PROFILES

Appendix F Sample Collection Log and Lab Report

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date		4/12/2023								
Personnel				A. Minnic	k, T. Smith					
Location ID	Date	Well Casing Depth (ft)	Pump Depth (ft)	Cycle Count	Depth to Liquid (ft)	Casing Sickup (ft)	Liquid Column Thickness (ff)	Comments		
EW-49	4/12/2023	96.15	90	439689	38.79	5.49	57.36			
EW-50	4/12/2023	77.70	83	845966	29.37	2.71	48.33			
EW-51	4/12/2023	92.80	95		28.12	3.32	64.68			
EW-52	4/12/2023	98.70	93	227417	36.10	2.41	62.60			
EW-53	4/12/2023	100.70		1852623	44.20	3.61	56.50			
EW-54	4/12/2023	82.70	75	241196	10.54	4.32	72.16			
EW-55	4/12/2023	90.40	90	000019		5.28		Cap stuck, unable to open		
EW-56	4/12/2023	58.50	58		44.52		13.98			
EW-57	4/12/2023	107.40	71	263674	37.75	3.69	69.65			
EW-58	4/12/2023	84.50	82	1807642	27.42	4.98	57.08	Running		
EW-59	4/12/2023	73.40	64	1561458	33.14	3.41	40.26			
EW-60	4/12/2023	81.80	70	166115	30.80	2.52	51.00	Running		
EW-61	4/12/2023	87.80	66	212107	32.34	3.53	55.46			
EW-62	4/12/2023	110.60	80	114038	55.95	3.62	54.65			
EW-63	4/12/2023	62.10	64	48.74	42.41	4.09	19.69			
EW-64	4/12/2023	109.00	113	98055	62.85	6.41	46.15			
EW-65	4/12/2023	88.40	50	3967	41.62	5.23	46.78			
EW-67	4/12/2023	107.75	62.5	386149	38.42	4.21	69.33			
EW-68	4/12/2023	73.57	68	1844629	30.43	3.29	43.14			

^{--- =} not applicable/available

Well casing depths measured on 12/20-21/2022 from top of PVC.

Well casing stickup - measured on 01/17/2023.

Log Checked By: J. Robb

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (°C)	pH (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-49									
EW-50									
EW-51									
EW-52									
EW-53									
EW-54									
EW-55									
EW-56									
EW-57									
EW-58	4/13/2023	8:20	49.1	7.12	13.85	0.66	-121.6	>1100	
EW-59									
EW-60	4/13/2023	8:35	2/21/1900	7.50	19.90	0.16	-184.3	>1100	
EW-61									
EW-62									
EW-63									
EW-64									
EW-65									
EW-67									
EW-68									

Sampler:

A. Minnick, T. Smith

Log Checked By:

J. Robb (SCS)

Samples Shipped By: Courier

Laboratory: Enthalpy Analytical

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

DRAFT REPORT

Laboratory Order ID 23D0768

Client Name: SCS Engineers-Winchester

296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Date Received:

April 14, 2023 8:00

Date Issued:

May 2, 2023 10:00

Project Number:

2023 City of Bristol Landfill Le

Purchase Order:

Enclosed are the results of analyses for samples received by the laboratory on 04/14/2023 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

Date Issued:

5/2/2023 10:00:46AM

Analysis Detects Report

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

S Engineers-winchester

Submitted To: Jennifer Robb

Client Site ID:

Laboratory Sample ID: Client Sample ID: EW-58 23D0768-01 Dil. Parameter LOQ Factor Units Reference Method Sample Results Qual LOD Samp ID 01RE1 SW6020B 360 5.0 10 Arsenic 10 ug/L 01RE1 SW6020B 1210 10.0 50.0 Barium 10 ug/L Cadmium 01 SW6020B 0.158 J 0.100 1.00 1 ug/L 01RE1 SW6020B 306 4.00 Chromium 10.0 10 ug/L Copper 01 SW6020B 6.64 0.300 1.00 1 ug/L SW6020B 2.2 1.0 Lead 01 1.0 1 ug/L Nickel 01 SW6020B 114.3 1.000 1.000 1 ug/L Selenium 01 SW6020B 1.89 0.850 1.00 1 ug/L 01 SW6020B 53.9 2.50 5.00 1 Zinc ug/L 01RE1 SW8260D 3420 2500 250 2-Butanone (MEK) 750 ug/L 01RE1 SW8260D 8290 1750 2500 250 Acetone ug/L Benzene 01 SW8260D 3740 4.00 10.0 10 ug/L Ethylbenzene 01 SW8260D 186 4.00 10.0 10 ug/L Tetrahydrofuran 01 SW8260D 2410 100 100 10 ug/L SW8260D 303 Toluene 01 5.00 10.0 10 ug/L 329 Xvlenes. Total 01 SW8260D 10.0 30.0 10 ug/L 01 EPA350.1 R2.0 1410 73.1 100 Ammonia as N 1000 mg/L BOD 01 SM22 5210B-2011 8430 0.2 2.0 1 mg/L COD 01 SM22 5220D-2011 16800 2000 2000 200 mg/L Nitrate+Nitrite as N 01RE1 SM22 4500-NO3F-2011 2.47 0.10 0.10 1 mg/L TKN as N EPA351.2 R2.0 1820 100 01 16.8 50.0 mg/L Total Recoverable Phenolics 01 SW9065 18.7 0.300 0.500 mg/L

5/2/2023 10:00:46AM

Date Issued:

Analysis Detects Report

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site ID:

Laboratory Sample ID: 23D0768-02	2 Client Sar	mple ID: EW-60						
							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Factor	Units
Arsenic	02	SW6020B	110		0.50	1.0	1	ug/L
Barium	02RE1	SW6020B	326		10.0	50.0	10	ug/L
Cadmium	02	SW6020B	0.333	J	0.100	1.00	1	ug/L
Chromium	02	SW6020B	142		0.400	1.00	1	ug/L
Copper	02	SW6020B	7.67		0.300	1.00	1	ug/L
Lead	02	SW6020B	6.7		1.0	1.0	1	ug/L
Mercury	02	SW7470A	0.00128		0.00020	0.00020	1	mg/L
Nickel	02	SW6020B	173.2		1.000	1.000	1	ug/L
Selenium	02	SW6020B	1.85		0.850	1.00	1	ug/L
Silver	02	SW6020B	0.110	J	0.0600	1.00	1	ug/L
Zinc	02RE1	SW6020B	414		25.0	50.0	10	ug/L
2-Butanone (MEK)	02RE1	SW8260D	5530		750	2500	250	ug/L
Acetone	02RE1	SW8260D	7560		1750	2500	250	ug/L
Benzene	02	SW8260D	320		4.00	10.0	10	ug/L
Ethylbenzene	02	SW8260D	43.4		4.00	10.0	10	ug/L
Tetrahydrofuran	02	SW8260D	4790		100	100	10	ug/L
Toluene	02	SW8260D	94.4		5.00	10.0	10	ug/L
Xylenes, Total	02	SW8260D	97.4		10.0	30.0	10	ug/L
Ammonia as N	02	EPA350.1 R2.0	1220		73.1	100	1000	mg/L
BOD	02	SM22 5210B-2011	2860		0.2	2.0	1	mg/L
COD	02	SM22 5220D-2011	7370		1000	1000	100	mg/L
TKN as N	02	EPA351.2 R2.0	1510		16.8	50.0	100	mg/L
Total Recoverable Phenolics	02	SW9065	5.10		0.300	0.500	1	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the " Certificate of Analysis".

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-58	23D0768-01	Ground Water	04/13/2023 08:20	04/14/2023 08:00
EW-60	23D0768-02	Ground Water	04/13/2023 08:35	04/14/2023 08:00
Trip Blank	23D0768-03	Ground Water	03/30/2023 11:45	04/14/2023 08:00

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 5/2/2023 10:00:46AM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Sample ID: EW-58 Laboratory Sample ID: 23D0768-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
				·	·							
Metals (Total) by EPA 6000/7000 Serie	s Methods											
Silver	01	7440-22-4	SW6020B	04/27/2023 10:45	04/28/2023 10:21	BLOD		0.0600	1.00	1	ug/L	AB
Arsenic	01RE1	7440-38-2	SW6020B	04/27/2023 10:45	04/28/2023 10:28	360		5.0	10	10	ug/L	AB
Barium	01RE1	7440-39-3	SW6020B	04/27/2023 10:45	04/28/2023 10:28	1210		10.0	50.0	10	ug/L	AB
Cadmium	01	7440-43-9	SW6020B	04/27/2023 10:45	04/28/2023 10:21	0.158	J	0.100	1.00	1	ug/L	AB
Chromium	01RE1	7440-47-3	SW6020B	04/27/2023 10:45	04/28/2023 10:28	306		4.00	10.0	10	ug/L	AB
Copper	01	7440-50-8	SW6020B	04/27/2023 10:45	04/28/2023 10:21	6.64		0.300	1.00	1	ug/L	AB
Mercury	01	7439-97-6	SW7470A	04/19/2023 09:40	04/19/2023 14:23	BLOD		0.00040	0.00040	1	mg/L	SGT
Nickel	01	7440-02-0	SW6020B	04/27/2023 10:45	04/28/2023 10:21	114.3		1.000	1.000	1	ug/L	AB
Lead	01	7439-92-1	SW6020B	04/27/2023 10:45	04/28/2023 10:21	2.2		1.0	1.0	1	ug/L	AB
Selenium	01	7782-49-2	SW6020B	04/27/2023 10:45	04/28/2023 10:21	1.89		0.850	1.00	1	ug/L	AB
Zinc	01	7440-66-6	SW6020B	04/27/2023 10:45	04/28/2023 10:21	53.9		2.50	5.00	1	ug/L	AB
		7440 00 0						2.00	0.00		ug/L	710
Volatile Organic Compounds by GCM	<u> </u>											
2-Butanone (MEK)	01RE1	78-93-3	SW8260D	04/19/2023 20:34	04/19/2023 20:34	3420		750	2500	250	ug/L	TLH
Acetone	01RE1	67-64-1	SW8260D	04/19/2023 20:34	04/19/2023 20:34	8290		1750	2500	250	ug/L	TLH
Benzene	01	71-43-2	SW8260D	04/18/2023 16:45	04/18/2023 16:45	3740		4.00	10.0	10	ug/L	RJB
Ethylbenzene	01	100-41-4	SW8260D	04/18/2023 16:45	04/18/2023 16:45	186		4.00	10.0	10	ug/L	RJB
Toluene	01	108-88-3	SW8260D	04/18/2023 16:45	04/18/2023 16:45	303		5.00	10.0	10	ug/L	RJB
Xylenes, Total	01	1330-20-7	SW8260D	04/18/2023 16:45	04/18/2023 16:45	329		10.0	30.0	10	ug/L	RJB
Tetrahydrofuran	01	109-99-9	SW8260D	04/18/2023 16:45	04/18/2023 16:45	2410		100	100	10	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	01	114	% 70-120	04/18/2023 16	6:45 04/18/2023 16:	:45						
Surr: 4-Bromofluorobenzene (Surr)	01	109	% 75-120	04/18/2023 16	6:45 04/18/2023 16:	:45						
Surr: Dibromofluoromethane (Surr)	01	103	% 70-130	04/18/2023 16	6:45 04/18/2023 16:	:45						
Surr: Toluene-d8 (Surr)	01	102	% 70-130	04/18/2023 16	6:45 04/18/2023 16:	:45						
Surr: 1,2-Dichloroethane-d4 (Surr)	01RE1	91.2	% 70-120	04/19/2023 20	0:34 04/19/2023 20:	:34						
Surr: 4-Bromofluorobenzene (Surr)	01RE1	95.1	% 75-120	04/19/2023 20	04/19/2023 20:	:34						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

5/2/2023 10:00:46AM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Sample ID: EW-58 Laboratory Sample ID: 23D0768-01

Parameter Volatile Organic Compounds by GCMS	Samp ID		eference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Surr: Dibromofluoromethane (Surr)	01RE1	103 %	70-130	04/19/2023 20:34	04/19/2023 20:34	!						
Surr: Toluene-d8 (Surr)	01RE1	96.9 %	70-130	04/19/2023 20:34	04/19/2023 20:34	!						
Semivolatile Organic Compounds by 0	GCMS											
Anthracene	01	120-12-7 S	W8270E	04/17/2023 09:10 04	4/17/2023 18:47	BLOD		37.4	74.8	4	ug/L	BMS
Surr: 2,4,6-Tribromophenol (Surr)	01	%	5-136	04/17/2023 09:10	04/17/2023 18:47	,						DS
Surr: 2-Fluorobiphenyl (Surr)	01	%	9-117	04/17/2023 09:10	04/17/2023 18:47	,						DS
Surr: 2-Fluorophenol (Surr)	01	%	5-60	04/17/2023 09:10	04/17/2023 18:47	•						DS
Surr: Nitrobenzene-d5 (Surr)	01	%	5-151	04/17/2023 09:10	04/17/2023 18:47	•						DS
Surr: Phenol-d5 (Surr)	01	0.560 %	5-60	04/17/2023 09:10	04/17/2023 18:47	•						DS

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 5/2/2023 10:00:46AM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Sample ID: EW-58 Laboratory Sample ID: 23D0768-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analysis												
Ammonia as N	01	7664-41-7	EPA350.1 R2.0	04/25/2023 12:41	04/25/2023 12:41	1410		73.1	100	1000	mg/L	SPH
BOD	01	E1640606	SM22 5210B-2011	04/14/2023 15:14	04/14/2023 15:14	8430		0.2	2.0	1	mg/L	LAM
COD	01	NA	SM22 5220D-2011	04/19/2023 09:30	04/19/2023 09:30	16800		2000	2000	200	mg/L	MGC
Nitrate as N	01	14797-55-8	Calc.	04/20/2023 14:53	04/20/2023 14:53	BLOD		0.600	2.60	50	mg/L	NBT
Nitrate+Nitrite as N	01RE1	E701177	SM22 4500-NO3F- 2011	04/20/2023 14:53	04/20/2023 14:53	2.47		0.10	0.10	1	mg/L	NBT
Nitrite as N	01	14797-65-0	SM22 4500-NO2B- 2011	04/14/2023 16:15	04/14/2023 16:15	BLOD		0.50	2.50	50	mg/L	LTN
Total Recoverable Phenolics	01	NA	SW9065	04/17/2023 16:26	04/17/2023 16:26	18.7		0.300	0.500	1	mg/L	MAH
TKN as N	01	E17148461	EPA351.2 R2.0	04/17/2023 15:40	04/17/2023 15:40	1820		16.8	50.0	100	mg/L	AAL

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 5/2/2023 10:00:46AM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Sample ID: EW-60 Laboratory Sample ID: 23D0768-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA 6000/7000	Series Methods											
Silver	02	7440-22-4	SW6020B	04/27/2023 10:45	04/28/2023 10:24	0.110	J	0.0600	1.00	1	ug/L	AB
Arsenic	02	7440-38-2	SW6020B	04/27/2023 10:45	04/28/2023 10:24	110		0.50	1.0	1	ug/L	AB
Barium	02RE1	7440-39-3	SW6020B	04/27/2023 10:45	04/28/2023 10:31	326		10.0	50.0	10	ug/L	AB
Cadmium	02	7440-43-9	SW6020B	04/27/2023 10:45	04/28/2023 10:24	0.333	J	0.100	1.00	1	ug/L	AB
Chromium	02	7440-47-3	SW6020B	04/27/2023 10:45	04/28/2023 10:24	142		0.400	1.00	1	ug/L	AB
Copper	02	7440-50-8	SW6020B	04/27/2023 10:45	04/28/2023 10:24	7.67		0.300	1.00	1	ug/L	AB
Mercury	02	7439-97-6	SW7470A	04/19/2023 09:40	04/19/2023 14:30	0.00128		0.00020	0.00020	1	mg/L	SGT
Nickel	02	7440-02-0	SW6020B	04/27/2023 10:45	04/28/2023 10:24	173.2		1.000	1.000	1	ug/L	AB
Lead	02	7439-92-1	SW6020B	04/27/2023 10:45	04/28/2023 10:24	6.7		1.0	1.0	1	ug/L	AB
Selenium	02	7782-49-2	SW6020B	04/27/2023 10:45	04/28/2023 10:24	1.85		0.850	1.00	1	ug/L	AB
Zinc	02RE1	7440-66-6	SW6020B	04/27/2023 10:45	04/28/2023 10:31	414		25.0	50.0	10	ug/L	AB

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

5/2/2023 10:00:46AM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Sample ID: EW-60 Laboratory Sample ID: 23D0768-02

P	Comm. ID	CAS	Reference	Sample Prep	Analyzed	Sample	Qual	LOD	LOQ	DF	Units	Analyst
Parameter	Samp ID	CAS	Method	Date/Time	Date/Time	Results	Quai	LOD	LOQ	DI-	Ullits	Allalyst
Volatile Organic Compounds by GCMS												
2-Butanone (MEK)	02RE1	78-93-3	SW8260D	04/19/2023 21:00	04/19/2023 21:00	5530		750	2500	250	ug/L	TLH
Acetone	02RE1	67-64-1	SW8260D	04/19/2023 21:00	04/19/2023 21:00	7560		1750	2500	250	ug/L	TLH
Benzene	02	71-43-2	SW8260D	04/18/2023 17:08	04/18/2023 17:08	320		4.00	10.0	10	ug/L	RJB
Ethylbenzene	02	100-41-4	SW8260D	04/18/2023 17:08	04/18/2023 17:08	43.4		4.00	10.0	10	ug/L	RJB
Toluene	02	108-88-3	SW8260D	04/18/2023 17:08	04/18/2023 17:08	94.4		5.00	10.0	10	ug/L	RJB
Xylenes, Total	02	1330-20-7	SW8260D	04/18/2023 17:08	04/18/2023 17:08	97.4		10.0	30.0	10	ug/L	RJB
Tetrahydrofuran	02	109-99-9	SW8260D	04/18/2023 17:08	04/18/2023 17:08	4790		100	100	10	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	02	114	% 70-120	04/18/2023 17	7:08 04/18/2023 17:0	08						
Surr: 4-Bromofluorobenzene (Surr)	02	110	% 75-120	04/18/2023 17	7:08 04/18/2023 17:0	08						
Surr: Dibromofluoromethane (Surr)	02	103	% 70-130	04/18/2023 17	7:08 04/18/2023 17:0	08						
Surr: Toluene-d8 (Surr)	02	102	% 70-130	04/18/2023 17	7:08 04/18/2023 17:0	08						
Surr: 1,2-Dichloroethane-d4 (Surr)	02RE1	90.9	% 70-120	04/19/2023 21	:00 04/19/2023 21:0	00						
Surr: 4-Bromofluorobenzene (Surr)	02RE1	95.8	% 75-120	04/19/2023 21	:00 04/19/2023 21:0	00						
Surr: Dibromofluoromethane (Surr)	02RE1	102	% 70-130	04/19/2023 21	:00 04/19/2023 21:0	00						
Surr: Toluene-d8 (Surr)	02RE1	96.4	% 70-130	04/19/2023 21	:00 04/19/2023 21:0	00						
Semivolatile Organic Compounds by GC	MS											
Anthracene	02	120-12-7	SW8270E	04/17/2023 09:10	04/17/2023 19:22	BLOD		38.8	77.7	4	ug/L	BMS
Surr: 2,4,6-Tribromophenol (Surr)	02	154	% 5-136	04/17/2023 09):10 04/17/2023 19:2	22						DS
Surr: 2-Fluorobiphenyl (Surr)	02		% 9-117	04/17/2023 09	0:10 04/17/2023 19:2	22						DS
Surr: 2-Fluorophenol (Surr)	02	0.0800	% 5-60	04/17/2023 09	0:10 04/17/2023 19:2	22						DS
Surr: Nitrobenzene-d5 (Surr)	02		% 5-151	04/17/2023 09	0:10 04/17/2023 19:2	22						DS
Surr: Phenol-d5 (Surr)	02	0.400	% 5-60	04/17/2023 09	0:10 04/17/2023 19:2	22						DS
Surr: p-Terphenyl-d14 (Surr)	02	40.6	% 5-141	04/17/2023 09	04/17/2023 19:2	22						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

5/2/2023 10:00:46AM

Client Site I.D.:

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Sample ID: EW-60 Laboratory Sample ID: 23D0768-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analysis												
Ammonia as N	02	7664-41-7	EPA350.1 R2.0	04/25/2023 12:41	04/25/2023 12:41	1220		73.1	100	1000	mg/L	SPH
BOD	02	E1640606	SM22 5210B-2011	04/14/2023 15:15	04/14/2023 15:15	2860		0.2	2.0	1	mg/L	LAM
COD	02	NA	SM22 5220D-2011	04/19/2023 09:30	04/19/2023 09:30	7370		1000	1000	100	mg/L	MGC
Nitrate as N	02	14797-55-8	Calc.	04/20/2023 13:23	04/20/2023 13:23	BLOD		0.600	2.60	50	mg/L	LTN
Nitrate+Nitrite as N	02	E701177	SM22 4500-NO3F- 2011	04/20/2023 13:23	04/20/2023 13:23	BLOD		0.10	0.10	1	mg/L	NBT
Nitrite as N	02	14797-65-0	SM22 4500-NO2B- 2011	04/14/2023 16:15	04/14/2023 16:15	BLOD		0.50	2.50	50	mg/L	LTN
Total Recoverable Phenolics	02	NA	SW9065	04/17/2023 16:26	04/17/2023 16:26	5.10		0.300	0.500	1	mg/L	MAH
TKN as N	02	E17148461	EPA351.2 R2.0	04/17/2023 15:40	04/17/2023 15:40	1510		16.8	50.0	100	mg/L	AAL

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 5/2/2023 10:00:46AM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Sample ID: Trip Blank Laboratory Sample ID: 23D0768-03

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compounds by GCMS	3											
2-Butanone (MEK)	03	78-93-3	SW8260D	04/18/2023 13:15	04/18/2023 13:15	BLOD		3.00	10.0	1	ug/L	RJB
Acetone	03	67-64-1	SW8260D	04/18/2023 13:15	04/18/2023 13:15	BLOD		7.00	10.0	1	ug/L	RJB
Benzene	03	71-43-2	SW8260D	04/18/2023 13:15	04/18/2023 13:15	BLOD		0.40	1.00	1	ug/L	RJB
Ethylbenzene	03	100-41-4	SW8260D	04/18/2023 13:15	04/18/2023 13:15	BLOD		0.40	1.00	1	ug/L	RJB
Toluene	03	108-88-3	SW8260D	04/18/2023 13:15	04/18/2023 13:15	BLOD		0.50	1.00	1	ug/L	RJB
Xylenes, Total	03	1330-20-7	SW8260D	04/18/2023 13:15	04/18/2023 13:15	BLOD		1.00	3.00	1	ug/L	RJB
Tetrahydrofuran	03	109-99-9	SW8260D	04/18/2023 13:15	04/18/2023 13:15	BLOD		10.0	10.0	1	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	03	109	% 70-120	04/18/2023 1	3:15 04/18/2023 13:	15						
Surr: 4-Bromofluorobenzene (Surr)	03	109	% 75-120	04/18/2023 1	3:15 04/18/2023 13:	15						
Surr: Dibromofluoromethane (Surr)	03	102	% 70-130	04/18/2023 1	3:15 04/18/2023 13:	15						
Surr: Toluene-d8 (Surr)	03	102	% 70-130	04/18/2023 1	3:15 04/18/2023 13:	15						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Jennifer Robb

Date Issued:

5/2/2023 10:00:46AM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To:

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
•	BGD0656 - SW7		-		·					
Blank (BGD0656-BLK1)				Prepared & Analy	yzed: 04/19/2023	1				
Mercury	ND	0.00020	mg/L							
LCS (BGD0656-BS1)				Prepared & Analy	yzed: 04/19/2023	;				
Mercury	0.00248	0.00020	mg/L	0.00250		99.1	80-120			
Matrix Spike (BGD0656-MS1)	Sou	rce: 23D0719-0)1	Prepared & Analy	yzed: 04/19/2023	1				
Mercury	0.00228	0.00020	mg/L	0.00250	BLOD	91.0	80-120			
Matrix Spike Dup (BGD0656-MSD1)	Sou	rce: 23D0719-0)1	Prepared & Analy	vzed: 04/19/2023	•				
Mercury	0.00223	0.00020	mg/L	0.00250	BLOD	89.2	80-120	2.00	20	
Batch	BGD1007 - EPA2	200.8 R5.4								
Blank (BGD1007-BLK1)				Prepared: 04/27/	2023 Analyzed: (04/28/2023				
Arsenic	ND	1.0	ug/L		•					
Barium	ND	5.00	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	1.00	ug/L							
Copper	ND	1.00	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	1.000	ug/L							
Selenium	ND	1.00	ug/L							
Silver	ND	1.00	ug/L							
Zinc	ND	5.00	ug/L							
LCS (BGD1007-BS1)				Prepared: 04/27/	2023 Analyzed: (04/28/2023				
Arsenic	53	1.0	ug/L	50.0		106	80-120			
			-				80-120			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGD1007 - EPA20	0.8 R5.4								
LCS (BGD1007-BS1)				Prepared: 04/27/	/2023 Analyzed: 0	04/28/2023				
Cadmium	51.7	1.00	ug/L	50.0		103	80-120			
Chromium	52.5	1.00	ug/L	50.0		105	80-120			
Copper	52.3	1.00	ug/L	50.0		105	80-120			
Lead	49	1.0	ug/L	50.0		98.0	80-120			
Nickel	51.47	1.000	ug/L	50.0		103	80-120			
Selenium	52.3	1.00	ug/L	50.0		105	80-120			
Silver	10.2	1.00	ug/L	10.0		102	80-120			E
Zinc	52.9	5.00	ug/L	50.0		106	80-120			
Matrix Spike (BGD1007-MS1)	Sour	ce: 23D0744-0	4	Prepared: 04/27/	/2023 Analyzed: 0	04/28/2023				
Arsenic	52	1.0	ug/L	50.0	BLOD	105	75-125			
Barium	78.7	5.00	ug/L	50.0	26.8	104	75-125			
Cadmium	51.8	1.00	ug/L	50.0	BLOD	104	75-125			
Chromium	53.9	1.00	ug/L	50.0	1.61	105	75-125			
Copper	50.7	1.00	ug/L	50.0	1.35	98.7	75-125			
Lead	47	1.0	ug/L	50.0	BLOD	93.6	75-125			
Nickel	50.02	1.000	ug/L	50.0	BLOD	100	75-125			
Selenium	52.3	1.00	ug/L	50.0	1.64	101	75-125			
Silver	10.2	1.00	ug/L	10.0	BLOD	102	75-125			Е
Zinc	55.3	5.00	ug/L	50.0	5.62	99.4	75-125			
Matrix Spike Dup (BGD1007-MSD1)	Sour	ce: 23D0744-0	4	Prepared: 04/27/	/2023 Analyzed: 0	04/28/2023				
Arsenic	54	1.0	ug/L	50.0	BLOD	107	75-125	2.05	20	
Barium	79.1	5.00	ug/L	50.0	26.8	105	75-125	0.531	20	
Cadmium	52.4	1.00	ug/L	50.0	BLOD	105	75-125	1.12	20	
Chromium	54.3	1.00	ug/L	50.0	1.61	105	75-125	0.710	20	

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BGD1007 - EPA20	0.8 R5.4								
Matrix Spike Dup (BGD1007-MSD1)	Source	ce: 23D0744-0	04	Prepared: 04/27/	/2023 Analyzed: (04/28/2023				
Copper	51.2	1.00	ug/L	50.0	1.35	99.7	75-125	0.971	20	
Lead	48	1.0	ug/L	50.0	BLOD	95.5	75-125	2.01	20	
Nickel	50.23	1.000	ug/L	50.0	BLOD	100	75-125	0.409	20	
Selenium	53.2	1.00	ug/L	50.0	1.64	103	75-125	1.72	20	
Silver	10.3	1.00	ug/L	10.0	BLOD	103	75-125	0.402	20	Е
Zinc	55.9	5.00	ug/L	50.0	5.62	101	75-125	1.04	20	

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BC	GD0619 - SW503	30B-MS								
Blank (BGD0619-BLK1)				Prepared & Anal	yzed: 04/18/2023					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Tetrahydrofuran	ND	10.0	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	54.2		ug/L	50.0		108	70-120			
Surr: 4-Bromofluorobenzene (Surr)	55.0		ug/L	50.0		110	75-120			
Surr: Dibromofluoromethane (Surr)	51.4		ug/L	50.0		103	70-130			
Surr: Toluene-d8 (Surr)	51.2		ug/L	50.0		102	70-130			
LCS (BGD0619-BS1)				Prepared & Anal	yzed: 04/18/2023					
1,1,1,2-Tetrachloroethane	52.0	0.4	ug/L	50.0		104	80-130			
1,1,1-Trichloroethane	61.9	1	ug/L	50.0		124	65-130			
1,1,2,2-Tetrachloroethane	66.2	0.4	ug/L	50.0		132	65-130			L
1,1,2-Trichloroethane	61.5	1	ug/L	50.0		123	75-125			
1,1-Dichloroethane	62.2	1	ug/L	50.0		124	70-135			
1,1-Dichloroethylene	52.9	1	ug/L	50.0		106	70-130			
1,1-Dichloropropene	61.3	1	ug/L	50.0		123	75-135			
1,2,3-Trichlorobenzene	46.7	1	ug/L	50.0		93.5	55-140			
1,2,3-Trichloropropane	65.1	1	ug/L	50.0		130	75-125			L
1,2,4-Trichlorobenzene	59.8	1	ug/L	50.0		120	65-135			
1,2,4-Trimethylbenzene	62.8	1	ug/L	50.0		126	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	53.4	1	ug/L	50.0		107	50-130			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batcl	h BGD0619 - SW503	0B-MS								
LCS (BGD0619-BS1)			F	Prepared & Analy	yzed: 04/18/2023					
1,2-Dibromoethane (EDB)	60.9	1	ug/L	50.0		122	80-120			
1,2-Dichlorobenzene	61.2	0.5	ug/L	50.0		122	70-120			L
1,2-Dichloroethane	59.3	1	ug/L	50.0		119	70-130			
1,2-Dichloropropane	58.9	0.5	ug/L	50.0		118	75-125			
1,3,5-Trimethylbenzene	63.2	1	ug/L	50.0		126	75-125			L
1,3-Dichlorobenzene	63.2	1	ug/L	50.0		126	75-125			L
1,3-Dichloropropane	60.7	1	ug/L	50.0		121	75-125			
1,4-Dichlorobenzene	61.4	1	ug/L	50.0		123	75-125			
2,2-Dichloropropane	62.0	1	ug/L	50.0		124	70-135			
2-Butanone (MEK)	60.9	10	ug/L	50.0		122	30-150			
2-Chlorotoluene	62.3	1	ug/L	50.0		125	75-125			
2-Hexanone (MBK)	64.4	5	ug/L	50.0		129	55-130			
4-Chlorotoluene	62.1	1	ug/L	50.0		124	75-130			
4-Isopropyltoluene	61.1	1	ug/L	50.0		122	75-130			
4-Methyl-2-pentanone (MIBK)	64.4	5	ug/L	50.0		129	60-135			
Acetone	55.5	10	ug/L	50.0		111	40-140			
Benzene	58.2	1	ug/L	50.0		116	80-120			
Bromobenzene	63.0	1	ug/L	50.0		126	75-125			L
Bromochloromethane	61.2	1	ug/L	50.0		122	65-130			
Bromodichloromethane	63.0	0.5	ug/L	50.0		126	75-120			L
Bromoform	51.8	1	ug/L	50.0		104	70-130			
Bromomethane	47.5	1	ug/L	50.0		95.0	30-145			
Carbon disulfide	55.0	10	ug/L	50.0		110	35-160			
Carbon tetrachloride	55.8	1	ug/L	50.0		112	65-140			
Chlorobenzene	59.7	1	ug/L	50.0		119	80-120			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BGD0619 - SW503	0B-MS								
_CS (BGD0619-BS1)			F	Prepared & Analy	/zed: 04/18/2023					
Chloroethane	58.2	1	ug/L	50.0		116	60-135			
Chloroform	57.0	0.5	ug/L	50.0		114	65-135			
Chloromethane	68.6	1	ug/L	50.0		137	40-125			L
cis-1,2-Dichloroethylene	60.1	1	ug/L	50.0		120	70-125			
cis-1,3-Dichloropropene	42.0	1	ug/L	50.0		84.1	70-130			
Dibromochloromethane	48.9	0.5	ug/L	50.0		97.8	60-135			
Dibromomethane	57.4	1	ug/L	50.0		115	75-125			
Dichlorodifluoromethane	65.1	1	ug/L	50.0		130	30-155			
Ethylbenzene	62.8	1	ug/L	50.0		126	75-125			L
Hexachlorobutadiene	60.6	0.8	ug/L	50.0		121	50-140			
Isopropylbenzene	60.9	1	ug/L	50.0		122	75-125			
m+p-Xylenes	119	2	ug/L	100		119	75-130			
Methylene chloride	57.4	4	ug/L	50.0		115	55-140			
Methyl-t-butyl ether (MTBE)	64.7	1	ug/L	50.0		129	65-125			L
Naphthalene	45.1	1	ug/L	50.0		90.2	55-140			
n-Butylbenzene	61.4	1	ug/L	50.0		123	70-135			
n-Propylbenzene	61.6	1	ug/L	50.0		123	70-130			
o-Xylene	62.6	1	ug/L	50.0		125	80-120			L
sec-Butylbenzene	64.4	1	ug/L	50.0		129	70-125			L
Styrene	48.9	1	ug/L	50.0		97.8	65-135			
tert-Butylbenzene	62.1	1	ug/L	50.0		124	70-130			
Tetrachloroethylene (PCE)	58.0	1	ug/L	50.0		116	45-150			
Toluene	58.9	1	ug/L	50.0		118	75-120			
trans-1,2-Dichloroethylene	59.9	1	ug/L	50.0		120	60-140			
trans-1,3-Dichloropropene	45.2	1	ug/L	50.0		90.4	55-140			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BG	SD0619 - SW503	BOB-MS								
LCS (BGD0619-BS1)				Prepared & Anal	yzed: 04/18/2023	i				
Trichloroethylene	57.0	1	ug/L	50.0		114	70-125			
Trichlorofluoromethane	61.3	1	ug/L	50.0		123	60-145			
Vinyl chloride	56.8	0.5	ug/L	50.0		114	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	55.2		ug/L	50.0		110	70-120			
Surr: 4-Bromofluorobenzene (Surr)	53.0		ug/L	50.0		106	75-120			
Surr: Dibromofluoromethane (Surr)	54.5		ug/L	50.0		109	70-130			
Surr: Toluene-d8 (Surr)	50.5		ug/L	50.0		101	70-130			
Matrix Spike (BGD0619-MS1)	Sourc	e: 23D0804-0	2	Prepared & Anal	yzed: 04/18/2023	i				
1,1,1,2-Tetrachloroethane	55.8	0.4	ug/L	50.0	BLOD	112	80-130			
1,1,1-Trichloroethane	64.2	1	ug/L	50.0	BLOD	128	65-130			
1,1,2,2-Tetrachloroethane	75.3	0.4	ug/L	50.0	BLOD	151	65-130			M
1,1,2-Trichloroethane	69.8	1	ug/L	50.0	BLOD	140	75-125			М
1,1-Dichloroethane	66.1	1	ug/L	50.0	BLOD	132	70-135			
1,1-Dichloroethylene	55.0	1	ug/L	50.0	BLOD	110	50-145			
1,1-Dichloropropene	63.7	1	ug/L	50.0	BLOD	127	75-135			
1,2,3-Trichlorobenzene	51.1	1	ug/L	50.0	BLOD	102	55-140			
1,2,3-Trichloropropane	72.7	1	ug/L	50.0	BLOD	145	75-125			М
1,2,4-Trichlorobenzene	63.8	1	ug/L	50.0	BLOD	128	65-135			
1,2,4-Trimethylbenzene	65.7	1	ug/L	50.0	BLOD	131	75-130			М
1,2-Dibromo-3-chloropropane (DBCP)	60.8	1	ug/L	50.0	BLOD	122	50-130			
1,2-Dibromoethane (EDB)	68.8	1	ug/L	50.0	BLOD	138	80-120			М
1,2-Dichlorobenzene	65.5	0.5	ug/L	50.0	BLOD	131	70-120			М
1,2-Dichloroethane	65.9	1	ug/L	50.0	BLOD	132	70-130			М
1,2-Dichloropropane	64.3	0.5	ug/L	50.0	BLOD	129	75-125			M

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batcl	n BGD0619 - SW503	0B-MS								
Matrix Spike (BGD0619-MS1)	Source	e: 23D0804-0)2	Prepared & Anal	yzed: 04/18/2023					
1,3,5-Trimethylbenzene	65.4	1	ug/L	50.0	BLOD	131	75-124			М
1,3-Dichlorobenzene	66.3	1	ug/L	50.0	BLOD	133	75-125			M
1,3-Dichloropropane	68.6	1	ug/L	50.0	BLOD	137	75-125			M
1,4-Dichlorobenzene	64.8	1	ug/L	50.0	BLOD	130	75-125			M
2,2-Dichloropropane	64.8	1	ug/L	50.0	BLOD	130	70-135			
2-Butanone (MEK)	78.1	10	ug/L	50.0	BLOD	151	30-150			М
2-Chlorotoluene	64.4	1	ug/L	50.0	BLOD	129	75-125			M
2-Hexanone (MBK)	68.3	5	ug/L	50.0	BLOD	137	55-130			M
4-Chlorotoluene	64.2	1	ug/L	50.0	BLOD	128	75-130			
4-Isopropyltoluene	63.5	1	ug/L	50.0	BLOD	127	75-130			
4-Methyl-2-pentanone (MIBK)	70.9	5	ug/L	50.0	BLOD	142	60-135			M
Acetone	82.8	10	ug/L	50.0	25.0	116	40-140			
Benzene	61.9	1	ug/L	50.0	BLOD	124	80-120			M
Bromobenzene	67.6	1	ug/L	50.0	BLOD	135	75-125			M
Bromochloromethane	68.0	1	ug/L	50.0	BLOD	136	65-130			M
Bromodichloromethane	68.4	0.5	ug/L	50.0	BLOD	137	75-136			M
Bromoform	59.3	1	ug/L	50.0	BLOD	119	70-130			
Bromomethane	49.2	1	ug/L	50.0	BLOD	98.4	30-145			
Carbon disulfide	55.4	10	ug/L	50.0	BLOD	111	35-160			
Carbon tetrachloride	57.6	1	ug/L	50.0	BLOD	115	65-140			
Chlorobenzene	62.8	1	ug/L	50.0	BLOD	126	80-120			М
Chloroethane	61.8	1	ug/L	50.0	BLOD	124	60-135			
Chloroform	61.2	0.5	ug/L	50.0	BLOD	122	65-135			
Chloromethane	75.0	1	ug/L	50.0	BLOD	150	40-125			М
cis-1,2-Dichloroethylene	64.7	1	ug/L	50.0	BLOD	129	70-125			M

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGD0619 - SW503	0B-MS								
Matrix Spike (BGD0619-MS1)	Source	e: 23D0804-0)2	Prepared & Anal	yzed: 04/18/2023					
cis-1,3-Dichloropropene	46.2	1	ug/L	50.0	BLOD	92.5	47-136			
Dibromochloromethane	55.7	0.5	ug/L	50.0	BLOD	111	60-135			
Dibromomethane	64.4	1	ug/L	50.0	BLOD	129	75-125			M
Dichlorodifluoromethane	67.5	1	ug/L	50.0	BLOD	135	30-155			
Ethylbenzene	64.8	1	ug/L	50.0	BLOD	130	75-125			М
Hexachlorobutadiene	60.5	0.8	ug/L	50.0	BLOD	121	50-140			
Isopropylbenzene	62.6	1	ug/L	50.0	BLOD	125	75-125			M
m+p-Xylenes	122	2	ug/L	100	BLOD	122	75-130			
Methylene chloride	62.2	4	ug/L	50.0	BLOD	123	55-140			
Methyl-t-butyl ether (MTBE)	74.2	1	ug/L	50.0	BLOD	148	65-125			M
Naphthalene	50.8	1	ug/L	50.0	BLOD	102	55-140			
n-Butylbenzene	63.9	1	ug/L	50.0	BLOD	128	70-135			
n-Propylbenzene	63.4	1	ug/L	50.0	BLOD	127	70-130			
o-Xylene	65.4	1	ug/L	50.0	BLOD	131	80-120			M
sec-Butylbenzene	65.7	1	ug/L	50.0	BLOD	131	70-125			M
Styrene	51.6	1	ug/L	50.0	BLOD	103	65-135			
tert-Butylbenzene	64.0	1	ug/L	50.0	BLOD	128	70-130			
Tetrachloroethylene (PCE)	55.1	1	ug/L	50.0	BLOD	110	51-231			
Toluene	61.8	1	ug/L	50.0	BLOD	124	75-120			М
trans-1,2-Dichloroethylene	62.8	1	ug/L	50.0	BLOD	126	60-140			
trans-1,3-Dichloropropene	50.8	1	ug/L	50.0	BLOD	102	55-140			
Trichloroethylene	59.4	1	ug/L	50.0	BLOD	119	70-125			
Trichlorofluoromethane	63.6	1	ug/L	50.0	BLOD	127	60-145			
Vinyl chloride	58.4	0.5	ug/L	50.0	BLOD	117	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	59.3		ug/L	50.0		119	70-120			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 5/2/2023 10:00:46AM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BC	3D0619 - SW503	0B-MS								
Matrix Spike (BGD0619-MS1)	Source	e: 23D0804-02	2	Prepared & Anal	yzed: 04/18/2023					
Surr: 4-Bromofluorobenzene (Surr)	53.5		ug/L	50.0		107	75-120			
Surr: Dibromofluoromethane (Surr)	56.2		ug/L	50.0		112	70-130			
Surr: Toluene-d8 (Surr)	50.7		ug/L	50.0		101	70-130			
Matrix Spike Dup (BGD0619-MSD1)	Source	e: 23D0804-02	2	Prepared & Anal	yzed: 04/18/2023					
1,1,1,2-Tetrachloroethane	53.5	0.4	ug/L	50.0	BLOD	107	80-130	4.13	30	
1,1,1-Trichloroethane	60.9	1	ug/L	50.0	BLOD	122	65-130	5.31	30	
1,1,2,2-Tetrachloroethane	74.0	0.4	ug/L	50.0	BLOD	148	65-130	1.71	30	M
1,1,2-Trichloroethane	68.6	1	ug/L	50.0	BLOD	137	75-125	1.74	30	M
1,1-Dichloroethane	62.5	1	ug/L	50.0	BLOD	125	70-135	5.57	30	
1,1-Dichloroethylene	52.0	1	ug/L	50.0	BLOD	104	50-145	5.57	30	
1,1-Dichloropropene	60.4	1	ug/L	50.0	BLOD	121	75-135	5.33	30	
1,2,3-Trichlorobenzene	49.3	1	ug/L	50.0	BLOD	98.5	55-140	3.63	30	
1,2,3-Trichloropropane	72.0	1	ug/L	50.0	BLOD	144	75-125	0.995	30	M
1,2,4-Trichlorobenzene	61.4	1	ug/L	50.0	BLOD	123	65-135	3.93	30	
1,2,4-Trimethylbenzene	61.8	1	ug/L	50.0	BLOD	124	75-130	6.07	30	
1,2-Dibromo-3-chloropropane (DBCP)	61.2	1	ug/L	50.0	BLOD	122	50-130	0.738	30	
1,2-Dibromoethane (EDB)	66.4	1	ug/L	50.0	BLOD	133	80-120	3.52	30	M
1,2-Dichlorobenzene	63.6	0.5	ug/L	50.0	BLOD	127	70-120	2.99	30	M
1,2-Dichloroethane	63.3	1	ug/L	50.0	BLOD	127	70-130	4.06	30	
1,2-Dichloropropane	61.8	0.5	ug/L	50.0	BLOD	124	75-125	3.89	30	
1,3,5-Trimethylbenzene	61.7	1	ug/L	50.0	BLOD	123	75-124	5.80	30	
1,3-Dichlorobenzene	62.6	1	ug/L	50.0	BLOD	125	75-125	5.74	30	M
1,3-Dichloropropane	66.8	1	ug/L	50.0	BLOD	134	75-125	2.57	30	M
1,4-Dichlorobenzene	62.4	1	ug/L	50.0	BLOD	125	75-125	3.79	30	

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGD0619 - SW503	0B-MS								
Matrix Spike Dup (BGD0619-MSD1)	Source	e: 23D0804-0)2	Prepared & Anal	yzed: 04/18/2023	i				
2,2-Dichloropropane	61.1	1	ug/L	50.0	BLOD	122	70-135	6.02	30	
2-Butanone (MEK)	76.1	10	ug/L	50.0	BLOD	147	30-150	2.56	30	
2-Chlorotoluene	60.9	1	ug/L	50.0	BLOD	122	75-125	5.54	30	
2-Hexanone (MBK)	75.5	5	ug/L	50.0	BLOD	151	55-130	10.1	30	M
4-Chlorotoluene	61.4	1	ug/L	50.0	BLOD	123	75-130	4.49	30	
4-Isopropyltoluene	60.6	1	ug/L	50.0	BLOD	121	75-130	4.72	30	
4-Methyl-2-pentanone (MIBK)	79.0	5	ug/L	50.0	BLOD	158	60-135	10.7	30	M
Acetone	84.1	10	ug/L	50.0	25.0	118	40-140	1.52	30	
Benzene	59.1	1	ug/L	50.0	BLOD	118	80-120	4.63	30	
Bromobenzene	63.6	1	ug/L	50.0	BLOD	127	75-125	6.02	30	M
Bromochloromethane	64.8	1	ug/L	50.0	BLOD	130	65-130	4.70	30	
Bromodichloromethane	66.2	0.5	ug/L	50.0	BLOD	132	75-136	3.24	30	
Bromoform	58.2	1	ug/L	50.0	BLOD	116	70-130	1.96	30	
Bromomethane	45.0	1	ug/L	50.0	BLOD	90.0	30-145	8.87	30	
Carbon disulfide	56.3	10	ug/L	50.0	BLOD	113	35-160	1.66	30	
Carbon tetrachloride	55.1	1	ug/L	50.0	BLOD	110	65-140	4.60	30	
Chlorobenzene	59.6	1	ug/L	50.0	BLOD	119	80-120	5.21	30	
Chloroethane	56.3	1	ug/L	50.0	BLOD	113	60-135	9.23	30	
Chloroform	57.9	0.5	ug/L	50.0	BLOD	116	65-135	5.41	30	
Chloromethane	66.4	1	ug/L	50.0	BLOD	133	40-125	12.2	30	M
cis-1,2-Dichloroethylene	60.9	1	ug/L	50.0	BLOD	122	70-125	6.08	30	
cis-1,3-Dichloropropene	45.0	1	ug/L	50.0	BLOD	90.1	47-136	2.65	30	
Dibromochloromethane	54.4	0.5	ug/L	50.0	BLOD	109	60-135	2.40	30	
Dibromomethane	62.9	1	ug/L	50.0	BLOD	126	75-125	2.40	30	M
Dichlorodifluoromethane	62.0	1	ug/L	50.0	BLOD	124	30-155	8.55	30	

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	3GD0619 - SW503	0B-MS								
Matrix Spike Dup (BGD0619-MSD1)	Sourc	e: 23D0804-0	2	Prepared & Anal	yzed: 04/18/2023	;				
Ethylbenzene	61.2	1	ug/L	50.0	BLOD	122	75-125	5.59	30	
Hexachlorobutadiene	58.9	0.8	ug/L	50.0	BLOD	118	50-140	2.70	30	
Isopropylbenzene	58.9	1	ug/L	50.0	BLOD	118	75-125	6.09	30	
m+p-Xylenes	115	2	ug/L	100	BLOD	115	75-130	5.71	30	
Methylene chloride	59.1	4	ug/L	50.0	BLOD	117	55-140	5.03	30	
Methyl-t-butyl ether (MTBE)	72.1	1	ug/L	50.0	BLOD	144	65-125	2.82	30	
Naphthalene	49.8	1	ug/L	50.0	BLOD	99.6	55-140	2.01	30	
n-Butylbenzene	60.1	1	ug/L	50.0	BLOD	120	70-135	6.02	30	
n-Propylbenzene	60.4	1	ug/L	50.0	BLOD	121	70-130	4.85	30	
o-Xylene	61.6	1	ug/L	50.0	BLOD	123	80-120	5.86	30	М
sec-Butylbenzene	62.6	1	ug/L	50.0	BLOD	125	70-125	4.77	30	М
Styrene	49.4	1	ug/L	50.0	BLOD	98.8	65-135	4.44	30	
tert-Butylbenzene	60.6	1	ug/L	50.0	BLOD	121	70-130	5.49	30	
Tetrachloroethylene (PCE)	52.6	1	ug/L	50.0	BLOD	105	51-231	4.53	30	
Toluene	59.6	1	ug/L	50.0	BLOD	119	75-120	3.54	30	
trans-1,2-Dichloroethylene	59.4	1	ug/L	50.0	BLOD	119	60-140	5.61	30	
trans-1,3-Dichloropropene	49.6	1	ug/L	50.0	BLOD	99.2	55-140	2.45	30	
Trichloroethylene	57.3	1	ug/L	50.0	BLOD	115	70-125	3.55	30	
Trichlorofluoromethane	59.7	1	ug/L	50.0	BLOD	119	60-145	6.39	30	
Vinyl chloride	53.3	0.5	ug/L	50.0	BLOD	107	50-145	9.09	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	59.4		ug/L	50.0		119	70-120			
Surr: 4-Bromofluorobenzene (Surr)	52.7		ug/L	50.0		105	75-120			
Surr: Dibromofluoromethane (Surr)	55.5		ug/L	50.0		111	70-130			
Surr: Toluene-d8 (Surr)	50.7		ug/L	50.0		101	70-130			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

5/2/2023 10:00:46AM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B0	SD0678 - SW503	0B-MS								
Blank (BGD0678-BLK1)				Prepared & Anal	yzed: 04/19/2023	i				
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	43.1		ug/L	50.0		86.2	70-120			
Surr: 4-Bromofluorobenzene (Surr)	47.8		ug/L	50.0		95.7	75-120			
Surr: Dibromofluoromethane (Surr)	51.7		ug/L	50.0		103	70-130			
Surr: Toluene-d8 (Surr)	48.3		ug/L	50.0		96.6	70-130			
LCS (BGD0678-BS1)				Prepared & Anal	yzed: 04/19/2023					
1,1,1,2-Tetrachloroethane	49.4	0.4	ug/L	50.0		98.8	80-130			
1,1,1-Trichloroethane	45.5	1	ug/L	50.0		91.1	65-130			
1,1,2,2-Tetrachloroethane	43.7	0.4	ug/L	50.0		87.4	65-130			
1,1,2-Trichloroethane	46.3	1	ug/L	50.0		92.7	75-125			
1,1-Dichloroethane	43.6	1	ug/L	50.0		87.2	70-135			
1,1-Dichloroethylene	38.9	1	ug/L	50.0		77.8	70-130			
1,1-Dichloropropene	41.6	1	ug/L	50.0		83.2	75-135			
1,2,3-Trichlorobenzene	52.2	1	ug/L	50.0		104	55-140			
1,2,3-Trichloropropane	42.4	1	ug/L	50.0		84.8	75-125			
1,2,4-Trichlorobenzene	54.7	1	ug/L	50.0		109	65-135			
1,2,4-Trimethylbenzene	48.4	1	ug/L	50.0		96.8	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	47.0	1	ug/L	50.0		93.9	50-130			
1,2-Dibromoethane (EDB)	44.2	1	ug/L	50.0		88.4	80-120			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batc	h BGD0678 - SW503	0B-MS								
LCS (BGD0678-BS1)			F	Prepared & Analy	yzed: 04/19/2023					
1,2-Dichlorobenzene	46.8	0.5	ug/L	50.0		93.6	70-120			
1,2-Dichloroethane	36.6	1	ug/L	50.0		73.3	70-130			
1,2-Dichloropropane	40.4	0.5	ug/L	50.0		80.8	75-125			
1,3,5-Trimethylbenzene	46.0	1	ug/L	50.0		92.0	75-125			
1,3-Dichlorobenzene	47.3	1	ug/L	50.0		94.6	75-125			
1,3-Dichloropropane	43.8	1	ug/L	50.0		87.5	75-125			
1,4-Dichlorobenzene	46.3	1	ug/L	50.0		92.7	75-125			
2,2-Dichloropropane	45.6	1	ug/L	50.0		91.2	70-135			
2-Butanone (MEK)	36.1	10	ug/L	50.0		72.2	30-150			
2-Chlorotoluene	47.1	1	ug/L	50.0		94.2	75-125			
2-Hexanone (MBK)	38.4	5	ug/L	50.0		76.8	55-130			
4-Chlorotoluene	46.8	1	ug/L	50.0		93.6	75-130			
4-Isopropyltoluene	47.1	1	ug/L	50.0		94.3	75-130			
4-Methyl-2-pentanone (MIBK)	42.7	5	ug/L	50.0		85.4	60-135			
Acetone	33.3	10	ug/L	50.0		66.7	40-140			
Benzene	41.0	1	ug/L	50.0		82.0	80-120			
Bromobenzene	51.0	1	ug/L	50.0		102	75-125			
Bromochloromethane	41.5	1	ug/L	50.0		83.0	65-130			
Bromodichloromethane	48.5	0.5	ug/L	50.0		97.1	75-120			
Bromoform	49.3	1	ug/L	50.0		98.6	70-130			
Bromomethane	41.0	1	ug/L	50.0		82.0	30-145			
Carbon disulfide	40.9	10	ug/L	50.0		81.8	35-160			
Carbon tetrachloride	45.5	1	ug/L	50.0		91.0	65-140			
Chlorobenzene	47.5	1	ug/L	50.0		95.0	80-120			
Chloroethane	39.8	1	ug/L	50.0		79.7	60-135			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bate	ch BGD0678 - SW503	0B-MS								
LCS (BGD0678-BS1)			F	Prepared & Analy	zed: 04/19/2023	i				
Chloroform	37.5	0.5	ug/L	50.0		75.0	65-135			
Chloromethane	44.1	1	ug/L	50.0		88.2	40-125			
cis-1,2-Dichloroethylene	41.4	1	ug/L	50.0		82.7	70-125			
cis-1,3-Dichloropropene	34.6	1	ug/L	50.0		69.3	70-130			L
Dibromochloromethane	49.4	0.5	ug/L	50.0		98.8	60-135			
Dibromomethane	42.2	1	ug/L	50.0		84.3	75-125			
Dichlorodifluoromethane	48.9	1	ug/L	50.0		97.8	30-155			
Ethylbenzene	48.1	1	ug/L	50.0		96.2	75-125			
Hexachlorobutadiene	53.3	0.8	ug/L	50.0		107	50-140			
Isopropylbenzene	45.8	1	ug/L	50.0		91.7	75-125			
m+p-Xylenes	95.8	2	ug/L	100		95.8	75-130			
Methylene chloride	39.3	4	ug/L	50.0		78.6	55-140			
Methyl-t-butyl ether (MTBE)	43.8	1	ug/L	50.0		87.6	65-125			
Naphthalene	55.8	1	ug/L	50.0		112	55-140			
n-Butylbenzene	48.6	1	ug/L	50.0		97.1	70-135			
n-Propylbenzene	47.0	1	ug/L	50.0		94.0	70-130			
o-Xylene	47.9	1	ug/L	50.0		95.8	80-120			
sec-Butylbenzene	49.4	1	ug/L	50.0		98.7	70-125			
Styrene	36.8	1	ug/L	50.0		73.6	65-135			
tert-Butylbenzene	47.4	1	ug/L	50.0		94.8	70-130			
Tetrachloroethylene (PCE)	52.3	1	ug/L	50.0		105	45-150			
Toluene	43.2	1	ug/L	50.0		86.4	75-120			
trans-1,2-Dichloroethylene	42.6	1	ug/L	50.0		85.3	60-140			
trans-1,3-Dichloropropene	37.5	1	ug/L	50.0		75.0	55-140			
Trichloroethylene	46.1	1	ug/L	50.0		92.3	70-125			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BG	SD0678 - SW503	BOB-MS								
LCS (BGD0678-BS1)				Prepared & Anal	yzed: 04/19/2023	1				
Trichlorofluoromethane	45.6	1	ug/L	50.0		91.1	60-145			
Vinyl chloride	47.7	0.5	ug/L	50.0		95.4	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	45.6		ug/L	50.0		91.2	70-120			
Surr: 4-Bromofluorobenzene (Surr)	50.8		ug/L	50.0		102	75-120			
Surr: Dibromofluoromethane (Surr)	49.4		ug/L	50.0		98.7	70-130			
Surr: Toluene-d8 (Surr)	49.4		ug/L	50.0		98.7	70-130			
Matrix Spike (BGD0678-MS1)	Sourc	ce: 23D0882-03	3	Prepared & Anal	yzed: 04/19/2023	;				
1,1,1,2-Tetrachloroethane	48.5	0.4	ug/L	50.0	BLOD	97.0	80-130			
1,1,1-Trichloroethane	43.9	1	ug/L	50.0	BLOD	87.7	65-130			
1,1,2,2-Tetrachloroethane	43.7	0.4	ug/L	50.0	BLOD	87.4	65-130			
1,1,2-Trichloroethane	43.8	1	ug/L	50.0	BLOD	87.7	75-125			
1,1-Dichloroethane	38.9	1	ug/L	50.0	BLOD	77.8	70-135			
1,1-Dichloroethylene	33.6	1	ug/L	50.0	BLOD	67.2	50-145			
1,1-Dichloropropene	40.8	1	ug/L	50.0	BLOD	81.6	75-135			
1,2,3-Trichlorobenzene	59.4	1	ug/L	50.0	BLOD	119	55-140			
1,2,3-Trichloropropane	44.3	1	ug/L	50.0	BLOD	88.6	75-125			
1,2,4-Trichlorobenzene	56.1	1	ug/L	50.0	BLOD	112	65-135			
1,2,4-Trimethylbenzene	47.5	1	ug/L	50.0	BLOD	95.0	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	48.9	1	ug/L	50.0	BLOD	97.9	50-130			
1,2-Dibromoethane (EDB)	46.1	1	ug/L	50.0	BLOD	92.2	80-120			
1,2-Dichlorobenzene	46.3	0.5	ug/L	50.0	BLOD	92.5	70-120			
1,2-Dichloroethane	33.5	1	ug/L	50.0	BLOD	67.0	70-130			М
1,2-Dichloropropane	38.9	0.5	ug/L	50.0	BLOD	77.8	75-125			
1,3,5-Trimethylbenzene	44.3	1	ug/L	50.0	BLOD	88.6	75-124			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BGD0678 - SW503	0B-MS								
Matrix Spike (BGD0678-MS1)	Sourc	e: 23D0882-0	13	Prepared & Anal	yzed: 04/19/2023					
1,3-Dichlorobenzene	47.1	1	ug/L	50.0	BLOD	94.2	75-125			
1,3-Dichloropropane	42.0	1	ug/L	50.0	BLOD	83.9	75-125			
1,4-Dichlorobenzene	44.6	1	ug/L	50.0	BLOD	89.3	75-125			
2,2-Dichloropropane	44.1	1	ug/L	50.0	BLOD	88.2	70-135			
2-Butanone (MEK)	35.1	10	ug/L	50.0	BLOD	70.2	30-150			
2-Chlorotoluene	46.0	1	ug/L	50.0	BLOD	92.1	75-125			
2-Hexanone (MBK)	41.0	5	ug/L	50.0	BLOD	82.1	55-130			
4-Chlorotoluene	45.8	1	ug/L	50.0	BLOD	91.5	75-130			
4-Isopropyltoluene	47.1	1	ug/L	50.0	BLOD	94.2	75-130			
4-Methyl-2-pentanone (MIBK)	41.2	5	ug/L	50.0	BLOD	82.3	60-135			
Acetone	33.0	10	ug/L	50.0	BLOD	63.9	40-140			
Benzene	43.8	1	ug/L	50.0	BLOD	87.5	80-120			
Bromobenzene	49.4	1	ug/L	50.0	BLOD	98.8	75-125			
Bromochloromethane	40.7	1	ug/L	50.0	BLOD	81.4	65-130			
Bromodichloromethane	46.1	0.5	ug/L	50.0	BLOD	92.3	75-136			
Bromoform	49.4	1	ug/L	50.0	BLOD	98.9	70-130			
Bromomethane	35.6	1	ug/L	50.0	BLOD	71.2	30-145			
Carbon disulfide	37.8	10	ug/L	50.0	BLOD	75.6	35-160			
Carbon tetrachloride	47.8	1	ug/L	50.0	BLOD	95.6	65-140			
Chlorobenzene	46.4	1	ug/L	50.0	BLOD	92.8	80-120			
Chloroethane	36.2	1	ug/L	50.0	BLOD	72.4	60-135			
Chloroform	37.6	0.5	ug/L	50.0	BLOD	75.1	65-135			
Chloromethane	37.2	1	ug/L	50.0	BLOD	74.4	40-125			
cis-1,2-Dichloroethylene	42.2	1	ug/L	50.0	BLOD	84.3	70-125			
cis-1,3-Dichloropropene	33.2	1	ug/L	50.0	BLOD	66.4	47-136			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	BGD0678 - SW503	0B-MS								
Matrix Spike (BGD0678-MS1)	Sourc	e: 23D0882-0)3	Prepared & Anal	yzed: 04/19/2023	i				
Dibromochloromethane	46.6	0.5	ug/L	50.0	BLOD	93.2	60-135			
Dibromomethane	44.5	1	ug/L	50.0	BLOD	89.0	75-125			
Dichlorodifluoromethane	48.4	1	ug/L	50.0	BLOD	96.9	30-155			
Ethylbenzene	46.8	1	ug/L	50.0	BLOD	93.7	75-125			
Hexachlorobutadiene	59.0	8.0	ug/L	50.0	BLOD	118	50-140			
Isopropylbenzene	44.0	1	ug/L	50.0	BLOD	88.0	75-125			
m+p-Xylenes	92.3	2	ug/L	100	BLOD	92.3	75-130			
Methylene chloride	37.8	4	ug/L	50.0	BLOD	75.6	55-140			
Methyl-t-butyl ether (MTBE)	39.2	1	ug/L	50.0	BLOD	78.4	65-125			
Naphthalene	64.2	1	ug/L	50.0	BLOD	128	55-140			
n-Butylbenzene	47.4	1	ug/L	50.0	BLOD	94.8	70-135			
n-Propylbenzene	45.8	1	ug/L	50.0	BLOD	91.5	70-130			
o-Xylene	47.3	1	ug/L	50.0	BLOD	94.6	80-120			
sec-Butylbenzene	47.7	1	ug/L	50.0	BLOD	95.3	70-125			
Styrene	35.2	1	ug/L	50.0	BLOD	70.3	65-135			
tert-Butylbenzene	46.5	1	ug/L	50.0	BLOD	93.1	70-130			
Tetrachloroethylene (PCE)	51.6	1	ug/L	50.0	BLOD	103	51-231			
Toluene	40.8	1	ug/L	50.0	BLOD	81.5	75-120			
trans-1,2-Dichloroethylene	42.4	1	ug/L	50.0	BLOD	84.9	60-140			
trans-1,3-Dichloropropene	36.1	1	ug/L	50.0	BLOD	72.2	55-140			
Trichloroethylene	46.0	1	ug/L	50.0	BLOD	92.0	70-125			
Trichlorofluoromethane	45.8	1	ug/L	50.0	BLOD	91.5	60-145			
Vinyl chloride	40.4	0.5	ug/L	50.0	BLOD	80.8	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	41.8		ug/L	50.0		83.7	70-120			
Surr: 4-Bromofluorobenzene (Surr)	50.6		ug/L	50.0		101	75-120			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BC	SD0678 - SW503	0B-MS								
Matrix Spike (BGD0678-MS1)	Sourc	e: 23D0882-03	3	Prepared & Anal	yzed: 04/19/2023					
Surr: Dibromofluoromethane (Surr)	48.3		ug/L	50.0		96.7	70-130			
Surr: Toluene-d8 (Surr)	48.0		ug/L	50.0		95.9	70-130			
Matrix Spike Dup (BGD0678-MSD1)	Sourc	e: 23D0882-03	3	Prepared & Anal	yzed: 04/19/2023					
1,1,1,2-Tetrachloroethane	46.4	0.4	ug/L	50.0	BLOD	92.8	80-130	4.51	30	
1,1,1-Trichloroethane	43.1	1	ug/L	50.0	BLOD	86.3	65-130	1.68	30	
1,1,2,2-Tetrachloroethane	41.0	0.4	ug/L	50.0	BLOD	82.0	65-130	6.38	30	
1,1,2-Trichloroethane	43.2	1	ug/L	50.0	BLOD	86.4	75-125	1.47	30	
1,1-Dichloroethane	37.6	1	ug/L	50.0	BLOD	75.1	70-135	3.56	30	
1,1-Dichloroethylene	33.9	1	ug/L	50.0	BLOD	67.9	50-145	0.948	30	
1,1-Dichloropropene	39.9	1	ug/L	50.0	BLOD	79.8	75-135	2.31	30	
1,2,3-Trichlorobenzene	57.0	1	ug/L	50.0	BLOD	114	55-140	4.14	30	
1,2,3-Trichloropropane	42.0	1	ug/L	50.0	BLOD	84.0	75-125	5.26	30	
1,2,4-Trichlorobenzene	54.8	1	ug/L	50.0	BLOD	110	65-135	2.36	30	
1,2,4-Trimethylbenzene	46.0	1	ug/L	50.0	BLOD	92.1	75-130	3.10	30	
1,2-Dibromo-3-chloropropane (DBCP)	46.4	1	ug/L	50.0	BLOD	92.9	50-130	5.22	30	
1,2-Dibromoethane (EDB)	42.9	1	ug/L	50.0	BLOD	85.9	80-120	7.14	30	
1,2-Dichlorobenzene	45.5	0.5	ug/L	50.0	BLOD	91.0	70-120	1.63	30	
1,2-Dichloroethane	32.5	1	ug/L	50.0	BLOD	65.0	70-130	3.03	30	M
1,2-Dichloropropane	38.0	0.5	ug/L	50.0	BLOD	76.1	75-125	2.31	30	
1,3,5-Trimethylbenzene	44.3	1	ug/L	50.0	BLOD	88.6	75-124	0.0226	30	
1,3-Dichlorobenzene	45.1	1	ug/L	50.0	BLOD	90.2	75-125	4.32	30	
1,3-Dichloropropane	41.7	1	ug/L	50.0	BLOD	83.4	75-125	0.669	30	
1,4-Dichlorobenzene	44.2	1	ug/L	50.0	BLOD	88.3	75-125	1.08	30	
2,2-Dichloropropane	41.6	1	ug/L	50.0	BLOD	83.2	70-135	5.81	30	

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 5/2/2023 10:00:46AM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGD0678 - SW503	0B-MS								
Matrix Spike Dup (BGD0678-MSD1)	Sourc	e: 23D0882-0	13	Prepared & Anal	yzed: 04/19/2023	i				
2-Butanone (MEK)	34.2	10	ug/L	50.0	BLOD	68.5	30-150	2.51	30	
2-Chlorotoluene	44.8	1	ug/L	50.0	BLOD	89.5	75-125	2.82	30	
2-Hexanone (MBK)	38.2	5	ug/L	50.0	BLOD	76.4	55-130	7.22	30	
4-Chlorotoluene	44.9	1	ug/L	50.0	BLOD	89.8	75-130	1.83	30	
4-Isopropyltoluene	45.8	1	ug/L	50.0	BLOD	91.7	75-130	2.71	30	
4-Methyl-2-pentanone (MIBK)	40.0	5	ug/L	50.0	BLOD	80.1	60-135	2.76	30	
Acetone	31.6	10	ug/L	50.0	BLOD	61.2	40-140	4.27	30	
Benzene	42.4	1	ug/L	50.0	BLOD	84.8	80-120	3.09	30	
Bromobenzene	47.3	1	ug/L	50.0	BLOD	94.6	75-125	4.30	30	
Bromochloromethane	38.3	1	ug/L	50.0	BLOD	76.6	65-130	6.02	30	
Bromodichloromethane	44.6	0.5	ug/L	50.0	BLOD	89.2	75-136	3.35	30	
Bromoform	46.6	1	ug/L	50.0	BLOD	93.3	70-130	5.83	30	
Bromomethane	33.8	1	ug/L	50.0	BLOD	67.5	30-145	5.31	30	
Carbon disulfide	36.7	10	ug/L	50.0	BLOD	73.3	35-160	3.06	30	
Carbon tetrachloride	46.1	1	ug/L	50.0	BLOD	92.2	65-140	3.60	30	
Chlorobenzene	44.3	1	ug/L	50.0	BLOD	88.6	80-120	4.72	30	
Chloroethane	34.7	1	ug/L	50.0	BLOD	69.3	60-135	4.32	30	
Chloroform	36.4	0.5	ug/L	50.0	BLOD	72.9	65-135	2.97	30	
Chloromethane	37.2	1	ug/L	50.0	BLOD	74.4	40-125	0.108	30	
cis-1,2-Dichloroethylene	41.5	1	ug/L	50.0	BLOD	83.0	70-125	1.53	30	
cis-1,3-Dichloropropene	31.7	1	ug/L	50.0	BLOD	63.4	47-136	4.56	30	
Dibromochloromethane	44.9	0.5	ug/L	50.0	BLOD	89.9	60-135	3.63	30	
Dibromomethane	41.6	1	ug/L	50.0	BLOD	83.2	75-125	6.76	30	
Dichlorodifluoromethane	46.3	1	ug/L	50.0	BLOD	92.6	30-155	4.56	30	
Ethylbenzene	45.5	1	ug/L	50.0	BLOD	91.0	75-125	2.92	30	

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	BGD0678 - SW503	0B-MS								
Matrix Spike Dup (BGD0678-MSD1)	Source	e: 23D0882-0	3	Prepared & Anal	yzed: 04/19/2023	}				
Hexachlorobutadiene	59.9	0.8	ug/L	50.0	BLOD	120	50-140	1.45	30	
Isopropylbenzene	42.8	1	ug/L	50.0	BLOD	85.6	75-125	2.77	30	
m+p-Xylenes	89.8	2	ug/L	100	BLOD	89.8	75-130	2.82	30	
Methylene chloride	36.8	4	ug/L	50.0	BLOD	73.5	55-140	2.79	30	
Methyl-t-butyl ether (MTBE)	38.1	1	ug/L	50.0	BLOD	76.2	65-125	2.77	30	
Naphthalene	61.4	1	ug/L	50.0	BLOD	123	55-140	4.49	30	
n-Butylbenzene	46.9	1	ug/L	50.0	BLOD	93.8	70-135	1.10	30	
n-Propylbenzene	45.2	1	ug/L	50.0	BLOD	90.3	70-130	1.32	30	
o-Xylene	44.9	1	ug/L	50.0	BLOD	89.9	80-120	5.07	30	
sec-Butylbenzene	46.2	1	ug/L	50.0	BLOD	92.4	70-125	3.07	30	
Styrene	33.8	1	ug/L	50.0	BLOD	67.7	65-135	3.85	30	
tert-Butylbenzene	45.7	1	ug/L	50.0	BLOD	91.4	70-130	1.84	30	
Tetrachloroethylene (PCE)	50.2	1	ug/L	50.0	BLOD	100	51-231	2.81	30	
Toluene	40.0	1	ug/L	50.0	BLOD	80.1	75-120	1.76	30	
trans-1,2-Dichloroethylene	41.0	1	ug/L	50.0	BLOD	81.9	60-140	3.52	30	
trans-1,3-Dichloropropene	35.0	1	ug/L	50.0	BLOD	69.9	55-140	3.21	30	
Trichloroethylene	44.5	1	ug/L	50.0	BLOD	89.1	70-125	3.25	30	
Trichlorofluoromethane	44.4	1	ug/L	50.0	BLOD	88.7	60-145	3.11	30	
Vinyl chloride	40.2	0.5	ug/L	50.0	BLOD	80.3	50-145	0.621	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	41.9		ug/L	50.0		83.9	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.8		ug/L	50.0		99.7	75-120			
Surr: Dibromofluoromethane (Surr)	48.2		ug/L	50.0		96.3	70-130			
Surr: Toluene-d8 (Surr)	48.7		ug/L	50.0		97.3	70-130			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	3GD0564 - SW351	I0C/EPA600	-MS							
Blank (BGD0564-BLK1)			F	Prepared & Anal	yzed: 04/17/2023					
Anthracene	ND	10.0	ug/L							
Surr: 2,4,6-Tribromophenol (Surr)	105		ug/L	100		105	5-136			
Surr: 2-Fluorobiphenyl (Surr)	33.2		ug/L	50.0		66.3	9-117			
Surr: 2-Fluorophenol (Surr)	48.8		ug/L	100		48.8	5-60			
Surr: Nitrobenzene-d5 (Surr)	48.1		ug/L	50.0		96.3	5-151			
Surr: Phenol-d5 (Surr)	34.7		ug/L	100		34.7	5-60			
Surr: p-Terphenyl-d14 (Surr)	47.6		ug/L	50.0		95.3	5-141			
LCS (BGD0564-BS1)			F	Prepared & Anal	yzed: 04/17/2023					
1,2,4-Trichlorobenzene	32.5	10.0	ug/L	50.0		65.1	57-130			
1,2-Dichlorobenzene	29.8	10.0	ug/L	50.0		59.6	22-115			
1,3-Dichlorobenzene	27.2	10.0	ug/L	50.0		54.5	22-112			
1,4-Dichlorobenzene	31.6	10.0	ug/L	50.0		63.2	13-112			
2,4,6-Trichlorophenol	31.9	10.0	ug/L	50.0		63.7	52-129			
2,4-Dichlorophenol	34.5	10.0	ug/L	50.0		69.0	53-122			
2,4-Dimethylphenol	36.7	5.00	ug/L	50.0		73.4	42-120			
2,4-Dinitrophenol	21.4	50.0	ug/L	50.0		42.7	48-127			L
2,4-Dinitrotoluene	38.1	10.0	ug/L	50.0		76.3	10-173			
2,6-Dinitrotoluene	39.3	10.0	ug/L	50.0		78.5	68-137			
2-Chloronaphthalene	31.0	10.0	ug/L	50.0		62.0	65-120			L
2-Chlorophenol	34.4	10.0	ug/L	50.0		68.9	36-120			
2-Nitrophenol	42.7	10.0	ug/L	50.0		85.5	45-167			
3,3'-Dichlorobenzidine	20.7	10.0	ug/L	50.0		41.4	10-213			
4,6-Dinitro-2-methylphenol	38.2	50.0	ug/L	50.0		76.4	53-130			
4-Bromophenyl phenyl ether	38.0	10.0	ug/L	50.0		76.1	65-120			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 5/2

5/2/2023 10:00:46AM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BGD0564 - SW351	0C/EPA600	-MS							
LCS (BGD0564-BS1)			F	Prepared & Anal	yzed: 04/17/2023					
4-Chlorophenyl phenyl ether	34.0	10.0	ug/L	50.0		68.1	38-145			
4-Nitrophenol	12.8	50.0	ug/L	50.0		25.6	13-129			
Acenaphthene	32.7	10.0	ug/L	50.0		65.3	60-132			
Acenaphthylene	32.6	10.0	ug/L	50.0		65.2	54-126			
Acetophenone	33.1	20.0	ug/L	50.0		66.2	0-200			
Anthracene	31.7	10.0	ug/L	50.0		63.4	43-120			
Benzo (a) anthracene	31.5	10.0	ug/L	50.0		62.9	42-133			
Benzo (a) pyrene	37.0	10.0	ug/L	50.0		74.1	32-148			
Benzo (b) fluoranthene	38.5	10.0	ug/L	50.0		77.1	42-140			
Benzo (g,h,i) perylene	28.3	10.0	ug/L	50.0		56.5	10-195			
Benzo (k) fluoranthene	34.6	10.0	ug/L	50.0		69.3	25-146			
bis (2-Chloroethoxy) methane	34.7	10.0	ug/L	50.0		69.3	49-165			
bis (2-Chloroethyl) ether	31.9	10.0	ug/L	50.0		63.7	43-126			
2,2'-Oxybis (1-chloropropane)	33.7	10.0	ug/L	50.0		67.4	63-139			
bis (2-Ethylhexyl) phthalate	39.5	10.0	ug/L	50.0		78.9	29-137			
Butyl benzyl phthalate	41.8	10.0	ug/L	50.0		83.6	10-140			
Chrysene	30.9	10.0	ug/L	50.0		61.8	44-140			
Dibenz (a,h) anthracene	36.8	10.0	ug/L	50.0		73.5	10-200			
Diethyl phthalate	38.4	10.0	ug/L	50.0		76.7	10-120			
Dimethyl phthalate	36.2	10.0	ug/L	50.0		72.4	10-120			
Di-n-butyl phthalate	40.8	10.0	ug/L	50.0		81.7	10-120			
Di-n-octyl phthalate	40.6	10.0	ug/L	50.0		81.2	19-132			
Fluoranthene	37.4	10.0	ug/L	50.0		74.8	43-121			
Fluorene	36.0	10.0	ug/L	50.0		72.0	70-120			
Hexachlorobenzene	47.0	1.00	ug/L	50.0		94.0	10-142			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
•	BGD0564 - SW351	0C/EPA600	-MS							
.CS (BGD0564-BS1)				Prepared & Anal	yzed: 04/17/2023					
Hexachlorobutadiene	38.6	10.0	ug/L	50.0		77.1	38-120			
Hexachlorocyclopentadiene	16.9	10.0	ug/L	50.0		33.8	10-76			
Hexachloroethane	35.3	10.0	ug/L	50.0		70.5	55-120			
Indeno (1,2,3-cd) pyrene	36.3	10.0	ug/L	50.0		72.7	10-151			
Isophorone	21.9	10.0	ug/L	50.0		43.8	47-180			L
Naphthalene	33.1	5.00	ug/L	50.0		66.2	36-120			
Nitrobenzene	40.1	10.0	ug/L	50.0		80.2	54-158			
n-Nitrosodimethylamine	24.2	10.0	ug/L	50.0		48.5	10-85			
n-Nitrosodi-n-propylamine	31.6	10.0	ug/L	50.0		63.2	14-198			
n-Nitrosodiphenylamine	28.3	10.0	ug/L	50.0		56.6	12-97			
p-Chloro-m-cresol	39.8	10.0	ug/L	50.0		79.7	10-142			
Pentachlorophenol	19.6	20.0	ug/L	50.0		39.2	38-152			
Phenanthrene	36.7	10.0	ug/L	50.0		73.4	65-120			
Phenol	17.3	10.0	ug/L	50.5		34.2	17-120			
Pyrene	33.9	10.0	ug/L	50.0		67.8	70-120			L
Pyridine	24.3	10.0	ug/L	50.0		48.6	10-103			
Surr: 2,4,6-Tribromophenol (Surr)	112		ug/L	100		112	5-136			
Surr: 2-Fluorobiphenyl (Surr)	31.5		ug/L	50.0		63.0	9-117			
Surr: 2-Fluorophenol (Surr)	43.8		ug/L	100		43.8	5-60			
Surr: Nitrobenzene-d5 (Surr)	43.7		ug/L	50.0		87.3	5-151			
Surr: Phenol-d5 (Surr)	33.1		ug/L	100		33.1	5-60			
Surr: p-Terphenyl-d14 (Surr)	36.7		ug/L	50.0		73.3	5-141			
latrix Spike (BGD0564-MS1)	Source	e: 23D0755-0	15	Prepared & Anal	yzed: 04/17/2023					
1,2,4-Trichlorobenzene	31.8	10.0	ug/L	50.0	BLOD	63.7	44-142			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batc	h BGD0564 - SW351	0C/EPA600	-MS							
Matrix Spike (BGD0564-MS1)	Sourc	e: 23D0755-0)5	Prepared & Anal	yzed: 04/17/2023	i				
1,2-Dichlorobenzene	32.1	10.0	ug/L	50.0	BLOD	64.2	22-115			
1,3-Dichlorobenzene	28.0	10.0	ug/L	50.0	BLOD	56.0	22-112			
1,4-Dichlorobenzene	32.8	10.0	ug/L	50.0	BLOD	65.5	13-112			
2,4,6-Trichlorophenol	30.3	10.0	ug/L	50.0	BLOD	60.6	37-144			
2,4-Dichlorophenol	32.4	10.0	ug/L	50.0	BLOD	64.7	39-135			
2,4-Dimethylphenol	33.3	5.00	ug/L	50.0	BLOD	66.6	32-120			
2,4-Dinitrophenol	27.6	50.0	ug/L	50.0	BLOD	55.1	39-139			
2,4-Dinitrotoluene	44.1	10.0	ug/L	50.0	BLOD	88.2	10-191			
2,6-Dinitrotoluene	41.2	10.0	ug/L	50.0	BLOD	82.4	50-158			
2-Chloronaphthalene	30.2	10.0	ug/L	50.0	BLOD	60.5	60-120			
2-Chlorophenol	36.2	10.0	ug/L	50.0	BLOD	72.5	23-134			
2-Nitrophenol	40.5	10.0	ug/L	50.0	BLOD	81.0	29-182			
3,3'-Dichlorobenzidine	27.4	10.0	ug/L	50.0	BLOD	54.9	10-262			
4,6-Dinitro-2-methylphenol	46.0	50.0	ug/L	50.0	BLOD	92.0	10-181			
4-Bromophenyl phenyl ether	40.2	10.0	ug/L	50.0	BLOD	80.4	53-127			
4-Chlorophenyl phenyl ether	34.5	10.0	ug/L	50.0	BLOD	69.0	25-158			
4-Nitrophenol	13.0	50.0	ug/L	50.0	BLOD	26.0	10-132			
Acenaphthene	33.7	10.0	ug/L	50.0	BLOD	67.4	47-145			
Acenaphthylene	34.5	10.0	ug/L	50.0	BLOD	69.1	33-145			
Acetophenone	33.3	20.0	ug/L	50.0	BLOD	66.6	0-200			
Anthracene	38.0	10.0	ug/L	50.0	BLOD	75.9	27-133			
Benzo (a) anthracene	39.1	10.0	ug/L	50.0	BLOD	78.2	33-143			
Benzo (a) pyrene	45.9	10.0	ug/L	50.0	BLOD	91.7	17-163			
Benzo (b) fluoranthene	43.4	10.0	ug/L	50.0	BLOD	86.8	24-159			
Benzo (g,h,i) perylene	34.0	10.0	ug/L	50.0	BLOD	68.1	10-219			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BGD0564 - SW351	0C/EPA600	-MS							
Matrix Spike (BGD0564-MS1)	Sourc	e: 23D0755-0)5	Prepared & Anal	yzed: 04/17/2023	i				
Benzo (k) fluoranthene	42.3	10.0	ug/L	50.0	BLOD	84.5	11-162			
bis (2-Chloroethoxy) methane	33.3	10.0	ug/L	50.0	BLOD	66.5	33-184			
bis (2-Chloroethyl) ether	30.9	10.0	ug/L	50.0	BLOD	61.8	12-158			
2,2'-Oxybis (1-chloropropane)	34.8	10.0	ug/L	50.0	BLOD	69.7	36-166			
bis (2-Ethylhexyl) phthalate	47.2	10.0	ug/L	50.0	BLOD	94.4	10-158			
Butyl benzyl phthalate	51.5	10.0	ug/L	50.0	BLOD	103	10-152			
Chrysene	38.4	10.0	ug/L	50.0	BLOD	76.8	17-169			
Dibenz (a,h) anthracene	45.7	10.0	ug/L	50.0	BLOD	91.4	10-227			
Diethyl phthalate	41.9	10.0	ug/L	50.0	BLOD	83.9	10-120			
Dimethyl phthalate	36.8	10.0	ug/L	50.0	BLOD	73.7	10-120			
Di-n-butyl phthalate	50.3	10.0	ug/L	50.0	BLOD	101	10-120			
Di-n-octyl phthalate	45.4	10.0	ug/L	50.0	BLOD	90.8	10-146			
Fluoranthene	43.8	10.0	ug/L	50.0	BLOD	87.6	26-137			
Fluorene	37.2	10.0	ug/L	50.0	BLOD	74.3	59-121			
Hexachlorobenzene	52.8	1.00	ug/L	50.0	BLOD	106	10-152			
Hexachlorobutadiene	37.2	10.0	ug/L	50.0	BLOD	74.3	24-120			
Hexachlorocyclopentadiene	15.9	10.0	ug/L	50.0	BLOD	31.8	10-90			
Hexachloroethane	34.4	10.0	ug/L	50.0	BLOD	68.7	40-120			
Indeno (1,2,3-cd) pyrene	44.2	10.0	ug/L	50.0	BLOD	88.4	10-171			
Isophorone	20.2	10.0	ug/L	50.0	BLOD	40.5	21-196			
Naphthalene	32.0	5.00	ug/L	50.0	BLOD	64.1	21-133			
Nitrobenzene	38.1	10.0	ug/L	50.0	BLOD	76.2	35-180			
n-Nitrosodimethylamine	19.6	10.0	ug/L	50.0	BLOD	39.1	10-85			
n-Nitrosodi-n-propylamine	31.6	10.0	ug/L	50.0	BLOD	63.1	10-230			
n-Nitrosodiphenylamine	31.3	10.0	ug/L	50.0	BLOD	62.6	12-111			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BGD0564 - SW351	0C/EPA600	-MS							
Matrix Spike (BGD0564-MS1)	Sourc	e: 23D0755-0)5	Prepared & Anal	yzed: 04/17/2023					
p-Chloro-m-cresol	38.4	10.0	ug/L	50.0	BLOD	76.8	10-127			
Pentachlorophenol	25.3	20.0	ug/L	50.0	BLOD	50.6	14-176			
Phenanthrene	39.2	10.0	ug/L	50.0	BLOD	78.5	54-120			
Phenol	14.0	10.0	ug/L	50.5	BLOD	27.7	10-120			
Pyrene	40.8	10.0	ug/L	50.0	BLOD	81.7	52-120			
Pyridine	22.4	10.0	ug/L	50.0	BLOD	44.9	10-110			
Surr: 2,4,6-Tribromophenol (Surr)	126		ug/L	100		126	5-136			
Surr: 2-Fluorobiphenyl (Surr)	32.2		ug/L	50.0		64.3	9-117			
Surr: 2-Fluorophenol (Surr)	37.6		ug/L	100		37.6	5-60			
Surr: Nitrobenzene-d5 (Surr)	41.4		ug/L	50.0		82.9	5-151			
Surr: Phenol-d5 (Surr)	26.8		ug/L	100		26.8	5-60			
Surr: p-Terphenyl-d14 (Surr)	43.1		ug/L	50.0		86.3	5-141			
Matrix Spike (BGD0564-MS2)	Source	e: 23D0807-0)2	Prepared & Anal	yzed: 04/18/2023					
1,2,4-Trichlorobenzene	15.4	10.0	ug/L	46.7	BLOD	33.0	44-142			М
1,2-Dichlorobenzene	16.1	10.0	ug/L	46.7	BLOD	34.5	22-115			
1,3-Dichlorobenzene	16.2	10.0	ug/L	46.7	BLOD	34.7	22-112			
1,4-Dichlorobenzene	18.3	10.0	ug/L	46.7	BLOD	39.2	13-112			
2,4,6-Trichlorophenol	18.8	10.0	ug/L	46.7	BLOD	40.2	37-144			
2,4-Dichlorophenol	16.5	10.0	ug/L	46.7	BLOD	35.4	39-135			М
2,4-Dimethylphenol	16.3	5.00	ug/L	46.7	BLOD	35.0	32-120			
2,4-Dinitrophenol	28.1	50.0	ug/L	46.7	BLOD	60.2	39-139			
2,4-Dinitrotoluene	25.0	10.0	ug/L	46.7	BLOD	53.6	10-191			
2,6-Dinitrotoluene	19.9	10.0	ug/L	46.7	BLOD	42.5	50-158			М
2-Chloronaphthalene	16.7	10.0	ug/L	46.7	BLOD	35.6	60-120			М

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batcl	n BGD0564 - SW351	0C/EPA600	-MS							
Matrix Spike (BGD0564-MS2)	Sourc	e: 23D0807-0)2	Prepared & Anal	yzed: 04/18/2023					
2-Chlorophenol	16.5	10.0	ug/L	46.7	BLOD	35.4	23-134			
2-Nitrophenol	17.2	10.0	ug/L	46.7	BLOD	36.9	29-182			
3,3'-Dichlorobenzidine	6.51	10.0	ug/L	46.7	BLOD	13.9	10-262			
4,6-Dinitro-2-methylphenol	32.7	50.0	ug/L	46.7	BLOD	69.9	10-181			
4-Bromophenyl phenyl ether	20.3	10.0	ug/L	46.7	BLOD	43.5	53-127			M
4-Chlorophenyl phenyl ether	17.6	10.0	ug/L	46.7	BLOD	37.6	25-158			
4-Nitrophenol	16.3	50.0	ug/L	46.7	BLOD	34.9	10-132			
Acenaphthene	17.4	10.0	ug/L	46.7	BLOD	37.3	47-145			M
Acenaphthylene	17.4	10.0	ug/L	46.7	BLOD	37.2	33-145			
Acetophenone	18.2	20.0	ug/L	46.7	BLOD	39.0	0-200			
Anthracene	20.8	10.0	ug/L	46.7	BLOD	44.5	27-133			
Benzo (a) anthracene	23.9	10.0	ug/L	46.7	BLOD	51.1	33-143			
Benzo (a) pyrene	26.6	10.0	ug/L	46.7	BLOD	57.0	17-163			
Benzo (b) fluoranthene	27.9	10.0	ug/L	46.7	BLOD	59.6	24-159			
Benzo (g,h,i) perylene	13.0	10.0	ug/L	46.7	BLOD	27.8	10-219			
Benzo (k) fluoranthene	32.5	10.0	ug/L	46.7	BLOD	69.5	11-162			
bis (2-Chloroethoxy) methane	15.6	10.0	ug/L	46.7	BLOD	33.3	33-184			
bis (2-Chloroethyl) ether	16.6	10.0	ug/L	46.7	BLOD	35.6	12-158			
2,2'-Oxybis (1-chloropropane)	15.6	10.0	ug/L	46.7	BLOD	33.3	36-166			M
bis (2-Ethylhexyl) phthalate	23.0	10.0	ug/L	46.7	BLOD	49.2	10-158			
Butyl benzyl phthalate	21.4	10.0	ug/L	46.7	BLOD	45.7	10-152			
Chrysene	25.4	10.0	ug/L	46.7	BLOD	54.3	17-169			
Dibenz (a,h) anthracene	16.9	10.0	ug/L	46.7	BLOD	36.3	10-227			
Diethyl phthalate	22.7	10.0	ug/L	46.7	BLOD	48.5	10-120			
Dimethyl phthalate	ND	10.0	ug/L	46.7	BLOD		10-120			M

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGD0564 - SW351	0C/EPA600	-MS							
Matrix Spike (BGD0564-MS2)	Sourc	e: 23D0807-0	2	Prepared & Anal	yzed: 04/18/2023					
Di-n-butyl phthalate	26.1	10.0	ug/L	46.7	BLOD	55.9	10-120			
Di-n-octyl phthalate	39.3	10.0	ug/L	46.7	BLOD	84.0	10-146			
Fluoranthene	28.8	10.0	ug/L	46.7	BLOD	61.5	26-137			
Fluorene	20.2	10.0	ug/L	46.7	BLOD	43.2	59-121			M
Hexachlorobenzene	19.9	1.00	ug/L	46.7	BLOD	42.6	10-152			
Hexachlorobutadiene	16.5	10.0	ug/L	46.7	BLOD	35.3	24-120			
Hexachlorocyclopentadiene	6.11	10.0	ug/L	46.7	BLOD	13.1	10-90			
Hexachloroethane	19.6	10.0	ug/L	46.7	BLOD	42.0	40-120			
Indeno (1,2,3-cd) pyrene	18.3	10.0	ug/L	46.7	BLOD	39.1	10-171			
Isophorone	8.84	10.0	ug/L	46.7	BLOD	18.9	21-196			M
Naphthalene	17.0	5.00	ug/L	46.7	BLOD	36.4	21-133			
Nitrobenzene	22.7	10.0	ug/L	46.7	BLOD	48.6	35-180			
n-Nitrosodimethylamine	9.75	10.0	ug/L	46.7	BLOD	20.9	10-85			
n-Nitrosodi-n-propylamine	19.0	10.0	ug/L	46.7	BLOD	40.6	10-230			
n-Nitrosodiphenylamine	19.5	10.0	ug/L	46.7	BLOD	41.7	12-111			
p-Chloro-m-cresol	16.2	10.0	ug/L	46.7	BLOD	34.6	10-127			
Pentachlorophenol	23.4	20.0	ug/L	46.7	BLOD	50.1	14-176			
Phenanthrene	25.9	10.0	ug/L	46.7	BLOD	55.5	54-120			
Phenol	6.77	10.0	ug/L	47.2	BLOD	14.3	10-120			
Pyrene	25.6	10.0	ug/L	46.7	BLOD	54.8	52-120			
Pyridine	10.6	10.0	ug/L	46.7	BLOD	22.7	10-110			
Surr: 2,4,6-Tribromophenol (Surr)	51.9		ug/L	93.5		55.5	5-136			
Surr: 2-Fluorobiphenyl (Surr)	18.1		ug/L	46.7		38.8	9-117			
Surr: 2-Fluorophenol (Surr)	17.0		ug/L	93.5		18.2	5-60			
Surr: Nitrobenzene-d5 (Surr)	24.3		ug/L	46.7		51.9	5-151			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BGD0564 - SW351	IOC/EPA600-N	MS							
Matrix Spike (BGD0564-MS2)	Sourc	e: 23D0807-02	!	Prepared & Anal	yzed: 04/18/2023	}				
Surr: Phenol-d5 (Surr)	14.5		ug/L	93.5		15.6	5-60			
Surr: p-Terphenyl-d14 (Surr)	22.5		ug/L	46.7		48.2	5-141			
Matrix Spike Dup (BGD0564-MSD1)	Source	e: 23D0755-05	;	Prepared & Anal	yzed: 04/17/2023	}				
1,2,4-Trichlorobenzene	16.2	10.0	ug/L	50.0	BLOD	32.4	44-142	65.0	20	M, P
1,2-Dichlorobenzene	14.5	10.0	ug/L	50.0	BLOD	29.0	22-115	75.6	20	Р
1,3-Dichlorobenzene	14.5	10.0	ug/L	50.0	BLOD	28.9	22-112	63.7	20	Р
1,4-Dichlorobenzene	16.0	10.0	ug/L	50.0	BLOD	32.1	13-112	68.5	20	Р
2,4,6-Trichlorophenol	14.8	10.0	ug/L	50.0	BLOD	29.6	37-144	68.9	20	M, P
2,4-Dichlorophenol	16.0	10.0	ug/L	50.0	BLOD	32.0	39-135	67.6	20	M, P
2,4-Dimethylphenol	17.8	5.00	ug/L	50.0	BLOD	35.6	32-120	60.7	20	Р
2,4-Dinitrophenol	10.6	50.0	ug/L	50.0	BLOD	21.3	39-139	88.6	20	M, P
2,4-Dinitrotoluene	25.2	10.0	ug/L	50.0	BLOD	50.5	10-191	54.4	20	Р
2,6-Dinitrotoluene	23.7	10.0	ug/L	50.0	BLOD	47.4	50-158	53.9	20	M, P
2-Chloronaphthalene	16.3	10.0	ug/L	50.0	BLOD	32.6	60-120	59.8	20	M, P
2-Chlorophenol	18.3	10.0	ug/L	50.0	BLOD	36.6	23-134	65.7	20	Р
2-Nitrophenol	20.4	10.0	ug/L	50.0	BLOD	40.9	29-182	65.8	20	Р
3,3'-Dichlorobenzidine	17.8	10.0	ug/L	50.0	BLOD	35.5	10-262	42.9	20	Р
4,6-Dinitro-2-methylphenol	27.5	50.0	ug/L	50.0	BLOD	55.0	10-181	50.4	20	Р
4-Bromophenyl phenyl ether	22.6	10.0	ug/L	50.0	BLOD	45.3	53-127	55.8	20	M, P
4-Chlorophenyl phenyl ether	17.2	10.0	ug/L	50.0	BLOD	34.4	25-158	66.8	20	Р
4-Nitrophenol	5.28	50.0	ug/L	50.0	BLOD	10.6	10-132	84.6	20	Р
Acenaphthene	18.1	10.0	ug/L	50.0	BLOD	36.1	47-145	60.4	20	M, P
Acenaphthylene	18.5	10.0	ug/L	50.0	BLOD	37.1	33-145	60.3	20	Р
Acetophenone	16.2	20.0	ug/L	50.0	BLOD	32.5	0-200	68.9	20	Р

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BGD0564 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BGD0564-MSD1)	Sourc	e: 23D0755-0)5	Prepared & Anal	yzed: 04/17/2023	i				
Anthracene	23.9	10.0	ug/L	50.0	BLOD	47.7	27-133	45.6	20	Р
Benzo (a) anthracene	29.1	10.0	ug/L	50.0	BLOD	58.3	33-143	29.2	20	Р
Benzo (a) pyrene	32.9	10.0	ug/L	50.0	BLOD	65.8	17-163	32.9	20	Р
Benzo (b) fluoranthene	36.4	10.0	ug/L	50.0	BLOD	72.9	24-159	17.4	20	Р
Benzo (g,h,i) perylene	24.6	10.0	ug/L	50.0	BLOD	49.3	10-219	32.1	20	Р
Benzo (k) fluoranthene	29.7	10.0	ug/L	50.0	BLOD	59.4	11-162	34.9	20	Р
bis (2-Chloroethoxy) methane	16.4	10.0	ug/L	50.0	BLOD	32.7	33-184	68.1	20	M, P
bis (2-Chloroethyl) ether	14.5	10.0	ug/L	50.0	BLOD	29.0	12-158	72.4	20	Р
2,2'-Oxybis (1-chloropropane)	15.3	10.0	ug/L	50.0	BLOD	30.6	36-166	77.8	20	M, P
bis (2-Ethylhexyl) phthalate	41.7	10.0	ug/L	50.0	BLOD	83.5	10-158	12.3	20	
Butyl benzyl phthalate	44.3	10.0	ug/L	50.0	BLOD	88.6	10-152	15.0	20	
Chrysene	29.9	10.0	ug/L	50.0	BLOD	59.9	17-169	24.8	20	Р
Dibenz (a,h) anthracene	30.1	10.0	ug/L	50.0	BLOD	60.2	10-227	41.2	20	Р
Diethyl phthalate	27.2	10.0	ug/L	50.0	BLOD	54.3	10-120	42.7	20	Р
Dimethyl phthalate	20.6	10.0	ug/L	50.0	BLOD	41.2	10-120	56.7	20	Р
Di-n-butyl phthalate	33.8	10.0	ug/L	50.0	BLOD	67.6	10-120	39.3	20	Р
Di-n-octyl phthalate	40.6	10.0	ug/L	50.0	BLOD	81.2	10-146	11.2	20	Р
Fluoranthene	30.5	10.0	ug/L	50.0	BLOD	61.0	26-137	35.8	20	Р
Fluorene	19.8	10.0	ug/L	50.0	BLOD	39.6	59-121	61.0	20	M, P
Hexachlorobenzene	33.4	1.00	ug/L	50.0	BLOD	66.7	10-152	45.1	20	Р
Hexachlorobutadiene	17.6	10.0	ug/L	50.0	BLOD	35.2	24-120	71.4	20	Р
Hexachlorocyclopentadiene	5.29	10.0	ug/L	50.0	BLOD	10.6	10-90	100	20	Р
Hexachloroethane	15.7	10.0	ug/L	50.0	BLOD	31.5	40-120	74.4	20	M, P
Indeno (1,2,3-cd) pyrene	30.5	10.0	ug/L	50.0	BLOD	60.9	10-171	36.8	20	Р
Isophorone	9.47	10.0	ug/L	50.0	BLOD	18.9	21-196	72.5	20	M, P

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BGD0564 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BGD0564-MSD1)	Sourc	e: 23D0755-0	5	Prepared & Anal	yzed: 04/17/2023	i				
Naphthalene	17.2	5.00	ug/L	50.0	BLOD	34.4	21-133	60.3	20	Р
Nitrobenzene	18.9	10.0	ug/L	50.0	BLOD	37.8	35-180	67.5	20	Р
n-Nitrosodimethylamine	9.51	10.0	ug/L	50.0	BLOD	19.0	10-85	69.1	20	Р
n-Nitrosodi-n-propylamine	14.8	10.0	ug/L	50.0	BLOD	29.6	10-230	72.3	20	Р
n-Nitrosodiphenylamine	18.0	10.0	ug/L	50.0	BLOD	36.0	12-111	54.1	20	Р
p-Chloro-m-cresol	18.9	10.0	ug/L	50.0	BLOD	37.7	10-127	68.2	20	Р
Pentachlorophenol	12.0	20.0	ug/L	50.0	BLOD	24.1	14-176	71.0	20	Р
Phenanthrene	25.8	10.0	ug/L	50.0	BLOD	51.6	54-120	41.2	20	M, P
Phenol	6.77	10.0	ug/L	50.5	BLOD	13.4	10-120	69.7	20	Р
Pyrene	33.3	10.0	ug/L	50.0	BLOD	66.7	52-120	20.3	20	Р
Pyridine	12.8	10.0	ug/L	50.0	BLOD	25.5	10-110	55.0	20	Р
Surr: 2,4,6-Tribromophenol (Surr)	70.5		ug/L	100		70.5	5-136			
Surr: 2-Fluorobiphenyl (Surr)	15.8		ug/L	50.0		31.7	9-117			
Surr: 2-Fluorophenol (Surr)	20.0		ug/L	100		20.0	5-60			
Surr: Nitrobenzene-d5 (Surr)	20.3		ug/L	50.0		40.6	5-151			
Surr: Phenol-d5 (Surr)	13.1		ug/L	100		13.1	5-60			
Surr: p-Terphenyl-d14 (Surr)	36.5		ug/L	50.0		72.9	5-141			
Matrix Spike Dup (BGD0564-MSD2)	Sourc	e: 23D0807-0)2	Prepared & Anal	yzed: 04/18/2023					
1,2,4-Trichlorobenzene	13.3	10.0	ug/L	46.7	BLOD	28.5	44-142	14.6	20	М
1,2-Dichlorobenzene	13.2	10.0	ug/L	46.7	BLOD	28.2	22-115	20.2	20	Р
1,3-Dichlorobenzene	11.7	10.0	ug/L	46.7	BLOD	25.0	22-112	32.4	20	Р
1,4-Dichlorobenzene	13.7	10.0	ug/L	46.7	BLOD	29.4	13-112	28.7	20	Р
2,4,6-Trichlorophenol	16.5	10.0	ug/L	46.7	BLOD	35.4	37-144	12.7	20	М
2,4-Dichlorophenol	14.0	10.0	ug/L	46.7	BLOD	29.9	39-135	16.7	20	М

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGD0564 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BGD0564-MSD2)	Source	e: 23D0807-0	02	Prepared & Anal	yzed: 04/18/2023					
2,4-Dimethylphenol	13.8	5.00	ug/L	46.7	BLOD	29.5	32-120	17.1	20	М
2,4-Dinitrophenol	22.5	50.0	ug/L	46.7	BLOD	48.1	39-139	22.2	20	Р
2,4-Dinitrotoluene	23.8	10.0	ug/L	46.7	BLOD	50.9	10-191	5.13	20	
2,6-Dinitrotoluene	20.0	10.0	ug/L	46.7	BLOD	42.7	50-158	0.563	20	M
2-Chloronaphthalene	14.7	10.0	ug/L	46.7	BLOD	31.4	60-120	12.7	20	M
2-Chlorophenol	12.9	10.0	ug/L	46.7	BLOD	27.5	23-134	24.9	20	Р
2-Nitrophenol	14.8	10.0	ug/L	46.7	BLOD	31.6	29-182	15.4	20	
3,3'-Dichlorobenzidine	7.13	10.0	ug/L	46.7	BLOD	15.3	10-262	9.04	20	
4,6-Dinitro-2-methylphenol	29.7	50.0	ug/L	46.7	BLOD	63.6	10-181	9.56	20	
4-Bromophenyl phenyl ether	17.7	10.0	ug/L	46.7	BLOD	37.8	53-127	13.9	20	M
4-Chlorophenyl phenyl ether	16.5	10.0	ug/L	46.7	BLOD	35.2	25-158	6.43	20	
4-Nitrophenol	14.2	50.0	ug/L	46.7	BLOD	30.4	10-132	13.7	20	
Acenaphthene	15.1	10.0	ug/L	46.7	BLOD	32.4	47-145	14.1	20	M
Acenaphthylene	16.0	10.0	ug/L	46.7	BLOD	34.3	33-145	8.00	20	
Acetophenone	14.7	20.0	ug/L	46.7	BLOD	31.4	0-200	21.5	20	Р
Anthracene	19.3	10.0	ug/L	46.7	BLOD	41.3	27-133	7.60	20	
Benzidine	ND	50.0	ug/L	46.7	BLOD		12-309		20	M
Benzo (a) anthracene	21.7	10.0	ug/L	46.7	BLOD	46.4	33-143	9.60	20	
Benzo (a) pyrene	23.1	10.0	ug/L	46.7	BLOD	49.4	17-163	14.4	20	
Benzo (b) fluoranthene	23.9	10.0	ug/L	46.7	BLOD	51.1	24-159	15.3	20	
Benzo (g,h,i) perylene	11.9	10.0	ug/L	46.7	BLOD	25.5	10-219	8.56	20	
Benzo (k) fluoranthene	24.7	10.0	ug/L	46.7	BLOD	52.9	11-162	27.1	20	Р
bis (2-Chloroethoxy) methane	12.9	10.0	ug/L	46.7	BLOD	27.6	33-184	18.9	20	M
bis (2-Chloroethyl) ether	13.2	10.0	ug/L	46.7	BLOD	28.3	12-158	23.0	20	Р
2,2'-Oxybis (1-chloropropane)	11.6	10.0	ug/L	46.7	BLOD	24.7	36-166	29.5	20	M, P

Certificate of Analysis

Client Name: SCS Engineers-Winchester

ers-Winchester Date Issued: 5/2/2023 10:00:46AM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BGD0564 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BGD0564-MSD2)	Sourc	e: 23D0807-0	2	Prepared & Anal	yzed: 04/18/2023					
bis (2-Ethylhexyl) phthalate	19.0	10.0	ug/L	46.7	BLOD	40.6	10-158	19.2	20	
Butyl benzyl phthalate	19.4	10.0	ug/L	46.7	BLOD	41.5	10-152	9.72	20	
Chrysene	23.3	10.0	ug/L	46.7	BLOD	49.8	17-169	8.72	20	
Dibenz (a,h) anthracene	15.9	10.0	ug/L	46.7	BLOD	33.9	10-227	6.61	20	
Diethyl phthalate	21.8	10.0	ug/L	46.7	BLOD	46.7	10-120	3.87	20	
Dimethyl phthalate	20.2	10.0	ug/L	46.7	BLOD	43.3	10-120		20	
Di-n-butyl phthalate	23.0	10.0	ug/L	46.7	BLOD	49.2	10-120	12.8	20	
Di-n-octyl phthalate	28.5	10.0	ug/L	46.7	BLOD	60.9	10-146	31.8	20	Р
Fluoranthene	25.1	10.0	ug/L	46.7	BLOD	53.7	26-137	13.6	20	
Fluorene	18.6	10.0	ug/L	46.7	BLOD	39.8	59-121	8.29	20	M
Hexachlorobenzene	19.3	1.00	ug/L	46.7	BLOD	41.3	10-152	3.10	20	
Hexachlorobutadiene	13.2	10.0	ug/L	46.7	BLOD	28.2	24-120	22.6	20	Р
Hexachlorocyclopentadiene	5.28	10.0	ug/L	46.7	BLOD	11.3	10-90	14.6	20	
Hexachloroethane	15.1	10.0	ug/L	46.7	BLOD	32.4	40-120	25.9	20	M, P
Indeno (1,2,3-cd) pyrene	15.9	10.0	ug/L	46.7	BLOD	34.1	10-171	13.8	20	
Isophorone	7.52	10.0	ug/L	46.7	BLOD	16.1	21-196	16.1	20	M
Naphthalene	14.6	5.00	ug/L	46.7	BLOD	31.3	21-133	15.3	20	
Nitrobenzene	18.9	10.0	ug/L	46.7	BLOD	40.4	35-180	18.5	20	
n-Nitrosodimethylamine	9.77	10.0	ug/L	46.7	BLOD	20.9	10-85	0.192	20	
n-Nitrosodi-n-propylamine	15.7	10.0	ug/L	46.7	BLOD	33.6	10-230	18.8	20	
n-Nitrosodiphenylamine	18.1	10.0	ug/L	46.7	BLOD	38.7	12-111	7.61	20	
p-Chloro-m-cresol	14.9	10.0	ug/L	46.7	BLOD	31.9	10-127	8.18	20	
Pentachlorophenol	22.1	20.0	ug/L	46.7	BLOD	47.2	14-176	5.88	20	
Phenanthrene	23.9	10.0	ug/L	46.7	BLOD	51.1	54-120	8.26	20	M
Phenol	5.16	10.0	ug/L	47.2	BLOD	10.9	10-120	27.0	20	Р

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued: 5/2/2

5/2/2023 10:00:46AM

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BGD0564 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BGD0564-MSD2)	Source	e: 23D0807-0	2	Prepared & Analy	yzed: 04/18/2023					
Pyrene	25.0	10.0	ug/L	46.7	BLOD	53.4	52-120	2.59	20	
Pyridine	15.2	10.0	ug/L	46.7	BLOD	32.5	10-110	35.3	20	Р
Surr: 2,4,6-Tribromophenol (Surr)	45.8		ug/L	93.5		49.0	5-136			
Surr: 2-Fluorobiphenyl (Surr)	15.5		ug/L	46.7		33.2	9-117			
Surr: 2-Fluorophenol (Surr)	14.6		ug/L	93.5		15.7	5-60			
Surr: Nitrobenzene-d5 (Surr)	20.4		ug/L	46.7		43.7	5-151			
Surr: Phenol-d5 (Surr)	11.3		ug/L	93.5		12.1	5-60			
Surr: p-Terphenyl-d14 (Surr)	18.5		ug/L	46.7		39.5	5-141			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bat	ch BGD0495 - No Prep	p Wet Chem	l							
Blank (BGD0495-BLK1)				Prepared & Analy	zed: 04/14/2023					
BOD	ND	2.0	mg/L							
LCS (BGD0495-BS1)				Prepared & Analy	zed: 04/14/2023					
BOD	199	2	mg/L	198		101	84.6-115.4			
Duplicate (BGD0495-DUP1)	Source	e: 23D0787-01	1	Prepared & Analy	/zed: 04/14/2023					
BOD	3.9	2.0	mg/L		4.1			4.96	20	
Bat	tch BGD0533 - No Prej	p Wet Chem								
Blank (BGD0533-BLK1)				Prepared & Analy	/zed: 04/14/2023					
Nitrite as N	ND	0.05	mg/L							
LCS (BGD0533-BS1)				Prepared & Analy	/zed: 04/14/2023					
Nitrite as N	0.10	0.05	mg/L	0.100		102	80-120			
Matrix Spike (BGD0533-MS1)	Source	e: 23D0744-01	1	Prepared & Analy	/zed: 04/14/2023					
Nitrite as N	0.10	0.05	mg/L	0.100	BLOD	97.0	80-120			
Matrix Spike Dup (BGD0533-MSD1)	Source	e: 23D0744-01	1	Prepared & Analy	/zed: 04/14/2023					
Nitrite as N	0.10	0.05	mg/L	0.100	BLOD	96.0	80-120	1.04	20	
Bat	tch BGD0581 - No Prej	p Wet Chem	l							
Blank (BGD0581-BLK1)				Prepared & Analy	yzed: 04/17/2023					
Total Recoverable Phenolics	ND	0.050	mg/L							

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

5/2/2023 10:00:46AM

Wet Chemistry Analysis - Quality Control

				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch Br	GD0581 - No Pre	n Wat Cham	,							
	3D0301 - NO FIE	p wet Chen								
LCS (BGD0581-BS1)				Prepared & Anal	yzed: 04/17/2023					
Total Recoverable Phenolics	0.48	0.050	mg/L	0.500		96.8	80-120			
Matrix Spike (BGD0581-MS1)	Source	e: 23D0664-0	5	Prepared & Anal	yzed: 04/17/2023					
Total Recoverable Phenolics	0.51	0.050	mg/L	0.500	BLOD	101	70-130			
Matrix Spike Dup (BGD0581-MSD1)	Source	e: 23D0664-0	5	Prepared & Anal	yzed: 04/17/2023					
Total Recoverable Phenolics	0.50	0.050	mg/L	0.500	BLOD	99.6	70-130	1.59	20	
Batch Bo	GD0590 - No Pre	p Wet Chem	1							
Blank (BGD0590-BLK1)				Prepared & Anal	yzed: 04/17/2023					
TKN as N	ND	0.50	mg/L							
LCS (BGD0590-BS1)				Prepared & Anal	yzed: 04/17/2023					
TKN as N	10.3	0.50	mg/L	10.0		103	90-110			
Matrix Spike (BGD0590-MS1)	Source	e: 23D0643-0	1	Prepared & Anal	yzed: 04/17/2023					
TKN as N	11.3	0.50	mg/L	10.0	1.19	101	90-110			
Matrix Spike Dup (BGD0590-MSD1)	Source	e: 23D0643-0	1	Prepared & Anal	yzed: 04/17/2023					
TKN as N	11.7	0.50	mg/L	10.0	1.19	105	90-110	3.48	20	
Batch Bo	GD0667 - No Pre	p Wet Chem	1							
Blank (BGD0667-BLK1)				Prepared & Anal	yzed: 04/19/2023					
COD	ND	10.0	mg/L							

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	3GD0667 - No Pre	p Wet Chem	1							
LCS (BGD0667-BS1)				Prepared & Analy	/zed: 04/19/2023					
COD	48.6	10.0	mg/L	50.0		97.3	88-119			
Matrix Spike (BGD0667-MS1)	Sourc	e: 23D0744-0	1	Prepared & Analy	zed: 04/19/2023					
COD	57.8	10.0	mg/L	50.0	BLOD	116	72.4-130			
Matrix Spike Dup (BGD0667-MSD1)	Sourc	e: 23D0744-0	1	Prepared & Analy	/zed: 04/19/2023					
COD	49.6	10.0	mg/L	50.0	BLOD	99.1	72.4-130	15.4	20	
Batch E	3GD0732 - No Pre	p Wet Chem	1							
LCS (BGD0732-BS1)				Prepared & Analy	/zed: 04/20/2023					
Nitrate+Nitrite as N	2.56	0.1	mg/L	2.50		103	90-110			
Matrix Spike (BGD0732-MS1)	Sourc	e: 23D0819-0	1	Prepared & Analy	/zed: 04/20/2023					
Nitrate+Nitrite as N	2.95	0.10	mg/L	2.50	BLOD	118	90-110			М
Matrix Spike Dup (BGD0732-MSD1)	Sourc	e: 23D0819-0	1	Prepared & Analy	/zed: 04/20/2023					
Nitrate+Nitrite as N	2.96	0.10	mg/L	2.50	BLOD	118	90-110	0.542	20	M
Batch E	3GD0898 - No Pre	p Wet Chem	1							
Blank (BGD0898-BLK1)				Prepared & Analy	/zed: 04/25/2023					
Ammonia as N	ND	0.10	mg/L							
LCS (BGD0898-BS1)				Prepared & Analy	/zed: 04/25/2023					
Ammonia as N	0.99	0.1	mg/L	1.00		99.1	90-110			

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Wet Chemistry Analysis - Quality Control

Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGD0898 - No Pre	p Wet Chem								
Matrix Spike (BGD0898-MS1)	Sourc									
Ammonia as N	1.12	0.10	mg/L	1.00	0.17	95.8	89.3-131			
Matrix Spike (BGD0898-MS2)	Sourc	e: 23D1099-01		Prepared & Anal	yzed: 04/25/2023					
Ammonia as N	1.00	0.10	mg/L	1.00	BLOD	100	89.3-131			
Matrix Spike Dup (BGD0898-MSD1)	Spike Dup (BGD0898-MSD1) Source: 23D1096-04 Prepared & Analyzed: 04/25/2023									
Ammonia as N	as N 1.14 0.10 mg/L 1.00 0.17		97.7	89.3-131	1.68	20				
atrix Spike Dup (BGD0898-MSD2) Source: 23D1099-01 Prepared & Analyzed: 04/25/2		yzed: 04/25/2023								
Ammonia as N	0.98	0.10	mg/L	1.00	BLOD	97.8	89.3-131	2.52	20	

Date Issued:

5/2/2023 10:00:46AM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Analytical Summary

23D0768-01 Subcontract 23D0768-02 Subcontract

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA 6	6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
23D0768-01	50.0 mL / 50.0 mL	SW6020B	BGD1007	SGD1081	AD30323
23D0768-01RE1	50.0 mL / 50.0 mL	SW6020B	BGD1007	SGD1081	AD30323
23D0768-02	50.0 mL / 50.0 mL	SW6020B	BGD1007	SGD1081	AD30323
23D0768-02RE1	50.0 mL / 50.0 mL	SW6020B	BGD1007	SGD1081	AD30323

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analysis	3		Preparation Method:	No Prep Wet Chem	
23D0768-01	300 mL / 300 mL	SM22 5210B-2011	BGD0495	SGD0690	
23D0768-02	300 mL / 300 mL	SM22 5210B-2011	BGD0495	SGD0690	
23D0768-01	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGD0533	SGD0559	AJ20138
23D0768-02	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGD0533	SGD0559	AJ20138
23D0768-01	0.500 mL / 10.0 mL	SW9065	BGD0581	SGD0586	AL20103
23D0768-02	0.500 mL / 10.0 mL	SW9065	BGD0581	SGD0586	AL20103
23D0768-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGD0590	SGD0622	AD30255
23D0768-02	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGD0590	SGD0622	AD30255
23D0768-01	2.00 mL / 2.00 mL	SM22 5220D-2011	BGD0667	SGD0706	AD30264
23D0768-02	2.00 mL / 2.00 mL	SM22 5220D-2011	BGD0667	SGD0706	AD30264
23D0768-01	1.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BGD0732	SGD0756	AD30272
23D0768-01RE1	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BGD0732	SGD0756	AD30272
23D0768-02	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BGD0732	SGD0756	AD30272
23D0768-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGD0898	SGD0913	AD30310
23D0768-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGD0898	SGD0913	AD30310

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600	D-MS
23D0768-01	1070 mL / 2.00 mL	SW8270E	BGD0564	SGD0664	AL20040
23D0768-02	1030 mL / 2.00 mL	SW8270E	BGD0564	SGD0664	AL20040
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
23D0768-01	5.00 mL / 5.00 mL	SW8260D	BGD0619	SGD0657	AD30180
23D0768-02	5.00 mL / 5.00 mL	SW8260D	BGD0619	SGD0657	AD30180
23D0768-03	5.00 mL / 5.00 mL	SW8260D	BGD0619	SGD0657	AD30180
23D0768-01RE1	5.00 mL / 5.00 mL	SW8260D	BGD0678	SGD0710	AB30066
23D0768-02RE1	5.00 mL / 5.00 mL	SW8260D	BGD0678	SGD0710	AB30066
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	SW7470A	
23D0768-01	10.0 mL / 20.0 mL	SW7470A	BGD0656	SGD0701	AD30263
23D0768-02	20.0 mL / 20.0 mL	SW7470A	BGD0656	SGD0701	AD30263

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

QC Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	EPA200.8 R5.4	
BGD1007-BLK1	50.0 mL / 50.0 mL	SW6020B	BGD1007	SGD1081	AD30323
BGD1007-BS1	50.0 mL / 50.0 mL	SW6020B	BGD1007	SGD1081	AD30323
BGD1007-MS1	50.0 mL / 50.0 mL	SW6020B	BGD1007	SGD1081	AD30323
BGD1007-MSD1	50.0 mL / 50.0 mL	SW6020B	BGD1007	SGD1081	AD30323
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	rsis		Preparation Method:	No Prep Wet Chem	
BGD0495-BLK1	300 mL / 300 mL	SM22 5210B-2011	BGD0495	SGD0690	
BGD0495-BS1	300 mL / 300 mL	SM22 5210B-2011	BGD0495	SGD0690	
BGD0495-DUP1	300 mL / 300 mL	SM22 5210B-2011	BGD0495	SGD0690	
BGD0533-BLK1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGD0533	SGD0559	AJ20138
BGD0533-BS1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGD0533	SGD0559	AJ20138
BGD0533-MRL1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGD0533	SGD0559	AJ20138
BGD0533-MS1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGD0533	SGD0559	AJ20138
BGD0533-MSD1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGD0533	SGD0559	AJ20138
BGD0581-BLK1	5.00 mL / 10.0 mL	SW9065	BGD0581	SGD0586	AL20103
BGD0581-BS1	5.00 mL / 10.0 mL	SW9065	BGD0581	SGD0586	AL20103
BGD0581-MRL1	5.00 mL / 10.0 mL	SW9065	BGD0581	SGD0586	AL20103
BGD0581-MS1	5.00 mL / 10.0 mL	SW9065	BGD0581	SGD0586	AL20103
BGD0581-MSD1	5.00 mL / 10.0 mL	SW9065	BGD0581	SGD0586	AL20103
BGD0590-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGD0590	SGD0622	AD30255
BGD0590-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGD0590	SGD0622	AD30255
BGD0590-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGD0590	SGD0622	AD30255

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analys	sis		Preparation Method:	No Prep Wet Chem	
BGD0590-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGD0590	SGD0622	AD30255
BGD0667-BLK1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGD0667	SGD0706	AD30264
BGD0667-BS1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGD0667	SGD0706	AD30264
BGD0667-MRL1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGD0667	SGD0706	AD30264
BGD0667-MS1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGD0667	SGD0706	AD30264
BGD0667-MSD1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGD0667	SGD0706	AD30264
BGD0732-BLK1		SM22 4500-NO3F-2011	BGD0732	SGD0756	AD30272
BGD0732-BS1	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BGD0732	SGD0756	AD30272
BGD0732-MRL1		SM22 4500-NO3F-2011	BGD0732	SGD0756	AD30272
BGD0732-MS1	50.0 mL / 50.0 mL	SM22 4500-NO3F-2011	BGD0732	SGD0756	AD30272
BGD0732-MSD1	50.0 mL / 50.0 mL	SM22 4500-NO3F-2011	BGD0732	SGD0756	AD30272
BGD0898-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGD0898	SGD0913	AD30310
BGD0898-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGD0898	SGD0913	AD30310
BGD0898-MRL1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGD0898	SGD0913	AD30310
BGD0898-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGD0898	SGD0913	AD30310
BGD0898-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGD0898	SGD0913	AD30310
BGD0898-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGD0898	SGD0913	AD30310
BGD0898-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGD0898	SGD0913	AD30310
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-M	S
BGD0564-BLK1	1000 mL / 1.00 mL	SW8270E	BGD0564	SGD0664	AL20040
BGD0564-BLK2		SW8270E	BGD0564	SGD0703	AB30072
BGD0564-BS1	1000 mL / 1.00 mL	SW8270E	BGD0564	SGD0664	AL20040
BGD0564-BS2		SW8270E	BGD0564	SGD0703	AB30072
BGD0564-MS1	1000 mL / 1.00 mL	SW8270E	BGD0564	SGD0664	AL20040
BGD0564-MS2	1070 mL / 1.00 mL	SW8270E	BGD0564	SGD0683	AB30070
BGD0564-MSD1	1000 mL / 1.00 mL	SW8270E	BGD0564	SGD0664	AL20040

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600	-MS
BGD0564-MSD2	1070 mL / 1.00 mL	SW8270E	BGD0564	SGD0683	AB30070
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	SW5030B-MS	
BGD0619-BLK1	5.00 mL / 5.00 mL	SW8260D	BGD0619	SGD0657	AD30180
BGD0619-BS1	5.00 mL / 5.00 mL	SW8260D	BGD0619	SGD0657	AD30180
BGD0619-MS1	5.00 mL / 5.00 mL	SW8260D	BGD0619	SGD0657	AD30180
BGD0619-MSD1	5.00 mL / 5.00 mL	SW8260D	BGD0619	SGD0657	AD30180
BGD0678-BLK1	5.00 mL / 5.00 mL	SW8260D	BGD0678	SGD0710	AB30066
BGD0678-BS1	5.00 mL / 5.00 mL	SW8260D	BGD0678	SGD0710	AB30066
BGD0678-MS1	5.00 mL / 5.00 mL	SW8260D	BGD0678	SGD0710	AB30066
BGD0678-MSD1	5.00 mL / 5.00 mL	SW8260D	BGD0678	SGD0710	AB30066
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	6000/7000 Series Methods		Preparation Method:	SW7470A	
BGD0656-BLK1	20.0 mL / 20.0 mL	SW7470A	BGD0656	SGD0701	AD30263
BGD0656-BS1	20.0 mL / 20.0 mL	SW7470A	BGD0656	SGD0701	AD30263
BGD0656-MS1	20.0 mL / 20.0 mL	SW7470A	BGD0656	SGD0701	AD30263
BGD0656-MSD1	20.0 mL / 20.0 mL	SW7470A	BGD0656	SGD0701	AD30263

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Certified Analyses included in this Report

Analyte	Certifications
EPA350.1 R2.0 in Non-Potable Water	
Ammonia as N	VELAP,NCDEQ,PADEP,WVDEP
EPA351.2 R2.0 in Non-Potable Water	
TKN as N	VELAP,NCDEQ,WVDEP
SM22 4500-NO2B-2011 in Non-Potable Water	
Nitrite as N	VELAP,WVDEP,NCDEQ
SM22 4500-NO3F-2011 in Non-Potable Water	
Nitrate+Nitrite as N	VELAP,WVDEP
SM22 5210B-2011 in Non-Potable Water	
BOD	VELAP,NCDEQ,WVDEP
SM22 5220D-2011 in Non-Potable Water	
COD	VELAP,NCDEQ,PADEP,WVDEP
SW6020B in Non-Potable Water	
Arsenic	VELAP,WVDEP
Barium	VELAP,WVDEP
Cadmium	VELAP,WVDEP
Chromium	VELAP,WVDEP
Copper	VELAP,WVDEP
Lead	VELAP,WVDEP
Nickel	VELAP,WVDEP
Selenium	VELAP,WVDEP
Silver	VELAP,WVDEP
Zinc	VELAP,WVDEP
SW7470A in Non-Potable Water	
Mercury	VELAP,NCDEQ,WVDEP
•	,,

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Certified Analyses included in this Report

Analyte	Certifications
SW8260D in Non-Potable Water	
2-Butanone (MEK)	VELAP,NCDEQ,PADEP,WVDEP
Acetone	VELAP,NCDEQ,PADEP,WVDEP
Benzene	VELAP,NCDEQ,PADEP,WVDEP
Ethylbenzene	VELAP,NCDEQ,PADEP,WVDEP
Toluene	VELAP,NCDEQ,PADEP,WVDEP
Xylenes, Total	VELAP,NCDEQ,PADEP,WVDEP
Tetrahydrofuran	VELAP,PADEP
SW8270E in Non-Potable Water	
Anthracene	VELAP,PADEP,NCDEQ,WVDEP
SW9065 in Non-Potable Water	
Total Recoverable Phenolics	VELAP,WVDEP

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/14/2023
VELAP	NELAP-Virginia Certificate #12333	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Qualifiers and Definitions

DS Surrogate concentration reflects a dilution factor.

E Estimated concentration, outside calibration range

J The reported result is an estimated value.

LCS recovery is outside of established acceptance limits

M Matrix spike recovery is outside established acceptance limits

P Duplicate analysis does not meet the acceptance criteria for precision

RPD Relative Percent Difference

Qual Qualifers

-RE Denotes sample was re-analyzed

LOD Limit of Detection

BLOD Below Limit of Detection

LOQ Limit of Quantitation

DF Dilution Factor

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral

library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are

estimated and are calculated using an internal standard response factor of 1.

PCBs, Total Total PCBs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

CHAIN OF CUSTODY

PAGE 1 OF 1

CONTACT: Jennifer Robb INVOICE CONTACT: SITE NAME City of Bristol Landfill	chafe												
ADDRESS: 11260 Roger Bacon Drive, INVOICE ADDRESS: PROJECT NUMBER: 02218208.15 Task 1	PROJECT NUMBER: 02218208.15 Task 1												
Ste. 300, Reston VA 20190 INVOICE PHONE #: P.O. #:													
PHONE #: 703-471-6150 EMAIL: <u>irobb@scsengineers.com</u> Pretreatment Program:													
Is sample for compliance reporting? YES NO Regulatory State: V A Is sample from a chlorinated supply? YES NO PWS I.D. #:													
SAMPLER NAME (PRINT): for hony Meanical Ty Swift SAMPLER SIGNATURE: Turn Around Time: 10 [Day(s)												
Matrix Codes: WW=Waste Water/Storm Water GW=Ground Water DW=Drinking Water S=Soil/Solids OR=Organic A=Air WP=Wipe OT=Other	MMENTS												
ANALYSIS / (PRESERVATIVE) Preservative C=Hydrochlori	Codes: N=Nitric Acid												
W G S G G G G G G G G G G G G G G G G G	ydroxide A=Ascorbic												
	: Acetate T=Sodium ate M=Methanol												
te te te te te te te te													
Ssolved mpositiners 350.1 for line 33. Cd, Zn) 60 200 200 200 28.0 colors 200 600 200 200 200 200 200 200 200 200													
Start T Start	OC 8260												
or Compose served Start Time or Compose or Compose or Compose or Compose or Compose or Compose or Start Date or Compose or Compose or Start Date or Compose or Compose or Start Date or Compose or Compose or Compose or Compose or Compose or Start Date or Compose or Compose or Compose or Compose or Start Date or Compose or Compose or Compose or Compose or Start Date or Compose or Compose													
solite Start Date SM22 5220D-2011 SM22 450-N03F-2011 SM2 450-N03F-2011 SM22 450-N03F-2011	li .												
	PRESERVATIVE(S), CE CHECKS or PUMP												
	TE (L/min)												
1) Ew-58 2) Ew-60 4/323 820 GW 6 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	IV.												
3) Trip Blank X 030123 1165 GW Z 4)	-												
5) GW													
6) GW													
7) GW													
8) GW													
9) GW													
10) DI DI TON	26												
RECEIVED: DATE / TIME RECEIVED: DATE / TIME QC Data Package LAB USE ONLY Therm+D: Cooler TEMP Custody Seals used and intact? (YYN) Received on	Sez (Y DN)												
DELINOURCED. DATE / TIME DECEMBED.	00. (1) (1)												
100 SCS-W 23D0768													
RELINQUISHED: DATE / TIME RECEIVED: DATE / TIME Level IV 2023 City of Bristol Landfill Leach:													
Recd: 04/14/2023 Due: 04/28/2023	age 60 of 63												

v130325002 Page 60 of

Sample Processation Log

		A	N.	A L	Y	TI	C	A															ali	UI	IL	.U	9															
Order II	2	3	00	57	64	2_								Date	Perf	orme	ed: _	41	//	41	23)		_				Ana	ılyst f	Perfo	ming (Check:	K	20	J			_				
0			Meta	ls	С	yanio	de		Sulfi		mmo			TKN	ı		77		N	O3+N			DRO)	(80) PC	B DW	3/508) only	(52	SVO 5/8270	/625)	CrV	1 * **	s	Pest/P (508 VOC() /					Co		Ĭ,
Sample ID	Container ID	Red	H as ceived Other	Inal	Rec	l as eived Other	la		H as ceived Other	inal	H as ceived Other	la l		H as ceived Other	inal	Rece	l as eived Other	la	Rec	H as eived Other	Final pH	Red	H as ceived Other	Final pH		eived s. Cl	final + or -	Rec Re:	eived s. Cl	final + or -	Received	Final pH	Re	H as ceived Other	Final pH	P Re くよ	H as celve		_	pH a Receiv	as ved Other	nal
10	A		7	۷2																																						
01	13	2.11										13/25/45	S Hue		Second			*											9.50						100 1000		-	75	ಎ			
Oi	Ē													7	۲2																									,	1	
бl	M										7	2																														
01	N																			7	42													A								
91	0																																							*	7	<2
02	A		7	<2																																						
02	B													7	ح ک																											
02	F																																				-	7 <	्			
05	M,																																L								7	42
02	N										7	دع																														
09	0																			7	۲2																					
NaOH H ₂ SO ₄											C				-4		* pH i	must l	be ac		d betw	veen	9.3 - 9.						Ana	alyst l	nitials:											
H2SO ₄								 3								- 1													5N	NaOł	1 :											
110010																_ !		·									- 5												74			

Metals were received with pH =7 HNO3 was added on 17 April 2023 at 1003 by RCJ/DLJ in the Log-In room to bring pH=

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: 2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

5/2/2023 10:00:46AM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

2023 City of Bristol Landfill Leachate

Submitted To: Jennifer Robb

Client Site I.D.:

Laboratory Order ID: 23D0768

Sample Conditions Checklist

Samples Received at:	3.60°C
How were samples received?	Logistics Courier
Were Custody Seals used? If so, were they received intact?	Yes
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	Yes
Are all volatile organic and TOX containers free of headspace?	Yes
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	Yes
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	No

Work Order Comments

All received samples required pH adjustment upon receiving. All samples have been adjusted to the required <2
Jennifer Robb notified via email
JNH 4/17/23 1311

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conce	ntration					LOD	LOQ
	November-2022					1560		1400	1380			50	50
	December-2022	1700	2280	2110		1410	1310			1150	1780	100	100
	1	1520			1500				1330			50	50
Ammonia as N (mg/L)	January-2023					2440						100	100
	February-2023										1490	100	100
	March-2023				667	1480						73.1	100
	April-2023				1410		1220					73.1	100
	November-2022					15700		5860	5140			0.2	2
	December-2022	6440	12500	11400		9240	3330			8360	6770	0.2	2
Biological Oxygen Demand	January-2023	9920			999	28100			7060			0.2	2
(mg/L)	February-2023										7230	0.2	2
	March-2023				1570	9190						0.2	2
	April-2023				8430		2860					0.2	2
	November-2022							9790	10800			1000	1000
	NOVEITIDEI-2022					23500						2000	2000
		7440										1000	1000
	December-2022					13200	8000			20300	14100	2000	2000
	December-2022			22400								5000	5000
			86800									10000	10000
Chemical Oxygen Demand					3630							500	500
(mg/L)	January-2023	14900							8430			2000	2000
						47600						5000	5000
	February-2023										9210	1000	1000
	March-2023				1690							500	500
	/viui ci i-2025					10600						2000	2000
	April-2023						7370					1000	1000
	Αριτι-2020				16800							2000	2000

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conce	entration					LOD	LOQ
Nitrate+Nitrite as N (mg/L)	November-2022					2.91		0.16	0.33			0.1	0.1
										ND		0.2	0.2
	D = = = = = 0000						ND					0.2	0.6
	December-2022	ND	ND	ND		ND						1.1	5.1
											ND	1.5	5.5
					ND							0.35	1.35
Nitrate as N (mg/L)	Lavarran (2002								ND			1.1	1.1
	January-2023	3.9										2.1	2.1
						ND						2.2	2.2
	February-2023										ND	0.35	1.35
	March-2023				ND	ND						1.04	5.1
	April-2023				ND		ND					0.6	2.6
	December-2022						0.12 J					0.1	0.5
	December-2022	ND	ND	ND		ND				ND	ND	1	5
					ND							0.25	1.25
Nitrite as N (mg/L)	January-2023								ND			1	1
Triffic ds 14 (Hig/L)		ND				ND						2	2
	February-2023										0.48 J	0.25	1.25
	March-2023				ND	ND						1	5
	April-2023				ND		ND					0.5	2.5
	November-2022							1290	1470			20	50
	NOVCITIBOI-2022					2110						50	125
	December-2022	1510	3570	1790		1830	1490			1340	1940	200	500
Total Kjeldahl Nitrogen	January-2023	1840			881				1410			20	50
(mg/L)	,					2970						40	100
	February-2023										1870	16.8	50
	March-2023				879	1920						33.6	100
	April-2023				1820		1510					16.8	50

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conce	ntration					LOD	LOQ
	November-2022							5.68	3			0.3	0.5
	November-2022					28.8						0.75	1.25
	December-2022						8.94					0.3	0.5
	December-2022	24.9	54.6	28.3		32				20.2	36	1.5	2.5
Total Recoverable Phenolics	January-2023	27.2			1.3				20.2			0.75	1.25
(mg/L)	January-2023					56.5						1.5	2.5
	February-2023										22.4	1.5	2.5
	March-2023				0.4							0.03	0.05
	March-2025					13.9						0.3	0.5
	April-2023				18.7		5.1					0.3	0.5
SEMI-VOLATILE ORGANIC COM	APOUND (ug/L)												
	November-2022							ND	ND			46.7	93.5
	1404CITIDCI-2022					ND						93.5	187
						ND	ND				ND	9.35	9.35
	December-2022			ND						ND		11.7	11.7
	DCCCITIBCI-2022		ND									23.4	23.4
		ND										485	971
					ND							243	485
Anthracene	January-2023								ND			253	505
	January-2025	ND										490	980
						ND						500	1000
	February-2023										ND	187	374
	March-2023					ND						51	102
	7VIGICI 1-2025				ND							117	234
	April-2023				ND							37.4	74.8
	7 (PHI 2020						ND					38.8	77.7
TOTAL METAL (mg/L)													
	November-2022					0.863		0.464	1.3			0.02	0.04
	December-2022	1.02	0.406	0.174		1.69	0.49			0.159	0.574	0.02	0.04
	January-2023	0.285			0.596	0.225			0.846			0.01	0.02
Arsenic	February-2023										0.29	0.005	0.01
	March-2023				1.07	1						0.01	0.02
	April-2023						0.11					0.0005	0.001
	, .p 2020				0.36							0.005	0.01

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conce	entration					LOD	LOQ
TOTAL METALS (mg/L)													
	November-2022					0.871		0.485	0.36			0.01	0.02
	December-2022	0.566	0.803	0.978		0.438	0.214			0.856	0.793	0.01	0.02
Barium	January-2023	0.643			0.683	1.92			0.554			0.005	0.01
Banom	February-2023										1.04	0.01	0.05
	March-2023				0.406	0.683						0.005	0.01
	April-2023				1.21		0.326					0.01	0.05
	November-2022					ND		ND	ND			0.004	0.008
	December-2022	ND	0.0104	ND		ND	ND			ND	ND	0.004	0.008
Cadmium	January-2023	ND			ND	ND			ND			0.002	0.004
Caariiorri	February-2023										0.000297 J	0.0001	0.001
	March-2023				ND	ND						0.002	0.004
	April-2023				0.000158 J		0.000333 J					0.0001	0.001
	November-2022					0.208		0.112	0.354			0.016	0.02
	December-2022	0.503	1.08	1.76		0.274	0.319			0.499	0.822	0.016	0.02
	January-2023	0.31			0.488	0.178			0.155			0.008	0.01
Chromium	February-2023										0.277	0.004	0.01
	March-2023				0.213	0.188						0.008	0.01
	April-2023						0.142					0.0004	0.001
	Αριτί-2025				0.306							0.004	0.01
	November-2022					ND		ND	ND			0.016	0.02
	December-2022	ND	ND	ND		ND	ND			ND	ND	0.016	0.02
Copper	January-2023	ND			0.0127	0.0256			ND			0.008	0.01
Сорры	February-2023										0.00365	0.0003	0.001
	March-2023				ND	ND						0.008	0.01
	April-2023				0.00664		0.00767					0.0003	0.001
	November-2022					ND		ND	0.017 J			0.012	0.02
	December-2022	ND	0.0381	ND		ND	ND			ND	ND	0.012	0.02
Lead	January-2023	ND			ND	ND			ND			0.006	0.01
	February-2023										0.006	0.001	0.001
	March-2023				ND	ND						0.006	0.01
	April-2023				0.0022		0.0067					0.001	0.001

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conce	entration					LOD	LOQ
TOTAL METALS (mg/L)													
	November-2022							0.00169	0.00053			0.0004	0.0004
	November-2022					ND						0.0008	0.0008
		0.00051										0.0004	0.0004
	December-2022			0.00118		ND	0.00588			0.0048	ND	0.0008	0.0008
			ND									0.004	0.004
Mercury	January-2023	ND			ND				ND			0.0004	0.0004
Microbia	January-2023					ND						0.004	0.004
	February-2023										ND	0.0004	0.0004
	March-2023				ND							0.0002	0.0002
	March-2023					ND						0.0004	0.0004
	April-2023						0.00128					0.0002	0.0002
	Αριτί-2023				ND							0.0004	0.0004
	November-2022					0.0866		0.1344	0.173			0.014	0.02
	December-2022	0.1722	0.5025	0.2989		0.1299	0.287			0.1853	0.346	0.014	0.02
Nickel	January-2023	0.1074			0.1442	0.0407			0.0769			0.007	0.01
INICROI	February-2023										0.1726	0.001	0.001
	March-2023				0.1254	0.1033						0.007	0.01
	April-2023				0.1143		0.1732					0.001	0.001
	November-2022					ND		ND	ND			0.08	0.1
	December-2022	ND	ND	ND		ND	ND			ND	ND	0.08	0.1
Selenium	January-2023	ND			ND	ND			ND			0.04	0.05
SCICINOTTI	February-2023										0.00199	0.00085	0.001
	March-2023				ND	ND						0.04	0.05
	April-2023				0.00189		0.00185					0.00085	0.001
	November-2022					ND		ND	ND			0.01	0.02
	December-2022	ND	0.0187 J	ND		ND	ND			ND	ND	0.01	0.02
Silver	January-2023	ND			ND	ND			ND			0.005	0.01
SII V CI	February-2023										ND	0.00006	0.001
	March-2023				ND	ND						0.005	0.01
	April-2023				ND		0.00011 J					0.00006	0.001

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conce	ntration					LOD	LOQ
TOTAL METAL (mg/L)													
	November-2022					ND		0.032	0.694			0.02	0.02
	December-2022	0.208	29.7	0.162		0.0686	0.75			0.364	0.286	0.02	0.02
	January-2023	0.133			0.15	0.074			0.0752			0.01	0.01
Zinc	February-2023										0.0851	0.0025	0.005
	March-2023				0.0689	0.0538						0.01	0.01
	April-2023				0.0539							0.0025	0.005
	Αριι-2025						0.414					0.025	0.05
VOLATILE FATTY ACIDS mg/L				T									
	November-2022							1600				25	100
						3500			150 J			62	250
Acetic Acid	December-2022	1800										62	250
/ Colle / Cla	January-2023	ND			ND	4400			ND				500
	February-2023										ND		500
	March-2023				ND	640							500
	November-2022							430				12	100
	NOVCITIBOT-2022					830			ND			29	250
Butyric Acid	December-2022	ND										29	250
Boryric Acid	January-2023	ND			ND	1800			ND				500
	February-2023										ND		500
	March-2023				ND	ND							500
	November-2022							ND				11	100
Lactic Acid	14076111061-2022					ND			ND			27	250
	December-2022	90 J										27	250
	November-2022							620				11	100
	November-2022					1600			73 J			27	250
Dramiania Asid	December-2022	640										27	250
Propionic Acid	January-2023	ND			ND	2000			ND				500
	February-2023										ND		500
	March-2023				ND	ND							500
	N 0000							46 J				12	100
Pyruvic Acid	November-2022					98 J			ND			30	250
	December-2022	ND										30	250

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conce	ntration					LOD	LOQ
VOLATILE ORGANIC COMPOU	NDS (ug/L)												
	Navarala au 0000					3510			1140			30	100
	November-2022							15600				300	1000
	D 0000	3140					3390					30	100
	December-2022		26800	27700		5670				21700	7150	300	1000
2-Butanone (MEK)	1	3480			632							30	100
	January-2023					7840			5470			300	1000
	February-2023										14400	600	2000
	March-2023				257	2770						30	100
	April-2023				3420		5530					750	2500
	November 2022								4420			70	100
	November-2022					16100		38300				700	1000
						15600	5170				9800	700	1000
	December-2022	8500										1750	2500
			53100	49900						45600		3500	5000
A = a + a = a					1530							70	100
Acetone	January-2023					22200			14000			700	1000
		8130										1750	2500
	February-2023										23900	1400	2000
					375							70	100
	March-2023					6810						700	1000
	April-2023				8290		7560					1750	2500
	November-2022					7.4 J		2860	50.4			4	10
	December 2000	301	2960			6.3 J	622			1750	179	4	10
	December-2022			6550								40	100
Benzene	January-2023	240			28.7	1620			167			4	10
	February-2023										1370	4	10
	March-2023				1540	727						4	10
	April-2023				3740		320					4	10
	December-2022	67.3	172	287		ND	48.5			108	27.4	4	10
	November-2022					ND		194	16.2			4	10
Ethylbenzene	January-2023	65.1			ND	93.9			20.8			4	10
LITYIDETIZETIE	February-2023										151	4	10
	March-2023				131	71.5						4	10
	April-2023				186		43.4					4	10

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conce	entration					LOD	LOG
VOLATILE ORGANIC COMPOU	NDS (ug/L)												
	November-2022					309			176			100	100
	11076111061-2022							8530				1000	1000
	December-2022	151				170	1120				663	100	100
Tetrahydrofuran	December-2022		5210	19800						6130		1000	1000
Terrarryarororarr	January-2023	183			566	1810			352			100	100
	February-2023										3760	2000	2000
	March-2023				353	464						100	100
	April-2023				2410		4790					100	100
	November-2022					ND		214	32.8			5	10
	December-2022	122	175	195		ND	113			113	48.3	5	10
Toluene	January-2023	122			8 J	139			35.3			5	10
Tologne	February-2023										224	5	10
	March-2023				182	98.1						5	10
	April-2023				303		94.4					5	10
	November-2022					ND		185	37.8			10	30
	December-2022	161	222	186		ND	112			197	59.9	10	30
Xylenes, Total	January-2023	138			ND	134			38.1			10	30
Ayiorios, fordi	February-2023										240	10	30
	March-2023				240	111						10	30
	April-2023				329		97.4					10	30

^{--- =} not applicable/available

LOD = laboratory's Limit of Detection

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

LOQ = laboratory's Limit of Quantitation

J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.

Appendix G

Notice to VDEQ on Perimeter LFG Wells Installation

Environmental Consultants & Contractors

SCS ENGINEERS

May 1, 2023 File No. 02218208.14

Mr. Jonathan Chapman Enforcement Specialist VA DEQ – Southwest Regional Office 355-A Deadmore Street Abingdon, Virginia

Subject: Design & Installation of Perimeter Gas Collection System Near Sidewalls

Integrated Solid Waste Management Facility - Solid Waste Permit #588

Bristol, Virginia

Dear Mr. Chapman:

SCS Engineers (SCS) submits this letter on behalf of the City of Bristol, Virginia (City) to notify the Virginia Department of Environmental (VDEQ or Department) that an expansion of the landfill gas (LFG) collection system constituting the "perimeter gas collection system near sidewalls with the intent of drawing gas away from sidewalls to reduce sidewall emissions" has been installed within the Permit #588 Landfill at the subject Facility. This letter notifies VDEQ of the Facility's conformance with the requirements of Item 2.i in Appendix A of the Consent Decree, dated 3/28/23.

SCS submitted documentation pertaining to design of the LFG collection system expansion within the Quarry Landfill to VDEQ on 12/31/22. Modifications to the dimensions and materials of the proposed vertical LFG extraction wells were also submitted to VDEQ. The LFG system expansion design incorporates LFG extraction components around the perimeter within the Quarry Landfill in close proximity to the quarry sidewalls, the intent of which is to collect LFG from the portions of the waste mass adjacent to the sidewall and thereby reduce fugitive LFG emissions at the sidewall liner system interface with the quarry rock sidewalls.

The milestone dates associated with accomplishing the installation and commissioning of the LFG extraction components around the perimeter within the Quarry Landfill are as follows:

- On 3/28/23, an on-site Pre-Construction Meeting between the City, SCS Engineers, SCS Field Services, and Recovery Drilling was convened.
- On 3/29/23, the Contractor commenced drilling and construction of Well EW-70, the first of the 18 proposed vertical LFG extraction wells designated as comprising the "perimeter gas collection system".
- On 4/15/23, the Contractor completed drilling and construction of Well EW-80, the last of the 18 proposed vertical LFG extraction wells designated as comprising the "perimeter gas collection system".
- On 4/18/23, the initial four of the 18 "perimeter" wells were equipped with a wellhead, connected to lateral piping that connected the well to the existing LFG system, and "activated" to apply vacuum which enabled LFG recovery from the well.

 On 4/27/23, the last of the 18 "perimeter" wells were equipped with a wellhead, connected to lateral piping that connected the well to the existing LFG system, and "activated" to apply vacuum which enabled LFG recovery from the well.

Accordingly, the design and installation of a "perimeter gas collection system near sidewalls" has been achieved in advance of the date stipulated in Item 2.i of the Consent Decree of May 1, 2023. The well drilling and construction logs, as-built drawing, and other record documentation associated with these components of the LFG collection system expansion will be submitted to VDEQ upon completion of the Stage 1 LFG Collection System Expansion construction project.

The wellhead valves are being adjusted by O&M personnel to balance and tune the wellfield in accordance with standard operating procedures. The well monitoring data will be submitted to VDEQ as part of the routine recordkeeping and reporting provisions of the Facility's air quality and solid waste permits.

If you have questions, please contact either of the undersigned at the letterhead address.

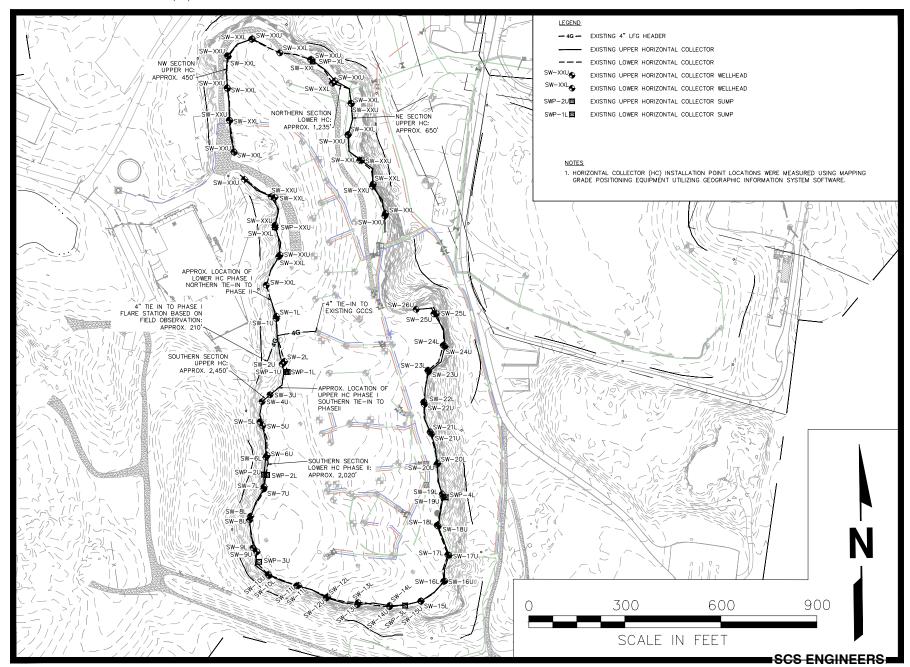
Sincerely,

D. Brandon King **Project Manager**

D. Drandon King

SCS Engineers

Robert E. Dick, PE, BCEE


Project Director SCS Engineers

DBK/RED

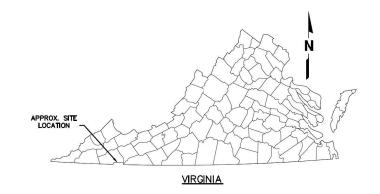
Randall Eads, City of Bristol cc: Mike Martin, City of Bristol Joey Lamie, City of Bristol Jake Chandler, City of Bristol Jon Haves, City of Bristol Jeff Hurst, VDEQ Susan Blalock, VDEQ

Stacy Bowers, VDEO Daniel Scott, VDEO

Appendix H Sidewall Odor Mitigation System Progress Drawings

SIDEWALL ODOR MITIGATION SYSTEM APPROXIMATE AS-BUILT LOCATIONS

Appendix I


Solid Waste Permit No. 588 Stormwater Management Plan

BRISTOL, VIRGINIA INTEGRATED SOLID WASTE MANAGEMENT FACILITY **SOLID WASTE PERMIT #588**

INTERIM EVOH COVER SYSTEM STORMWATER MANAGEMENT PLAN

BRISTOL, VIRGINIA

STODMWATED MANAGEMENT DI AN SHEETS

SIORI	IWATER MANAGEMENT PLAN SHEETS
Sheet Number	Sheet Title
1	COVER SHEET
2	GENERAL NOTES AND LEGEND
3	EXISTING CONDITIONS
4	ANTICIPATED CONDITIONS
5	PRE-EVOH COVER SYSTEM EXISTING STORMWATER CONDITIONS
6	PROPOSED MEMBRANE DEPLOYMENT PLAN
7	POST-EVOH STORMWATER MANAGEMENT PLAN
8	PROPOSED STORMWATER BASINS
9	STORMWATER PROFILES 1
10	STORMWATER PROFILES 2
11	DETAILS 1
12	DETAILS 2
13	DETAILS 3
14	DETAILS 4 PUMPING SYSTEM SCHEMATIC
15	STORMWATER CALCULATIONS 1
16	STORMWATER CALCULATIONS 2
17	STORMWATER CALCULATIONS 3
18	STORMWATER CALCULATIONS 4
19	STORMWATER CALCULATIONS 5
20	STORMWATER CALCULATIONS 6
21	STORMWATER CALCULATIONS 7

PREPARED FOR:

CITY OF BRISTOL, VIRGINIA **300 LEE STREET BRISTOL, VIRGINIA 24201**

INTEGRATED SOLID WASTE MANAGEMENT **FACILITY** 2655 VALLEY DRIVE **BRISTOL, VIRGINIA 24201**

SCS ENGINEERS

APRIL 28, 2023

DRAWINGS

HEET TITLE	NO.
COVER SHEET	◁
ROJECT TITLE	◁
	◁
SWP#588 INTERIM EVOH COVER SYSTEM	\triangleleft
The state of the s	<

ψ	_	Ж	_	,,
SLIENT	SITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY	2655 VALLEY DRIVE	BRISTOI VA 24201

3	O		
ERS	CHMIDT , INC.	7433	Q/A RVW BY:
ENGINEERS	CONRAD AND SCHMIDT ING ENGINEERS, INC.	3-7440 FAX. (804) 378-7433	DWN. BY:

SCS E STEARNS, C CONSULTIN 1521 MIDLOIN PH. (804) 378-7	PROJ. NO. 02218206 16
CADD FILE: 02218208	.05
DATE:	

LEGEND: - 1800 - EXISTING CONTOUR, MAJOR (TYP. 10') --- EXISTING CONTOUR, MINOR (TYP. 2') -1800- PROPOSED CONTOUR, MAJOR 10' PROPOSED CONTOUR, MINOR 2' — — EXISTING 2" AIR LINE - - EXISTING 4" FORCE MAIN --- 6G --- EXISTING 6" LFG HEADER - 8G - EXISTING 8" LFG HEADER - 12G - EXISTING 12" LFG HEADER BUILDING EXISTING LEACHATE PIPE -> --- > - STORMWATER CONVEYANCE FEATURE EXISTING GRAVEL ROAD (DESERVED RIP RAP / ROCKS --- CELL BOUNDARY - EDGE OF LINER ----> ---- FLOW PATH - LANDFILL GAS PIPE SOIL TYPE BOUNDARY --- DRAINAGE AREA ----- STREAM OR WATERLINE - - CENTERLINE TEMPORARY SEEDING PS PERMANENT SEEDING (IP) CULVERT INLET PROTECTION OP OUTLET PROTECTION SF SILT FENCE (E) CONSTRUCTION ENTRANCE MU MULCHING (B/M) BLANKETS AND MATTING → RUNOFF FLOW DIRECTION PROPOSED LFG COLLECTION STRIP EXISTING TEMPERATURE PROBE EXISTING WELLHEAD EXISTING AIR RELEASE VALVE EXISTING ISOLATION VALVE EXISTING LEACHATE CLEANOUT EXISTING U-TRAP EXISTING CONDENSATE PUMP STATION EXISTING HORIZONTAL COLLECTOR SUMP EXISTING LFG LIGUIDS CONTAINMENT TANK EXISTING GAS PROBE MW-110 EXISTING GROUNDWATER MONITORING WELL EXISTING MANHOLE - - FACILITY BOUNDARY - · - WASTE MANAGEMENT UNIT BOUNDARY ---- APPROXIMATE EXTENT OF WASTE ____ × ____ EXISTING FENCE — — — EXISTING LFG HORIZONTAL COLLECTOR - - PROPOSED LFG HORIZONTAL COLLECTOR - 8G - 8G - PROPOSED 8" LEG COLLECTION PIPING - 12G - 12G - PROPOSED 12" LFG COLLECTION PIPING - 16G - 16G - PROPOSED 16" LFG COLLECTION PIPING - 18G - 18G - PROPOSED 18" LFG COLLECTION PIPING - 24G - 24G - PROPOSED 24" LFG COLLECTION PIPING - 28G - 28G - PROPOSED 28" LFG COLLECTION PIPING - 36G - 36G - PROPOSED 36" LFG COLLECTION PIPING — — — PROPOSED 2" AIR LINE - - PROPOSED 4" FORCE MAIN LEGEND NOTES: 1. UNLESS INDICATED OTHERWISE, EXISTING FEATURES ARE SHOWN IN HALF-TONE AND PROPOSED FEATURES ARE SHOWN IN FULL—TONE. 2. IF USED, ALTERNATIVE CONTOUR INTERVALS WILL BE NOTED ON THE RELEVANT SHEET.

EMISTING CONDITIONS:
THE EMISTING PROJECT SITE AREA INCLUDES THE SOLID WASTE PERMIT #588 (SWP #588) QUARRY LANDFILL. THE ACCESS ROAD INTO THE LANDFILL THE
TWO EXISTING STORMWATER BASINS LOCATED WEST OF THE QUARRY, AND AREAS ADJACENT TO EXISTING ROADS AND DITCHES FOR INSTALLATION OF
STORMWATER DIVERSION CONTROLS. THE LARGER STORMWATER POOD IS REFERRED TO AS THE "PRIMARY STORMWATER BASIN", AND THE SMALLER
STORMWATER POND IS REFERRED TO AS THE "SECONDARY STORMWATER BASIN".

THE PRIMARY STORMWATER BASIN DRAINAGE AREA INCLUDES THE SURROUNDINGS TO THE BASIN'S NORTHEAST, EAST, SOUTHEAST, AND SOUTH. AN EXISTING STORM SEWER SYSTEM FROM THE OPERATIONS BUILDING WEST OF THE QUARRY CENTER DISCHARGES INTO THE BASIN.

THE PRIMARY STORMWATER BASIN DISCHARGES INTO AN EXISTING 12"X15" STEEL BOX RISER LOCATED IN THE SOUTHWEST CORNER OF THE BASIN. AN EXISTING 12"0 CORRUGATED METAL PIPE CULVERT DISCHARGES FROM THE STEEL BOX RISER INTO THE SECONDARY BASIN. A SPILLWAY CONSISTING OF 18"0 REINFORCED CONCRETE HALF PIPE IS POSITIONED DIRECTLY OVER THE 12"0 CULVERT.

THE SECONDARY STORMWATER BASIN IS LOCATED IMMEDIATELY WEST OF THE PRIMARY STORMWATER BASIN. THE SECONDARY BASIN DISCHARGES INTO AN EXISTING 12" # STEEL CULVERT OUTFALL WITH A VALVE ON THE INLET SIDE. SHEET 5 PRESENTS THE EXISTING STORMWATER BASIN FEATURES.

THE QUARRY LANDFILL CONSISTS OF RECENTLY DISTURBED COVER SOIL WITH UNDERLYING WASTE. THE EXISTING QUARRY TOPOGRAPHY GENERALLY SLOPES DOWNWARDS FROM NORTH TO SOUTH AND FROM WEST TO EAST. SLOPES CENERALLY RANGE FROM 5% TO 33%. STORMWATER WITHIN THE QUARRY LANDFILL IS CURRENTLY ALLOWED TO INFILITARIE INTO THE WASTE MASS AND IS MANAGED AS LEACHATE.

A SOIL REPORT OBTAINED FROM THE USDA NATURAL RESOURCES CONSERVATION SERVICE GENERALLY CLASSIFIES THE SITE SOIL IN PROXIMITY TO THE QUARRY AS UDDRITHENTS, PAGES FROM THE SOIL REPORT ARE INCLUDED ON SHEET 13. BASED ON THE SOIL REPORT AND FIELD OBSERVATIONS, THE SITE SOIL HAS BEEN ASSIGNED TO HYPORLOGICE SOIL GROUP C FOR THE PURPOSE OF STORMWATER ANALYSIS.

STORMWATER MANAGEMEN" NOTES:

THE CITY OF BRISTOL MANAGES STORMWATER FOR THE LANDFILL PER THE VIRGINIA POLLUTANT DISCHARGE ELIMINATION SYSTEM (VPDES) INDUSTRIAL STORMWATER MANAGEMEN" PROGRAM (9VAC 25-151) UNDER A GENERAL PERMIT REGISTRATION NO: VARO50053 (EFFECTIVE JULY 1, 2019, EXPIRATION ON

THE CITY OF BRISTOL, AS THE VPDES PERMITTEE, SHALL OVERSEE THE EVOH COVER SYSTEM CONTRACTOR'S ACTIVITIES TO ENSURE EXECUTION IN ACCORDANCE WITH THE VPDES PERMIT REQUIREMENTS AND THE APPROVED EVOH COVER SYSTEM CONSTRUCTION DRAWNOS.

STORMWATER MANAGEMEN" IS DESIGNED AS INDICATED IN THESE DRAWINGS WHICH INCLUDE PLANS, DETAILS, AND CALCULATIONS. THE INTERIM EVOH COVER SYSTEM IS DESIGNED TO CONVEY QUARRY STORMWATER TO A PROPOSED STORMWATER BASIN IN THE SOUTHEAST CORNER OF THE QUARRY. A PUMPING SYSTEM IS DESIGNED TO TRANSFER THE STORMWATER FOR THE STORMWATER THE STORMWATER THE ASTENDED HE SUSTRICT MANARY STORMWATER BASIN LOCATED WEST OF THE

THE EXISTING STORMWATER BASINS WILL BE MODIFIED TO INCREASE STORAGE CAPACITY, AND NEW MULTISTAGE OUTLET STRUCTURES AND EMERGENCY SPILLWAYS WILL BE INSTALLED FOR BOTH THE PRIMARY AND SECONDARY STORMWATER BASIN.

EROSION AND SEDIMENT CONTROL WILL BE ADDRESSED IN CONSTRUCTION DRAWINGS.

STORMWATER SAMPLING PROTOCOLS

STORMWATER SHALL BE MONTORED IN ACCORDANCE WITH THE FACILITY'S VPDES GENERAL PERMIT FOR DISCHARGE OF STORMWATER ASSOCIATED WITH INDUSTRIAL ACTIVITY WITH THE FOLLOWING ADDITIONAL REQUIRMENTS:

- 1. AN ADDITIONAL STORMWATER SAMPLE WILL BE COLLECTED AT THE DISCHARGE OF THE QUARRY STORMWATER PUMPING SYSTEM LOCATED IN THE UPPER STORMWATER RASIN
- 2. A SAMPLE WILL BE COLLECTED DURING THE INITIAL DISCHARGE FROM THE QUARRY STORMWATER PUMPING SYSTEM.
- 3. SAMPLES WILL BE COLLECTED AND ANALYZED ON A MONTHLY BASIS IF THERE IS A DISCHARGE. A LOWER SAMPLING FREQUENCY MAY BE APPROVED IN WRITING BY THE VIRGINIA DEPARTMENT OF ENVIRONMENTAL QUALITY.
- 4. RESULTS OF WILL BE SUBMITTED ON A SEMI-ANNUAL BASIS AS OUTLINED IN THE FACILITY'S VPDES GENERAL PERMIT FOR DISCHARGE OF STORMWATER ASSOCIATED WITH INDUSTRIAL ACTIVITY.

GENERAL NOTES:

THESE DRAWINGS PRESENT A CONCEPTUAL STORMWATER MANAGEMENT PLAN FOR THE SWP #588 LANDFILL AND ARE NOT INTENDED FOR CONSTRUCTION.
CONSTRUCTION DRAWINGS WILL BE SUBMITTED TO THE VIRGINIA DEPARTMENT OF ENVIRONMENTAL QUALITY AT A LATER DATE. THE CONSTRUCTION
DRAWINGS WILL DEMONSTRATE THE ADEQUACY OF PROPOSED CHANGES TO THIS CONCEPTUAL SOMEOPET PLAN.

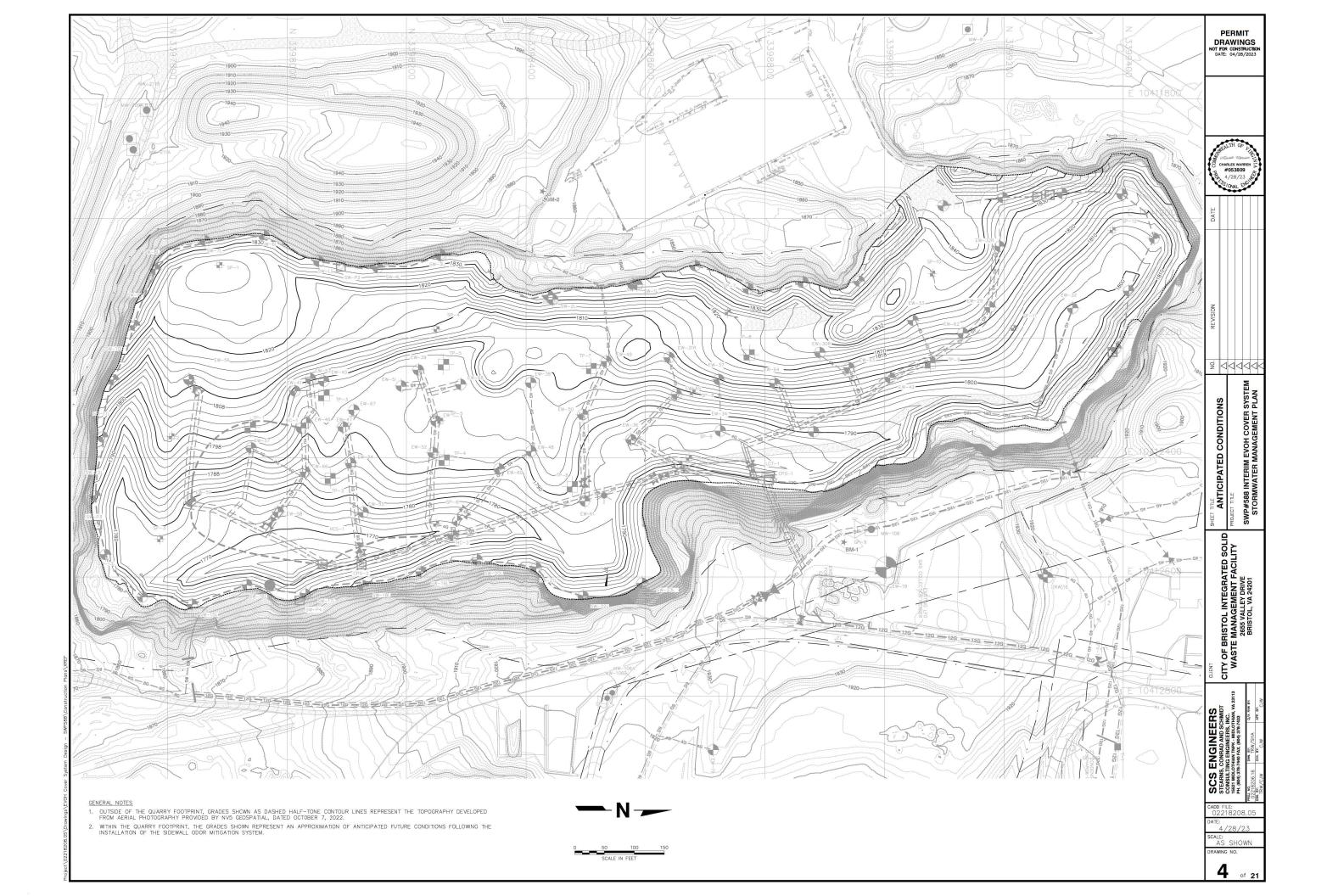
- 3. CONSULTING ENGINEER: SCS ENGINEERS, 15521 MIDLOTHIAN TURNPIKE #305, MIDLOTHIAN, VA 23113
- 4. LOCATION OF EXISTING SEWER, WATER, OR GAS LINES, CONDUITS, OR OTHER STRUCTURES ACROSS, UNDERNEATH, OR OTHERWISE ALONG THE LINE OF PROPOSED WORK ARE VOT NECESSARILY SHOWN ON THE PLANS, AND IF SHOWN ARE ONLY APPROXIMATELY CORRECT. CONTRACTOR SHALL VERIFY LOCATION AND ELEVATION OF UNDERGROUND UTILITIES SHOWN ON THE PLANS IN AREAS OF CONTRICTION PRIOR TO STARTING WORK, CONTACT ENGINEER IMMEDIATELY IF LOCATION OF ELEVATION IS DIFFERENT FROM THAT SHOWN ON THE PLANS, IF THERE APPEARS TO BE A CONFLICT, OR UPON DISCOVERY OF A UTILITY NOT SHOWN ON THE PLANS. THE CONTRACTOR SHALL OBTAIN FIELD UTILITY LOCATIONS BY CALLING "MISS UTILITY" FORTY EIGHT (48) HOURS PRIOR TO WORKING IN THE VICINITY OF EXISTING UTILITIES.
- 5. BOUNDARY INFORMATION TAKEN FROM OTHERS.
- 6. HORIZONTAL DATA IS BASED ON US STATE PLANE NAD 1983 VIRGINIA SOUTH ZONE, VERTICAL DATA BASED ON NAVD 88.
- 7. REFERENCE GRID LINES ARE SHOWN ON THE DRAWINGS WITH GRID SPACING AT 200 FEET.

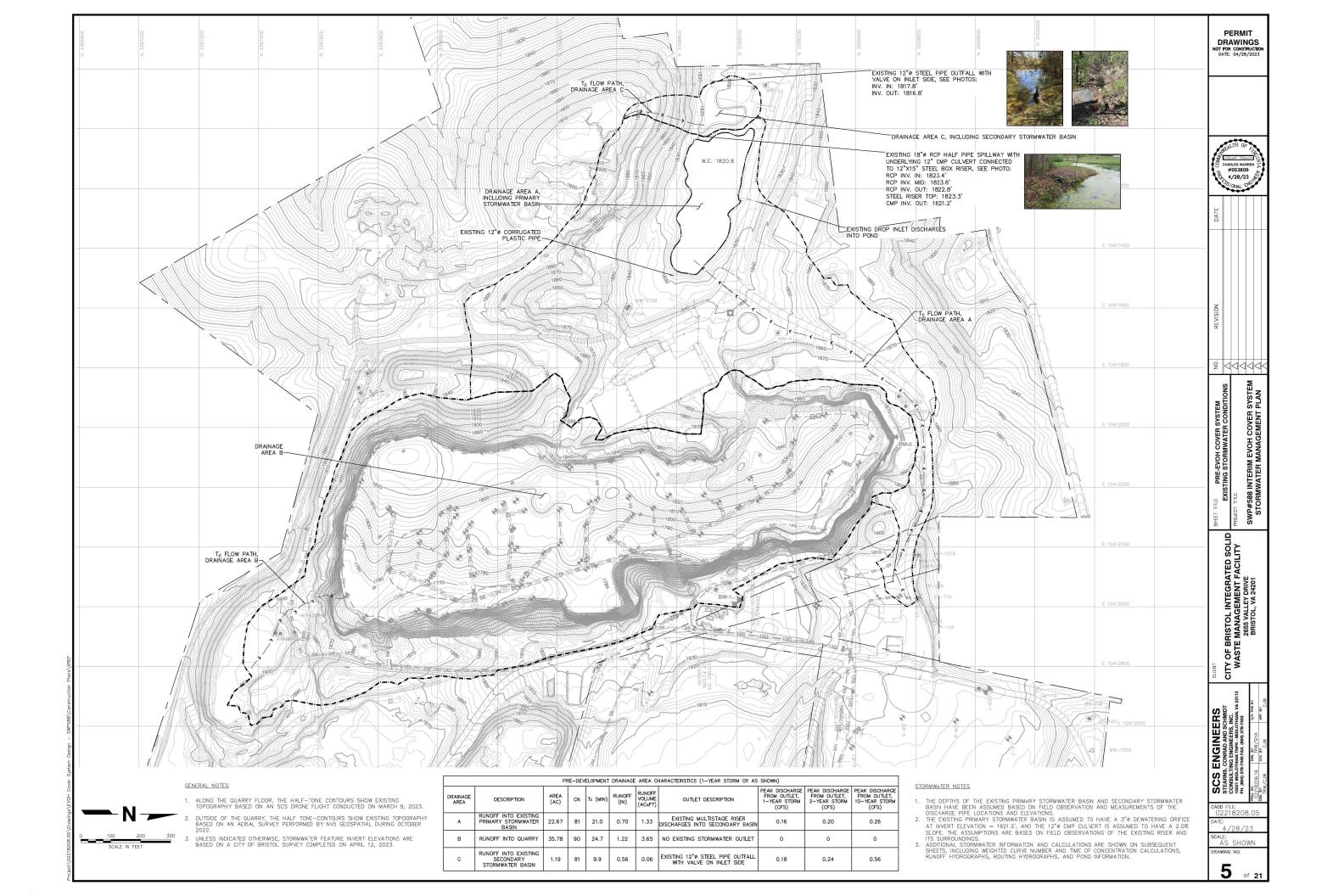
PERMIT **DRAWINGS**

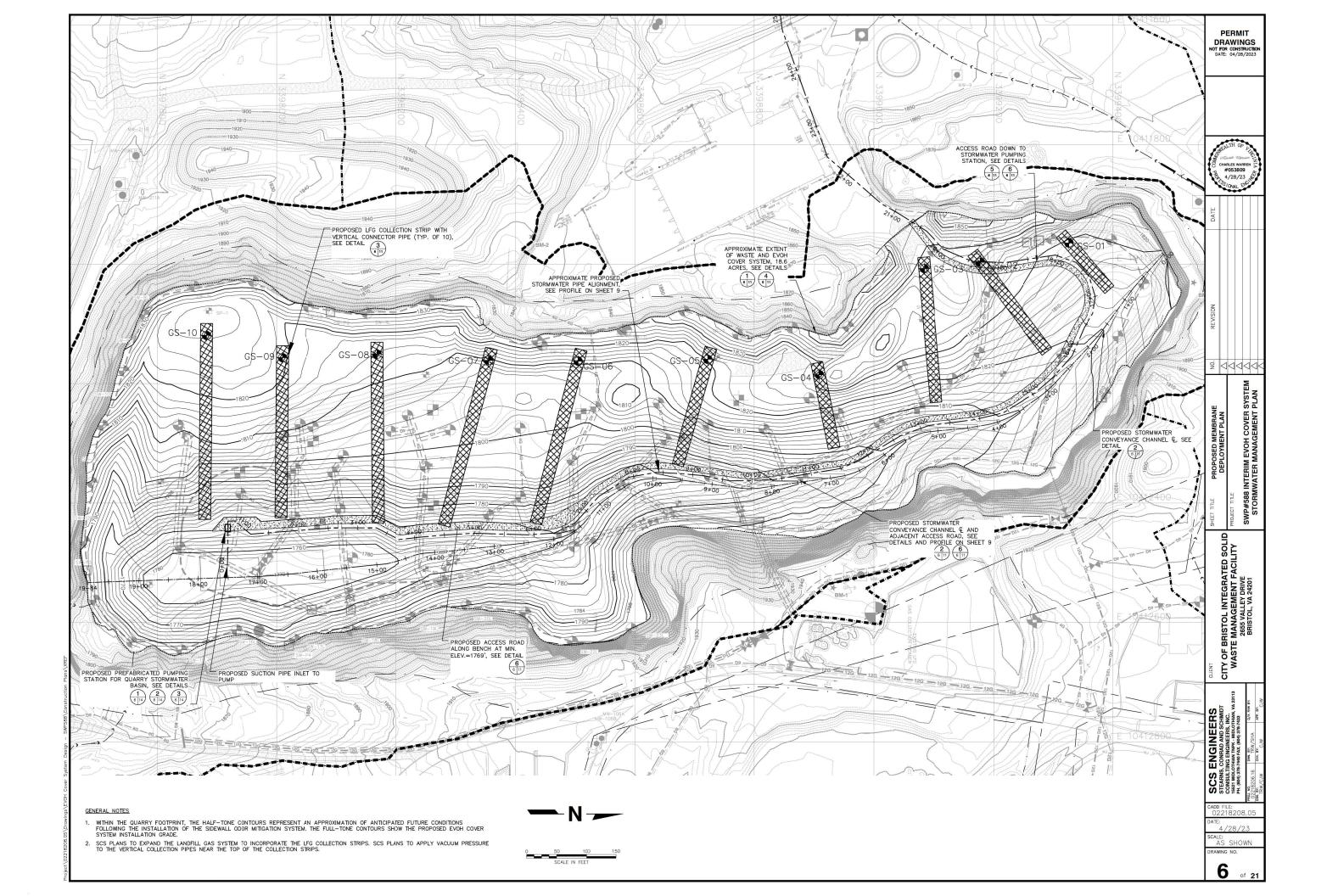
NOTES AND LEGEND GENERAL SWP#588 STORM

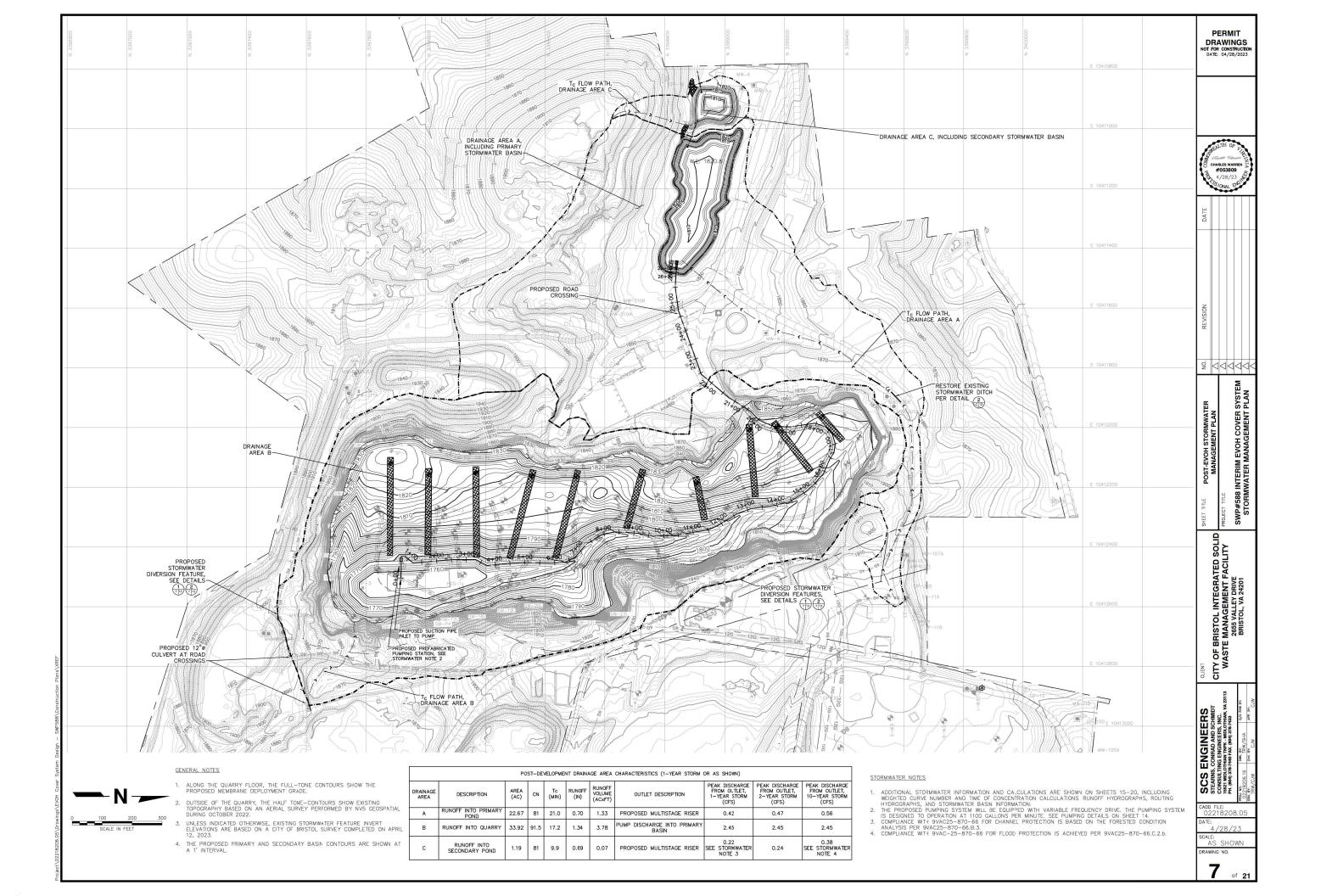
> OF BRISTOL INTEGRATED SOLID ASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VA 24201 CITY

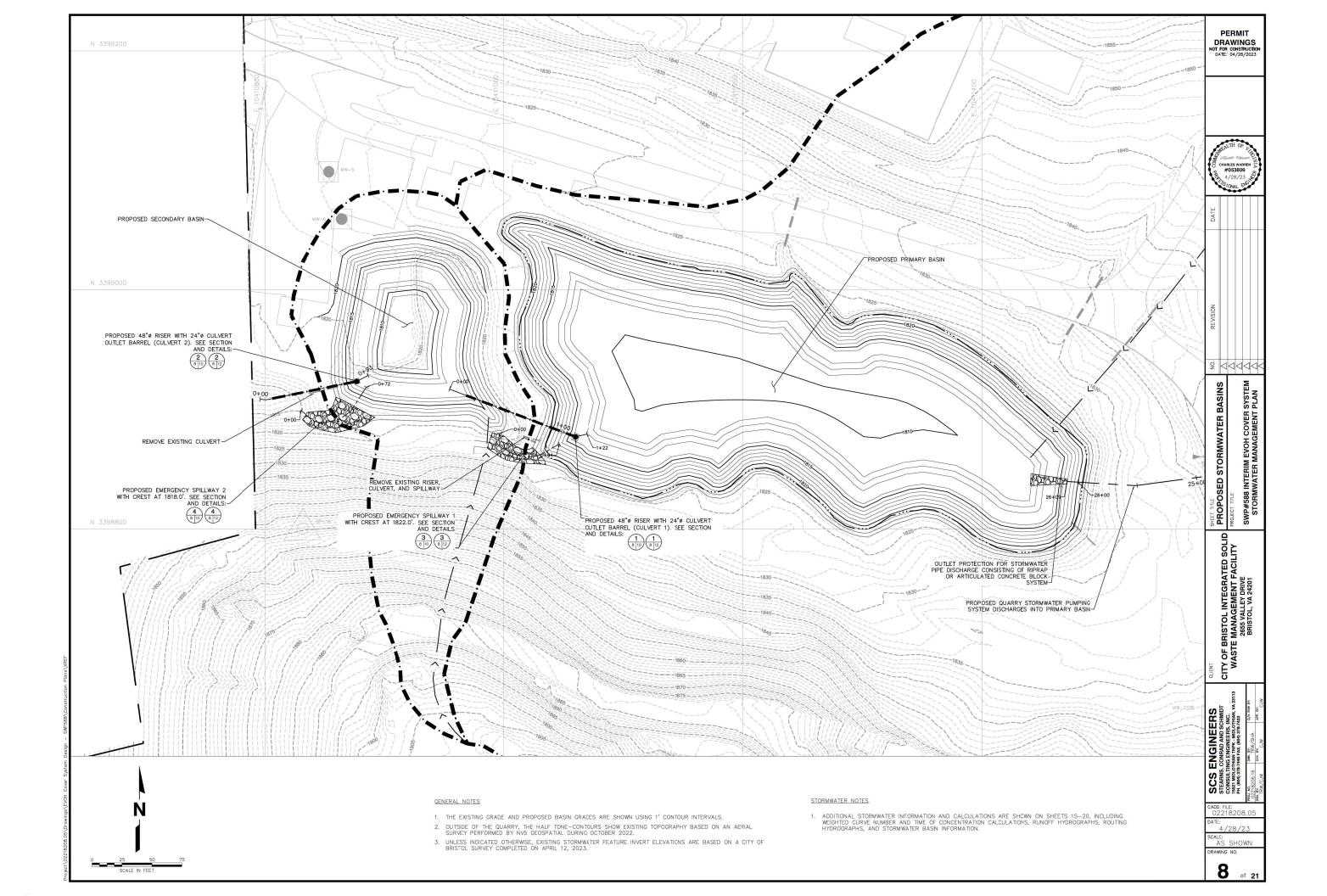
ENGINEERS
S, CONRAD AND SCHMIDT
TING ENGINEERS, INC.
COTHAN TAPK. MIDLOTHIAN, VA 22
TR-7440 FAX. (804) 578-7433

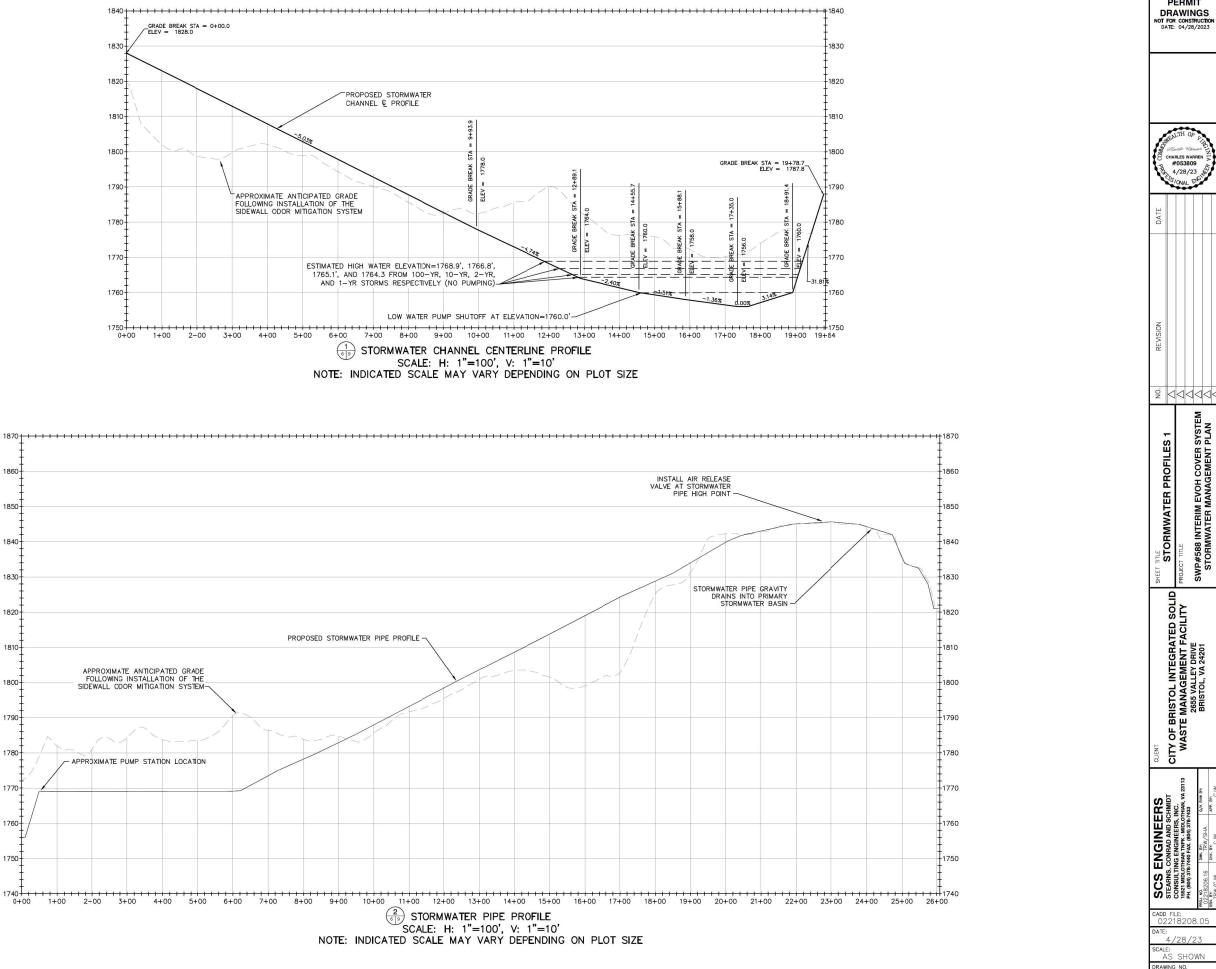

SCS E STEARNS, C CONSULTIN 15521 MIDLOTI PH. (804) 378-7


O2218208.05 4/28/23


SCALE: AS SHOWN


RAWING NO.





1860-

1850

1840

1830

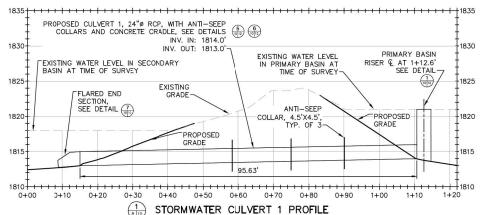
1820

1810-

1800-

1790

1780-


1770

1760-

1750

DRAWING NO.

9

SCALE: H: 1"=10', V: 1"=5' INDICATED SCALE MAY VARY DEPENDING ON PLOT SIZE NOTE: AS AN ALTERNATIVE TO ANT-SEEP COLLARS, A CUT-OFF TRENCH, SEEPAGE DIAPHRAGM, TOE DRAIN, AND/OR DRAINAGE BLANKET MAY BE USED.

1830

EXISTING GRADE

EXISTING GRADE

EMERGENCY SPILLWAY

CREST AT ELEV.=1822.0'

1825

ARTICULATED CONCRETE

BLOCK SYSTEM OR RIPRAP

LINING (0₅₀=0.75') WITH

UNDERLYING NONWOVEN

GEOTEXTILE FILTER FABRIC,

SEE DETAIL

1810

0+00 0+10 0+20 0+30 0+40 0+50 0+60+64

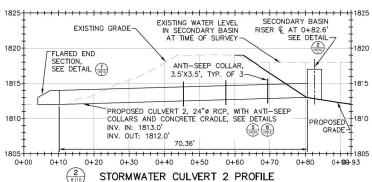
3 EMERGENCY SPILLWAY 1 PROFILE

SCALE: H: 1"=10', V: 1"=5'

INDICATED SCALE MAY VARY DEPENDING ON PLOT SIZE

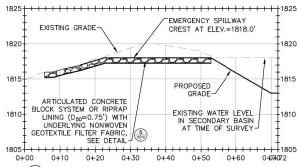
TABLE 3.19-D REQUIREMENTS FOR FILTER FABRIC USED WITH RIPRAP

Physical Property Test Method Requirements Corps of Engineers CWO 2215-77 Equal or greater than Equivalent U.S. No. 50 sieve Opening Size Tensile Strength* VTM-52 30 lbs./linear in. @ 20% (maximum) (minimum) ASTM D751* 80 lbs. (minimum) Puncture Strength


* Tension testing machine with ring clamp, steel ball replaced with 5/16 diameter solid steel cylinder with hemispherical tip centered within the ring clamp.

Seams shall be equal in strength to basic material.

Additional fabric material or non-corrosive steel wire may be incorporated into the fabric to increase overall strength.


Source: VDOT Road and Bridge Specifications

SCALE: H: 1"=10', V: 1"=5' INDICATED SCALE MAY VARY DEPENDING ON PLOT SIZE

NOTE: AS AN ALTERNATIVE TO ANTI-SEEP COLLARS, A CUT-OFF TRENCH, SEEPAGE DIAPHRAGM, TOE DRAIN, AND/OR DRAINAGE BLANKET MAY BE USED.

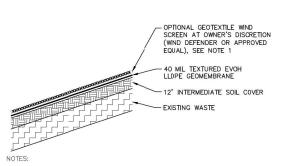
EMERGENCY SPILLWAY 2 PROFILE

SCALE: H: 1"=10', V: 1"=5'

INDICATED SCALE MAY VARY DEPENDING ON PLOT SIZE

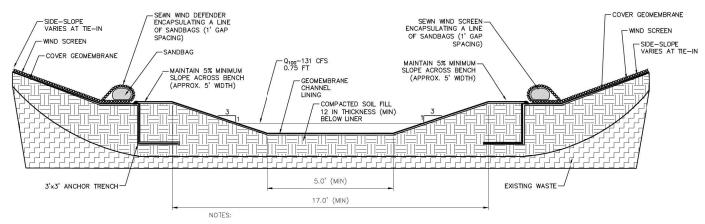
PERMIT
DRAWINGS
NOT FOR CONSTRUCTION
DATE: 04/28/2023

T TITLE	NO.	REVISION	DATE
SI URIMWAI ER PROFILES Z	\triangleleft		
ECT TILE	◁		
	◁		
P#588 INTERIM EVOH COVER SYSTEM	◁		
STORMWATER MANAGEMENT PLAN	\triangleleft		
	<		

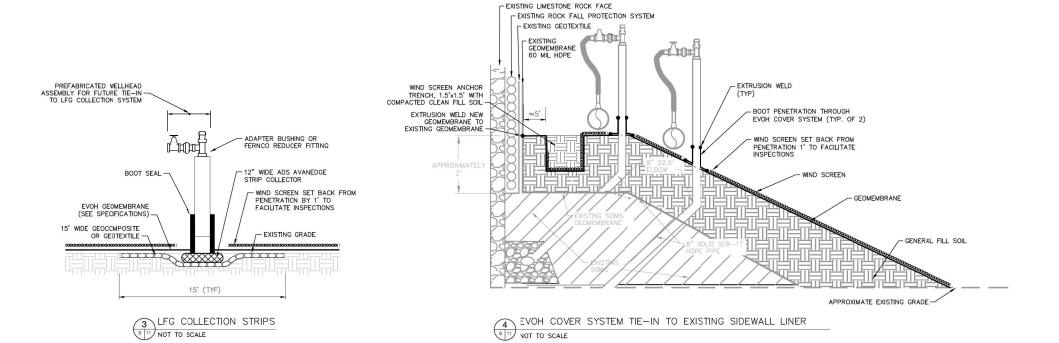

CITY OF BRISTOL INTEGRATED SOLID
WASTE MANAGEMENT FACILITY
BRISTOL, VA 24201

SCS ENGINEERS
STEARNS, CONRAD AND SCHMIDT
CONSULTING ENGINEERS, INC.
INC. OR ADDITIONAL WAS ADDI

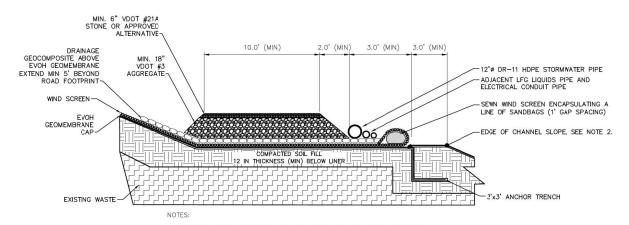
CADD FILE: 02218208.05 DATE: 4/28/23


AS SHO

10 of 21


THE OWNER MAY OR MAY NOT ELECT TO INCLUDE A GEOTEXTILE WIND SCREEN. IF A WIND SCREEN IS NOT SPECIFIED, WIND CALCULATIONS WILL BE PROVIDED DEMONSTRATING THE LACK OF NEED.

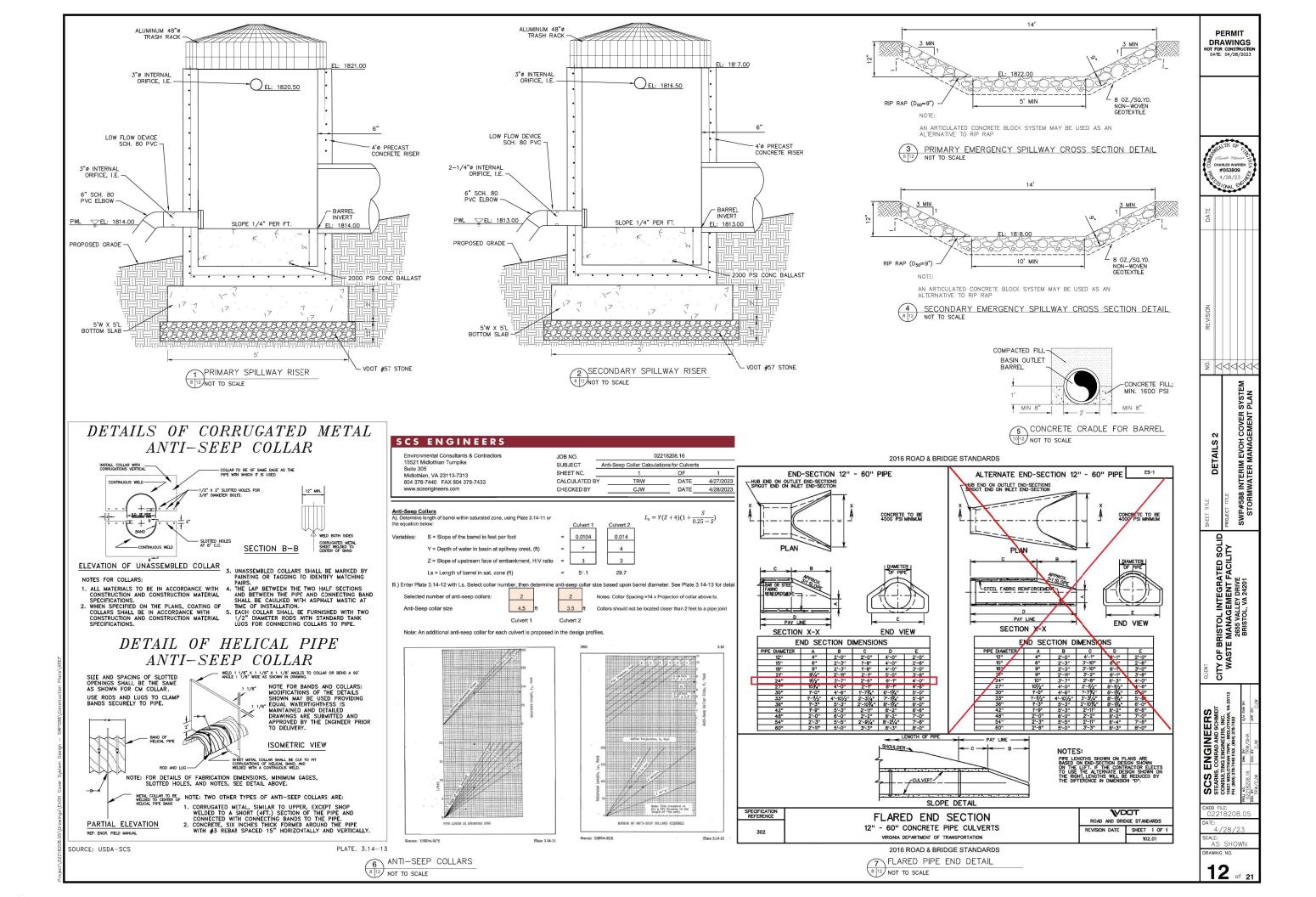
1 INTERIM EVOH COVER 6 11 NOT TO SCALE



CHANNEL SLOPE IS APPROXIMATELY 5%. THE 100-YR FLOW DEPTH IS APPROX. 0.75 FT.

2 STORMWATER CHANNEL TIE-IN WITHOUT ADJACENT ROAD NOT TO SCALE

MIN. 6" VDOT #21A STONE OR APPROVED ALTERNATIVE 30' MAIN ACCESS ROAD - GEOTEXTILE LAYER 20' MAIN ACCESS ROAD -DRAINAGE GEOCOMPOSITE ABOVE EVOH GEOMEMBRANE VDOT #3 AGGREGATE EVOH GEOMEMBRANE CAP WITH OVERLYING WIND SCREEN 5 LIGHT-DUTY ACCESS ROAD NOT TO SCALE



1. MAINTAIN 5% MINIMUM SLOPE ACROSS BENCH INTO STORMWATER CHANNEL. 2. MINIMUM BENCH ELEVATION = 1769.0'

8 444444 DETAILS CITY OF BRISTOL INTEGRATED SOLID
WASTE MANAGEMENT FACILITY
2655 VALLEY DRIVE
BRISTOL, VA 24201 SCS ENGINEERS STEARNS, CONFAD AND SCHMIDT CONSULTING ENGINEERS, INC. 1527 INDICOTHAN THRY. AND/OTHAN, VA. 22 PH. (804) 375-740 FAX. (804) 375-7434 4/28/23 DRAWING NO. 11 of 21

PERMIT DRAWINGS DATE: 04/28/2023

6 LIGHT-DUTY ACCESS ROAD ALONG CHANNEL BENCH NOT TO SCALE

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
CeC2	Collegedale-Etowah complex, 5 to 12 percent slopes, eroded	1.3	0.2%
CeD3	Collegedale-Etowah complex, 12 to 20 percent slopes, severely eroded	0.5	0.1%
CuD	Collegedale-Urban land complex, 5 to 20 percent slopes	0.0	0.0%
MoF	Montevallo channery sitt loam, 35 to 50 percent slopes	0.1	0.0%
TbD2	Talbott-Rock outcrop-Bradyville complex, 12 to 20 percent slopes, eroded	0.1	0.0%
Subtotals for Soil Survey A	rea	2.0	0.4%
Totals for Area of Interest		528.1	100.0%
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
2A	Atkins loam, 0 to 3 percent slopes, frequently flooded	5.7	1.1%
7A	Clubcaf silt loam, 0 to 3 percent slopes, frequently flooded	11.6	2.2%
16C	Frederick slit loam, 8 to 15 percent slopes	52.9	10.0%
16D	Frederick slit loam, 15 to 25 percent slopes	74.1	14.0%
17C	Frederick very gravelly sit loam, 7 to 15 percent slopes	6.3	1.2%
20D	Hagerstown silt loam, 15 to 25 percent slopes, very rocky	2.7	0.5%
23C	Hayter loam, 7 to 15 percent slopes	5.1	1.0%
45	Udorthents, 0 to 25 percent slopes	128.1	24.2%
47	Udorthents-Urban land complex, 0 to 25 percent slopes	103.2	19.5%
50D	Weikert silt loam, 15 to 25 percent slopes	81.1	15.4%
50E	Weikert silt loam, 25 to 50 percent slopes	42.8	8.1%
55B	Wyrick-Marbie complex, 2 to 7 percent slopes	9.7	1.8%
55C	Wyrick-Marbie complex, 7 to 15 percent slopes	2.8	0.5%

Clubcaf, slit loam, frequently flooded
Percent of map unit: 1 percent
Landform: Backswamps on flood plains
Landform position (two-dimensional): To
Landform position (twe-dimensional): To
Down-slope shape: Concave
Across-slope shape: Concave
Other vegetative classification: Hydric St

45-Udorthents, 0 to 25 percent slopes

Map Unit Composition
Udorthents and similar soils: 70 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

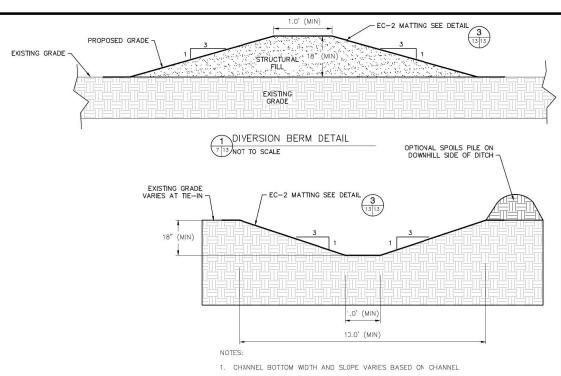
Setting

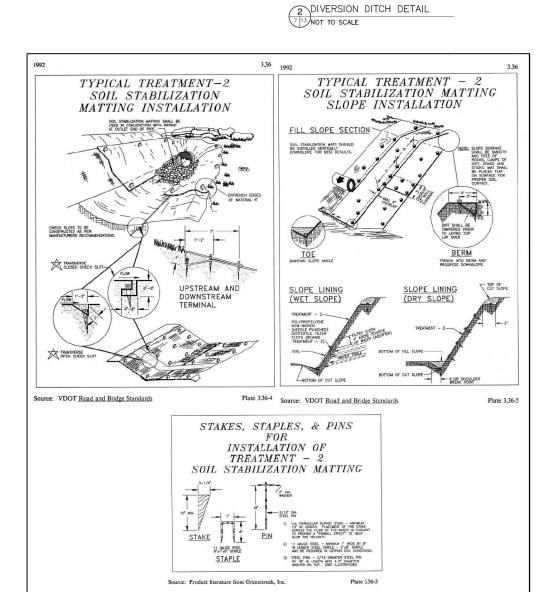
Down-slope shape: Concave

Across-slope shape: Linear

Parent material: Fill material

ration insuring. "In insuring properties and qualities Slope: 0 to 25 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Very high Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None


47-Udorthents-Urban land complex, 0 to 25 percent slopes


Map Unit Composition
Udorthents and similar soils: 40 percent
Urban land: 35 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

ing
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Buildings, pavement

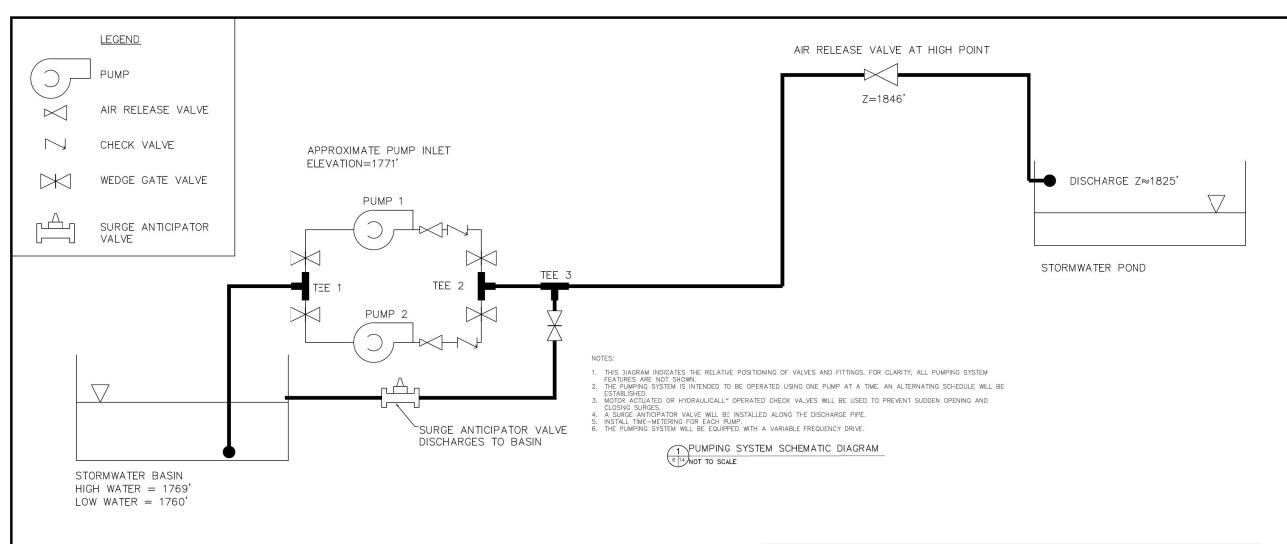
50D-Weikert silt loam, 15 to 25 percent slopes

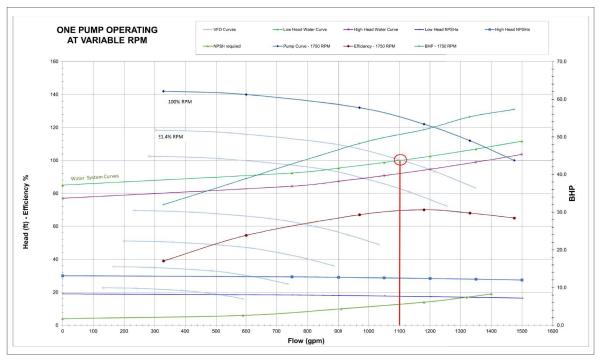
Map Unit Setting
National map unit symbol: kfm4
Elevation: 1,360 to 2,530 feet
Mean annual precipitation: 38 to 48 inches
Mean annual air temperature: 52 to 55 degrees F

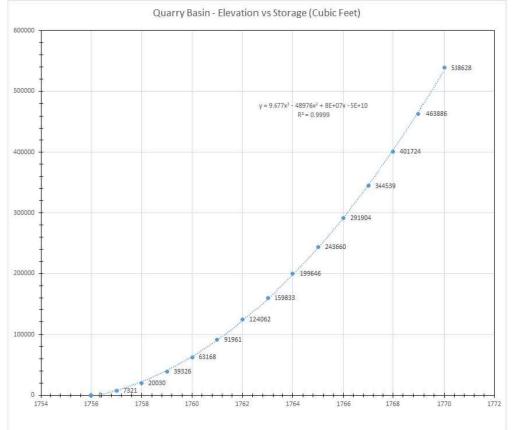
3 EC-2 MATTING DETAIL

DRAWINGS

DETAILS (


CITY OF BRISTOL INTEGRATED SOLID
WASTE MANAGEMENT FACILITY
2655 VALLEY DRIVE
BRISTOL, VA 24201


ENGINEERS
S. CONRAD AND SCHMIDT
TING ENGINEERS, INC.
LOTHIAN THRY. MIDLOTHIAN, VA 2.
TREAT40 FAX. (804) 378-7433 SCS E STEARNS, C CONSULTIN 15621 MIDLOT PH. (804) 378-7

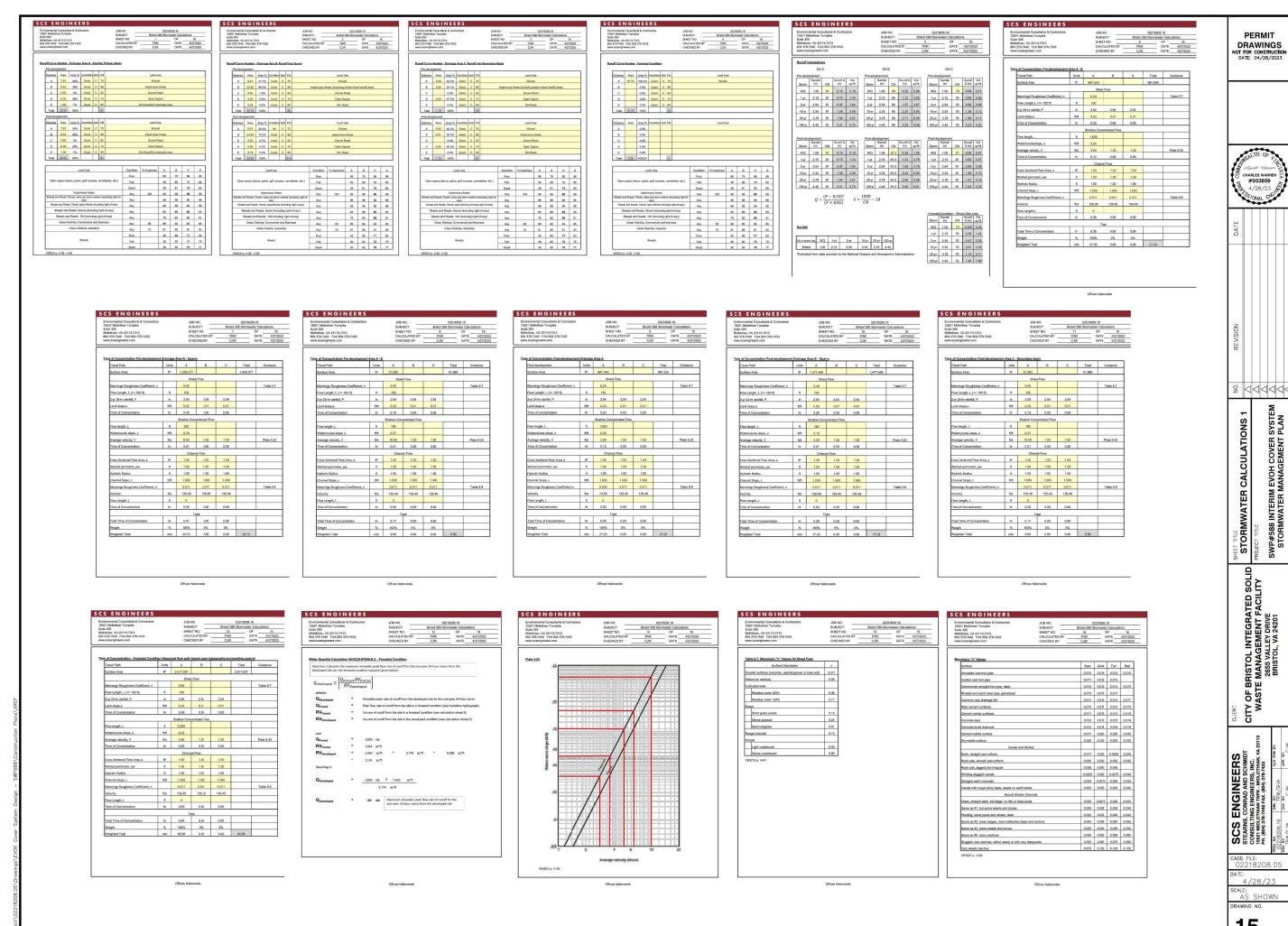

4/28/23

DRAWING NO.

13 of 21

THE PUMP CURVE IS BASED UPON A GORMAN-RUPP MODEL U6A-B PUMP. THE OWNER MAY ELECT TO CHOOSE A DIFFERENT PUMP MODEL WITH COMPARABLE PERFORMANCE SO LONG AS THE ADEQUACY OF THE PUMP IS DEMONSTRATED.

PUMPING SYSTEM CURVES
6 | 14 NOT TO SCALE

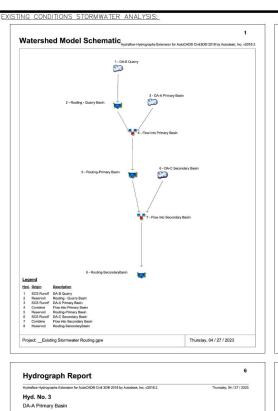


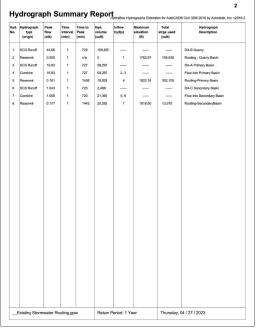
SCS ENGINEERS STEARNS, CONDAD AND SCHMIDT CONSULTING ENGINEERS, INC. PR. (600) 3787440 FAX. (604) 378741144, VA. 23 PH. (604) 3787440 FAX. (604) 3787411144, VA. 23 DRAWING NO.

CITY OF BRISTOL INTEGRATED SOLID
WASTE MANAGEMENT FACILITY
2855 VALLEY DRIVE
BRISTOL, VA 24201

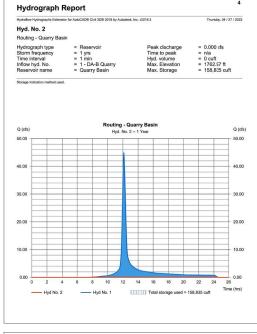
DRAWINGS

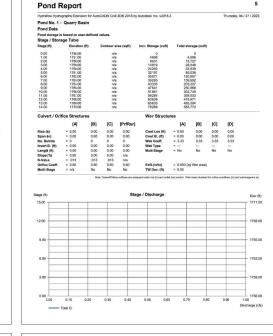
9 0000


15 of 21

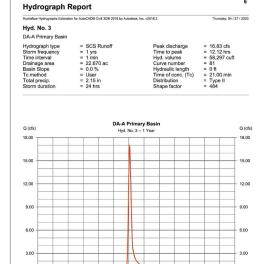

PERMIT

INTERIM EVOH COVER


SWP#588 I STORM


CITY OF BRISTOL INTEGRATED SOLID WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VA 24201

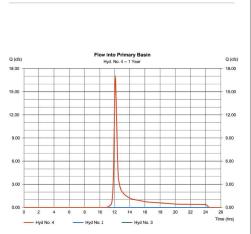
	ion for AutoCAD® Civil 3D® 2018 by A	utodesk, Inc. v2018.3	Thursday, 04 / 27 / 2
Hyd. No. 1			
DA-B Quarry			
Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration	= SCS Runoff = 1 yrs = 1 min = 35.780 ac = 0.0 % = User = 2.15 in = 24 hrs	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. Tc) Distribution Shape factor	= 44.66 cfs = 12.13 hrs = 158,835 cuft = 90 = 0 ft = 24.70 min = Type II = 484
Q (cfs)		A-B Quarry No. 1 – 1 Year	Q
50.00			50
40.00			
10.00			40
10.00			40
30.00			30
30.00			30
30.00			30
30.00			30
20.00			30
20.00			30
20.00	6 8 10	12 14 15 18 20	30



Hydrograph Report

Hydrograph Report

Hyd. No. 1 DA-B Quarry


Hvd. No. 6

Hydrograph Report

Flow into Secondary Bas

Hyd. No. 7

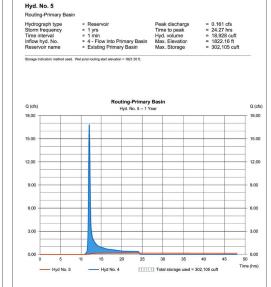
Peak discharge = 16.83 cfs
Time to peak = 12.12 hrs
Hyd. volume = 58,297 cuft
Contrib. drain. area = 22.670 ac

12

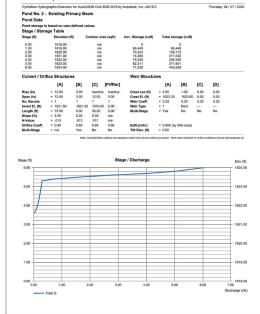
Pond Report

Hydrograph Report

Hydrograph Report

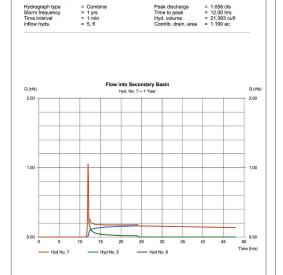

Storage Indication method used. Wet pond routing start elevation = 1817.80 ft.

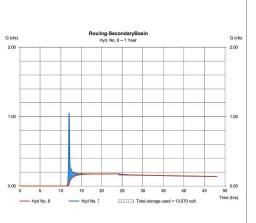
Hvd. No. 8

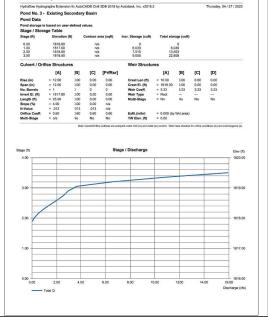

Routing-Secondar

Hvd. No. 4

Hydrograph type Storm frequency Time interval Inflow hyds.

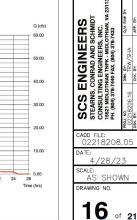


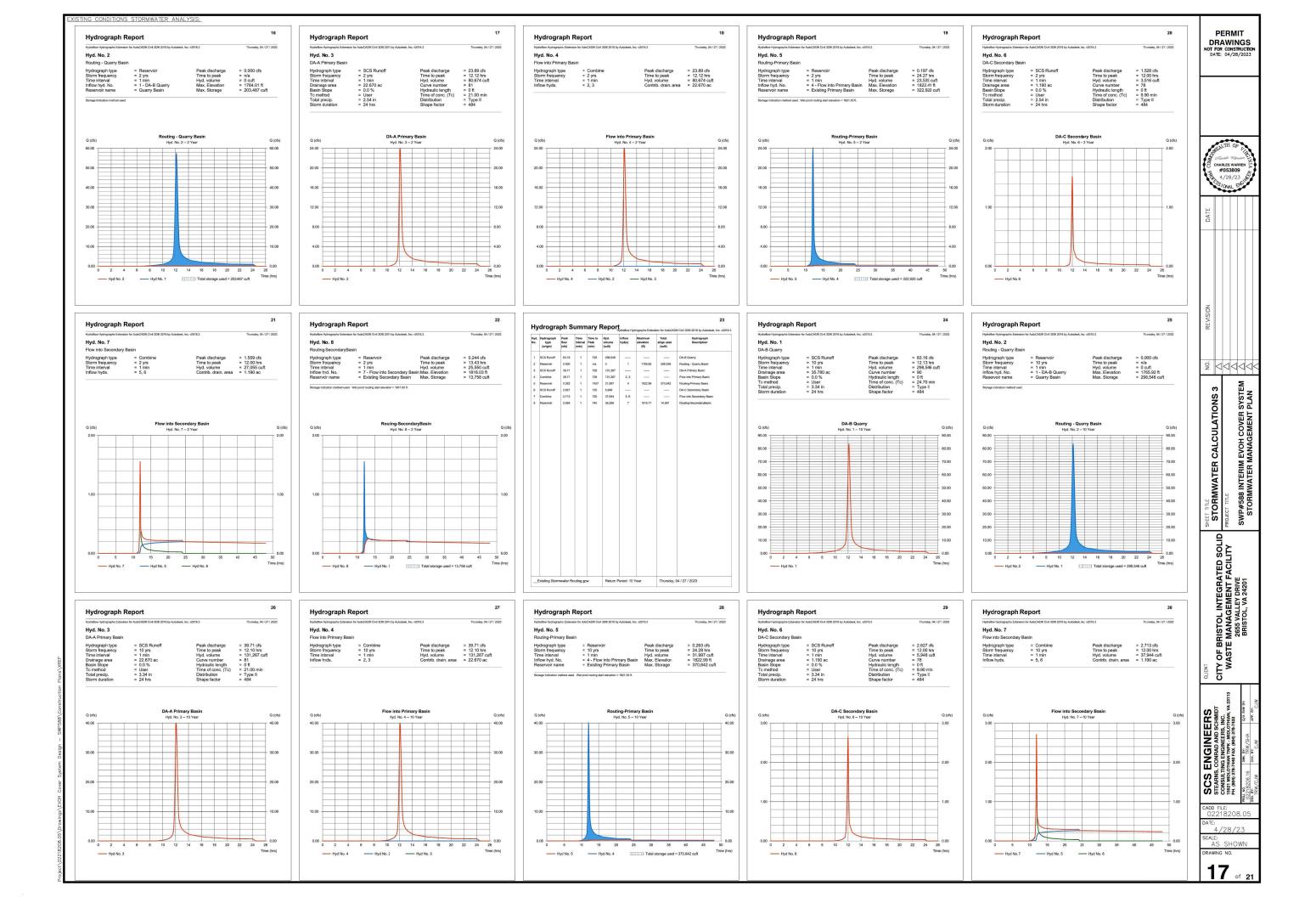

Hydrograph Report

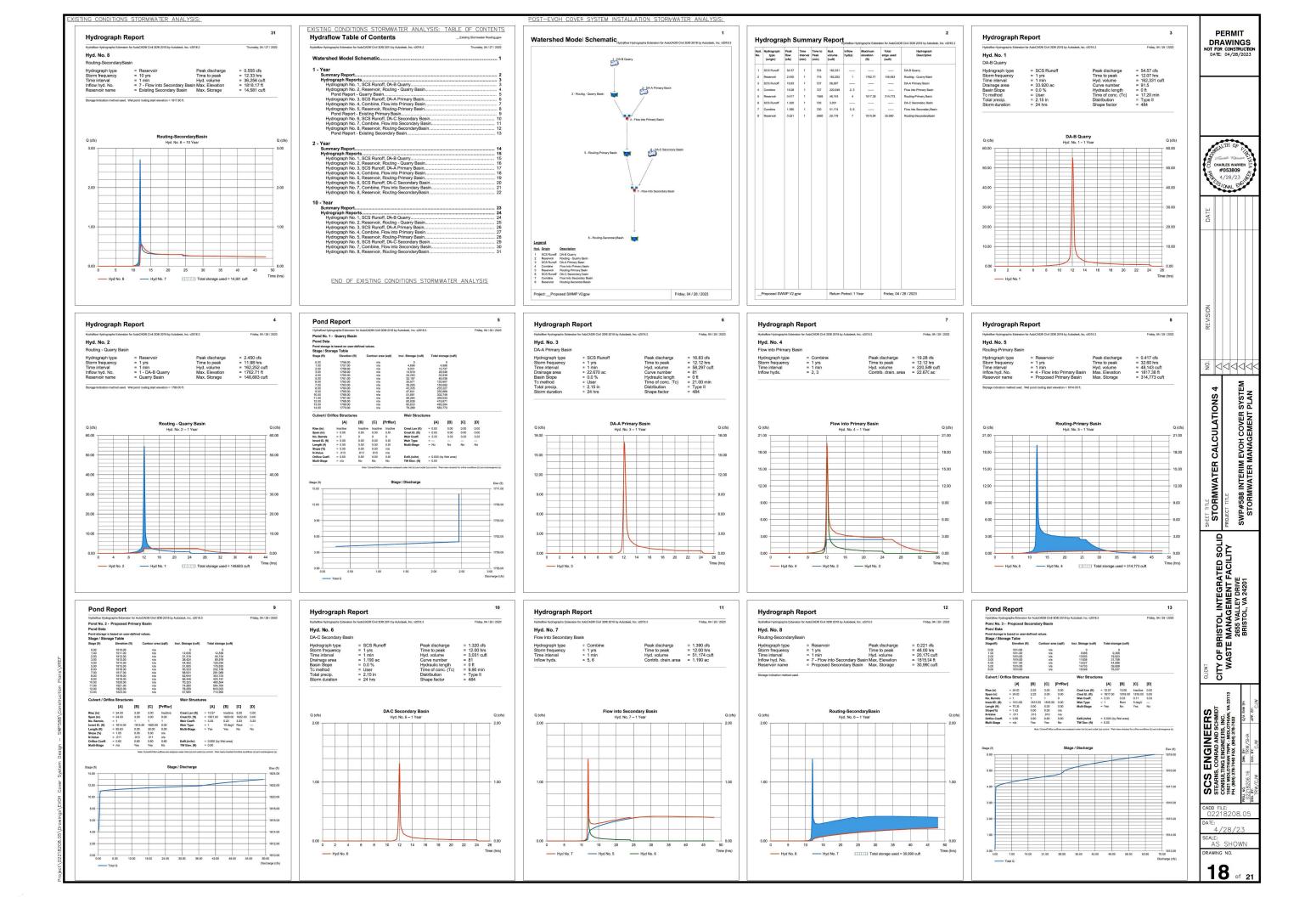


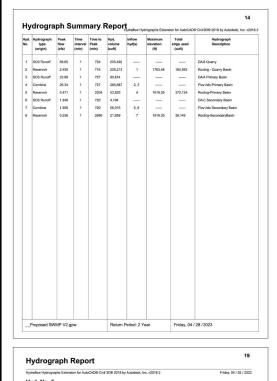
Pond Report

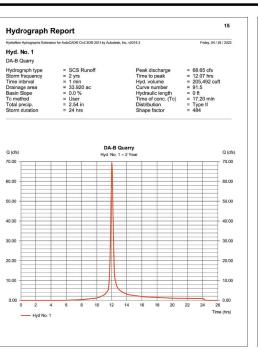
Tc method Total precip. Storm duration	= User = 2.15 in = 24 hrs	Time of conc. (Tc) Distribution Shape factor	= 9.90 min = Type II = 484	- 0.
Q (cfs)		iecondary Basin No. 6 - 1 Year		(cfs)
2.00			2.	00
1.00			1	00
1.00				00
			0.	






Time interval Drainage area Basin Slope Tc method Total precip. Storm duration	= 1 min = 35.780 ac = 0.0 % = User = 2.54 in = 24 hrs	Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor	= 203,487 cuft = 90 = 0 ft = 24.70 min = Type II = 484	
Q (cfs)	DA-B Quari Hyd. No. 1 – 2 Y			Q (cfs)
30.00				60.00
50.00				50.00
10.00				40.00
80.00				30.00
20.00				20.00
10.00				10.00
0.00	4 6 8 10 12 14	16 18 20	22 24 28	0.00


Peak discharge Time to peak


PERMIT DRAWINGS Thursday, 04 / 27 / 2023 STORMWATER CALCULATIONS 2
PROJECT TITLE SWP#588 INTERIM EVOH COVER STORMWATER MANAGEMENT CITY OF BRISTOL INTEGRATED SOLID
WASTE MANAGEMENT FACILITY
2655 VALLEY DRIVE
BRISTOL, VA 24201

nydranow mydrographis Extent	sion for AutoCAD® Civil 3D® 2018 by	Autodesk, Inc. v2018.3	Friday, 04 / 28 / 20	23
Hyd. No. 2				
Routing - Quarry Ba	sin			
Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name	= Reservoir = 2 yrs = 1 min = 1 - DA-B Quarry = Quarry Basin	Peak discharge Time to peak Hyd. volume Max. Elevation Max. Storage	= 2.450 cfs = 11.90 hrs = 205,213 cuft = 1763.48 ft = 180,583 cuft	
Storage Indication method use	d. Wet jond routing start elevation =	1760.00 fs.		
Q (cfs)		ng - Quarry Basin d. No. 2 2 Year		Q (cfs)
70.00				70.00
			P P	
60.00				60.00
50.00				50.00
40.00				40.00
30.00				30.00
				00.00
20.00				20.00
				20.00
10.00				10.00
10.00				10.00
				0.00
0.00	10 15 20	25 30 35	40 45 50	0.00
Hyd No. 2		Total storage used =	180,583 cuft Tim	e (hrs)

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration	= SCS Runoff = 2 yrs = 1 min = 22.670 ac = 0.0 % = User = 2.54 in = 24 hrs	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor	= 23.89 cfs = 12.12 hrs = 80,674 cuft = 81 = 0 ft = 21.00 min = Type II = 484
Q (cfs)		imary Basin . 3 – 2 Year	Q(
24.00			24.0
20.00			20.0
16.00			16.0
12.00			12.0
12.00			12.5
8.00			8.00
4.00			4.00
0.00			0.00
0 2	4 6 8 10 12 3	14 16 18 20	22 24 26 Time (hrs

22

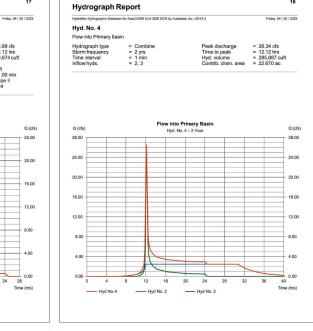
27

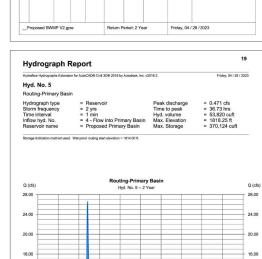
Friday, 04 / 28 / 2023

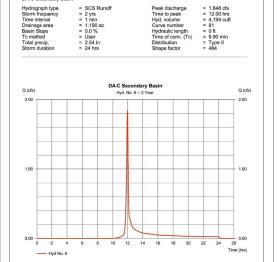
Hydrograph Report

Hydrograph Report

Hydrograph Report


Hvd. No. 4

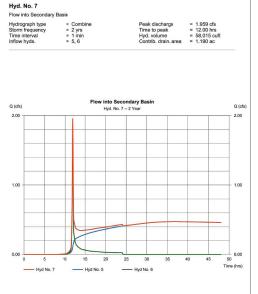

Flow into Primary Basin


Hvd. No. 8

Routing-Second

Friday, 04 / 28 / 2023

Hydrograph Report

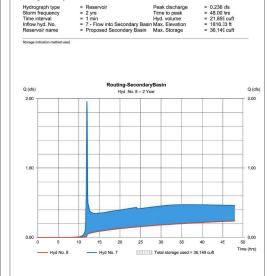

Hydrograph Report

Hvd. No. 2

Routing - Quarry Basi

Hvd. No. 6

DA-C Secondary Bas

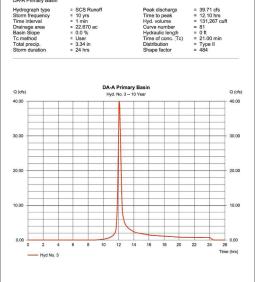

Hydrograph Report

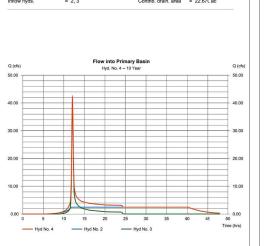
Hydrograph Report

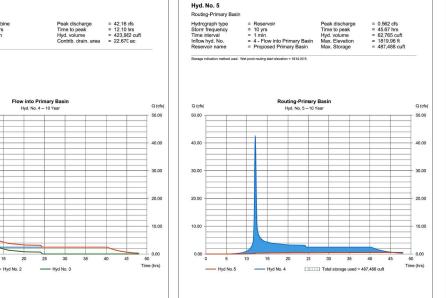
Hvd. No. 3

DA-A Primary Basin

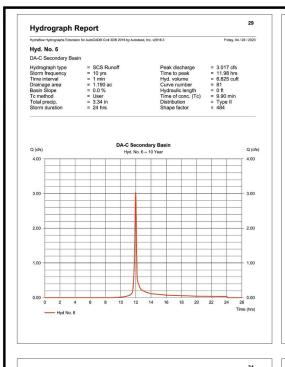
Friday, 04 / 28 / 2023

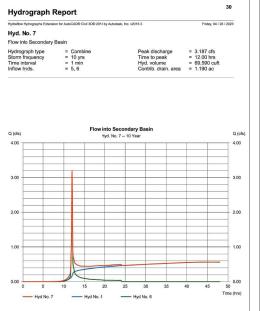



Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SC3 Runoff	97.68	1	724	296,608	_	-		DA-B Quarry
2	Reservoir	2.450	1	705	292,714	1	1765.01	251,477	Routing - Quarry Basin
3	SCS Runoff	39.71	1	726	131,267			-	DA-A Primary Basin
4	Combine	42.16	1	726	423,982	2, 3		-	Flow into Primary Basin
5	Reservoir	0.562	1	2740	62,765	4	1819.96	487,488	Routing-Primary Basin
6	SC\$ Runoff	3.017	1	719	6,825	110000			DA-C Secondary Basin
7	Combine	3.187	1	720	69,590	5, 6		-	Flow into Secondary Basin
8	Reservoir	0.375	1	2880	26,089	7	1816.89	43,496	Routing-SecondaryBasin
	Proposed SV	/MP \/2a	DW.		Return	Period: 10	Vear	Friday 04	/ 28 / 2023


	AutoCAD8 Civil 3D8 2018 by Autodesk, Inc. v	2018.3	Friday, 04 / 28	/ 2023
lyd. No. 1				
A-B Quarry				
otorm frequency lime interval oralnage area sasin Slope or method otal precip.	= SCS Runoff = 10 yrs = 1 min = 33.920 ac = 0.0 % = User = 3.34 in = 24 hrs	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor	= 97.68 cfs = 12.07 hrs = 296,608 cuft = 91.5 = 0 ft = 17.20 min = Type II = 484	
Q (cfs)	DA-B Quar Hyd, No. 1 10			Q (cfs
0.00	nyu. №0. 1 = 10			100.0
0.00				90.00
0.00				80.00
0.00			=	70.00
0.00				60.00
0.00			=	60.00
0.00				50.00
0.00			=	40.00
0.00			=	30.00
0.00				20.00
0.00				10.00
				20.00
				0.00
0.00	6 8 10 12 14	16 18 20	22 24 26	

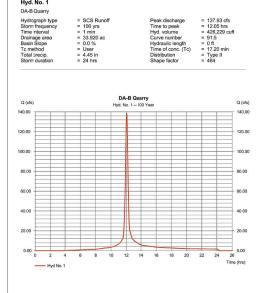
15 20 25 30 35 40 45

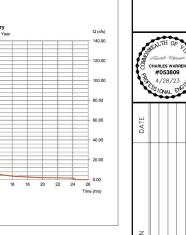

Hydrograph Report


PERMIT **DRAWINGS** STORMWATER CALCULATIONS 5
PROJECT TITLE SWP#588 INTERIM EVOH COVER STORMWATER MANAGEMENT CITY OF BRISTOL INTEGRATED SOLID
WASTE MANAGEMENT FACILITY
2655 VALLEY DRIVE
BRISTOL, VA 24201

SCS ENGINEERS STEARNS, CONFAD AND SCHMIDT CONSULTING ENGINEERS, INC. 1527 INDICOTHAN THRY. AND/OTHAN, VA. 22 PH. (804) 375-740 FAX. (804) 375-7434 CADD FILE: 02218208.05

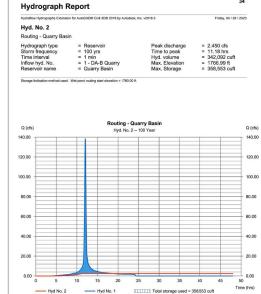
4/28/23 DRAWING NO.

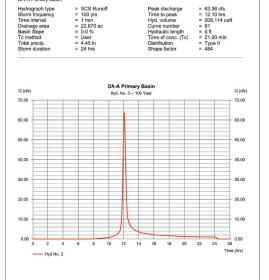

19 of 21


Hydraflow Hydrographs Exte	ension for AutoCA	D® Civil 3D8	2018 by Autod	lesk, Inc. v20	18.3			Friday, 04 / 28	/ 2023
Hyd. No. 8									
Routing-Secondary	Basin								
Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name	= 11 = 1 = 7	- Flow in	to Secondary	ary Basin Basin	Peak disc Time to p Hyd. volu Max. Elev Max. Stor	eak me vation	= 4 = 2 = 1	.375 cfs 8.00 hrs 6,089 cuft 816.89 ft 3,496 cuft	
Q (cfs)		F	Routing-Se Hyd. No.	. 8 10 Ye					Q (cfs)
4.00			-			1			4.00
				_					
	- 1		-	_	-	-	_		-
3.00									3.00
		_		_	_		_		_
			-	_		_	_		-
2.00									2.00
2.00									2.00
		-		_		-	_	-	+
1.00						_			1.00
		-		-	_	-	_		-
				_		_			
							_		
0.00	10	15	20	25	30	35	40	45	50 0.00
	10	15			30 Total stora				50 Time (hrs)
- Hyd No		- Hyd I							

No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	98 Chil 3D® 2018 by Astodesk, Inc. v2018.3 Hydrograph Description
1	SCS Runoff	137.93	1	723	426,229	1			DA-8 Quarry
2	Reservoir	2.450	1	671	342,092	1	1766.99	358,553	Routing - Quarry Basin
3	SCS Runoff	63.36	1	726	208,114	-	-	-	DA-A Primary Basin
4	Combine	65.81	1	726	550,206	2, 3			Flow into Primary Basin
5	Reservoir	2.439	1	2880	101,534	4	1821.11	573,719	Routing-Primary Basin
6	SCS Runoff	4.783	1	719	10,820	-	_	-	DA-C Secondary Basin
7	Combine	4.999	1	719	112,354	5,6	-	-	Flow into Secondary Basin
8	Reservoir	2.436	1	2880	65,474	7	1817.13	46,880	Routing-Secondary6asin

Hydrograph Report

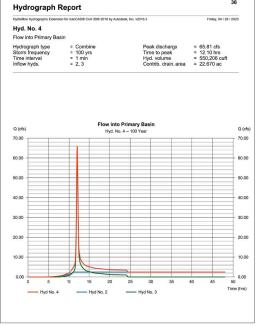

Hydrograph 100 YEAR STORM EVENT HYDROGRAPHS:



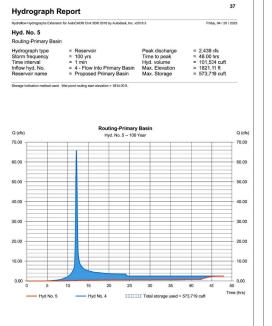
Friday, 04 / 28 / 2023

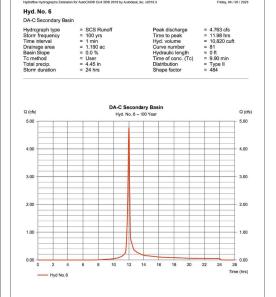
PERMIT

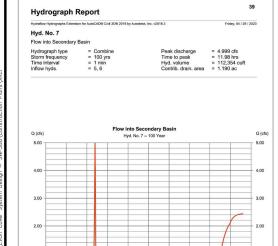
DRAWINGS

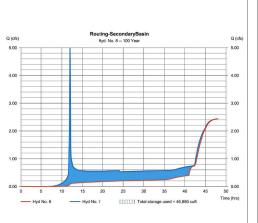


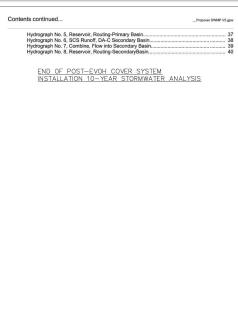
Hydrograph Report


Hydrograph Report

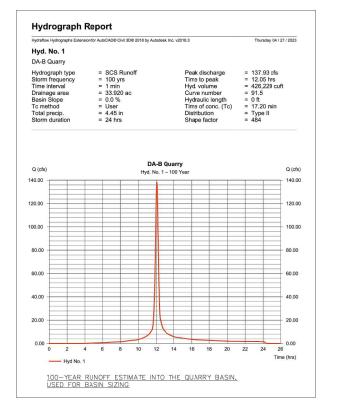

Hvd. No. 8 Routing-SecondaryBa

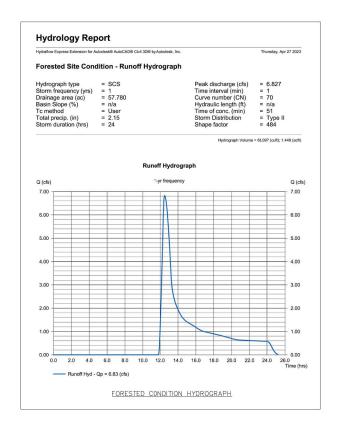

DA-A Primary Basin

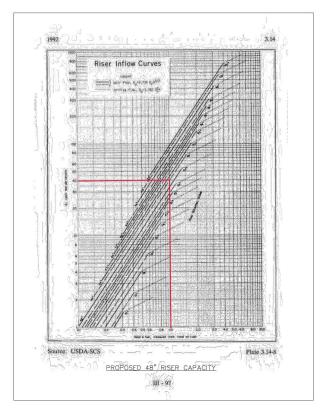

Proposed SWMP V2 cow

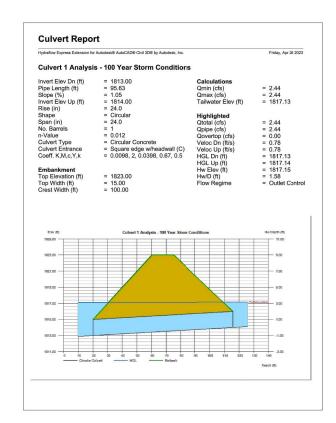


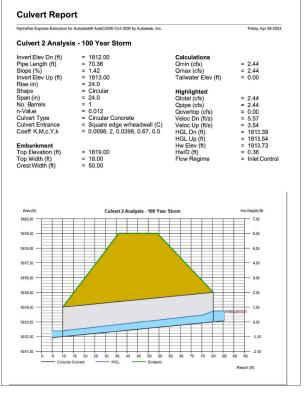
— Hyd No. 7 — Hyd No. 5 — Hyd No. 6

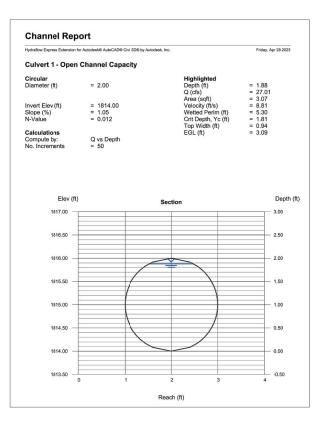


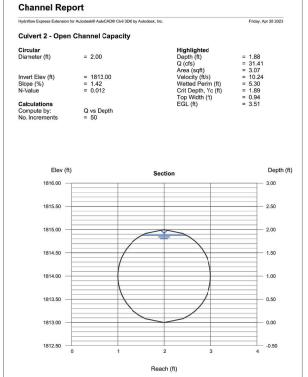

for AutoCAD8 Civil 3D8 2016 by Autodesk, Inc. v2018.3 Friday, 04 / 28 / 2		Friday, 04 / 28 / 2023	Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3	Friday, 04 / 28 / 202
n			Watershed Model Schematic	1
= Reservoir	Peak discharge	e = 2.436 cfs	1 - Year	
= 100 yrs	Time to peak	= 48.00 hrs	Summary Report.	
= 100 yrs	Hvd. volume	= 65.474 cuft	Hydrograph Reports	
			Hydrograph No. 1, SCS Runoff, DA-B Quarry	
	o Secondary Basin Max. Elevation		Hydrograph No. 2, Reservoir, Routing - Quarry Basin	
= Proposed S	Secondary Basin Max. Storage	= 46,880 cuft	Pond Report - Quarry Basin	
			Hydrograph No. 3, SCS Runoff, DA-A Primary Basin	
			Hydrograph No. 3, SCS Runott, DA-A Primary Basin	
			Hydrograph No. 4, Combine, Flow into Primary Basin	
			Hydrograph No. 5, Reservoir, Routing-Primary Basin	
			Pond Report - Proposed Primary Basin	
			Hydrograph No. 6, SCS Runoff, DA-C Secondary Basin	
			Hydrograph No. 7, Combine, Flow into Secondary Basin	
			Hydrograph No. 8, Reservoir, Routing-SecondaryBasin	
_			Pond Report - Proposed Secondary Basin	13
Re	outing-SecondaryBasin	Q (cfs)	u n 100	
	Hyd. No. 8 100 Year	Q (cis)	2 - Year	
		5.00	Summary Report	19
			Hydrograph Reports	
			Hydrograph No. 1, SCS Runoff, DA-B Quarry	
			Hydrograph No. 2, Reservoir, Routing - Quarry Basin	
			Hydrograph No. 3, SCS Runoff, DA-A Primary Basin	4
		4.00	Hydrograph No. 4, Combine, Flow into Primary Basin	
		4.00		
			Hydrograph No. 5, Reservoir, Routing-Primary Basin	
			Hydrograph No. 6, SCS Runoff, DA-C Secondary Basin	
			Hydrograph No. 7, Combine, Flow into Secondary Basin	
		3.00	Hydrograph No. 8, Reservoir, Routing-SecondaryBasin	
			10 - Year	
		_	Summary Report	
			Hydrograph Reports	
		200	Hydrograph No. 1, SCS Runoff, DA-B Quarry	2/
		2.00	Hydrograph No. 2. Reservoir, Routing - Quarry Basin	
			Hydrograph No. 3, SCS Runoff, DA-A Primary Basin	26
			Hydrograph No. 4, Combine, Flow into Primary Basin	
		//	Hydrograph No. 5, Reservoir, Routing-Primary Basin	
		-		
		1.00	Hydrograph No. 6, SCS Runoff, DA-C Secondary Basin	
			Hydrograph No. 7, Combine, Flow into Secondary Basin	
			Hydrograph No. 8, Reservoir, Routing-SecondaryBasin	3′
			100 - Year	
		0.00	Summary Report	
15	20 25 30 35	40 45 50	Hydrograph Reports	
		Time (hrs)	Hydrograph No. 1, SCS Runoff, DA-B Quarry.	
- Hyd Ni	o. 7 Total storage use	ed = 46,880 cuft	Hydrograph No. 2, Reservoir, Routing - Quarry Basin	
			Hydrograph No. 3, SCS Runoff, DA-A Primary Basin	
			Hydrograph No. 4, Combine, Flow into Primary Basin	


Hydraflow Table of Contents




SWP#588 INTERIM EVOH COVER SYSTEM STORMWATER MANAGEMENT PLAN STORMWATER CALCULATIONS 6
PROJECT TITLE CITY OF BRISTOL INTEGRATED SOLID
WASTE MANAGEMENT FACILITY
2655 VALLEY DRIVE
BRISTOL, VA 24201 SCS ENGINEERS STEARNS, CONAD AND SCHMIDT CONSULTING ENGINEERS, INC. 16521 MIDIOTHAN TRPR. AMELOTHAN, VA 23 PH. (804) 378-7440 FAX. (804) 378-7433 CADD FILE: 02218208.05 4/28/23 DRAWING NO. **20** of 21





21 of 21

PERMIT